1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool 178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2, 179 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 180 if (SI1 == SI2) 181 return false; // Can't merge with self! 182 183 // It is not safe to merge these two switch instructions if they have a common 184 // successor, and if that successor has a PHI node, and if *that* PHI node has 185 // conflicting incoming values from the two switch blocks. 186 BasicBlock *SI1BB = SI1->getParent(); 187 BasicBlock *SI2BB = SI2->getParent(); 188 189 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 190 bool Fail = false; 191 for (BasicBlock *Succ : successors(SI2BB)) 192 if (SI1Succs.count(Succ)) 193 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 194 PHINode *PN = cast<PHINode>(BBI); 195 if (PN->getIncomingValueForBlock(SI1BB) != 196 PN->getIncomingValueForBlock(SI2BB)) { 197 if (FailBlocks) 198 FailBlocks->insert(Succ); 199 Fail = true; 200 } 201 } 202 203 return !Fail; 204 } 205 206 /// Return true if it is safe and profitable to merge these two terminator 207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 208 /// store all PHI nodes in common successors. 209 static bool 210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 211 Instruction *Cond, 212 SmallVectorImpl<PHINode *> &PhiNodes) { 213 if (SI1 == SI2) 214 return false; // Can't merge with self! 215 assert(SI1->isUnconditional() && SI2->isConditional()); 216 217 // We fold the unconditional branch if we can easily update all PHI nodes in 218 // common successors: 219 // 1> We have a constant incoming value for the conditional branch; 220 // 2> We have "Cond" as the incoming value for the unconditional branch; 221 // 3> SI2->getCondition() and Cond have same operands. 222 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 223 if (!Ci2) 224 return false; 225 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 226 Cond->getOperand(1) == Ci2->getOperand(1)) && 227 !(Cond->getOperand(0) == Ci2->getOperand(1) && 228 Cond->getOperand(1) == Ci2->getOperand(0))) 229 return false; 230 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 239 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 240 return false; 241 PhiNodes.push_back(PN); 242 } 243 return true; 244 } 245 246 /// Update PHI nodes in Succ to indicate that there will now be entries in it 247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 248 /// will be the same as those coming in from ExistPred, an existing predecessor 249 /// of Succ. 250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 251 BasicBlock *ExistPred) { 252 if (!isa<PHINode>(Succ->begin())) 253 return; // Quick exit if nothing to do 254 255 PHINode *PN; 256 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 257 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 258 } 259 260 /// Compute an abstract "cost" of speculating the given instruction, 261 /// which is assumed to be safe to speculate. TCC_Free means cheap, 262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 263 /// expensive. 264 static unsigned ComputeSpeculationCost(const User *I, 265 const TargetTransformInfo &TTI) { 266 assert(isSafeToSpeculativelyExecute(I) && 267 "Instruction is not safe to speculatively execute!"); 268 return TTI.getUserCost(I); 269 } 270 271 /// If we have a merge point of an "if condition" as accepted above, 272 /// return true if the specified value dominates the block. We 273 /// don't handle the true generality of domination here, just a special case 274 /// which works well enough for us. 275 /// 276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 277 /// see if V (which must be an instruction) and its recursive operands 278 /// that do not dominate BB have a combined cost lower than CostRemaining and 279 /// are non-trapping. If both are true, the instruction is inserted into the 280 /// set and true is returned. 281 /// 282 /// The cost for most non-trapping instructions is defined as 1 except for 283 /// Select whose cost is 2. 284 /// 285 /// After this function returns, CostRemaining is decreased by the cost of 286 /// V plus its non-dominating operands. If that cost is greater than 287 /// CostRemaining, false is returned and CostRemaining is undefined. 288 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 289 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 290 unsigned &CostRemaining, 291 const TargetTransformInfo &TTI, 292 unsigned Depth = 0) { 293 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 294 // so limit the recursion depth. 295 // TODO: While this recursion limit does prevent pathological behavior, it 296 // would be better to track visited instructions to avoid cycles. 297 if (Depth == MaxSpeculationDepth) 298 return false; 299 300 Instruction *I = dyn_cast<Instruction>(V); 301 if (!I) { 302 // Non-instructions all dominate instructions, but not all constantexprs 303 // can be executed unconditionally. 304 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 305 if (C->canTrap()) 306 return false; 307 return true; 308 } 309 BasicBlock *PBB = I->getParent(); 310 311 // We don't want to allow weird loops that might have the "if condition" in 312 // the bottom of this block. 313 if (PBB == BB) 314 return false; 315 316 // If this instruction is defined in a block that contains an unconditional 317 // branch to BB, then it must be in the 'conditional' part of the "if 318 // statement". If not, it definitely dominates the region. 319 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 320 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 321 return true; 322 323 // If we aren't allowing aggressive promotion anymore, then don't consider 324 // instructions in the 'if region'. 325 if (!AggressiveInsts) 326 return false; 327 328 // If we have seen this instruction before, don't count it again. 329 if (AggressiveInsts->count(I)) 330 return true; 331 332 // Okay, it looks like the instruction IS in the "condition". Check to 333 // see if it's a cheap instruction to unconditionally compute, and if it 334 // only uses stuff defined outside of the condition. If so, hoist it out. 335 if (!isSafeToSpeculativelyExecute(I)) 336 return false; 337 338 unsigned Cost = ComputeSpeculationCost(I, TTI); 339 340 // Allow exactly one instruction to be speculated regardless of its cost 341 // (as long as it is safe to do so). 342 // This is intended to flatten the CFG even if the instruction is a division 343 // or other expensive operation. The speculation of an expensive instruction 344 // is expected to be undone in CodeGenPrepare if the speculation has not 345 // enabled further IR optimizations. 346 if (Cost > CostRemaining && 347 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 348 return false; 349 350 // Avoid unsigned wrap. 351 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 352 353 // Okay, we can only really hoist these out if their operands do 354 // not take us over the cost threshold. 355 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 356 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 357 Depth + 1)) 358 return false; 359 // Okay, it's safe to do this! Remember this instruction. 360 AggressiveInsts->insert(I); 361 return true; 362 } 363 364 /// Extract ConstantInt from value, looking through IntToPtr 365 /// and PointerNullValue. Return NULL if value is not a constant int. 366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 367 // Normal constant int. 368 ConstantInt *CI = dyn_cast<ConstantInt>(V); 369 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 370 return CI; 371 372 // This is some kind of pointer constant. Turn it into a pointer-sized 373 // ConstantInt if possible. 374 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 375 376 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 377 if (isa<ConstantPointerNull>(V)) 378 return ConstantInt::get(PtrTy, 0); 379 380 // IntToPtr const int. 381 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 382 if (CE->getOpcode() == Instruction::IntToPtr) 383 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 384 // The constant is very likely to have the right type already. 385 if (CI->getType() == PtrTy) 386 return CI; 387 else 388 return cast<ConstantInt>( 389 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 390 } 391 return nullptr; 392 } 393 394 namespace { 395 396 /// Given a chain of or (||) or and (&&) comparison of a value against a 397 /// constant, this will try to recover the information required for a switch 398 /// structure. 399 /// It will depth-first traverse the chain of comparison, seeking for patterns 400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 401 /// representing the different cases for the switch. 402 /// Note that if the chain is composed of '||' it will build the set of elements 403 /// that matches the comparisons (i.e. any of this value validate the chain) 404 /// while for a chain of '&&' it will build the set elements that make the test 405 /// fail. 406 struct ConstantComparesGatherer { 407 const DataLayout &DL; 408 Value *CompValue; /// Value found for the switch comparison 409 Value *Extra; /// Extra clause to be checked before the switch 410 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 411 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 412 413 /// Construct and compute the result for the comparison instruction Cond 414 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 415 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 416 gather(Cond); 417 } 418 419 /// Prevent copy 420 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 421 ConstantComparesGatherer & 422 operator=(const ConstantComparesGatherer &) = delete; 423 424 private: 425 /// Try to set the current value used for the comparison, it succeeds only if 426 /// it wasn't set before or if the new value is the same as the old one 427 bool setValueOnce(Value *NewVal) { 428 if (CompValue && CompValue != NewVal) 429 return false; 430 CompValue = NewVal; 431 return (CompValue != nullptr); 432 } 433 434 /// Try to match Instruction "I" as a comparison against a constant and 435 /// populates the array Vals with the set of values that match (or do not 436 /// match depending on isEQ). 437 /// Return false on failure. On success, the Value the comparison matched 438 /// against is placed in CompValue. 439 /// If CompValue is already set, the function is expected to fail if a match 440 /// is found but the value compared to is different. 441 bool matchInstruction(Instruction *I, bool isEQ) { 442 // If this is an icmp against a constant, handle this as one of the cases. 443 ICmpInst *ICI; 444 ConstantInt *C; 445 if (!((ICI = dyn_cast<ICmpInst>(I)) && 446 (C = GetConstantInt(I->getOperand(1), DL)))) { 447 return false; 448 } 449 450 Value *RHSVal; 451 const APInt *RHSC; 452 453 // Pattern match a special case 454 // (x & ~2^z) == y --> x == y || x == y|2^z 455 // This undoes a transformation done by instcombine to fuse 2 compares. 456 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 457 458 // It's a little bit hard to see why the following transformations are 459 // correct. Here is a CVC3 program to verify them for 64-bit values: 460 461 /* 462 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 463 x : BITVECTOR(64); 464 y : BITVECTOR(64); 465 z : BITVECTOR(64); 466 mask : BITVECTOR(64) = BVSHL(ONE, z); 467 QUERY( (y & ~mask = y) => 468 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 469 ); 470 QUERY( (y | mask = y) => 471 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 472 ); 473 */ 474 475 // Please note that each pattern must be a dual implication (<--> or 476 // iff). One directional implication can create spurious matches. If the 477 // implication is only one-way, an unsatisfiable condition on the left 478 // side can imply a satisfiable condition on the right side. Dual 479 // implication ensures that satisfiable conditions are transformed to 480 // other satisfiable conditions and unsatisfiable conditions are 481 // transformed to other unsatisfiable conditions. 482 483 // Here is a concrete example of a unsatisfiable condition on the left 484 // implying a satisfiable condition on the right: 485 // 486 // mask = (1 << z) 487 // (x & ~mask) == y --> (x == y || x == (y | mask)) 488 // 489 // Substituting y = 3, z = 0 yields: 490 // (x & -2) == 3 --> (x == 3 || x == 2) 491 492 // Pattern match a special case: 493 /* 494 QUERY( (y & ~mask = y) => 495 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 496 ); 497 */ 498 if (match(ICI->getOperand(0), 499 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 500 APInt Mask = ~*RHSC; 501 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 502 // If we already have a value for the switch, it has to match! 503 if (!setValueOnce(RHSVal)) 504 return false; 505 506 Vals.push_back(C); 507 Vals.push_back( 508 ConstantInt::get(C->getContext(), 509 C->getValue() | Mask)); 510 UsedICmps++; 511 return true; 512 } 513 } 514 515 // Pattern match a special case: 516 /* 517 QUERY( (y | mask = y) => 518 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 519 ); 520 */ 521 if (match(ICI->getOperand(0), 522 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 523 APInt Mask = *RHSC; 524 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 525 // If we already have a value for the switch, it has to match! 526 if (!setValueOnce(RHSVal)) 527 return false; 528 529 Vals.push_back(C); 530 Vals.push_back(ConstantInt::get(C->getContext(), 531 C->getValue() & ~Mask)); 532 UsedICmps++; 533 return true; 534 } 535 } 536 537 // If we already have a value for the switch, it has to match! 538 if (!setValueOnce(ICI->getOperand(0))) 539 return false; 540 541 UsedICmps++; 542 Vals.push_back(C); 543 return ICI->getOperand(0); 544 } 545 546 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 547 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 548 ICI->getPredicate(), C->getValue()); 549 550 // Shift the range if the compare is fed by an add. This is the range 551 // compare idiom as emitted by instcombine. 552 Value *CandidateVal = I->getOperand(0); 553 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 554 Span = Span.subtract(*RHSC); 555 CandidateVal = RHSVal; 556 } 557 558 // If this is an and/!= check, then we are looking to build the set of 559 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 560 // x != 0 && x != 1. 561 if (!isEQ) 562 Span = Span.inverse(); 563 564 // If there are a ton of values, we don't want to make a ginormous switch. 565 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 566 return false; 567 } 568 569 // If we already have a value for the switch, it has to match! 570 if (!setValueOnce(CandidateVal)) 571 return false; 572 573 // Add all values from the range to the set 574 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 575 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 576 577 UsedICmps++; 578 return true; 579 } 580 581 /// Given a potentially 'or'd or 'and'd together collection of icmp 582 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 583 /// the value being compared, and stick the list constants into the Vals 584 /// vector. 585 /// One "Extra" case is allowed to differ from the other. 586 void gather(Value *V) { 587 Instruction *I = dyn_cast<Instruction>(V); 588 bool isEQ = (I->getOpcode() == Instruction::Or); 589 590 // Keep a stack (SmallVector for efficiency) for depth-first traversal 591 SmallVector<Value *, 8> DFT; 592 SmallPtrSet<Value *, 8> Visited; 593 594 // Initialize 595 Visited.insert(V); 596 DFT.push_back(V); 597 598 while (!DFT.empty()) { 599 V = DFT.pop_back_val(); 600 601 if (Instruction *I = dyn_cast<Instruction>(V)) { 602 // If it is a || (or && depending on isEQ), process the operands. 603 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 604 if (Visited.insert(I->getOperand(1)).second) 605 DFT.push_back(I->getOperand(1)); 606 if (Visited.insert(I->getOperand(0)).second) 607 DFT.push_back(I->getOperand(0)); 608 continue; 609 } 610 611 // Try to match the current instruction 612 if (matchInstruction(I, isEQ)) 613 // Match succeed, continue the loop 614 continue; 615 } 616 617 // One element of the sequence of || (or &&) could not be match as a 618 // comparison against the same value as the others. 619 // We allow only one "Extra" case to be checked before the switch 620 if (!Extra) { 621 Extra = V; 622 continue; 623 } 624 // Failed to parse a proper sequence, abort now 625 CompValue = nullptr; 626 break; 627 } 628 } 629 }; 630 } 631 632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 633 Instruction *Cond = nullptr; 634 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 635 Cond = dyn_cast<Instruction>(SI->getCondition()); 636 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 637 if (BI->isConditional()) 638 Cond = dyn_cast<Instruction>(BI->getCondition()); 639 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 640 Cond = dyn_cast<Instruction>(IBI->getAddress()); 641 } 642 643 TI->eraseFromParent(); 644 if (Cond) 645 RecursivelyDeleteTriviallyDeadInstructions(Cond); 646 } 647 648 /// Return true if the specified terminator checks 649 /// to see if a value is equal to constant integer value. 650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 651 Value *CV = nullptr; 652 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 653 // Do not permit merging of large switch instructions into their 654 // predecessors unless there is only one predecessor. 655 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 656 pred_end(SI->getParent())) <= 657 128) 658 CV = SI->getCondition(); 659 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 660 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 661 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 662 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 663 CV = ICI->getOperand(0); 664 } 665 666 // Unwrap any lossless ptrtoint cast. 667 if (CV) { 668 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 669 Value *Ptr = PTII->getPointerOperand(); 670 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 671 CV = Ptr; 672 } 673 } 674 return CV; 675 } 676 677 /// Given a value comparison instruction, 678 /// decode all of the 'cases' that it represents and return the 'default' block. 679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 680 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cases.reserve(SI->getNumCases()); 683 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 684 ++i) 685 Cases.push_back( 686 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 687 return SI->getDefaultDest(); 688 } 689 690 BranchInst *BI = cast<BranchInst>(TI); 691 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 692 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 693 Cases.push_back(ValueEqualityComparisonCase( 694 GetConstantInt(ICI->getOperand(1), DL), Succ)); 695 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 696 } 697 698 /// Given a vector of bb/value pairs, remove any entries 699 /// in the list that match the specified block. 700 static void 701 EliminateBlockCases(BasicBlock *BB, 702 std::vector<ValueEqualityComparisonCase> &Cases) { 703 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 704 } 705 706 /// Return true if there are any keys in C1 that exist in C2 as well. 707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 708 std::vector<ValueEqualityComparisonCase> &C2) { 709 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 710 711 // Make V1 be smaller than V2. 712 if (V1->size() > V2->size()) 713 std::swap(V1, V2); 714 715 if (V1->size() == 0) 716 return false; 717 if (V1->size() == 1) { 718 // Just scan V2. 719 ConstantInt *TheVal = (*V1)[0].Value; 720 for (unsigned i = 0, e = V2->size(); i != e; ++i) 721 if (TheVal == (*V2)[i].Value) 722 return true; 723 } 724 725 // Otherwise, just sort both lists and compare element by element. 726 array_pod_sort(V1->begin(), V1->end()); 727 array_pod_sort(V2->begin(), V2->end()); 728 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 729 while (i1 != e1 && i2 != e2) { 730 if ((*V1)[i1].Value == (*V2)[i2].Value) 731 return true; 732 if ((*V1)[i1].Value < (*V2)[i2].Value) 733 ++i1; 734 else 735 ++i2; 736 } 737 return false; 738 } 739 740 /// If TI is known to be a terminator instruction and its block is known to 741 /// only have a single predecessor block, check to see if that predecessor is 742 /// also a value comparison with the same value, and if that comparison 743 /// determines the outcome of this comparison. If so, simplify TI. This does a 744 /// very limited form of jump threading. 745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 746 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 747 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 748 if (!PredVal) 749 return false; // Not a value comparison in predecessor. 750 751 Value *ThisVal = isValueEqualityComparison(TI); 752 assert(ThisVal && "This isn't a value comparison!!"); 753 if (ThisVal != PredVal) 754 return false; // Different predicates. 755 756 // TODO: Preserve branch weight metadata, similarly to how 757 // FoldValueComparisonIntoPredecessors preserves it. 758 759 // Find out information about when control will move from Pred to TI's block. 760 std::vector<ValueEqualityComparisonCase> PredCases; 761 BasicBlock *PredDef = 762 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 763 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 764 765 // Find information about how control leaves this block. 766 std::vector<ValueEqualityComparisonCase> ThisCases; 767 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 768 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 769 770 // If TI's block is the default block from Pred's comparison, potentially 771 // simplify TI based on this knowledge. 772 if (PredDef == TI->getParent()) { 773 // If we are here, we know that the value is none of those cases listed in 774 // PredCases. If there are any cases in ThisCases that are in PredCases, we 775 // can simplify TI. 776 if (!ValuesOverlap(PredCases, ThisCases)) 777 return false; 778 779 if (isa<BranchInst>(TI)) { 780 // Okay, one of the successors of this condbr is dead. Convert it to a 781 // uncond br. 782 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 783 // Insert the new branch. 784 Instruction *NI = Builder.CreateBr(ThisDef); 785 (void)NI; 786 787 // Remove PHI node entries for the dead edge. 788 ThisCases[0].Dest->removePredecessor(TI->getParent()); 789 790 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 791 << "Through successor TI: " << *TI << "Leaving: " << *NI 792 << "\n"); 793 794 EraseTerminatorInstAndDCECond(TI); 795 return true; 796 } 797 798 SwitchInst *SI = cast<SwitchInst>(TI); 799 // Okay, TI has cases that are statically dead, prune them away. 800 SmallPtrSet<Constant *, 16> DeadCases; 801 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 802 DeadCases.insert(PredCases[i].Value); 803 804 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 805 << "Through successor TI: " << *TI); 806 807 // Collect branch weights into a vector. 808 SmallVector<uint32_t, 8> Weights; 809 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 810 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 811 if (HasWeight) 812 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 813 ++MD_i) { 814 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 815 Weights.push_back(CI->getValue().getZExtValue()); 816 } 817 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 818 --i; 819 if (DeadCases.count(i.getCaseValue())) { 820 if (HasWeight) { 821 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 822 Weights.pop_back(); 823 } 824 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 825 SI->removeCase(i); 826 } 827 } 828 if (HasWeight && Weights.size() >= 2) 829 SI->setMetadata(LLVMContext::MD_prof, 830 MDBuilder(SI->getParent()->getContext()) 831 .createBranchWeights(Weights)); 832 833 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 834 return true; 835 } 836 837 // Otherwise, TI's block must correspond to some matched value. Find out 838 // which value (or set of values) this is. 839 ConstantInt *TIV = nullptr; 840 BasicBlock *TIBB = TI->getParent(); 841 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 842 if (PredCases[i].Dest == TIBB) { 843 if (TIV) 844 return false; // Cannot handle multiple values coming to this block. 845 TIV = PredCases[i].Value; 846 } 847 assert(TIV && "No edge from pred to succ?"); 848 849 // Okay, we found the one constant that our value can be if we get into TI's 850 // BB. Find out which successor will unconditionally be branched to. 851 BasicBlock *TheRealDest = nullptr; 852 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 853 if (ThisCases[i].Value == TIV) { 854 TheRealDest = ThisCases[i].Dest; 855 break; 856 } 857 858 // If not handled by any explicit cases, it is handled by the default case. 859 if (!TheRealDest) 860 TheRealDest = ThisDef; 861 862 // Remove PHI node entries for dead edges. 863 BasicBlock *CheckEdge = TheRealDest; 864 for (BasicBlock *Succ : successors(TIBB)) 865 if (Succ != CheckEdge) 866 Succ->removePredecessor(TIBB); 867 else 868 CheckEdge = nullptr; 869 870 // Insert the new branch. 871 Instruction *NI = Builder.CreateBr(TheRealDest); 872 (void)NI; 873 874 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 875 << "Through successor TI: " << *TI << "Leaving: " << *NI 876 << "\n"); 877 878 EraseTerminatorInstAndDCECond(TI); 879 return true; 880 } 881 882 namespace { 883 /// This class implements a stable ordering of constant 884 /// integers that does not depend on their address. This is important for 885 /// applications that sort ConstantInt's to ensure uniqueness. 886 struct ConstantIntOrdering { 887 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 888 return LHS->getValue().ult(RHS->getValue()); 889 } 890 }; 891 } 892 893 static int ConstantIntSortPredicate(ConstantInt *const *P1, 894 ConstantInt *const *P2) { 895 const ConstantInt *LHS = *P1; 896 const ConstantInt *RHS = *P2; 897 if (LHS == RHS) 898 return 0; 899 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 900 } 901 902 static inline bool HasBranchWeights(const Instruction *I) { 903 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 904 if (ProfMD && ProfMD->getOperand(0)) 905 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 906 return MDS->getString().equals("branch_weights"); 907 908 return false; 909 } 910 911 /// Get Weights of a given TerminatorInst, the default weight is at the front 912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 913 /// metadata. 914 static void GetBranchWeights(TerminatorInst *TI, 915 SmallVectorImpl<uint64_t> &Weights) { 916 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 917 assert(MD); 918 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 919 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 920 Weights.push_back(CI->getValue().getZExtValue()); 921 } 922 923 // If TI is a conditional eq, the default case is the false case, 924 // and the corresponding branch-weight data is at index 2. We swap the 925 // default weight to be the first entry. 