1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <climits>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <map>
82 #include <set>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace PatternMatch;
89 
90 #define DEBUG_TYPE "simplifycfg"
91 
92 cl::opt<bool> llvm::RequireAndPreserveDomTree(
93     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
94     cl::init(false),
95     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
96              "into preserving DomTree,"));
97 
98 // Chosen as 2 so as to be cheap, but still to have enough power to fold
99 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
100 // To catch this, we need to fold a compare and a select, hence '2' being the
101 // minimum reasonable default.
102 static cl::opt<unsigned> PHINodeFoldingThreshold(
103     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
104     cl::desc(
105         "Control the amount of phi node folding to perform (default = 2)"));
106 
107 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
108     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
109     cl::desc("Control the maximal total instruction cost that we are willing "
110              "to speculatively execute to fold a 2-entry PHI node into a "
111              "select (default = 4)"));
112 
113 static cl::opt<bool> DupRet(
114     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
115     cl::desc("Duplicate return instructions into unconditional branches"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool>
122     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
123                cl::desc("Sink common instructions down to the end block"));
124 
125 static cl::opt<bool> HoistCondStores(
126     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
127     cl::desc("Hoist conditional stores if an unconditional store precedes"));
128 
129 static cl::opt<bool> MergeCondStores(
130     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
131     cl::desc("Hoist conditional stores even if an unconditional store does not "
132              "precede - hoist multiple conditional stores into a single "
133              "predicated store"));
134 
135 static cl::opt<bool> MergeCondStoresAggressively(
136     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
137     cl::desc("When merging conditional stores, do so even if the resultant "
138              "basic blocks are unlikely to be if-converted as a result"));
139 
140 static cl::opt<bool> SpeculateOneExpensiveInst(
141     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
142     cl::desc("Allow exactly one expensive instruction to be speculatively "
143              "executed"));
144 
145 static cl::opt<unsigned> MaxSpeculationDepth(
146     "max-speculation-depth", cl::Hidden, cl::init(10),
147     cl::desc("Limit maximum recursion depth when calculating costs of "
148              "speculatively executed instructions"));
149 
150 static cl::opt<int>
151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
152                   cl::desc("Max size of a block which is still considered "
153                            "small enough to thread through"));
154 
155 // Two is chosen to allow one negation and a logical combine.
156 static cl::opt<unsigned>
157     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
158                         cl::init(2),
159                         cl::desc("Maximum cost of combining conditions when "
160                                  "folding branches"));
161 
162 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
163 STATISTIC(NumLinearMaps,
164           "Number of switch instructions turned into linear mapping");
165 STATISTIC(NumLookupTables,
166           "Number of switch instructions turned into lookup tables");
167 STATISTIC(
168     NumLookupTablesHoles,
169     "Number of switch instructions turned into lookup tables (holes checked)");
170 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
171 STATISTIC(NumFoldValueComparisonIntoPredecessors,
172           "Number of value comparisons folded into predecessor basic blocks");
173 STATISTIC(NumFoldBranchToCommonDest,
174           "Number of branches folded into predecessor basic block");
175 STATISTIC(
176     NumHoistCommonCode,
177     "Number of common instruction 'blocks' hoisted up to the begin block");
178 STATISTIC(NumHoistCommonInstrs,
179           "Number of common instructions hoisted up to the begin block");
180 STATISTIC(NumSinkCommonCode,
181           "Number of common instruction 'blocks' sunk down to the end block");
182 STATISTIC(NumSinkCommonInstrs,
183           "Number of common instructions sunk down to the end block");
184 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
185 STATISTIC(NumInvokes,
186           "Number of invokes with empty resume blocks simplified into calls");
187 
188 namespace {
189 
190 // The first field contains the value that the switch produces when a certain
191 // case group is selected, and the second field is a vector containing the
192 // cases composing the case group.
193 using SwitchCaseResultVectorTy =
194     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
195 
196 // The first field contains the phi node that generates a result of the switch
197 // and the second field contains the value generated for a certain case in the
198 // switch for that PHI.
199 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
200 
201 /// ValueEqualityComparisonCase - Represents a case of a switch.
202 struct ValueEqualityComparisonCase {
203   ConstantInt *Value;
204   BasicBlock *Dest;
205 
206   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
207       : Value(Value), Dest(Dest) {}
208 
209   bool operator<(ValueEqualityComparisonCase RHS) const {
210     // Comparing pointers is ok as we only rely on the order for uniquing.
211     return Value < RHS.Value;
212   }
213 
214   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
215 };
216 
217 class SimplifyCFGOpt {
218   const TargetTransformInfo &TTI;
219   DomTreeUpdater *DTU;
220   const DataLayout &DL;
221   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
222   const SimplifyCFGOptions &Options;
223   bool Resimplify;
224 
225   Value *isValueEqualityComparison(Instruction *TI);
226   BasicBlock *GetValueEqualityComparisonCases(
227       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
228   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
229                                                      BasicBlock *Pred,
230                                                      IRBuilder<> &Builder);
231   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
232                                            IRBuilder<> &Builder);
233 
234   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
235   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
236   bool simplifySingleResume(ResumeInst *RI);
237   bool simplifyCommonResume(ResumeInst *RI);
238   bool simplifyCleanupReturn(CleanupReturnInst *RI);
239   bool simplifyUnreachable(UnreachableInst *UI);
240   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
241   bool simplifyIndirectBr(IndirectBrInst *IBI);
242   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
243   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
244   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
245   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
246 
247   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
248                                              IRBuilder<> &Builder);
249 
250   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
251   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
252                               const TargetTransformInfo &TTI);
253   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
254                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
255                                   uint32_t TrueWeight, uint32_t FalseWeight);
256   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
257                                  const DataLayout &DL);
258   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
259   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
260   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
261 
262 public:
263   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
264                  const DataLayout &DL,
265                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
266                  const SimplifyCFGOptions &Opts)
267       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
268     assert((!DTU || !DTU->hasPostDomTree()) &&
269            "SimplifyCFG is not yet capable of maintaining validity of a "
270            "PostDomTree, so don't ask for it.");
271   }
272 
273   bool simplifyOnce(BasicBlock *BB);
274   bool simplifyOnceImpl(BasicBlock *BB);
275   bool run(BasicBlock *BB);
276 
277   // Helper to set Resimplify and return change indication.
278   bool requestResimplify() {
279     Resimplify = true;
280     return true;
281   }
282 };
283 
284 } // end anonymous namespace
285 
286 /// Return true if it is safe to merge these two
287 /// terminator instructions together.
288 static bool
289 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
290                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
291   if (SI1 == SI2)
292     return false; // Can't merge with self!
293 
294   // It is not safe to merge these two switch instructions if they have a common
295   // successor, and if that successor has a PHI node, and if *that* PHI node has
296   // conflicting incoming values from the two switch blocks.
297   BasicBlock *SI1BB = SI1->getParent();
298   BasicBlock *SI2BB = SI2->getParent();
299 
300   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
301   bool Fail = false;
302   for (BasicBlock *Succ : successors(SI2BB))
303     if (SI1Succs.count(Succ))
304       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
305         PHINode *PN = cast<PHINode>(BBI);
306         if (PN->getIncomingValueForBlock(SI1BB) !=
307             PN->getIncomingValueForBlock(SI2BB)) {
308           if (FailBlocks)
309             FailBlocks->insert(Succ);
310           Fail = true;
311         }
312       }
313 
314   return !Fail;
315 }
316 
317 /// Return true if it is safe and profitable to merge these two terminator
318 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
319 /// store all PHI nodes in common successors.
320 static bool
321 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
322                                 Instruction *Cond,
323                                 SmallVectorImpl<PHINode *> &PhiNodes) {
324   if (SI1 == SI2)
325     return false; // Can't merge with self!
326   assert(SI1->isUnconditional() && SI2->isConditional());
327 
328   // We fold the unconditional branch if we can easily update all PHI nodes in
329   // common successors:
330   // 1> We have a constant incoming value for the conditional branch;
331   // 2> We have "Cond" as the incoming value for the unconditional branch;
332   // 3> SI2->getCondition() and Cond have same operands.
333   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
334   if (!Ci2)
335     return false;
336   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
337         Cond->getOperand(1) == Ci2->getOperand(1)) &&
338       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
339         Cond->getOperand(1) == Ci2->getOperand(0)))
340     return false;
341 
342   BasicBlock *SI1BB = SI1->getParent();
343   BasicBlock *SI2BB = SI2->getParent();
344   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
345   for (BasicBlock *Succ : successors(SI2BB))
346     if (SI1Succs.count(Succ))
347       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
348         PHINode *PN = cast<PHINode>(BBI);
349         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
350             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
351           return false;
352         PhiNodes.push_back(PN);
353       }
354   return true;
355 }
356 
357 /// Update PHI nodes in Succ to indicate that there will now be entries in it
358 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
359 /// will be the same as those coming in from ExistPred, an existing predecessor
360 /// of Succ.
361 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
362                                   BasicBlock *ExistPred,
363                                   MemorySSAUpdater *MSSAU = nullptr) {
364   for (PHINode &PN : Succ->phis())
365     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
366   if (MSSAU)
367     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
368       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
369 }
370 
371 /// Compute an abstract "cost" of speculating the given instruction,
372 /// which is assumed to be safe to speculate. TCC_Free means cheap,
373 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
374 /// expensive.
375 static unsigned ComputeSpeculationCost(const User *I,
376                                        const TargetTransformInfo &TTI) {
377   assert(isSafeToSpeculativelyExecute(I) &&
378          "Instruction is not safe to speculatively execute!");
379   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
380 }
381 
382 /// If we have a merge point of an "if condition" as accepted above,
383 /// return true if the specified value dominates the block.  We
384 /// don't handle the true generality of domination here, just a special case
385 /// which works well enough for us.
386 ///
387 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
388 /// see if V (which must be an instruction) and its recursive operands
389 /// that do not dominate BB have a combined cost lower than CostRemaining and
390 /// are non-trapping.  If both are true, the instruction is inserted into the
391 /// set and true is returned.
392 ///
393 /// The cost for most non-trapping instructions is defined as 1 except for
394 /// Select whose cost is 2.
395 ///
396 /// After this function returns, CostRemaining is decreased by the cost of
397 /// V plus its non-dominating operands.  If that cost is greater than
398 /// CostRemaining, false is returned and CostRemaining is undefined.
399 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
400                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
401                                 int &BudgetRemaining,
402                                 const TargetTransformInfo &TTI,
403                                 unsigned Depth = 0) {
404   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
405   // so limit the recursion depth.
406   // TODO: While this recursion limit does prevent pathological behavior, it
407   // would be better to track visited instructions to avoid cycles.
408   if (Depth == MaxSpeculationDepth)
409     return false;
410 
411   Instruction *I = dyn_cast<Instruction>(V);
412   if (!I) {
413     // Non-instructions all dominate instructions, but not all constantexprs
414     // can be executed unconditionally.
415     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
416       if (C->canTrap())
417         return false;
418     return true;
419   }
420   BasicBlock *PBB = I->getParent();
421 
422   // We don't want to allow weird loops that might have the "if condition" in
423   // the bottom of this block.
424   if (PBB == BB)
425     return false;
426 
427   // If this instruction is defined in a block that contains an unconditional
428   // branch to BB, then it must be in the 'conditional' part of the "if
429   // statement".  If not, it definitely dominates the region.
430   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
431   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
432     return true;
433 
434   // If we have seen this instruction before, don't count it again.
435   if (AggressiveInsts.count(I))
436     return true;
437 
438   // Okay, it looks like the instruction IS in the "condition".  Check to
439   // see if it's a cheap instruction to unconditionally compute, and if it
440   // only uses stuff defined outside of the condition.  If so, hoist it out.
441   if (!isSafeToSpeculativelyExecute(I))
442     return false;
443 
444   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
445 
446   // Allow exactly one instruction to be speculated regardless of its cost
447   // (as long as it is safe to do so).
448   // This is intended to flatten the CFG even if the instruction is a division
449   // or other expensive operation. The speculation of an expensive instruction
450   // is expected to be undone in CodeGenPrepare if the speculation has not
451   // enabled further IR optimizations.
452   if (BudgetRemaining < 0 &&
453       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
454     return false;
455 
456   // Okay, we can only really hoist these out if their operands do
457   // not take us over the cost threshold.
458   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
459     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
460                              Depth + 1))
461       return false;
462   // Okay, it's safe to do this!  Remember this instruction.
463   AggressiveInsts.insert(I);
464   return true;
465 }
466 
467 /// Extract ConstantInt from value, looking through IntToPtr
468 /// and PointerNullValue. Return NULL if value is not a constant int.
469 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
470   // Normal constant int.
471   ConstantInt *CI = dyn_cast<ConstantInt>(V);
472   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
473     return CI;
474 
475   // This is some kind of pointer constant. Turn it into a pointer-sized
476   // ConstantInt if possible.
477   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
478 
479   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
480   if (isa<ConstantPointerNull>(V))
481     return ConstantInt::get(PtrTy, 0);
482 
483   // IntToPtr const int.
484   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
485     if (CE->getOpcode() == Instruction::IntToPtr)
486       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
487         // The constant is very likely to have the right type already.
488         if (CI->getType() == PtrTy)
489           return CI;
490         else
491           return cast<ConstantInt>(
492               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
493       }
494   return nullptr;
495 }
496 
497 namespace {
498 
499 /// Given a chain of or (||) or and (&&) comparison of a value against a
500 /// constant, this will try to recover the information required for a switch
501 /// structure.
502 /// It will depth-first traverse the chain of comparison, seeking for patterns
503 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
504 /// representing the different cases for the switch.
505 /// Note that if the chain is composed of '||' it will build the set of elements
506 /// that matches the comparisons (i.e. any of this value validate the chain)
507 /// while for a chain of '&&' it will build the set elements that make the test
508 /// fail.
509 struct ConstantComparesGatherer {
510   const DataLayout &DL;
511 
512   /// Value found for the switch comparison
513   Value *CompValue = nullptr;
514 
515   /// Extra clause to be checked before the switch
516   Value *Extra = nullptr;
517 
518   /// Set of integers to match in switch
519   SmallVector<ConstantInt *, 8> Vals;
520 
521   /// Number of comparisons matched in the and/or chain
522   unsigned UsedICmps = 0;
523 
524   /// Construct and compute the result for the comparison instruction Cond
525   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
526     gather(Cond);
527   }
528 
529   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
530   ConstantComparesGatherer &
531   operator=(const ConstantComparesGatherer &) = delete;
532 
533 private:
534   /// Try to set the current value used for the comparison, it succeeds only if
535   /// it wasn't set before or if the new value is the same as the old one
536   bool setValueOnce(Value *NewVal) {
537     if (CompValue && CompValue != NewVal)
538       return false;
539     CompValue = NewVal;
540     return (CompValue != nullptr);
541   }
542 
543   /// Try to match Instruction "I" as a comparison against a constant and
544   /// populates the array Vals with the set of values that match (or do not
545   /// match depending on isEQ).
546   /// Return false on failure. On success, the Value the comparison matched
547   /// against is placed in CompValue.
548   /// If CompValue is already set, the function is expected to fail if a match
549   /// is found but the value compared to is different.
550   bool matchInstruction(Instruction *I, bool isEQ) {
551     // If this is an icmp against a constant, handle this as one of the cases.
552     ICmpInst *ICI;
553     ConstantInt *C;
554     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
555           (C = GetConstantInt(I->getOperand(1), DL)))) {
556       return false;
557     }
558 
559     Value *RHSVal;
560     const APInt *RHSC;
561 
562     // Pattern match a special case
563     // (x & ~2^z) == y --> x == y || x == y|2^z
564     // This undoes a transformation done by instcombine to fuse 2 compares.
565     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
566       // It's a little bit hard to see why the following transformations are
567       // correct. Here is a CVC3 program to verify them for 64-bit values:
568 
569       /*
570          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
571          x    : BITVECTOR(64);
572          y    : BITVECTOR(64);
573          z    : BITVECTOR(64);
574          mask : BITVECTOR(64) = BVSHL(ONE, z);
575          QUERY( (y & ~mask = y) =>
576                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
577          );
578          QUERY( (y |  mask = y) =>
579                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
580          );
581       */
582 
583       // Please note that each pattern must be a dual implication (<--> or
584       // iff). One directional implication can create spurious matches. If the
585       // implication is only one-way, an unsatisfiable condition on the left
586       // side can imply a satisfiable condition on the right side. Dual
587       // implication ensures that satisfiable conditions are transformed to
588       // other satisfiable conditions and unsatisfiable conditions are
589       // transformed to other unsatisfiable conditions.
590 
591       // Here is a concrete example of a unsatisfiable condition on the left
592       // implying a satisfiable condition on the right:
593       //
594       // mask = (1 << z)
595       // (x & ~mask) == y  --> (x == y || x == (y | mask))
596       //
597       // Substituting y = 3, z = 0 yields:
598       // (x & -2) == 3 --> (x == 3 || x == 2)
599 
600       // Pattern match a special case:
601       /*
602         QUERY( (y & ~mask = y) =>
603                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
604         );
605       */
606       if (match(ICI->getOperand(0),
607                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
608         APInt Mask = ~*RHSC;
609         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
610           // If we already have a value for the switch, it has to match!
611           if (!setValueOnce(RHSVal))
612             return false;
613 
614           Vals.push_back(C);
615           Vals.push_back(
616               ConstantInt::get(C->getContext(),
617                                C->getValue() | Mask));
618           UsedICmps++;
619           return true;
620         }
621       }
622 
623       // Pattern match a special case:
624       /*
625         QUERY( (y |  mask = y) =>
626                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
627         );
628       */
629       if (match(ICI->getOperand(0),
630                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
631         APInt Mask = *RHSC;
632         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
633           // If we already have a value for the switch, it has to match!
634           if (!setValueOnce(RHSVal))
635             return false;
636 
637           Vals.push_back(C);
638           Vals.push_back(ConstantInt::get(C->getContext(),
639                                           C->getValue() & ~Mask));
640           UsedICmps++;
641           return true;
642         }
643       }
644 
645       // If we already have a value for the switch, it has to match!
646       if (!setValueOnce(ICI->getOperand(0)))
647         return false;
648 
649       UsedICmps++;
650       Vals.push_back(C);
651       return ICI->getOperand(0);
652     }
653 
654     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
655     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
656         ICI->getPredicate(), C->getValue());
657 
658     // Shift the range if the compare is fed by an add. This is the range
659     // compare idiom as emitted by instcombine.
660     Value *CandidateVal = I->getOperand(0);
661     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
662       Span = Span.subtract(*RHSC);
663       CandidateVal = RHSVal;
664     }
665 
666     // If this is an and/!= check, then we are looking to build the set of
667     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
668     // x != 0 && x != 1.
669     if (!isEQ)
670       Span = Span.inverse();
671 
672     // If there are a ton of values, we don't want to make a ginormous switch.
673     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
674       return false;
675     }
676 
677     // If we already have a value for the switch, it has to match!
678     if (!setValueOnce(CandidateVal))
679       return false;
680 
681     // Add all values from the range to the set
682     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
683       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
684 
685     UsedICmps++;
686     return true;
687   }
688 
689   /// Given a potentially 'or'd or 'and'd together collection of icmp
690   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
691   /// the value being compared, and stick the list constants into the Vals
692   /// vector.
693   /// One "Extra" case is allowed to differ from the other.
694   void gather(Value *V) {
695     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
696 
697     // Keep a stack (SmallVector for efficiency) for depth-first traversal
698     SmallVector<Value *, 8> DFT;
699     SmallPtrSet<Value *, 8> Visited;
700 
701     // Initialize
702     Visited.insert(V);
703     DFT.push_back(V);
704 
705     while (!DFT.empty()) {
706       V = DFT.pop_back_val();
707 
708       if (Instruction *I = dyn_cast<Instruction>(V)) {
709         // If it is a || (or && depending on isEQ), process the operands.
710         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
711           if (Visited.insert(I->getOperand(1)).second)
712             DFT.push_back(I->getOperand(1));
713           if (Visited.insert(I->getOperand(0)).second)
714             DFT.push_back(I->getOperand(0));
715           continue;
716         }
717 
718         // Try to match the current instruction
719         if (matchInstruction(I, isEQ))
720           // Match succeed, continue the loop
721           continue;
722       }
723 
724       // One element of the sequence of || (or &&) could not be match as a
725       // comparison against the same value as the others.
726       // We allow only one "Extra" case to be checked before the switch
727       if (!Extra) {
728         Extra = V;
729         continue;
730       }
731       // Failed to parse a proper sequence, abort now
732       CompValue = nullptr;
733       break;
734     }
735   }
736 };
737 
738 } // end anonymous namespace
739 
740 static void EraseTerminatorAndDCECond(Instruction *TI,
741                                       MemorySSAUpdater *MSSAU = nullptr) {
742   Instruction *Cond = nullptr;
743   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
744     Cond = dyn_cast<Instruction>(SI->getCondition());
745   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
746     if (BI->isConditional())
747       Cond = dyn_cast<Instruction>(BI->getCondition());
748   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
749     Cond = dyn_cast<Instruction>(IBI->getAddress());
750   }
751 
752   TI->eraseFromParent();
753   if (Cond)
754     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
755 }
756 
757 /// Return true if the specified terminator checks
758 /// to see if a value is equal to constant integer value.
759 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
760   Value *CV = nullptr;
761   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
762     // Do not permit merging of large switch instructions into their
763     // predecessors unless there is only one predecessor.
764     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
765       CV = SI->getCondition();
766   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
767     if (BI->isConditional() && BI->getCondition()->hasOneUse())
768       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
769         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
770           CV = ICI->getOperand(0);
771       }
772 
773   // Unwrap any lossless ptrtoint cast.
774   if (CV) {
775     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
776       Value *Ptr = PTII->getPointerOperand();
777       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
778         CV = Ptr;
779     }
780   }
781   return CV;
782 }
783 
784 /// Given a value comparison instruction,
785 /// decode all of the 'cases' that it represents and return the 'default' block.
786 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
787     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
788   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
789     Cases.reserve(SI->getNumCases());
790     for (auto Case : SI->cases())
791       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
792                                                   Case.getCaseSuccessor()));
793     return SI->getDefaultDest();
794   }
795 
796   BranchInst *BI = cast<BranchInst>(TI);
797   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
798   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
799   Cases.push_back(ValueEqualityComparisonCase(
800       GetConstantInt(ICI->getOperand(1), DL), Succ));
801   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
802 }
803 
804 /// Given a vector of bb/value pairs, remove any entries
805 /// in the list that match the specified block.
806 static void
807 EliminateBlockCases(BasicBlock *BB,
808                     std::vector<ValueEqualityComparisonCase> &Cases) {
809   llvm::erase_value(Cases, BB);
810 }
811 
812 /// Return true if there are any keys in C1 that exist in C2 as well.
813 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
814                           std::vector<ValueEqualityComparisonCase> &C2) {
815   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
816 
817   // Make V1 be smaller than V2.
818   if (V1->size() > V2->size())
819     std::swap(V1, V2);
820 
821   if (V1->empty())
822     return false;
823   if (V1->size() == 1) {
824     // Just scan V2.
825     ConstantInt *TheVal = (*V1)[0].Value;
826     for (unsigned i = 0, e = V2->size(); i != e; ++i)
827       if (TheVal == (*V2)[i].Value)
828         return true;
829   }
830 
831   // Otherwise, just sort both lists and compare element by element.
832   array_pod_sort(V1->begin(), V1->end());
833   array_pod_sort(V2->begin(), V2->end());
834   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
835   while (i1 != e1 && i2 != e2) {
836     if ((*V1)[i1].Value == (*V2)[i2].Value)
837       return true;
838     if ((*V1)[i1].Value < (*V2)[i2].Value)
839       ++i1;
840     else
841       ++i2;
842   }
843   return false;
844 }
845 
846 // Set branch weights on SwitchInst. This sets the metadata if there is at
847 // least one non-zero weight.
848 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
849   // Check that there is at least one non-zero weight. Otherwise, pass
850   // nullptr to setMetadata which will erase the existing metadata.
851   MDNode *N = nullptr;
852   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
853     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
854   SI->setMetadata(LLVMContext::MD_prof, N);
855 }
856 
857 // Similar to the above, but for branch and select instructions that take
858 // exactly 2 weights.
859 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
860                              uint32_t FalseWeight) {
861   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
862   // Check that there is at least one non-zero weight. Otherwise, pass
863   // nullptr to setMetadata which will erase the existing metadata.
864   MDNode *N = nullptr;
865   if (TrueWeight || FalseWeight)
866     N = MDBuilder(I->getParent()->getContext())
867             .createBranchWeights(TrueWeight, FalseWeight);
868   I->setMetadata(LLVMContext::MD_prof, N);
869 }
870 
871 /// If TI is known to be a terminator instruction and its block is known to
872 /// only have a single predecessor block, check to see if that predecessor is
873 /// also a value comparison with the same value, and if that comparison
874 /// determines the outcome of this comparison. If so, simplify TI. This does a
875 /// very limited form of jump threading.
876 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
877     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
878   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
879   if (!PredVal)
880     return false; // Not a value comparison in predecessor.
881 
882   Value *ThisVal = isValueEqualityComparison(TI);
883   assert(ThisVal && "This isn't a value comparison!!");
884   if (ThisVal != PredVal)
885     return false; // Different predicates.
886 
887   // TODO: Preserve branch weight metadata, similarly to how
888   // FoldValueComparisonIntoPredecessors preserves it.
889 
890   // Find out information about when control will move from Pred to TI's block.
891   std::vector<ValueEqualityComparisonCase> PredCases;
892   BasicBlock *PredDef =
893       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
894   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
895 
896   // Find information about how control leaves this block.
897   std::vector<ValueEqualityComparisonCase> ThisCases;
898   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
899   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
900 
901   // If TI's block is the default block from Pred's comparison, potentially
902   // simplify TI based on this knowledge.
903   if (PredDef == TI->getParent()) {
904     // If we are here, we know that the value is none of those cases listed in
905     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
906     // can simplify TI.
907     if (!ValuesOverlap(PredCases, ThisCases))
908       return false;
909 
910     if (isa<BranchInst>(TI)) {
911       // Okay, one of the successors of this condbr is dead.  Convert it to a
912       // uncond br.
913       assert(ThisCases.size() == 1 && "Branch can only have one case!");
914       // Insert the new branch.
915       Instruction *NI = Builder.CreateBr(ThisDef);
916       (void)NI;
917 
918       // Remove PHI node entries for the dead edge.
919       ThisCases[0].Dest->removePredecessor(PredDef);
920 
921       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
922                         << "Through successor TI: " << *TI << "Leaving: " << *NI
923                         << "\n");
924 
925       EraseTerminatorAndDCECond(TI);
926 
927       if (DTU)
928         DTU->applyUpdates(
929             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
930 
931       return true;
932     }
933 
934     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
935     // Okay, TI has cases that are statically dead, prune them away.
