1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> 117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 118 cl::desc("Hoist common instructions up to the parent block")); 119 120 static cl::opt<bool> 121 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 122 cl::desc("Sink common instructions down to the end block")); 123 124 static cl::opt<bool> HoistCondStores( 125 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 126 cl::desc("Hoist conditional stores if an unconditional store precedes")); 127 128 static cl::opt<bool> MergeCondStores( 129 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores even if an unconditional store does not " 131 "precede - hoist multiple conditional stores into a single " 132 "predicated store")); 133 134 static cl::opt<bool> MergeCondStoresAggressively( 135 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 136 cl::desc("When merging conditional stores, do so even if the resultant " 137 "basic blocks are unlikely to be if-converted as a result")); 138 139 static cl::opt<bool> SpeculateOneExpensiveInst( 140 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 141 cl::desc("Allow exactly one expensive instruction to be speculatively " 142 "executed")); 143 144 static cl::opt<unsigned> MaxSpeculationDepth( 145 "max-speculation-depth", cl::Hidden, cl::init(10), 146 cl::desc("Limit maximum recursion depth when calculating costs of " 147 "speculatively executed instructions")); 148 149 static cl::opt<int> 150 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 151 cl::init(10), 152 cl::desc("Max size of a block which is still considered " 153 "small enough to thread through")); 154 155 // Two is chosen to allow one negation and a logical combine. 156 static cl::opt<unsigned> 157 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 158 cl::init(2), 159 cl::desc("Maximum cost of combining conditions when " 160 "folding branches")); 161 162 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 163 STATISTIC(NumLinearMaps, 164 "Number of switch instructions turned into linear mapping"); 165 STATISTIC(NumLookupTables, 166 "Number of switch instructions turned into lookup tables"); 167 STATISTIC( 168 NumLookupTablesHoles, 169 "Number of switch instructions turned into lookup tables (holes checked)"); 170 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 171 STATISTIC(NumFoldValueComparisonIntoPredecessors, 172 "Number of value comparisons folded into predecessor basic blocks"); 173 STATISTIC(NumFoldBranchToCommonDest, 174 "Number of branches folded into predecessor basic block"); 175 STATISTIC( 176 NumHoistCommonCode, 177 "Number of common instruction 'blocks' hoisted up to the begin block"); 178 STATISTIC(NumHoistCommonInstrs, 179 "Number of common instructions hoisted up to the begin block"); 180 STATISTIC(NumSinkCommonCode, 181 "Number of common instruction 'blocks' sunk down to the end block"); 182 STATISTIC(NumSinkCommonInstrs, 183 "Number of common instructions sunk down to the end block"); 184 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 185 STATISTIC(NumInvokes, 186 "Number of invokes with empty resume blocks simplified into calls"); 187 188 namespace { 189 190 // The first field contains the value that the switch produces when a certain 191 // case group is selected, and the second field is a vector containing the 192 // cases composing the case group. 193 using SwitchCaseResultVectorTy = 194 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 195 196 // The first field contains the phi node that generates a result of the switch 197 // and the second field contains the value generated for a certain case in the 198 // switch for that PHI. 199 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 200 201 /// ValueEqualityComparisonCase - Represents a case of a switch. 202 struct ValueEqualityComparisonCase { 203 ConstantInt *Value; 204 BasicBlock *Dest; 205 206 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 207 : Value(Value), Dest(Dest) {} 208 209 bool operator<(ValueEqualityComparisonCase RHS) const { 210 // Comparing pointers is ok as we only rely on the order for uniquing. 211 return Value < RHS.Value; 212 } 213 214 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 215 }; 216 217 class SimplifyCFGOpt { 218 const TargetTransformInfo &TTI; 219 DomTreeUpdater *DTU; 220 const DataLayout &DL; 221 ArrayRef<WeakVH> LoopHeaders; 222 const SimplifyCFGOptions &Options; 223 bool Resimplify; 224 225 Value *isValueEqualityComparison(Instruction *TI); 226 BasicBlock *GetValueEqualityComparisonCases( 227 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 228 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 229 BasicBlock *Pred, 230 IRBuilder<> &Builder); 231 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 232 Instruction *PTI, 233 IRBuilder<> &Builder); 234 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 235 IRBuilder<> &Builder); 236 237 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 238 bool simplifySingleResume(ResumeInst *RI); 239 bool simplifyCommonResume(ResumeInst *RI); 240 bool simplifyCleanupReturn(CleanupReturnInst *RI); 241 bool simplifyUnreachable(UnreachableInst *UI); 242 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 243 bool simplifyIndirectBr(IndirectBrInst *IBI); 244 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 245 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 246 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 247 248 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 249 IRBuilder<> &Builder); 250 251 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 252 bool EqTermsOnly); 253 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 254 const TargetTransformInfo &TTI); 255 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 256 BasicBlock *TrueBB, BasicBlock *FalseBB, 257 uint32_t TrueWeight, uint32_t FalseWeight); 258 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 259 const DataLayout &DL); 260 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 261 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 262 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 263 264 public: 265 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 266 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 267 const SimplifyCFGOptions &Opts) 268 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 269 assert((!DTU || !DTU->hasPostDomTree()) && 270 "SimplifyCFG is not yet capable of maintaining validity of a " 271 "PostDomTree, so don't ask for it."); 272 } 273 274 bool simplifyOnce(BasicBlock *BB); 275 bool simplifyOnceImpl(BasicBlock *BB); 276 bool run(BasicBlock *BB); 277 278 // Helper to set Resimplify and return change indication. 279 bool requestResimplify() { 280 Resimplify = true; 281 return true; 282 } 283 }; 284 285 } // end anonymous namespace 286 287 /// Return true if it is safe to merge these two 288 /// terminator instructions together. 289 static bool 290 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 291 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 292 if (SI1 == SI2) 293 return false; // Can't merge with self! 294 295 // It is not safe to merge these two switch instructions if they have a common 296 // successor, and if that successor has a PHI node, and if *that* PHI node has 297 // conflicting incoming values from the two switch blocks. 298 BasicBlock *SI1BB = SI1->getParent(); 299 BasicBlock *SI2BB = SI2->getParent(); 300 301 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 302 bool Fail = false; 303 for (BasicBlock *Succ : successors(SI2BB)) 304 if (SI1Succs.count(Succ)) 305 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 306 PHINode *PN = cast<PHINode>(BBI); 307 if (PN->getIncomingValueForBlock(SI1BB) != 308 PN->getIncomingValueForBlock(SI2BB)) { 309 if (FailBlocks) 310 FailBlocks->insert(Succ); 311 Fail = true; 312 } 313 } 314 315 return !Fail; 316 } 317 318 /// Update PHI nodes in Succ to indicate that there will now be entries in it 319 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 320 /// will be the same as those coming in from ExistPred, an existing predecessor 321 /// of Succ. 322 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 323 BasicBlock *ExistPred, 324 MemorySSAUpdater *MSSAU = nullptr) { 325 for (PHINode &PN : Succ->phis()) 326 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 327 if (MSSAU) 328 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 329 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 330 } 331 332 /// Compute an abstract "cost" of speculating the given instruction, 333 /// which is assumed to be safe to speculate. TCC_Free means cheap, 334 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 335 /// expensive. 336 static InstructionCost computeSpeculationCost(const User *I, 337 const TargetTransformInfo &TTI) { 338 assert(isSafeToSpeculativelyExecute(I) && 339 "Instruction is not safe to speculatively execute!"); 340 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 341 } 342 343 /// If we have a merge point of an "if condition" as accepted above, 344 /// return true if the specified value dominates the block. We 345 /// don't handle the true generality of domination here, just a special case 346 /// which works well enough for us. 347 /// 348 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 349 /// see if V (which must be an instruction) and its recursive operands 350 /// that do not dominate BB have a combined cost lower than Budget and 351 /// are non-trapping. If both are true, the instruction is inserted into the 352 /// set and true is returned. 353 /// 354 /// The cost for most non-trapping instructions is defined as 1 except for 355 /// Select whose cost is 2. 356 /// 357 /// After this function returns, Cost is increased by the cost of 358 /// V plus its non-dominating operands. If that cost is greater than 359 /// Budget, false is returned and Cost is undefined. 360 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 361 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 362 InstructionCost &Cost, 363 InstructionCost Budget, 364 const TargetTransformInfo &TTI, 365 unsigned Depth = 0) { 366 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 367 // so limit the recursion depth. 368 // TODO: While this recursion limit does prevent pathological behavior, it 369 // would be better to track visited instructions to avoid cycles. 370 if (Depth == MaxSpeculationDepth) 371 return false; 372 373 Instruction *I = dyn_cast<Instruction>(V); 374 if (!I) { 375 // Non-instructions all dominate instructions, but not all constantexprs 376 // can be executed unconditionally. 377 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 378 if (C->canTrap()) 379 return false; 380 return true; 381 } 382 BasicBlock *PBB = I->getParent(); 383 384 // We don't want to allow weird loops that might have the "if condition" in 385 // the bottom of this block. 386 if (PBB == BB) 387 return false; 388 389 // If this instruction is defined in a block that contains an unconditional 390 // branch to BB, then it must be in the 'conditional' part of the "if 391 // statement". If not, it definitely dominates the region. 