926 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 927 assert(Weights.size() == 2); 928 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 929 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 930 std::swap(Weights.front(), Weights.back()); 931 } 932 } 933 934 /// Keep halving the weights until all can fit in uint32_t. 935 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 936 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 937 if (Max > UINT_MAX) { 938 unsigned Offset = 32 - countLeadingZeros(Max); 939 for (uint64_t &I : Weights) 940 I >>= Offset; 941 } 942 } 943 944 /// The specified terminator is a value equality comparison instruction 945 /// (either a switch or a branch on "X == c"). 946 /// See if any of the predecessors of the terminator block are value comparisons 947 /// on the same value. If so, and if safe to do so, fold them together. 948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 949 IRBuilder<> &Builder) { 950 BasicBlock *BB = TI->getParent(); 951 Value *CV = isValueEqualityComparison(TI); // CondVal 952 assert(CV && "Not a comparison?"); 953 bool Changed = false; 954 955 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 956 while (!Preds.empty()) { 957 BasicBlock *Pred = Preds.pop_back_val(); 958 959 // See if the predecessor is a comparison with the same value. 960 TerminatorInst *PTI = Pred->getTerminator(); 961 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 962 963 if (PCV == CV && TI != PTI) { 964 SmallSetVector<BasicBlock*, 4> FailBlocks; 965 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 966 for (auto *Succ : FailBlocks) { 967 std::vector<BasicBlock*> Blocks = { TI->getParent() }; 968 if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split")) 969 return false; 970 } 971 } 972 973 // Figure out which 'cases' to copy from SI to PSI. 974 std::vector<ValueEqualityComparisonCase> BBCases; 975 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 976 977 std::vector<ValueEqualityComparisonCase> PredCases; 978 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 979 980 // Based on whether the default edge from PTI goes to BB or not, fill in 981 // PredCases and PredDefault with the new switch cases we would like to 982 // build. 983 SmallVector<BasicBlock *, 8> NewSuccessors; 984 985 // Update the branch weight metadata along the way 986 SmallVector<uint64_t, 8> Weights; 987 bool PredHasWeights = HasBranchWeights(PTI); 988 bool SuccHasWeights = HasBranchWeights(TI); 989 990 if (PredHasWeights) { 991 GetBranchWeights(PTI, Weights); 992 // branch-weight metadata is inconsistent here. 993 if (Weights.size() != 1 + PredCases.size()) 994 PredHasWeights = SuccHasWeights = false; 995 } else if (SuccHasWeights) 996 // If there are no predecessor weights but there are successor weights, 997 // populate Weights with 1, which will later be scaled to the sum of 998 // successor's weights 999 Weights.assign(1 + PredCases.size(), 1); 1000 1001 SmallVector<uint64_t, 8> SuccWeights; 1002 if (SuccHasWeights) { 1003 GetBranchWeights(TI, SuccWeights); 1004 // branch-weight metadata is inconsistent here. 1005 if (SuccWeights.size() != 1 + BBCases.size()) 1006 PredHasWeights = SuccHasWeights = false; 1007 } else if (PredHasWeights) 1008 SuccWeights.assign(1 + BBCases.size(), 1); 1009 1010 if (PredDefault == BB) { 1011 // If this is the default destination from PTI, only the edges in TI 1012 // that don't occur in PTI, or that branch to BB will be activated. 1013 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1014 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1015 if (PredCases[i].Dest != BB) 1016 PTIHandled.insert(PredCases[i].Value); 1017 else { 1018 // The default destination is BB, we don't need explicit targets. 1019 std::swap(PredCases[i], PredCases.back()); 1020 1021 if (PredHasWeights || SuccHasWeights) { 1022 // Increase weight for the default case. 1023 Weights[0] += Weights[i + 1]; 1024 std::swap(Weights[i + 1], Weights.back()); 1025 Weights.pop_back(); 1026 } 1027 1028 PredCases.pop_back(); 1029 --i; 1030 --e; 1031 } 1032 1033 // Reconstruct the new switch statement we will be building. 1034 if (PredDefault != BBDefault) { 1035 PredDefault->removePredecessor(Pred); 1036 PredDefault = BBDefault; 1037 NewSuccessors.push_back(BBDefault); 1038 } 1039 1040 unsigned CasesFromPred = Weights.size(); 1041 uint64_t ValidTotalSuccWeight = 0; 1042 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1043 if (!PTIHandled.count(BBCases[i].Value) && 1044 BBCases[i].Dest != BBDefault) { 1045 PredCases.push_back(BBCases[i]); 1046 NewSuccessors.push_back(BBCases[i].Dest); 1047 if (SuccHasWeights || PredHasWeights) { 1048 // The default weight is at index 0, so weight for the ith case 1049 // should be at index i+1. Scale the cases from successor by 1050 // PredDefaultWeight (Weights[0]). 1051 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1052 ValidTotalSuccWeight += SuccWeights[i + 1]; 1053 } 1054 } 1055 1056 if (SuccHasWeights || PredHasWeights) { 1057 ValidTotalSuccWeight += SuccWeights[0]; 1058 // Scale the cases from predecessor by ValidTotalSuccWeight. 1059 for (unsigned i = 1; i < CasesFromPred; ++i) 1060 Weights[i] *= ValidTotalSuccWeight; 1061 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1062 Weights[0] *= SuccWeights[0]; 1063 } 1064 } else { 1065 // If this is not the default destination from PSI, only the edges 1066 // in SI that occur in PSI with a destination of BB will be 1067 // activated. 1068 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1069 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1070 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1071 if (PredCases[i].Dest == BB) { 1072 PTIHandled.insert(PredCases[i].Value); 1073 1074 if (PredHasWeights || SuccHasWeights) { 1075 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1076 std::swap(Weights[i + 1], Weights.back()); 1077 Weights.pop_back(); 1078 } 1079 1080 std::swap(PredCases[i], PredCases.back()); 1081 PredCases.pop_back(); 1082 --i; 1083 --e; 1084 } 1085 1086 // Okay, now we know which constants were sent to BB from the 1087 // predecessor. Figure out where they will all go now. 1088 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1089 if (PTIHandled.count(BBCases[i].Value)) { 1090 // If this is one we are capable of getting... 1091 if (PredHasWeights || SuccHasWeights) 1092 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1093 PredCases.push_back(BBCases[i]); 1094 NewSuccessors.push_back(BBCases[i].Dest); 1095 PTIHandled.erase( 1096 BBCases[i].Value); // This constant is taken care of 1097 } 1098 1099 // If there are any constants vectored to BB that TI doesn't handle, 1100 // they must go to the default destination of TI. 1101 for (ConstantInt *I : PTIHandled) { 1102 if (PredHasWeights || SuccHasWeights) 1103 Weights.push_back(WeightsForHandled[I]); 1104 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1105 NewSuccessors.push_back(BBDefault); 1106 } 1107 } 1108 1109 // Okay, at this point, we know which new successor Pred will get. Make 1110 // sure we update the number of entries in the PHI nodes for these 1111 // successors. 1112 for (BasicBlock *NewSuccessor : NewSuccessors) 1113 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1114 1115 Builder.SetInsertPoint(PTI); 1116 // Convert pointer to int before we switch. 1117 if (CV->getType()->isPointerTy()) { 1118 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1119 "magicptr"); 1120 } 1121 1122 // Now that the successors are updated, create the new Switch instruction. 1123 SwitchInst *NewSI = 1124 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1125 NewSI->setDebugLoc(PTI->getDebugLoc()); 1126 for (ValueEqualityComparisonCase &V : PredCases) 1127 NewSI->addCase(V.Value, V.Dest); 1128 1129 if (PredHasWeights || SuccHasWeights) { 1130 // Halve the weights if any of them cannot fit in an uint32_t 1131 FitWeights(Weights); 1132 1133 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1134 1135 NewSI->setMetadata( 1136 LLVMContext::MD_prof, 1137 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1138 } 1139 1140 EraseTerminatorInstAndDCECond(PTI); 1141 1142 // Okay, last check. If BB is still a successor of PSI, then we must 1143 // have an infinite loop case. If so, add an infinitely looping block 1144 // to handle the case to preserve the behavior of the code. 1145 BasicBlock *InfLoopBlock = nullptr; 1146 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1147 if (NewSI->getSuccessor(i) == BB) { 1148 if (!InfLoopBlock) { 1149 // Insert it at the end of the function, because it's either code, 1150 // or it won't matter if it's hot. :) 1151 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1152 BB->getParent()); 1153 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1154 } 1155 NewSI->setSuccessor(i, InfLoopBlock); 1156 } 1157 1158 Changed = true; 1159 } 1160 } 1161 return Changed; 1162 } 1163 1164 // If we would need to insert a select that uses the value of this invoke 1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1166 // can't hoist the invoke, as there is nowhere to put the select in this case. 1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1168 Instruction *I1, Instruction *I2) { 1169 for (BasicBlock *Succ : successors(BB1)) { 1170 PHINode *PN; 1171 for (BasicBlock::iterator BBI = Succ->begin(); 1172 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1173 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1174 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1175 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1176 return false; 1177 } 1178 } 1179 } 1180 return true; 1181 } 1182 1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1184 1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1186 /// in the two blocks up into the branch block. The caller of this function 1187 /// guarantees that BI's block dominates BB1 and BB2. 1188 static bool HoistThenElseCodeToIf(BranchInst *BI, 1189 const TargetTransformInfo &TTI) { 1190 // This does very trivial matching, with limited scanning, to find identical 1191 // instructions in the two blocks. In particular, we don't want to get into 1192 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1193 // such, we currently just scan for obviously identical instructions in an 1194 // identical order. 1195 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1196 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1197 1198 BasicBlock::iterator BB1_Itr = BB1->begin(); 1199 BasicBlock::iterator BB2_Itr = BB2->begin(); 1200 1201 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1202 // Skip debug info if it is not identical. 1203 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1204 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1205 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1206 while (isa<DbgInfoIntrinsic>(I1)) 1207 I1 = &*BB1_Itr++; 1208 while (isa<DbgInfoIntrinsic>(I2)) 1209 I2 = &*BB2_Itr++; 1210 } 1211 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1212 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1213 return false; 1214 1215 BasicBlock *BIParent = BI->getParent(); 1216 1217 bool Changed = false; 1218 do { 1219 // If we are hoisting the terminator instruction, don't move one (making a 1220 // broken BB), instead clone it, and remove BI. 1221 if (isa<TerminatorInst>(I1)) 1222 goto HoistTerminator; 1223 1224 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1225 return Changed; 1226 1227 // For a normal instruction, we just move one to right before the branch, 1228 // then replace all uses of the other with the first. Finally, we remove 1229 // the now redundant second instruction. 1230 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1231 if (!I2->use_empty()) 1232 I2->replaceAllUsesWith(I1); 1233 I1->andIRFlags(I2); 1234 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1235 LLVMContext::MD_range, 1236 LLVMContext::MD_fpmath, 1237 LLVMContext::MD_invariant_load, 1238 LLVMContext::MD_nonnull, 1239 LLVMContext::MD_invariant_group, 1240 LLVMContext::MD_align, 1241 LLVMContext::MD_dereferenceable, 1242 LLVMContext::MD_dereferenceable_or_null, 1243 LLVMContext::MD_mem_parallel_loop_access}; 1244 combineMetadata(I1, I2, KnownIDs); 1245 1246 // If the debug loc for I1 and I2 are different, as we are combining them 1247 // into one instruction, we do not want to select debug loc randomly from 1248 // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not 1249 // know the debug loc of the hoisted instruction. 1250 if (!isa<CallInst>(I1) && I1->getDebugLoc() != I2->getDebugLoc()) 1251 I1->setDebugLoc(DebugLoc()); 1252 1253 I2->eraseFromParent(); 1254 Changed = true; 1255 1256 I1 = &*BB1_Itr++; 1257 I2 = &*BB2_Itr++; 1258 // Skip debug info if it is not identical. 1259 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1260 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1261 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1262 while (isa<DbgInfoIntrinsic>(I1)) 1263 I1 = &*BB1_Itr++; 1264 while (isa<DbgInfoIntrinsic>(I2)) 1265 I2 = &*BB2_Itr++; 1266 } 1267 } while (I1->isIdenticalToWhenDefined(I2)); 1268 1269 return true; 1270 1271 HoistTerminator: 1272 // It may not be possible to hoist an invoke. 1273 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1274 return Changed; 1275 1276 for (BasicBlock *Succ : successors(BB1)) { 1277 PHINode *PN; 1278 for (BasicBlock::iterator BBI = Succ->begin(); 1279 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1280 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1281 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1282 if (BB1V == BB2V) 1283 continue; 1284 1285 // Check for passingValueIsAlwaysUndefined here because we would rather 1286 // eliminate undefined control flow then converting it to a select. 1287 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1288 passingValueIsAlwaysUndefined(BB2V, PN)) 1289 return Changed; 1290 1291 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1292 return Changed; 1293 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1294 return Changed; 1295 } 1296 } 1297 1298 // Okay, it is safe to hoist the terminator. 1299 Instruction *NT = I1->clone(); 1300 BIParent->getInstList().insert(BI->getIterator(), NT); 1301 if (!NT->getType()->isVoidTy()) { 1302 I1->replaceAllUsesWith(NT); 1303 I2->replaceAllUsesWith(NT); 1304 NT->takeName(I1); 1305 } 1306 1307 IRBuilder<NoFolder> Builder(NT); 1308 // Hoisting one of the terminators from our successor is a great thing. 1309 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1310 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1311 // nodes, so we insert select instruction to compute the final result. 1312 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1313 for (BasicBlock *Succ : successors(BB1)) { 1314 PHINode *PN; 1315 for (BasicBlock::iterator BBI = Succ->begin(); 1316 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1317 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1318 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1319 if (BB1V == BB2V) 1320 continue; 1321 1322 // These values do not agree. Insert a select instruction before NT 1323 // that determines the right value. 1324 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1325 if (!SI) 1326 SI = cast<SelectInst>( 1327 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1328 BB1V->getName() + "." + BB2V->getName(), BI)); 1329 1330 // Make the PHI node use the select for all incoming values for BB1/BB2 1331 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1332 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1333 PN->setIncomingValue(i, SI); 1334 } 1335 } 1336 1337 // Update any PHI nodes in our new successors. 1338 for (BasicBlock *Succ : successors(BB1)) 1339 AddPredecessorToBlock(Succ, BIParent, BB1); 1340 1341 EraseTerminatorInstAndDCECond(BI); 1342 return true; 1343 } 1344 1345 // Is it legal to place a variable in operand \c OpIdx of \c I? 1346 // FIXME: This should be promoted to Instruction. 1347 static bool canReplaceOperandWithVariable(const Instruction *I, 1348 unsigned OpIdx) { 1349 // We can't have a PHI with a metadata type. 1350 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 1351 return false; 1352 1353 // Early exit. 1354 if (!isa<Constant>(I->getOperand(OpIdx))) 1355 return true; 1356 1357 switch (I->getOpcode()) { 1358 default: 1359 return true; 1360 case Instruction::Call: 1361 case Instruction::Invoke: 1362 // FIXME: many arithmetic intrinsics have no issue taking a 1363 // variable, however it's hard to distingish these from 1364 // specials such as @llvm.frameaddress that require a constant. 1365 if (isa<IntrinsicInst>(I)) 1366 return false; 1367 1368 // Constant bundle operands may need to retain their constant-ness for 1369 // correctness. 1370 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 1371 return false; 1372 1373 return true; 1374 1375 case Instruction::ShuffleVector: 1376 // Shufflevector masks are constant. 1377 return OpIdx != 2; 1378 case Instruction::ExtractValue: 1379 case Instruction::InsertValue: 1380 // All operands apart from the first are constant. 1381 return OpIdx == 0; 1382 case Instruction::Alloca: 1383 return false; 1384 case Instruction::GetElementPtr: 1385 if (OpIdx == 0) 1386 return true; 1387 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1388 return !It->isStructTy(); 1389 } 1390 } 1391 1392 // All instructions in Insts belong to different blocks that all unconditionally 1393 // branch to a common successor. Analyze each instruction and return true if it 1394 // would be possible to sink them into their successor, creating one common 1395 // instruction instead. For every value that would be required to be provided by 1396 // PHI node (because an operand varies in each input block), add to PHIOperands. 1397 static bool canSinkInstructions( 1398 ArrayRef<Instruction *> Insts, 1399 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1400 // Prune out obviously bad instructions to move. Any non-store instruction 1401 // must have exactly one use, and we check later that use is by a single, 1402 // common PHI instruction in the successor. 1403 for (auto *I : Insts) { 1404 // These instructions may change or break semantics if moved. 1405 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1406 I->getType()->isTokenTy()) 1407 return false; 1408 // Everything must have only one use too, apart from stores which 1409 // have no uses. 1410 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1411 return false; 1412 } 1413 1414 const Instruction *I0 = Insts.front(); 1415 for (auto *I : Insts) 1416 if (!I->isSameOperationAs(I0)) 1417 return false; 1418 1419 // All instructions in Insts are known to be the same opcode. If they aren't 1420 // stores, check the only user of each is a PHI or in the same block as the 1421 // instruction, because if a user is in the same block as an instruction 1422 // we're contemplating sinking, it must already be determined to be sinkable. 1423 if (!isa<StoreInst>(I0)) { 1424 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1425 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1426 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1427 auto *U = cast<Instruction>(*I->user_begin()); 1428 return (PNUse && 1429 PNUse->getParent() == Succ && 1430 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1431 U->getParent() == I->getParent(); 1432 })) 1433 return false; 1434 } 1435 1436 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1437 if (I0->getOperand(OI)->getType()->isTokenTy()) 1438 // Don't touch any operand of token type. 1439 return false; 1440 1441 // Because SROA can't handle speculating stores of selects, try not 1442 // to sink loads or stores of allocas when we'd have to create a PHI for 1443 // the address operand. Also, because it is likely that loads or stores 1444 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1445 // This can cause code churn which can have unintended consequences down 1446 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1447 // FIXME: This is a workaround for a deficiency in SROA - see 1448 // https://llvm.org/bugs/show_bug.cgi?id=30188 1449 if (OI == 1 && isa<StoreInst>(I0) && 1450 any_of(Insts, [](const Instruction *I) { 1451 return isa<AllocaInst>(I->getOperand(1)); 1452 })) 1453 return false; 1454 if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1455 return isa<AllocaInst>(I->getOperand(0)); 1456 })) 1457 return false; 1458 1459 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1460 assert(I->getNumOperands() == I0->getNumOperands()); 1461 return I->getOperand(OI) == I0->getOperand(OI); 1462 }; 1463 if (!all_of(Insts, SameAsI0)) { 1464 if (!canReplaceOperandWithVariable(I0, OI)) 1465 // We can't create a PHI from this GEP. 1466 return false; 1467 // Don't create indirect calls! The called value is the final operand. 1468 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1469 // FIXME: if the call was *already* indirect, we should do this. 1470 return false; 1471 } 1472 for (auto *I : Insts) 1473 PHIOperands[I].push_back(I->getOperand(OI)); 1474 } 1475 } 1476 return true; 1477 } 1478 1479 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1480 // instruction of every block in Blocks to their common successor, commoning 1481 // into one instruction. 1482 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1483 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1484 1485 // canSinkLastInstruction returning true guarantees that every block has at 1486 // least one non-terminator instruction. 1487 SmallVector<Instruction*,4> Insts; 1488 for (auto *BB : Blocks) 1489 Insts.push_back(BB->getTerminator()->getPrevNode()); 1490 1491 // The only checking we need to do now is that all users of all instructions 1492 // are the same PHI node. canSinkLastInstruction should have checked this but 1493 // it is slightly over-aggressive - it gets confused by commutative instructions 1494 // so double-check it here. 1495 Instruction *I0 = Insts.front(); 1496 if (!isa<StoreInst>(I0)) { 1497 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1498 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1499 auto *U = cast<Instruction>(*I->user_begin()); 1500 return U == PNUse; 1501 })) 1502 return false; 1503 } 1504 1505 // We don't need to do any more checking here; canSinkLastInstruction should 1506 // have done it all for us. 1507 SmallVector<Value*, 4> NewOperands; 1508 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1509 // This check is different to that in canSinkLastInstruction. There, we 1510 // cared about the global view once simplifycfg (and instcombine) have 1511 // completed - it takes into account PHIs that become trivially 1512 // simplifiable. However here we need a more local view; if an operand 1513 // differs we create a PHI and rely on instcombine to clean up the very 1514 // small mess we may make. 1515 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1516 return I->getOperand(O) != I0->getOperand(O); 1517 }); 1518 if (!NeedPHI) { 1519 NewOperands.push_back(I0->getOperand(O)); 1520 continue; 1521 } 1522 1523 // Create a new PHI in the successor block and populate it. 1524 auto *Op = I0->getOperand(O); 1525 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1526 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1527 Op->getName() + ".sink", &BBEnd->front()); 1528 for (auto *I : Insts) 1529 PN->addIncoming(I->getOperand(O), I->getParent()); 1530 NewOperands.push_back(PN); 1531 } 1532 1533 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1534 // and move it to the start of the successor block. 1535 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1536 I0->getOperandUse(O).set(NewOperands[O]); 1537 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1538 1539 // Update metadata and IR flags. 1540 for (auto *I : Insts) 1541 if (I != I0) { 1542 combineMetadataForCSE(I0, I); 1543 I0->andIRFlags(I); 1544 } 1545 1546 if (!isa<StoreInst>(I0)) { 1547 // canSinkLastInstruction checked that all instructions were used by 1548 // one and only one PHI node. Find that now, RAUW it to our common 1549 // instruction and nuke it. 1550 assert(I0->hasOneUse()); 1551 auto *PN = cast<PHINode>(*I0->user_begin()); 1552 PN->replaceAllUsesWith(I0); 1553 PN->eraseFromParent(); 1554 } 1555 1556 // Finally nuke all instructions apart from the common instruction. 1557 for (auto *I : Insts) 1558 if (I != I0) 1559 I->eraseFromParent(); 1560 1561 return true; 1562 } 1563 1564 namespace { 1565 // LockstepReverseIterator - Iterates through instructions 1566 // in a set of blocks in reverse order from the first non-terminator. 1567 // For example (assume all blocks have size n): 1568 // LockstepReverseIterator I([B1, B2, B3]); 1569 // *I-- = [B1[n], B2[n], B3[n]]; 1570 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1571 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1572 // ... 1573 class LockstepReverseIterator { 1574 ArrayRef<BasicBlock*> Blocks; 1575 SmallVector<Instruction*,4> Insts; 1576 bool Fail; 1577 public: 1578 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : 1579 Blocks(Blocks) { 1580 reset(); 1581 } 1582 1583 void reset() { 1584 Fail = false; 1585 Insts.clear(); 1586 for (auto *BB : Blocks) { 1587 if (BB->size() <= 1) { 1588 // Block wasn't big enough 1589 Fail = true; 1590 return; 1591 } 1592 Insts.push_back(BB->getTerminator()->getPrevNode()); 1593 } 1594 } 1595 1596 bool isValid() const { 1597 return !Fail; 1598 } 1599 1600 void operator -- () { 1601 if (Fail) 1602 return; 1603 for (auto *&Inst : Insts) { 1604 if (Inst == &Inst->getParent()->front()) { 1605 Fail = true; 1606 return; 1607 } 1608 Inst = Inst->getPrevNode(); 1609 } 1610 } 1611 1612 ArrayRef<Instruction*> operator * () const { 1613 return Insts; 1614 } 1615 }; 1616 } 1617 1618 /// Given an unconditional branch that goes to BBEnd, 1619 /// check whether BBEnd has only two predecessors and the other predecessor 1620 /// ends with an unconditional branch. If it is true, sink any common code 1621 /// in the two predecessors to BBEnd. 1622 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1623 assert(BI1->isUnconditional()); 1624 BasicBlock *BBEnd = BI1->getSuccessor(0); 1625 1626 // We support two situations: 1627 // (1) all incoming arcs are unconditional 1628 // (2) one incoming arc is conditional 1629 // 1630 // (2) is very common in switch defaults and 1631 // else-if patterns; 1632 // 1633 // if (a) f(1); 1634 // else if (b) f(2); 1635 // 1636 // produces: 1637 // 1638 // [if] 1639 // / \ 1640 // [f(1)] [if] 1641 // | | \ 1642 // | | \ 1643 // | [f(2)]| 1644 // \ | / 1645 // [ end ] 1646 // 1647 // [end] has two unconditional predecessor arcs and one conditional. The 1648 // conditional refers to the implicit empty 'else' arc. This conditional 1649 // arc can also be caused by an empty default block in a switch. 