936     SmallPtrSet<Constant *, 16> DeadCases;
937     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
938       DeadCases.insert(PredCases[i].Value);
939 
940     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
941                       << "Through successor TI: " << *TI);
942 
943     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
944     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
945       --i;
946       auto *Successor = i->getCaseSuccessor();
947       ++NumPerSuccessorCases[Successor];
948       if (DeadCases.count(i->getCaseValue())) {
949         Successor->removePredecessor(PredDef);
950         SI.removeCase(i);
951         --NumPerSuccessorCases[Successor];
952       }
953     }
954 
955     std::vector<DominatorTree::UpdateType> Updates;
956     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
957       if (I.second == 0)
958         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
959     if (DTU)
960       DTU->applyUpdates(Updates);
961 
962     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
963     return true;
964   }
965 
966   // Otherwise, TI's block must correspond to some matched value.  Find out
967   // which value (or set of values) this is.
968   ConstantInt *TIV = nullptr;
969   BasicBlock *TIBB = TI->getParent();
970   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
971     if (PredCases[i].Dest == TIBB) {
972       if (TIV)
973         return false; // Cannot handle multiple values coming to this block.
974       TIV = PredCases[i].Value;
975     }
976   assert(TIV && "No edge from pred to succ?");
977 
978   // Okay, we found the one constant that our value can be if we get into TI's
979   // BB.  Find out which successor will unconditionally be branched to.
980   BasicBlock *TheRealDest = nullptr;
981   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
982     if (ThisCases[i].Value == TIV) {
983       TheRealDest = ThisCases[i].Dest;
984       break;
985     }
986 
987   // If not handled by any explicit cases, it is handled by the default case.
988   if (!TheRealDest)
989     TheRealDest = ThisDef;
990 
991   SmallSetVector<BasicBlock *, 2> RemovedSuccs;
992 
993   // Remove PHI node entries for dead edges.
994   BasicBlock *CheckEdge = TheRealDest;
995   for (BasicBlock *Succ : successors(TIBB))
996     if (Succ != CheckEdge) {
997       if (Succ != TheRealDest)
998         RemovedSuccs.insert(Succ);
999       Succ->removePredecessor(TIBB);
1000     } else
1001       CheckEdge = nullptr;
1002 
1003   // Insert the new branch.
1004   Instruction *NI = Builder.CreateBr(TheRealDest);
1005   (void)NI;
1006 
1007   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1008                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1009                     << "\n");
1010 
1011   EraseTerminatorAndDCECond(TI);
1012   if (DTU) {
1013     SmallVector<DominatorTree::UpdateType, 2> Updates;
1014     Updates.reserve(RemovedSuccs.size());
1015     for (auto *RemovedSucc : RemovedSuccs)
1016       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1017     DTU->applyUpdates(Updates);
1018   }
1019   return true;
1020 }
1021 
1022 namespace {
1023 
1024 /// This class implements a stable ordering of constant
1025 /// integers that does not depend on their address.  This is important for
1026 /// applications that sort ConstantInt's to ensure uniqueness.
1027 struct ConstantIntOrdering {
1028   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1029     return LHS->getValue().ult(RHS->getValue());
1030   }
1031 };
1032 
1033 } // end anonymous namespace
1034 
1035 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1036                                     ConstantInt *const *P2) {
1037   const ConstantInt *LHS = *P1;
1038   const ConstantInt *RHS = *P2;
1039   if (LHS == RHS)
1040     return 0;
1041   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1042 }
1043 
1044 static inline bool HasBranchWeights(const Instruction *I) {
1045   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1046   if (ProfMD && ProfMD->getOperand(0))
1047     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1048       return MDS->getString().equals("branch_weights");
1049 
1050   return false;
1051 }
1052 
1053 /// Get Weights of a given terminator, the default weight is at the front
1054 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1055 /// metadata.
1056 static void GetBranchWeights(Instruction *TI,
1057                              SmallVectorImpl<uint64_t> &Weights) {
1058   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1059   assert(MD);
1060   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1061     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1062     Weights.push_back(CI->getValue().getZExtValue());
1063   }
1064 
1065   // If TI is a conditional eq, the default case is the false case,
1066   // and the corresponding branch-weight data is at index 2. We swap the
1067   // default weight to be the first entry.
1068   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1069     assert(Weights.size() == 2);
1070     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1071     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1072       std::swap(Weights.front(), Weights.back());
1073   }
1074 }
1075 
1076 /// Keep halving the weights until all can fit in uint32_t.
1077 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1078   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1079   if (Max > UINT_MAX) {
1080     unsigned Offset = 32 - countLeadingZeros(Max);
1081     for (uint64_t &I : Weights)
1082       I >>= Offset;
1083   }
1084 }
1085 
1086 /// The specified terminator is a value equality comparison instruction
1087 /// (either a switch or a branch on "X == c").
1088 /// See if any of the predecessors of the terminator block are value comparisons
1089 /// on the same value.  If so, and if safe to do so, fold them together.
1090 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1091                                                          IRBuilder<> &Builder) {
1092   BasicBlock *BB = TI->getParent();
1093   Value *CV = isValueEqualityComparison(TI); // CondVal
1094   assert(CV && "Not a comparison?");
1095 
1096   bool Changed = false;
1097 
1098   auto _ = make_scope_exit([&]() {
1099     if (Changed)
1100       ++NumFoldValueComparisonIntoPredecessors;
1101   });
1102 
1103   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1104   while (!Preds.empty()) {
1105     BasicBlock *Pred = Preds.pop_back_val();
1106 
1107     // See if the predecessor is a comparison with the same value.
1108     Instruction *PTI = Pred->getTerminator();
1109     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1110 
1111     if (PCV == CV && TI != PTI) {
1112       SmallSetVector<BasicBlock*, 4> FailBlocks;
1113       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1114         for (auto *Succ : FailBlocks) {
1115           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split",
1116                                       DTU ? &DTU->getDomTree() : nullptr))
1117             return false;
1118         }
1119       }
1120 
1121       std::vector<DominatorTree::UpdateType> Updates;
1122 
1123       // Figure out which 'cases' to copy from SI to PSI.
1124       std::vector<ValueEqualityComparisonCase> BBCases;
1125       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1126 
1127       std::vector<ValueEqualityComparisonCase> PredCases;
1128       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1129 
1130       // Based on whether the default edge from PTI goes to BB or not, fill in
1131       // PredCases and PredDefault with the new switch cases we would like to
1132       // build.
1133       SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1134 
1135       // Update the branch weight metadata along the way
1136       SmallVector<uint64_t, 8> Weights;
1137       bool PredHasWeights = HasBranchWeights(PTI);
1138       bool SuccHasWeights = HasBranchWeights(TI);
1139 
1140       if (PredHasWeights) {
1141         GetBranchWeights(PTI, Weights);
1142         // branch-weight metadata is inconsistent here.
1143         if (Weights.size() != 1 + PredCases.size())
1144           PredHasWeights = SuccHasWeights = false;
1145       } else if (SuccHasWeights)
1146         // If there are no predecessor weights but there are successor weights,
1147         // populate Weights with 1, which will later be scaled to the sum of
1148         // successor's weights
1149         Weights.assign(1 + PredCases.size(), 1);
1150 
1151       SmallVector<uint64_t, 8> SuccWeights;
1152       if (SuccHasWeights) {
1153         GetBranchWeights(TI, SuccWeights);
1154         // branch-weight metadata is inconsistent here.
1155         if (SuccWeights.size() != 1 + BBCases.size())
1156           PredHasWeights = SuccHasWeights = false;
1157       } else if (PredHasWeights)
1158         SuccWeights.assign(1 + BBCases.size(), 1);
1159 
1160       if (PredDefault == BB) {
1161         // If this is the default destination from PTI, only the edges in TI
1162         // that don't occur in PTI, or that branch to BB will be activated.
1163         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1164         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1165           if (PredCases[i].Dest != BB)
1166             PTIHandled.insert(PredCases[i].Value);
1167           else {
1168             // The default destination is BB, we don't need explicit targets.
1169             std::swap(PredCases[i], PredCases.back());
1170 
1171             if (PredHasWeights || SuccHasWeights) {
1172               // Increase weight for the default case.
1173               Weights[0] += Weights[i + 1];
1174               std::swap(Weights[i + 1], Weights.back());
1175               Weights.pop_back();
1176             }
1177 
1178             PredCases.pop_back();
1179             --i;
1180             --e;
1181           }
1182 
1183         // Reconstruct the new switch statement we will be building.
1184         if (PredDefault != BBDefault) {
1185           PredDefault->removePredecessor(Pred);
1186           if (PredDefault != BB)
1187             Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1188           PredDefault = BBDefault;
1189           ++NewSuccessors[BBDefault];
1190         }
1191 
1192         unsigned CasesFromPred = Weights.size();
1193         uint64_t ValidTotalSuccWeight = 0;
1194         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1195           if (!PTIHandled.count(BBCases[i].Value) &&
1196               BBCases[i].Dest != BBDefault) {
1197             PredCases.push_back(BBCases[i]);
1198             ++NewSuccessors[BBCases[i].Dest];
1199             if (SuccHasWeights || PredHasWeights) {
1200               // The default weight is at index 0, so weight for the ith case
1201               // should be at index i+1. Scale the cases from successor by
1202               // PredDefaultWeight (Weights[0]).
1203               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1204               ValidTotalSuccWeight += SuccWeights[i + 1];
1205             }
1206           }
1207 
1208         if (SuccHasWeights || PredHasWeights) {
1209           ValidTotalSuccWeight += SuccWeights[0];
1210           // Scale the cases from predecessor by ValidTotalSuccWeight.
1211           for (unsigned i = 1; i < CasesFromPred; ++i)
1212             Weights[i] *= ValidTotalSuccWeight;
1213           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1214           Weights[0] *= SuccWeights[0];
1215         }
1216       } else {
1217         // If this is not the default destination from PSI, only the edges
1218         // in SI that occur in PSI with a destination of BB will be
1219         // activated.
1220         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1221         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1222         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1223           if (PredCases[i].Dest == BB) {
1224             PTIHandled.insert(PredCases[i].Value);
1225 
1226             if (PredHasWeights || SuccHasWeights) {
1227               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1228               std::swap(Weights[i + 1], Weights.back());
1229               Weights.pop_back();
1230             }
1231 
1232             std::swap(PredCases[i], PredCases.back());
1233             PredCases.pop_back();
1234             --i;
1235             --e;
1236           }
1237 
1238         // Okay, now we know which constants were sent to BB from the
1239         // predecessor.  Figure out where they will all go now.
1240         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1241           if (PTIHandled.count(BBCases[i].Value)) {
1242             // If this is one we are capable of getting...
1243             if (PredHasWeights || SuccHasWeights)
1244               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1245             PredCases.push_back(BBCases[i]);
1246             ++NewSuccessors[BBCases[i].Dest];
1247             PTIHandled.erase(
1248                 BBCases[i].Value); // This constant is taken care of
1249           }
1250 
1251         // If there are any constants vectored to BB that TI doesn't handle,
1252         // they must go to the default destination of TI.
1253         for (ConstantInt *I : PTIHandled) {
1254           if (PredHasWeights || SuccHasWeights)
1255             Weights.push_back(WeightsForHandled[I]);
1256           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1257           ++NewSuccessors[BBDefault];
1258         }
1259       }
1260 
1261       // Okay, at this point, we know which new successor Pred will get.  Make
1262       // sure we update the number of entries in the PHI nodes for these
1263       // successors.
1264       assert(!NewSuccessors.empty() && "Should be adding some new successors.");
1265       for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1266            NewSuccessors) {
1267         for (auto I : seq(0, NewSuccessor.second)) {
1268           (void)I;
1269           AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1270         }
1271         Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1272       }
1273 
1274       Builder.SetInsertPoint(PTI);
1275       // Convert pointer to int before we switch.
1276       if (CV->getType()->isPointerTy()) {
1277         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1278                                     "magicptr");
1279       }
1280 
1281       // Now that the successors are updated, create the new Switch instruction.
1282       SwitchInst *NewSI =
1283           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1284       NewSI->setDebugLoc(PTI->getDebugLoc());
1285       for (ValueEqualityComparisonCase &V : PredCases)
1286         NewSI->addCase(V.Value, V.Dest);
1287 
1288       if (PredHasWeights || SuccHasWeights) {
1289         // Halve the weights if any of them cannot fit in an uint32_t
1290         FitWeights(Weights);
1291 
1292         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1293 
1294         setBranchWeights(NewSI, MDWeights);
1295       }
1296 
1297       EraseTerminatorAndDCECond(PTI);
1298 
1299       // Okay, last check.  If BB is still a successor of PSI, then we must
1300       // have an infinite loop case.  If so, add an infinitely looping block
1301       // to handle the case to preserve the behavior of the code.
1302       BasicBlock *InfLoopBlock = nullptr;
1303       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1304         if (NewSI->getSuccessor(i) == BB) {
1305           if (!InfLoopBlock) {
1306             // Insert it at the end of the function, because it's either code,
1307             // or it won't matter if it's hot. :)
1308             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1309                                               BB->getParent());
1310             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1311             Updates.push_back(
1312                 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1313           }
1314           NewSI->setSuccessor(i, InfLoopBlock);
1315         }
1316 
1317       if (InfLoopBlock)
1318         Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1319 
1320       Updates.push_back({DominatorTree::Delete, Pred, BB});
1321 
1322       if (DTU)
1323         DTU->applyUpdates(Updates);
1324 
1325       Changed = true;
1326     }
1327   }
1328   return Changed;
1329 }
1330 
1331 // If we would need to insert a select that uses the value of this invoke
1332 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1333 // can't hoist the invoke, as there is nowhere to put the select in this case.
1334 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1335                                 Instruction *I1, Instruction *I2) {
1336   for (BasicBlock *Succ : successors(BB1)) {
1337     for (const PHINode &PN : Succ->phis()) {
1338       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1339       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1340       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1341         return false;
1342       }
1343     }
1344   }
1345   return true;
1346 }
1347 
1348 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1349 
1350 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1351 /// in the two blocks up into the branch block. The caller of this function
1352 /// guarantees that BI's block dominates BB1 and BB2.
1353 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1354                                            const TargetTransformInfo &TTI) {
1355   // This does very trivial matching, with limited scanning, to find identical
1356   // instructions in the two blocks.  In particular, we don't want to get into
1357   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1358   // such, we currently just scan for obviously identical instructions in an
1359   // identical order.
1360   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1361   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1362 
1363   BasicBlock::iterator BB1_Itr = BB1->begin();
1364   BasicBlock::iterator BB2_Itr = BB2->begin();
1365 
1366   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1367   // Skip debug info if it is not identical.
1368   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1369   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1370   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1371     while (isa<DbgInfoIntrinsic>(I1))
1372       I1 = &*BB1_Itr++;
1373     while (isa<DbgInfoIntrinsic>(I2))
1374       I2 = &*BB2_Itr++;
1375   }
1376   // FIXME: Can we define a safety predicate for CallBr?
1377   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1378       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1379       isa<CallBrInst>(I1))
1380     return false;
1381 
1382   BasicBlock *BIParent = BI->getParent();
1383 
1384   bool Changed = false;
1385 
1386   auto _ = make_scope_exit([&]() {
1387     if (Changed)
1388       ++NumHoistCommonCode;
1389   });
1390 
1391   do {
1392     // If we are hoisting the terminator instruction, don't move one (making a
1393     // broken BB), instead clone it, and remove BI.
1394     if (I1->isTerminator())
1395       goto HoistTerminator;
1396 
1397     // If we're going to hoist a call, make sure that the two instructions we're
1398     // commoning/hoisting are both marked with musttail, or neither of them is
1399     // marked as such. Otherwise, we might end up in a situation where we hoist
1400     // from a block where the terminator is a `ret` to a block where the terminator
1401     // is a `br`, and `musttail` calls expect to be followed by a return.
1402     auto *C1 = dyn_cast<CallInst>(I1);
1403     auto *C2 = dyn_cast<CallInst>(I2);
1404     if (C1 && C2)
1405       if (C1->isMustTailCall() != C2->isMustTailCall())
1406         return Changed;
1407 
1408     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1409       return Changed;
1410 
1411     // If any of the two call sites has nomerge attribute, stop hoisting.
1412     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1413       if (CB1->cannotMerge())
1414         return Changed;
1415     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1416       if (CB2->cannotMerge())
1417         return Changed;
1418 
1419     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1420       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1421       // The debug location is an integral part of a debug info intrinsic
1422       // and can't be separated from it or replaced.  Instead of attempting
1423       // to merge locations, simply hoist both copies of the intrinsic.
1424       BIParent->getInstList().splice(BI->getIterator(),
1425                                      BB1->getInstList(), I1);
1426       BIParent->getInstList().splice(BI->getIterator(),
1427                                      BB2->getInstList(), I2);
1428       Changed = true;
1429     } else {
1430       // For a normal instruction, we just move one to right before the branch,
1431       // then replace all uses of the other with the first.  Finally, we remove
1432       // the now redundant second instruction.
1433       BIParent->getInstList().splice(BI->getIterator(),
1434                                      BB1->getInstList(), I1);
1435       if (!I2->use_empty())
1436         I2->replaceAllUsesWith(I1);
1437       I1->andIRFlags(I2);
1438       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1439                              LLVMContext::MD_range,
1440                              LLVMContext::MD_fpmath,
1441                              LLVMContext::MD_invariant_load,
1442                              LLVMContext::MD_nonnull,
1443                              LLVMContext::MD_invariant_group,
1444                              LLVMContext::MD_align,
1445                              LLVMContext::MD_dereferenceable,
1446                              LLVMContext::MD_dereferenceable_or_null,
1447                              LLVMContext::MD_mem_parallel_loop_access,
1448                              LLVMContext::MD_access_group,
1449                              LLVMContext::MD_preserve_access_index};
1450       combineMetadata(I1, I2, KnownIDs, true);
1451 
1452       // I1 and I2 are being combined into a single instruction.  Its debug
1453       // location is the merged locations of the original instructions.
1454       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1455 
1456       I2->eraseFromParent();
1457       Changed = true;
1458     }
1459     ++NumHoistCommonInstrs;
1460 
1461     I1 = &*BB1_Itr++;
1462     I2 = &*BB2_Itr++;
1463     // Skip debug info if it is not identical.
1464     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1465     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1466     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1467       while (isa<DbgInfoIntrinsic>(I1))
1468         I1 = &*BB1_Itr++;
1469       while (isa<DbgInfoIntrinsic>(I2))
1470         I2 = &*BB2_Itr++;
1471     }
1472   } while (I1->isIdenticalToWhenDefined(I2));
1473 
1474   return true;
1475 
1476 HoistTerminator:
1477   // It may not be possible to hoist an invoke.
1478   // FIXME: Can we define a safety predicate for CallBr?
1479   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1480     return Changed;
1481 
1482   // TODO: callbr hoisting currently disabled pending further study.
1483   if (isa<CallBrInst>(I1))
1484     return Changed;
1485 
1486   for (BasicBlock *Succ : successors(BB1)) {
1487     for (PHINode &PN : Succ->phis()) {
1488       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1489       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1490       if (BB1V == BB2V)
1491         continue;
1492 
1493       // Check for passingValueIsAlwaysUndefined here because we would rather
1494       // eliminate undefined control flow then converting it to a select.
1495       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1496           passingValueIsAlwaysUndefined(BB2V, &PN))
1497         return Changed;
1498 
1499       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1500         return Changed;
1501       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1502         return Changed;
1503     }
1504   }
1505 
1506   // Okay, it is safe to hoist the terminator.
1507   Instruction *NT = I1->clone();
1508   BIParent->getInstList().insert(BI->getIterator(), NT);
1509   if (!NT->getType()->isVoidTy()) {
1510     I1->replaceAllUsesWith(NT);
1511     I2->replaceAllUsesWith(NT);
1512     NT->takeName(I1);
1513   }
1514   Changed = true;
1515   ++NumHoistCommonInstrs;
1516 
1517   // Ensure terminator gets a debug location, even an unknown one, in case
1518   // it involves inlinable calls.
1519   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1520 
1521   // PHIs created below will adopt NT's merged DebugLoc.
1522   IRBuilder<NoFolder> Builder(NT);
1523 
1524   // Hoisting one of the terminators from our successor is a great thing.
1525   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1526   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1527   // nodes, so we insert select instruction to compute the final result.
1528   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1529   for (BasicBlock *Succ : successors(BB1)) {
1530     for (PHINode &PN : Succ->phis()) {
1531       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1532       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1533       if (BB1V == BB2V)
1534         continue;
1535 
1536       // These values do not agree.  Insert a select instruction before NT
1537       // that determines the right value.
1538       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1539       if (!SI) {
1540         // Propagate fast-math-flags from phi node to its replacement select.
1541         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1542         if (isa<FPMathOperator>(PN))
1543           Builder.setFastMathFlags(PN.getFastMathFlags());
1544 
1545         SI = cast<SelectInst>(
1546             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1547                                  BB1V->getName() + "." + BB2V->getName(), BI));
1548       }
1549 
1550       // Make the PHI node use the select for all incoming values for BB1/BB2
1551       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1552         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1553           PN.setIncomingValue(i, SI);
1554     }
1555   }
1556 
1557   SmallVector<DominatorTree::UpdateType, 4> Updates;
1558 
1559   // Update any PHI nodes in our new successors.
1560   for (BasicBlock *Succ : successors(BB1)) {
1561     AddPredecessorToBlock(Succ, BIParent, BB1);
1562     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1563   }
1564   for (BasicBlock *Succ : successors(BI))
1565     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1566 
1567   EraseTerminatorAndDCECond(BI);
1568   if (DTU)
1569     DTU->applyUpdates(Updates);
1570   return Changed;
1571 }
1572 
1573 // Check lifetime markers.
1574 static bool isLifeTimeMarker(const Instruction *I) {
1575   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1576     switch (II->getIntrinsicID()) {
1577     default:
1578       break;
1579     case Intrinsic::lifetime_start:
1580     case Intrinsic::lifetime_end:
1581       return true;
1582     }
1583   }
1584   return false;
1585 }
1586 
1587 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1588 // into variables.
1589 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1590                                                 int OpIdx) {
1591   return !isa<IntrinsicInst>(I);
1592 }
1593 
1594 // All instructions in Insts belong to different blocks that all unconditionally
1595 // branch to a common successor. Analyze each instruction and return true if it
1596 // would be possible to sink them into their successor, creating one common
1597 // instruction instead. For every value that would be required to be provided by
1598 // PHI node (because an operand varies in each input block), add to PHIOperands.
1599 static bool canSinkInstructions(
1600     ArrayRef<Instruction *> Insts,
1601     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1602   // Prune out obviously bad instructions to move. Each instruction must have
1603   // exactly zero or one use, and we check later that use is by a single, common
1604   // PHI instruction in the successor.
1605   bool HasUse = !Insts.front()->user_empty();
1606   for (auto *I : Insts) {
1607     // These instructions may change or break semantics if moved.
1608     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1609         I->getType()->isTokenTy())
1610       return false;
1611 
1612     // Conservatively return false if I is an inline-asm instruction. Sinking
1613     // and merging inline-asm instructions can potentially create arguments
1614     // that cannot satisfy the inline-asm constraints.
1615     // If the instruction has nomerge attribute, return false.
1616     if (const auto *C = dyn_cast<CallBase>(I))
1617       if (C->isInlineAsm() || C->cannotMerge())
1618         return false;
1619 
1620     // Each instruction must have zero or one use.
1621     if (HasUse && !I->hasOneUse())
1622       return false;
1623     if (!HasUse && !I->user_empty())
1624       return false;
1625   }
1626 
1627   const Instruction *I0 = Insts.front();
1628   for (auto *I : Insts)
1629     if (!I->isSameOperationAs(I0))
1630       return false;
1631 
1632   // All instructions in Insts are known to be the same opcode. If they have a
1633   // use, check that the only user is a PHI or in the same block as the
1634   // instruction, because if a user is in the same block as an instruction we're
1635   // contemplating sinking, it must already be determined to be sinkable.
1636   if (HasUse) {
1637     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1638     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1639     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1640           auto *U = cast<Instruction>(*I->user_begin());
1641           return (PNUse &&
1642                   PNUse->getParent() == Succ &&
1643                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1644                  U->getParent() == I->getParent();
1645         }))
1646       return false;
1647   }
1648 
1649   // Because SROA can't handle speculating stores of selects, try not to sink
1650   // loads, stores or lifetime markers of allocas when we'd have to create a
1651   // PHI for the address operand. Also, because it is likely that loads or
1652   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1653   // them.
1654   // This can cause code churn which can have unintended consequences down
1655   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1656   // FIXME: This is a workaround for a deficiency in SROA - see
1657   // https://llvm.org/bugs/show_bug.cgi?id=30188
1658   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1659         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1660       }))
1661     return false;
1662   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1663         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1664       }))
1665     return false;
1666   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1667         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1668       }))
1669     return false;
1670 
1671   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1672     Value *Op = I0->getOperand(OI);
1673     if (Op->getType()->isTokenTy())
1674       // Don't touch any operand of token type.
1675       return false;
1676 
1677     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1678       assert(I->getNumOperands() == I0->getNumOperands());
1679       return I->getOperand(OI) == I0->getOperand(OI);
1680     };
1681     if (!all_of(Insts, SameAsI0)) {
1682       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1683           !canReplaceOperandWithVariable(I0, OI))
1684         // We can't create a PHI from this GEP.
1685         return false;
1686       // Don't create indirect calls! The called value is the final operand.
1687       if (isa<CallBase>(I0) && OI == OE - 1) {
1688         // FIXME: if the call was *already* indirect, we should do this.
1689         return false;
1690       }
1691       for (auto *I : Insts)
1692         PHIOperands[I].push_back(I->getOperand(OI));
1693     }
1694   }
1695   return true;
1696 }
1697 
1698 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1699 // instruction of every block in Blocks to their common successor, commoning
1700 // into one instruction.
1701 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1702   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1703 
1704   // canSinkLastInstruction returning true guarantees that every block has at
1705   // least one non-terminator instruction.
1706   SmallVector<Instruction*,4> Insts;
1707   for (auto *BB : Blocks) {
1708     Instruction *I = BB->getTerminator();
1709     do {
1710       I = I->getPrevNode();
1711     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1712     if (!isa<DbgInfoIntrinsic>(I))
1713       Insts.push_back(I);
1714   }
1715 
1716   // The only checking we need to do now is that all users of all instructions
1717   // are the same PHI node. canSinkLastInstruction should have checked this but
1718   // it is slightly over-aggressive - it gets confused by commutative instructions
1719   // so double-check it here.
1720   Instruction *I0 = Insts.front();
1721   if (!I0->user_empty()) {
1722     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1723     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1724           auto *U = cast<Instruction>(*I->user_begin());
1725           return U == PNUse;
1726         }))
1727       return false;
1728   }
1729 
1730   // We don't need to do any more checking here; canSinkLastInstruction should
1731   // have done it all for us.
1732   SmallVector<Value*, 4> NewOperands;
1733   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1734     // This check is different to that in canSinkLastInstruction. There, we
1735     // cared about the global view once simplifycfg (and instcombine) have
1736     // completed - it takes into account PHIs that become trivially
1737     // simplifiable.  However here we need a more local view; if an operand
1738     // differs we create a PHI and rely on instcombine to clean up the very
1739     // small mess we may make.
1740     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1741       return I->getOperand(O) != I0->getOperand(O);
1742     });
1743     if (!NeedPHI) {
1744       NewOperands.push_back(I0->getOperand(O));
1745       continue;
1746     }
1747 
1748     // Create a new PHI in the successor block and populate it.