392 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 393 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 394 return true; 395 396 // If we have seen this instruction before, don't count it again. 397 if (AggressiveInsts.count(I)) 398 return true; 399 400 // Okay, it looks like the instruction IS in the "condition". Check to 401 // see if it's a cheap instruction to unconditionally compute, and if it 402 // only uses stuff defined outside of the condition. If so, hoist it out. 403 if (!isSafeToSpeculativelyExecute(I)) 404 return false; 405 406 Cost += computeSpeculationCost(I, TTI); 407 408 // Allow exactly one instruction to be speculated regardless of its cost 409 // (as long as it is safe to do so). 410 // This is intended to flatten the CFG even if the instruction is a division 411 // or other expensive operation. The speculation of an expensive instruction 412 // is expected to be undone in CodeGenPrepare if the speculation has not 413 // enabled further IR optimizations. 414 if (Cost > Budget && 415 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 416 !Cost.isValid())) 417 return false; 418 419 // Okay, we can only really hoist these out if their operands do 420 // not take us over the cost threshold. 421 for (Use &Op : I->operands()) 422 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 423 Depth + 1)) 424 return false; 425 // Okay, it's safe to do this! Remember this instruction. 426 AggressiveInsts.insert(I); 427 return true; 428 } 429 430 /// Extract ConstantInt from value, looking through IntToPtr 431 /// and PointerNullValue. Return NULL if value is not a constant int. 432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 433 // Normal constant int. 434 ConstantInt *CI = dyn_cast<ConstantInt>(V); 435 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 436 return CI; 437 438 // This is some kind of pointer constant. Turn it into a pointer-sized 439 // ConstantInt if possible. 440 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 441 442 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 443 if (isa<ConstantPointerNull>(V)) 444 return ConstantInt::get(PtrTy, 0); 445 446 // IntToPtr const int. 447 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 448 if (CE->getOpcode() == Instruction::IntToPtr) 449 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 450 // The constant is very likely to have the right type already. 451 if (CI->getType() == PtrTy) 452 return CI; 453 else 454 return cast<ConstantInt>( 455 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 456 } 457 return nullptr; 458 } 459 460 namespace { 461 462 /// Given a chain of or (||) or and (&&) comparison of a value against a 463 /// constant, this will try to recover the information required for a switch 464 /// structure. 465 /// It will depth-first traverse the chain of comparison, seeking for patterns 466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 467 /// representing the different cases for the switch. 468 /// Note that if the chain is composed of '||' it will build the set of elements 469 /// that matches the comparisons (i.e. any of this value validate the chain) 470 /// while for a chain of '&&' it will build the set elements that make the test 471 /// fail. 472 struct ConstantComparesGatherer { 473 const DataLayout &DL; 474 475 /// Value found for the switch comparison 476 Value *CompValue = nullptr; 477 478 /// Extra clause to be checked before the switch 479 Value *Extra = nullptr; 480 481 /// Set of integers to match in switch 482 SmallVector<ConstantInt *, 8> Vals; 483 484 /// Number of comparisons matched in the and/or chain 485 unsigned UsedICmps = 0; 486 487 /// Construct and compute the result for the comparison instruction Cond 488 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 489 gather(Cond); 490 } 491 492 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 493 ConstantComparesGatherer & 494 operator=(const ConstantComparesGatherer &) = delete; 495 496 private: 497 /// Try to set the current value used for the comparison, it succeeds only if 498 /// it wasn't set before or if the new value is the same as the old one 499 bool setValueOnce(Value *NewVal) { 500 if (CompValue && CompValue != NewVal) 501 return false; 502 CompValue = NewVal; 503 return (CompValue != nullptr); 504 } 505 506 /// Try to match Instruction "I" as a comparison against a constant and 507 /// populates the array Vals with the set of values that match (or do not 508 /// match depending on isEQ). 509 /// Return false on failure. On success, the Value the comparison matched 510 /// against is placed in CompValue. 511 /// If CompValue is already set, the function is expected to fail if a match 512 /// is found but the value compared to is different. 513 bool matchInstruction(Instruction *I, bool isEQ) { 514 // If this is an icmp against a constant, handle this as one of the cases. 515 ICmpInst *ICI; 516 ConstantInt *C; 517 if (!((ICI = dyn_cast<ICmpInst>(I)) && 518 (C = GetConstantInt(I->getOperand(1), DL)))) { 519 return false; 520 } 521 522 Value *RHSVal; 523 const APInt *RHSC; 524 525 // Pattern match a special case 526 // (x & ~2^z) == y --> x == y || x == y|2^z 527 // This undoes a transformation done by instcombine to fuse 2 compares. 528 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 529 // It's a little bit hard to see why the following transformations are 530 // correct. Here is a CVC3 program to verify them for 64-bit values: 531 532 /* 533 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 534 x : BITVECTOR(64); 535 y : BITVECTOR(64); 536 z : BITVECTOR(64); 537 mask : BITVECTOR(64) = BVSHL(ONE, z); 538 QUERY( (y & ~mask = y) => 539 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 540 ); 541 QUERY( (y | mask = y) => 542 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 543 ); 544 */ 545 546 // Please note that each pattern must be a dual implication (<--> or 547 // iff). One directional implication can create spurious matches. If the 548 // implication is only one-way, an unsatisfiable condition on the left 549 // side can imply a satisfiable condition on the right side. Dual 550 // implication ensures that satisfiable conditions are transformed to 551 // other satisfiable conditions and unsatisfiable conditions are 552 // transformed to other unsatisfiable conditions. 553 554 // Here is a concrete example of a unsatisfiable condition on the left 555 // implying a satisfiable condition on the right: 556 // 557 // mask = (1 << z) 558 // (x & ~mask) == y --> (x == y || x == (y | mask)) 559 // 560 // Substituting y = 3, z = 0 yields: 561 // (x & -2) == 3 --> (x == 3 || x == 2) 562 563 // Pattern match a special case: 564 /* 565 QUERY( (y & ~mask = y) => 566 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 567 ); 568 */ 569 if (match(ICI->getOperand(0), 570 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 571 APInt Mask = ~*RHSC; 572 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 573 // If we already have a value for the switch, it has to match! 574 if (!setValueOnce(RHSVal)) 575 return false; 576 577 Vals.push_back(C); 578 Vals.push_back( 579 ConstantInt::get(C->getContext(), 580 C->getValue() | Mask)); 581 UsedICmps++; 582 return true; 583 } 584 } 585 586 // Pattern match a special case: 587 /* 588 QUERY( (y | mask = y) => 589 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 590 ); 591 */ 592 if (match(ICI->getOperand(0), 593 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 594 APInt Mask = *RHSC; 595 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 596 // If we already have a value for the switch, it has to match! 597 if (!setValueOnce(RHSVal)) 598 return false; 599 600 Vals.push_back(C); 601 Vals.push_back(ConstantInt::get(C->getContext(), 602 C->getValue() & ~Mask)); 603 UsedICmps++; 604 return true; 605 } 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(ICI->getOperand(0))) 610 return false; 611 612 UsedICmps++; 613 Vals.push_back(C); 614 return ICI->getOperand(0); 615 } 616 617 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 618 ConstantRange Span = 619 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 620 621 // Shift the range if the compare is fed by an add. This is the range 622 // compare idiom as emitted by instcombine. 623 Value *CandidateVal = I->getOperand(0); 624 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 625 Span = Span.subtract(*RHSC); 626 CandidateVal = RHSVal; 627 } 628 629 // If this is an and/!= check, then we are looking to build the set of 630 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 631 // x != 0 && x != 1. 632 if (!isEQ) 633 Span = Span.inverse(); 634 635 // If there are a ton of values, we don't want to make a ginormous switch. 636 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 637 return false; 638 } 639 640 // If we already have a value for the switch, it has to match! 641 if (!setValueOnce(CandidateVal)) 642 return false; 643 644 // Add all values from the range to the set 645 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 646 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 647 648 UsedICmps++; 649 return true; 650 } 651 652 /// Given a potentially 'or'd or 'and'd together collection of icmp 653 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 654 /// the value being compared, and stick the list constants into the Vals 655 /// vector. 656 /// One "Extra" case is allowed to differ from the other. 657 void gather(Value *V) { 658 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 659 660 // Keep a stack (SmallVector for efficiency) for depth-first traversal 661 SmallVector<Value *, 8> DFT; 662 SmallPtrSet<Value *, 8> Visited; 663 664 // Initialize 665 Visited.insert(V); 666 DFT.push_back(V); 667 668 while (!DFT.empty()) { 669 V = DFT.pop_back_val(); 670 671 if (Instruction *I = dyn_cast<Instruction>(V)) { 672 // If it is a || (or && depending on isEQ), process the operands. 673 Value *Op0, *Op1; 674 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 675 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 676 if (Visited.insert(Op1).second) 677 DFT.push_back(Op1); 678 if (Visited.insert(Op0).second) 679 DFT.push_back(Op0); 680 681 continue; 682 } 683 684 // Try to match the current instruction 685 if (matchInstruction(I, isEQ)) 686 // Match succeed, continue the loop 687 continue; 688 } 689 690 // One element of the sequence of || (or &&) could not be match as a 691 // comparison against the same value as the others. 692 // We allow only one "Extra" case to be checked before the switch 693 if (!Extra) { 694 Extra = V; 695 continue; 696 } 697 // Failed to parse a proper sequence, abort now 698 CompValue = nullptr; 699 break; 700 } 701 } 702 }; 703 704 } // end anonymous namespace 705 706 static void EraseTerminatorAndDCECond(Instruction *TI, 707 MemorySSAUpdater *MSSAU = nullptr) { 708 Instruction *Cond = nullptr; 709 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 710 Cond = dyn_cast<Instruction>(SI->getCondition()); 711 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 712 if (BI->isConditional()) 713 Cond = dyn_cast<Instruction>(BI->getCondition()); 714 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 715 Cond = dyn_cast<Instruction>(IBI->getAddress()); 716 } 717 718 TI->eraseFromParent(); 719 if (Cond) 720 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 721 } 722 723 /// Return true if the specified terminator checks 724 /// to see if a value is equal to constant integer value. 