1650 // 1651 // In this case, we attempt to sink code from all *unconditional* arcs. 1652 // If we can sink instructions from these arcs (determined during the scan 1653 // phase below) we insert a common successor for all unconditional arcs and 1654 // connect that to [end], to enable sinking: 1655 // 1656 // [if] 1657 // / \ 1658 // [x(1)] [if] 1659 // | | \ 1660 // | | \ 1661 // | [x(2)] | 1662 // \ / | 1663 // [sink.split] | 1664 // \ / 1665 // [ end ] 1666 // 1667 SmallVector<BasicBlock*,4> UnconditionalPreds; 1668 Instruction *Cond = nullptr; 1669 for (auto *B : predecessors(BBEnd)) { 1670 auto *T = B->getTerminator(); 1671 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1672 UnconditionalPreds.push_back(B); 1673 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1674 Cond = T; 1675 else 1676 return false; 1677 } 1678 if (UnconditionalPreds.size() < 2) 1679 return false; 1680 1681 bool Changed = false; 1682 // We take a two-step approach to tail sinking. First we scan from the end of 1683 // each block upwards in lockstep. If the n'th instruction from the end of each 1684 // block can be sunk, those instructions are added to ValuesToSink and we 1685 // carry on. If we can sink an instruction but need to PHI-merge some operands 1686 // (because they're not identical in each instruction) we add these to 1687 // PHIOperands. 1688 unsigned ScanIdx = 0; 1689 SmallPtrSet<Value*,4> InstructionsToSink; 1690 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1691 LockstepReverseIterator LRI(UnconditionalPreds); 1692 while (LRI.isValid() && 1693 canSinkInstructions(*LRI, PHIOperands)) { 1694 DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n"); 1695 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1696 ++ScanIdx; 1697 --LRI; 1698 } 1699 1700 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1701 unsigned NumPHIdValues = 0; 1702 for (auto *I : *LRI) 1703 for (auto *V : PHIOperands[I]) 1704 if (InstructionsToSink.count(V) == 0) 1705 ++NumPHIdValues; 1706 DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1707 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1708 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1709 NumPHIInsts++; 1710 1711 return NumPHIInsts <= 1; 1712 }; 1713 1714 if (ScanIdx > 0 && Cond) { 1715 // Check if we would actually sink anything first! This mutates the CFG and 1716 // adds an extra block. The goal in doing this is to allow instructions that 1717 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1718 // (such as trunc, add) can be sunk and predicated already. So we check that 1719 // we're going to sink at least one non-speculatable instruction. 1720 LRI.reset(); 1721 unsigned Idx = 0; 1722 bool Profitable = false; 1723 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1724 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1725 Profitable = true; 1726 break; 1727 } 1728 --LRI; 1729 ++Idx; 1730 } 1731 if (!Profitable) 1732 return false; 1733 1734 DEBUG(dbgs() << "SINK: Splitting edge\n"); 1735 // We have a conditional edge and we're going to sink some instructions. 1736 // Insert a new block postdominating all blocks we're going to sink from. 1737 if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds, 1738 ".sink.split")) 1739 // Edges couldn't be split. 1740 return false; 1741 Changed = true; 1742 } 1743 1744 // Now that we've analyzed all potential sinking candidates, perform the 1745 // actual sink. We iteratively sink the last non-terminator of the source 1746 // blocks into their common successor unless doing so would require too 1747 // many PHI instructions to be generated (currently only one PHI is allowed 1748 // per sunk instruction). 1749 // 1750 // We can use InstructionsToSink to discount values needing PHI-merging that will 1751 // actually be sunk in a later iteration. This allows us to be more 1752 // aggressive in what we sink. This does allow a false positive where we 1753 // sink presuming a later value will also be sunk, but stop half way through 1754 // and never actually sink it which means we produce more PHIs than intended. 1755 // This is unlikely in practice though. 1756 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1757 DEBUG(dbgs() << "SINK: Sink: " 1758 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1759 << "\n"); 1760 1761 // Because we've sunk every instruction in turn, the current instruction to 1762 // sink is always at index 0. 1763 LRI.reset(); 1764 if (!ProfitableToSinkInstruction(LRI)) { 1765 // Too many PHIs would be created. 1766 DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1767 break; 1768 } 1769 1770 if (!sinkLastInstruction(UnconditionalPreds)) 1771 return Changed; 1772 NumSinkCommons++; 1773 Changed = true; 1774 } 1775 return Changed; 1776 } 1777 1778 /// \brief Determine if we can hoist sink a sole store instruction out of a 1779 /// conditional block. 1780 /// 1781 /// We are looking for code like the following: 1782 /// BrBB: 1783 /// store i32 %add, i32* %arrayidx2 1784 /// ... // No other stores or function calls (we could be calling a memory 1785 /// ... // function). 1786 /// %cmp = icmp ult %x, %y 1787 /// br i1 %cmp, label %EndBB, label %ThenBB 1788 /// ThenBB: 1789 /// store i32 %add5, i32* %arrayidx2 1790 /// br label EndBB 1791 /// EndBB: 1792 /// ... 1793 /// We are going to transform this into: 1794 /// BrBB: 1795 /// store i32 %add, i32* %arrayidx2 1796 /// ... // 1797 /// %cmp = icmp ult %x, %y 1798 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1799 /// store i32 %add.add5, i32* %arrayidx2 1800 /// ... 1801 /// 1802 /// \return The pointer to the value of the previous store if the store can be 1803 /// hoisted into the predecessor block. 0 otherwise. 1804 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1805 BasicBlock *StoreBB, BasicBlock *EndBB) { 1806 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1807 if (!StoreToHoist) 1808 return nullptr; 1809 1810 // Volatile or atomic. 1811 if (!StoreToHoist->isSimple()) 1812 return nullptr; 1813 1814 Value *StorePtr = StoreToHoist->getPointerOperand(); 1815 1816 // Look for a store to the same pointer in BrBB. 1817 unsigned MaxNumInstToLookAt = 9; 1818 for (Instruction &CurI : reverse(*BrBB)) { 1819 if (!MaxNumInstToLookAt) 1820 break; 1821 // Skip debug info. 1822 if (isa<DbgInfoIntrinsic>(CurI)) 1823 continue; 1824 --MaxNumInstToLookAt; 1825 1826 // Could be calling an instruction that affects memory like free(). 1827 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1828 return nullptr; 1829 1830 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1831 // Found the previous store make sure it stores to the same location. 1832 if (SI->getPointerOperand() == StorePtr) 1833 // Found the previous store, return its value operand. 1834 return SI->getValueOperand(); 1835 return nullptr; // Unknown store. 1836 } 1837 } 1838 1839 return nullptr; 1840 } 1841 1842 /// \brief Speculate a conditional basic block flattening the CFG. 1843 /// 1844 /// Note that this is a very risky transform currently. Speculating 1845 /// instructions like this is most often not desirable. Instead, there is an MI 1846 /// pass which can do it with full awareness of the resource constraints. 1847 /// However, some cases are "obvious" and we should do directly. An example of 1848 /// this is speculating a single, reasonably cheap instruction. 1849 /// 1850 /// There is only one distinct advantage to flattening the CFG at the IR level: 1851 /// it makes very common but simplistic optimizations such as are common in 1852 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1853 /// modeling their effects with easier to reason about SSA value graphs. 1854 /// 1855 /// 1856 /// An illustration of this transform is turning this IR: 1857 /// \code 1858 /// BB: 1859 /// %cmp = icmp ult %x, %y 1860 /// br i1 %cmp, label %EndBB, label %ThenBB 1861 /// ThenBB: 1862 /// %sub = sub %x, %y 1863 /// br label BB2 1864 /// EndBB: 1865 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1866 /// ... 1867 /// \endcode 1868 /// 1869 /// Into this IR: 1870 /// \code 1871 /// BB: 1872 /// %cmp = icmp ult %x, %y 1873 /// %sub = sub %x, %y 1874 /// %cond = select i1 %cmp, 0, %sub 1875 /// ... 1876 /// \endcode 1877 /// 1878 /// \returns true if the conditional block is removed. 1879 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1880 const TargetTransformInfo &TTI) { 1881 // Be conservative for now. FP select instruction can often be expensive. 1882 Value *BrCond = BI->getCondition(); 1883 if (isa<FCmpInst>(BrCond)) 1884 return false; 1885 1886 BasicBlock *BB = BI->getParent(); 1887 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1888 1889 // If ThenBB is actually on the false edge of the conditional branch, remember 1890 // to swap the select operands later. 1891 bool Invert = false; 1892 if (ThenBB != BI->getSuccessor(0)) { 1893 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1894 Invert = true; 1895 } 1896 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1897 1898 // Keep a count of how many times instructions are used within CondBB when 1899 // they are candidates for sinking into CondBB. Specifically: 1900 // - They are defined in BB, and 1901 // - They have no side effects, and 1902 // - All of their uses are in CondBB. 1903 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1904 1905 unsigned SpeculationCost = 0; 1906 Value *SpeculatedStoreValue = nullptr; 1907 StoreInst *SpeculatedStore = nullptr; 1908 for (BasicBlock::iterator BBI = ThenBB->begin(), 1909 BBE = std::prev(ThenBB->end()); 1910 BBI != BBE; ++BBI) { 1911 Instruction *I = &*BBI; 1912 // Skip debug info. 1913 if (isa<DbgInfoIntrinsic>(I)) 1914 continue; 1915 1916 // Only speculatively execute a single instruction (not counting the 1917 // terminator) for now. 1918 ++SpeculationCost; 1919 if (SpeculationCost > 1) 1920 return false; 1921 1922 // Don't hoist the instruction if it's unsafe or expensive. 1923 if (!isSafeToSpeculativelyExecute(I) && 1924 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1925 I, BB, ThenBB, EndBB)))) 1926 return false; 1927 if (!SpeculatedStoreValue && 1928 ComputeSpeculationCost(I, TTI) > 1929 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1930 return false; 1931 1932 // Store the store speculation candidate. 1933 if (SpeculatedStoreValue) 1934 SpeculatedStore = cast<StoreInst>(I); 1935 1936 // Do not hoist the instruction if any of its operands are defined but not 1937 // used in BB. The transformation will prevent the operand from 1938 // being sunk into the use block. 1939 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1940 Instruction *OpI = dyn_cast<Instruction>(*i); 1941 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1942 continue; // Not a candidate for sinking. 1943 1944 ++SinkCandidateUseCounts[OpI]; 1945 } 1946 } 1947 1948 // Consider any sink candidates which are only used in CondBB as costs for 1949 // speculation. Note, while we iterate over a DenseMap here, we are summing 1950 // and so iteration order isn't significant. 1951 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1952 I = SinkCandidateUseCounts.begin(), 1953 E = SinkCandidateUseCounts.end(); 1954 I != E; ++I) 1955 if (I->first->getNumUses() == I->second) { 1956 ++SpeculationCost; 1957 if (SpeculationCost > 1) 1958 return false; 1959 } 1960 1961 // Check that the PHI nodes can be converted to selects. 1962 bool HaveRewritablePHIs = false; 1963 for (BasicBlock::iterator I = EndBB->begin(); 1964 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1965 Value *OrigV = PN->getIncomingValueForBlock(BB); 1966 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1967 1968 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1969 // Skip PHIs which are trivial. 1970 if (ThenV == OrigV) 1971 continue; 1972 1973 // Don't convert to selects if we could remove undefined behavior instead. 1974 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1975 passingValueIsAlwaysUndefined(ThenV, PN)) 1976 return false; 1977 1978 HaveRewritablePHIs = true; 1979 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1980 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1981 if (!OrigCE && !ThenCE) 1982 continue; // Known safe and cheap. 1983 1984 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1985 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1986 return false; 1987 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1988 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1989 unsigned MaxCost = 1990 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1991 if (OrigCost + ThenCost > MaxCost) 1992 return false; 1993 1994 // Account for the cost of an unfolded ConstantExpr which could end up 1995 // getting expanded into Instructions. 1996 // FIXME: This doesn't account for how many operations are combined in the 1997 // constant expression. 1998 ++SpeculationCost; 1999 if (SpeculationCost > 1) 2000 return false; 2001 } 2002 2003 // If there are no PHIs to process, bail early. This helps ensure idempotence 2004 // as well. 2005 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2006 return false; 2007 2008 // If we get here, we can hoist the instruction and if-convert. 2009 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2010 2011 // Insert a select of the value of the speculated store. 2012 if (SpeculatedStoreValue) { 2013 IRBuilder<NoFolder> Builder(BI); 2014 Value *TrueV = SpeculatedStore->getValueOperand(); 2015 Value *FalseV = SpeculatedStoreValue; 2016 if (Invert) 2017 std::swap(TrueV, FalseV); 2018 Value *S = Builder.CreateSelect( 2019 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2020 SpeculatedStore->setOperand(0, S); 2021 } 2022 2023 // Metadata can be dependent on the condition we are hoisting above. 2024 // Conservatively strip all metadata on the instruction. 2025 for (auto &I : *ThenBB) 2026 I.dropUnknownNonDebugMetadata(); 2027 2028 // Hoist the instructions. 2029 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2030 ThenBB->begin(), std::prev(ThenBB->end())); 2031 2032 // Insert selects and rewrite the PHI operands. 2033 IRBuilder<NoFolder> Builder(BI); 2034 for (BasicBlock::iterator I = EndBB->begin(); 2035 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2036 unsigned OrigI = PN->getBasicBlockIndex(BB); 2037 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 2038 Value *OrigV = PN->getIncomingValue(OrigI); 2039 Value *ThenV = PN->getIncomingValue(ThenI); 2040 2041 // Skip PHIs which are trivial. 2042 if (OrigV == ThenV) 2043 continue; 2044 2045 // Create a select whose true value is the speculatively executed value and 2046 // false value is the preexisting value. Swap them if the branch 2047 // destinations were inverted. 2048 Value *TrueV = ThenV, *FalseV = OrigV; 2049 if (Invert) 2050 std::swap(TrueV, FalseV); 2051 Value *V = Builder.CreateSelect( 2052 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 2053 PN->setIncomingValue(OrigI, V); 2054 PN->setIncomingValue(ThenI, V); 2055 } 2056 2057 ++NumSpeculations; 2058 return true; 2059 } 2060 2061 /// Return true if we can thread a branch across this block. 2062 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2063 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 2064 unsigned Size = 0; 2065 2066 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2067 if (isa<DbgInfoIntrinsic>(BBI)) 2068 continue; 2069 if (Size > 10) 2070 return false; // Don't clone large BB's. 2071 ++Size; 2072 2073 // We can only support instructions that do not define values that are 2074 // live outside of the current basic block. 2075 for (User *U : BBI->users()) { 2076 Instruction *UI = cast<Instruction>(U); 2077 if (UI->getParent() != BB || isa<PHINode>(UI)) 2078 return false; 2079 } 2080 2081 // Looks ok, continue checking. 2082 } 2083 2084 return true; 2085 } 2086 2087 /// If we have a conditional branch on a PHI node value that is defined in the 2088 /// same block as the branch and if any PHI entries are constants, thread edges 2089 /// corresponding to that entry to be branches to their ultimate destination. 2090 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 2091 BasicBlock *BB = BI->getParent(); 2092 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2093 // NOTE: we currently cannot transform this case if the PHI node is used 2094 // outside of the block. 2095 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2096 return false; 2097 2098 // Degenerate case of a single entry PHI. 2099 if (PN->getNumIncomingValues() == 1) { 2100 FoldSingleEntryPHINodes(PN->getParent()); 2101 return true; 2102 } 2103 2104 // Now we know that this block has multiple preds and two succs. 2105 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2106 return false; 2107 2108 // Can't fold blocks that contain noduplicate or convergent calls. 2109 if (any_of(*BB, [](const Instruction &I) { 2110 const CallInst *CI = dyn_cast<CallInst>(&I); 2111 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2112 })) 2113 return false; 2114 2115 // Okay, this is a simple enough basic block. See if any phi values are 2116 // constants. 2117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2118 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2119 if (!CB || !CB->getType()->isIntegerTy(1)) 2120 continue; 2121 2122 // Okay, we now know that all edges from PredBB should be revectored to 2123 // branch to RealDest. 2124 BasicBlock *PredBB = PN->getIncomingBlock(i); 2125 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2126 2127 if (RealDest == BB) 2128 continue; // Skip self loops. 2129 // Skip if the predecessor's terminator is an indirect branch. 2130 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2131 continue; 2132 2133 // The dest block might have PHI nodes, other predecessors and other 2134 // difficult cases. Instead of being smart about this, just insert a new 2135 // block that jumps to the destination block, effectively splitting 2136 // the edge we are about to create. 2137 BasicBlock *EdgeBB = 2138 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2139 RealDest->getParent(), RealDest); 2140 BranchInst::Create(RealDest, EdgeBB); 2141 2142 // Update PHI nodes. 2143 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2144 2145 // BB may have instructions that are being threaded over. Clone these 2146 // instructions into EdgeBB. We know that there will be no uses of the 2147 // cloned instructions outside of EdgeBB. 2148 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2149 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2150 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2151 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2152 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2153 continue; 2154 } 2155 // Clone the instruction. 2156 Instruction *N = BBI->clone(); 2157 if (BBI->hasName()) 2158 N->setName(BBI->getName() + ".c"); 2159 2160 // Update operands due to translation. 2161 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2162 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2163 if (PI != TranslateMap.end()) 2164 *i = PI->second; 2165 } 2166 2167 // Check for trivial simplification. 2168 if (Value *V = SimplifyInstruction(N, DL)) { 2169 if (!BBI->use_empty()) 2170 TranslateMap[&*BBI] = V; 2171 if (!N->mayHaveSideEffects()) { 2172 delete N; // Instruction folded away, don't need actual inst 2173 N = nullptr; 2174 } 2175 } else { 2176 if (!BBI->use_empty()) 2177 TranslateMap[&*BBI] = N; 2178 } 2179 // Insert the new instruction into its new home. 2180 if (N) 2181 EdgeBB->getInstList().insert(InsertPt, N); 2182 } 2183 2184 // Loop over all of the edges from PredBB to BB, changing them to branch 2185 // to EdgeBB instead. 2186 TerminatorInst *PredBBTI = PredBB->getTerminator(); 2187 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2188 if (PredBBTI->getSuccessor(i) == BB) { 2189 BB->removePredecessor(PredBB); 2190 PredBBTI->setSuccessor(i, EdgeBB); 2191 } 2192 2193 // Recurse, simplifying any other constants. 2194 return FoldCondBranchOnPHI(BI, DL) | true; 2195 } 2196 2197 return false; 2198 } 2199 2200 /// Given a BB that starts with the specified two-entry PHI node, 2201 /// see if we can eliminate it. 2202 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2203 const DataLayout &DL) { 2204 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2205 // statement", which has a very simple dominance structure. Basically, we 2206 // are trying to find the condition that is being branched on, which 2207 // subsequently causes this merge to happen. We really want control 2208 // dependence information for this check, but simplifycfg can't keep it up 2209 // to date, and this catches most of the cases we care about anyway. 2210 BasicBlock *BB = PN->getParent(); 2211 BasicBlock *IfTrue, *IfFalse; 2212 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2213 if (!IfCond || 2214 // Don't bother if the branch will be constant folded trivially. 2215 isa<ConstantInt>(IfCond)) 2216 return false; 2217 2218 // Okay, we found that we can merge this two-entry phi node into a select. 2219 // Doing so would require us to fold *all* two entry phi nodes in this block. 2220 // At some point this becomes non-profitable (particularly if the target 2221 // doesn't support cmov's). Only do this transformation if there are two or 2222 // fewer PHI nodes in this block. 2223 unsigned NumPhis = 0; 2224 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2225 if (NumPhis > 2) 2226 return false; 2227 2228 // Loop over the PHI's seeing if we can promote them all to select 2229 // instructions. While we are at it, keep track of the instructions 2230 // that need to be moved to the dominating block. 2231 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2232 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2233 MaxCostVal1 = PHINodeFoldingThreshold; 2234 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2235 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2236 2237 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2238 PHINode *PN = cast<PHINode>(II++); 2239 if (Value *V = SimplifyInstruction(PN, DL)) { 2240 PN->replaceAllUsesWith(V); 2241 PN->eraseFromParent(); 2242 continue; 2243 } 2244 2245 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2246 MaxCostVal0, TTI) || 2247 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2248 MaxCostVal1, TTI)) 2249 return false; 2250 } 2251 2252 // If we folded the first phi, PN dangles at this point. Refresh it. If 2253 // we ran out of PHIs then we simplified them all. 2254 PN = dyn_cast<PHINode>(BB->begin()); 2255 if (!PN) 2256 return true; 2257 2258 // Don't fold i1 branches on PHIs which contain binary operators. These can 2259 // often be turned into switches and other things. 2260 if (PN->getType()->isIntegerTy(1) && 2261 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2262 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2263 isa<BinaryOperator>(IfCond))) 2264 return false; 2265 2266 // If all PHI nodes are promotable, check to make sure that all instructions 2267 // in the predecessor blocks can be promoted as well. If not, we won't be able 2268 // to get rid of the control flow, so it's not worth promoting to select 2269 // instructions. 2270 BasicBlock *DomBlock = nullptr; 2271 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2272 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2273 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2274 IfBlock1 = nullptr; 2275 } else { 2276 DomBlock = *pred_begin(IfBlock1); 2277 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2278 ++I) 2279 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2280 // This is not an aggressive instruction that we can promote. 2281 // Because of this, we won't be able to get rid of the control flow, so 2282 // the xform is not worth it. 2283 return false; 2284 } 2285 } 2286 2287 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2288 IfBlock2 = nullptr; 2289 } else { 2290 DomBlock = *pred_begin(IfBlock2); 2291 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2292 ++I) 2293 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2294 // This is not an aggressive instruction that we can promote. 2295 // Because of this, we won't be able to get rid of the control flow, so 2296 // the xform is not worth it. 2297 return false; 2298 } 2299 } 2300 2301 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2302 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2303 2304 // If we can still promote the PHI nodes after this gauntlet of tests, 2305 // do all of the PHI's now. 2306 Instruction *InsertPt = DomBlock->getTerminator(); 2307 IRBuilder<NoFolder> Builder(InsertPt); 2308 2309 // Move all 'aggressive' instructions, which are defined in the 2310 // conditional parts of the if's up to the dominating block. 2311 if (IfBlock1) { 2312 for (auto &I : *IfBlock1) 2313 I.dropUnknownNonDebugMetadata(); 2314 DomBlock->getInstList().splice(InsertPt->getIterator(), 2315 IfBlock1->getInstList(), IfBlock1->begin(), 2316 IfBlock1->getTerminator()->getIterator()); 2317 } 2318 if (IfBlock2) { 2319 for (auto &I : *IfBlock2) 2320 I.dropUnknownNonDebugMetadata(); 2321 DomBlock->getInstList().splice(InsertPt->getIterator(), 2322 IfBlock2->getInstList(), IfBlock2->begin(), 2323 IfBlock2->getTerminator()->getIterator()); 2324 } 2325 2326 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2327 // Change the PHI node into a select instruction. 2328 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2329 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2330 2331 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2332 PN->replaceAllUsesWith(Sel); 2333 Sel->takeName(PN); 2334 PN->eraseFromParent(); 2335 } 2336 2337 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2338 // has been flattened. Change DomBlock to jump directly to our new block to 2339 // avoid other simplifycfg's kicking in on the diamond. 2340 TerminatorInst *OldTI = DomBlock->getTerminator(); 2341 Builder.SetInsertPoint(OldTI); 2342 Builder.CreateBr(BB); 2343 OldTI->eraseFromParent(); 2344 return true; 2345 } 2346 2347 /// If we found a conditional branch that goes to two returning blocks, 2348 /// try to merge them together into one return, 2349 /// introducing a select if the return values disagree. 2350 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2351 IRBuilder<> &Builder) { 2352 assert(BI->isConditional() && "Must be a conditional branch"); 2353 BasicBlock *TrueSucc = BI->getSuccessor(0); 2354 BasicBlock *FalseSucc = BI->getSuccessor(1); 2355 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2356 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2357 2358 // Check to ensure both blocks are empty (just a return) or optionally empty 2359 // with PHI nodes. If there are other instructions, merging would cause extra 2360 // computation on one path or the other. 