1749     auto *Op = I0->getOperand(O);
1750     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1751     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1752                                Op->getName() + ".sink", &BBEnd->front());
1753     for (auto *I : Insts)
1754       PN->addIncoming(I->getOperand(O), I->getParent());
1755     NewOperands.push_back(PN);
1756   }
1757 
1758   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1759   // and move it to the start of the successor block.
1760   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1761     I0->getOperandUse(O).set(NewOperands[O]);
1762   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1763 
1764   // Update metadata and IR flags, and merge debug locations.
1765   for (auto *I : Insts)
1766     if (I != I0) {
1767       // The debug location for the "common" instruction is the merged locations
1768       // of all the commoned instructions.  We start with the original location
1769       // of the "common" instruction and iteratively merge each location in the
1770       // loop below.
1771       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1772       // However, as N-way merge for CallInst is rare, so we use simplified API
1773       // instead of using complex API for N-way merge.
1774       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1775       combineMetadataForCSE(I0, I, true);
1776       I0->andIRFlags(I);
1777     }
1778 
1779   if (!I0->user_empty()) {
1780     // canSinkLastInstruction checked that all instructions were used by
1781     // one and only one PHI node. Find that now, RAUW it to our common
1782     // instruction and nuke it.
1783     auto *PN = cast<PHINode>(*I0->user_begin());
1784     PN->replaceAllUsesWith(I0);
1785     PN->eraseFromParent();
1786   }
1787 
1788   // Finally nuke all instructions apart from the common instruction.
1789   for (auto *I : Insts)
1790     if (I != I0)
1791       I->eraseFromParent();
1792 
1793   return true;
1794 }
1795 
1796 namespace {
1797 
1798   // LockstepReverseIterator - Iterates through instructions
1799   // in a set of blocks in reverse order from the first non-terminator.
1800   // For example (assume all blocks have size n):
1801   //   LockstepReverseIterator I([B1, B2, B3]);
1802   //   *I-- = [B1[n], B2[n], B3[n]];
1803   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1804   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1805   //   ...
1806   class LockstepReverseIterator {
1807     ArrayRef<BasicBlock*> Blocks;
1808     SmallVector<Instruction*,4> Insts;
1809     bool Fail;
1810 
1811   public:
1812     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1813       reset();
1814     }
1815 
1816     void reset() {
1817       Fail = false;
1818       Insts.clear();
1819       for (auto *BB : Blocks) {
1820         Instruction *Inst = BB->getTerminator();
1821         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1822           Inst = Inst->getPrevNode();
1823         if (!Inst) {
1824           // Block wasn't big enough.
1825           Fail = true;
1826           return;
1827         }
1828         Insts.push_back(Inst);
1829       }
1830     }
1831 
1832     bool isValid() const {
1833       return !Fail;
1834     }
1835 
1836     void operator--() {
1837       if (Fail)
1838         return;
1839       for (auto *&Inst : Insts) {
1840         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1841           Inst = Inst->getPrevNode();
1842         // Already at beginning of block.
1843         if (!Inst) {
1844           Fail = true;
1845           return;
1846         }
1847       }
1848     }
1849 
1850     ArrayRef<Instruction*> operator * () const {
1851       return Insts;
1852     }
1853   };
1854 
1855 } // end anonymous namespace
1856 
1857 /// Check whether BB's predecessors end with unconditional branches. If it is
1858 /// true, sink any common code from the predecessors to BB.
1859 /// We also allow one predecessor to end with conditional branch (but no more
1860 /// than one).
1861 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1862                                            DomTreeUpdater *DTU) {
1863   // We support two situations:
1864   //   (1) all incoming arcs are unconditional
1865   //   (2) one incoming arc is conditional
1866   //
1867   // (2) is very common in switch defaults and
1868   // else-if patterns;
1869   //
1870   //   if (a) f(1);
1871   //   else if (b) f(2);
1872   //
1873   // produces:
1874   //
1875   //       [if]
1876   //      /    \
1877   //    [f(1)] [if]
1878   //      |     | \
1879   //      |     |  |
1880   //      |  [f(2)]|
1881   //       \    | /
1882   //        [ end ]
1883   //
1884   // [end] has two unconditional predecessor arcs and one conditional. The
1885   // conditional refers to the implicit empty 'else' arc. This conditional
1886   // arc can also be caused by an empty default block in a switch.
1887   //
1888   // In this case, we attempt to sink code from all *unconditional* arcs.
1889   // If we can sink instructions from these arcs (determined during the scan
1890   // phase below) we insert a common successor for all unconditional arcs and
1891   // connect that to [end], to enable sinking:
1892   //
1893   //       [if]
1894   //      /    \
1895   //    [x(1)] [if]
1896   //      |     | \
1897   //      |     |  \
1898   //      |  [x(2)] |
1899   //       \   /    |
1900   //   [sink.split] |
1901   //         \     /
1902   //         [ end ]
1903   //
1904   SmallVector<BasicBlock*,4> UnconditionalPreds;
1905   Instruction *Cond = nullptr;
1906   for (auto *B : predecessors(BB)) {
1907     auto *T = B->getTerminator();
1908     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1909       UnconditionalPreds.push_back(B);
1910     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1911       Cond = T;
1912     else
1913       return false;
1914   }
1915   if (UnconditionalPreds.size() < 2)
1916     return false;
1917 
1918   // We take a two-step approach to tail sinking. First we scan from the end of
1919   // each block upwards in lockstep. If the n'th instruction from the end of each
1920   // block can be sunk, those instructions are added to ValuesToSink and we
1921   // carry on. If we can sink an instruction but need to PHI-merge some operands
1922   // (because they're not identical in each instruction) we add these to
1923   // PHIOperands.
1924   unsigned ScanIdx = 0;
1925   SmallPtrSet<Value*,4> InstructionsToSink;
1926   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1927   LockstepReverseIterator LRI(UnconditionalPreds);
1928   while (LRI.isValid() &&
1929          canSinkInstructions(*LRI, PHIOperands)) {
1930     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1931                       << "\n");
1932     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1933     ++ScanIdx;
1934     --LRI;
1935   }
1936 
1937   // If no instructions can be sunk, early-return.
1938   if (ScanIdx == 0)
1939     return false;
1940 
1941   bool Changed = false;
1942 
1943   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1944     unsigned NumPHIdValues = 0;
1945     for (auto *I : *LRI)
1946       for (auto *V : PHIOperands[I])
1947         if (InstructionsToSink.count(V) == 0)
1948           ++NumPHIdValues;
1949     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1950     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1951     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1952         NumPHIInsts++;
1953 
1954     return NumPHIInsts <= 1;
1955   };
1956 
1957   if (Cond) {
1958     // Check if we would actually sink anything first! This mutates the CFG and
1959     // adds an extra block. The goal in doing this is to allow instructions that
1960     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1961     // (such as trunc, add) can be sunk and predicated already. So we check that
1962     // we're going to sink at least one non-speculatable instruction.
1963     LRI.reset();
1964     unsigned Idx = 0;
1965     bool Profitable = false;
1966     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1967       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1968         Profitable = true;
1969         break;
1970       }
1971       --LRI;
1972       ++Idx;
1973     }
1974     if (!Profitable)
1975       return false;
1976 
1977     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1978     // We have a conditional edge and we're going to sink some instructions.
1979     // Insert a new block postdominating all blocks we're going to sink from.
1980     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split",
1981                                 DTU ? &DTU->getDomTree() : nullptr))
1982       // Edges couldn't be split.
1983       return false;
1984     Changed = true;
1985   }
1986 
1987   // Now that we've analyzed all potential sinking candidates, perform the
1988   // actual sink. We iteratively sink the last non-terminator of the source
1989   // blocks into their common successor unless doing so would require too
1990   // many PHI instructions to be generated (currently only one PHI is allowed
1991   // per sunk instruction).
1992   //
1993   // We can use InstructionsToSink to discount values needing PHI-merging that will
1994   // actually be sunk in a later iteration. This allows us to be more
1995   // aggressive in what we sink. This does allow a false positive where we
1996   // sink presuming a later value will also be sunk, but stop half way through
1997   // and never actually sink it which means we produce more PHIs than intended.
1998   // This is unlikely in practice though.
1999   unsigned SinkIdx = 0;
2000   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2001     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2002                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2003                       << "\n");
2004 
2005     // Because we've sunk every instruction in turn, the current instruction to
2006     // sink is always at index 0.
2007     LRI.reset();
2008     if (!ProfitableToSinkInstruction(LRI)) {
2009       // Too many PHIs would be created.
2010       LLVM_DEBUG(
2011           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2012       break;
2013     }
2014 
2015     if (!sinkLastInstruction(UnconditionalPreds)) {
2016       LLVM_DEBUG(
2017           dbgs()
2018           << "SINK: stopping here, failed to actually sink instruction!\n");
2019       break;
2020     }
2021 
2022     NumSinkCommonInstrs++;
2023     Changed = true;
2024   }
2025   if (SinkIdx != 0)
2026     ++NumSinkCommonCode;
2027   return Changed;
2028 }
2029 
2030 /// Determine if we can hoist sink a sole store instruction out of a
2031 /// conditional block.
2032 ///
2033 /// We are looking for code like the following:
2034 ///   BrBB:
2035 ///     store i32 %add, i32* %arrayidx2
2036 ///     ... // No other stores or function calls (we could be calling a memory
2037 ///     ... // function).
2038 ///     %cmp = icmp ult %x, %y
2039 ///     br i1 %cmp, label %EndBB, label %ThenBB
2040 ///   ThenBB:
2041 ///     store i32 %add5, i32* %arrayidx2
2042 ///     br label EndBB
2043 ///   EndBB:
2044 ///     ...
2045 ///   We are going to transform this into:
2046 ///   BrBB:
2047 ///     store i32 %add, i32* %arrayidx2
2048 ///     ... //
2049 ///     %cmp = icmp ult %x, %y
2050 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2051 ///     store i32 %add.add5, i32* %arrayidx2
2052 ///     ...
2053 ///
2054 /// \return The pointer to the value of the previous store if the store can be
2055 ///         hoisted into the predecessor block. 0 otherwise.
2056 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2057                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2058   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2059   if (!StoreToHoist)
2060     return nullptr;
2061 
2062   // Volatile or atomic.
2063   if (!StoreToHoist->isSimple())
2064     return nullptr;
2065 
2066   Value *StorePtr = StoreToHoist->getPointerOperand();
2067 
2068   // Look for a store to the same pointer in BrBB.
2069   unsigned MaxNumInstToLookAt = 9;
2070   // Skip pseudo probe intrinsic calls which are not really killing any memory
2071   // accesses.
2072   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2073     if (!MaxNumInstToLookAt)
2074       break;
2075     --MaxNumInstToLookAt;
2076 
2077     // Could be calling an instruction that affects memory like free().
2078     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2079       return nullptr;
2080 
2081     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2082       // Found the previous store make sure it stores to the same location.
2083       if (SI->getPointerOperand() == StorePtr)
2084         // Found the previous store, return its value operand.
2085         return SI->getValueOperand();
2086       return nullptr; // Unknown store.
2087     }
2088   }
2089 
2090   return nullptr;
2091 }
2092 
2093 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2094 /// converted to selects.
2095 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2096                                            BasicBlock *EndBB,
2097                                            unsigned &SpeculatedInstructions,
2098                                            int &BudgetRemaining,
2099                                            const TargetTransformInfo &TTI) {
2100   TargetTransformInfo::TargetCostKind CostKind =
2101     BB->getParent()->hasMinSize()
2102     ? TargetTransformInfo::TCK_CodeSize
2103     : TargetTransformInfo::TCK_SizeAndLatency;
2104 
2105   bool HaveRewritablePHIs = false;
2106   for (PHINode &PN : EndBB->phis()) {
2107     Value *OrigV = PN.getIncomingValueForBlock(BB);
2108     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2109 
2110     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2111     // Skip PHIs which are trivial.
2112     if (ThenV == OrigV)
2113       continue;
2114 
2115     BudgetRemaining -=
2116         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2117                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2118 
2119     // Don't convert to selects if we could remove undefined behavior instead.
2120     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2121         passingValueIsAlwaysUndefined(ThenV, &PN))
2122       return false;
2123 
2124     HaveRewritablePHIs = true;
2125     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2126     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2127     if (!OrigCE && !ThenCE)
2128       continue; // Known safe and cheap.
2129 
2130     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2131         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2132       return false;
2133     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2134     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2135     unsigned MaxCost =
2136         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2137     if (OrigCost + ThenCost > MaxCost)
2138       return false;
2139 
2140     // Account for the cost of an unfolded ConstantExpr which could end up
2141     // getting expanded into Instructions.
2142     // FIXME: This doesn't account for how many operations are combined in the
2143     // constant expression.
2144     ++SpeculatedInstructions;
2145     if (SpeculatedInstructions > 1)
2146       return false;
2147   }
2148 
2149   return HaveRewritablePHIs;
2150 }
2151 
2152 /// Speculate a conditional basic block flattening the CFG.
2153 ///
2154 /// Note that this is a very risky transform currently. Speculating
2155 /// instructions like this is most often not desirable. Instead, there is an MI
2156 /// pass which can do it with full awareness of the resource constraints.
2157 /// However, some cases are "obvious" and we should do directly. An example of
2158 /// this is speculating a single, reasonably cheap instruction.
2159 ///
2160 /// There is only one distinct advantage to flattening the CFG at the IR level:
2161 /// it makes very common but simplistic optimizations such as are common in
2162 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2163 /// modeling their effects with easier to reason about SSA value graphs.
2164 ///
2165 ///
2166 /// An illustration of this transform is turning this IR:
2167 /// \code
2168 ///   BB:
2169 ///     %cmp = icmp ult %x, %y
2170 ///     br i1 %cmp, label %EndBB, label %ThenBB
2171 ///   ThenBB:
2172 ///     %sub = sub %x, %y
2173 ///     br label BB2
2174 ///   EndBB:
2175 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2176 ///     ...
2177 /// \endcode
2178 ///
2179 /// Into this IR:
2180 /// \code
2181 ///   BB:
2182 ///     %cmp = icmp ult %x, %y
2183 ///     %sub = sub %x, %y
2184 ///     %cond = select i1 %cmp, 0, %sub
2185 ///     ...
2186 /// \endcode
2187 ///
2188 /// \returns true if the conditional block is removed.
2189 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2190                                             const TargetTransformInfo &TTI) {
2191   // Be conservative for now. FP select instruction can often be expensive.
2192   Value *BrCond = BI->getCondition();
2193   if (isa<FCmpInst>(BrCond))
2194     return false;
2195 
2196   BasicBlock *BB = BI->getParent();
2197   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2198   int BudgetRemaining =
2199     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2200 
2201   // If ThenBB is actually on the false edge of the conditional branch, remember
2202   // to swap the select operands later.
2203   bool Invert = false;
2204   if (ThenBB != BI->getSuccessor(0)) {
2205     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2206     Invert = true;
2207   }
2208   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2209 
2210   // Keep a count of how many times instructions are used within ThenBB when
2211   // they are candidates for sinking into ThenBB. Specifically:
2212   // - They are defined in BB, and
2213   // - They have no side effects, and
2214   // - All of their uses are in ThenBB.
2215   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2216 
2217   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2218 
2219   unsigned SpeculatedInstructions = 0;
2220   Value *SpeculatedStoreValue = nullptr;
2221   StoreInst *SpeculatedStore = nullptr;
2222   for (BasicBlock::iterator BBI = ThenBB->begin(),
2223                             BBE = std::prev(ThenBB->end());
2224        BBI != BBE; ++BBI) {
2225     Instruction *I = &*BBI;
2226     // Skip debug info.
2227     if (isa<DbgInfoIntrinsic>(I)) {
2228       SpeculatedDbgIntrinsics.push_back(I);
2229       continue;
2230     }
2231 
2232     // Skip pseudo probes. The consequence is we lose track of the branch
2233     // probability for ThenBB, which is fine since the optimization here takes
2234     // place regardless of the branch probability.
2235     if (isa<PseudoProbeInst>(I)) {
2236       SpeculatedDbgIntrinsics.push_back(I);
2237       continue;
2238     }
2239 
2240     // Only speculatively execute a single instruction (not counting the
2241     // terminator) for now.
2242     ++SpeculatedInstructions;
2243     if (SpeculatedInstructions > 1)
2244       return false;
2245 
2246     // Don't hoist the instruction if it's unsafe or expensive.
2247     if (!isSafeToSpeculativelyExecute(I) &&
2248         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2249                                   I, BB, ThenBB, EndBB))))
2250       return false;
2251     if (!SpeculatedStoreValue &&
2252         ComputeSpeculationCost(I, TTI) >
2253             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2254       return false;
2255 
2256     // Store the store speculation candidate.
2257     if (SpeculatedStoreValue)
2258       SpeculatedStore = cast<StoreInst>(I);
2259 
2260     // Do not hoist the instruction if any of its operands are defined but not
2261     // used in BB. The transformation will prevent the operand from
2262     // being sunk into the use block.
2263     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2264       Instruction *OpI = dyn_cast<Instruction>(*i);
2265       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2266         continue; // Not a candidate for sinking.
2267 
2268       ++SinkCandidateUseCounts[OpI];
2269     }
2270   }
2271 
2272   // Consider any sink candidates which are only used in ThenBB as costs for
2273   // speculation. Note, while we iterate over a DenseMap here, we are summing
2274   // and so iteration order isn't significant.
2275   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2276            I = SinkCandidateUseCounts.begin(),
2277            E = SinkCandidateUseCounts.end();
2278        I != E; ++I)
2279     if (I->first->hasNUses(I->second)) {
2280       ++SpeculatedInstructions;
2281       if (SpeculatedInstructions > 1)
2282         return false;
2283     }
2284 
2285   // Check that we can insert the selects and that it's not too expensive to do
2286   // so.
2287   bool Convert = SpeculatedStore != nullptr;
2288   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2289                                             SpeculatedInstructions,
2290                                             BudgetRemaining, TTI);
2291   if (!Convert || BudgetRemaining < 0)
2292     return false;
2293 
2294   // If we get here, we can hoist the instruction and if-convert.
2295   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2296 
2297   // Insert a select of the value of the speculated store.
2298   if (SpeculatedStoreValue) {
2299     IRBuilder<NoFolder> Builder(BI);
2300     Value *TrueV = SpeculatedStore->getValueOperand();
2301     Value *FalseV = SpeculatedStoreValue;
2302     if (Invert)
2303       std::swap(TrueV, FalseV);
2304     Value *S = Builder.CreateSelect(
2305         BrCond, TrueV, FalseV, "spec.store.select", BI);
2306     SpeculatedStore->setOperand(0, S);
2307     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2308                                          SpeculatedStore->getDebugLoc());
2309   }
2310 
2311   // Metadata can be dependent on the condition we are hoisting above.
2312   // Conservatively strip all metadata on the instruction. Drop the debug loc
2313   // to avoid making it appear as if the condition is a constant, which would
2314   // be misleading while debugging.
2315   for (auto &I : *ThenBB) {
2316     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2317       I.setDebugLoc(DebugLoc());
2318     I.dropUnknownNonDebugMetadata();
2319   }
2320 
2321   // Hoist the instructions.
2322   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2323                            ThenBB->begin(), std::prev(ThenBB->end()));
2324 
2325   // Insert selects and rewrite the PHI operands.
2326   IRBuilder<NoFolder> Builder(BI);
2327   for (PHINode &PN : EndBB->phis()) {
2328     unsigned OrigI = PN.getBasicBlockIndex(BB);
2329     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2330     Value *OrigV = PN.getIncomingValue(OrigI);
2331     Value *ThenV = PN.getIncomingValue(ThenI);
2332 
2333     // Skip PHIs which are trivial.
2334     if (OrigV == ThenV)
2335       continue;
2336 
2337     // Create a select whose true value is the speculatively executed value and
2338     // false value is the pre-existing value. Swap them if the branch
2339     // destinations were inverted.
2340     Value *TrueV = ThenV, *FalseV = OrigV;
2341     if (Invert)
2342       std::swap(TrueV, FalseV);
2343     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2344     PN.setIncomingValue(OrigI, V);
2345     PN.setIncomingValue(ThenI, V);
2346   }
2347 
2348   // Remove speculated dbg intrinsics.
2349   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2350   // dbg value for the different flows and inserting it after the select.
2351   for (Instruction *I : SpeculatedDbgIntrinsics)
2352     I->eraseFromParent();
2353 
2354   ++NumSpeculations;
2355   return true;
2356 }
2357 
2358 /// Return true if we can thread a branch across this block.
2359 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2360   int Size = 0;
2361 
2362   for (Instruction &I : BB->instructionsWithoutDebug()) {
2363     if (Size > MaxSmallBlockSize)
2364       return false; // Don't clone large BB's.
2365 
2366     // Can't fold blocks that contain noduplicate or convergent calls.
2367     if (CallInst *CI = dyn_cast<CallInst>(&I))
2368       if (CI->cannotDuplicate() || CI->isConvergent())
2369         return false;
2370 
2371     // We will delete Phis while threading, so Phis should not be accounted in
2372     // block's size
2373     if (!isa<PHINode>(I))
2374       ++Size;
2375 
2376     // We can only support instructions that do not define values that are
2377     // live outside of the current basic block.
2378     for (User *U : I.users()) {
2379       Instruction *UI = cast<Instruction>(U);
2380       if (UI->getParent() != BB || isa<PHINode>(UI))
2381         return false;
2382     }
2383 
2384     // Looks ok, continue checking.
2385   }
2386 
2387   return true;
2388 }
2389 
2390 /// If we have a conditional branch on a PHI node value that is defined in the
2391 /// same block as the branch and if any PHI entries are constants, thread edges
2392 /// corresponding to that entry to be branches to their ultimate destination.
2393 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2394                                 const DataLayout &DL, AssumptionCache *AC) {
2395   BasicBlock *BB = BI->getParent();
2396   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2397   // NOTE: we currently cannot transform this case if the PHI node is used
2398   // outside of the block.
2399   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2400     return false;
2401 
2402   // Degenerate case of a single entry PHI.
2403   if (PN->getNumIncomingValues() == 1) {
2404     FoldSingleEntryPHINodes(PN->getParent());
2405     return true;
2406   }
2407 
2408   // Now we know that this block has multiple preds and two succs.
2409   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2410     return false;
2411 
2412   // Okay, this is a simple enough basic block.  See if any phi values are
2413   // constants.
2414   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2415     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2416     if (!CB || !CB->getType()->isIntegerTy(1))
2417       continue;
2418 
2419     // Okay, we now know that all edges from PredBB should be revectored to
2420     // branch to RealDest.
2421     BasicBlock *PredBB = PN->getIncomingBlock(i);
2422     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2423 
2424     if (RealDest == BB)
2425       continue; // Skip self loops.
2426     // Skip if the predecessor's terminator is an indirect branch.
2427     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2428       continue;
2429 
2430     SmallVector<DominatorTree::UpdateType, 3> Updates;
2431 
2432     // The dest block might have PHI nodes, other predecessors and other
2433     // difficult cases.  Instead of being smart about this, just insert a new
2434     // block that jumps to the destination block, effectively splitting
2435     // the edge we are about to create.
2436     BasicBlock *EdgeBB =
2437         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2438                            RealDest->getParent(), RealDest);
2439     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2440     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2441     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2442 
2443     // Update PHI nodes.
2444     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2445 
2446     // BB may have instructions that are being threaded over.  Clone these
2447     // instructions into EdgeBB.  We know that there will be no uses of the
2448     // cloned instructions outside of EdgeBB.
2449     BasicBlock::iterator InsertPt = EdgeBB->begin();
2450     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2451     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2452       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2453         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2454         continue;
2455       }
2456       // Clone the instruction.
2457       Instruction *N = BBI->clone();
2458       if (BBI->hasName())
2459         N->setName(BBI->getName() + ".c");
2460 
2461       // Update operands due to translation.
2462       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2463         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2464         if (PI != TranslateMap.end())
2465           *i = PI->second;
2466       }
2467 
2468       // Check for trivial simplification.
2469       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2470         if (!BBI->use_empty())
2471           TranslateMap[&*BBI] = V;
2472         if (!N->mayHaveSideEffects()) {
2473           N->deleteValue(); // Instruction folded away, don't need actual inst
2474           N = nullptr;
2475         }
2476       } else {
2477         if (!BBI->use_empty())
2478           TranslateMap[&*BBI] = N;
2479       }
2480       if (N) {
2481         // Insert the new instruction into its new home.
2482         EdgeBB->getInstList().insert(InsertPt, N);
2483 
2484         // Register the new instruction with the assumption cache if necessary.
2485         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2486           AC->registerAssumption(cast<IntrinsicInst>(N));
2487       }
2488     }
2489 
2490     // Loop over all of the edges from PredBB to BB, changing them to branch
2491     // to EdgeBB instead.
2492     Instruction *PredBBTI = PredBB->getTerminator();
2493     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2494       if (PredBBTI->getSuccessor(i) == BB) {
2495         BB->removePredecessor(PredBB);
2496         PredBBTI->setSuccessor(i, EdgeBB);
2497       }
2498 
2499     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2500     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2501 
2502     if (DTU)
2503       DTU->applyUpdates(Updates);
2504 
2505     // Recurse, simplifying any other constants.
2506     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2507   }
2508 
2509   return false;
2510 }
2511 
2512 /// Given a BB that starts with the specified two-entry PHI node,
2513 /// see if we can eliminate it.
2514 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2515                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2516   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2517   // statement", which has a very simple dominance structure.  Basically, we
2518   // are trying to find the condition that is being branched on, which
2519   // subsequently causes this merge to happen.  We really want control
2520   // dependence information for this check, but simplifycfg can't keep it up
2521   // to date, and this catches most of the cases we care about anyway.
2522   BasicBlock *BB = PN->getParent();
2523 
2524   BasicBlock *IfTrue, *IfFalse;
2525   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2526   if (!IfCond ||
2527       // Don't bother if the branch will be constant folded trivially.
2528       isa<ConstantInt>(IfCond))
2529     return false;
2530 
2531   // Okay, we found that we can merge this two-entry phi node into a select.
2532   // Doing so would require us to fold *all* two entry phi nodes in this block.
2533   // At some point this becomes non-profitable (particularly if the target
2534   // doesn't support cmov's).  Only do this transformation if there are two or
2535   // fewer PHI nodes in this block.
2536   unsigned NumPhis = 0;
2537   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2538     if (NumPhis > 2)
2539       return false;
2540 
2541   // Loop over the PHI's seeing if we can promote them all to select
2542   // instructions.  While we are at it, keep track of the instructions
2543   // that need to be moved to the dominating block.
2544   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2545   int BudgetRemaining =
2546       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2547 
2548   bool Changed = false;
2549   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2550     PHINode *PN = cast<PHINode>(II++);
2551     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2552       PN->replaceAllUsesWith(V);
2553       PN->eraseFromParent();
2554       Changed = true;
2555       continue;
2556     }
2557 
2558     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2559                              BudgetRemaining, TTI) ||
2560         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2561                              BudgetRemaining, TTI))
2562       return Changed;
2563   }
2564 
2565   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2566   // we ran out of PHIs then we simplified them all.