725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 726 Value *CV = nullptr; 727 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 728 // Do not permit merging of large switch instructions into their 729 // predecessors unless there is only one predecessor. 730 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 731 CV = SI->getCondition(); 732 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 733 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 734 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 735 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 736 CV = ICI->getOperand(0); 737 } 738 739 // Unwrap any lossless ptrtoint cast. 740 if (CV) { 741 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 742 Value *Ptr = PTII->getPointerOperand(); 743 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 744 CV = Ptr; 745 } 746 } 747 return CV; 748 } 749 750 /// Given a value comparison instruction, 751 /// decode all of the 'cases' that it represents and return the 'default' block. 752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 753 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 754 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 755 Cases.reserve(SI->getNumCases()); 756 for (auto Case : SI->cases()) 757 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 758 Case.getCaseSuccessor())); 759 return SI->getDefaultDest(); 760 } 761 762 BranchInst *BI = cast<BranchInst>(TI); 763 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 764 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 765 Cases.push_back(ValueEqualityComparisonCase( 766 GetConstantInt(ICI->getOperand(1), DL), Succ)); 767 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 768 } 769 770 /// Given a vector of bb/value pairs, remove any entries 771 /// in the list that match the specified block. 772 static void 773 EliminateBlockCases(BasicBlock *BB, 774 std::vector<ValueEqualityComparisonCase> &Cases) { 775 llvm::erase_value(Cases, BB); 776 } 777 778 /// Return true if there are any keys in C1 that exist in C2 as well. 779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 780 std::vector<ValueEqualityComparisonCase> &C2) { 781 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 782 783 // Make V1 be smaller than V2. 784 if (V1->size() > V2->size()) 785 std::swap(V1, V2); 786 787 if (V1->empty()) 788 return false; 789 if (V1->size() == 1) { 790 // Just scan V2. 791 ConstantInt *TheVal = (*V1)[0].Value; 792 for (unsigned i = 0, e = V2->size(); i != e; ++i) 793 if (TheVal == (*V2)[i].Value) 794 return true; 795 } 796 797 // Otherwise, just sort both lists and compare element by element. 798 array_pod_sort(V1->begin(), V1->end()); 799 array_pod_sort(V2->begin(), V2->end()); 800 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 801 while (i1 != e1 && i2 != e2) { 802 if ((*V1)[i1].Value == (*V2)[i2].Value) 803 return true; 804 if ((*V1)[i1].Value < (*V2)[i2].Value) 805 ++i1; 806 else 807 ++i2; 808 } 809 return false; 810 } 811 812 // Set branch weights on SwitchInst. This sets the metadata if there is at 813 // least one non-zero weight. 814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 815 // Check that there is at least one non-zero weight. Otherwise, pass 816 // nullptr to setMetadata which will erase the existing metadata. 817 MDNode *N = nullptr; 818 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 819 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 820 SI->setMetadata(LLVMContext::MD_prof, N); 821 } 822 823 // Similar to the above, but for branch and select instructions that take 824 // exactly 2 weights. 825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 826 uint32_t FalseWeight) { 827 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 828 // Check that there is at least one non-zero weight. Otherwise, pass 829 // nullptr to setMetadata which will erase the existing metadata. 830 MDNode *N = nullptr; 831 if (TrueWeight || FalseWeight) 832 N = MDBuilder(I->getParent()->getContext()) 833 .createBranchWeights(TrueWeight, FalseWeight); 834 I->setMetadata(LLVMContext::MD_prof, N); 835 } 836 837 /// If TI is known to be a terminator instruction and its block is known to 838 /// only have a single predecessor block, check to see if that predecessor is 839 /// also a value comparison with the same value, and if that comparison 840 /// determines the outcome of this comparison. If so, simplify TI. This does a 841 /// very limited form of jump threading. 842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 843 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 844 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 845 if (!PredVal) 846 return false; // Not a value comparison in predecessor. 847 848 Value *ThisVal = isValueEqualityComparison(TI); 849 assert(ThisVal && "This isn't a value comparison!!"); 850 if (ThisVal != PredVal) 851 return false; // Different predicates. 852 853 // TODO: Preserve branch weight metadata, similarly to how 854 // FoldValueComparisonIntoPredecessors preserves it. 855 856 // Find out information about when control will move from Pred to TI's block. 857 std::vector<ValueEqualityComparisonCase> PredCases; 858 BasicBlock *PredDef = 859 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 860 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 861 862 // Find information about how control leaves this block. 863 std::vector<ValueEqualityComparisonCase> ThisCases; 864 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 865 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 866 867 // If TI's block is the default block from Pred's comparison, potentially 868 // simplify TI based on this knowledge. 869 if (PredDef == TI->getParent()) { 870 // If we are here, we know that the value is none of those cases listed in 871 // PredCases. If there are any cases in ThisCases that are in PredCases, we 872 // can simplify TI. 873 if (!ValuesOverlap(PredCases, ThisCases)) 874 return false; 875 876 if (isa<BranchInst>(TI)) { 877 // Okay, one of the successors of this condbr is dead. Convert it to a 878 // uncond br. 879 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 880 // Insert the new branch. 881 Instruction *NI = Builder.CreateBr(ThisDef); 882 (void)NI; 883 884 // Remove PHI node entries for the dead edge. 885 ThisCases[0].Dest->removePredecessor(PredDef); 886 887 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 888 << "Through successor TI: " << *TI << "Leaving: " << *NI 889 << "\n"); 890 891 EraseTerminatorAndDCECond(TI); 892 893 if (DTU) 894 DTU->applyUpdates( 895 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 896 897 return true; 898 } 899 900 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 901 // Okay, TI has cases that are statically dead, prune them away. 902 SmallPtrSet<Constant *, 16> DeadCases; 903 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 904 DeadCases.insert(PredCases[i].Value); 905 906 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 907 << "Through successor TI: " << *TI); 908 909 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 910 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 911 --i; 912 auto *Successor = i->getCaseSuccessor(); 913 if (DTU) 914 ++NumPerSuccessorCases[Successor]; 915 if (DeadCases.count(i->getCaseValue())) { 916 Successor->removePredecessor(PredDef); 917 SI.removeCase(i); 918 if (DTU) 919 --NumPerSuccessorCases[Successor]; 920 } 921 } 922 923 if (DTU) { 924 std::vector<DominatorTree::UpdateType> Updates; 925 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 926 if (I.second == 0) 927 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 928 DTU->applyUpdates(Updates); 929 } 930 931 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 932 return true; 933 } 934 935 // Otherwise, TI's block must correspond to some matched value. Find out 936 // which value (or set of values) this is. 937 ConstantInt *TIV = nullptr; 938 BasicBlock *TIBB = TI->getParent(); 939 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 940 if (PredCases[i].Dest == TIBB) { 941 if (TIV) 942 return false; // Cannot handle multiple values coming to this block. 943 TIV = PredCases[i].Value; 944 } 945 assert(TIV && "No edge from pred to succ?"); 946 947 // Okay, we found the one constant that our value can be if we get into TI's 948 // BB. Find out which successor will unconditionally be branched to. 949 BasicBlock *TheRealDest = nullptr; 950 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 951 if (ThisCases[i].Value == TIV) { 952 TheRealDest = ThisCases[i].Dest; 953 break; 954 } 955 956 // If not handled by any explicit cases, it is handled by the default case. 957 if (!TheRealDest) 958 TheRealDest = ThisDef; 959 960 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 961 962 // Remove PHI node entries for dead edges. 963 BasicBlock *CheckEdge = TheRealDest; 964 for (BasicBlock *Succ : successors(TIBB)) 965 if (Succ != CheckEdge) { 966 if (Succ != TheRealDest) 967 RemovedSuccs.insert(Succ); 968 Succ->removePredecessor(TIBB); 969 } else 970 CheckEdge = nullptr; 971 972 // Insert the new branch. 973 Instruction *NI = Builder.CreateBr(TheRealDest); 974 (void)NI; 975 976 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 977 << "Through successor TI: " << *TI << "Leaving: " << *NI 978 << "\n"); 979 980 EraseTerminatorAndDCECond(TI); 981 if (DTU) { 982 SmallVector<DominatorTree::UpdateType, 2> Updates; 983 Updates.reserve(RemovedSuccs.size()); 984 for (auto *RemovedSucc : RemovedSuccs) 985 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 986 DTU->applyUpdates(Updates); 987 } 988 return true; 989 } 990 991 namespace { 992 993 /// This class implements a stable ordering of constant 994 /// integers that does not depend on their address. This is important for 995 /// applications that sort ConstantInt's to ensure uniqueness. 996 struct ConstantIntOrdering { 997 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 998 return LHS->getValue().ult(RHS->getValue()); 999 } 1000 }; 1001 1002 } // end anonymous namespace 1003 1004 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1005 ConstantInt *const *P2) { 1006 const ConstantInt *LHS = *P1; 1007 const ConstantInt *RHS = *P2; 1008 if (LHS == RHS) 1009 return 0; 1010 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1011 } 1012 1013 static inline bool HasBranchWeights(const Instruction *I) { 1014 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1015 if (ProfMD && ProfMD->getOperand(0)) 1016 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1017 return MDS->getString().equals("branch_weights"); 1018 1019 return false; 1020 } 1021 1022 /// Get Weights of a given terminator, the default weight is at the front 1023 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1024 /// metadata. 