2361 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2362 return false; 2363 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2364 return false; 2365 2366 Builder.SetInsertPoint(BI); 2367 // Okay, we found a branch that is going to two return nodes. If 2368 // there is no return value for this function, just change the 2369 // branch into a return. 2370 if (FalseRet->getNumOperands() == 0) { 2371 TrueSucc->removePredecessor(BI->getParent()); 2372 FalseSucc->removePredecessor(BI->getParent()); 2373 Builder.CreateRetVoid(); 2374 EraseTerminatorInstAndDCECond(BI); 2375 return true; 2376 } 2377 2378 // Otherwise, figure out what the true and false return values are 2379 // so we can insert a new select instruction. 2380 Value *TrueValue = TrueRet->getReturnValue(); 2381 Value *FalseValue = FalseRet->getReturnValue(); 2382 2383 // Unwrap any PHI nodes in the return blocks. 2384 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2385 if (TVPN->getParent() == TrueSucc) 2386 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2387 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2388 if (FVPN->getParent() == FalseSucc) 2389 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2390 2391 // In order for this transformation to be safe, we must be able to 2392 // unconditionally execute both operands to the return. This is 2393 // normally the case, but we could have a potentially-trapping 2394 // constant expression that prevents this transformation from being 2395 // safe. 2396 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2397 if (TCV->canTrap()) 2398 return false; 2399 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2400 if (FCV->canTrap()) 2401 return false; 2402 2403 // Okay, we collected all the mapped values and checked them for sanity, and 2404 // defined to really do this transformation. First, update the CFG. 2405 TrueSucc->removePredecessor(BI->getParent()); 2406 FalseSucc->removePredecessor(BI->getParent()); 2407 2408 // Insert select instructions where needed. 2409 Value *BrCond = BI->getCondition(); 2410 if (TrueValue) { 2411 // Insert a select if the results differ. 2412 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2413 } else if (isa<UndefValue>(TrueValue)) { 2414 TrueValue = FalseValue; 2415 } else { 2416 TrueValue = 2417 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2418 } 2419 } 2420 2421 Value *RI = 2422 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2423 2424 (void)RI; 2425 2426 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2427 << "\n " << *BI << "NewRet = " << *RI 2428 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2429 2430 EraseTerminatorInstAndDCECond(BI); 2431 2432 return true; 2433 } 2434 2435 /// Return true if the given instruction is available 2436 /// in its predecessor block. If yes, the instruction will be removed. 2437 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2438 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2439 return false; 2440 for (Instruction &I : *PB) { 2441 Instruction *PBI = &I; 2442 // Check whether Inst and PBI generate the same value. 2443 if (Inst->isIdenticalTo(PBI)) { 2444 Inst->replaceAllUsesWith(PBI); 2445 Inst->eraseFromParent(); 2446 return true; 2447 } 2448 } 2449 return false; 2450 } 2451 2452 /// Return true if either PBI or BI has branch weight available, and store 2453 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2454 /// not have branch weight, use 1:1 as its weight. 2455 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2456 uint64_t &PredTrueWeight, 2457 uint64_t &PredFalseWeight, 2458 uint64_t &SuccTrueWeight, 2459 uint64_t &SuccFalseWeight) { 2460 bool PredHasWeights = 2461 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2462 bool SuccHasWeights = 2463 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2464 if (PredHasWeights || SuccHasWeights) { 2465 if (!PredHasWeights) 2466 PredTrueWeight = PredFalseWeight = 1; 2467 if (!SuccHasWeights) 2468 SuccTrueWeight = SuccFalseWeight = 1; 2469 return true; 2470 } else { 2471 return false; 2472 } 2473 } 2474 2475 /// If this basic block is simple enough, and if a predecessor branches to us 2476 /// and one of our successors, fold the block into the predecessor and use 2477 /// logical operations to pick the right destination. 2478 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2479 BasicBlock *BB = BI->getParent(); 2480 2481 Instruction *Cond = nullptr; 2482 if (BI->isConditional()) 2483 Cond = dyn_cast<Instruction>(BI->getCondition()); 2484 else { 2485 // For unconditional branch, check for a simple CFG pattern, where 2486 // BB has a single predecessor and BB's successor is also its predecessor's 2487 // successor. If such pattern exisits, check for CSE between BB and its 2488 // predecessor. 2489 if (BasicBlock *PB = BB->getSinglePredecessor()) 2490 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2491 if (PBI->isConditional() && 2492 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2493 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2494 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2495 Instruction *Curr = &*I++; 2496 if (isa<CmpInst>(Curr)) { 2497 Cond = Curr; 2498 break; 2499 } 2500 // Quit if we can't remove this instruction. 2501 if (!checkCSEInPredecessor(Curr, PB)) 2502 return false; 2503 } 2504 } 2505 2506 if (!Cond) 2507 return false; 2508 } 2509 2510 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2511 Cond->getParent() != BB || !Cond->hasOneUse()) 2512 return false; 2513 2514 // Make sure the instruction after the condition is the cond branch. 2515 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2516 2517 // Ignore dbg intrinsics. 2518 while (isa<DbgInfoIntrinsic>(CondIt)) 2519 ++CondIt; 2520 2521 if (&*CondIt != BI) 2522 return false; 2523 2524 // Only allow this transformation if computing the condition doesn't involve 2525 // too many instructions and these involved instructions can be executed 2526 // unconditionally. We denote all involved instructions except the condition 2527 // as "bonus instructions", and only allow this transformation when the 2528 // number of the bonus instructions does not exceed a certain threshold. 2529 unsigned NumBonusInsts = 0; 2530 for (auto I = BB->begin(); Cond != &*I; ++I) { 2531 // Ignore dbg intrinsics. 2532 if (isa<DbgInfoIntrinsic>(I)) 2533 continue; 2534 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2535 return false; 2536 // I has only one use and can be executed unconditionally. 2537 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2538 if (User == nullptr || User->getParent() != BB) 2539 return false; 2540 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2541 // to use any other instruction, User must be an instruction between next(I) 2542 // and Cond. 2543 ++NumBonusInsts; 2544 // Early exits once we reach the limit. 2545 if (NumBonusInsts > BonusInstThreshold) 2546 return false; 2547 } 2548 2549 // Cond is known to be a compare or binary operator. Check to make sure that 2550 // neither operand is a potentially-trapping constant expression. 2551 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2552 if (CE->canTrap()) 2553 return false; 2554 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2555 if (CE->canTrap()) 2556 return false; 2557 2558 // Finally, don't infinitely unroll conditional loops. 2559 BasicBlock *TrueDest = BI->getSuccessor(0); 2560 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2561 if (TrueDest == BB || FalseDest == BB) 2562 return false; 2563 2564 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2565 BasicBlock *PredBlock = *PI; 2566 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2567 2568 // Check that we have two conditional branches. If there is a PHI node in 2569 // the common successor, verify that the same value flows in from both 2570 // blocks. 2571 SmallVector<PHINode *, 4> PHIs; 2572 if (!PBI || PBI->isUnconditional() || 2573 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2574 (!BI->isConditional() && 2575 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2576 continue; 2577 2578 // Determine if the two branches share a common destination. 2579 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2580 bool InvertPredCond = false; 2581 2582 if (BI->isConditional()) { 2583 if (PBI->getSuccessor(0) == TrueDest) { 2584 Opc = Instruction::Or; 2585 } else if (PBI->getSuccessor(1) == FalseDest) { 2586 Opc = Instruction::And; 2587 } else if (PBI->getSuccessor(0) == FalseDest) { 2588 Opc = Instruction::And; 2589 InvertPredCond = true; 2590 } else if (PBI->getSuccessor(1) == TrueDest) { 2591 Opc = Instruction::Or; 2592 InvertPredCond = true; 2593 } else { 2594 continue; 2595 } 2596 } else { 2597 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2598 continue; 2599 } 2600 2601 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2602 IRBuilder<> Builder(PBI); 2603 2604 // If we need to invert the condition in the pred block to match, do so now. 2605 if (InvertPredCond) { 2606 Value *NewCond = PBI->getCondition(); 2607 2608 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2609 CmpInst *CI = cast<CmpInst>(NewCond); 2610 CI->setPredicate(CI->getInversePredicate()); 2611 } else { 2612 NewCond = 2613 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2614 } 2615 2616 PBI->setCondition(NewCond); 2617 PBI->swapSuccessors(); 2618 } 2619 2620 // If we have bonus instructions, clone them into the predecessor block. 2621 // Note that there may be multiple predecessor blocks, so we cannot move 2622 // bonus instructions to a predecessor block. 2623 ValueToValueMapTy VMap; // maps original values to cloned values 2624 // We already make sure Cond is the last instruction before BI. Therefore, 2625 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2626 // instructions. 2627 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2628 if (isa<DbgInfoIntrinsic>(BonusInst)) 2629 continue; 2630 Instruction *NewBonusInst = BonusInst->clone(); 2631 RemapInstruction(NewBonusInst, VMap, 2632 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2633 VMap[&*BonusInst] = NewBonusInst; 2634 2635 // If we moved a load, we cannot any longer claim any knowledge about 2636 // its potential value. The previous information might have been valid 2637 // only given the branch precondition. 2638 // For an analogous reason, we must also drop all the metadata whose 2639 // semantics we don't understand. 2640 NewBonusInst->dropUnknownNonDebugMetadata(); 2641 2642 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2643 NewBonusInst->takeName(&*BonusInst); 2644 BonusInst->setName(BonusInst->getName() + ".old"); 2645 } 2646 2647 // Clone Cond into the predecessor basic block, and or/and the 2648 // two conditions together. 2649 Instruction *New = Cond->clone(); 2650 RemapInstruction(New, VMap, 2651 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2652 PredBlock->getInstList().insert(PBI->getIterator(), New); 2653 New->takeName(Cond); 2654 Cond->setName(New->getName() + ".old"); 2655 2656 if (BI->isConditional()) { 2657 Instruction *NewCond = cast<Instruction>( 2658 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2659 PBI->setCondition(NewCond); 2660 2661 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2662 bool HasWeights = 2663 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2664 SuccTrueWeight, SuccFalseWeight); 2665 SmallVector<uint64_t, 8> NewWeights; 2666 2667 if (PBI->getSuccessor(0) == BB) { 2668 if (HasWeights) { 2669 // PBI: br i1 %x, BB, FalseDest 2670 // BI: br i1 %y, TrueDest, FalseDest 2671 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2672 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2673 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2674 // TrueWeight for PBI * FalseWeight for BI. 2675 // We assume that total weights of a BranchInst can fit into 32 bits. 2676 // Therefore, we will not have overflow using 64-bit arithmetic. 2677 NewWeights.push_back(PredFalseWeight * 2678 (SuccFalseWeight + SuccTrueWeight) + 2679 PredTrueWeight * SuccFalseWeight); 2680 } 2681 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2682 PBI->setSuccessor(0, TrueDest); 2683 } 2684 if (PBI->getSuccessor(1) == BB) { 2685 if (HasWeights) { 2686 // PBI: br i1 %x, TrueDest, BB 2687 // BI: br i1 %y, TrueDest, FalseDest 2688 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2689 // FalseWeight for PBI * TrueWeight for BI. 2690 NewWeights.push_back(PredTrueWeight * 2691 (SuccFalseWeight + SuccTrueWeight) + 2692 PredFalseWeight * SuccTrueWeight); 2693 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2694 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2695 } 2696 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2697 PBI->setSuccessor(1, FalseDest); 2698 } 2699 if (NewWeights.size() == 2) { 2700 // Halve the weights if any of them cannot fit in an uint32_t 2701 FitWeights(NewWeights); 2702 2703 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2704 NewWeights.end()); 2705 PBI->setMetadata( 2706 LLVMContext::MD_prof, 2707 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2708 } else 2709 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2710 } else { 2711 // Update PHI nodes in the common successors. 2712 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2713 ConstantInt *PBI_C = cast<ConstantInt>( 2714 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2715 assert(PBI_C->getType()->isIntegerTy(1)); 2716 Instruction *MergedCond = nullptr; 2717 if (PBI->getSuccessor(0) == TrueDest) { 2718 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2719 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2720 // is false: !PBI_Cond and BI_Value 2721 Instruction *NotCond = cast<Instruction>( 2722 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2723 MergedCond = cast<Instruction>( 2724 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2725 if (PBI_C->isOne()) 2726 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2727 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2728 } else { 2729 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2730 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2731 // is false: PBI_Cond and BI_Value 2732 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2733 Instruction::And, PBI->getCondition(), New, "and.cond")); 2734 if (PBI_C->isOne()) { 2735 Instruction *NotCond = cast<Instruction>( 2736 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2737 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2738 Instruction::Or, NotCond, MergedCond, "or.cond")); 2739 } 2740 } 2741 // Update PHI Node. 2742 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2743 MergedCond); 2744 } 2745 // Change PBI from Conditional to Unconditional. 2746 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2747 EraseTerminatorInstAndDCECond(PBI); 2748 PBI = New_PBI; 2749 } 2750 2751 // TODO: If BB is reachable from all paths through PredBlock, then we 2752 // could replace PBI's branch probabilities with BI's. 2753 2754 // Copy any debug value intrinsics into the end of PredBlock. 2755 for (Instruction &I : *BB) 2756 if (isa<DbgInfoIntrinsic>(I)) 2757 I.clone()->insertBefore(PBI); 2758 2759 return true; 2760 } 2761 return false; 2762 } 2763 2764 // If there is only one store in BB1 and BB2, return it, otherwise return 2765 // nullptr. 2766 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2767 StoreInst *S = nullptr; 2768 for (auto *BB : {BB1, BB2}) { 2769 if (!BB) 2770 continue; 2771 for (auto &I : *BB) 2772 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2773 if (S) 2774 // Multiple stores seen. 2775 return nullptr; 2776 else 2777 S = SI; 2778 } 2779 } 2780 return S; 2781 } 2782 2783 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2784 Value *AlternativeV = nullptr) { 2785 // PHI is going to be a PHI node that allows the value V that is defined in 2786 // BB to be referenced in BB's only successor. 2787 // 2788 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2789 // doesn't matter to us what the other operand is (it'll never get used). We 2790 // could just create a new PHI with an undef incoming value, but that could 2791 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2792 // other PHI. So here we directly look for some PHI in BB's successor with V 2793 // as an incoming operand. If we find one, we use it, else we create a new 2794 // one. 2795 // 2796 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2797 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2798 // where OtherBB is the single other predecessor of BB's only successor. 2799 PHINode *PHI = nullptr; 2800 BasicBlock *Succ = BB->getSingleSuccessor(); 2801 2802 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2803 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2804 PHI = cast<PHINode>(I); 2805 if (!AlternativeV) 2806 break; 2807 2808 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2809 auto PredI = pred_begin(Succ); 2810 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2811 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2812 break; 2813 PHI = nullptr; 2814 } 2815 if (PHI) 2816 return PHI; 2817 2818 // If V is not an instruction defined in BB, just return it. 2819 if (!AlternativeV && 2820 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2821 return V; 2822 2823 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2824 PHI->addIncoming(V, BB); 2825 for (BasicBlock *PredBB : predecessors(Succ)) 2826 if (PredBB != BB) 2827 PHI->addIncoming( 2828 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2829 return PHI; 2830 } 2831 2832 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2833 BasicBlock *QTB, BasicBlock *QFB, 2834 BasicBlock *PostBB, Value *Address, 2835 bool InvertPCond, bool InvertQCond) { 2836 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2837 return Operator::getOpcode(&I) == Instruction::BitCast && 2838 I.getType()->isPointerTy(); 2839 }; 2840 2841 // If we're not in aggressive mode, we only optimize if we have some 2842 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2843 auto IsWorthwhile = [&](BasicBlock *BB) { 2844 if (!BB) 2845 return true; 2846 // Heuristic: if the block can be if-converted/phi-folded and the 2847 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2848 // thread this store. 2849 unsigned N = 0; 2850 for (auto &I : *BB) { 2851 // Cheap instructions viable for folding. 2852 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2853 isa<StoreInst>(I)) 2854 ++N; 2855 // Free instructions. 2856 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2857 IsaBitcastOfPointerType(I)) 2858 continue; 2859 else 2860 return false; 2861 } 2862 return N <= PHINodeFoldingThreshold; 2863 }; 2864 2865 if (!MergeCondStoresAggressively && 2866 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2867 !IsWorthwhile(QFB))) 2868 return false; 2869 2870 // For every pointer, there must be exactly two stores, one coming from 2871 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2872 // store (to any address) in PTB,PFB or QTB,QFB. 2873 // FIXME: We could relax this restriction with a bit more work and performance 2874 // testing. 2875 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2876 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2877 if (!PStore || !QStore) 2878 return false; 2879 2880 // Now check the stores are compatible. 2881 if (!QStore->isUnordered() || !PStore->isUnordered()) 2882 return false; 2883 2884 // Check that sinking the store won't cause program behavior changes. Sinking 2885 // the store out of the Q blocks won't change any behavior as we're sinking 2886 // from a block to its unconditional successor. But we're moving a store from 2887 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2888 // So we need to check that there are no aliasing loads or stores in 2889 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2890 // operations between PStore and the end of its parent block. 2891 // 2892 // The ideal way to do this is to query AliasAnalysis, but we don't 2893 // preserve AA currently so that is dangerous. Be super safe and just 2894 // check there are no other memory operations at all. 2895 for (auto &I : *QFB->getSinglePredecessor()) 2896 if (I.mayReadOrWriteMemory()) 2897 return false; 2898 for (auto &I : *QFB) 2899 if (&I != QStore && I.mayReadOrWriteMemory()) 2900 return false; 2901 if (QTB) 2902 for (auto &I : *QTB) 2903 if (&I != QStore && I.mayReadOrWriteMemory()) 2904 return false; 2905 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2906 I != E; ++I) 2907 if (&*I != PStore && I->mayReadOrWriteMemory()) 2908 return false; 2909 2910 // OK, we're going to sink the stores to PostBB. The store has to be 2911 // conditional though, so first create the predicate. 2912 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2913 ->getCondition(); 2914 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2915 ->getCondition(); 2916 2917 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2918 PStore->getParent()); 2919 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2920 QStore->getParent(), PPHI); 2921 2922 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2923 2924 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2925 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2926 2927 if (InvertPCond) 2928 PPred = QB.CreateNot(PPred); 2929 if (InvertQCond) 2930 QPred = QB.CreateNot(QPred); 2931 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2932 2933 auto *T = 2934 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2935 QB.SetInsertPoint(T); 2936 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2937 AAMDNodes AAMD; 2938 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2939 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2940 SI->setAAMetadata(AAMD); 2941 2942 QStore->eraseFromParent(); 2943 PStore->eraseFromParent(); 2944 2945 return true; 2946 } 2947 2948 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2949 // The intention here is to find diamonds or triangles (see below) where each 2950 // conditional block contains a store to the same address. Both of these 2951 // stores are conditional, so they can't be unconditionally sunk. But it may 2952 // be profitable to speculatively sink the stores into one merged store at the 2953 // end, and predicate the merged store on the union of the two conditions of 2954 // PBI and QBI. 2955 // 2956 // This can reduce the number of stores executed if both of the conditions are 2957 // true, and can allow the blocks to become small enough to be if-converted. 2958 // This optimization will also chain, so that ladders of test-and-set 2959 // sequences can be if-converted away. 2960 // 2961 // We only deal with simple diamonds or triangles: 2962 // 2963 // PBI or PBI or a combination of the two 2964 // / \ | \ 2965 // PTB PFB | PFB 2966 // \ / | / 2967 // QBI QBI 2968 // / \ | \ 2969 // QTB QFB | QFB 2970 // \ / | / 2971 // PostBB PostBB 2972 // 2973 // We model triangles as a type of diamond with a nullptr "true" block. 2974 // Triangles are canonicalized so that the fallthrough edge is represented by 2975 // a true condition, as in the diagram above. 2976 // 2977 BasicBlock *PTB = PBI->getSuccessor(0); 2978 BasicBlock *PFB = PBI->getSuccessor(1); 2979 BasicBlock *QTB = QBI->getSuccessor(0); 2980 BasicBlock *QFB = QBI->getSuccessor(1); 2981 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2982 2983 bool InvertPCond = false, InvertQCond = false; 2984 // Canonicalize fallthroughs to the true branches. 2985 if (PFB == QBI->getParent()) { 2986 std::swap(PFB, PTB); 2987 InvertPCond = true; 2988 } 2989 if (QFB == PostBB) { 2990 std::swap(QFB, QTB); 2991 InvertQCond = true; 2992 } 2993 2994 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2995 // and QFB may not. Model fallthroughs as a nullptr block. 2996 if (PTB == QBI->getParent()) 2997 PTB = nullptr; 2998 if (QTB == PostBB) 2999 QTB = nullptr; 3000 3001 // Legality bailouts. We must have at least the non-fallthrough blocks and 3002 // the post-dominating block, and the non-fallthroughs must only have one 3003 // predecessor. 3004 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3005 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3006 }; 3007 if (!PostBB || 3008 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3009 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3010 return false; 3011 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3012 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3013 return false; 3014 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 3015 return false; 3016 3017 // OK, this is a sequence of two diamonds or triangles. 3018 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3019 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3020 for (auto *BB : {PTB, PFB}) { 3021 if (!BB) 3022 continue; 3023 for (auto &I : *BB) 3024 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3025 PStoreAddresses.insert(SI->getPointerOperand()); 3026 } 3027 for (auto *BB : {QTB, QFB}) { 3028 if (!BB) 3029 continue; 3030 for (auto &I : *BB) 3031 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3032 QStoreAddresses.insert(SI->getPointerOperand()); 3033 } 3034 3035 set_intersect(PStoreAddresses, QStoreAddresses); 3036 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3037 // clear what it contains. 3038 auto &CommonAddresses = PStoreAddresses; 3039 3040 bool Changed = false; 3041 for (auto *Address : CommonAddresses) 3042 Changed |= mergeConditionalStoreToAddress( 3043 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 3044 return Changed; 3045 } 3046 3047 /// If we have a conditional branch as a predecessor of another block, 3048 /// this function tries to simplify it. We know 3049 /// that PBI and BI are both conditional branches, and BI is in one of the 3050 /// successor blocks of PBI - PBI branches to BI. 3051 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3052 const DataLayout &DL) { 3053 assert(PBI->isConditional() && BI->isConditional()); 3054 BasicBlock *BB = BI->getParent(); 3055 3056 // If this block ends with a branch instruction, and if there is a 3057 // predecessor that ends on a branch of the same condition, make 3058 // this conditional branch redundant. 3059 if (PBI->getCondition() == BI->getCondition() && 3060 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3061 // Okay, the outcome of this conditional branch is statically 3062 // knowable. If this block had a single pred, handle specially. 3063 if (BB->getSinglePredecessor()) { 3064 // Turn this into a branch on constant. 3065 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3066 BI->setCondition( 3067 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3068 return true; // Nuke the branch on constant. 3069 } 3070 3071 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3072 // in the constant and simplify the block result. Subsequent passes of 3073 // simplifycfg will thread the block. 