2567   PN = dyn_cast<PHINode>(BB->begin());
2568   if (!PN)
2569     return true;
2570 
2571   // Return true if at least one of these is a 'not', and another is either
2572   // a 'not' too, or a constant.
2573   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2574     if (!match(V0, m_Not(m_Value())))
2575       std::swap(V0, V1);
2576     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2577     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2578   };
2579 
2580   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2581   // of the incoming values is an 'not' and another one is freely invertible.
2582   // These can often be turned into switches and other things.
2583   if (PN->getType()->isIntegerTy(1) &&
2584       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2585        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2586        isa<BinaryOperator>(IfCond)) &&
2587       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2588                                  PN->getIncomingValue(1)))
2589     return Changed;
2590 
2591   // If all PHI nodes are promotable, check to make sure that all instructions
2592   // in the predecessor blocks can be promoted as well. If not, we won't be able
2593   // to get rid of the control flow, so it's not worth promoting to select
2594   // instructions.
2595   BasicBlock *DomBlock = nullptr;
2596   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2597   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2598   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2599     IfBlock1 = nullptr;
2600   } else {
2601     DomBlock = *pred_begin(IfBlock1);
2602     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2603       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2604           !isa<PseudoProbeInst>(I)) {
2605         // This is not an aggressive instruction that we can promote.
2606         // Because of this, we won't be able to get rid of the control flow, so
2607         // the xform is not worth it.
2608         return Changed;
2609       }
2610   }
2611 
2612   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2613     IfBlock2 = nullptr;
2614   } else {
2615     DomBlock = *pred_begin(IfBlock2);
2616     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2617       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2618           !isa<PseudoProbeInst>(I)) {
2619         // This is not an aggressive instruction that we can promote.
2620         // Because of this, we won't be able to get rid of the control flow, so
2621         // the xform is not worth it.
2622         return Changed;
2623       }
2624   }
2625   assert(DomBlock && "Failed to find root DomBlock");
2626 
2627   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2628                     << "  T: " << IfTrue->getName()
2629                     << "  F: " << IfFalse->getName() << "\n");
2630 
2631   // If we can still promote the PHI nodes after this gauntlet of tests,
2632   // do all of the PHI's now.
2633   Instruction *InsertPt = DomBlock->getTerminator();
2634   IRBuilder<NoFolder> Builder(InsertPt);
2635 
2636   // Move all 'aggressive' instructions, which are defined in the
2637   // conditional parts of the if's up to the dominating block.
2638   if (IfBlock1)
2639     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2640   if (IfBlock2)
2641     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2642 
2643   // Propagate fast-math-flags from phi nodes to replacement selects.
2644   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2645   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2646     if (isa<FPMathOperator>(PN))
2647       Builder.setFastMathFlags(PN->getFastMathFlags());
2648 
2649     // Change the PHI node into a select instruction.
2650     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2651     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2652 
2653     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2654     PN->replaceAllUsesWith(Sel);
2655     Sel->takeName(PN);
2656     PN->eraseFromParent();
2657   }
2658 
2659   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2660   // has been flattened.  Change DomBlock to jump directly to our new block to
2661   // avoid other simplifycfg's kicking in on the diamond.
2662   Instruction *OldTI = DomBlock->getTerminator();
2663   Builder.SetInsertPoint(OldTI);
2664   Builder.CreateBr(BB);
2665 
2666   SmallVector<DominatorTree::UpdateType, 3> Updates;
2667   if (DTU) {
2668     for (auto *Successor : successors(DomBlock))
2669       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2670     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2671   }
2672 
2673   OldTI->eraseFromParent();
2674   if (DTU)
2675     DTU->applyUpdates(Updates);
2676 
2677   return true;
2678 }
2679 
2680 /// If we found a conditional branch that goes to two returning blocks,
2681 /// try to merge them together into one return,
2682 /// introducing a select if the return values disagree.
2683 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2684                                                     IRBuilder<> &Builder) {
2685   auto *BB = BI->getParent();
2686   assert(BI->isConditional() && "Must be a conditional branch");
2687   BasicBlock *TrueSucc = BI->getSuccessor(0);
2688   BasicBlock *FalseSucc = BI->getSuccessor(1);
2689   // NOTE: destinations may match, this could be degenerate uncond branch.
2690   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2691   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2692 
2693   // Check to ensure both blocks are empty (just a return) or optionally empty
2694   // with PHI nodes.  If there are other instructions, merging would cause extra
2695   // computation on one path or the other.
2696   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2697     return false;
2698   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2699     return false;
2700 
2701   Builder.SetInsertPoint(BI);
2702   // Okay, we found a branch that is going to two return nodes.  If
2703   // there is no return value for this function, just change the
2704   // branch into a return.
2705   if (FalseRet->getNumOperands() == 0) {
2706     TrueSucc->removePredecessor(BB);
2707     FalseSucc->removePredecessor(BB);
2708     Builder.CreateRetVoid();
2709     EraseTerminatorAndDCECond(BI);
2710     if (DTU) {
2711       SmallVector<DominatorTree::UpdateType, 2> Updates;
2712       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2713       if (TrueSucc != FalseSucc)
2714         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2715       DTU->applyUpdates(Updates);
2716     }
2717     return true;
2718   }
2719 
2720   // Otherwise, figure out what the true and false return values are
2721   // so we can insert a new select instruction.
2722   Value *TrueValue = TrueRet->getReturnValue();
2723   Value *FalseValue = FalseRet->getReturnValue();
2724 
2725   // Unwrap any PHI nodes in the return blocks.
2726   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2727     if (TVPN->getParent() == TrueSucc)
2728       TrueValue = TVPN->getIncomingValueForBlock(BB);
2729   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2730     if (FVPN->getParent() == FalseSucc)
2731       FalseValue = FVPN->getIncomingValueForBlock(BB);
2732 
2733   // In order for this transformation to be safe, we must be able to
2734   // unconditionally execute both operands to the return.  This is
2735   // normally the case, but we could have a potentially-trapping
2736   // constant expression that prevents this transformation from being
2737   // safe.
2738   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2739     if (TCV->canTrap())
2740       return false;
2741   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2742     if (FCV->canTrap())
2743       return false;
2744 
2745   // Okay, we collected all the mapped values and checked them for sanity, and
2746   // defined to really do this transformation.  First, update the CFG.
2747   TrueSucc->removePredecessor(BB);
2748   FalseSucc->removePredecessor(BB);
2749 
2750   // Insert select instructions where needed.
2751   Value *BrCond = BI->getCondition();
2752   if (TrueValue) {
2753     // Insert a select if the results differ.
2754     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2755     } else if (isa<UndefValue>(TrueValue)) {
2756       TrueValue = FalseValue;
2757     } else {
2758       TrueValue =
2759           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2760     }
2761   }
2762 
2763   Value *RI =
2764       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2765 
2766   (void)RI;
2767 
2768   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2769                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2770                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2771 
2772   EraseTerminatorAndDCECond(BI);
2773   if (DTU) {
2774     SmallVector<DominatorTree::UpdateType, 2> Updates;
2775     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2776     if (TrueSucc != FalseSucc)
2777       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2778     DTU->applyUpdates(Updates);
2779   }
2780 
2781   return true;
2782 }
2783 
2784 /// Return true if the given instruction is available
2785 /// in its predecessor block. If yes, the instruction will be removed.
2786 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2787   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2788     return false;
2789   for (Instruction &I : *PB) {
2790     Instruction *PBI = &I;
2791     // Check whether Inst and PBI generate the same value.
2792     if (Inst->isIdenticalTo(PBI)) {
2793       Inst->replaceAllUsesWith(PBI);
2794       Inst->eraseFromParent();
2795       return true;
2796     }
2797   }
2798   return false;
2799 }
2800 
2801 /// Return true if either PBI or BI has branch weight available, and store
2802 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2803 /// not have branch weight, use 1:1 as its weight.
2804 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2805                                    uint64_t &PredTrueWeight,
2806                                    uint64_t &PredFalseWeight,
2807                                    uint64_t &SuccTrueWeight,
2808                                    uint64_t &SuccFalseWeight) {
2809   bool PredHasWeights =
2810       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2811   bool SuccHasWeights =
2812       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2813   if (PredHasWeights || SuccHasWeights) {
2814     if (!PredHasWeights)
2815       PredTrueWeight = PredFalseWeight = 1;
2816     if (!SuccHasWeights)
2817       SuccTrueWeight = SuccFalseWeight = 1;
2818     return true;
2819   } else {
2820     return false;
2821   }
2822 }
2823 
2824 /// If this basic block is simple enough, and if a predecessor branches to us
2825 /// and one of our successors, fold the block into the predecessor and use
2826 /// logical operations to pick the right destination.
2827 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2828                                   MemorySSAUpdater *MSSAU,
2829                                   const TargetTransformInfo *TTI,
2830                                   unsigned BonusInstThreshold) {
2831   BasicBlock *BB = BI->getParent();
2832 
2833   const unsigned PredCount = pred_size(BB);
2834 
2835   bool Changed = false;
2836 
2837   auto _ = make_scope_exit([&]() {
2838     if (Changed)
2839       ++NumFoldBranchToCommonDest;
2840   });
2841 
2842   TargetTransformInfo::TargetCostKind CostKind =
2843     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2844                                   : TargetTransformInfo::TCK_SizeAndLatency;
2845 
2846   Instruction *Cond = nullptr;
2847   if (BI->isConditional())
2848     Cond = dyn_cast<Instruction>(BI->getCondition());
2849   else {
2850     // For unconditional branch, check for a simple CFG pattern, where
2851     // BB has a single predecessor and BB's successor is also its predecessor's
2852     // successor. If such pattern exists, check for CSE between BB and its
2853     // predecessor.
2854     if (BasicBlock *PB = BB->getSinglePredecessor())
2855       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2856         if (PBI->isConditional() &&
2857             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2858              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2859           for (auto I = BB->instructionsWithoutDebug().begin(),
2860                     E = BB->instructionsWithoutDebug().end();
2861                I != E;) {
2862             Instruction *Curr = &*I++;
2863             if (isa<CmpInst>(Curr)) {
2864               Cond = Curr;
2865               break;
2866             }
2867             // Quit if we can't remove this instruction.
2868             if (!tryCSEWithPredecessor(Curr, PB))
2869               return Changed;
2870             Changed = true;
2871           }
2872         }
2873 
2874     if (!Cond)
2875       return Changed;
2876   }
2877 
2878   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2879       Cond->getParent() != BB || !Cond->hasOneUse())
2880     return Changed;
2881 
2882   // Only allow this transformation if computing the condition doesn't involve
2883   // too many instructions and these involved instructions can be executed
2884   // unconditionally. We denote all involved instructions except the condition
2885   // as "bonus instructions", and only allow this transformation when the
2886   // number of the bonus instructions we'll need to create when cloning into
2887   // each predecessor does not exceed a certain threshold.
2888   unsigned NumBonusInsts = 0;
2889   for (Instruction &I : *BB) {
2890     // Don't check the branch condition comparison itself.
2891     if (&I == Cond)
2892       continue;
2893     // Ignore dbg intrinsics, and the terminator.
2894     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
2895       continue;
2896     // I must be safe to execute unconditionally.
2897     if (!isSafeToSpeculativelyExecute(&I))
2898       return Changed;
2899 
2900     // Account for the cost of duplicating this instruction into each
2901     // predecessor.
2902     NumBonusInsts += PredCount;
2903     // Early exits once we reach the limit.
2904     if (NumBonusInsts > BonusInstThreshold)
2905       return Changed;
2906   }
2907 
2908   // Also, for now, all liveout uses of bonus instructions must be in PHI nodes
2909   // in successor blocks as incoming values from the bonus instructions's block,
2910   // otherwise we'll fail to update them.
2911   // FIXME: We could lift this restriction, but we need to form PHI nodes and
2912   // rewrite offending uses, but we can't do that without having a domtree.
2913   if (any_of(*BB, [BB](Instruction &I) {
2914         return any_of(I.uses(), [BB](Use &U) {
2915           auto *User = cast<Instruction>(U.getUser());
2916           if (User->getParent() == BB)
2917             return false; // Not an external use.
2918           auto *PN = dyn_cast<PHINode>(User);
2919           return !PN || PN->getIncomingBlock(U) != BB;
2920         });
2921       }))
2922     return Changed;
2923 
2924   // Cond is known to be a compare or binary operator.  Check to make sure that
2925   // neither operand is a potentially-trapping constant expression.
2926   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2927     if (CE->canTrap())
2928       return Changed;
2929   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2930     if (CE->canTrap())
2931       return Changed;
2932 
2933   // Finally, don't infinitely unroll conditional loops.
2934   BasicBlock *TrueDest = BI->getSuccessor(0);
2935   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2936   if (TrueDest == BB || FalseDest == BB)
2937     return Changed;
2938 
2939   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2940     BasicBlock *PredBlock = *PI;
2941     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2942 
2943     // Check that we have two conditional branches.  If there is a PHI node in
2944     // the common successor, verify that the same value flows in from both
2945     // blocks.
2946     SmallVector<PHINode *, 4> PHIs;
2947     if (!PBI || PBI->isUnconditional() ||
2948         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2949         (!BI->isConditional() &&
2950          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2951       continue;
2952 
2953     // Determine if the two branches share a common destination.
2954     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2955     bool InvertPredCond = false;
2956 
2957     if (BI->isConditional()) {
2958       if (PBI->getSuccessor(0) == TrueDest) {
2959         Opc = Instruction::Or;
2960       } else if (PBI->getSuccessor(1) == FalseDest) {
2961         Opc = Instruction::And;
2962       } else if (PBI->getSuccessor(0) == FalseDest) {
2963         Opc = Instruction::And;
2964         InvertPredCond = true;
2965       } else if (PBI->getSuccessor(1) == TrueDest) {
2966         Opc = Instruction::Or;
2967         InvertPredCond = true;
2968       } else {
2969         continue;
2970       }
2971     } else {
2972       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2973         continue;
2974     }
2975 
2976     // Check the cost of inserting the necessary logic before performing the
2977     // transformation.
2978     if (TTI && Opc != Instruction::BinaryOpsEnd) {
2979       Type *Ty = BI->getCondition()->getType();
2980       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
2981       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
2982           !isa<CmpInst>(PBI->getCondition())))
2983         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
2984 
2985       if (Cost > BranchFoldThreshold)
2986         continue;
2987     }
2988 
2989     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2990     Changed = true;
2991 
2992     SmallVector<DominatorTree::UpdateType, 3> Updates;
2993 
2994     IRBuilder<> Builder(PBI);
2995     // The builder is used to create instructions to eliminate the branch in BB.
2996     // If BB's terminator has !annotation metadata, add it to the new
2997     // instructions.
2998     Builder.CollectMetadataToCopy(BB->getTerminator(),
2999                                   {LLVMContext::MD_annotation});
3000 
3001     // If we need to invert the condition in the pred block to match, do so now.
3002     if (InvertPredCond) {
3003       Value *NewCond = PBI->getCondition();
3004       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3005         CmpInst *CI = cast<CmpInst>(NewCond);
3006         CI->setPredicate(CI->getInversePredicate());
3007       } else {
3008         NewCond =
3009             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3010       }
3011 
3012       PBI->setCondition(NewCond);
3013       PBI->swapSuccessors();
3014     }
3015 
3016     BasicBlock *UniqueSucc =
3017         BI->isConditional()
3018             ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest)
3019             : TrueDest;
3020 
3021     // Before cloning instructions, notify the successor basic block that it
3022     // is about to have a new predecessor. This will update PHI nodes,
3023     // which will allow us to update live-out uses of bonus instructions.
3024     if (BI->isConditional())
3025       AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3026 
3027     // If we have bonus instructions, clone them into the predecessor block.
3028     // Note that there may be multiple predecessor blocks, so we cannot move
3029     // bonus instructions to a predecessor block.
3030     ValueToValueMapTy VMap; // maps original values to cloned values
3031     Instruction *CondInPred;
3032     for (Instruction &BonusInst : *BB) {
3033       if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst))
3034         continue;
3035 
3036       Instruction *NewBonusInst = BonusInst.clone();
3037 
3038       if (&BonusInst == Cond)
3039         CondInPred = NewBonusInst;
3040 
3041       // When we fold the bonus instructions we want to make sure we
3042       // reset their debug locations in order to avoid stepping on dead
3043       // code caused by folding dead branches.
3044       NewBonusInst->setDebugLoc(DebugLoc());
3045 
3046       RemapInstruction(NewBonusInst, VMap,
3047                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3048       VMap[&BonusInst] = NewBonusInst;
3049 
3050       // If we moved a load, we cannot any longer claim any knowledge about
3051       // its potential value. The previous information might have been valid
3052       // only given the branch precondition.
3053       // For an analogous reason, we must also drop all the metadata whose
3054       // semantics we don't understand. We *can* preserve !annotation, because
3055       // it is tied to the instruction itself, not the value or position.
3056       NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
3057 
3058       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
3059       NewBonusInst->takeName(&BonusInst);
3060       BonusInst.setName(BonusInst.getName() + ".old");
3061       BonusInst.replaceUsesWithIf(
3062           NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) {
3063             auto *User = cast<Instruction>(U.getUser());
3064             // Ignore non-external uses of bonus instructions.
3065             if (User->getParent() == BB) {
3066               assert(!isa<PHINode>(User) &&
3067                      "Non-external users are never PHI instructions.");
3068               return false;
3069             }
3070             if (User->getParent() == PredBlock) {
3071               // The "exteral" use is in the block into which we just cloned the
3072               // bonus instruction. This means two things: 1. we are in an
3073               // unreachable block 2. the instruction is self-referencing.
3074               // So let's just rewrite it...
3075               return true;
3076             }
3077             (void)BI;
3078             assert(isa<PHINode>(User) && "All external users must be PHI's.");
3079             auto *PN = cast<PHINode>(User);
3080             assert(is_contained(successors(BB), User->getParent()) &&
3081                    "All external users must be in successors of BB.");
3082             assert((PN->getIncomingBlock(U) == BB ||
3083                     PN->getIncomingBlock(U) == PredBlock) &&
3084                    "The incoming block for that incoming value external use "
3085                    "must be either the original block with bonus instructions, "
3086                    "or the new predecessor block.");
3087             // UniqueSucc is the block for which we change it's predecessors,
3088             // so it is the only block in which we'll need to update PHI nodes.
3089             if (User->getParent() != UniqueSucc)
3090               return false;
3091             // Update the incoming value for the new predecessor.
3092             return PN->getIncomingBlock(U) ==
3093                    (BI->isConditional() ? PredBlock : BB);
3094           });
3095     }
3096 
3097     // Now that the Cond was cloned into the predecessor basic block,
3098     // or/and the two conditions together.
3099     if (BI->isConditional()) {
3100       Instruction *NewCond = cast<Instruction>(
3101           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
3102       PBI->setCondition(NewCond);
3103 
3104       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3105       bool HasWeights =
3106           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3107                                  SuccTrueWeight, SuccFalseWeight);
3108       SmallVector<uint64_t, 8> NewWeights;
3109 
3110       if (PBI->getSuccessor(0) == BB) {
3111         if (HasWeights) {
3112           // PBI: br i1 %x, BB, FalseDest
3113           // BI:  br i1 %y, UniqueSucc, FalseDest
3114           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3115           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3116           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3117           //               TrueWeight for PBI * FalseWeight for BI.
3118           // We assume that total weights of a BranchInst can fit into 32 bits.
3119           // Therefore, we will not have overflow using 64-bit arithmetic.
3120           NewWeights.push_back(PredFalseWeight *
3121                                    (SuccFalseWeight + SuccTrueWeight) +
3122                                PredTrueWeight * SuccFalseWeight);
3123         }
3124         PBI->setSuccessor(0, UniqueSucc);
3125       }
3126       if (PBI->getSuccessor(1) == BB) {
3127         if (HasWeights) {
3128           // PBI: br i1 %x, TrueDest, BB
3129           // BI:  br i1 %y, TrueDest, UniqueSucc
3130           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3131           //              FalseWeight for PBI * TrueWeight for BI.
3132           NewWeights.push_back(PredTrueWeight *
3133                                    (SuccFalseWeight + SuccTrueWeight) +
3134                                PredFalseWeight * SuccTrueWeight);
3135           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3136           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3137         }
3138         PBI->setSuccessor(1, UniqueSucc);
3139       }
3140       if (NewWeights.size() == 2) {
3141         // Halve the weights if any of them cannot fit in an uint32_t
3142         FitWeights(NewWeights);
3143 
3144         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
3145                                            NewWeights.end());
3146         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3147       } else
3148         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3149 
3150       Updates.push_back({DominatorTree::Delete, PredBlock, BB});
3151       Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc});
3152     } else {
3153       // Update PHI nodes in the common successors.
3154       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
3155         ConstantInt *PBI_C = cast<ConstantInt>(
3156             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
3157         assert(PBI_C->getType()->isIntegerTy(1));
3158         Instruction *MergedCond = nullptr;
3159         if (PBI->getSuccessor(0) == UniqueSucc) {
3160           Updates.push_back(
3161               {DominatorTree::Delete, PredBlock, PBI->getSuccessor(1)});
3162           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
3163           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
3164           //       is false: !PBI_Cond and BI_Value
3165           Instruction *NotCond = cast<Instruction>(
3166               Builder.CreateNot(PBI->getCondition(), "not.cond"));
3167           MergedCond = cast<Instruction>(
3168                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
3169                                    "and.cond"));
3170           if (PBI_C->isOne())
3171             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3172                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
3173         } else {
3174           assert(PBI->getSuccessor(1) == UniqueSucc && "Unexpected branch");
3175           Updates.push_back(
3176               {DominatorTree::Delete, PredBlock, PBI->getSuccessor(0)});
3177           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
3178           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
3179           //       is false: PBI_Cond and BI_Value
3180           MergedCond = cast<Instruction>(Builder.CreateBinOp(
3181               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
3182           if (PBI_C->isOne()) {
3183             Instruction *NotCond = cast<Instruction>(
3184                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
3185             MergedCond = cast<Instruction>(Builder.CreateBinOp(
3186                 Instruction::Or, NotCond, MergedCond, "or.cond"));
3187           }
3188         }
3189         // Update PHI Node.
3190         PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
3191       }
3192 
3193       // PBI is changed to branch to UniqueSucc below. Remove itself from
3194       // potential phis from all other successors.
3195       if (MSSAU)
3196         MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc);
3197 
3198       // Change PBI from Conditional to Unconditional.
3199       BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI);
3200       EraseTerminatorAndDCECond(PBI, MSSAU);
3201       PBI = New_PBI;
3202     }
3203 
3204     if (DTU)
3205       DTU->applyUpdates(Updates);
3206 
3207     // If BI was a loop latch, it may have had associated loop metadata.
3208     // We need to copy it to the new latch, that is, PBI.
3209     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3210       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3211 
3212     // TODO: If BB is reachable from all paths through PredBlock, then we
3213     // could replace PBI's branch probabilities with BI's.
3214 
3215     // Copy any debug value intrinsics into the end of PredBlock.
3216     for (Instruction &I : *BB) {
3217       if (isa<DbgInfoIntrinsic>(I)) {
3218         Instruction *NewI = I.clone();
3219         RemapInstruction(NewI, VMap,
3220                          RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3221         NewI->insertBefore(PBI);
3222       }
3223     }
3224 
3225     return Changed;
3226   }
3227   return Changed;
3228 }
3229 
3230 // If there is only one store in BB1 and BB2, return it, otherwise return
3231 // nullptr.
3232 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3233   StoreInst *S = nullptr;
3234   for (auto *BB : {BB1, BB2}) {
3235     if (!BB)
3236       continue;
3237     for (auto &I : *BB)
3238       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3239         if (S)
3240           // Multiple stores seen.
3241           return nullptr;
3242         else
3243           S = SI;
3244       }
3245   }
3246   return S;
3247 }
3248 
3249 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3250                                               Value *AlternativeV = nullptr) {
3251   // PHI is going to be a PHI node that allows the value V that is defined in
3252   // BB to be referenced in BB's only successor.
3253   //
3254   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3255   // doesn't matter to us what the other operand is (it'll never get used). We
3256   // could just create a new PHI with an undef incoming value, but that could
3257   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3258   // other PHI. So here we directly look for some PHI in BB's successor with V
3259   // as an incoming operand. If we find one, we use it, else we create a new
3260   // one.
3261   //
3262   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3263   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3264   // where OtherBB is the single other predecessor of BB's only successor.
3265   PHINode *PHI = nullptr;
3266   BasicBlock *Succ = BB->getSingleSuccessor();
3267 
3268   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3269     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3270       PHI = cast<PHINode>(I);
3271       if (!AlternativeV)
3272         break;
3273 
3274       assert(Succ->hasNPredecessors(2));
3275       auto PredI = pred_begin(Succ);
3276       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3277       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3278         break;
3279       PHI = nullptr;
3280     }
3281   if (PHI)
3282     return PHI;
3283 
3284   // If V is not an instruction defined in BB, just return it.
3285   if (!AlternativeV &&
3286       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3287     return V;
3288 
3289   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3290   PHI->addIncoming(V, BB);
3291   for (BasicBlock *PredBB : predecessors(Succ))
3292     if (PredBB != BB)
3293       PHI->addIncoming(
3294           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3295   return PHI;
3296 }
3297 
3298 static bool mergeConditionalStoreToAddress(
3299     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3300     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3301     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3302   // For every pointer, there must be exactly two stores, one coming from
3303   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3304   // store (to any address) in PTB,PFB or QTB,QFB.
3305   // FIXME: We could relax this restriction with a bit more work and performance
3306   // testing.
3307   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3308   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3309   if (!PStore || !QStore)
3310     return false;
3311 
3312   // Now check the stores are compatible.
3313   if (!QStore->isUnordered() || !PStore->isUnordered())
3314     return false;
3315 
3316   // Check that sinking the store won't cause program behavior changes. Sinking
3317   // the store out of the Q blocks won't change any behavior as we're sinking
3318   // from a block to its unconditional successor. But we're moving a store from
3319   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3320   // So we need to check that there are no aliasing loads or stores in
3321   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3322   // operations between PStore and the end of its parent block.
3323   //
3324   // The ideal way to do this is to query AliasAnalysis, but we don't
3325   // preserve AA currently so that is dangerous. Be super safe and just
3326   // check there are no other memory operations at all.
3327   for (auto &I : *QFB->getSinglePredecessor())
3328     if (I.mayReadOrWriteMemory())
3329       return false;
3330   for (auto &I : *QFB)
3331     if (&I != QStore && I.mayReadOrWriteMemory())
3332       return false;
3333   if (QTB)
3334     for (auto &I : *QTB)
3335       if (&I != QStore && I.mayReadOrWriteMemory())
3336         return false;
3337   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3338        I != E; ++I)
3339     if (&*I != PStore && I->mayReadOrWriteMemory())
3340       return false;
3341 
3342   // If we're not in aggressive mode, we only optimize if we have some
3343   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3344   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3345     if (!BB)
3346       return true;
3347     // Heuristic: if the block can be if-converted/phi-folded and the
3348     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3349     // thread this store.