1025 static void GetBranchWeights(Instruction *TI, 1026 SmallVectorImpl<uint64_t> &Weights) { 1027 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1028 assert(MD); 1029 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1030 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1031 Weights.push_back(CI->getValue().getZExtValue()); 1032 } 1033 1034 // If TI is a conditional eq, the default case is the false case, 1035 // and the corresponding branch-weight data is at index 2. We swap the 1036 // default weight to be the first entry. 1037 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1038 assert(Weights.size() == 2); 1039 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1040 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1041 std::swap(Weights.front(), Weights.back()); 1042 } 1043 } 1044 1045 /// Keep halving the weights until all can fit in uint32_t. 1046 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1047 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1048 if (Max > UINT_MAX) { 1049 unsigned Offset = 32 - countLeadingZeros(Max); 1050 for (uint64_t &I : Weights) 1051 I >>= Offset; 1052 } 1053 } 1054 1055 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1056 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1057 Instruction *PTI = PredBlock->getTerminator(); 1058 1059 // If we have bonus instructions, clone them into the predecessor block. 1060 // Note that there may be multiple predecessor blocks, so we cannot move 1061 // bonus instructions to a predecessor block. 1062 for (Instruction &BonusInst : *BB) { 1063 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1064 continue; 1065 1066 Instruction *NewBonusInst = BonusInst.clone(); 1067 1068 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1069 // Unless the instruction has the same !dbg location as the original 1070 // branch, drop it. When we fold the bonus instructions we want to make 1071 // sure we reset their debug locations in order to avoid stepping on 1072 // dead code caused by folding dead branches. 1073 NewBonusInst->setDebugLoc(DebugLoc()); 1074 } 1075 1076 RemapInstruction(NewBonusInst, VMap, 1077 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1078 VMap[&BonusInst] = NewBonusInst; 1079 1080 // If we moved a load, we cannot any longer claim any knowledge about 1081 // its potential value. The previous information might have been valid 1082 // only given the branch precondition. 1083 // For an analogous reason, we must also drop all the metadata whose 1084 // semantics we don't understand. We *can* preserve !annotation, because 1085 // it is tied to the instruction itself, not the value or position. 1086 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1087 1088 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1089 NewBonusInst->takeName(&BonusInst); 1090 BonusInst.setName(NewBonusInst->getName() + ".old"); 1091 1092 // Update (liveout) uses of bonus instructions, 1093 // now that the bonus instruction has been cloned into predecessor. 1094 SSAUpdater SSAUpdate; 1095 SSAUpdate.Initialize(BonusInst.getType(), 1096 (NewBonusInst->getName() + ".merge").str()); 1097 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1098 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1099 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1100 auto *UI = cast<Instruction>(U.getUser()); 1101 if (UI->getParent() != PredBlock) 1102 SSAUpdate.RewriteUseAfterInsertions(U); 1103 else // Use is in the same block as, and comes before, NewBonusInst. 1104 SSAUpdate.RewriteUse(U); 1105 } 1106 } 1107 } 1108 1109 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1110 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1111 BasicBlock *BB = TI->getParent(); 1112 BasicBlock *Pred = PTI->getParent(); 1113 1114 SmallVector<DominatorTree::UpdateType, 32> Updates; 1115 1116 // Figure out which 'cases' to copy from SI to PSI. 1117 std::vector<ValueEqualityComparisonCase> BBCases; 1118 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1119 1120 std::vector<ValueEqualityComparisonCase> PredCases; 1121 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1122 1123 // Based on whether the default edge from PTI goes to BB or not, fill in 1124 // PredCases and PredDefault with the new switch cases we would like to 1125 // build. 1126 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1127 1128 // Update the branch weight metadata along the way 1129 SmallVector<uint64_t, 8> Weights; 1130 bool PredHasWeights = HasBranchWeights(PTI); 1131 bool SuccHasWeights = HasBranchWeights(TI); 1132 1133 if (PredHasWeights) { 1134 GetBranchWeights(PTI, Weights); 1135 // branch-weight metadata is inconsistent here. 1136 if (Weights.size() != 1 + PredCases.size()) 1137 PredHasWeights = SuccHasWeights = false; 1138 } else if (SuccHasWeights) 1139 // If there are no predecessor weights but there are successor weights, 1140 // populate Weights with 1, which will later be scaled to the sum of 1141 // successor's weights 1142 Weights.assign(1 + PredCases.size(), 1); 1143 1144 SmallVector<uint64_t, 8> SuccWeights; 1145 if (SuccHasWeights) { 1146 GetBranchWeights(TI, SuccWeights); 1147 // branch-weight metadata is inconsistent here. 1148 if (SuccWeights.size() != 1 + BBCases.size()) 1149 PredHasWeights = SuccHasWeights = false; 1150 } else if (PredHasWeights) 1151 SuccWeights.assign(1 + BBCases.size(), 1); 1152 1153 if (PredDefault == BB) { 1154 // If this is the default destination from PTI, only the edges in TI 1155 // that don't occur in PTI, or that branch to BB will be activated. 1156 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1157 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1158 if (PredCases[i].Dest != BB) 1159 PTIHandled.insert(PredCases[i].Value); 1160 else { 1161 // The default destination is BB, we don't need explicit targets. 1162 std::swap(PredCases[i], PredCases.back()); 1163 1164 if (PredHasWeights || SuccHasWeights) { 1165 // Increase weight for the default case. 1166 Weights[0] += Weights[i + 1]; 1167 std::swap(Weights[i + 1], Weights.back()); 1168 Weights.pop_back(); 1169 } 1170 1171 PredCases.pop_back(); 1172 --i; 1173 --e; 1174 } 1175 1176 // Reconstruct the new switch statement we will be building. 1177 if (PredDefault != BBDefault) { 1178 PredDefault->removePredecessor(Pred); 1179 if (DTU && PredDefault != BB) 1180 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1181 PredDefault = BBDefault; 1182 ++NewSuccessors[BBDefault]; 1183 } 1184 1185 unsigned CasesFromPred = Weights.size(); 1186 uint64_t ValidTotalSuccWeight = 0; 1187 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1188 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1189 PredCases.push_back(BBCases[i]); 1190 ++NewSuccessors[BBCases[i].Dest]; 1191 if (SuccHasWeights || PredHasWeights) { 1192 // The default weight is at index 0, so weight for the ith case 1193 // should be at index i+1. Scale the cases from successor by 1194 // PredDefaultWeight (Weights[0]). 1195 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1196 ValidTotalSuccWeight += SuccWeights[i + 1]; 1197 } 1198 } 1199 1200 if (SuccHasWeights || PredHasWeights) { 1201 ValidTotalSuccWeight += SuccWeights[0]; 1202 // Scale the cases from predecessor by ValidTotalSuccWeight. 1203 for (unsigned i = 1; i < CasesFromPred; ++i) 1204 Weights[i] *= ValidTotalSuccWeight; 1205 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1206 Weights[0] *= SuccWeights[0]; 1207 } 1208 } else { 1209 // If this is not the default destination from PSI, only the edges 1210 // in SI that occur in PSI with a destination of BB will be 1211 // activated. 1212 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1213 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1214 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1215 if (PredCases[i].Dest == BB) { 1216 PTIHandled.insert(PredCases[i].Value); 1217 1218 if (PredHasWeights || SuccHasWeights) { 1219 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1220 std::swap(Weights[i + 1], Weights.back()); 1221 Weights.pop_back(); 1222 } 1223 1224 std::swap(PredCases[i], PredCases.back()); 1225 PredCases.pop_back(); 1226 --i; 1227 --e; 1228 } 1229 1230 // Okay, now we know which constants were sent to BB from the 1231 // predecessor. Figure out where they will all go now. 1232 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1233 if (PTIHandled.count(BBCases[i].Value)) { 1234 // If this is one we are capable of getting... 1235 if (PredHasWeights || SuccHasWeights) 1236 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1237 PredCases.push_back(BBCases[i]); 1238 ++NewSuccessors[BBCases[i].Dest]; 1239 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1240 } 1241 1242 // If there are any constants vectored to BB that TI doesn't handle, 1243 // they must go to the default destination of TI. 1244 for (ConstantInt *I : PTIHandled) { 1245 if (PredHasWeights || SuccHasWeights) 1246 Weights.push_back(WeightsForHandled[I]); 1247 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1248 ++NewSuccessors[BBDefault]; 1249 } 1250 } 1251 1252 // Okay, at this point, we know which new successor Pred will get. Make 1253 // sure we update the number of entries in the PHI nodes for these 1254 // successors. 1255 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1256 if (DTU) { 1257 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1258 Updates.reserve(Updates.size() + NewSuccessors.size()); 1259 } 1260 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1261 NewSuccessors) { 1262 for (auto I : seq(0, NewSuccessor.second)) { 1263 (void)I; 1264 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1265 } 1266 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1267 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1268 } 1269 1270 Builder.SetInsertPoint(PTI); 1271 // Convert pointer to int before we switch. 1272 if (CV->getType()->isPointerTy()) { 1273 CV = 1274 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1275 } 1276 1277 // Now that the successors are updated, create the new Switch instruction. 1278 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1279 NewSI->setDebugLoc(PTI->getDebugLoc()); 1280 for (ValueEqualityComparisonCase &V : PredCases) 1281 NewSI->addCase(V.Value, V.Dest); 1282 1283 if (PredHasWeights || SuccHasWeights) { 1284 // Halve the weights if any of them cannot fit in an uint32_t 1285 FitWeights(Weights); 1286 1287 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1288 1289 setBranchWeights(NewSI, MDWeights); 1290 } 1291 1292 EraseTerminatorAndDCECond(PTI); 1293 1294 // Okay, last check. If BB is still a successor of PSI, then we must 1295 // have an infinite loop case. If so, add an infinitely looping block 1296 // to handle the case to preserve the behavior of the code. 1297 BasicBlock *InfLoopBlock = nullptr; 1298 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1299 if (NewSI->getSuccessor(i) == BB) { 1300 if (!InfLoopBlock) { 1301 // Insert it at the end of the function, because it's either code, 1302 // or it won't matter if it's hot. :) 1303 InfLoopBlock = 1304 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1305 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1306 if (DTU) 1307 Updates.push_back( 1308 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1309 } 1310 NewSI->setSuccessor(i, InfLoopBlock); 1311 } 1312 1313 if (DTU) { 1314 if (InfLoopBlock) 1315 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1316 1317 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1318 1319 DTU->applyUpdates(Updates); 1320 } 1321 1322 ++NumFoldValueComparisonIntoPredecessors; 1323 return true; 1324 } 1325 1326 /// The specified terminator is a value equality comparison instruction 1327 /// (either a switch or a branch on "X == c"). 