3074 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3075 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3076 PHINode *NewPN = PHINode::Create( 3077 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3078 BI->getCondition()->getName() + ".pr", &BB->front()); 3079 // Okay, we're going to insert the PHI node. Since PBI is not the only 3080 // predecessor, compute the PHI'd conditional value for all of the preds. 3081 // Any predecessor where the condition is not computable we keep symbolic. 3082 for (pred_iterator PI = PB; PI != PE; ++PI) { 3083 BasicBlock *P = *PI; 3084 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3085 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3086 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3087 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3088 NewPN->addIncoming( 3089 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3090 P); 3091 } else { 3092 NewPN->addIncoming(BI->getCondition(), P); 3093 } 3094 } 3095 3096 BI->setCondition(NewPN); 3097 return true; 3098 } 3099 } 3100 3101 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3102 if (CE->canTrap()) 3103 return false; 3104 3105 // If both branches are conditional and both contain stores to the same 3106 // address, remove the stores from the conditionals and create a conditional 3107 // merged store at the end. 3108 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 3109 return true; 3110 3111 // If this is a conditional branch in an empty block, and if any 3112 // predecessors are a conditional branch to one of our destinations, 3113 // fold the conditions into logical ops and one cond br. 3114 BasicBlock::iterator BBI = BB->begin(); 3115 // Ignore dbg intrinsics. 3116 while (isa<DbgInfoIntrinsic>(BBI)) 3117 ++BBI; 3118 if (&*BBI != BI) 3119 return false; 3120 3121 int PBIOp, BIOp; 3122 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3123 PBIOp = 0; 3124 BIOp = 0; 3125 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3126 PBIOp = 0; 3127 BIOp = 1; 3128 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3129 PBIOp = 1; 3130 BIOp = 0; 3131 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3132 PBIOp = 1; 3133 BIOp = 1; 3134 } else { 3135 return false; 3136 } 3137 3138 // Check to make sure that the other destination of this branch 3139 // isn't BB itself. If so, this is an infinite loop that will 3140 // keep getting unwound. 3141 if (PBI->getSuccessor(PBIOp) == BB) 3142 return false; 3143 3144 // Do not perform this transformation if it would require 3145 // insertion of a large number of select instructions. For targets 3146 // without predication/cmovs, this is a big pessimization. 3147 3148 // Also do not perform this transformation if any phi node in the common 3149 // destination block can trap when reached by BB or PBB (PR17073). In that 3150 // case, it would be unsafe to hoist the operation into a select instruction. 3151 3152 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3153 unsigned NumPhis = 0; 3154 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3155 ++II, ++NumPhis) { 3156 if (NumPhis > 2) // Disable this xform. 3157 return false; 3158 3159 PHINode *PN = cast<PHINode>(II); 3160 Value *BIV = PN->getIncomingValueForBlock(BB); 3161 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3162 if (CE->canTrap()) 3163 return false; 3164 3165 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3166 Value *PBIV = PN->getIncomingValue(PBBIdx); 3167 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3168 if (CE->canTrap()) 3169 return false; 3170 } 3171 3172 // Finally, if everything is ok, fold the branches to logical ops. 3173 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3174 3175 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3176 << "AND: " << *BI->getParent()); 3177 3178 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3179 // branch in it, where one edge (OtherDest) goes back to itself but the other 3180 // exits. We don't *know* that the program avoids the infinite loop 3181 // (even though that seems likely). If we do this xform naively, we'll end up 3182 // recursively unpeeling the loop. Since we know that (after the xform is 3183 // done) that the block *is* infinite if reached, we just make it an obviously 3184 // infinite loop with no cond branch. 3185 if (OtherDest == BB) { 3186 // Insert it at the end of the function, because it's either code, 3187 // or it won't matter if it's hot. :) 3188 BasicBlock *InfLoopBlock = 3189 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3190 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3191 OtherDest = InfLoopBlock; 3192 } 3193 3194 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3195 3196 // BI may have other predecessors. Because of this, we leave 3197 // it alone, but modify PBI. 3198 3199 // Make sure we get to CommonDest on True&True directions. 3200 Value *PBICond = PBI->getCondition(); 3201 IRBuilder<NoFolder> Builder(PBI); 3202 if (PBIOp) 3203 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3204 3205 Value *BICond = BI->getCondition(); 3206 if (BIOp) 3207 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3208 3209 // Merge the conditions. 3210 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3211 3212 // Modify PBI to branch on the new condition to the new dests. 3213 PBI->setCondition(Cond); 3214 PBI->setSuccessor(0, CommonDest); 3215 PBI->setSuccessor(1, OtherDest); 3216 3217 // Update branch weight for PBI. 3218 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3219 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3220 bool HasWeights = 3221 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3222 SuccTrueWeight, SuccFalseWeight); 3223 if (HasWeights) { 3224 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3225 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3226 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3227 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3228 // The weight to CommonDest should be PredCommon * SuccTotal + 3229 // PredOther * SuccCommon. 3230 // The weight to OtherDest should be PredOther * SuccOther. 3231 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3232 PredOther * SuccCommon, 3233 PredOther * SuccOther}; 3234 // Halve the weights if any of them cannot fit in an uint32_t 3235 FitWeights(NewWeights); 3236 3237 PBI->setMetadata(LLVMContext::MD_prof, 3238 MDBuilder(BI->getContext()) 3239 .createBranchWeights(NewWeights[0], NewWeights[1])); 3240 } 3241 3242 // OtherDest may have phi nodes. If so, add an entry from PBI's 3243 // block that are identical to the entries for BI's block. 3244 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3245 3246 // We know that the CommonDest already had an edge from PBI to 3247 // it. If it has PHIs though, the PHIs may have different 3248 // entries for BB and PBI's BB. If so, insert a select to make 3249 // them agree. 3250 PHINode *PN; 3251 for (BasicBlock::iterator II = CommonDest->begin(); 3252 (PN = dyn_cast<PHINode>(II)); ++II) { 3253 Value *BIV = PN->getIncomingValueForBlock(BB); 3254 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3255 Value *PBIV = PN->getIncomingValue(PBBIdx); 3256 if (BIV != PBIV) { 3257 // Insert a select in PBI to pick the right value. 3258 SelectInst *NV = cast<SelectInst>( 3259 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3260 PN->setIncomingValue(PBBIdx, NV); 3261 // Although the select has the same condition as PBI, the original branch 3262 // weights for PBI do not apply to the new select because the select's 3263 // 'logical' edges are incoming edges of the phi that is eliminated, not 3264 // the outgoing edges of PBI. 3265 if (HasWeights) { 3266 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3267 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3268 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3269 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3270 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3271 // The weight to PredOtherDest should be PredOther * SuccCommon. 3272 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3273 PredOther * SuccCommon}; 3274 3275 FitWeights(NewWeights); 3276 3277 NV->setMetadata(LLVMContext::MD_prof, 3278 MDBuilder(BI->getContext()) 3279 .createBranchWeights(NewWeights[0], NewWeights[1])); 3280 } 3281 } 3282 } 3283 3284 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3285 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3286 3287 // This basic block is probably dead. We know it has at least 3288 // one fewer predecessor. 3289 return true; 3290 } 3291 3292 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3293 // true or to FalseBB if Cond is false. 3294 // Takes care of updating the successors and removing the old terminator. 3295 // Also makes sure not to introduce new successors by assuming that edges to 3296 // non-successor TrueBBs and FalseBBs aren't reachable. 3297 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3298 BasicBlock *TrueBB, BasicBlock *FalseBB, 3299 uint32_t TrueWeight, 3300 uint32_t FalseWeight) { 3301 // Remove any superfluous successor edges from the CFG. 3302 // First, figure out which successors to preserve. 3303 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3304 // successor. 3305 BasicBlock *KeepEdge1 = TrueBB; 3306 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3307 3308 // Then remove the rest. 3309 for (BasicBlock *Succ : OldTerm->successors()) { 3310 // Make sure only to keep exactly one copy of each edge. 3311 if (Succ == KeepEdge1) 3312 KeepEdge1 = nullptr; 3313 else if (Succ == KeepEdge2) 3314 KeepEdge2 = nullptr; 3315 else 3316 Succ->removePredecessor(OldTerm->getParent(), 3317 /*DontDeleteUselessPHIs=*/true); 3318 } 3319 3320 IRBuilder<> Builder(OldTerm); 3321 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3322 3323 // Insert an appropriate new terminator. 3324 if (!KeepEdge1 && !KeepEdge2) { 3325 if (TrueBB == FalseBB) 3326 // We were only looking for one successor, and it was present. 3327 // Create an unconditional branch to it. 3328 Builder.CreateBr(TrueBB); 3329 else { 3330 // We found both of the successors we were looking for. 3331 // Create a conditional branch sharing the condition of the select. 3332 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3333 if (TrueWeight != FalseWeight) 3334 NewBI->setMetadata(LLVMContext::MD_prof, 3335 MDBuilder(OldTerm->getContext()) 3336 .createBranchWeights(TrueWeight, FalseWeight)); 3337 } 3338 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3339 // Neither of the selected blocks were successors, so this 3340 // terminator must be unreachable. 3341 new UnreachableInst(OldTerm->getContext(), OldTerm); 3342 } else { 3343 // One of the selected values was a successor, but the other wasn't. 3344 // Insert an unconditional branch to the one that was found; 3345 // the edge to the one that wasn't must be unreachable. 3346 if (!KeepEdge1) 3347 // Only TrueBB was found. 3348 Builder.CreateBr(TrueBB); 3349 else 3350 // Only FalseBB was found. 3351 Builder.CreateBr(FalseBB); 3352 } 3353 3354 EraseTerminatorInstAndDCECond(OldTerm); 3355 return true; 3356 } 3357 3358 // Replaces 3359 // (switch (select cond, X, Y)) on constant X, Y 3360 // with a branch - conditional if X and Y lead to distinct BBs, 3361 // unconditional otherwise. 3362 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3363 // Check for constant integer values in the select. 3364 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3365 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3366 if (!TrueVal || !FalseVal) 3367 return false; 3368 3369 // Find the relevant condition and destinations. 3370 Value *Condition = Select->getCondition(); 3371 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3372 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3373 3374 // Get weight for TrueBB and FalseBB. 3375 uint32_t TrueWeight = 0, FalseWeight = 0; 3376 SmallVector<uint64_t, 8> Weights; 3377 bool HasWeights = HasBranchWeights(SI); 3378 if (HasWeights) { 3379 GetBranchWeights(SI, Weights); 3380 if (Weights.size() == 1 + SI->getNumCases()) { 3381 TrueWeight = 3382 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3383 FalseWeight = 3384 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3385 } 3386 } 3387 3388 // Perform the actual simplification. 3389 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3390 FalseWeight); 3391 } 3392 3393 // Replaces 3394 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3395 // blockaddress(@fn, BlockB))) 3396 // with 3397 // (br cond, BlockA, BlockB). 3398 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3399 // Check that both operands of the select are block addresses. 3400 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3401 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3402 if (!TBA || !FBA) 3403 return false; 3404 3405 // Extract the actual blocks. 3406 BasicBlock *TrueBB = TBA->getBasicBlock(); 3407 BasicBlock *FalseBB = FBA->getBasicBlock(); 3408 3409 // Perform the actual simplification. 3410 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3411 0); 3412 } 3413 3414 /// This is called when we find an icmp instruction 3415 /// (a seteq/setne with a constant) as the only instruction in a 3416 /// block that ends with an uncond branch. We are looking for a very specific 3417 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3418 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3419 /// default value goes to an uncond block with a seteq in it, we get something 3420 /// like: 3421 /// 3422 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3423 /// DEFAULT: 3424 /// %tmp = icmp eq i8 %A, 92 3425 /// br label %end 3426 /// end: 3427 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3428 /// 3429 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3430 /// the PHI, merging the third icmp into the switch. 3431 static bool TryToSimplifyUncondBranchWithICmpInIt( 3432 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3433 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3434 AssumptionCache *AC) { 3435 BasicBlock *BB = ICI->getParent(); 3436 3437 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3438 // complex. 3439 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3440 return false; 3441 3442 Value *V = ICI->getOperand(0); 3443 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3444 3445 // The pattern we're looking for is where our only predecessor is a switch on 3446 // 'V' and this block is the default case for the switch. In this case we can 3447 // fold the compared value into the switch to simplify things. 3448 BasicBlock *Pred = BB->getSinglePredecessor(); 3449 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3450 return false; 3451 3452 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3453 if (SI->getCondition() != V) 3454 return false; 3455 3456 // If BB is reachable on a non-default case, then we simply know the value of 3457 // V in this block. Substitute it and constant fold the icmp instruction 3458 // away. 3459 if (SI->getDefaultDest() != BB) { 3460 ConstantInt *VVal = SI->findCaseDest(BB); 3461 assert(VVal && "Should have a unique destination value"); 3462 ICI->setOperand(0, VVal); 3463 3464 if (Value *V = SimplifyInstruction(ICI, DL)) { 3465 ICI->replaceAllUsesWith(V); 3466 ICI->eraseFromParent(); 3467 } 3468 // BB is now empty, so it is likely to simplify away. 3469 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3470 } 3471 3472 // Ok, the block is reachable from the default dest. If the constant we're 3473 // comparing exists in one of the other edges, then we can constant fold ICI 3474 // and zap it. 3475 if (SI->findCaseValue(Cst) != SI->case_default()) { 3476 Value *V; 3477 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3478 V = ConstantInt::getFalse(BB->getContext()); 3479 else 3480 V = ConstantInt::getTrue(BB->getContext()); 3481 3482 ICI->replaceAllUsesWith(V); 3483 ICI->eraseFromParent(); 3484 // BB is now empty, so it is likely to simplify away. 3485 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3486 } 3487 3488 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3489 // the block. 3490 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3491 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3492 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3493 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3494 return false; 3495 3496 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3497 // true in the PHI. 3498 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3499 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3500 3501 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3502 std::swap(DefaultCst, NewCst); 3503 3504 // Replace ICI (which is used by the PHI for the default value) with true or 3505 // false depending on if it is EQ or NE. 3506 ICI->replaceAllUsesWith(DefaultCst); 3507 ICI->eraseFromParent(); 3508 3509 // Okay, the switch goes to this block on a default value. Add an edge from 3510 // the switch to the merge point on the compared value. 3511 BasicBlock *NewBB = 3512 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3513 SmallVector<uint64_t, 8> Weights; 3514 bool HasWeights = HasBranchWeights(SI); 3515 if (HasWeights) { 3516 GetBranchWeights(SI, Weights); 3517 if (Weights.size() == 1 + SI->getNumCases()) { 3518 // Split weight for default case to case for "Cst". 3519 Weights[0] = (Weights[0] + 1) >> 1; 3520 Weights.push_back(Weights[0]); 3521 3522 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3523 SI->setMetadata( 3524 LLVMContext::MD_prof, 3525 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3526 } 3527 } 3528 SI->addCase(Cst, NewBB); 3529 3530 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3531 Builder.SetInsertPoint(NewBB); 3532 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3533 Builder.CreateBr(SuccBlock); 3534 PHIUse->addIncoming(NewCst, NewBB); 3535 return true; 3536 } 3537 3538 /// The specified branch is a conditional branch. 3539 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3540 /// fold it into a switch instruction if so. 3541 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3542 const DataLayout &DL) { 3543 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3544 if (!Cond) 3545 return false; 3546 3547 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3548 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3549 // 'setne's and'ed together, collect them. 3550 3551 // Try to gather values from a chain of and/or to be turned into a switch 3552 ConstantComparesGatherer ConstantCompare(Cond, DL); 3553 // Unpack the result 3554 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3555 Value *CompVal = ConstantCompare.CompValue; 3556 unsigned UsedICmps = ConstantCompare.UsedICmps; 3557 Value *ExtraCase = ConstantCompare.Extra; 3558 3559 // If we didn't have a multiply compared value, fail. 3560 if (!CompVal) 3561 return false; 3562 3563 // Avoid turning single icmps into a switch. 3564 if (UsedICmps <= 1) 3565 return false; 3566 3567 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3568 3569 // There might be duplicate constants in the list, which the switch 3570 // instruction can't handle, remove them now. 3571 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3572 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3573 3574 // If Extra was used, we require at least two switch values to do the 3575 // transformation. A switch with one value is just a conditional branch. 3576 if (ExtraCase && Values.size() < 2) 3577 return false; 3578 3579 // TODO: Preserve branch weight metadata, similarly to how 3580 // FoldValueComparisonIntoPredecessors preserves it. 3581 3582 // Figure out which block is which destination. 3583 BasicBlock *DefaultBB = BI->getSuccessor(1); 3584 BasicBlock *EdgeBB = BI->getSuccessor(0); 3585 if (!TrueWhenEqual) 3586 std::swap(DefaultBB, EdgeBB); 3587 3588 BasicBlock *BB = BI->getParent(); 3589 3590 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3591 << " cases into SWITCH. BB is:\n" 3592 << *BB); 3593 3594 // If there are any extra values that couldn't be folded into the switch 3595 // then we evaluate them with an explicit branch first. Split the block 3596 // right before the condbr to handle it. 3597 if (ExtraCase) { 3598 BasicBlock *NewBB = 3599 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3600 // Remove the uncond branch added to the old block. 3601 TerminatorInst *OldTI = BB->getTerminator(); 3602 Builder.SetInsertPoint(OldTI); 3603 3604 if (TrueWhenEqual) 3605 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3606 else 3607 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3608 3609 OldTI->eraseFromParent(); 3610 3611 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3612 // for the edge we just added. 3613 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3614 3615 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3616 << "\nEXTRABB = " << *BB); 3617 BB = NewBB; 3618 } 3619 3620 Builder.SetInsertPoint(BI); 3621 // Convert pointer to int before we switch. 3622 if (CompVal->getType()->isPointerTy()) { 3623 CompVal = Builder.CreatePtrToInt( 3624 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3625 } 3626 3627 // Create the new switch instruction now. 3628 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3629 3630 // Add all of the 'cases' to the switch instruction. 3631 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3632 New->addCase(Values[i], EdgeBB); 3633 3634 // We added edges from PI to the EdgeBB. As such, if there were any 3635 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3636 // the number of edges added. 3637 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3638 PHINode *PN = cast<PHINode>(BBI); 3639 Value *InVal = PN->getIncomingValueForBlock(BB); 3640 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3641 PN->addIncoming(InVal, BB); 3642 } 3643 3644 // Erase the old branch instruction. 3645 EraseTerminatorInstAndDCECond(BI); 3646 3647 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3648 return true; 3649 } 3650 3651 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3652 if (isa<PHINode>(RI->getValue())) 3653 return SimplifyCommonResume(RI); 3654 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3655 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3656 // The resume must unwind the exception that caused control to branch here. 3657 return SimplifySingleResume(RI); 3658 3659 return false; 3660 } 3661 3662 // Simplify resume that is shared by several landing pads (phi of landing pad). 3663 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3664 BasicBlock *BB = RI->getParent(); 3665 3666 // Check that there are no other instructions except for debug intrinsics 3667 // between the phi of landing pads (RI->getValue()) and resume instruction. 3668 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3669 E = RI->getIterator(); 3670 while (++I != E) 3671 if (!isa<DbgInfoIntrinsic>(I)) 3672 return false; 3673 3674 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3675 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3676 3677 // Check incoming blocks to see if any of them are trivial. 3678 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3679 Idx++) { 3680 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3681 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3682 3683 // If the block has other successors, we can not delete it because 3684 // it has other dependents. 3685 if (IncomingBB->getUniqueSuccessor() != BB) 3686 continue; 3687 3688 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3689 // Not the landing pad that caused the control to branch here. 3690 if (IncomingValue != LandingPad) 3691 continue; 3692 3693 bool isTrivial = true; 3694 3695 I = IncomingBB->getFirstNonPHI()->getIterator(); 3696 E = IncomingBB->getTerminator()->getIterator(); 3697 while (++I != E) 3698 if (!isa<DbgInfoIntrinsic>(I)) { 3699 isTrivial = false; 3700 break; 3701 } 3702 3703 if (isTrivial) 3704 TrivialUnwindBlocks.insert(IncomingBB); 3705 } 3706 3707 // If no trivial unwind blocks, don't do any simplifications. 3708 if (TrivialUnwindBlocks.empty()) 3709 return false; 3710 3711 // Turn all invokes that unwind here into calls. 3712 for (auto *TrivialBB : TrivialUnwindBlocks) { 3713 // Blocks that will be simplified should be removed from the phi node. 3714 // Note there could be multiple edges to the resume block, and we need 3715 // to remove them all. 3716 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3717 BB->removePredecessor(TrivialBB, true); 3718 3719 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3720 PI != PE;) { 3721 BasicBlock *Pred = *PI++; 3722 removeUnwindEdge(Pred); 3723 } 3724 3725 // In each SimplifyCFG run, only the current processed block can be erased. 3726 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3727 // of erasing TrivialBB, we only remove the branch to the common resume 3728 // block so that we can later erase the resume block since it has no 3729 // predecessors. 3730 TrivialBB->getTerminator()->eraseFromParent(); 3731 new UnreachableInst(RI->getContext(), TrivialBB); 3732 } 3733 3734 // Delete the resume block if all its predecessors have been removed. 3735 if (pred_empty(BB)) 3736 BB->eraseFromParent(); 3737 3738 return !TrivialUnwindBlocks.empty(); 3739 } 3740 3741 // Simplify resume that is only used by a single (non-phi) landing pad. 3742 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3743 BasicBlock *BB = RI->getParent(); 3744 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3745 assert(RI->getValue() == LPInst && 3746 "Resume must unwind the exception that caused control to here"); 3747 3748 // Check that there are no other instructions except for debug intrinsics. 3749 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3750 while (++I != E) 3751 if (!isa<DbgInfoIntrinsic>(I)) 3752 return false; 3753 3754 // Turn all invokes that unwind here into calls and delete the basic block. 3755 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3756 BasicBlock *Pred = *PI++; 3757 removeUnwindEdge(Pred); 3758 } 3759 3760 // The landingpad is now unreachable. Zap it. 3761 BB->eraseFromParent(); 3762 if (LoopHeaders) 3763 LoopHeaders->erase(BB); 3764 return true; 3765 } 3766 3767 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3768 // If this is a trivial cleanup pad that executes no instructions, it can be 3769 // eliminated. If the cleanup pad continues to the caller, any predecessor 3770 // that is an EH pad will be updated to continue to the caller and any 3771 // predecessor that terminates with an invoke instruction will have its invoke 3772 // instruction converted to a call instruction. If the cleanup pad being 3773 // simplified does not continue to the caller, each predecessor will be 3774 // updated to continue to the unwind destination of the cleanup pad being 3775 // simplified. 