3350     int BudgetRemaining =
3351         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3352     for (auto &I : BB->instructionsWithoutDebug()) {
3353       // Consider terminator instruction to be free.
3354       if (I.isTerminator())
3355         continue;
3356       // If this is one the stores that we want to speculate out of this BB,
3357       // then don't count it's cost, consider it to be free.
3358       if (auto *S = dyn_cast<StoreInst>(&I))
3359         if (llvm::find(FreeStores, S))
3360           continue;
3361       // Else, we have a white-list of instructions that we are ak speculating.
3362       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3363         return false; // Not in white-list - not worthwhile folding.
3364       // And finally, if this is a non-free instruction that we are okay
3365       // speculating, ensure that we consider the speculation budget.
3366       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3367       if (BudgetRemaining < 0)
3368         return false; // Eagerly refuse to fold as soon as we're out of budget.
3369     }
3370     assert(BudgetRemaining >= 0 &&
3371            "When we run out of budget we will eagerly return from within the "
3372            "per-instruction loop.");
3373     return true;
3374   };
3375 
3376   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3377   if (!MergeCondStoresAggressively &&
3378       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3379        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3380     return false;
3381 
3382   // If PostBB has more than two predecessors, we need to split it so we can
3383   // sink the store.
3384   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3385     // We know that QFB's only successor is PostBB. And QFB has a single
3386     // predecessor. If QTB exists, then its only successor is also PostBB.
3387     // If QTB does not exist, then QFB's only predecessor has a conditional
3388     // branch to QFB and PostBB.
3389     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3390     BasicBlock *NewBB =
3391         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split",
3392                                DTU ? &DTU->getDomTree() : nullptr);
3393     if (!NewBB)
3394       return false;
3395     PostBB = NewBB;
3396   }
3397 
3398   // OK, we're going to sink the stores to PostBB. The store has to be
3399   // conditional though, so first create the predicate.
3400   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3401                      ->getCondition();
3402   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3403                      ->getCondition();
3404 
3405   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3406                                                 PStore->getParent());
3407   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3408                                                 QStore->getParent(), PPHI);
3409 
3410   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3411 
3412   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3413   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3414 
3415   if (InvertPCond)
3416     PPred = QB.CreateNot(PPred);
3417   if (InvertQCond)
3418     QPred = QB.CreateNot(QPred);
3419   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3420 
3421   auto *T = SplitBlockAndInsertIfThen(
3422       CombinedPred, &*QB.GetInsertPoint(), /*Unreachable=*/false,
3423       /*BranchWeights=*/nullptr, DTU ? &DTU->getDomTree() : nullptr);
3424   QB.SetInsertPoint(T);
3425   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3426   AAMDNodes AAMD;
3427   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3428   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3429   SI->setAAMetadata(AAMD);
3430   // Choose the minimum alignment. If we could prove both stores execute, we
3431   // could use biggest one.  In this case, though, we only know that one of the
3432   // stores executes.  And we don't know it's safe to take the alignment from a
3433   // store that doesn't execute.
3434   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3435 
3436   QStore->eraseFromParent();
3437   PStore->eraseFromParent();
3438 
3439   return true;
3440 }
3441 
3442 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3443                                    DomTreeUpdater *DTU, const DataLayout &DL,
3444                                    const TargetTransformInfo &TTI) {
3445   // The intention here is to find diamonds or triangles (see below) where each
3446   // conditional block contains a store to the same address. Both of these
3447   // stores are conditional, so they can't be unconditionally sunk. But it may
3448   // be profitable to speculatively sink the stores into one merged store at the
3449   // end, and predicate the merged store on the union of the two conditions of
3450   // PBI and QBI.
3451   //
3452   // This can reduce the number of stores executed if both of the conditions are
3453   // true, and can allow the blocks to become small enough to be if-converted.
3454   // This optimization will also chain, so that ladders of test-and-set
3455   // sequences can be if-converted away.
3456   //
3457   // We only deal with simple diamonds or triangles:
3458   //
3459   //     PBI       or      PBI        or a combination of the two
3460   //    /   \               | \
3461   //   PTB  PFB             |  PFB
3462   //    \   /               | /
3463   //     QBI                QBI
3464   //    /  \                | \
3465   //   QTB  QFB             |  QFB
3466   //    \  /                | /
3467   //    PostBB            PostBB
3468   //
3469   // We model triangles as a type of diamond with a nullptr "true" block.
3470   // Triangles are canonicalized so that the fallthrough edge is represented by
3471   // a true condition, as in the diagram above.
3472   BasicBlock *PTB = PBI->getSuccessor(0);
3473   BasicBlock *PFB = PBI->getSuccessor(1);
3474   BasicBlock *QTB = QBI->getSuccessor(0);
3475   BasicBlock *QFB = QBI->getSuccessor(1);
3476   BasicBlock *PostBB = QFB->getSingleSuccessor();
3477 
3478   // Make sure we have a good guess for PostBB. If QTB's only successor is
3479   // QFB, then QFB is a better PostBB.
3480   if (QTB->getSingleSuccessor() == QFB)
3481     PostBB = QFB;
3482 
3483   // If we couldn't find a good PostBB, stop.
3484   if (!PostBB)
3485     return false;
3486 
3487   bool InvertPCond = false, InvertQCond = false;
3488   // Canonicalize fallthroughs to the true branches.
3489   if (PFB == QBI->getParent()) {
3490     std::swap(PFB, PTB);
3491     InvertPCond = true;
3492   }
3493   if (QFB == PostBB) {
3494     std::swap(QFB, QTB);
3495     InvertQCond = true;
3496   }
3497 
3498   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3499   // and QFB may not. Model fallthroughs as a nullptr block.
3500   if (PTB == QBI->getParent())
3501     PTB = nullptr;
3502   if (QTB == PostBB)
3503     QTB = nullptr;
3504 
3505   // Legality bailouts. We must have at least the non-fallthrough blocks and
3506   // the post-dominating block, and the non-fallthroughs must only have one
3507   // predecessor.
3508   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3509     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3510   };
3511   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3512       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3513     return false;
3514   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3515       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3516     return false;
3517   if (!QBI->getParent()->hasNUses(2))
3518     return false;
3519 
3520   // OK, this is a sequence of two diamonds or triangles.
3521   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3522   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3523   for (auto *BB : {PTB, PFB}) {
3524     if (!BB)
3525       continue;
3526     for (auto &I : *BB)
3527       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3528         PStoreAddresses.insert(SI->getPointerOperand());
3529   }
3530   for (auto *BB : {QTB, QFB}) {
3531     if (!BB)
3532       continue;
3533     for (auto &I : *BB)
3534       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3535         QStoreAddresses.insert(SI->getPointerOperand());
3536   }
3537 
3538   set_intersect(PStoreAddresses, QStoreAddresses);
3539   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3540   // clear what it contains.
3541   auto &CommonAddresses = PStoreAddresses;
3542 
3543   bool Changed = false;
3544   for (auto *Address : CommonAddresses)
3545     Changed |=
3546         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3547                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3548   return Changed;
3549 }
3550 
3551 /// If the previous block ended with a widenable branch, determine if reusing
3552 /// the target block is profitable and legal.  This will have the effect of
3553 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3554 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3555                                            DomTreeUpdater *DTU) {
3556   // TODO: This can be generalized in two important ways:
3557   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3558   //    values from the PBI edge.
3559   // 2) We can sink side effecting instructions into BI's fallthrough
3560   //    successor provided they doesn't contribute to computation of
3561   //    BI's condition.
3562   Value *CondWB, *WC;
3563   BasicBlock *IfTrueBB, *IfFalseBB;
3564   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3565       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3566     return false;
3567   if (!IfFalseBB->phis().empty())
3568     return false; // TODO
3569   // Use lambda to lazily compute expensive condition after cheap ones.
3570   auto NoSideEffects = [](BasicBlock &BB) {
3571     return !llvm::any_of(BB, [](const Instruction &I) {
3572         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3573       });
3574   };
3575   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3576       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3577       NoSideEffects(*BI->getParent())) {
3578     auto *OldSuccessor = BI->getSuccessor(1);
3579     OldSuccessor->removePredecessor(BI->getParent());
3580     BI->setSuccessor(1, IfFalseBB);
3581     if (DTU)
3582       DTU->applyUpdates({{DominatorTree::Delete, BI->getParent(), OldSuccessor},
3583                          {DominatorTree::Insert, BI->getParent(), IfFalseBB}});
3584     return true;
3585   }
3586   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3587       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3588       NoSideEffects(*BI->getParent())) {
3589     auto *OldSuccessor = BI->getSuccessor(0);
3590     OldSuccessor->removePredecessor(BI->getParent());
3591     BI->setSuccessor(0, IfFalseBB);
3592     if (DTU)
3593       DTU->applyUpdates({{DominatorTree::Delete, BI->getParent(), OldSuccessor},
3594                          {DominatorTree::Insert, BI->getParent(), IfFalseBB}});
3595     return true;
3596   }
3597   return false;
3598 }
3599 
3600 /// If we have a conditional branch as a predecessor of another block,
3601 /// this function tries to simplify it.  We know
3602 /// that PBI and BI are both conditional branches, and BI is in one of the
3603 /// successor blocks of PBI - PBI branches to BI.
3604 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3605                                            DomTreeUpdater *DTU,
3606                                            const DataLayout &DL,
3607                                            const TargetTransformInfo &TTI) {
3608   assert(PBI->isConditional() && BI->isConditional());
3609   BasicBlock *BB = BI->getParent();
3610 
3611   // If this block ends with a branch instruction, and if there is a
3612   // predecessor that ends on a branch of the same condition, make
3613   // this conditional branch redundant.
3614   if (PBI->getCondition() == BI->getCondition() &&
3615       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3616     // Okay, the outcome of this conditional branch is statically
3617     // knowable.  If this block had a single pred, handle specially.
3618     if (BB->getSinglePredecessor()) {
3619       // Turn this into a branch on constant.
3620       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3621       BI->setCondition(
3622           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3623       return true; // Nuke the branch on constant.
3624     }
3625 
3626     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3627     // in the constant and simplify the block result.  Subsequent passes of
3628     // simplifycfg will thread the block.
3629     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3630       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3631       PHINode *NewPN = PHINode::Create(
3632           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3633           BI->getCondition()->getName() + ".pr", &BB->front());
3634       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3635       // predecessor, compute the PHI'd conditional value for all of the preds.
3636       // Any predecessor where the condition is not computable we keep symbolic.
3637       for (pred_iterator PI = PB; PI != PE; ++PI) {
3638         BasicBlock *P = *PI;
3639         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3640             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3641             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3642           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3643           NewPN->addIncoming(
3644               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3645               P);
3646         } else {
3647           NewPN->addIncoming(BI->getCondition(), P);
3648         }
3649       }
3650 
3651       BI->setCondition(NewPN);
3652       return true;
3653     }
3654   }
3655 
3656   // If the previous block ended with a widenable branch, determine if reusing
3657   // the target block is profitable and legal.  This will have the effect of
3658   // "widening" PBI, but doesn't require us to reason about hosting safety.
3659   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3660     return true;
3661 
3662   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3663     if (CE->canTrap())
3664       return false;
3665 
3666   // If both branches are conditional and both contain stores to the same
3667   // address, remove the stores from the conditionals and create a conditional
3668   // merged store at the end.
3669   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3670     return true;
3671 
3672   // If this is a conditional branch in an empty block, and if any
3673   // predecessors are a conditional branch to one of our destinations,
3674   // fold the conditions into logical ops and one cond br.
3675 
3676   // Ignore dbg intrinsics.
3677   if (&*BB->instructionsWithoutDebug().begin() != BI)
3678     return false;
3679 
3680   int PBIOp, BIOp;
3681   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3682     PBIOp = 0;
3683     BIOp = 0;
3684   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3685     PBIOp = 0;
3686     BIOp = 1;
3687   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3688     PBIOp = 1;
3689     BIOp = 0;
3690   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3691     PBIOp = 1;
3692     BIOp = 1;
3693   } else {
3694     return false;
3695   }
3696 
3697   // Check to make sure that the other destination of this branch
3698   // isn't BB itself.  If so, this is an infinite loop that will
3699   // keep getting unwound.
3700   if (PBI->getSuccessor(PBIOp) == BB)
3701     return false;
3702 
3703   // Do not perform this transformation if it would require
3704   // insertion of a large number of select instructions. For targets
3705   // without predication/cmovs, this is a big pessimization.
3706 
3707   // Also do not perform this transformation if any phi node in the common
3708   // destination block can trap when reached by BB or PBB (PR17073). In that
3709   // case, it would be unsafe to hoist the operation into a select instruction.
3710 
3711   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3712   unsigned NumPhis = 0;
3713   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3714        ++II, ++NumPhis) {
3715     if (NumPhis > 2) // Disable this xform.
3716       return false;
3717 
3718     PHINode *PN = cast<PHINode>(II);
3719     Value *BIV = PN->getIncomingValueForBlock(BB);
3720     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3721       if (CE->canTrap())
3722         return false;
3723 
3724     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3725     Value *PBIV = PN->getIncomingValue(PBBIdx);
3726     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3727       if (CE->canTrap())
3728         return false;
3729   }
3730 
3731   // Finally, if everything is ok, fold the branches to logical ops.
3732   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3733 
3734   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3735                     << "AND: " << *BI->getParent());
3736 
3737   SmallVector<DominatorTree::UpdateType, 5> Updates;
3738 
3739   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3740   // branch in it, where one edge (OtherDest) goes back to itself but the other
3741   // exits.  We don't *know* that the program avoids the infinite loop
3742   // (even though that seems likely).  If we do this xform naively, we'll end up
3743   // recursively unpeeling the loop.  Since we know that (after the xform is
3744   // done) that the block *is* infinite if reached, we just make it an obviously
3745   // infinite loop with no cond branch.
3746   if (OtherDest == BB) {
3747     // Insert it at the end of the function, because it's either code,
3748     // or it won't matter if it's hot. :)
3749     BasicBlock *InfLoopBlock =
3750         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3751     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3752     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3753     OtherDest = InfLoopBlock;
3754   }
3755 
3756   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3757 
3758   // BI may have other predecessors.  Because of this, we leave
3759   // it alone, but modify PBI.
3760 
3761   // Make sure we get to CommonDest on True&True directions.
3762   Value *PBICond = PBI->getCondition();
3763   IRBuilder<NoFolder> Builder(PBI);
3764   if (PBIOp)
3765     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3766 
3767   Value *BICond = BI->getCondition();
3768   if (BIOp)
3769     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3770 
3771   // Merge the conditions.
3772   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3773 
3774   for (auto *Successor : successors(PBI->getParent()))
3775     Updates.push_back({DominatorTree::Delete, PBI->getParent(), Successor});
3776 
3777   // Modify PBI to branch on the new condition to the new dests.
3778   PBI->setCondition(Cond);
3779   PBI->setSuccessor(0, CommonDest);
3780   PBI->setSuccessor(1, OtherDest);
3781 
3782   for (auto *Successor : successors(PBI->getParent()))
3783     Updates.push_back({DominatorTree::Insert, PBI->getParent(), Successor});
3784 
3785   if (DTU)
3786     DTU->applyUpdates(Updates);
3787 
3788   // Update branch weight for PBI.
3789   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3790   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3791   bool HasWeights =
3792       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3793                              SuccTrueWeight, SuccFalseWeight);
3794   if (HasWeights) {
3795     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3796     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3797     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3798     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3799     // The weight to CommonDest should be PredCommon * SuccTotal +
3800     //                                    PredOther * SuccCommon.
3801     // The weight to OtherDest should be PredOther * SuccOther.
3802     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3803                                   PredOther * SuccCommon,
3804                               PredOther * SuccOther};
3805     // Halve the weights if any of them cannot fit in an uint32_t
3806     FitWeights(NewWeights);
3807 
3808     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3809   }
3810 
3811   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3812   // block that are identical to the entries for BI's block.
3813   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3814 
3815   // We know that the CommonDest already had an edge from PBI to
3816   // it.  If it has PHIs though, the PHIs may have different
3817   // entries for BB and PBI's BB.  If so, insert a select to make
3818   // them agree.
3819   for (PHINode &PN : CommonDest->phis()) {
3820     Value *BIV = PN.getIncomingValueForBlock(BB);
3821     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3822     Value *PBIV = PN.getIncomingValue(PBBIdx);
3823     if (BIV != PBIV) {
3824       // Insert a select in PBI to pick the right value.
3825       SelectInst *NV = cast<SelectInst>(
3826           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3827       PN.setIncomingValue(PBBIdx, NV);
3828       // Although the select has the same condition as PBI, the original branch
3829       // weights for PBI do not apply to the new select because the select's
3830       // 'logical' edges are incoming edges of the phi that is eliminated, not
3831       // the outgoing edges of PBI.
3832       if (HasWeights) {
3833         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3834         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3835         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3836         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3837         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3838         // The weight to PredOtherDest should be PredOther * SuccCommon.
3839         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3840                                   PredOther * SuccCommon};
3841 
3842         FitWeights(NewWeights);
3843 
3844         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3845       }
3846     }
3847   }
3848 
3849   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3850   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3851 
3852   // This basic block is probably dead.  We know it has at least
3853   // one fewer predecessor.
3854   return true;
3855 }
3856 
3857 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3858 // true or to FalseBB if Cond is false.
3859 // Takes care of updating the successors and removing the old terminator.
3860 // Also makes sure not to introduce new successors by assuming that edges to
3861 // non-successor TrueBBs and FalseBBs aren't reachable.
3862 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3863                                                 Value *Cond, BasicBlock *TrueBB,
3864                                                 BasicBlock *FalseBB,
3865                                                 uint32_t TrueWeight,
3866                                                 uint32_t FalseWeight) {
3867   auto *BB = OldTerm->getParent();
3868   // Remove any superfluous successor edges from the CFG.
3869   // First, figure out which successors to preserve.
3870   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3871   // successor.
3872   BasicBlock *KeepEdge1 = TrueBB;
3873   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3874 
3875   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3876 
3877   // Then remove the rest.
3878   for (BasicBlock *Succ : successors(OldTerm)) {
3879     // Make sure only to keep exactly one copy of each edge.
3880     if (Succ == KeepEdge1)
3881       KeepEdge1 = nullptr;
3882     else if (Succ == KeepEdge2)
3883       KeepEdge2 = nullptr;
3884     else {
3885       Succ->removePredecessor(BB,
3886                               /*KeepOneInputPHIs=*/true);
3887 
3888       if (Succ != TrueBB && Succ != FalseBB)
3889         RemovedSuccessors.insert(Succ);
3890     }
3891   }
3892 
3893   IRBuilder<> Builder(OldTerm);
3894   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3895 
3896   // Insert an appropriate new terminator.
3897   if (!KeepEdge1 && !KeepEdge2) {
3898     if (TrueBB == FalseBB) {
3899       // We were only looking for one successor, and it was present.
3900       // Create an unconditional branch to it.
3901       Builder.CreateBr(TrueBB);
3902     } else {
3903       // We found both of the successors we were looking for.
3904       // Create a conditional branch sharing the condition of the select.
3905       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3906       if (TrueWeight != FalseWeight)
3907         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3908     }
3909   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3910     // Neither of the selected blocks were successors, so this
3911     // terminator must be unreachable.
3912     new UnreachableInst(OldTerm->getContext(), OldTerm);
3913   } else {
3914     // One of the selected values was a successor, but the other wasn't.
3915     // Insert an unconditional branch to the one that was found;
3916     // the edge to the one that wasn't must be unreachable.
3917     if (!KeepEdge1) {
3918       // Only TrueBB was found.
3919       Builder.CreateBr(TrueBB);
3920     } else {
3921       // Only FalseBB was found.
3922       Builder.CreateBr(FalseBB);
3923     }
3924   }
3925 
3926   EraseTerminatorAndDCECond(OldTerm);
3927 
3928   if (DTU) {
3929     SmallVector<DominatorTree::UpdateType, 2> Updates;
3930     Updates.reserve(RemovedSuccessors.size());
3931     for (auto *RemovedSuccessor : RemovedSuccessors)
3932       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3933     DTU->applyUpdates(Updates);
3934   }
3935 
3936   return true;
3937 }
3938 
3939 // Replaces
3940 //   (switch (select cond, X, Y)) on constant X, Y
3941 // with a branch - conditional if X and Y lead to distinct BBs,
3942 // unconditional otherwise.
3943 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3944                                             SelectInst *Select) {
3945   // Check for constant integer values in the select.
3946   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3947   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3948   if (!TrueVal || !FalseVal)
3949     return false;
3950 
3951   // Find the relevant condition and destinations.
3952   Value *Condition = Select->getCondition();
3953   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3954   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3955 
3956   // Get weight for TrueBB and FalseBB.
3957   uint32_t TrueWeight = 0, FalseWeight = 0;
3958   SmallVector<uint64_t, 8> Weights;
3959   bool HasWeights = HasBranchWeights(SI);
3960   if (HasWeights) {
3961     GetBranchWeights(SI, Weights);
3962     if (Weights.size() == 1 + SI->getNumCases()) {
3963       TrueWeight =
3964           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3965       FalseWeight =
3966           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3967     }
3968   }
3969 
3970   // Perform the actual simplification.
3971   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3972                                     FalseWeight);
3973 }
3974 
3975 // Replaces
3976 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3977 //                             blockaddress(@fn, BlockB)))
3978 // with
3979 //   (br cond, BlockA, BlockB).
3980 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3981                                                 SelectInst *SI) {
3982   // Check that both operands of the select are block addresses.
3983   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3984   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3985   if (!TBA || !FBA)
3986     return false;
3987 
3988   // Extract the actual blocks.
3989   BasicBlock *TrueBB = TBA->getBasicBlock();
3990   BasicBlock *FalseBB = FBA->getBasicBlock();
3991 
3992   // Perform the actual simplification.
3993   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3994                                     0);
3995 }
3996 
3997 /// This is called when we find an icmp instruction
3998 /// (a seteq/setne with a constant) as the only instruction in a
3999 /// block that ends with an uncond branch.  We are looking for a very specific
4000 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4001 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4002 /// default value goes to an uncond block with a seteq in it, we get something
4003 /// like:
4004 ///
4005 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4006 /// DEFAULT:
4007 ///   %tmp = icmp eq i8 %A, 92
4008 ///   br label %end
4009 /// end:
4010 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4011 ///
4012 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4013 /// the PHI, merging the third icmp into the switch.
4014 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4015     ICmpInst *ICI, IRBuilder<> &Builder) {
4016   BasicBlock *BB = ICI->getParent();
4017 
4018   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4019   // complex.
4020   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4021     return false;
4022 
4023   Value *V = ICI->getOperand(0);
4024   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4025 
4026   // The pattern we're looking for is where our only predecessor is a switch on
4027   // 'V' and this block is the default case for the switch.  In this case we can
4028   // fold the compared value into the switch to simplify things.
4029   BasicBlock *Pred = BB->getSinglePredecessor();
4030   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4031     return false;
4032 
4033   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4034   if (SI->getCondition() != V)
4035     return false;
4036 
4037   // If BB is reachable on a non-default case, then we simply know the value of
4038   // V in this block.  Substitute it and constant fold the icmp instruction
4039   // away.
4040   if (SI->getDefaultDest() != BB) {
4041     ConstantInt *VVal = SI->findCaseDest(BB);
4042     assert(VVal && "Should have a unique destination value");
4043     ICI->setOperand(0, VVal);
4044 
4045     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4046       ICI->replaceAllUsesWith(V);
4047       ICI->eraseFromParent();
4048     }
4049     // BB is now empty, so it is likely to simplify away.
4050     return requestResimplify();
4051   }
4052 
4053   // Ok, the block is reachable from the default dest.  If the constant we're
4054   // comparing exists in one of the other edges, then we can constant fold ICI
4055   // and zap it.
4056   if (SI->findCaseValue(Cst) != SI->case_default()) {
4057     Value *V;
4058     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4059       V = ConstantInt::getFalse(BB->getContext());
4060     else
4061       V = ConstantInt::getTrue(BB->getContext());
4062 
4063     ICI->replaceAllUsesWith(V);
4064     ICI->eraseFromParent();
4065     // BB is now empty, so it is likely to simplify away.
4066     return requestResimplify();
4067   }
4068 
4069   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4070   // the block.
4071   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4072   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4073   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4074       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4075     return false;
4076 
4077   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4078   // true in the PHI.
4079   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4080   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4081 
4082   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4083     std::swap(DefaultCst, NewCst);
4084 
4085   // Replace ICI (which is used by the PHI for the default value) with true or
4086   // false depending on if it is EQ or NE.
4087   ICI->replaceAllUsesWith(DefaultCst);
4088   ICI->eraseFromParent();
4089 
4090   SmallVector<DominatorTree::UpdateType, 2> Updates;
4091 
4092   // Okay, the switch goes to this block on a default value.  Add an edge from
4093   // the switch to the merge point on the compared value.
4094   BasicBlock *NewBB =
4095       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4096   {
4097     SwitchInstProfUpdateWrapper SIW(*SI);
4098     auto W0 = SIW.getSuccessorWeight(0);
4099     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4100     if (W0) {
4101       NewW = ((uint64_t(*W0) + 1) >> 1);
4102       SIW.setSuccessorWeight(0, *NewW);
4103     }
4104     SIW.addCase(Cst, NewBB, NewW);
4105     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4106   }
4107 
4108   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4109   Builder.SetInsertPoint(NewBB);
4110   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4111   Builder.CreateBr(SuccBlock);
4112   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4113   PHIUse->addIncoming(NewCst, NewBB);
4114   if (DTU)
4115     DTU->applyUpdates(Updates);
4116   return true;
4117 }
4118 
4119 /// The specified branch is a conditional branch.
4120 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4121 /// fold it into a switch instruction if so.
4122 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4123                                                IRBuilder<> &Builder,
4124                                                const DataLayout &DL) {
4125   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4126   if (!Cond)
4127     return false;
4128 
4129   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4130   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4131   // 'setne's and'ed together, collect them.
4132 
4133   // Try to gather values from a chain of and/or to be turned into a switch
4134   ConstantComparesGatherer ConstantCompare(Cond, DL);
4135   // Unpack the result
4136   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4137   Value *CompVal = ConstantCompare.CompValue;
4138   unsigned UsedICmps = ConstantCompare.UsedICmps;
4139   Value *ExtraCase = ConstantCompare.Extra;
4140 
4141   // If we didn't have a multiply compared value, fail.
4142   if (!CompVal)
4143     return false;
4144 
4145   // Avoid turning single icmps into a switch.
4146   if (UsedICmps <= 1)
4147     return false;
4148 
4149   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
4150 
4151   // There might be duplicate constants in the list, which the switch
4152   // instruction can't handle, remove them now.
4153   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4154   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4155 
4156   // If Extra was used, we require at least two switch values to do the
4157   // transformation.  A switch with one value is just a conditional branch.
4158   if (ExtraCase && Values.size() < 2)
4159     return false;
4160 
4161   // TODO: Preserve branch weight metadata, similarly to how
4162   // FoldValueComparisonIntoPredecessors preserves it.
4163 
4164   // Figure out which block is which destination.