1328 /// See if any of the predecessors of the terminator block are value comparisons 1329 /// on the same value. If so, and if safe to do so, fold them together. 1330 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1331 IRBuilder<> &Builder) { 1332 BasicBlock *BB = TI->getParent(); 1333 Value *CV = isValueEqualityComparison(TI); // CondVal 1334 assert(CV && "Not a comparison?"); 1335 1336 bool Changed = false; 1337 1338 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1339 while (!Preds.empty()) { 1340 BasicBlock *Pred = Preds.pop_back_val(); 1341 Instruction *PTI = Pred->getTerminator(); 1342 1343 // Don't try to fold into itself. 1344 if (Pred == BB) 1345 continue; 1346 1347 // See if the predecessor is a comparison with the same value. 1348 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1349 if (PCV != CV) 1350 continue; 1351 1352 SmallSetVector<BasicBlock *, 4> FailBlocks; 1353 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1354 for (auto *Succ : FailBlocks) { 1355 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1356 return false; 1357 } 1358 } 1359 1360 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1361 Changed = true; 1362 } 1363 return Changed; 1364 } 1365 1366 // If we would need to insert a select that uses the value of this invoke 1367 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1368 // can't hoist the invoke, as there is nowhere to put the select in this case. 1369 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1370 Instruction *I1, Instruction *I2) { 1371 for (BasicBlock *Succ : successors(BB1)) { 1372 for (const PHINode &PN : Succ->phis()) { 1373 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1374 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1375 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1376 return false; 1377 } 1378 } 1379 } 1380 return true; 1381 } 1382 1383 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1384 1385 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1386 /// in the two blocks up into the branch block. The caller of this function 1387 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1388 /// only perform hoisting in case both blocks only contain a terminator. In that 1389 /// case, only the original BI will be replaced and selects for PHIs are added. 1390 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1391 const TargetTransformInfo &TTI, 1392 bool EqTermsOnly) { 1393 // This does very trivial matching, with limited scanning, to find identical 1394 // instructions in the two blocks. In particular, we don't want to get into 1395 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1396 // such, we currently just scan for obviously identical instructions in an 1397 // identical order. 1398 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1399 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1400 1401 // If either of the blocks has it's address taken, then we can't do this fold, 1402 // because the code we'd hoist would no longer run when we jump into the block 1403 // by it's address. 1404 if (BB1->hasAddressTaken() || BB2->hasAddressTaken()) 1405 return false; 1406 1407 BasicBlock::iterator BB1_Itr = BB1->begin(); 1408 BasicBlock::iterator BB2_Itr = BB2->begin(); 1409 1410 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1411 // Skip debug info if it is not identical. 1412 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1413 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1414 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1415 while (isa<DbgInfoIntrinsic>(I1)) 1416 I1 = &*BB1_Itr++; 1417 while (isa<DbgInfoIntrinsic>(I2)) 1418 I2 = &*BB2_Itr++; 1419 } 1420 // FIXME: Can we define a safety predicate for CallBr? 1421 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1422 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1423 isa<CallBrInst>(I1)) 1424 return false; 1425 1426 BasicBlock *BIParent = BI->getParent(); 1427 1428 bool Changed = false; 1429 1430 auto _ = make_scope_exit([&]() { 1431 if (Changed) 1432 ++NumHoistCommonCode; 1433 }); 1434 1435 // Check if only hoisting terminators is allowed. This does not add new 1436 // instructions to the hoist location. 1437 if (EqTermsOnly) { 1438 // Skip any debug intrinsics, as they are free to hoist. 1439 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1440 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1441 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1442 return false; 1443 if (!I1NonDbg->isTerminator()) 1444 return false; 1445 // Now we know that we only need to hoist debug instrinsics and the 1446 // terminator. Let the loop below handle those 2 cases. 1447 } 1448 1449 do { 1450 // If we are hoisting the terminator instruction, don't move one (making a 1451 // broken BB), instead clone it, and remove BI. 1452 if (I1->isTerminator()) 1453 goto HoistTerminator; 1454 1455 // If we're going to hoist a call, make sure that the two instructions we're 1456 // commoning/hoisting are both marked with musttail, or neither of them is 1457 // marked as such. Otherwise, we might end up in a situation where we hoist 1458 // from a block where the terminator is a `ret` to a block where the terminator 1459 // is a `br`, and `musttail` calls expect to be followed by a return. 1460 auto *C1 = dyn_cast<CallInst>(I1); 1461 auto *C2 = dyn_cast<CallInst>(I2); 1462 if (C1 && C2) 1463 if (C1->isMustTailCall() != C2->isMustTailCall()) 1464 return Changed; 1465 1466 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1467 return Changed; 1468 1469 // If any of the two call sites has nomerge attribute, stop hoisting. 1470 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1471 if (CB1->cannotMerge()) 1472 return Changed; 1473 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1474 if (CB2->cannotMerge()) 1475 return Changed; 1476 1477 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1478 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1479 // The debug location is an integral part of a debug info intrinsic 1480 // and can't be separated from it or replaced. Instead of attempting 1481 // to merge locations, simply hoist both copies of the intrinsic. 1482 BIParent->getInstList().splice(BI->getIterator(), 1483 BB1->getInstList(), I1); 1484 BIParent->getInstList().splice(BI->getIterator(), 1485 BB2->getInstList(), I2); 1486 Changed = true; 1487 } else { 1488 // For a normal instruction, we just move one to right before the branch, 1489 // then replace all uses of the other with the first. Finally, we remove 1490 // the now redundant second instruction. 1491 BIParent->getInstList().splice(BI->getIterator(), 1492 BB1->getInstList(), I1); 1493 if (!I2->use_empty()) 1494 I2->replaceAllUsesWith(I1); 1495 I1->andIRFlags(I2); 1496 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1497 LLVMContext::MD_range, 1498 LLVMContext::MD_fpmath, 1499 LLVMContext::MD_invariant_load, 1500 LLVMContext::MD_nonnull, 1501 LLVMContext::MD_invariant_group, 1502 LLVMContext::MD_align, 1503 LLVMContext::MD_dereferenceable, 1504 LLVMContext::MD_dereferenceable_or_null, 1505 LLVMContext::MD_mem_parallel_loop_access, 1506 LLVMContext::MD_access_group, 1507 LLVMContext::MD_preserve_access_index}; 1508 combineMetadata(I1, I2, KnownIDs, true); 1509 1510 // I1 and I2 are being combined into a single instruction. Its debug 1511 // location is the merged locations of the original instructions. 1512 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1513 1514 I2->eraseFromParent(); 1515 Changed = true; 1516 } 1517 ++NumHoistCommonInstrs; 1518 1519 I1 = &*BB1_Itr++; 1520 I2 = &*BB2_Itr++; 1521 // Skip debug info if it is not identical. 1522 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1523 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1524 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1525 while (isa<DbgInfoIntrinsic>(I1)) 1526 I1 = &*BB1_Itr++; 1527 while (isa<DbgInfoIntrinsic>(I2)) 1528 I2 = &*BB2_Itr++; 1529 } 1530 } while (I1->isIdenticalToWhenDefined(I2)); 1531 1532 return true; 1533 1534 HoistTerminator: 1535 // It may not be possible to hoist an invoke. 1536 // FIXME: Can we define a safety predicate for CallBr? 1537 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1538 return Changed; 1539 1540 // TODO: callbr hoisting currently disabled pending further study. 1541 if (isa<CallBrInst>(I1)) 1542 return Changed; 1543 1544 for (BasicBlock *Succ : successors(BB1)) { 1545 for (PHINode &PN : Succ->phis()) { 1546 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1547 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1548 if (BB1V == BB2V) 1549 continue; 1550 1551 // Check for passingValueIsAlwaysUndefined here because we would rather 1552 // eliminate undefined control flow then converting it to a select. 1553 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1554 passingValueIsAlwaysUndefined(BB2V, &PN)) 1555 return Changed; 1556 1557 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1558 return Changed; 1559 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1560 return Changed; 1561 } 1562 } 1563 1564 // Okay, it is safe to hoist the terminator. 1565 Instruction *NT = I1->clone(); 1566 BIParent->getInstList().insert(BI->getIterator(), NT); 1567 if (!NT->getType()->isVoidTy()) { 1568 I1->replaceAllUsesWith(NT); 1569 I2->replaceAllUsesWith(NT); 1570 NT->takeName(I1); 1571 } 1572 Changed = true; 1573 ++NumHoistCommonInstrs; 1574 1575 // Ensure terminator gets a debug location, even an unknown one, in case 1576 // it involves inlinable calls. 1577 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1578 1579 // PHIs created below will adopt NT's merged DebugLoc. 1580 IRBuilder<NoFolder> Builder(NT); 1581 1582 // Hoisting one of the terminators from our successor is a great thing. 1583 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1584 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1585 // nodes, so we insert select instruction to compute the final result. 1586 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1587 for (BasicBlock *Succ : successors(BB1)) { 1588 for (PHINode &PN : Succ->phis()) { 1589 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1590 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1591 if (BB1V == BB2V) 1592 continue; 1593 1594 // These values do not agree. Insert a select instruction before NT 1595 // that determines the right value. 1596 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1597 if (!SI) { 1598 // Propagate fast-math-flags from phi node to its replacement select. 