3776 BasicBlock *BB = RI->getParent(); 3777 CleanupPadInst *CPInst = RI->getCleanupPad(); 3778 if (CPInst->getParent() != BB) 3779 // This isn't an empty cleanup. 3780 return false; 3781 3782 // We cannot kill the pad if it has multiple uses. This typically arises 3783 // from unreachable basic blocks. 3784 if (!CPInst->hasOneUse()) 3785 return false; 3786 3787 // Check that there are no other instructions except for benign intrinsics. 3788 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3789 while (++I != E) { 3790 auto *II = dyn_cast<IntrinsicInst>(I); 3791 if (!II) 3792 return false; 3793 3794 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3795 switch (IntrinsicID) { 3796 case Intrinsic::dbg_declare: 3797 case Intrinsic::dbg_value: 3798 case Intrinsic::lifetime_end: 3799 break; 3800 default: 3801 return false; 3802 } 3803 } 3804 3805 // If the cleanup return we are simplifying unwinds to the caller, this will 3806 // set UnwindDest to nullptr. 3807 BasicBlock *UnwindDest = RI->getUnwindDest(); 3808 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3809 3810 // We're about to remove BB from the control flow. Before we do, sink any 3811 // PHINodes into the unwind destination. Doing this before changing the 3812 // control flow avoids some potentially slow checks, since we can currently 3813 // be certain that UnwindDest and BB have no common predecessors (since they 3814 // are both EH pads). 3815 if (UnwindDest) { 3816 // First, go through the PHI nodes in UnwindDest and update any nodes that 3817 // reference the block we are removing 3818 for (BasicBlock::iterator I = UnwindDest->begin(), 3819 IE = DestEHPad->getIterator(); 3820 I != IE; ++I) { 3821 PHINode *DestPN = cast<PHINode>(I); 3822 3823 int Idx = DestPN->getBasicBlockIndex(BB); 3824 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3825 assert(Idx != -1); 3826 // This PHI node has an incoming value that corresponds to a control 3827 // path through the cleanup pad we are removing. If the incoming 3828 // value is in the cleanup pad, it must be a PHINode (because we 3829 // verified above that the block is otherwise empty). Otherwise, the 3830 // value is either a constant or a value that dominates the cleanup 3831 // pad being removed. 3832 // 3833 // Because BB and UnwindDest are both EH pads, all of their 3834 // predecessors must unwind to these blocks, and since no instruction 3835 // can have multiple unwind destinations, there will be no overlap in 3836 // incoming blocks between SrcPN and DestPN. 3837 Value *SrcVal = DestPN->getIncomingValue(Idx); 3838 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3839 3840 // Remove the entry for the block we are deleting. 3841 DestPN->removeIncomingValue(Idx, false); 3842 3843 if (SrcPN && SrcPN->getParent() == BB) { 3844 // If the incoming value was a PHI node in the cleanup pad we are 3845 // removing, we need to merge that PHI node's incoming values into 3846 // DestPN. 3847 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3848 SrcIdx != SrcE; ++SrcIdx) { 3849 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3850 SrcPN->getIncomingBlock(SrcIdx)); 3851 } 3852 } else { 3853 // Otherwise, the incoming value came from above BB and 3854 // so we can just reuse it. We must associate all of BB's 3855 // predecessors with this value. 3856 for (auto *pred : predecessors(BB)) { 3857 DestPN->addIncoming(SrcVal, pred); 3858 } 3859 } 3860 } 3861 3862 // Sink any remaining PHI nodes directly into UnwindDest. 3863 Instruction *InsertPt = DestEHPad; 3864 for (BasicBlock::iterator I = BB->begin(), 3865 IE = BB->getFirstNonPHI()->getIterator(); 3866 I != IE;) { 3867 // The iterator must be incremented here because the instructions are 3868 // being moved to another block. 3869 PHINode *PN = cast<PHINode>(I++); 3870 if (PN->use_empty()) 3871 // If the PHI node has no uses, just leave it. It will be erased 3872 // when we erase BB below. 3873 continue; 3874 3875 // Otherwise, sink this PHI node into UnwindDest. 3876 // Any predecessors to UnwindDest which are not already represented 3877 // must be back edges which inherit the value from the path through 3878 // BB. In this case, the PHI value must reference itself. 3879 for (auto *pred : predecessors(UnwindDest)) 3880 if (pred != BB) 3881 PN->addIncoming(PN, pred); 3882 PN->moveBefore(InsertPt); 3883 } 3884 } 3885 3886 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3887 // The iterator must be updated here because we are removing this pred. 3888 BasicBlock *PredBB = *PI++; 3889 if (UnwindDest == nullptr) { 3890 removeUnwindEdge(PredBB); 3891 } else { 3892 TerminatorInst *TI = PredBB->getTerminator(); 3893 TI->replaceUsesOfWith(BB, UnwindDest); 3894 } 3895 } 3896 3897 // The cleanup pad is now unreachable. Zap it. 3898 BB->eraseFromParent(); 3899 return true; 3900 } 3901 3902 // Try to merge two cleanuppads together. 3903 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3904 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3905 // with. 3906 BasicBlock *UnwindDest = RI->getUnwindDest(); 3907 if (!UnwindDest) 3908 return false; 3909 3910 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3911 // be safe to merge without code duplication. 3912 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3913 return false; 3914 3915 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3916 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3917 if (!SuccessorCleanupPad) 3918 return false; 3919 3920 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3921 // Replace any uses of the successor cleanupad with the predecessor pad 3922 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3923 // funclet bundle operands. 3924 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3925 // Remove the old cleanuppad. 3926 SuccessorCleanupPad->eraseFromParent(); 3927 // Now, we simply replace the cleanupret with a branch to the unwind 3928 // destination. 3929 BranchInst::Create(UnwindDest, RI->getParent()); 3930 RI->eraseFromParent(); 3931 3932 return true; 3933 } 3934 3935 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3936 // It is possible to transiantly have an undef cleanuppad operand because we 3937 // have deleted some, but not all, dead blocks. 3938 // Eventually, this block will be deleted. 3939 if (isa<UndefValue>(RI->getOperand(0))) 3940 return false; 3941 3942 if (mergeCleanupPad(RI)) 3943 return true; 3944 3945 if (removeEmptyCleanup(RI)) 3946 return true; 3947 3948 return false; 3949 } 3950 3951 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3952 BasicBlock *BB = RI->getParent(); 3953 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3954 return false; 3955 3956 // Find predecessors that end with branches. 3957 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3958 SmallVector<BranchInst *, 8> CondBranchPreds; 3959 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3960 BasicBlock *P = *PI; 3961 TerminatorInst *PTI = P->getTerminator(); 3962 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3963 if (BI->isUnconditional()) 3964 UncondBranchPreds.push_back(P); 3965 else 3966 CondBranchPreds.push_back(BI); 3967 } 3968 } 3969 3970 // If we found some, do the transformation! 3971 if (!UncondBranchPreds.empty() && DupRet) { 3972 while (!UncondBranchPreds.empty()) { 3973 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3974 DEBUG(dbgs() << "FOLDING: " << *BB 3975 << "INTO UNCOND BRANCH PRED: " << *Pred); 3976 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3977 } 3978 3979 // If we eliminated all predecessors of the block, delete the block now. 3980 if (pred_empty(BB)) { 3981 // We know there are no successors, so just nuke the block. 3982 BB->eraseFromParent(); 3983 if (LoopHeaders) 3984 LoopHeaders->erase(BB); 3985 } 3986 3987 return true; 3988 } 3989 3990 // Check out all of the conditional branches going to this return 3991 // instruction. If any of them just select between returns, change the 3992 // branch itself into a select/return pair. 3993 while (!CondBranchPreds.empty()) { 3994 BranchInst *BI = CondBranchPreds.pop_back_val(); 3995 3996 // Check to see if the non-BB successor is also a return block. 3997 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3998 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3999 SimplifyCondBranchToTwoReturns(BI, Builder)) 4000 return true; 4001 } 4002 return false; 4003 } 4004 4005 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4006 BasicBlock *BB = UI->getParent(); 4007 4008 bool Changed = false; 4009 4010 // If there are any instructions immediately before the unreachable that can 4011 // be removed, do so. 4012 while (UI->getIterator() != BB->begin()) { 4013 BasicBlock::iterator BBI = UI->getIterator(); 4014 --BBI; 4015 // Do not delete instructions that can have side effects which might cause 4016 // the unreachable to not be reachable; specifically, calls and volatile 4017 // operations may have this effect. 4018 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4019 break; 4020 4021 if (BBI->mayHaveSideEffects()) { 4022 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4023 if (SI->isVolatile()) 4024 break; 4025 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4026 if (LI->isVolatile()) 4027 break; 4028 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4029 if (RMWI->isVolatile()) 4030 break; 4031 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4032 if (CXI->isVolatile()) 4033 break; 4034 } else if (isa<CatchPadInst>(BBI)) { 4035 // A catchpad may invoke exception object constructors and such, which 4036 // in some languages can be arbitrary code, so be conservative by 4037 // default. 4038 // For CoreCLR, it just involves a type test, so can be removed. 4039 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4040 EHPersonality::CoreCLR) 4041 break; 4042 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4043 !isa<LandingPadInst>(BBI)) { 4044 break; 4045 } 4046 // Note that deleting LandingPad's here is in fact okay, although it 4047 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4048 // all the predecessors of this block will be the unwind edges of Invokes, 4049 // and we can therefore guarantee this block will be erased. 4050 } 4051 4052 // Delete this instruction (any uses are guaranteed to be dead) 4053 if (!BBI->use_empty()) 4054 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4055 BBI->eraseFromParent(); 4056 Changed = true; 4057 } 4058 4059 // If the unreachable instruction is the first in the block, take a gander 4060 // at all of the predecessors of this instruction, and simplify them. 4061 if (&BB->front() != UI) 4062 return Changed; 4063 4064 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4065 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4066 TerminatorInst *TI = Preds[i]->getTerminator(); 4067 IRBuilder<> Builder(TI); 4068 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4069 if (BI->isUnconditional()) { 4070 if (BI->getSuccessor(0) == BB) { 4071 new UnreachableInst(TI->getContext(), TI); 4072 TI->eraseFromParent(); 4073 Changed = true; 4074 } 4075 } else { 4076 if (BI->getSuccessor(0) == BB) { 4077 Builder.CreateBr(BI->getSuccessor(1)); 4078 EraseTerminatorInstAndDCECond(BI); 4079 } else if (BI->getSuccessor(1) == BB) { 4080 Builder.CreateBr(BI->getSuccessor(0)); 4081 EraseTerminatorInstAndDCECond(BI); 4082 Changed = true; 4083 } 4084 } 4085 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4086 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 4087 ++i) 4088 if (i.getCaseSuccessor() == BB) { 4089 BB->removePredecessor(SI->getParent()); 4090 SI->removeCase(i); 4091 --i; 4092 --e; 4093 Changed = true; 4094 } 4095 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4096 if (II->getUnwindDest() == BB) { 4097 removeUnwindEdge(TI->getParent()); 4098 Changed = true; 4099 } 4100 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4101 if (CSI->getUnwindDest() == BB) { 4102 removeUnwindEdge(TI->getParent()); 4103 Changed = true; 4104 continue; 4105 } 4106 4107 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4108 E = CSI->handler_end(); 4109 I != E; ++I) { 4110 if (*I == BB) { 4111 CSI->removeHandler(I); 4112 --I; 4113 --E; 4114 Changed = true; 4115 } 4116 } 4117 if (CSI->getNumHandlers() == 0) { 4118 BasicBlock *CatchSwitchBB = CSI->getParent(); 4119 if (CSI->hasUnwindDest()) { 4120 // Redirect preds to the unwind dest 4121 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4122 } else { 4123 // Rewrite all preds to unwind to caller (or from invoke to call). 4124 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4125 for (BasicBlock *EHPred : EHPreds) 4126 removeUnwindEdge(EHPred); 4127 } 4128 // The catchswitch is no longer reachable. 4129 new UnreachableInst(CSI->getContext(), CSI); 4130 CSI->eraseFromParent(); 4131 Changed = true; 4132 } 4133 } else if (isa<CleanupReturnInst>(TI)) { 4134 new UnreachableInst(TI->getContext(), TI); 4135 TI->eraseFromParent(); 4136 Changed = true; 4137 } 4138 } 4139 4140 // If this block is now dead, remove it. 4141 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4142 // We know there are no successors, so just nuke the block. 4143 BB->eraseFromParent(); 4144 if (LoopHeaders) 4145 LoopHeaders->erase(BB); 4146 return true; 4147 } 4148 4149 return Changed; 4150 } 4151 4152 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4153 assert(Cases.size() >= 1); 4154 4155 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4156 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4157 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4158 return false; 4159 } 4160 return true; 4161 } 4162 4163 /// Turn a switch with two reachable destinations into an integer range 4164 /// comparison and branch. 4165 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4166 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4167 4168 bool HasDefault = 4169 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4170 4171 // Partition the cases into two sets with different destinations. 4172 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4173 BasicBlock *DestB = nullptr; 4174 SmallVector<ConstantInt *, 16> CasesA; 4175 SmallVector<ConstantInt *, 16> CasesB; 4176 4177 for (SwitchInst::CaseIt I : SI->cases()) { 4178 BasicBlock *Dest = I.getCaseSuccessor(); 4179 if (!DestA) 4180 DestA = Dest; 4181 if (Dest == DestA) { 4182 CasesA.push_back(I.getCaseValue()); 4183 continue; 4184 } 4185 if (!DestB) 4186 DestB = Dest; 4187 if (Dest == DestB) { 4188 CasesB.push_back(I.getCaseValue()); 4189 continue; 4190 } 4191 return false; // More than two destinations. 4192 } 4193 4194 assert(DestA && DestB && 4195 "Single-destination switch should have been folded."); 4196 assert(DestA != DestB); 4197 assert(DestB != SI->getDefaultDest()); 4198 assert(!CasesB.empty() && "There must be non-default cases."); 4199 assert(!CasesA.empty() || HasDefault); 4200 4201 // Figure out if one of the sets of cases form a contiguous range. 4202 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4203 BasicBlock *ContiguousDest = nullptr; 4204 BasicBlock *OtherDest = nullptr; 4205 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4206 ContiguousCases = &CasesA; 4207 ContiguousDest = DestA; 4208 OtherDest = DestB; 4209 } else if (CasesAreContiguous(CasesB)) { 4210 ContiguousCases = &CasesB; 4211 ContiguousDest = DestB; 4212 OtherDest = DestA; 4213 } else 4214 return false; 4215 4216 // Start building the compare and branch. 4217 4218 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4219 Constant *NumCases = 4220 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4221 4222 Value *Sub = SI->getCondition(); 4223 if (!Offset->isNullValue()) 4224 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4225 4226 Value *Cmp; 4227 // If NumCases overflowed, then all possible values jump to the successor. 4228 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4229 Cmp = ConstantInt::getTrue(SI->getContext()); 4230 else 4231 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4232 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4233 4234 // Update weight for the newly-created conditional branch. 4235 if (HasBranchWeights(SI)) { 4236 SmallVector<uint64_t, 8> Weights; 4237 GetBranchWeights(SI, Weights); 4238 if (Weights.size() == 1 + SI->getNumCases()) { 4239 uint64_t TrueWeight = 0; 4240 uint64_t FalseWeight = 0; 4241 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4242 if (SI->getSuccessor(I) == ContiguousDest) 4243 TrueWeight += Weights[I]; 4244 else 4245 FalseWeight += Weights[I]; 4246 } 4247 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4248 TrueWeight /= 2; 4249 FalseWeight /= 2; 4250 } 4251 NewBI->setMetadata(LLVMContext::MD_prof, 4252 MDBuilder(SI->getContext()) 4253 .createBranchWeights((uint32_t)TrueWeight, 4254 (uint32_t)FalseWeight)); 4255 } 4256 } 4257 4258 // Prune obsolete incoming values off the successors' PHI nodes. 4259 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4260 unsigned PreviousEdges = ContiguousCases->size(); 4261 if (ContiguousDest == SI->getDefaultDest()) 4262 ++PreviousEdges; 4263 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4264 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4265 } 4266 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4267 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4268 if (OtherDest == SI->getDefaultDest()) 4269 ++PreviousEdges; 4270 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4271 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4272 } 4273 4274 // Drop the switch. 4275 SI->eraseFromParent(); 4276 4277 return true; 4278 } 4279 4280 /// Compute masked bits for the condition of a switch 4281 /// and use it to remove dead cases. 4282 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4283 const DataLayout &DL) { 4284 Value *Cond = SI->getCondition(); 4285 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4286 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4287 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4288 4289 // We can also eliminate cases by determining that their values are outside of 4290 // the limited range of the condition based on how many significant (non-sign) 4291 // bits are in the condition value. 4292 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4293 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4294 4295 // Gather dead cases. 4296 SmallVector<ConstantInt *, 8> DeadCases; 4297 for (auto &Case : SI->cases()) { 4298 APInt CaseVal = Case.getCaseValue()->getValue(); 4299 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4300 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4301 DeadCases.push_back(Case.getCaseValue()); 4302 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4303 } 4304 } 4305 4306 // If we can prove that the cases must cover all possible values, the 4307 // default destination becomes dead and we can remove it. If we know some 4308 // of the bits in the value, we can use that to more precisely compute the 4309 // number of possible unique case values. 4310 bool HasDefault = 4311 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4312 const unsigned NumUnknownBits = 4313 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4314 assert(NumUnknownBits <= Bits); 4315 if (HasDefault && DeadCases.empty() && 4316 NumUnknownBits < 64 /* avoid overflow */ && 4317 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4318 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4319 BasicBlock *NewDefault = 4320 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4321 SI->setDefaultDest(&*NewDefault); 4322 SplitBlock(&*NewDefault, &NewDefault->front()); 4323 auto *OldTI = NewDefault->getTerminator(); 4324 new UnreachableInst(SI->getContext(), OldTI); 4325 EraseTerminatorInstAndDCECond(OldTI); 4326 return true; 4327 } 4328 4329 SmallVector<uint64_t, 8> Weights; 4330 bool HasWeight = HasBranchWeights(SI); 4331 if (HasWeight) { 4332 GetBranchWeights(SI, Weights); 4333 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4334 } 4335 4336 // Remove dead cases from the switch. 4337 for (ConstantInt *DeadCase : DeadCases) { 4338 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4339 assert(Case != SI->case_default() && 4340 "Case was not found. Probably mistake in DeadCases forming."); 4341 if (HasWeight) { 4342 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4343 Weights.pop_back(); 4344 } 4345 4346 // Prune unused values from PHI nodes. 4347 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4348 SI->removeCase(Case); 4349 } 4350 if (HasWeight && Weights.size() >= 2) { 4351 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4352 SI->setMetadata(LLVMContext::MD_prof, 4353 MDBuilder(SI->getParent()->getContext()) 4354 .createBranchWeights(MDWeights)); 4355 } 4356 4357 return !DeadCases.empty(); 4358 } 4359 4360 /// If BB would be eligible for simplification by 4361 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4362 /// by an unconditional branch), look at the phi node for BB in the successor 4363 /// block and see if the incoming value is equal to CaseValue. If so, return 4364 /// the phi node, and set PhiIndex to BB's index in the phi node. 4365 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4366 BasicBlock *BB, int *PhiIndex) { 4367 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4368 return nullptr; // BB must be empty to be a candidate for simplification. 4369 if (!BB->getSinglePredecessor()) 4370 return nullptr; // BB must be dominated by the switch. 4371 4372 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4373 if (!Branch || !Branch->isUnconditional()) 4374 return nullptr; // Terminator must be unconditional branch. 4375 4376 BasicBlock *Succ = Branch->getSuccessor(0); 4377 4378 BasicBlock::iterator I = Succ->begin(); 4379 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4380 int Idx = PHI->getBasicBlockIndex(BB); 4381 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4382 4383 Value *InValue = PHI->getIncomingValue(Idx); 4384 if (InValue != CaseValue) 4385 continue; 4386 4387 *PhiIndex = Idx; 4388 return PHI; 4389 } 4390 4391 return nullptr; 4392 } 4393 4394 /// Try to forward the condition of a switch instruction to a phi node 4395 /// dominated by the switch, if that would mean that some of the destination 4396 /// blocks of the switch can be folded away. 4397 /// Returns true if a change is made. 4398 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4399 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4400 ForwardingNodesMap ForwardingNodes; 4401 4402 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4403 ++I) { 4404 ConstantInt *CaseValue = I.getCaseValue(); 4405 BasicBlock *CaseDest = I.getCaseSuccessor(); 4406 4407 int PhiIndex; 4408 PHINode *PHI = 4409 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4410 if (!PHI) 4411 continue; 4412 4413 ForwardingNodes[PHI].push_back(PhiIndex); 4414 } 4415 4416 bool Changed = false; 4417 4418 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4419 E = ForwardingNodes.end(); 4420 I != E; ++I) { 4421 PHINode *Phi = I->first; 4422 SmallVectorImpl<int> &Indexes = I->second; 4423 4424 if (Indexes.size() < 2) 4425 continue; 4426 4427 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4428 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4429 Changed = true; 4430 } 4431 4432 return Changed; 4433 } 4434 4435 /// Return true if the backend will be able to handle 4436 /// initializing an array of constants like C. 4437 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4438 if (C->isThreadDependent()) 4439 return false; 4440 if (C->isDLLImportDependent()) 4441 return false; 4442 4443 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4444 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4445 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4446 return false; 4447 4448 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4449 if (!CE->isGEPWithNoNotionalOverIndexing()) 4450 return false; 4451 4452 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4453 return false; 4454 4455 return true; 4456 } 4457 4458 /// If V is a Constant, return it. Otherwise, try to look up 4459 /// its constant value in ConstantPool, returning 0 if it's not there. 4460 static Constant * 4461 LookupConstant(Value *V, 4462 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4463 if (Constant *C = dyn_cast<Constant>(V)) 4464 return C; 4465 return ConstantPool.lookup(V); 4466 } 4467 4468 /// Try to fold instruction I into a constant. This works for 4469 /// simple instructions such as binary operations where both operands are 4470 /// constant or can be replaced by constants from the ConstantPool. Returns the 4471 /// resulting constant on success, 0 otherwise. 4472 static Constant * 4473 ConstantFold(Instruction *I, const DataLayout &DL, 4474 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4475 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4476 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4477 if (!A) 4478 return nullptr; 4479 if (A->isAllOnesValue()) 4480 return LookupConstant(Select->getTrueValue(), ConstantPool); 4481 if (A->isNullValue()) 4482 return LookupConstant(Select->getFalseValue(), ConstantPool); 4483 return nullptr; 4484 } 4485 4486 SmallVector<Constant *, 4> COps; 4487 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4488 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4489 COps.push_back(A); 4490 else 4491 return nullptr; 4492 } 4493 4494 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4495 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4496 COps[1], DL); 4497 } 4498 4499 return ConstantFoldInstOperands(I, COps, DL); 4500 } 4501 4502 /// Try to determine the resulting constant values in phi nodes 4503 /// at the common destination basic block, *CommonDest, for one of the case 4504 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4505 /// case), of a switch instruction SI. 4506 static bool 4507 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4508 BasicBlock **CommonDest, 4509 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 4510 const DataLayout &DL, const TargetTransformInfo &TTI) { 4511 // The block from which we enter the common destination. 4512 BasicBlock *Pred = SI->getParent(); 4513 4514 // If CaseDest is empty except for some side-effect free instructions through 4515 // which we can constant-propagate the CaseVal, continue to its successor. 4516 SmallDenseMap<Value *, Constant *> ConstantPool; 4517 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4518 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4519 ++I) { 4520 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4521 // If the terminator is a simple branch, continue to the next block. 4522 if (T->getNumSuccessors() != 1 || T->isExceptional()) 4523 return false; 4524 Pred = CaseDest; 4525 CaseDest = T->getSuccessor(0); 4526 } else if (isa<DbgInfoIntrinsic>(I)) { 4527 // Skip debug intrinsic. 