4165   BasicBlock *DefaultBB = BI->getSuccessor(1);
4166   BasicBlock *EdgeBB = BI->getSuccessor(0);
4167   if (!TrueWhenEqual)
4168     std::swap(DefaultBB, EdgeBB);
4169 
4170   BasicBlock *BB = BI->getParent();
4171 
4172   // MSAN does not like undefs as branch condition which can be introduced
4173   // with "explicit branch".
4174   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4175     return false;
4176 
4177   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4178                     << " cases into SWITCH.  BB is:\n"
4179                     << *BB);
4180 
4181   SmallVector<DominatorTree::UpdateType, 2> Updates;
4182 
4183   // If there are any extra values that couldn't be folded into the switch
4184   // then we evaluate them with an explicit branch first. Split the block
4185   // right before the condbr to handle it.
4186   if (ExtraCase) {
4187     BasicBlock *NewBB =
4188         SplitBlock(BB, BI, DTU ? &DTU->getDomTree() : nullptr, /*LI=*/nullptr,
4189                    /*MSSAU=*/nullptr, "switch.early.test");
4190 
4191     // Remove the uncond branch added to the old block.
4192     Instruction *OldTI = BB->getTerminator();
4193     Builder.SetInsertPoint(OldTI);
4194 
4195     if (TrueWhenEqual)
4196       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4197     else
4198       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4199 
4200     OldTI->eraseFromParent();
4201 
4202     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4203 
4204     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4205     // for the edge we just added.
4206     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4207 
4208     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4209                       << "\nEXTRABB = " << *BB);
4210     BB = NewBB;
4211   }
4212 
4213   Builder.SetInsertPoint(BI);
4214   // Convert pointer to int before we switch.
4215   if (CompVal->getType()->isPointerTy()) {
4216     CompVal = Builder.CreatePtrToInt(
4217         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4218   }
4219 
4220   // Create the new switch instruction now.
4221   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4222 
4223   // Add all of the 'cases' to the switch instruction.
4224   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4225     New->addCase(Values[i], EdgeBB);
4226 
4227   // We added edges from PI to the EdgeBB.  As such, if there were any
4228   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4229   // the number of edges added.
4230   Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4231   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4232     PHINode *PN = cast<PHINode>(BBI);
4233     Value *InVal = PN->getIncomingValueForBlock(BB);
4234     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4235       PN->addIncoming(InVal, BB);
4236   }
4237 
4238   // Erase the old branch instruction.
4239   EraseTerminatorAndDCECond(BI);
4240   if (DTU)
4241     DTU->applyUpdates(Updates);
4242 
4243   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4244   return true;
4245 }
4246 
4247 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4248   if (isa<PHINode>(RI->getValue()))
4249     return simplifyCommonResume(RI);
4250   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4251            RI->getValue() == RI->getParent()->getFirstNonPHI())
4252     // The resume must unwind the exception that caused control to branch here.
4253     return simplifySingleResume(RI);
4254 
4255   return false;
4256 }
4257 
4258 // Check if cleanup block is empty
4259 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4260   for (Instruction &I : R) {
4261     auto *II = dyn_cast<IntrinsicInst>(&I);
4262     if (!II)
4263       return false;
4264 
4265     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4266     switch (IntrinsicID) {
4267     case Intrinsic::dbg_declare:
4268     case Intrinsic::dbg_value:
4269     case Intrinsic::dbg_label:
4270     case Intrinsic::lifetime_end:
4271       break;
4272     default:
4273       return false;
4274     }
4275   }
4276   return true;
4277 }
4278 
4279 // Simplify resume that is shared by several landing pads (phi of landing pad).
4280 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4281   BasicBlock *BB = RI->getParent();
4282 
4283   // Check that there are no other instructions except for debug and lifetime
4284   // intrinsics between the phi's and resume instruction.
4285   if (!isCleanupBlockEmpty(
4286           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4287     return false;
4288 
4289   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4290   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4291 
4292   // Check incoming blocks to see if any of them are trivial.
4293   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4294        Idx++) {
4295     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4296     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4297 
4298     // If the block has other successors, we can not delete it because
4299     // it has other dependents.
4300     if (IncomingBB->getUniqueSuccessor() != BB)
4301       continue;
4302 
4303     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4304     // Not the landing pad that caused the control to branch here.
4305     if (IncomingValue != LandingPad)
4306       continue;
4307 
4308     if (isCleanupBlockEmpty(
4309             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4310       TrivialUnwindBlocks.insert(IncomingBB);
4311   }
4312 
4313   // If no trivial unwind blocks, don't do any simplifications.
4314   if (TrivialUnwindBlocks.empty())
4315     return false;
4316 
4317   // Turn all invokes that unwind here into calls.
4318   for (auto *TrivialBB : TrivialUnwindBlocks) {
4319     // Blocks that will be simplified should be removed from the phi node.
4320     // Note there could be multiple edges to the resume block, and we need
4321     // to remove them all.
4322     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4323       BB->removePredecessor(TrivialBB, true);
4324 
4325     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4326          PI != PE;) {
4327       BasicBlock *Pred = *PI++;
4328       removeUnwindEdge(Pred, DTU);
4329       ++NumInvokes;
4330     }
4331 
4332     // In each SimplifyCFG run, only the current processed block can be erased.
4333     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4334     // of erasing TrivialBB, we only remove the branch to the common resume
4335     // block so that we can later erase the resume block since it has no
4336     // predecessors.
4337     TrivialBB->getTerminator()->eraseFromParent();
4338     new UnreachableInst(RI->getContext(), TrivialBB);
4339     if (DTU)
4340       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4341   }
4342 
4343   // Delete the resume block if all its predecessors have been removed.
4344   if (pred_empty(BB)) {
4345     if (DTU)
4346       DTU->deleteBB(BB);
4347     else
4348       BB->eraseFromParent();
4349   }
4350 
4351   return !TrivialUnwindBlocks.empty();
4352 }
4353 
4354 // Simplify resume that is only used by a single (non-phi) landing pad.
4355 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4356   BasicBlock *BB = RI->getParent();
4357   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4358   assert(RI->getValue() == LPInst &&
4359          "Resume must unwind the exception that caused control to here");
4360 
4361   // Check that there are no other instructions except for debug intrinsics.
4362   if (!isCleanupBlockEmpty(
4363           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4364     return false;
4365 
4366   // Turn all invokes that unwind here into calls and delete the basic block.
4367   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4368     BasicBlock *Pred = *PI++;
4369     removeUnwindEdge(Pred, DTU);
4370     ++NumInvokes;
4371   }
4372 
4373   // The landingpad is now unreachable.  Zap it.
4374   if (LoopHeaders)
4375     LoopHeaders->erase(BB);
4376   if (DTU)
4377     DTU->deleteBB(BB);
4378   else
4379     BB->eraseFromParent();
4380   return true;
4381 }
4382 
4383 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4384   // If this is a trivial cleanup pad that executes no instructions, it can be
4385   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4386   // that is an EH pad will be updated to continue to the caller and any
4387   // predecessor that terminates with an invoke instruction will have its invoke
4388   // instruction converted to a call instruction.  If the cleanup pad being
4389   // simplified does not continue to the caller, each predecessor will be
4390   // updated to continue to the unwind destination of the cleanup pad being
4391   // simplified.
4392   BasicBlock *BB = RI->getParent();
4393   CleanupPadInst *CPInst = RI->getCleanupPad();
4394   if (CPInst->getParent() != BB)
4395     // This isn't an empty cleanup.
4396     return false;
4397 
4398   // We cannot kill the pad if it has multiple uses.  This typically arises
4399   // from unreachable basic blocks.
4400   if (!CPInst->hasOneUse())
4401     return false;
4402 
4403   // Check that there are no other instructions except for benign intrinsics.
4404   if (!isCleanupBlockEmpty(
4405           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4406     return false;
4407 
4408   // If the cleanup return we are simplifying unwinds to the caller, this will
4409   // set UnwindDest to nullptr.
4410   BasicBlock *UnwindDest = RI->getUnwindDest();
4411   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4412 
4413   // We're about to remove BB from the control flow.  Before we do, sink any
4414   // PHINodes into the unwind destination.  Doing this before changing the
4415   // control flow avoids some potentially slow checks, since we can currently
4416   // be certain that UnwindDest and BB have no common predecessors (since they
4417   // are both EH pads).
4418   if (UnwindDest) {
4419     // First, go through the PHI nodes in UnwindDest and update any nodes that
4420     // reference the block we are removing
4421     for (BasicBlock::iterator I = UnwindDest->begin(),
4422                               IE = DestEHPad->getIterator();
4423          I != IE; ++I) {
4424       PHINode *DestPN = cast<PHINode>(I);
4425 
4426       int Idx = DestPN->getBasicBlockIndex(BB);
4427       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4428       assert(Idx != -1);
4429       // This PHI node has an incoming value that corresponds to a control
4430       // path through the cleanup pad we are removing.  If the incoming
4431       // value is in the cleanup pad, it must be a PHINode (because we
4432       // verified above that the block is otherwise empty).  Otherwise, the
4433       // value is either a constant or a value that dominates the cleanup
4434       // pad being removed.
4435       //
4436       // Because BB and UnwindDest are both EH pads, all of their
4437       // predecessors must unwind to these blocks, and since no instruction
4438       // can have multiple unwind destinations, there will be no overlap in
4439       // incoming blocks between SrcPN and DestPN.
4440       Value *SrcVal = DestPN->getIncomingValue(Idx);
4441       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4442 
4443       // Remove the entry for the block we are deleting.
4444       DestPN->removeIncomingValue(Idx, false);
4445 
4446       if (SrcPN && SrcPN->getParent() == BB) {
4447         // If the incoming value was a PHI node in the cleanup pad we are
4448         // removing, we need to merge that PHI node's incoming values into
4449         // DestPN.
4450         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4451              SrcIdx != SrcE; ++SrcIdx) {
4452           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4453                               SrcPN->getIncomingBlock(SrcIdx));
4454         }
4455       } else {
4456         // Otherwise, the incoming value came from above BB and
4457         // so we can just reuse it.  We must associate all of BB's
4458         // predecessors with this value.
4459         for (auto *pred : predecessors(BB)) {
4460           DestPN->addIncoming(SrcVal, pred);
4461         }
4462       }
4463     }
4464 
4465     // Sink any remaining PHI nodes directly into UnwindDest.
4466     Instruction *InsertPt = DestEHPad;
4467     for (BasicBlock::iterator I = BB->begin(),
4468                               IE = BB->getFirstNonPHI()->getIterator();
4469          I != IE;) {
4470       // The iterator must be incremented here because the instructions are
4471       // being moved to another block.
4472       PHINode *PN = cast<PHINode>(I++);
4473       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4474         // If the PHI node has no uses or all of its uses are in this basic
4475         // block (meaning they are debug or lifetime intrinsics), just leave
4476         // it.  It will be erased when we erase BB below.
4477         continue;
4478 
4479       // Otherwise, sink this PHI node into UnwindDest.
4480       // Any predecessors to UnwindDest which are not already represented
4481       // must be back edges which inherit the value from the path through
4482       // BB.  In this case, the PHI value must reference itself.
4483       for (auto *pred : predecessors(UnwindDest))
4484         if (pred != BB)
4485           PN->addIncoming(PN, pred);
4486       PN->moveBefore(InsertPt);
4487     }
4488   }
4489 
4490   std::vector<DominatorTree::UpdateType> Updates;
4491 
4492   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4493     // The iterator must be updated here because we are removing this pred.
4494     BasicBlock *PredBB = *PI++;
4495     if (UnwindDest == nullptr) {
4496       if (DTU)
4497         DTU->applyUpdates(Updates);
4498       Updates.clear();
4499       removeUnwindEdge(PredBB, DTU);
4500       ++NumInvokes;
4501     } else {
4502       Instruction *TI = PredBB->getTerminator();
4503       TI->replaceUsesOfWith(BB, UnwindDest);
4504       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4505       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4506     }
4507   }
4508 
4509   if (DTU) {
4510     DTU->applyUpdates(Updates);
4511     DTU->deleteBB(BB);
4512   } else
4513     // The cleanup pad is now unreachable.  Zap it.
4514     BB->eraseFromParent();
4515 
4516   return true;
4517 }
4518 
4519 // Try to merge two cleanuppads together.
4520 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4521   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4522   // with.
4523   BasicBlock *UnwindDest = RI->getUnwindDest();
4524   if (!UnwindDest)
4525     return false;
4526 
4527   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4528   // be safe to merge without code duplication.
4529   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4530     return false;
4531 
4532   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4533   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4534   if (!SuccessorCleanupPad)
4535     return false;
4536 
4537   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4538   // Replace any uses of the successor cleanupad with the predecessor pad
4539   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4540   // funclet bundle operands.
4541   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4542   // Remove the old cleanuppad.
4543   SuccessorCleanupPad->eraseFromParent();
4544   // Now, we simply replace the cleanupret with a branch to the unwind
4545   // destination.
4546   BranchInst::Create(UnwindDest, RI->getParent());
4547   RI->eraseFromParent();
4548 
4549   return true;
4550 }
4551 
4552 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4553   // It is possible to transiantly have an undef cleanuppad operand because we
4554   // have deleted some, but not all, dead blocks.
4555   // Eventually, this block will be deleted.
4556   if (isa<UndefValue>(RI->getOperand(0)))
4557     return false;
4558 
4559   if (mergeCleanupPad(RI))
4560     return true;
4561 
4562   if (removeEmptyCleanup(RI, DTU))
4563     return true;
4564 
4565   return false;
4566 }
4567 
4568 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4569   BasicBlock *BB = RI->getParent();
4570   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4571     return false;
4572 
4573   // Find predecessors that end with branches.
4574   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4575   SmallVector<BranchInst *, 8> CondBranchPreds;
4576   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4577     BasicBlock *P = *PI;
4578     Instruction *PTI = P->getTerminator();
4579     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4580       if (BI->isUnconditional())
4581         UncondBranchPreds.push_back(P);
4582       else
4583         CondBranchPreds.push_back(BI);
4584     }
4585   }
4586 
4587   // If we found some, do the transformation!
4588   if (!UncondBranchPreds.empty() && DupRet) {
4589     while (!UncondBranchPreds.empty()) {
4590       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4591       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4592                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4593       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4594     }
4595 
4596     // If we eliminated all predecessors of the block, delete the block now.
4597     if (pred_empty(BB)) {
4598       // We know there are no successors, so just nuke the block.
4599       if (LoopHeaders)
4600         LoopHeaders->erase(BB);
4601       if (DTU)
4602         DTU->deleteBB(BB);
4603       else
4604         BB->eraseFromParent();
4605     }
4606 
4607     return true;
4608   }
4609 
4610   // Check out all of the conditional branches going to this return
4611   // instruction.  If any of them just select between returns, change the
4612   // branch itself into a select/return pair.
4613   while (!CondBranchPreds.empty()) {
4614     BranchInst *BI = CondBranchPreds.pop_back_val();
4615 
4616     // Check to see if the non-BB successor is also a return block.
4617     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4618         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4619         SimplifyCondBranchToTwoReturns(BI, Builder))
4620       return true;
4621   }
4622   return false;
4623 }
4624 
4625 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4626   BasicBlock *BB = UI->getParent();
4627 
4628   bool Changed = false;
4629 
4630   // If there are any instructions immediately before the unreachable that can
4631   // be removed, do so.
4632   while (UI->getIterator() != BB->begin()) {
4633     BasicBlock::iterator BBI = UI->getIterator();
4634     --BBI;
4635     // Do not delete instructions that can have side effects which might cause
4636     // the unreachable to not be reachable; specifically, calls and volatile
4637     // operations may have this effect.
4638     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4639       break;
4640 
4641     if (BBI->mayHaveSideEffects()) {
4642       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4643         if (SI->isVolatile())
4644           break;
4645       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4646         if (LI->isVolatile())
4647           break;
4648       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4649         if (RMWI->isVolatile())
4650           break;
4651       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4652         if (CXI->isVolatile())
4653           break;
4654       } else if (isa<CatchPadInst>(BBI)) {
4655         // A catchpad may invoke exception object constructors and such, which
4656         // in some languages can be arbitrary code, so be conservative by
4657         // default.
4658         // For CoreCLR, it just involves a type test, so can be removed.
4659         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4660             EHPersonality::CoreCLR)
4661           break;
4662       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4663                  !isa<LandingPadInst>(BBI)) {
4664         break;
4665       }
4666       // Note that deleting LandingPad's here is in fact okay, although it
4667       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4668       // all the predecessors of this block will be the unwind edges of Invokes,
4669       // and we can therefore guarantee this block will be erased.
4670     }
4671 
4672     // Delete this instruction (any uses are guaranteed to be dead)
4673     if (!BBI->use_empty())
4674       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4675     BBI->eraseFromParent();
4676     Changed = true;
4677   }
4678 
4679   // If the unreachable instruction is the first in the block, take a gander
4680   // at all of the predecessors of this instruction, and simplify them.
4681   if (&BB->front() != UI)
4682     return Changed;
4683 
4684   std::vector<DominatorTree::UpdateType> Updates;
4685 
4686   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4687   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4688     auto *Predecessor = Preds[i];
4689     Instruction *TI = Predecessor->getTerminator();
4690     IRBuilder<> Builder(TI);
4691     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4692       // We could either have a proper unconditional branch,
4693       // or a degenerate conditional branch with matching destinations.
4694       if (all_of(BI->successors(),
4695                  [BB](auto *Successor) { return Successor == BB; })) {
4696         new UnreachableInst(TI->getContext(), TI);
4697         TI->eraseFromParent();
4698         Changed = true;
4699       } else {
4700         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4701         Value* Cond = BI->getCondition();
4702         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4703                "The destinations are guaranteed to be different here.");
4704         if (BI->getSuccessor(0) == BB) {
4705           Builder.CreateAssumption(Builder.CreateNot(Cond));
4706           Builder.CreateBr(BI->getSuccessor(1));
4707         } else {
4708           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4709           Builder.CreateAssumption(Cond);
4710           Builder.CreateBr(BI->getSuccessor(0));
4711         }
4712         EraseTerminatorAndDCECond(BI);
4713         Changed = true;
4714       }
4715       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4716     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4717       SwitchInstProfUpdateWrapper SU(*SI);
4718       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4719         if (i->getCaseSuccessor() != BB) {
4720           ++i;
4721           continue;
4722         }
4723         BB->removePredecessor(SU->getParent());
4724         i = SU.removeCase(i);
4725         e = SU->case_end();
4726         Changed = true;
4727       }
4728       // Note that the default destination can't be removed!
4729       if (SI->getDefaultDest() != BB)
4730         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4731     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4732       if (II->getUnwindDest() == BB) {
4733         if (DTU)
4734           DTU->applyUpdates(Updates);
4735         Updates.clear();
4736         removeUnwindEdge(TI->getParent(), DTU);
4737         Changed = true;
4738       }
4739     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4740       if (CSI->getUnwindDest() == BB) {
4741         if (DTU)
4742           DTU->applyUpdates(Updates);
4743         Updates.clear();
4744         removeUnwindEdge(TI->getParent(), DTU);
4745         Changed = true;
4746         continue;
4747       }
4748 
4749       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4750                                              E = CSI->handler_end();
4751            I != E; ++I) {
4752         if (*I == BB) {
4753           CSI->removeHandler(I);
4754           --I;
4755           --E;
4756           Changed = true;
4757         }
4758       }
4759       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4760       if (CSI->getNumHandlers() == 0) {
4761         if (CSI->hasUnwindDest()) {
4762           // Redirect all predecessors of the block containing CatchSwitchInst
4763           // to instead branch to the CatchSwitchInst's unwind destination.
4764           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4765             Updates.push_back(
4766                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4767             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4768                                CSI->getUnwindDest()});
4769           }
4770           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4771         } else {
4772           // Rewrite all preds to unwind to caller (or from invoke to call).
4773           if (DTU)
4774             DTU->applyUpdates(Updates);
4775           Updates.clear();
4776           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4777           for (BasicBlock *EHPred : EHPreds)
4778             removeUnwindEdge(EHPred, DTU);
4779         }
4780         // The catchswitch is no longer reachable.
4781         new UnreachableInst(CSI->getContext(), CSI);
4782         CSI->eraseFromParent();
4783         Changed = true;
4784       }
4785     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4786       (void)CRI;
4787       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4788              "Expected to always have an unwind to BB.");
4789       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4790       new UnreachableInst(TI->getContext(), TI);
4791       TI->eraseFromParent();
4792       Changed = true;
4793     }
4794   }
4795 
4796   if (DTU)
4797     DTU->applyUpdates(Updates);
4798 
4799   // If this block is now dead, remove it.
4800   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4801     // We know there are no successors, so just nuke the block.
4802     if (LoopHeaders)
4803       LoopHeaders->erase(BB);
4804     if (DTU)
4805       DTU->deleteBB(BB);
4806     else
4807       BB->eraseFromParent();
4808     return true;
4809   }
4810 
4811   return Changed;
4812 }
4813 
4814 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4815   assert(Cases.size() >= 1);
4816 
4817   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4818   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4819     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4820       return false;
4821   }
4822   return true;
4823 }
4824 
4825 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4826                                            DomTreeUpdater *DTU) {
4827   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4828   auto *BB = Switch->getParent();
4829   BasicBlock *NewDefaultBlock =
4830       SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "",
4831                              DTU ? &DTU->getDomTree() : nullptr);
4832   auto *OrigDefaultBlock = Switch->getDefaultDest();
4833   Switch->setDefaultDest(&*NewDefaultBlock);
4834   if (DTU)
4835     DTU->applyUpdates({{DominatorTree::Delete, BB, OrigDefaultBlock},
4836                        {DominatorTree::Insert, BB, &*NewDefaultBlock}});
4837   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(),
4838              DTU ? &DTU->getDomTree() : nullptr);
4839   SmallVector<DominatorTree::UpdateType, 2> Updates;
4840   for (auto *Successor : successors(NewDefaultBlock))
4841     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4842   auto *NewTerminator = NewDefaultBlock->getTerminator();
4843   new UnreachableInst(Switch->getContext(), NewTerminator);
4844   EraseTerminatorAndDCECond(NewTerminator);
4845   if (DTU)
4846     DTU->applyUpdates(Updates);
4847 }
4848 
4849 /// Turn a switch with two reachable destinations into an integer range
4850 /// comparison and branch.
4851 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4852                                              IRBuilder<> &Builder) {
4853   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4854 
4855   bool HasDefault =
4856       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4857 
4858   auto *BB = SI->getParent();
4859 
4860   // Partition the cases into two sets with different destinations.
4861   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4862   BasicBlock *DestB = nullptr;
4863   SmallVector<ConstantInt *, 16> CasesA;
4864   SmallVector<ConstantInt *, 16> CasesB;
4865 
4866   for (auto Case : SI->cases()) {
4867     BasicBlock *Dest = Case.getCaseSuccessor();
4868     if (!DestA)
4869       DestA = Dest;
4870     if (Dest == DestA) {
4871       CasesA.push_back(Case.getCaseValue());
4872       continue;
4873     }
4874     if (!DestB)
4875       DestB = Dest;
4876     if (Dest == DestB) {
4877       CasesB.push_back(Case.getCaseValue());
4878       continue;
4879     }
4880     return false; // More than two destinations.
4881   }
4882 
4883   assert(DestA && DestB &&
4884          "Single-destination switch should have been folded.");
4885   assert(DestA != DestB);
4886   assert(DestB != SI->getDefaultDest());
4887   assert(!CasesB.empty() && "There must be non-default cases.");
4888   assert(!CasesA.empty() || HasDefault);
4889 
4890   // Figure out if one of the sets of cases form a contiguous range.
4891   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4892   BasicBlock *ContiguousDest = nullptr;
4893   BasicBlock *OtherDest = nullptr;
4894   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4895     ContiguousCases = &CasesA;
4896     ContiguousDest = DestA;
4897     OtherDest = DestB;
4898   } else if (CasesAreContiguous(CasesB)) {
4899     ContiguousCases = &CasesB;
4900     ContiguousDest = DestB;
4901     OtherDest = DestA;
4902   } else
4903     return false;
4904 
4905   // Start building the compare and branch.
4906 
4907   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4908   Constant *NumCases =
4909       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4910 
4911   Value *Sub = SI->getCondition();
4912   if (!Offset->isNullValue())
4913     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4914 
4915   Value *Cmp;
4916   // If NumCases overflowed, then all possible values jump to the successor.
4917   if (NumCases->isNullValue() && !ContiguousCases->empty())
4918     Cmp = ConstantInt::getTrue(SI->getContext());
4919   else
4920     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4921   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4922 
4923   // Update weight for the newly-created conditional branch.
4924   if (HasBranchWeights(SI)) {
4925     SmallVector<uint64_t, 8> Weights;
4926     GetBranchWeights(SI, Weights);
4927     if (Weights.size() == 1 + SI->getNumCases()) {
4928       uint64_t TrueWeight = 0;
4929       uint64_t FalseWeight = 0;
4930       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4931         if (SI->getSuccessor(I) == ContiguousDest)
4932           TrueWeight += Weights[I];
4933         else
4934           FalseWeight += Weights[I];
4935       }
4936       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4937         TrueWeight /= 2;
4938         FalseWeight /= 2;
4939       }
4940       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4941     }
4942   }
4943 
4944   // Prune obsolete incoming values off the successors' PHI nodes.
4945   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4946     unsigned PreviousEdges = ContiguousCases->size();
4947     if (ContiguousDest == SI->getDefaultDest())
4948       ++PreviousEdges;
4949     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4950       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4951   }
4952   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4953     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4954     if (OtherDest == SI->getDefaultDest())
4955       ++PreviousEdges;
4956     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4957       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4958   }
4959 
4960   // Clean up the default block - it may have phis or other instructions before
4961   // the unreachable terminator.
4962   if (!HasDefault)
4963     createUnreachableSwitchDefault(SI, DTU);
4964 
4965   auto *UnreachableDefault = SI->getDefaultDest();
4966 
4967   // Drop the switch.
4968   SI->eraseFromParent();
4969 
4970   if (!HasDefault && DTU)
4971     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4972 
4973   return true;
4974 }
4975 
4976 /// Compute masked bits for the condition of a switch
4977 /// and use it to remove dead cases.
4978 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4979                                      AssumptionCache *AC,
4980                                      const DataLayout &DL) {
4981   Value *Cond = SI->getCondition();
4982   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4983   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4984 
4985   // We can also eliminate cases by determining that their values are outside of
4986   // the limited range of the condition based on how many significant (non-sign)
4987   // bits are in the condition value.
4988   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4989   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4990 
4991   // Gather dead cases.
4992   SmallVector<ConstantInt *, 8> DeadCases;
4993   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4994   for (auto &Case : SI->cases()) {
4995     auto *Successor = Case.getCaseSuccessor();
4996     ++NumPerSuccessorCases[Successor];
4997     const APInt &CaseVal = Case.getCaseValue()->getValue();
4998     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4999         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5000       DeadCases.push_back(Case.getCaseValue());
5001       --NumPerSuccessorCases[Successor];
5002       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5003                         << " is dead.\n");
5004     }
5005   }
5006 
5007   // If we can prove that the cases must cover all possible values, the
5008   // default destination becomes dead and we can remove it.  If we know some
5009   // of the bits in the value, we can use that to more precisely compute the
5010   // number of possible unique case values.