1599 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1600 if (isa<FPMathOperator>(PN)) 1601 Builder.setFastMathFlags(PN.getFastMathFlags()); 1602 1603 SI = cast<SelectInst>( 1604 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1605 BB1V->getName() + "." + BB2V->getName(), BI)); 1606 } 1607 1608 // Make the PHI node use the select for all incoming values for BB1/BB2 1609 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1610 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1611 PN.setIncomingValue(i, SI); 1612 } 1613 } 1614 1615 SmallVector<DominatorTree::UpdateType, 4> Updates; 1616 1617 // Update any PHI nodes in our new successors. 1618 for (BasicBlock *Succ : successors(BB1)) { 1619 AddPredecessorToBlock(Succ, BIParent, BB1); 1620 if (DTU) 1621 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1622 } 1623 1624 if (DTU) 1625 for (BasicBlock *Succ : successors(BI)) 1626 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1627 1628 EraseTerminatorAndDCECond(BI); 1629 if (DTU) 1630 DTU->applyUpdates(Updates); 1631 return Changed; 1632 } 1633 1634 // Check lifetime markers. 1635 static bool isLifeTimeMarker(const Instruction *I) { 1636 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1637 switch (II->getIntrinsicID()) { 1638 default: 1639 break; 1640 case Intrinsic::lifetime_start: 1641 case Intrinsic::lifetime_end: 1642 return true; 1643 } 1644 } 1645 return false; 1646 } 1647 1648 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1649 // into variables. 1650 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1651 int OpIdx) { 1652 return !isa<IntrinsicInst>(I); 1653 } 1654 1655 // All instructions in Insts belong to different blocks that all unconditionally 1656 // branch to a common successor. Analyze each instruction and return true if it 1657 // would be possible to sink them into their successor, creating one common 1658 // instruction instead. For every value that would be required to be provided by 1659 // PHI node (because an operand varies in each input block), add to PHIOperands. 1660 static bool canSinkInstructions( 1661 ArrayRef<Instruction *> Insts, 1662 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1663 // Prune out obviously bad instructions to move. Each instruction must have 1664 // exactly zero or one use, and we check later that use is by a single, common 1665 // PHI instruction in the successor. 1666 bool HasUse = !Insts.front()->user_empty(); 1667 for (auto *I : Insts) { 1668 // These instructions may change or break semantics if moved. 1669 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1670 I->getType()->isTokenTy()) 1671 return false; 1672 1673 // Do not try to sink an instruction in an infinite loop - it can cause 1674 // this algorithm to infinite loop. 1675 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1676 return false; 1677 1678 // Conservatively return false if I is an inline-asm instruction. Sinking 1679 // and merging inline-asm instructions can potentially create arguments 1680 // that cannot satisfy the inline-asm constraints. 1681 // If the instruction has nomerge attribute, return false. 1682 if (const auto *C = dyn_cast<CallBase>(I)) 1683 if (C->isInlineAsm() || C->cannotMerge()) 1684 return false; 1685 1686 // Each instruction must have zero or one use. 1687 if (HasUse && !I->hasOneUse()) 1688 return false; 1689 if (!HasUse && !I->user_empty()) 1690 return false; 1691 } 1692 1693 const Instruction *I0 = Insts.front(); 1694 for (auto *I : Insts) 1695 if (!I->isSameOperationAs(I0)) 1696 return false; 1697 1698 // All instructions in Insts are known to be the same opcode. If they have a 1699 // use, check that the only user is a PHI or in the same block as the 1700 // instruction, because if a user is in the same block as an instruction we're 1701 // contemplating sinking, it must already be determined to be sinkable. 1702 if (HasUse) { 1703 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1704 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1705 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1706 auto *U = cast<Instruction>(*I->user_begin()); 1707 return (PNUse && 1708 PNUse->getParent() == Succ && 1709 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1710 U->getParent() == I->getParent(); 1711 })) 1712 return false; 1713 } 1714 1715 // Because SROA can't handle speculating stores of selects, try not to sink 1716 // loads, stores or lifetime markers of allocas when we'd have to create a 1717 // PHI for the address operand. Also, because it is likely that loads or 1718 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1719 // them. 1720 // This can cause code churn which can have unintended consequences down 1721 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1722 // FIXME: This is a workaround for a deficiency in SROA - see 1723 // https://llvm.org/bugs/show_bug.cgi?id=30188 1724 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1725 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1726 })) 1727 return false; 1728 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1729 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1730 })) 1731 return false; 1732 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1733 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1734 })) 1735 return false; 1736 1737 // For calls to be sinkable, they must all be indirect, or have same callee. 1738 // I.e. if we have two direct calls to different callees, we don't want to 1739 // turn that into an indirect call. Likewise, if we have an indirect call, 1740 // and a direct call, we don't actually want to have a single indirect call. 1741 if (isa<CallBase>(I0)) { 1742 auto IsIndirectCall = [](const Instruction *I) { 1743 return cast<CallBase>(I)->isIndirectCall(); 1744 }; 1745 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1746 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1747 if (HaveIndirectCalls) { 1748 if (!AllCallsAreIndirect) 1749 return false; 1750 } else { 1751 // All callees must be identical. 1752 Value *Callee = nullptr; 1753 for (const Instruction *I : Insts) { 1754 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1755 if (!Callee) 1756 Callee = CurrCallee; 1757 else if (Callee != CurrCallee) 1758 return false; 1759 } 1760 } 1761 } 1762 1763 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1764 Value *Op = I0->getOperand(OI); 1765 if (Op->getType()->isTokenTy()) 1766 // Don't touch any operand of token type. 1767 return false; 1768 1769 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1770 assert(I->getNumOperands() == I0->getNumOperands()); 1771 return I->getOperand(OI) == I0->getOperand(OI); 1772 }; 1773 if (!all_of(Insts, SameAsI0)) { 1774 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1775 !canReplaceOperandWithVariable(I0, OI)) 1776 // We can't create a PHI from this GEP. 1777 return false; 1778 for (auto *I : Insts) 1779 PHIOperands[I].push_back(I->getOperand(OI)); 1780 } 1781 } 1782 return true; 1783 } 1784 1785 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1786 // instruction of every block in Blocks to their common successor, commoning 1787 // into one instruction. 1788 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1789 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1790 1791 // canSinkInstructions returning true guarantees that every block has at 1792 // least one non-terminator instruction. 1793 SmallVector<Instruction*,4> Insts; 1794 for (auto *BB : Blocks) { 1795 Instruction *I = BB->getTerminator(); 1796 do { 1797 I = I->getPrevNode(); 1798 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1799 if (!isa<DbgInfoIntrinsic>(I)) 1800 Insts.push_back(I); 1801 } 1802 1803 // The only checking we need to do now is that all users of all instructions 1804 // are the same PHI node. canSinkInstructions should have checked this but 1805 // it is slightly over-aggressive - it gets confused by commutative 1806 // instructions so double-check it here. 1807 Instruction *I0 = Insts.front(); 1808 if (!I0->user_empty()) { 1809 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1810 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1811 auto *U = cast<Instruction>(*I->user_begin()); 1812 return U == PNUse; 1813 })) 1814 return false; 1815 } 1816 1817 // We don't need to do any more checking here; canSinkInstructions should 1818 // have done it all for us. 1819 SmallVector<Value*, 4> NewOperands; 1820 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1821 // This check is different to that in canSinkInstructions. There, we 1822 // cared about the global view once simplifycfg (and instcombine) have 1823 // completed - it takes into account PHIs that become trivially 1824 // simplifiable. However here we need a more local view; if an operand 1825 // differs we create a PHI and rely on instcombine to clean up the very 1826 // small mess we may make. 1827 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1828 return I->getOperand(O) != I0->getOperand(O); 1829 }); 1830 if (!NeedPHI) { 1831 NewOperands.push_back(I0->getOperand(O)); 1832 continue; 1833 } 1834 1835 // Create a new PHI in the successor block and populate it. 1836 auto *Op = I0->getOperand(O); 1837 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1838 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1839 Op->getName() + ".sink", &BBEnd->front()); 1840 for (auto *I : Insts) 1841 PN->addIncoming(I->getOperand(O), I->getParent()); 1842 NewOperands.push_back(PN); 1843 } 1844 1845 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1846 // and move it to the start of the successor block. 1847 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1848 I0->getOperandUse(O).set(NewOperands[O]); 1849 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1850 1851 // Update metadata and IR flags, and merge debug locations. 1852 for (auto *I : Insts) 1853 if (I != I0) { 1854 // The debug location for the "common" instruction is the merged locations 1855 // of all the commoned instructions. We start with the original location 1856 // of the "common" instruction and iteratively merge each location in the 1857 // loop below. 1858 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1859 // However, as N-way merge for CallInst is rare, so we use simplified API 1860 // instead of using complex API for N-way merge. 1861 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1862 combineMetadataForCSE(I0, I, true); 1863 I0->andIRFlags(I); 1864 } 1865 1866 if (!I0->user_empty()) { 1867 // canSinkLastInstruction checked that all instructions were used by 1868 // one and only one PHI node. Find that now, RAUW it to our common 1869 // instruction and nuke it. 1870 auto *PN = cast<PHINode>(*I0->user_begin()); 1871 PN->replaceAllUsesWith(I0); 1872 PN->eraseFromParent(); 1873 } 1874 1875 // Finally nuke all instructions apart from the common instruction. 1876 for (auto *I : Insts) 1877 if (I != I0) 1878 I->eraseFromParent(); 1879 1880 return true; 1881 } 1882 1883 namespace { 1884 1885 // LockstepReverseIterator - Iterates through instructions 1886 // in a set of blocks in reverse order from the first non-terminator. 1887 // For example (assume all blocks have size n): 1888 // LockstepReverseIterator I([B1, B2, B3]); 1889 // *I-- = [B1[n], B2[n], B3[n]]; 1890 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1891 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1892 // ... 