4528 continue; 4529 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4530 // Instruction is side-effect free and constant. 4531 4532 // If the instruction has uses outside this block or a phi node slot for 4533 // the block, it is not safe to bypass the instruction since it would then 4534 // no longer dominate all its uses. 4535 for (auto &Use : I->uses()) { 4536 User *User = Use.getUser(); 4537 if (Instruction *I = dyn_cast<Instruction>(User)) 4538 if (I->getParent() == CaseDest) 4539 continue; 4540 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4541 if (Phi->getIncomingBlock(Use) == CaseDest) 4542 continue; 4543 return false; 4544 } 4545 4546 ConstantPool.insert(std::make_pair(&*I, C)); 4547 } else { 4548 break; 4549 } 4550 } 4551 4552 // If we did not have a CommonDest before, use the current one. 4553 if (!*CommonDest) 4554 *CommonDest = CaseDest; 4555 // If the destination isn't the common one, abort. 4556 if (CaseDest != *CommonDest) 4557 return false; 4558 4559 // Get the values for this case from phi nodes in the destination block. 4560 BasicBlock::iterator I = (*CommonDest)->begin(); 4561 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4562 int Idx = PHI->getBasicBlockIndex(Pred); 4563 if (Idx == -1) 4564 continue; 4565 4566 Constant *ConstVal = 4567 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4568 if (!ConstVal) 4569 return false; 4570 4571 // Be conservative about which kinds of constants we support. 4572 if (!ValidLookupTableConstant(ConstVal, TTI)) 4573 return false; 4574 4575 Res.push_back(std::make_pair(PHI, ConstVal)); 4576 } 4577 4578 return Res.size() > 0; 4579 } 4580 4581 // Helper function used to add CaseVal to the list of cases that generate 4582 // Result. 4583 static void MapCaseToResult(ConstantInt *CaseVal, 4584 SwitchCaseResultVectorTy &UniqueResults, 4585 Constant *Result) { 4586 for (auto &I : UniqueResults) { 4587 if (I.first == Result) { 4588 I.second.push_back(CaseVal); 4589 return; 4590 } 4591 } 4592 UniqueResults.push_back( 4593 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4594 } 4595 4596 // Helper function that initializes a map containing 4597 // results for the PHI node of the common destination block for a switch 4598 // instruction. Returns false if multiple PHI nodes have been found or if 4599 // there is not a common destination block for the switch. 4600 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4601 BasicBlock *&CommonDest, 4602 SwitchCaseResultVectorTy &UniqueResults, 4603 Constant *&DefaultResult, 4604 const DataLayout &DL, 4605 const TargetTransformInfo &TTI) { 4606 for (auto &I : SI->cases()) { 4607 ConstantInt *CaseVal = I.getCaseValue(); 4608 4609 // Resulting value at phi nodes for this case value. 4610 SwitchCaseResultsTy Results; 4611 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4612 DL, TTI)) 4613 return false; 4614 4615 // Only one value per case is permitted 4616 if (Results.size() > 1) 4617 return false; 4618 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4619 4620 // Check the PHI consistency. 4621 if (!PHI) 4622 PHI = Results[0].first; 4623 else if (PHI != Results[0].first) 4624 return false; 4625 } 4626 // Find the default result value. 4627 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4628 BasicBlock *DefaultDest = SI->getDefaultDest(); 4629 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4630 DL, TTI); 4631 // If the default value is not found abort unless the default destination 4632 // is unreachable. 4633 DefaultResult = 4634 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4635 if ((!DefaultResult && 4636 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4637 return false; 4638 4639 return true; 4640 } 4641 4642 // Helper function that checks if it is possible to transform a switch with only 4643 // two cases (or two cases + default) that produces a result into a select. 4644 // Example: 4645 // switch (a) { 4646 // case 10: %0 = icmp eq i32 %a, 10 4647 // return 10; %1 = select i1 %0, i32 10, i32 4 4648 // case 20: ----> %2 = icmp eq i32 %a, 20 4649 // return 2; %3 = select i1 %2, i32 2, i32 %1 4650 // default: 4651 // return 4; 4652 // } 4653 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4654 Constant *DefaultResult, Value *Condition, 4655 IRBuilder<> &Builder) { 4656 assert(ResultVector.size() == 2 && 4657 "We should have exactly two unique results at this point"); 4658 // If we are selecting between only two cases transform into a simple 4659 // select or a two-way select if default is possible. 4660 if (ResultVector[0].second.size() == 1 && 4661 ResultVector[1].second.size() == 1) { 4662 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4663 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4664 4665 bool DefaultCanTrigger = DefaultResult; 4666 Value *SelectValue = ResultVector[1].first; 4667 if (DefaultCanTrigger) { 4668 Value *const ValueCompare = 4669 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4670 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4671 DefaultResult, "switch.select"); 4672 } 4673 Value *const ValueCompare = 4674 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4675 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4676 SelectValue, "switch.select"); 4677 } 4678 4679 return nullptr; 4680 } 4681 4682 // Helper function to cleanup a switch instruction that has been converted into 4683 // a select, fixing up PHI nodes and basic blocks. 4684 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4685 Value *SelectValue, 4686 IRBuilder<> &Builder) { 4687 BasicBlock *SelectBB = SI->getParent(); 4688 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4689 PHI->removeIncomingValue(SelectBB); 4690 PHI->addIncoming(SelectValue, SelectBB); 4691 4692 Builder.CreateBr(PHI->getParent()); 4693 4694 // Remove the switch. 4695 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4696 BasicBlock *Succ = SI->getSuccessor(i); 4697 4698 if (Succ == PHI->getParent()) 4699 continue; 4700 Succ->removePredecessor(SelectBB); 4701 } 4702 SI->eraseFromParent(); 4703 } 4704 4705 /// If the switch is only used to initialize one or more 4706 /// phi nodes in a common successor block with only two different 4707 /// constant values, replace the switch with select. 4708 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4709 AssumptionCache *AC, const DataLayout &DL, 4710 const TargetTransformInfo &TTI) { 4711 Value *const Cond = SI->getCondition(); 4712 PHINode *PHI = nullptr; 4713 BasicBlock *CommonDest = nullptr; 4714 Constant *DefaultResult; 4715 SwitchCaseResultVectorTy UniqueResults; 4716 // Collect all the cases that will deliver the same value from the switch. 4717 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4718 DL, TTI)) 4719 return false; 4720 // Selects choose between maximum two values. 4721 if (UniqueResults.size() != 2) 4722 return false; 4723 assert(PHI != nullptr && "PHI for value select not found"); 4724 4725 Builder.SetInsertPoint(SI); 4726 Value *SelectValue = 4727 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4728 if (SelectValue) { 4729 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4730 return true; 4731 } 4732 // The switch couldn't be converted into a select. 4733 return false; 4734 } 4735 4736 namespace { 4737 /// This class represents a lookup table that can be used to replace a switch. 4738 class SwitchLookupTable { 4739 public: 4740 /// Create a lookup table to use as a switch replacement with the contents 4741 /// of Values, using DefaultValue to fill any holes in the table. 4742 SwitchLookupTable( 4743 Module &M, uint64_t TableSize, ConstantInt *Offset, 4744 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4745 Constant *DefaultValue, const DataLayout &DL); 4746 4747 /// Build instructions with Builder to retrieve the value at 4748 /// the position given by Index in the lookup table. 4749 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4750 4751 /// Return true if a table with TableSize elements of 4752 /// type ElementType would fit in a target-legal register. 4753 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4754 Type *ElementType); 4755 4756 private: 4757 // Depending on the contents of the table, it can be represented in 4758 // different ways. 4759 enum { 4760 // For tables where each element contains the same value, we just have to 4761 // store that single value and return it for each lookup. 4762 SingleValueKind, 4763 4764 // For tables where there is a linear relationship between table index 4765 // and values. We calculate the result with a simple multiplication 4766 // and addition instead of a table lookup. 4767 LinearMapKind, 4768 4769 // For small tables with integer elements, we can pack them into a bitmap 4770 // that fits into a target-legal register. Values are retrieved by 4771 // shift and mask operations. 4772 BitMapKind, 4773 4774 // The table is stored as an array of values. Values are retrieved by load 4775 // instructions from the table. 4776 ArrayKind 4777 } Kind; 4778 4779 // For SingleValueKind, this is the single value. 4780 Constant *SingleValue; 4781 4782 // For BitMapKind, this is the bitmap. 4783 ConstantInt *BitMap; 4784 IntegerType *BitMapElementTy; 4785 4786 // For LinearMapKind, these are the constants used to derive the value. 4787 ConstantInt *LinearOffset; 4788 ConstantInt *LinearMultiplier; 4789 4790 // For ArrayKind, this is the array. 4791 GlobalVariable *Array; 4792 }; 4793 } 4794 4795 SwitchLookupTable::SwitchLookupTable( 4796 Module &M, uint64_t TableSize, ConstantInt *Offset, 4797 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4798 Constant *DefaultValue, const DataLayout &DL) 4799 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4800 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4801 assert(Values.size() && "Can't build lookup table without values!"); 4802 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4803 4804 // If all values in the table are equal, this is that value. 4805 SingleValue = Values.begin()->second; 4806 4807 Type *ValueType = Values.begin()->second->getType(); 4808 4809 // Build up the table contents. 4810 SmallVector<Constant *, 64> TableContents(TableSize); 4811 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4812 ConstantInt *CaseVal = Values[I].first; 4813 Constant *CaseRes = Values[I].second; 4814 assert(CaseRes->getType() == ValueType); 4815 4816 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4817 TableContents[Idx] = CaseRes; 4818 4819 if (CaseRes != SingleValue) 4820 SingleValue = nullptr; 4821 } 4822 4823 // Fill in any holes in the table with the default result. 4824 if (Values.size() < TableSize) { 4825 assert(DefaultValue && 4826 "Need a default value to fill the lookup table holes."); 4827 assert(DefaultValue->getType() == ValueType); 4828 for (uint64_t I = 0; I < TableSize; ++I) { 4829 if (!TableContents[I]) 4830 TableContents[I] = DefaultValue; 4831 } 4832 4833 if (DefaultValue != SingleValue) 4834 SingleValue = nullptr; 4835 } 4836 4837 // If each element in the table contains the same value, we only need to store 4838 // that single value. 4839 if (SingleValue) { 4840 Kind = SingleValueKind; 4841 return; 4842 } 4843 4844 // Check if we can derive the value with a linear transformation from the 4845 // table index. 4846 if (isa<IntegerType>(ValueType)) { 4847 bool LinearMappingPossible = true; 4848 APInt PrevVal; 4849 APInt DistToPrev; 4850 assert(TableSize >= 2 && "Should be a SingleValue table."); 4851 // Check if there is the same distance between two consecutive values. 4852 for (uint64_t I = 0; I < TableSize; ++I) { 4853 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4854 if (!ConstVal) { 4855 // This is an undef. We could deal with it, but undefs in lookup tables 4856 // are very seldom. It's probably not worth the additional complexity. 4857 LinearMappingPossible = false; 4858 break; 4859 } 4860 APInt Val = ConstVal->getValue(); 4861 if (I != 0) { 4862 APInt Dist = Val - PrevVal; 4863 if (I == 1) { 4864 DistToPrev = Dist; 4865 } else if (Dist != DistToPrev) { 4866 LinearMappingPossible = false; 4867 break; 4868 } 4869 } 4870 PrevVal = Val; 4871 } 4872 if (LinearMappingPossible) { 4873 LinearOffset = cast<ConstantInt>(TableContents[0]); 4874 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4875 Kind = LinearMapKind; 4876 ++NumLinearMaps; 4877 return; 4878 } 4879 } 4880 4881 // If the type is integer and the table fits in a register, build a bitmap. 4882 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4883 IntegerType *IT = cast<IntegerType>(ValueType); 4884 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4885 for (uint64_t I = TableSize; I > 0; --I) { 4886 TableInt <<= IT->getBitWidth(); 4887 // Insert values into the bitmap. Undef values are set to zero. 4888 if (!isa<UndefValue>(TableContents[I - 1])) { 4889 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4890 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4891 } 4892 } 4893 BitMap = ConstantInt::get(M.getContext(), TableInt); 4894 BitMapElementTy = IT; 4895 Kind = BitMapKind; 4896 ++NumBitMaps; 4897 return; 4898 } 4899 4900 // Store the table in an array. 4901 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4902 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4903 4904 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4905 GlobalVariable::PrivateLinkage, Initializer, 4906 "switch.table"); 4907 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4908 Kind = ArrayKind; 4909 } 4910 4911 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4912 switch (Kind) { 4913 case SingleValueKind: 4914 return SingleValue; 4915 case LinearMapKind: { 4916 // Derive the result value from the input value. 4917 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4918 false, "switch.idx.cast"); 4919 if (!LinearMultiplier->isOne()) 4920 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4921 if (!LinearOffset->isZero()) 4922 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4923 return Result; 4924 } 4925 case BitMapKind: { 4926 // Type of the bitmap (e.g. i59). 4927 IntegerType *MapTy = BitMap->getType(); 4928 4929 // Cast Index to the same type as the bitmap. 4930 // Note: The Index is <= the number of elements in the table, so 4931 // truncating it to the width of the bitmask is safe. 4932 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4933 4934 // Multiply the shift amount by the element width. 4935 ShiftAmt = Builder.CreateMul( 4936 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4937 "switch.shiftamt"); 4938 4939 // Shift down. 4940 Value *DownShifted = 4941 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4942 // Mask off. 4943 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4944 } 4945 case ArrayKind: { 4946 // Make sure the table index will not overflow when treated as signed. 4947 IntegerType *IT = cast<IntegerType>(Index->getType()); 4948 uint64_t TableSize = 4949 Array->getInitializer()->getType()->getArrayNumElements(); 4950 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4951 Index = Builder.CreateZExt( 4952 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4953 "switch.tableidx.zext"); 4954 4955 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4956 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4957 GEPIndices, "switch.gep"); 4958 return Builder.CreateLoad(GEP, "switch.load"); 4959 } 4960 } 4961 llvm_unreachable("Unknown lookup table kind!"); 4962 } 4963 4964 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4965 uint64_t TableSize, 4966 Type *ElementType) { 4967 auto *IT = dyn_cast<IntegerType>(ElementType); 4968 if (!IT) 4969 return false; 4970 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4971 // are <= 15, we could try to narrow the type. 4972 4973 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4974 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4975 return false; 4976 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4977 } 4978 4979 /// Determine whether a lookup table should be built for this switch, based on 4980 /// the number of cases, size of the table, and the types of the results. 4981 static bool 4982 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4983 const TargetTransformInfo &TTI, const DataLayout &DL, 4984 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4985 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4986 return false; // TableSize overflowed, or mul below might overflow. 4987 4988 bool AllTablesFitInRegister = true; 4989 bool HasIllegalType = false; 4990 for (const auto &I : ResultTypes) { 4991 Type *Ty = I.second; 4992 4993 // Saturate this flag to true. 4994 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4995 4996 // Saturate this flag to false. 4997 AllTablesFitInRegister = 4998 AllTablesFitInRegister && 4999 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5000 5001 // If both flags saturate, we're done. NOTE: This *only* works with 5002 // saturating flags, and all flags have to saturate first due to the 5003 // non-deterministic behavior of iterating over a dense map. 5004 if (HasIllegalType && !AllTablesFitInRegister) 5005 break; 5006 } 5007 5008 // If each table would fit in a register, we should build it anyway. 5009 if (AllTablesFitInRegister) 5010 return true; 5011 5012 // Don't build a table that doesn't fit in-register if it has illegal types. 5013 if (HasIllegalType) 5014 return false; 5015 5016 // The table density should be at least 40%. This is the same criterion as for 5017 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5018 // FIXME: Find the best cut-off. 5019 return SI->getNumCases() * 10 >= TableSize * 4; 5020 } 5021 5022 /// Try to reuse the switch table index compare. Following pattern: 5023 /// \code 5024 /// if (idx < tablesize) 5025 /// r = table[idx]; // table does not contain default_value 5026 /// else 5027 /// r = default_value; 5028 /// if (r != default_value) 5029 /// ... 5030 /// \endcode 5031 /// Is optimized to: 5032 /// \code 5033 /// cond = idx < tablesize; 5034 /// if (cond) 5035 /// r = table[idx]; 5036 /// else 5037 /// r = default_value; 5038 /// if (cond) 5039 /// ... 5040 /// \endcode 5041 /// Jump threading will then eliminate the second if(cond). 5042 static void reuseTableCompare( 5043 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5044 Constant *DefaultValue, 5045 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5046 5047 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5048 if (!CmpInst) 5049 return; 5050 5051 // We require that the compare is in the same block as the phi so that jump 5052 // threading can do its work afterwards. 5053 if (CmpInst->getParent() != PhiBlock) 5054 return; 5055 5056 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5057 if (!CmpOp1) 5058 return; 5059 5060 Value *RangeCmp = RangeCheckBranch->getCondition(); 5061 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5062 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5063 5064 // Check if the compare with the default value is constant true or false. 5065 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5066 DefaultValue, CmpOp1, true); 5067 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5068 return; 5069 5070 // Check if the compare with the case values is distinct from the default 5071 // compare result. 5072 for (auto ValuePair : Values) { 5073 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5074 ValuePair.second, CmpOp1, true); 5075 if (!CaseConst || CaseConst == DefaultConst) 5076 return; 5077 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5078 "Expect true or false as compare result."); 5079 } 5080 5081 // Check if the branch instruction dominates the phi node. It's a simple 5082 // dominance check, but sufficient for our needs. 5083 // Although this check is invariant in the calling loops, it's better to do it 5084 // at this late stage. Practically we do it at most once for a switch. 5085 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5086 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5087 BasicBlock *Pred = *PI; 5088 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5089 return; 5090 } 5091 5092 if (DefaultConst == FalseConst) { 5093 // The compare yields the same result. We can replace it. 5094 CmpInst->replaceAllUsesWith(RangeCmp); 5095 ++NumTableCmpReuses; 5096 } else { 5097 // The compare yields the same result, just inverted. We can replace it. 5098 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5099 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5100 RangeCheckBranch); 5101 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5102 ++NumTableCmpReuses; 5103 } 5104 } 5105 5106 /// If the switch is only used to initialize one or more phi nodes in a common 5107 /// successor block with different constant values, replace the switch with 5108 /// lookup tables. 5109 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5110 const DataLayout &DL, 5111 const TargetTransformInfo &TTI) { 5112 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5113 5114 // Only build lookup table when we have a target that supports it. 5115 if (!TTI.shouldBuildLookupTables()) 5116 return false; 5117 5118 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5119 // split off a dense part and build a lookup table for that. 5120 5121 // FIXME: This creates arrays of GEPs to constant strings, which means each 5122 // GEP needs a runtime relocation in PIC code. We should just build one big 5123 // string and lookup indices into that. 5124 5125 // Ignore switches with less than three cases. Lookup tables will not make 5126 // them 5127 // faster, so we don't analyze them. 5128 if (SI->getNumCases() < 3) 5129 return false; 5130 5131 // Figure out the corresponding result for each case value and phi node in the 5132 // common destination, as well as the min and max case values. 5133 assert(SI->case_begin() != SI->case_end()); 5134 SwitchInst::CaseIt CI = SI->case_begin(); 5135 ConstantInt *MinCaseVal = CI.getCaseValue(); 5136 ConstantInt *MaxCaseVal = CI.getCaseValue(); 5137 5138 BasicBlock *CommonDest = nullptr; 5139 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 5140 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5141 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5142 SmallDenseMap<PHINode *, Type *> ResultTypes; 5143 SmallVector<PHINode *, 4> PHIs; 5144 5145 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5146 ConstantInt *CaseVal = CI.getCaseValue(); 5147 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5148 MinCaseVal = CaseVal; 5149 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5150 MaxCaseVal = CaseVal; 5151 5152 // Resulting value at phi nodes for this case value. 5153 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 5154 ResultsTy Results; 5155 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 5156 Results, DL, TTI)) 5157 return false; 5158 5159 // Append the result from this case to the list for each phi. 5160 for (const auto &I : Results) { 5161 PHINode *PHI = I.first; 5162 Constant *Value = I.second; 5163 if (!ResultLists.count(PHI)) 5164 PHIs.push_back(PHI); 5165 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5166 } 5167 } 5168 5169 // Keep track of the result types. 5170 for (PHINode *PHI : PHIs) { 5171 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5172 } 5173 5174 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5175 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5176 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5177 bool TableHasHoles = (NumResults < TableSize); 5178 5179 // If the table has holes, we need a constant result for the default case 5180 // or a bitmask that fits in a register. 5181 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5182 bool HasDefaultResults = 5183 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5184 DefaultResultsList, DL, TTI); 5185 5186 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5187 if (NeedMask) { 5188 // As an extra penalty for the validity test we require more cases. 5189 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5190 return false; 5191 if (!DL.fitsInLegalInteger(TableSize)) 5192 return false; 5193 } 5194 5195 for (const auto &I : DefaultResultsList) { 5196 PHINode *PHI = I.first; 5197 Constant *Result = I.second; 5198 DefaultResults[PHI] = Result; 5199 } 5200 5201 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5202 return false; 5203 5204 // Create the BB that does the lookups. 5205 Module &Mod = *CommonDest->getParent()->getParent(); 5206 BasicBlock *LookupBB = BasicBlock::Create( 5207 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5208 5209 // Compute the table index value. 5210 Builder.SetInsertPoint(SI); 5211 Value *TableIndex = 5212 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 5213 5214 // Compute the maximum table size representable by the integer type we are 5215 // switching upon. 5216 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5217 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5218 assert(MaxTableSize >= TableSize && 5219 "It is impossible for a switch to have more entries than the max " 5220 "representable value of its input integer type's size."); 5221 5222 // If the default destination is unreachable, or if the lookup table covers 5223 // all values of the conditional variable, branch directly to the lookup table 5224 // BB. Otherwise, check that the condition is within the case range. 5225 const bool DefaultIsReachable = 5226 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5227 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5228 BranchInst *RangeCheckBranch = nullptr; 5229 5230 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5231 Builder.CreateBr(LookupBB); 5232 // Note: We call removeProdecessor later since we need to be able to get the 5233 // PHI value for the default case in case we're using a bit mask. 5234 } else { 5235 Value *Cmp = Builder.CreateICmpULT( 5236 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5237 RangeCheckBranch = 5238 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5239 } 5240 5241 // Populate the BB that does the lookups. 5242 Builder.SetInsertPoint(LookupBB); 5243 5244 if (NeedMask) { 5245 // Before doing the lookup we do the hole check. 5246 // The LookupBB is therefore re-purposed to do the hole check 5247 // and we create a new LookupBB. 5248 BasicBlock *MaskBB = LookupBB; 5249 MaskBB->setName("switch.hole_check"); 5250 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5251 CommonDest->getParent(), CommonDest); 5252 5253 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5254 // unnecessary illegal types. 