5011   bool HasDefault =
5012       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5013   const unsigned NumUnknownBits =
5014       Bits - (Known.Zero | Known.One).countPopulation();
5015   assert(NumUnknownBits <= Bits);
5016   if (HasDefault && DeadCases.empty() &&
5017       NumUnknownBits < 64 /* avoid overflow */ &&
5018       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5019     createUnreachableSwitchDefault(SI, DTU);
5020     return true;
5021   }
5022 
5023   if (DeadCases.empty())
5024     return false;
5025 
5026   SwitchInstProfUpdateWrapper SIW(*SI);
5027   for (ConstantInt *DeadCase : DeadCases) {
5028     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5029     assert(CaseI != SI->case_default() &&
5030            "Case was not found. Probably mistake in DeadCases forming.");
5031     // Prune unused values from PHI nodes.
5032     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5033     SIW.removeCase(CaseI);
5034   }
5035 
5036   std::vector<DominatorTree::UpdateType> Updates;
5037   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5038     if (I.second == 0)
5039       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5040   if (DTU)
5041     DTU->applyUpdates(Updates);
5042 
5043   return true;
5044 }
5045 
5046 /// If BB would be eligible for simplification by
5047 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5048 /// by an unconditional branch), look at the phi node for BB in the successor
5049 /// block and see if the incoming value is equal to CaseValue. If so, return
5050 /// the phi node, and set PhiIndex to BB's index in the phi node.
5051 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5052                                               BasicBlock *BB, int *PhiIndex) {
5053   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5054     return nullptr; // BB must be empty to be a candidate for simplification.
5055   if (!BB->getSinglePredecessor())
5056     return nullptr; // BB must be dominated by the switch.
5057 
5058   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5059   if (!Branch || !Branch->isUnconditional())
5060     return nullptr; // Terminator must be unconditional branch.
5061 
5062   BasicBlock *Succ = Branch->getSuccessor(0);
5063 
5064   for (PHINode &PHI : Succ->phis()) {
5065     int Idx = PHI.getBasicBlockIndex(BB);
5066     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5067 
5068     Value *InValue = PHI.getIncomingValue(Idx);
5069     if (InValue != CaseValue)
5070       continue;
5071 
5072     *PhiIndex = Idx;
5073     return &PHI;
5074   }
5075 
5076   return nullptr;
5077 }
5078 
5079 /// Try to forward the condition of a switch instruction to a phi node
5080 /// dominated by the switch, if that would mean that some of the destination
5081 /// blocks of the switch can be folded away. Return true if a change is made.
5082 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5083   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5084 
5085   ForwardingNodesMap ForwardingNodes;
5086   BasicBlock *SwitchBlock = SI->getParent();
5087   bool Changed = false;
5088   for (auto &Case : SI->cases()) {
5089     ConstantInt *CaseValue = Case.getCaseValue();
5090     BasicBlock *CaseDest = Case.getCaseSuccessor();
5091 
5092     // Replace phi operands in successor blocks that are using the constant case
5093     // value rather than the switch condition variable:
5094     //   switchbb:
5095     //   switch i32 %x, label %default [
5096     //     i32 17, label %succ
5097     //   ...
5098     //   succ:
5099     //     %r = phi i32 ... [ 17, %switchbb ] ...
5100     // -->
5101     //     %r = phi i32 ... [ %x, %switchbb ] ...
5102 
5103     for (PHINode &Phi : CaseDest->phis()) {
5104       // This only works if there is exactly 1 incoming edge from the switch to
5105       // a phi. If there is >1, that means multiple cases of the switch map to 1
5106       // value in the phi, and that phi value is not the switch condition. Thus,
5107       // this transform would not make sense (the phi would be invalid because
5108       // a phi can't have different incoming values from the same block).
5109       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5110       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5111           count(Phi.blocks(), SwitchBlock) == 1) {
5112         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5113         Changed = true;
5114       }
5115     }
5116 
5117     // Collect phi nodes that are indirectly using this switch's case constants.
5118     int PhiIdx;
5119     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5120       ForwardingNodes[Phi].push_back(PhiIdx);
5121   }
5122 
5123   for (auto &ForwardingNode : ForwardingNodes) {
5124     PHINode *Phi = ForwardingNode.first;
5125     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5126     if (Indexes.size() < 2)
5127       continue;
5128 
5129     for (int Index : Indexes)
5130       Phi->setIncomingValue(Index, SI->getCondition());
5131     Changed = true;
5132   }
5133 
5134   return Changed;
5135 }
5136 
5137 /// Return true if the backend will be able to handle
5138 /// initializing an array of constants like C.
5139 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5140   if (C->isThreadDependent())
5141     return false;
5142   if (C->isDLLImportDependent())
5143     return false;
5144 
5145   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5146       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5147       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5148     return false;
5149 
5150   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5151     if (!CE->isGEPWithNoNotionalOverIndexing())
5152       return false;
5153     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5154       return false;
5155   }
5156 
5157   if (!TTI.shouldBuildLookupTablesForConstant(C))
5158     return false;
5159 
5160   return true;
5161 }
5162 
5163 /// If V is a Constant, return it. Otherwise, try to look up
5164 /// its constant value in ConstantPool, returning 0 if it's not there.
5165 static Constant *
5166 LookupConstant(Value *V,
5167                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5168   if (Constant *C = dyn_cast<Constant>(V))
5169     return C;
5170   return ConstantPool.lookup(V);
5171 }
5172 
5173 /// Try to fold instruction I into a constant. This works for
5174 /// simple instructions such as binary operations where both operands are
5175 /// constant or can be replaced by constants from the ConstantPool. Returns the
5176 /// resulting constant on success, 0 otherwise.
5177 static Constant *
5178 ConstantFold(Instruction *I, const DataLayout &DL,
5179              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5180   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5181     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5182     if (!A)
5183       return nullptr;
5184     if (A->isAllOnesValue())
5185       return LookupConstant(Select->getTrueValue(), ConstantPool);
5186     if (A->isNullValue())
5187       return LookupConstant(Select->getFalseValue(), ConstantPool);
5188     return nullptr;
5189   }
5190 
5191   SmallVector<Constant *, 4> COps;
5192   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5193     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5194       COps.push_back(A);
5195     else
5196       return nullptr;
5197   }
5198 
5199   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5200     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5201                                            COps[1], DL);
5202   }
5203 
5204   return ConstantFoldInstOperands(I, COps, DL);
5205 }
5206 
5207 /// Try to determine the resulting constant values in phi nodes
5208 /// at the common destination basic block, *CommonDest, for one of the case
5209 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5210 /// case), of a switch instruction SI.
5211 static bool
5212 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5213                BasicBlock **CommonDest,
5214                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5215                const DataLayout &DL, const TargetTransformInfo &TTI) {
5216   // The block from which we enter the common destination.
5217   BasicBlock *Pred = SI->getParent();
5218 
5219   // If CaseDest is empty except for some side-effect free instructions through
5220   // which we can constant-propagate the CaseVal, continue to its successor.
5221   SmallDenseMap<Value *, Constant *> ConstantPool;
5222   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5223   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5224     if (I.isTerminator()) {
5225       // If the terminator is a simple branch, continue to the next block.
5226       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5227         return false;
5228       Pred = CaseDest;
5229       CaseDest = I.getSuccessor(0);
5230     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5231       // Instruction is side-effect free and constant.
5232 
5233       // If the instruction has uses outside this block or a phi node slot for
5234       // the block, it is not safe to bypass the instruction since it would then
5235       // no longer dominate all its uses.
5236       for (auto &Use : I.uses()) {
5237         User *User = Use.getUser();
5238         if (Instruction *I = dyn_cast<Instruction>(User))
5239           if (I->getParent() == CaseDest)
5240             continue;
5241         if (PHINode *Phi = dyn_cast<PHINode>(User))
5242           if (Phi->getIncomingBlock(Use) == CaseDest)
5243             continue;
5244         return false;
5245       }
5246 
5247       ConstantPool.insert(std::make_pair(&I, C));
5248     } else {
5249       break;
5250     }
5251   }
5252 
5253   // If we did not have a CommonDest before, use the current one.
5254   if (!*CommonDest)
5255     *CommonDest = CaseDest;
5256   // If the destination isn't the common one, abort.
5257   if (CaseDest != *CommonDest)
5258     return false;
5259 
5260   // Get the values for this case from phi nodes in the destination block.
5261   for (PHINode &PHI : (*CommonDest)->phis()) {
5262     int Idx = PHI.getBasicBlockIndex(Pred);
5263     if (Idx == -1)
5264       continue;
5265 
5266     Constant *ConstVal =
5267         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5268     if (!ConstVal)
5269       return false;
5270 
5271     // Be conservative about which kinds of constants we support.
5272     if (!ValidLookupTableConstant(ConstVal, TTI))
5273       return false;
5274 
5275     Res.push_back(std::make_pair(&PHI, ConstVal));
5276   }
5277 
5278   return Res.size() > 0;
5279 }
5280 
5281 // Helper function used to add CaseVal to the list of cases that generate
5282 // Result. Returns the updated number of cases that generate this result.
5283 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5284                                  SwitchCaseResultVectorTy &UniqueResults,
5285                                  Constant *Result) {
5286   for (auto &I : UniqueResults) {
5287     if (I.first == Result) {
5288       I.second.push_back(CaseVal);
5289       return I.second.size();
5290     }
5291   }
5292   UniqueResults.push_back(
5293       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5294   return 1;
5295 }
5296 
5297 // Helper function that initializes a map containing
5298 // results for the PHI node of the common destination block for a switch
5299 // instruction. Returns false if multiple PHI nodes have been found or if
5300 // there is not a common destination block for the switch.
5301 static bool
5302 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5303                       SwitchCaseResultVectorTy &UniqueResults,
5304                       Constant *&DefaultResult, const DataLayout &DL,
5305                       const TargetTransformInfo &TTI,
5306                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5307   for (auto &I : SI->cases()) {
5308     ConstantInt *CaseVal = I.getCaseValue();
5309 
5310     // Resulting value at phi nodes for this case value.
5311     SwitchCaseResultsTy Results;
5312     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5313                         DL, TTI))
5314       return false;
5315 
5316     // Only one value per case is permitted.
5317     if (Results.size() > 1)
5318       return false;
5319 
5320     // Add the case->result mapping to UniqueResults.
5321     const uintptr_t NumCasesForResult =
5322         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5323 
5324     // Early out if there are too many cases for this result.
5325     if (NumCasesForResult > MaxCasesPerResult)
5326       return false;
5327 
5328     // Early out if there are too many unique results.
5329     if (UniqueResults.size() > MaxUniqueResults)
5330       return false;
5331 
5332     // Check the PHI consistency.
5333     if (!PHI)
5334       PHI = Results[0].first;
5335     else if (PHI != Results[0].first)
5336       return false;
5337   }
5338   // Find the default result value.
5339   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5340   BasicBlock *DefaultDest = SI->getDefaultDest();
5341   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5342                  DL, TTI);
5343   // If the default value is not found abort unless the default destination
5344   // is unreachable.
5345   DefaultResult =
5346       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5347   if ((!DefaultResult &&
5348        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5349     return false;
5350 
5351   return true;
5352 }
5353 
5354 // Helper function that checks if it is possible to transform a switch with only
5355 // two cases (or two cases + default) that produces a result into a select.
5356 // Example:
5357 // switch (a) {
5358 //   case 10:                %0 = icmp eq i32 %a, 10
5359 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5360 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5361 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5362 //   default:
5363 //     return 4;
5364 // }
5365 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5366                                    Constant *DefaultResult, Value *Condition,
5367                                    IRBuilder<> &Builder) {
5368   assert(ResultVector.size() == 2 &&
5369          "We should have exactly two unique results at this point");
5370   // If we are selecting between only two cases transform into a simple
5371   // select or a two-way select if default is possible.
5372   if (ResultVector[0].second.size() == 1 &&
5373       ResultVector[1].second.size() == 1) {
5374     ConstantInt *const FirstCase = ResultVector[0].second[0];
5375     ConstantInt *const SecondCase = ResultVector[1].second[0];
5376 
5377     bool DefaultCanTrigger = DefaultResult;
5378     Value *SelectValue = ResultVector[1].first;
5379     if (DefaultCanTrigger) {
5380       Value *const ValueCompare =
5381           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5382       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5383                                          DefaultResult, "switch.select");
5384     }
5385     Value *const ValueCompare =
5386         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5387     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5388                                 SelectValue, "switch.select");
5389   }
5390 
5391   return nullptr;
5392 }
5393 
5394 // Helper function to cleanup a switch instruction that has been converted into
5395 // a select, fixing up PHI nodes and basic blocks.
5396 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5397                                               Value *SelectValue,
5398                                               IRBuilder<> &Builder,
5399                                               DomTreeUpdater *DTU) {
5400   BasicBlock *SelectBB = SI->getParent();
5401   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5402     PHI->removeIncomingValue(SelectBB);
5403   PHI->addIncoming(SelectValue, SelectBB);
5404 
5405   Builder.CreateBr(PHI->getParent());
5406 
5407   std::vector<DominatorTree::UpdateType> Updates;
5408 
5409   // Remove the switch.
5410   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5411     BasicBlock *Succ = SI->getSuccessor(i);
5412 
5413     if (Succ == PHI->getParent())
5414       continue;
5415     Succ->removePredecessor(SelectBB);
5416     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5417   }
5418   SI->eraseFromParent();
5419   if (DTU)
5420     DTU->applyUpdates(Updates);
5421 }
5422 
5423 /// If the switch is only used to initialize one or more
5424 /// phi nodes in a common successor block with only two different
5425 /// constant values, replace the switch with select.
5426 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5427                            DomTreeUpdater *DTU, const DataLayout &DL,
5428                            const TargetTransformInfo &TTI) {
5429   Value *const Cond = SI->getCondition();
5430   PHINode *PHI = nullptr;
5431   BasicBlock *CommonDest = nullptr;
5432   Constant *DefaultResult;
5433   SwitchCaseResultVectorTy UniqueResults;
5434   // Collect all the cases that will deliver the same value from the switch.
5435   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5436                              DL, TTI, 2, 1))
5437     return false;
5438   // Selects choose between maximum two values.
5439   if (UniqueResults.size() != 2)
5440     return false;
5441   assert(PHI != nullptr && "PHI for value select not found");
5442 
5443   Builder.SetInsertPoint(SI);
5444   Value *SelectValue =
5445       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5446   if (SelectValue) {
5447     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5448     return true;
5449   }
5450   // The switch couldn't be converted into a select.
5451   return false;
5452 }
5453 
5454 namespace {
5455 
5456 /// This class represents a lookup table that can be used to replace a switch.
5457 class SwitchLookupTable {
5458 public:
5459   /// Create a lookup table to use as a switch replacement with the contents
5460   /// of Values, using DefaultValue to fill any holes in the table.
5461   SwitchLookupTable(
5462       Module &M, uint64_t TableSize, ConstantInt *Offset,
5463       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5464       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5465 
5466   /// Build instructions with Builder to retrieve the value at
5467   /// the position given by Index in the lookup table.
5468   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5469 
5470   /// Return true if a table with TableSize elements of
5471   /// type ElementType would fit in a target-legal register.
5472   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5473                                  Type *ElementType);
5474 
5475 private:
5476   // Depending on the contents of the table, it can be represented in
5477   // different ways.
5478   enum {
5479     // For tables where each element contains the same value, we just have to
5480     // store that single value and return it for each lookup.
5481     SingleValueKind,
5482 
5483     // For tables where there is a linear relationship between table index
5484     // and values. We calculate the result with a simple multiplication
5485     // and addition instead of a table lookup.
5486     LinearMapKind,
5487 
5488     // For small tables with integer elements, we can pack them into a bitmap
5489     // that fits into a target-legal register. Values are retrieved by
5490     // shift and mask operations.
5491     BitMapKind,
5492 
5493     // The table is stored as an array of values. Values are retrieved by load
5494     // instructions from the table.
5495     ArrayKind
5496   } Kind;
5497 
5498   // For SingleValueKind, this is the single value.
5499   Constant *SingleValue = nullptr;
5500 
5501   // For BitMapKind, this is the bitmap.
5502   ConstantInt *BitMap = nullptr;
5503   IntegerType *BitMapElementTy = nullptr;
5504 
5505   // For LinearMapKind, these are the constants used to derive the value.
5506   ConstantInt *LinearOffset = nullptr;
5507   ConstantInt *LinearMultiplier = nullptr;
5508 
5509   // For ArrayKind, this is the array.
5510   GlobalVariable *Array = nullptr;
5511 };
5512 
5513 } // end anonymous namespace
5514 
5515 SwitchLookupTable::SwitchLookupTable(
5516     Module &M, uint64_t TableSize, ConstantInt *Offset,
5517     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5518     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5519   assert(Values.size() && "Can't build lookup table without values!");
5520   assert(TableSize >= Values.size() && "Can't fit values in table!");
5521 
5522   // If all values in the table are equal, this is that value.
5523   SingleValue = Values.begin()->second;
5524 
5525   Type *ValueType = Values.begin()->second->getType();
5526 
5527   // Build up the table contents.
5528   SmallVector<Constant *, 64> TableContents(TableSize);
5529   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5530     ConstantInt *CaseVal = Values[I].first;
5531     Constant *CaseRes = Values[I].second;
5532     assert(CaseRes->getType() == ValueType);
5533 
5534     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5535     TableContents[Idx] = CaseRes;
5536 
5537     if (CaseRes != SingleValue)
5538       SingleValue = nullptr;
5539   }
5540 
5541   // Fill in any holes in the table with the default result.
5542   if (Values.size() < TableSize) {
5543     assert(DefaultValue &&
5544            "Need a default value to fill the lookup table holes.");
5545     assert(DefaultValue->getType() == ValueType);
5546     for (uint64_t I = 0; I < TableSize; ++I) {
5547       if (!TableContents[I])
5548         TableContents[I] = DefaultValue;
5549     }
5550 
5551     if (DefaultValue != SingleValue)
5552       SingleValue = nullptr;
5553   }
5554 
5555   // If each element in the table contains the same value, we only need to store
5556   // that single value.
5557   if (SingleValue) {
5558     Kind = SingleValueKind;
5559     return;
5560   }
5561 
5562   // Check if we can derive the value with a linear transformation from the
5563   // table index.
5564   if (isa<IntegerType>(ValueType)) {
5565     bool LinearMappingPossible = true;
5566     APInt PrevVal;
5567     APInt DistToPrev;
5568     assert(TableSize >= 2 && "Should be a SingleValue table.");
5569     // Check if there is the same distance between two consecutive values.
5570     for (uint64_t I = 0; I < TableSize; ++I) {
5571       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5572       if (!ConstVal) {
5573         // This is an undef. We could deal with it, but undefs in lookup tables
5574         // are very seldom. It's probably not worth the additional complexity.
5575         LinearMappingPossible = false;
5576         break;
5577       }
5578       const APInt &Val = ConstVal->getValue();
5579       if (I != 0) {
5580         APInt Dist = Val - PrevVal;
5581         if (I == 1) {
5582           DistToPrev = Dist;
5583         } else if (Dist != DistToPrev) {
5584           LinearMappingPossible = false;
5585           break;
5586         }
5587       }
5588       PrevVal = Val;
5589     }
5590     if (LinearMappingPossible) {
5591       LinearOffset = cast<ConstantInt>(TableContents[0]);
5592       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5593       Kind = LinearMapKind;
5594       ++NumLinearMaps;
5595       return;
5596     }
5597   }
5598 
5599   // If the type is integer and the table fits in a register, build a bitmap.
5600   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5601     IntegerType *IT = cast<IntegerType>(ValueType);
5602     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5603     for (uint64_t I = TableSize; I > 0; --I) {
5604       TableInt <<= IT->getBitWidth();
5605       // Insert values into the bitmap. Undef values are set to zero.
5606       if (!isa<UndefValue>(TableContents[I - 1])) {
5607         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5608         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5609       }
5610     }
5611     BitMap = ConstantInt::get(M.getContext(), TableInt);
5612     BitMapElementTy = IT;
5613     Kind = BitMapKind;
5614     ++NumBitMaps;
5615     return;
5616   }
5617 
5618   // Store the table in an array.
5619   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5620   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5621 
5622   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5623                              GlobalVariable::PrivateLinkage, Initializer,
5624                              "switch.table." + FuncName);
5625   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5626   // Set the alignment to that of an array items. We will be only loading one
5627   // value out of it.
5628   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5629   Kind = ArrayKind;
5630 }
5631 
5632 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5633   switch (Kind) {
5634   case SingleValueKind:
5635     return SingleValue;
5636   case LinearMapKind: {
5637     // Derive the result value from the input value.
5638     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5639                                           false, "switch.idx.cast");
5640     if (!LinearMultiplier->isOne())
5641       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5642     if (!LinearOffset->isZero())
5643       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5644     return Result;
5645   }
5646   case BitMapKind: {
5647     // Type of the bitmap (e.g. i59).
5648     IntegerType *MapTy = BitMap->getType();
5649 
5650     // Cast Index to the same type as the bitmap.
5651     // Note: The Index is <= the number of elements in the table, so
5652     // truncating it to the width of the bitmask is safe.
5653     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5654 
5655     // Multiply the shift amount by the element width.
5656     ShiftAmt = Builder.CreateMul(
5657         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5658         "switch.shiftamt");
5659 
5660     // Shift down.
5661     Value *DownShifted =
5662         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5663     // Mask off.
5664     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5665   }
5666   case ArrayKind: {
5667     // Make sure the table index will not overflow when treated as signed.
5668     IntegerType *IT = cast<IntegerType>(Index->getType());
5669     uint64_t TableSize =
5670         Array->getInitializer()->getType()->getArrayNumElements();
5671     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5672       Index = Builder.CreateZExt(
5673           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5674           "switch.tableidx.zext");
5675 
5676     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5677     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5678                                            GEPIndices, "switch.gep");
5679     return Builder.CreateLoad(
5680         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5681         "switch.load");
5682   }
5683   }
5684   llvm_unreachable("Unknown lookup table kind!");
5685 }
5686 
5687 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5688                                            uint64_t TableSize,
5689                                            Type *ElementType) {
5690   auto *IT = dyn_cast<IntegerType>(ElementType);
5691   if (!IT)
5692     return false;
5693   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5694   // are <= 15, we could try to narrow the type.
5695 
5696   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5697   if (TableSize >= UINT_MAX / IT->getBitWidth())
5698     return false;
5699   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5700 }
5701 
5702 /// Determine whether a lookup table should be built for this switch, based on
5703 /// the number of cases, size of the table, and the types of the results.
5704 static bool
5705 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5706                        const TargetTransformInfo &TTI, const DataLayout &DL,
5707                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5708   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5709     return false; // TableSize overflowed, or mul below might overflow.
5710 
5711   bool AllTablesFitInRegister = true;
5712   bool HasIllegalType = false;
5713   for (const auto &I : ResultTypes) {
5714     Type *Ty = I.second;
5715 
5716     // Saturate this flag to true.
5717     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5718 
5719     // Saturate this flag to false.
5720     AllTablesFitInRegister =
5721         AllTablesFitInRegister &&
5722         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5723 
5724     // If both flags saturate, we're done. NOTE: This *only* works with
5725     // saturating flags, and all flags have to saturate first due to the
5726     // non-deterministic behavior of iterating over a dense map.
5727     if (HasIllegalType && !AllTablesFitInRegister)
5728       break;
5729   }
5730 
5731   // If each table would fit in a register, we should build it anyway.
5732   if (AllTablesFitInRegister)
5733     return true;
5734 
5735   // Don't build a table that doesn't fit in-register if it has illegal types.
5736   if (HasIllegalType)
5737     return false;
5738 
5739   // The table density should be at least 40%. This is the same criterion as for
5740   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5741   // FIXME: Find the best cut-off.
5742   return SI->getNumCases() * 10 >= TableSize * 4;
5743 }
5744 
5745 /// Try to reuse the switch table index compare. Following pattern:
5746 /// \code
5747 ///     if (idx < tablesize)
5748 ///        r = table[idx]; // table does not contain default_value
5749 ///     else
5750 ///        r = default_value;
5751 ///     if (r != default_value)
5752 ///        ...
5753 /// \endcode
5754 /// Is optimized to:
5755 /// \code
5756 ///     cond = idx < tablesize;
5757 ///     if (cond)
5758 ///        r = table[idx];
5759 ///     else
5760 ///        r = default_value;
5761 ///     if (cond)
5762 ///        ...
5763 /// \endcode
5764 /// Jump threading will then eliminate the second if(cond).
5765 static void reuseTableCompare(
5766     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5767     Constant *DefaultValue,
5768     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5769   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5770   if (!CmpInst)
5771     return;
5772 
5773   // We require that the compare is in the same block as the phi so that jump
5774   // threading can do its work afterwards.
5775   if (CmpInst->getParent() != PhiBlock)
5776     return;
5777 
5778   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5779   if (!CmpOp1)
5780     return;
5781 
5782   Value *RangeCmp = RangeCheckBranch->getCondition();
5783   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5784   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5785 
5786   // Check if the compare with the default value is constant true or false.
5787   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5788                                                  DefaultValue, CmpOp1, true);
5789   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5790     return;
5791 
5792   // Check if the compare with the case values is distinct from the default
5793   // compare result.
5794   for (auto ValuePair : Values) {
5795     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5796                                                 ValuePair.second, CmpOp1, true);
5797     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5798       return;
5799     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5800            "Expect true or false as compare result.");
5801   }
5802 
5803   // Check if the branch instruction dominates the phi node. It's a simple
5804   // dominance check, but sufficient for our needs.
5805   // Although this check is invariant in the calling loops, it's better to do it
5806   // at this late stage. Practically we do it at most once for a switch.
5807   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5808   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5809     BasicBlock *Pred = *PI;
5810     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5811       return;
5812   }
5813 
5814   if (DefaultConst == FalseConst) {
5815     // The compare yields the same result. We can replace it.
5816     CmpInst->replaceAllUsesWith(RangeCmp);
5817     ++NumTableCmpReuses;
5818   } else {
5819     // The compare yields the same result, just inverted. We can replace it.
5820     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5821         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5822         RangeCheckBranch);
5823     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5824     ++NumTableCmpReuses;
5825   }
5826 }
5827 
5828 /// If the switch is only used to initialize one or more phi nodes in a common
5829 /// successor block with different constant values, replace the switch with
5830 /// lookup tables.
5831 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5832                                 DomTreeUpdater *DTU, const DataLayout &DL,
5833                                 const TargetTransformInfo &TTI) {
5834   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5835 
5836   BasicBlock *BB = SI->getParent();
5837   Function *Fn = BB->getParent();
5838   // Only build lookup table when we have a target that supports it or the
5839   // attribute is not set.
5840   if (!TTI.shouldBuildLookupTables() ||
5841       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5842     return false;
5843 
5844   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5845   // split off a dense part and build a lookup table for that.
5846 
5847   // FIXME: This creates arrays of GEPs to constant strings, which means each
5848   // GEP needs a runtime relocation in PIC code. We should just build one big
5849   // string and lookup indices into that.
5850 
5851   // Ignore switches with less than three cases. Lookup tables will not make
5852   // them faster, so we don't analyze them.