1893 class LockstepReverseIterator { 1894 ArrayRef<BasicBlock*> Blocks; 1895 SmallVector<Instruction*,4> Insts; 1896 bool Fail; 1897 1898 public: 1899 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1900 reset(); 1901 } 1902 1903 void reset() { 1904 Fail = false; 1905 Insts.clear(); 1906 for (auto *BB : Blocks) { 1907 Instruction *Inst = BB->getTerminator(); 1908 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1909 Inst = Inst->getPrevNode(); 1910 if (!Inst) { 1911 // Block wasn't big enough. 1912 Fail = true; 1913 return; 1914 } 1915 Insts.push_back(Inst); 1916 } 1917 } 1918 1919 bool isValid() const { 1920 return !Fail; 1921 } 1922 1923 void operator--() { 1924 if (Fail) 1925 return; 1926 for (auto *&Inst : Insts) { 1927 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1928 Inst = Inst->getPrevNode(); 1929 // Already at beginning of block. 1930 if (!Inst) { 1931 Fail = true; 1932 return; 1933 } 1934 } 1935 } 1936 1937 void operator++() { 1938 if (Fail) 1939 return; 1940 for (auto *&Inst : Insts) { 1941 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1942 Inst = Inst->getNextNode(); 1943 // Already at end of block. 1944 if (!Inst) { 1945 Fail = true; 1946 return; 1947 } 1948 } 1949 } 1950 1951 ArrayRef<Instruction*> operator * () const { 1952 return Insts; 1953 } 1954 }; 1955 1956 } // end anonymous namespace 1957 1958 /// Check whether BB's predecessors end with unconditional branches. If it is 1959 /// true, sink any common code from the predecessors to BB. 1960 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1961 DomTreeUpdater *DTU) { 1962 // We support two situations: 1963 // (1) all incoming arcs are unconditional 1964 // (2) there are non-unconditional incoming arcs 1965 // 1966 // (2) is very common in switch defaults and 1967 // else-if patterns; 1968 // 1969 // if (a) f(1); 1970 // else if (b) f(2); 1971 // 1972 // produces: 1973 // 1974 // [if] 1975 // / \ 1976 // [f(1)] [if] 1977 // | | \ 1978 // | | | 1979 // | [f(2)]| 1980 // \ | / 1981 // [ end ] 1982 // 1983 // [end] has two unconditional predecessor arcs and one conditional. The 1984 // conditional refers to the implicit empty 'else' arc. This conditional 1985 // arc can also be caused by an empty default block in a switch. 1986 // 1987 // In this case, we attempt to sink code from all *unconditional* arcs. 1988 // If we can sink instructions from these arcs (determined during the scan 1989 // phase below) we insert a common successor for all unconditional arcs and 1990 // connect that to [end], to enable sinking: 1991 // 1992 // [if] 1993 // / \ 1994 // [x(1)] [if] 1995 // | | \ 1996 // | | \ 1997 // | [x(2)] | 1998 // \ / | 1999 // [sink.split] | 2000 // \ / 2001 // [ end ] 2002 // 2003 SmallVector<BasicBlock*,4> UnconditionalPreds; 2004 bool HaveNonUnconditionalPredecessors = false; 2005 for (auto *PredBB : predecessors(BB)) { 2006 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2007 if (PredBr && PredBr->isUnconditional()) 2008 UnconditionalPreds.push_back(PredBB); 2009 else 2010 HaveNonUnconditionalPredecessors = true; 2011 } 2012 if (UnconditionalPreds.size() < 2) 2013 return false; 2014 2015 // We take a two-step approach to tail sinking. First we scan from the end of 2016 // each block upwards in lockstep. If the n'th instruction from the end of each 2017 // block can be sunk, those instructions are added to ValuesToSink and we 2018 // carry on. If we can sink an instruction but need to PHI-merge some operands 2019 // (because they're not identical in each instruction) we add these to 2020 // PHIOperands. 2021 int ScanIdx = 0; 2022 SmallPtrSet<Value*,4> InstructionsToSink; 2023 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2024 LockstepReverseIterator LRI(UnconditionalPreds); 2025 while (LRI.isValid() && 2026 canSinkInstructions(*LRI, PHIOperands)) { 2027 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2028 << "\n"); 2029 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2030 ++ScanIdx; 2031 --LRI; 2032 } 2033 2034 // If no instructions can be sunk, early-return. 2035 if (ScanIdx == 0) 2036 return false; 2037 2038 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2039 // actually sink before encountering instruction that is unprofitable to sink? 2040 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2041 unsigned NumPHIdValues = 0; 2042 for (auto *I : *LRI) 2043 for (auto *V : PHIOperands[I]) { 2044 if (InstructionsToSink.count(V) == 0) 2045 ++NumPHIdValues; 2046 // FIXME: this check is overly optimistic. We may end up not sinking 2047 // said instruction, due to the very same profitability check. 2048 // See @creating_too_many_phis in sink-common-code.ll. 2049 } 2050 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2051 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2052 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2053 NumPHIInsts++; 2054 2055 return NumPHIInsts <= 1; 2056 }; 2057 2058 // We've determined that we are going to sink last ScanIdx instructions, 2059 // and recorded them in InstructionsToSink. Now, some instructions may be 2060 // unprofitable to sink. But that determination depends on the instructions 2061 // that we are going to sink. 2062 2063 // First, forward scan: find the first instruction unprofitable to sink, 2064 // recording all the ones that are profitable to sink. 2065 // FIXME: would it be better, after we detect that not all are profitable. 2066 // to either record the profitable ones, or erase the unprofitable ones? 2067 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2068 LRI.reset(); 2069 int Idx = 0; 2070 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2071 while (Idx < ScanIdx) { 2072 if (!ProfitableToSinkInstruction(LRI)) { 2073 // Too many PHIs would be created. 2074 LLVM_DEBUG( 2075 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2076 break; 2077 } 2078 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2079 --LRI; 2080 ++Idx; 2081 } 2082 2083 // If no instructions can be sunk, early-return. 2084 if (Idx == 0) 2085 return false; 2086 2087 // Did we determine that (only) some instructions are unprofitable to sink? 2088 if (Idx < ScanIdx) { 2089 // Okay, some instructions are unprofitable. 2090 ScanIdx = Idx; 2091 InstructionsToSink = InstructionsProfitableToSink; 2092 2093 // But, that may make other instructions unprofitable, too. 2094 // So, do a backward scan, do any earlier instructions become unprofitable? 2095 assert(!ProfitableToSinkInstruction(LRI) && 2096 "We already know that the last instruction is unprofitable to sink"); 2097 ++LRI; 2098 --Idx; 2099 while (Idx >= 0) { 2100 // If we detect that an instruction becomes unprofitable to sink, 2101 // all earlier instructions won't be sunk either, 2102 // so preemptively keep InstructionsProfitableToSink in sync. 2103 // FIXME: is this the most performant approach? 2104 for (auto *I : *LRI) 2105 InstructionsProfitableToSink.erase(I); 2106 if (!ProfitableToSinkInstruction(LRI)) { 2107 // Everything starting with this instruction won't be sunk. 2108 ScanIdx = Idx; 2109 InstructionsToSink = InstructionsProfitableToSink; 2110 } 2111 ++LRI; 2112 --Idx; 2113 } 2114 } 2115 2116 // If no instructions can be sunk, early-return. 2117 if (ScanIdx == 0) 2118 return false; 2119 2120 bool Changed = false; 2121 2122 if (HaveNonUnconditionalPredecessors) { 2123 // It is always legal to sink common instructions from unconditional 2124 // predecessors. However, if not all predecessors are unconditional, 2125 // this transformation might be pessimizing. So as a rule of thumb, 2126 // don't do it unless we'd sink at least one non-speculatable instruction. 2127 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2128 LRI.reset(); 2129 int Idx = 0; 2130 bool Profitable = false; 2131 while (Idx < ScanIdx) { 2132 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2133 Profitable = true; 2134 break; 2135 } 2136 --LRI; 2137 ++Idx; 2138 } 2139 if (!Profitable) 2140 return false; 2141 2142 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2143 // We have a conditional edge and we're going to sink some instructions. 2144 // Insert a new block postdominating all blocks we're going to sink from. 2145 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2146 // Edges couldn't be split. 2147 return false; 2148 Changed = true; 2149 } 2150 2151 // Now that we've analyzed all potential sinking candidates, perform the 2152 // actual sink. We iteratively sink the last non-terminator of the source 2153 // blocks into their common successor unless doing so would require too 2154 // many PHI instructions to be generated (currently only one PHI is allowed 2155 // per sunk instruction). 2156 // 2157 // We can use InstructionsToSink to discount values needing PHI-merging that will 2158 // actually be sunk in a later iteration. This allows us to be more 2159 // aggressive in what we sink. This does allow a false positive where we 2160 // sink presuming a later value will also be sunk, but stop half way through 2161 // and never actually sink it which means we produce more PHIs than intended. 2162 // This is unlikely in practice though. 2163 int SinkIdx = 0; 2164 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2165 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2166 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2167 << "\n"); 2168 2169 // Because we've sunk every instruction in turn, the current instruction to 2170 // sink is always at index 0. 2171 LRI.reset(); 2172 2173 if (!sinkLastInstruction(UnconditionalPreds)) { 2174 LLVM_DEBUG( 2175 dbgs() 2176 << "SINK: stopping here, failed to actually sink instruction!\n"); 2177 break; 2178 } 2179 2180 NumSinkCommonInstrs++; 2181 Changed = true; 2182 } 2183 if (SinkIdx != 0) 2184 ++NumSinkCommonCode; 2185 return Changed; 2186 } 2187 2188 /// Determine if we can hoist sink a sole store instruction out of a 2189 /// conditional block. 2190 /// 2191 /// We are looking for code like the following: 2192 /// BrBB: 2193 /// store i32 %add, i32* %arrayidx2 2194 /// ... // No other stores or function calls (we could be calling a memory 2195 /// ... // function). 2196 /// %cmp = icmp ult %x, %y 2197 /// br i1 %cmp, label %EndBB, label %ThenBB 2198 /// ThenBB: 2199 /// store i32 %add5, i32* %arrayidx2 2200 /// br label EndBB 2201 /// EndBB: 2202 /// ... 2203 /// We are going to transform this into: 2204 /// BrBB: 2205 /// store i32 %add, i32* %arrayidx2 2206 /// ... // 2207 /// %cmp = icmp ult %x, %y 2208 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2209 /// store i32 %add.add5, i32* %arrayidx2 2210 /// ... 2211 /// 2212 /// \return The pointer to the value of the previous store if the store can be 2213 /// hoisted into the predecessor block. 0 otherwise. 2214 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2215 BasicBlock *StoreBB, BasicBlock *EndBB) { 2216 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2217 if (!StoreToHoist) 2218 return nullptr; 2219 2220 // Volatile or atomic. 