5255 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5256 APInt MaskInt(TableSizePowOf2, 0); 5257 APInt One(TableSizePowOf2, 1); 5258 // Build bitmask; fill in a 1 bit for every case. 5259 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5260 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5261 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5262 .getLimitedValue(); 5263 MaskInt |= One << Idx; 5264 } 5265 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5266 5267 // Get the TableIndex'th bit of the bitmask. 5268 // If this bit is 0 (meaning hole) jump to the default destination, 5269 // else continue with table lookup. 5270 IntegerType *MapTy = TableMask->getType(); 5271 Value *MaskIndex = 5272 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5273 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5274 Value *LoBit = Builder.CreateTrunc( 5275 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5276 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5277 5278 Builder.SetInsertPoint(LookupBB); 5279 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5280 } 5281 5282 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5283 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5284 // do not delete PHINodes here. 5285 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5286 /*DontDeleteUselessPHIs=*/true); 5287 } 5288 5289 bool ReturnedEarly = false; 5290 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5291 PHINode *PHI = PHIs[I]; 5292 const ResultListTy &ResultList = ResultLists[PHI]; 5293 5294 // If using a bitmask, use any value to fill the lookup table holes. 5295 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5296 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5297 5298 Value *Result = Table.BuildLookup(TableIndex, Builder); 5299 5300 // If the result is used to return immediately from the function, we want to 5301 // do that right here. 5302 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5303 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5304 Builder.CreateRet(Result); 5305 ReturnedEarly = true; 5306 break; 5307 } 5308 5309 // Do a small peephole optimization: re-use the switch table compare if 5310 // possible. 5311 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5312 BasicBlock *PhiBlock = PHI->getParent(); 5313 // Search for compare instructions which use the phi. 5314 for (auto *User : PHI->users()) { 5315 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5316 } 5317 } 5318 5319 PHI->addIncoming(Result, LookupBB); 5320 } 5321 5322 if (!ReturnedEarly) 5323 Builder.CreateBr(CommonDest); 5324 5325 // Remove the switch. 5326 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5327 BasicBlock *Succ = SI->getSuccessor(i); 5328 5329 if (Succ == SI->getDefaultDest()) 5330 continue; 5331 Succ->removePredecessor(SI->getParent()); 5332 } 5333 SI->eraseFromParent(); 5334 5335 ++NumLookupTables; 5336 if (NeedMask) 5337 ++NumLookupTablesHoles; 5338 return true; 5339 } 5340 5341 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5342 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5343 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5344 uint64_t Range = Diff + 1; 5345 uint64_t NumCases = Values.size(); 5346 // 40% is the default density for building a jump table in optsize/minsize mode. 5347 uint64_t MinDensity = 40; 5348 5349 return NumCases * 100 >= Range * MinDensity; 5350 } 5351 5352 // Try and transform a switch that has "holes" in it to a contiguous sequence 5353 // of cases. 5354 // 5355 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5356 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5357 // 5358 // This converts a sparse switch into a dense switch which allows better 5359 // lowering and could also allow transforming into a lookup table. 5360 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5361 const DataLayout &DL, 5362 const TargetTransformInfo &TTI) { 5363 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5364 if (CondTy->getIntegerBitWidth() > 64 || 5365 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5366 return false; 5367 // Only bother with this optimization if there are more than 3 switch cases; 5368 // SDAG will only bother creating jump tables for 4 or more cases. 5369 if (SI->getNumCases() < 4) 5370 return false; 5371 5372 // This transform is agnostic to the signedness of the input or case values. We 5373 // can treat the case values as signed or unsigned. We can optimize more common 5374 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5375 // as signed. 5376 SmallVector<int64_t,4> Values; 5377 for (auto &C : SI->cases()) 5378 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5379 std::sort(Values.begin(), Values.end()); 5380 5381 // If the switch is already dense, there's nothing useful to do here. 5382 if (isSwitchDense(Values)) 5383 return false; 5384 5385 // First, transform the values such that they start at zero and ascend. 5386 int64_t Base = Values[0]; 5387 for (auto &V : Values) 5388 V -= Base; 5389 5390 // Now we have signed numbers that have been shifted so that, given enough 5391 // precision, there are no negative values. Since the rest of the transform 5392 // is bitwise only, we switch now to an unsigned representation. 5393 uint64_t GCD = 0; 5394 for (auto &V : Values) 5395 GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V); 5396 5397 // This transform can be done speculatively because it is so cheap - it results 5398 // in a single rotate operation being inserted. This can only happen if the 5399 // factor extracted is a power of 2. 5400 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5401 // inverse of GCD and then perform this transform. 5402 // FIXME: It's possible that optimizing a switch on powers of two might also 5403 // be beneficial - flag values are often powers of two and we could use a CLZ 5404 // as the key function. 5405 if (GCD <= 1 || !llvm::isPowerOf2_64(GCD)) 5406 // No common divisor found or too expensive to compute key function. 5407 return false; 5408 5409 unsigned Shift = llvm::Log2_64(GCD); 5410 for (auto &V : Values) 5411 V = (int64_t)((uint64_t)V >> Shift); 5412 5413 if (!isSwitchDense(Values)) 5414 // Transform didn't create a dense switch. 5415 return false; 5416 5417 // The obvious transform is to shift the switch condition right and emit a 5418 // check that the condition actually cleanly divided by GCD, i.e. 5419 // C & (1 << Shift - 1) == 0 5420 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5421 // 5422 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5423 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5424 // are nonzero then the switch condition will be very large and will hit the 5425 // default case. 5426 5427 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5428 Builder.SetInsertPoint(SI); 5429 auto *ShiftC = ConstantInt::get(Ty, Shift); 5430 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5431 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5432 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5433 auto *Rot = Builder.CreateOr(LShr, Shl); 5434 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5435 5436 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5437 ++C) { 5438 auto *Orig = C.getCaseValue(); 5439 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5440 C.setValue( 5441 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5442 } 5443 return true; 5444 } 5445 5446 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5447 BasicBlock *BB = SI->getParent(); 5448 5449 if (isValueEqualityComparison(SI)) { 5450 // If we only have one predecessor, and if it is a branch on this value, 5451 // see if that predecessor totally determines the outcome of this switch. 5452 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5453 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5454 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5455 5456 Value *Cond = SI->getCondition(); 5457 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5458 if (SimplifySwitchOnSelect(SI, Select)) 5459 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5460 5461 // If the block only contains the switch, see if we can fold the block 5462 // away into any preds. 5463 BasicBlock::iterator BBI = BB->begin(); 5464 // Ignore dbg intrinsics. 5465 while (isa<DbgInfoIntrinsic>(BBI)) 5466 ++BBI; 5467 if (SI == &*BBI) 5468 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5469 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5470 } 5471 5472 // Try to transform the switch into an icmp and a branch. 5473 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5474 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5475 5476 // Remove unreachable cases. 5477 if (EliminateDeadSwitchCases(SI, AC, DL)) 5478 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5479 5480 if (SwitchToSelect(SI, Builder, AC, DL, TTI)) 5481 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5482 5483 if (ForwardSwitchConditionToPHI(SI)) 5484 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5485 5486 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5487 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5488 5489 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5490 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5491 5492 return false; 5493 } 5494 5495 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5496 BasicBlock *BB = IBI->getParent(); 5497 bool Changed = false; 5498 5499 // Eliminate redundant destinations. 5500 SmallPtrSet<Value *, 8> Succs; 5501 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5502 BasicBlock *Dest = IBI->getDestination(i); 5503 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5504 Dest->removePredecessor(BB); 5505 IBI->removeDestination(i); 5506 --i; 5507 --e; 5508 Changed = true; 5509 } 5510 } 5511 5512 if (IBI->getNumDestinations() == 0) { 5513 // If the indirectbr has no successors, change it to unreachable. 5514 new UnreachableInst(IBI->getContext(), IBI); 5515 EraseTerminatorInstAndDCECond(IBI); 5516 return true; 5517 } 5518 5519 if (IBI->getNumDestinations() == 1) { 5520 // If the indirectbr has one successor, change it to a direct branch. 5521 BranchInst::Create(IBI->getDestination(0), IBI); 5522 EraseTerminatorInstAndDCECond(IBI); 5523 return true; 5524 } 5525 5526 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5527 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5528 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5529 } 5530 return Changed; 5531 } 5532 5533 /// Given an block with only a single landing pad and a unconditional branch 5534 /// try to find another basic block which this one can be merged with. This 5535 /// handles cases where we have multiple invokes with unique landing pads, but 5536 /// a shared handler. 5537 /// 5538 /// We specifically choose to not worry about merging non-empty blocks 5539 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5540 /// practice, the optimizer produces empty landing pad blocks quite frequently 5541 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5542 /// sinking in this file) 5543 /// 5544 /// This is primarily a code size optimization. We need to avoid performing 5545 /// any transform which might inhibit optimization (such as our ability to 5546 /// specialize a particular handler via tail commoning). We do this by not 5547 /// merging any blocks which require us to introduce a phi. Since the same 5548 /// values are flowing through both blocks, we don't loose any ability to 5549 /// specialize. If anything, we make such specialization more likely. 5550 /// 5551 /// TODO - This transformation could remove entries from a phi in the target 5552 /// block when the inputs in the phi are the same for the two blocks being 5553 /// merged. In some cases, this could result in removal of the PHI entirely. 5554 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5555 BasicBlock *BB) { 5556 auto Succ = BB->getUniqueSuccessor(); 5557 assert(Succ); 5558 // If there's a phi in the successor block, we'd likely have to introduce 5559 // a phi into the merged landing pad block. 5560 if (isa<PHINode>(*Succ->begin())) 5561 return false; 5562 5563 for (BasicBlock *OtherPred : predecessors(Succ)) { 5564 if (BB == OtherPred) 5565 continue; 5566 BasicBlock::iterator I = OtherPred->begin(); 5567 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5568 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5569 continue; 5570 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5571 } 5572 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5573 if (!BI2 || !BI2->isIdenticalTo(BI)) 5574 continue; 5575 5576 // We've found an identical block. Update our predecessors to take that 5577 // path instead and make ourselves dead. 5578 SmallSet<BasicBlock *, 16> Preds; 5579 Preds.insert(pred_begin(BB), pred_end(BB)); 5580 for (BasicBlock *Pred : Preds) { 5581 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5582 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5583 "unexpected successor"); 5584 II->setUnwindDest(OtherPred); 5585 } 5586 5587 // The debug info in OtherPred doesn't cover the merged control flow that 5588 // used to go through BB. We need to delete it or update it. 5589 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5590 Instruction &Inst = *I; 5591 I++; 5592 if (isa<DbgInfoIntrinsic>(Inst)) 5593 Inst.eraseFromParent(); 5594 } 5595 5596 SmallSet<BasicBlock *, 16> Succs; 5597 Succs.insert(succ_begin(BB), succ_end(BB)); 5598 for (BasicBlock *Succ : Succs) { 5599 Succ->removePredecessor(BB); 5600 } 5601 5602 IRBuilder<> Builder(BI); 5603 Builder.CreateUnreachable(); 5604 BI->eraseFromParent(); 5605 return true; 5606 } 5607 return false; 5608 } 5609 5610 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5611 IRBuilder<> &Builder) { 5612 BasicBlock *BB = BI->getParent(); 5613 5614 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5615 return true; 5616 5617 // If the Terminator is the only non-phi instruction, simplify the block. 5618 // if LoopHeader is provided, check if the block is a loop header 5619 // (This is for early invocations before loop simplify and vectorization 5620 // to keep canonical loop forms for nested loops. 5621 // These blocks can be eliminated when the pass is invoked later 5622 // in the back-end.) 5623 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5624 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5625 (!LoopHeaders || !LoopHeaders->count(BB)) && 5626 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5627 return true; 5628 5629 // If the only instruction in the block is a seteq/setne comparison 5630 // against a constant, try to simplify the block. 5631 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5632 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5633 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5634 ; 5635 if (I->isTerminator() && 5636 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5637 BonusInstThreshold, AC)) 5638 return true; 5639 } 5640 5641 // See if we can merge an empty landing pad block with another which is 5642 // equivalent. 5643 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5644 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5645 } 5646 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5647 return true; 5648 } 5649 5650 // If this basic block is ONLY a compare and a branch, and if a predecessor 5651 // branches to us and our successor, fold the comparison into the 5652 // predecessor and use logical operations to update the incoming value 5653 // for PHI nodes in common successor. 5654 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5655 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5656 return false; 5657 } 5658 5659 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5660 BasicBlock *PredPred = nullptr; 5661 for (auto *P : predecessors(BB)) { 5662 BasicBlock *PPred = P->getSinglePredecessor(); 5663 if (!PPred || (PredPred && PredPred != PPred)) 5664 return nullptr; 5665 PredPred = PPred; 5666 } 5667 return PredPred; 5668 } 5669 5670 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5671 BasicBlock *BB = BI->getParent(); 5672 5673 // Conditional branch 5674 if (isValueEqualityComparison(BI)) { 5675 // If we only have one predecessor, and if it is a branch on this value, 5676 // see if that predecessor totally determines the outcome of this 5677 // switch. 5678 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5679 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5680 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5681 5682 // This block must be empty, except for the setcond inst, if it exists. 5683 // Ignore dbg intrinsics. 5684 BasicBlock::iterator I = BB->begin(); 5685 // Ignore dbg intrinsics. 5686 while (isa<DbgInfoIntrinsic>(I)) 5687 ++I; 5688 if (&*I == BI) { 5689 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5690 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5691 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5692 ++I; 5693 // Ignore dbg intrinsics. 5694 while (isa<DbgInfoIntrinsic>(I)) 5695 ++I; 5696 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5697 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5698 } 5699 } 5700 5701 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5702 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5703 return true; 5704 5705 // If this basic block has a single dominating predecessor block and the 5706 // dominating block's condition implies BI's condition, we know the direction 5707 // of the BI branch. 5708 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5709 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5710 if (PBI && PBI->isConditional() && 5711 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5712 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5713 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5714 Optional<bool> Implication = isImpliedCondition( 5715 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5716 if (Implication) { 5717 // Turn this into a branch on constant. 5718 auto *OldCond = BI->getCondition(); 5719 ConstantInt *CI = *Implication 5720 ? ConstantInt::getTrue(BB->getContext()) 5721 : ConstantInt::getFalse(BB->getContext()); 5722 BI->setCondition(CI); 5723 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5724 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5725 } 5726 } 5727 } 5728 5729 // If this basic block is ONLY a compare and a branch, and if a predecessor 5730 // branches to us and one of our successors, fold the comparison into the 5731 // predecessor and use logical operations to pick the right destination. 5732 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5733 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5734 5735 // We have a conditional branch to two blocks that are only reachable 5736 // from BI. We know that the condbr dominates the two blocks, so see if 5737 // there is any identical code in the "then" and "else" blocks. If so, we 5738 // can hoist it up to the branching block. 5739 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5740 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5741 if (HoistThenElseCodeToIf(BI, TTI)) 5742 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5743 } else { 5744 // If Successor #1 has multiple preds, we may be able to conditionally 5745 // execute Successor #0 if it branches to Successor #1. 5746 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5747 if (Succ0TI->getNumSuccessors() == 1 && 5748 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5749 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5750 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5751 } 5752 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5753 // If Successor #0 has multiple preds, we may be able to conditionally 5754 // execute Successor #1 if it branches to Successor #0. 5755 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5756 if (Succ1TI->getNumSuccessors() == 1 && 5757 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5758 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5759 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5760 } 5761 5762 // If this is a branch on a phi node in the current block, thread control 5763 // through this block if any PHI node entries are constants. 5764 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5765 if (PN->getParent() == BI->getParent()) 5766 if (FoldCondBranchOnPHI(BI, DL)) 5767 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5768 5769 // Scan predecessor blocks for conditional branches. 5770 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5771 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5772 if (PBI != BI && PBI->isConditional()) 5773 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5774 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5775 5776 // Look for diamond patterns. 5777 if (MergeCondStores) 5778 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5779 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5780 if (PBI != BI && PBI->isConditional()) 5781 if (mergeConditionalStores(PBI, BI)) 5782 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5783 5784 return false; 5785 } 5786 5787 /// Check if passing a value to an instruction will cause undefined behavior. 5788 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5789 Constant *C = dyn_cast<Constant>(V); 5790 if (!C) 5791 return false; 5792 5793 if (I->use_empty()) 5794 return false; 5795 5796 if (C->isNullValue() || isa<UndefValue>(C)) { 5797 // Only look at the first use, avoid hurting compile time with long uselists 5798 User *Use = *I->user_begin(); 5799 5800 // Now make sure that there are no instructions in between that can alter 5801 // control flow (eg. calls) 5802 for (BasicBlock::iterator 5803 i = ++BasicBlock::iterator(I), 5804 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5805 i != UI; ++i) 5806 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5807 return false; 5808 5809 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5810 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5811 if (GEP->getPointerOperand() == I) 5812 return passingValueIsAlwaysUndefined(V, GEP); 5813 5814 // Look through bitcasts. 5815 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5816 return passingValueIsAlwaysUndefined(V, BC); 5817 5818 // Load from null is undefined. 5819 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5820 if (!LI->isVolatile()) 5821 return LI->getPointerAddressSpace() == 0; 5822 5823 // Store to null is undefined. 5824 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5825 if (!SI->isVolatile()) 5826 return SI->getPointerAddressSpace() == 0 && 5827 SI->getPointerOperand() == I; 5828 5829 // A call to null is undefined. 5830 if (auto CS = CallSite(Use)) 5831 return CS.getCalledValue() == I; 5832 } 5833 return false; 5834 } 5835 5836 /// If BB has an incoming value that will always trigger undefined behavior 5837 /// (eg. null pointer dereference), remove the branch leading here. 5838 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5839 for (BasicBlock::iterator i = BB->begin(); 5840 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5841 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5842 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5843 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5844 IRBuilder<> Builder(T); 5845 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5846 BB->removePredecessor(PHI->getIncomingBlock(i)); 5847 // Turn uncoditional branches into unreachables and remove the dead 5848 // destination from conditional branches. 5849 if (BI->isUnconditional()) 5850 Builder.CreateUnreachable(); 5851 else 5852 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5853 : BI->getSuccessor(0)); 5854 BI->eraseFromParent(); 5855 return true; 5856 } 5857 // TODO: SwitchInst. 5858 } 5859 5860 return false; 5861 } 5862 5863 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5864 bool Changed = false; 5865 5866 assert(BB && BB->getParent() && "Block not embedded in function!"); 5867 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5868 5869 // Remove basic blocks that have no predecessors (except the entry block)... 5870 // or that just have themself as a predecessor. These are unreachable. 5871 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5872 BB->getSinglePredecessor() == BB) { 5873 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5874 DeleteDeadBlock(BB); 5875 return true; 5876 } 5877 5878 // Check to see if we can constant propagate this terminator instruction 5879 // away... 5880 Changed |= ConstantFoldTerminator(BB, true); 5881 5882 // Check for and eliminate duplicate PHI nodes in this block. 5883 Changed |= EliminateDuplicatePHINodes(BB); 5884 5885 // Check for and remove branches that will always cause undefined behavior. 5886 Changed |= removeUndefIntroducingPredecessor(BB); 5887 5888 // Merge basic blocks into their predecessor if there is only one distinct 5889 // pred, and if there is only one distinct successor of the predecessor, and 5890 // if there are no PHI nodes. 5891 // 5892 if (MergeBlockIntoPredecessor(BB)) 5893 return true; 5894 5895 IRBuilder<> Builder(BB); 5896 5897 // If there is a trivial two-entry PHI node in this basic block, and we can 5898 // eliminate it, do so now. 5899 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5900 if (PN->getNumIncomingValues() == 2) 5901 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5902 5903 Builder.SetInsertPoint(BB->getTerminator()); 5904 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5905 if (BI->isUnconditional()) { 5906 if (SimplifyUncondBranch(BI, Builder)) 5907 return true; 5908 } else { 5909 if (SimplifyCondBranch(BI, Builder)) 5910 return true; 5911 } 5912 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5913 if (SimplifyReturn(RI, Builder)) 5914 return true; 5915 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5916 if (SimplifyResume(RI, Builder)) 5917 return true; 5918 } else if (CleanupReturnInst *RI = 5919 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5920 if (SimplifyCleanupReturn(RI)) 5921 return true; 5922 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5923 if (SimplifySwitch(SI, Builder)) 5924 return true; 5925 } else if (UnreachableInst *UI = 5926 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5927 if (SimplifyUnreachable(UI)) 5928 return true; 5929 } else if (IndirectBrInst *IBI = 5930 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5931 if (SimplifyIndirectBr(IBI)) 5932 return true; 5933 } 5934 5935 return Changed; 5936 } 5937 5938 /// This function is used to do simplification of a CFG. 5939 /// For example, it adjusts branches to branches to eliminate the extra hop, 5940 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5941 /// of the CFG. It returns true if a modification was made. 5942 /// 5943 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5944 unsigned BonusInstThreshold, AssumptionCache *AC, 5945 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5946 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5947 BonusInstThreshold, AC, LoopHeaders) 5948 .run(BB); 5949 } 5950