5853   if (SI->getNumCases() < 3)
5854     return false;
5855 
5856   // Figure out the corresponding result for each case value and phi node in the
5857   // common destination, as well as the min and max case values.
5858   assert(!SI->cases().empty());
5859   SwitchInst::CaseIt CI = SI->case_begin();
5860   ConstantInt *MinCaseVal = CI->getCaseValue();
5861   ConstantInt *MaxCaseVal = CI->getCaseValue();
5862 
5863   BasicBlock *CommonDest = nullptr;
5864 
5865   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5866   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5867 
5868   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5869   SmallDenseMap<PHINode *, Type *> ResultTypes;
5870   SmallVector<PHINode *, 4> PHIs;
5871 
5872   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5873     ConstantInt *CaseVal = CI->getCaseValue();
5874     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5875       MinCaseVal = CaseVal;
5876     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5877       MaxCaseVal = CaseVal;
5878 
5879     // Resulting value at phi nodes for this case value.
5880     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5881     ResultsTy Results;
5882     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5883                         Results, DL, TTI))
5884       return false;
5885 
5886     // Append the result from this case to the list for each phi.
5887     for (const auto &I : Results) {
5888       PHINode *PHI = I.first;
5889       Constant *Value = I.second;
5890       if (!ResultLists.count(PHI))
5891         PHIs.push_back(PHI);
5892       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5893     }
5894   }
5895 
5896   // Keep track of the result types.
5897   for (PHINode *PHI : PHIs) {
5898     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5899   }
5900 
5901   uint64_t NumResults = ResultLists[PHIs[0]].size();
5902   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5903   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5904   bool TableHasHoles = (NumResults < TableSize);
5905 
5906   // If the table has holes, we need a constant result for the default case
5907   // or a bitmask that fits in a register.
5908   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5909   bool HasDefaultResults =
5910       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5911                      DefaultResultsList, DL, TTI);
5912 
5913   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5914   if (NeedMask) {
5915     // As an extra penalty for the validity test we require more cases.
5916     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5917       return false;
5918     if (!DL.fitsInLegalInteger(TableSize))
5919       return false;
5920   }
5921 
5922   for (const auto &I : DefaultResultsList) {
5923     PHINode *PHI = I.first;
5924     Constant *Result = I.second;
5925     DefaultResults[PHI] = Result;
5926   }
5927 
5928   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5929     return false;
5930 
5931   std::vector<DominatorTree::UpdateType> Updates;
5932 
5933   // Create the BB that does the lookups.
5934   Module &Mod = *CommonDest->getParent()->getParent();
5935   BasicBlock *LookupBB = BasicBlock::Create(
5936       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5937 
5938   // Compute the table index value.
5939   Builder.SetInsertPoint(SI);
5940   Value *TableIndex;
5941   if (MinCaseVal->isNullValue())
5942     TableIndex = SI->getCondition();
5943   else
5944     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5945                                    "switch.tableidx");
5946 
5947   // Compute the maximum table size representable by the integer type we are
5948   // switching upon.
5949   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5950   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5951   assert(MaxTableSize >= TableSize &&
5952          "It is impossible for a switch to have more entries than the max "
5953          "representable value of its input integer type's size.");
5954 
5955   // If the default destination is unreachable, or if the lookup table covers
5956   // all values of the conditional variable, branch directly to the lookup table
5957   // BB. Otherwise, check that the condition is within the case range.
5958   const bool DefaultIsReachable =
5959       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5960   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5961   BranchInst *RangeCheckBranch = nullptr;
5962 
5963   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5964     Builder.CreateBr(LookupBB);
5965     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5966     // Note: We call removeProdecessor later since we need to be able to get the
5967     // PHI value for the default case in case we're using a bit mask.
5968   } else {
5969     Value *Cmp = Builder.CreateICmpULT(
5970         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5971     RangeCheckBranch =
5972         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5973     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5974     Updates.push_back({DominatorTree::Insert, BB, SI->getDefaultDest()});
5975   }
5976 
5977   // Populate the BB that does the lookups.
5978   Builder.SetInsertPoint(LookupBB);
5979 
5980   if (NeedMask) {
5981     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5982     // re-purposed to do the hole check, and we create a new LookupBB.
5983     BasicBlock *MaskBB = LookupBB;
5984     MaskBB->setName("switch.hole_check");
5985     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5986                                   CommonDest->getParent(), CommonDest);
5987 
5988     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5989     // unnecessary illegal types.
5990     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5991     APInt MaskInt(TableSizePowOf2, 0);
5992     APInt One(TableSizePowOf2, 1);
5993     // Build bitmask; fill in a 1 bit for every case.
5994     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5995     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5996       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5997                          .getLimitedValue();
5998       MaskInt |= One << Idx;
5999     }
6000     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6001 
6002     // Get the TableIndex'th bit of the bitmask.
6003     // If this bit is 0 (meaning hole) jump to the default destination,
6004     // else continue with table lookup.
6005     IntegerType *MapTy = TableMask->getType();
6006     Value *MaskIndex =
6007         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6008     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6009     Value *LoBit = Builder.CreateTrunc(
6010         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6011     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6012     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6013     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6014     Builder.SetInsertPoint(LookupBB);
6015     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6016   }
6017 
6018   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6019     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6020     // do not delete PHINodes here.
6021     SI->getDefaultDest()->removePredecessor(BB,
6022                                             /*KeepOneInputPHIs=*/true);
6023     Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6024   }
6025 
6026   bool ReturnedEarly = false;
6027   for (PHINode *PHI : PHIs) {
6028     const ResultListTy &ResultList = ResultLists[PHI];
6029 
6030     // If using a bitmask, use any value to fill the lookup table holes.
6031     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6032     StringRef FuncName = Fn->getName();
6033     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6034                             FuncName);
6035 
6036     Value *Result = Table.BuildLookup(TableIndex, Builder);
6037 
6038     // If the result is used to return immediately from the function, we want to
6039     // do that right here.
6040     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6041         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6042       Builder.CreateRet(Result);
6043       ReturnedEarly = true;
6044       break;
6045     }
6046 
6047     // Do a small peephole optimization: re-use the switch table compare if
6048     // possible.
6049     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6050       BasicBlock *PhiBlock = PHI->getParent();
6051       // Search for compare instructions which use the phi.
6052       for (auto *User : PHI->users()) {
6053         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6054       }
6055     }
6056 
6057     PHI->addIncoming(Result, LookupBB);
6058   }
6059 
6060   if (!ReturnedEarly) {
6061     Builder.CreateBr(CommonDest);
6062     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6063   }
6064 
6065   // Remove the switch.
6066   SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
6067   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6068     BasicBlock *Succ = SI->getSuccessor(i);
6069 
6070     if (Succ == SI->getDefaultDest())
6071       continue;
6072     Succ->removePredecessor(BB);
6073     RemovedSuccessors.insert(Succ);
6074   }
6075   SI->eraseFromParent();
6076 
6077   if (DTU) {
6078     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6079       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6080     DTU->applyUpdates(Updates);
6081   }
6082 
6083   ++NumLookupTables;
6084   if (NeedMask)
6085     ++NumLookupTablesHoles;
6086   return true;
6087 }
6088 
6089 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6090   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6091   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6092   uint64_t Range = Diff + 1;
6093   uint64_t NumCases = Values.size();
6094   // 40% is the default density for building a jump table in optsize/minsize mode.
6095   uint64_t MinDensity = 40;
6096 
6097   return NumCases * 100 >= Range * MinDensity;
6098 }
6099 
6100 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6101 /// of cases.
6102 ///
6103 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6104 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6105 ///
6106 /// This converts a sparse switch into a dense switch which allows better
6107 /// lowering and could also allow transforming into a lookup table.
6108 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6109                               const DataLayout &DL,
6110                               const TargetTransformInfo &TTI) {
6111   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6112   if (CondTy->getIntegerBitWidth() > 64 ||
6113       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6114     return false;
6115   // Only bother with this optimization if there are more than 3 switch cases;
6116   // SDAG will only bother creating jump tables for 4 or more cases.
6117   if (SI->getNumCases() < 4)
6118     return false;
6119 
6120   // This transform is agnostic to the signedness of the input or case values. We
6121   // can treat the case values as signed or unsigned. We can optimize more common
6122   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6123   // as signed.
6124   SmallVector<int64_t,4> Values;
6125   for (auto &C : SI->cases())
6126     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6127   llvm::sort(Values);
6128 
6129   // If the switch is already dense, there's nothing useful to do here.
6130   if (isSwitchDense(Values))
6131     return false;
6132 
6133   // First, transform the values such that they start at zero and ascend.
6134   int64_t Base = Values[0];
6135   for (auto &V : Values)
6136     V -= (uint64_t)(Base);
6137 
6138   // Now we have signed numbers that have been shifted so that, given enough
6139   // precision, there are no negative values. Since the rest of the transform
6140   // is bitwise only, we switch now to an unsigned representation.
6141 
6142   // This transform can be done speculatively because it is so cheap - it
6143   // results in a single rotate operation being inserted.
6144   // FIXME: It's possible that optimizing a switch on powers of two might also
6145   // be beneficial - flag values are often powers of two and we could use a CLZ
6146   // as the key function.
6147 
6148   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6149   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6150   // less than 64.
6151   unsigned Shift = 64;
6152   for (auto &V : Values)
6153     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6154   assert(Shift < 64);
6155   if (Shift > 0)
6156     for (auto &V : Values)
6157       V = (int64_t)((uint64_t)V >> Shift);
6158 
6159   if (!isSwitchDense(Values))
6160     // Transform didn't create a dense switch.
6161     return false;
6162 
6163   // The obvious transform is to shift the switch condition right and emit a
6164   // check that the condition actually cleanly divided by GCD, i.e.
6165   //   C & (1 << Shift - 1) == 0
6166   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6167   //
6168   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6169   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6170   // are nonzero then the switch condition will be very large and will hit the
6171   // default case.
6172 
6173   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6174   Builder.SetInsertPoint(SI);
6175   auto *ShiftC = ConstantInt::get(Ty, Shift);
6176   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6177   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6178   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6179   auto *Rot = Builder.CreateOr(LShr, Shl);
6180   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6181 
6182   for (auto Case : SI->cases()) {
6183     auto *Orig = Case.getCaseValue();
6184     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6185     Case.setValue(
6186         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6187   }
6188   return true;
6189 }
6190 
6191 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6192   BasicBlock *BB = SI->getParent();
6193 
6194   if (isValueEqualityComparison(SI)) {
6195     // If we only have one predecessor, and if it is a branch on this value,
6196     // see if that predecessor totally determines the outcome of this switch.
6197     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6198       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6199         return requestResimplify();
6200 
6201     Value *Cond = SI->getCondition();
6202     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6203       if (SimplifySwitchOnSelect(SI, Select))
6204         return requestResimplify();
6205 
6206     // If the block only contains the switch, see if we can fold the block
6207     // away into any preds.
6208     if (SI == &*BB->instructionsWithoutDebug().begin())
6209       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6210         return requestResimplify();
6211   }
6212 
6213   // Try to transform the switch into an icmp and a branch.
6214   if (TurnSwitchRangeIntoICmp(SI, Builder))
6215     return requestResimplify();
6216 
6217   // Remove unreachable cases.
6218   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6219     return requestResimplify();
6220 
6221   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6222     return requestResimplify();
6223 
6224   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6225     return requestResimplify();
6226 
6227   // The conversion from switch to lookup tables results in difficult-to-analyze
6228   // code and makes pruning branches much harder. This is a problem if the
6229   // switch expression itself can still be restricted as a result of inlining or
6230   // CVP. Therefore, only apply this transformation during late stages of the
6231   // optimisation pipeline.
6232   if (Options.ConvertSwitchToLookupTable &&
6233       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6234     return requestResimplify();
6235 
6236   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6237     return requestResimplify();
6238 
6239   return false;
6240 }
6241 
6242 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6243   BasicBlock *BB = IBI->getParent();
6244   bool Changed = false;
6245 
6246   // Eliminate redundant destinations.
6247   SmallPtrSet<Value *, 8> Succs;
6248   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6249   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6250     BasicBlock *Dest = IBI->getDestination(i);
6251     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6252       if (!Dest->hasAddressTaken())
6253         RemovedSuccs.insert(Dest);
6254       Dest->removePredecessor(BB);
6255       IBI->removeDestination(i);
6256       --i;
6257       --e;
6258       Changed = true;
6259     }
6260   }
6261 
6262   if (DTU) {
6263     std::vector<DominatorTree::UpdateType> Updates;
6264     Updates.reserve(RemovedSuccs.size());
6265     for (auto *RemovedSucc : RemovedSuccs)
6266       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6267     DTU->applyUpdates(Updates);
6268   }
6269 
6270   if (IBI->getNumDestinations() == 0) {
6271     // If the indirectbr has no successors, change it to unreachable.
6272     new UnreachableInst(IBI->getContext(), IBI);
6273     EraseTerminatorAndDCECond(IBI);
6274     return true;
6275   }
6276 
6277   if (IBI->getNumDestinations() == 1) {
6278     // If the indirectbr has one successor, change it to a direct branch.
6279     BranchInst::Create(IBI->getDestination(0), IBI);
6280     EraseTerminatorAndDCECond(IBI);
6281     return true;
6282   }
6283 
6284   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6285     if (SimplifyIndirectBrOnSelect(IBI, SI))
6286       return requestResimplify();
6287   }
6288   return Changed;
6289 }
6290 
6291 /// Given an block with only a single landing pad and a unconditional branch
6292 /// try to find another basic block which this one can be merged with.  This
6293 /// handles cases where we have multiple invokes with unique landing pads, but
6294 /// a shared handler.
6295 ///
6296 /// We specifically choose to not worry about merging non-empty blocks
6297 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6298 /// practice, the optimizer produces empty landing pad blocks quite frequently
6299 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6300 /// sinking in this file)
6301 ///
6302 /// This is primarily a code size optimization.  We need to avoid performing
6303 /// any transform which might inhibit optimization (such as our ability to
6304 /// specialize a particular handler via tail commoning).  We do this by not
6305 /// merging any blocks which require us to introduce a phi.  Since the same
6306 /// values are flowing through both blocks, we don't lose any ability to
6307 /// specialize.  If anything, we make such specialization more likely.
6308 ///
6309 /// TODO - This transformation could remove entries from a phi in the target
6310 /// block when the inputs in the phi are the same for the two blocks being
6311 /// merged.  In some cases, this could result in removal of the PHI entirely.
6312 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6313                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6314   auto Succ = BB->getUniqueSuccessor();
6315   assert(Succ);
6316   // If there's a phi in the successor block, we'd likely have to introduce
6317   // a phi into the merged landing pad block.
6318   if (isa<PHINode>(*Succ->begin()))
6319     return false;
6320 
6321   for (BasicBlock *OtherPred : predecessors(Succ)) {
6322     if (BB == OtherPred)
6323       continue;
6324     BasicBlock::iterator I = OtherPred->begin();
6325     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6326     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6327       continue;
6328     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6329       ;
6330     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6331     if (!BI2 || !BI2->isIdenticalTo(BI))
6332       continue;
6333 
6334     std::vector<DominatorTree::UpdateType> Updates;
6335 
6336     // We've found an identical block.  Update our predecessors to take that
6337     // path instead and make ourselves dead.
6338     SmallPtrSet<BasicBlock *, 16> Preds;
6339     Preds.insert(pred_begin(BB), pred_end(BB));
6340     for (BasicBlock *Pred : Preds) {
6341       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6342       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6343              "unexpected successor");
6344       II->setUnwindDest(OtherPred);
6345       Updates.push_back({DominatorTree::Delete, Pred, BB});
6346       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6347     }
6348 
6349     // The debug info in OtherPred doesn't cover the merged control flow that
6350     // used to go through BB.  We need to delete it or update it.
6351     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6352       Instruction &Inst = *I;
6353       I++;
6354       if (isa<DbgInfoIntrinsic>(Inst))
6355         Inst.eraseFromParent();
6356     }
6357 
6358     SmallPtrSet<BasicBlock *, 16> Succs;
6359     Succs.insert(succ_begin(BB), succ_end(BB));
6360     for (BasicBlock *Succ : Succs) {
6361       Succ->removePredecessor(BB);
6362       Updates.push_back({DominatorTree::Delete, BB, Succ});
6363     }
6364 
6365     IRBuilder<> Builder(BI);
6366     Builder.CreateUnreachable();
6367     BI->eraseFromParent();
6368     if (DTU)
6369       DTU->applyUpdates(Updates);
6370     return true;
6371   }
6372   return false;
6373 }
6374 
6375 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6376   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6377                                    : simplifyCondBranch(Branch, Builder);
6378 }
6379 
6380 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6381                                           IRBuilder<> &Builder) {
6382   BasicBlock *BB = BI->getParent();
6383   BasicBlock *Succ = BI->getSuccessor(0);
6384 
6385   // If the Terminator is the only non-phi instruction, simplify the block.
6386   // If LoopHeader is provided, check if the block or its successor is a loop
6387   // header. (This is for early invocations before loop simplify and
6388   // vectorization to keep canonical loop forms for nested loops. These blocks
6389   // can be eliminated when the pass is invoked later in the back-end.)
6390   // Note that if BB has only one predecessor then we do not introduce new
6391   // backedge, so we can eliminate BB.
6392   bool NeedCanonicalLoop =
6393       Options.NeedCanonicalLoop &&
6394       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
6395        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
6396   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6397   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6398       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6399     return true;
6400 
6401   // If the only instruction in the block is a seteq/setne comparison against a
6402   // constant, try to simplify the block.
6403   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6404     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6405       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6406         ;
6407       if (I->isTerminator() &&
6408           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6409         return true;
6410     }
6411 
6412   // See if we can merge an empty landing pad block with another which is
6413   // equivalent.
6414   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6415     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6416       ;
6417     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6418       return true;
6419   }
6420 
6421   // If this basic block is ONLY a compare and a branch, and if a predecessor
6422   // branches to us and our successor, fold the comparison into the
6423   // predecessor and use logical operations to update the incoming value
6424   // for PHI nodes in common successor.
6425   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6426                              Options.BonusInstThreshold))
6427     return requestResimplify();
6428   return false;
6429 }
6430 
6431 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6432   BasicBlock *PredPred = nullptr;
6433   for (auto *P : predecessors(BB)) {
6434     BasicBlock *PPred = P->getSinglePredecessor();
6435     if (!PPred || (PredPred && PredPred != PPred))
6436       return nullptr;
6437     PredPred = PPred;
6438   }
6439   return PredPred;
6440 }
6441 
6442 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6443   BasicBlock *BB = BI->getParent();
6444   if (!Options.SimplifyCondBranch)
6445     return false;
6446 
6447   // Conditional branch
6448   if (isValueEqualityComparison(BI)) {
6449     // If we only have one predecessor, and if it is a branch on this value,
6450     // see if that predecessor totally determines the outcome of this
6451     // switch.
6452     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6453       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6454         return requestResimplify();
6455 
6456     // This block must be empty, except for the setcond inst, if it exists.
6457     // Ignore dbg intrinsics.
6458     auto I = BB->instructionsWithoutDebug().begin();
6459     if (&*I == BI) {
6460       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6461         return requestResimplify();
6462     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6463       ++I;
6464       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6465         return requestResimplify();
6466     }
6467   }
6468 
6469   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6470   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6471     return true;
6472 
6473   // If this basic block has dominating predecessor blocks and the dominating
6474   // blocks' conditions imply BI's condition, we know the direction of BI.
6475   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6476   if (Imp) {
6477     // Turn this into a branch on constant.
6478     auto *OldCond = BI->getCondition();
6479     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6480                              : ConstantInt::getFalse(BB->getContext());
6481     BI->setCondition(TorF);
6482     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6483     return requestResimplify();
6484   }
6485 
6486   // If this basic block is ONLY a compare and a branch, and if a predecessor
6487   // branches to us and one of our successors, fold the comparison into the
6488   // predecessor and use logical operations to pick the right destination.
6489   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6490                              Options.BonusInstThreshold))
6491     return requestResimplify();
6492 
6493   // We have a conditional branch to two blocks that are only reachable
6494   // from BI.  We know that the condbr dominates the two blocks, so see if
6495   // there is any identical code in the "then" and "else" blocks.  If so, we
6496   // can hoist it up to the branching block.
6497   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6498     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6499       if (HoistCommon && Options.HoistCommonInsts)
6500         if (HoistThenElseCodeToIf(BI, TTI))
6501           return requestResimplify();
6502     } else {
6503       // If Successor #1 has multiple preds, we may be able to conditionally
6504       // execute Successor #0 if it branches to Successor #1.
6505       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6506       if (Succ0TI->getNumSuccessors() == 1 &&
6507           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6508         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6509           return requestResimplify();
6510     }
6511   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6512     // If Successor #0 has multiple preds, we may be able to conditionally
6513     // execute Successor #1 if it branches to Successor #0.
6514     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6515     if (Succ1TI->getNumSuccessors() == 1 &&
6516         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6517       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6518         return requestResimplify();
6519   }
6520 
6521   // If this is a branch on a phi node in the current block, thread control
6522   // through this block if any PHI node entries are constants.
6523   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6524     if (PN->getParent() == BI->getParent())
6525       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6526         return requestResimplify();
6527 
6528   // Scan predecessor blocks for conditional branches.
6529   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6530     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6531       if (PBI != BI && PBI->isConditional())
6532         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6533           return requestResimplify();
6534 
6535   // Look for diamond patterns.
6536   if (MergeCondStores)
6537     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6538       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6539         if (PBI != BI && PBI->isConditional())
6540           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6541             return requestResimplify();
6542 
6543   return false;
6544 }
6545 
6546 /// Check if passing a value to an instruction will cause undefined behavior.
6547 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6548   Constant *C = dyn_cast<Constant>(V);
6549   if (!C)
6550     return false;
6551 
6552   if (I->use_empty())
6553     return false;
6554 
6555   if (C->isNullValue() || isa<UndefValue>(C)) {
6556     // Only look at the first use, avoid hurting compile time with long uselists
6557     User *Use = *I->user_begin();
6558 
6559     // Now make sure that there are no instructions in between that can alter
6560     // control flow (eg. calls)
6561     for (BasicBlock::iterator
6562              i = ++BasicBlock::iterator(I),
6563              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6564          i != UI; ++i)
6565       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6566         return false;
6567 
6568     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6569     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6570       if (GEP->getPointerOperand() == I)
6571         return passingValueIsAlwaysUndefined(V, GEP);
6572 
6573     // Look through bitcasts.
6574     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6575       return passingValueIsAlwaysUndefined(V, BC);
6576 
6577     // Load from null is undefined.
6578     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6579       if (!LI->isVolatile())
6580         return !NullPointerIsDefined(LI->getFunction(),
6581                                      LI->getPointerAddressSpace());
6582 
6583     // Store to null is undefined.
6584     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6585       if (!SI->isVolatile())
6586         return (!NullPointerIsDefined(SI->getFunction(),
6587                                       SI->getPointerAddressSpace())) &&
6588                SI->getPointerOperand() == I;
6589 
6590     // A call to null is undefined.
6591     if (auto *CB = dyn_cast<CallBase>(Use))
6592       return !NullPointerIsDefined(CB->getFunction()) &&
6593              CB->getCalledOperand() == I;
6594   }
6595   return false;
6596 }
6597 
6598 /// If BB has an incoming value that will always trigger undefined behavior
6599 /// (eg. null pointer dereference), remove the branch leading here.
6600 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6601                                               DomTreeUpdater *DTU) {
6602   for (PHINode &PHI : BB->phis())
6603     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6604       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6605         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6606         Instruction *T = Predecessor->getTerminator();
6607         IRBuilder<> Builder(T);
6608         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6609           BB->removePredecessor(Predecessor);
6610           // Turn uncoditional branches into unreachables and remove the dead
6611           // destination from conditional branches.
6612           if (BI->isUnconditional())
6613             Builder.CreateUnreachable();
6614           else
6615             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6616                                                        : BI->getSuccessor(0));
6617           BI->eraseFromParent();
6618           if (DTU)
6619             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6620           return true;
6621         }
6622         // TODO: SwitchInst.
6623       }
6624 
6625   return false;
6626 }
6627 
6628 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6629   bool Changed = false;
6630 
6631   assert(BB && BB->getParent() && "Block not embedded in function!");
6632   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6633 
6634   // Remove basic blocks that have no predecessors (except the entry block)...
6635   // or that just have themself as a predecessor.  These are unreachable.
6636   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6637       BB->getSinglePredecessor() == BB) {
6638     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6639     DeleteDeadBlock(BB, DTU);
6640     return true;
6641   }
6642 
6643   // Check to see if we can constant propagate this terminator instruction
6644   // away...
6645   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6646                                     /*TLI=*/nullptr, DTU);
6647 
6648   // Check for and eliminate duplicate PHI nodes in this block.
6649   Changed |= EliminateDuplicatePHINodes(BB);
6650 
6651   // Check for and remove branches that will always cause undefined behavior.
6652   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6653 
6654   // Merge basic blocks into their predecessor if there is only one distinct
6655   // pred, and if there is only one distinct successor of the predecessor, and
6656   // if there are no PHI nodes.
6657   if (MergeBlockIntoPredecessor(BB, DTU))
6658     return true;
6659 
6660   if (SinkCommon && Options.SinkCommonInsts)
6661     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6662 
6663   IRBuilder<> Builder(BB);
6664 
6665   if (Options.FoldTwoEntryPHINode) {
6666     // If there is a trivial two-entry PHI node in this basic block, and we can
6667     // eliminate it, do so now.
6668     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6669       if (PN->getNumIncomingValues() == 2)
6670         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6671   }
6672 
6673   Instruction *Terminator = BB->getTerminator();
6674   Builder.SetInsertPoint(Terminator);
6675   switch (Terminator->getOpcode()) {
6676   case Instruction::Br:
6677     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6678     break;
6679   case Instruction::Ret:
6680     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6681     break;
6682   case Instruction::Resume:
6683     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6684     break;
6685   case Instruction::CleanupRet:
6686     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6687     break;
6688   case Instruction::Switch:
6689     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6690     break;
6691   case Instruction::Unreachable:
6692     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6693     break;
6694   case Instruction::IndirectBr:
6695     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6696     break;
6697   }
6698 
6699   return Changed;
6700 }
6701 
6702 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6703   bool Changed = simplifyOnceImpl(BB);
6704 
6705   assert((!RequireAndPreserveDomTree ||
6706           (DTU &&
6707            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6708          "Failed to maintain validity of domtree!");
6709 
6710   return Changed;
6711 }
6712 
6713 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6714   assert((!RequireAndPreserveDomTree ||
6715           (DTU &&
6716            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6717          "Original domtree is invalid?");
6718 
6719   bool Changed = false;
6720 
6721   // Repeated simplify BB as long as resimplification is requested.
6722   do {
6723     Resimplify = false;
6724 
6725     // Perform one round of simplifcation. Resimplify flag will be set if
6726     // another iteration is requested.
6727     Changed |= simplifyOnce(BB);
6728   } while (Resimplify);
6729 
6730   return Changed;
6731 }
6732 
6733 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6734                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6735                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6736   return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr,
6737                         BB->getModule()->getDataLayout(), LoopHeaders, Options)
6738       .run(BB);
6739 }
6740