2221 if (!StoreToHoist->isSimple()) 2222 return nullptr; 2223 2224 Value *StorePtr = StoreToHoist->getPointerOperand(); 2225 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 2226 2227 // Look for a store to the same pointer in BrBB. 2228 unsigned MaxNumInstToLookAt = 9; 2229 // Skip pseudo probe intrinsic calls which are not really killing any memory 2230 // accesses. 2231 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2232 if (!MaxNumInstToLookAt) 2233 break; 2234 --MaxNumInstToLookAt; 2235 2236 // Could be calling an instruction that affects memory like free(). 2237 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 2238 return nullptr; 2239 2240 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2241 // Found the previous store to same location and type. Make sure it is 2242 // simple, to avoid introducing a spurious non-atomic write after an 2243 // atomic write. 2244 if (SI->getPointerOperand() == StorePtr && 2245 SI->getValueOperand()->getType() == StoreTy && SI->isSimple()) 2246 // Found the previous store, return its value operand. 2247 return SI->getValueOperand(); 2248 return nullptr; // Unknown store. 2249 } 2250 } 2251 2252 return nullptr; 2253 } 2254 2255 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2256 /// converted to selects. 2257 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2258 BasicBlock *EndBB, 2259 unsigned &SpeculatedInstructions, 2260 InstructionCost &Cost, 2261 const TargetTransformInfo &TTI) { 2262 TargetTransformInfo::TargetCostKind CostKind = 2263 BB->getParent()->hasMinSize() 2264 ? TargetTransformInfo::TCK_CodeSize 2265 : TargetTransformInfo::TCK_SizeAndLatency; 2266 2267 bool HaveRewritablePHIs = false; 2268 for (PHINode &PN : EndBB->phis()) { 2269 Value *OrigV = PN.getIncomingValueForBlock(BB); 2270 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2271 2272 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2273 // Skip PHIs which are trivial. 2274 if (ThenV == OrigV) 2275 continue; 2276 2277 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2278 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2279 2280 // Don't convert to selects if we could remove undefined behavior instead. 2281 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2282 passingValueIsAlwaysUndefined(ThenV, &PN)) 2283 return false; 2284 2285 HaveRewritablePHIs = true; 2286 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2287 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2288 if (!OrigCE && !ThenCE) 2289 continue; // Known safe and cheap. 2290 2291 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2292 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2293 return false; 2294 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2295 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2296 InstructionCost MaxCost = 2297 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2298 if (OrigCost + ThenCost > MaxCost) 2299 return false; 2300 2301 // Account for the cost of an unfolded ConstantExpr which could end up 2302 // getting expanded into Instructions. 2303 // FIXME: This doesn't account for how many operations are combined in the 2304 // constant expression. 2305 ++SpeculatedInstructions; 2306 if (SpeculatedInstructions > 1) 2307 return false; 2308 } 2309 2310 return HaveRewritablePHIs; 2311 } 2312 2313 /// Speculate a conditional basic block flattening the CFG. 2314 /// 2315 /// Note that this is a very risky transform currently. Speculating 2316 /// instructions like this is most often not desirable. Instead, there is an MI 2317 /// pass which can do it with full awareness of the resource constraints. 2318 /// However, some cases are "obvious" and we should do directly. An example of 2319 /// this is speculating a single, reasonably cheap instruction. 2320 /// 2321 /// There is only one distinct advantage to flattening the CFG at the IR level: 2322 /// it makes very common but simplistic optimizations such as are common in 2323 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2324 /// modeling their effects with easier to reason about SSA value graphs. 2325 /// 2326 /// 2327 /// An illustration of this transform is turning this IR: 2328 /// \code 2329 /// BB: 2330 /// %cmp = icmp ult %x, %y 2331 /// br i1 %cmp, label %EndBB, label %ThenBB 2332 /// ThenBB: 2333 /// %sub = sub %x, %y 2334 /// br label BB2 2335 /// EndBB: 2336 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2337 /// ... 2338 /// \endcode 2339 /// 2340 /// Into this IR: 2341 /// \code 2342 /// BB: 2343 /// %cmp = icmp ult %x, %y 2344 /// %sub = sub %x, %y 2345 /// %cond = select i1 %cmp, 0, %sub 2346 /// ... 2347 /// \endcode 2348 /// 2349 /// \returns true if the conditional block is removed. 2350 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2351 const TargetTransformInfo &TTI) { 2352 // Be conservative for now. FP select instruction can often be expensive. 2353 Value *BrCond = BI->getCondition(); 2354 if (isa<FCmpInst>(BrCond)) 2355 return false; 2356 2357 BasicBlock *BB = BI->getParent(); 2358 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2359 InstructionCost Budget = 2360 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2361 2362 // If ThenBB is actually on the false edge of the conditional branch, remember 2363 // to swap the select operands later. 2364 bool Invert = false; 2365 if (ThenBB != BI->getSuccessor(0)) { 2366 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2367 Invert = true; 2368 } 2369 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2370 2371 // If the branch is non-unpredictable, and is predicted to *not* branch to 2372 // the `then` block, then avoid speculating it. 2373 if (!BI->getMetadata(LLVMContext::MD_unpredictable)) { 2374 uint64_t TWeight, FWeight; 2375 if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) { 2376 uint64_t EndWeight = Invert ? TWeight : FWeight; 2377 BranchProbability BIEndProb = 2378 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 2379 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2380 if (BIEndProb >= Likely) 2381 return false; 2382 } 2383 } 2384 2385 // Keep a count of how many times instructions are used within ThenBB when 2386 // they are candidates for sinking into ThenBB. Specifically: 2387 // - They are defined in BB, and 2388 // - They have no side effects, and 2389 // - All of their uses are in ThenBB. 2390 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2391 2392 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2393 2394 unsigned SpeculatedInstructions = 0; 2395 Value *SpeculatedStoreValue = nullptr; 2396 StoreInst *SpeculatedStore = nullptr; 2397 for (BasicBlock::iterator BBI = ThenBB->begin(), 2398 BBE = std::prev(ThenBB->end()); 2399 BBI != BBE; ++BBI) { 2400 Instruction *I = &*BBI; 2401 // Skip debug info. 2402 if (isa<DbgInfoIntrinsic>(I)) { 2403 SpeculatedDbgIntrinsics.push_back(I); 2404 continue; 2405 } 2406 2407 // Skip pseudo probes. The consequence is we lose track of the branch 2408 // probability for ThenBB, which is fine since the optimization here takes 2409 // place regardless of the branch probability. 2410 if (isa<PseudoProbeInst>(I)) { 2411 // The probe should be deleted so that it will not be over-counted when 2412 // the samples collected on the non-conditional path are counted towards 2413 // the conditional path. We leave it for the counts inference algorithm to 2414 // figure out a proper count for an unknown probe. 2415 SpeculatedDbgIntrinsics.push_back(I); 2416 continue; 2417 } 2418 2419 // Only speculatively execute a single instruction (not counting the 2420 // terminator) for now. 2421 ++SpeculatedInstructions; 2422 if (SpeculatedInstructions > 1) 2423 return false; 2424 2425 // Don't hoist the instruction if it's unsafe or expensive. 2426 if (!isSafeToSpeculativelyExecute(I) && 2427 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2428 I, BB, ThenBB, EndBB)))) 2429 return false; 2430 if (!SpeculatedStoreValue && 2431 computeSpeculationCost(I, TTI) > 2432 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2433 return false; 2434 2435 // Store the store speculation candidate. 2436 if (SpeculatedStoreValue) 2437 SpeculatedStore = cast<StoreInst>(I); 2438 2439 // Do not hoist the instruction if any of its operands are defined but not 2440 // used in BB. The transformation will prevent the operand from 2441 // being sunk into the use block. 2442 for (Use &Op : I->operands()) { 2443 Instruction *OpI = dyn_cast<Instruction>(Op); 2444 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2445 continue; // Not a candidate for sinking. 2446 2447 ++SinkCandidateUseCounts[OpI]; 2448 } 2449 } 2450 2451 // Consider any sink candidates which are only used in ThenBB as costs for 2452 // speculation. Note, while we iterate over a DenseMap here, we are summing 2453 // and so iteration order isn't significant. 2454 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2455 I = SinkCandidateUseCounts.begin(), 2456 E = SinkCandidateUseCounts.end(); 2457 I != E; ++I) 2458 if (I->first->hasNUses(I->second)) { 2459 ++SpeculatedInstructions; 2460 if (SpeculatedInstructions > 1) 2461 return false; 2462 } 2463 2464 // Check that we can insert the selects and that it's not too expensive to do 2465 // so. 2466 bool Convert = SpeculatedStore != nullptr; 2467 InstructionCost Cost = 0; 2468 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2469 SpeculatedInstructions, 2470 Cost, TTI); 2471 if (!Convert || Cost > Budget) 2472 return false; 2473 2474 // If we get here, we can hoist the instruction and if-convert. 2475 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2476 2477 // Insert a select of the value of the speculated store. 2478 if (SpeculatedStoreValue) { 2479 IRBuilder<NoFolder> Builder(BI); 2480 Value *TrueV = SpeculatedStore->getValueOperand(); 2481 Value *FalseV = SpeculatedStoreValue; 2482 if (Invert) 2483 std::swap(TrueV, FalseV); 2484 Value *S = Builder.CreateSelect( 2485 BrCond, TrueV, FalseV, "spec.store.select", BI); 2486 SpeculatedStore->setOperand(0, S); 2487 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2488 SpeculatedStore->getDebugLoc()); 2489 } 2490 2491 // Metadata can be dependent on the condition we are hoisting above. 2492 // Conservatively strip all metadata on the instruction. Drop the debug loc 2493 // to avoid making it appear as if the condition is a constant, which would 2494 // be misleading while debugging. 2495 for (auto &I : *ThenBB) { 2496 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2497 I.setDebugLoc(DebugLoc()); 2498 I.dropUnknownNonDebugMetadata(); 2499 } 2500 2501 // Hoist the instructions. 2502 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2503 ThenBB->begin(), std::prev(ThenBB->end())); 2504 2505 // Insert selects and rewrite the PHI operands. 2506 IRBuilder<NoFolder> Builder(BI); 2507 for (PHINode &PN : EndBB->phis()) { 2508 unsigned OrigI = PN.getBasicBlockIndex(BB); 2509 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2510 Value *OrigV = PN.getIncomingValue(OrigI); 2511 Value *ThenV = PN.getIncomingValue(ThenI); 2512 2513 // Skip PHIs which are trivial. 2514 if (OrigV == ThenV) 2515 continue; 2516 2517 // Create a select whose true value is the speculatively executed value and 2518 // false value is the pre-existing value. Swap them if the branch 2519 // destinations were inverted. 2520 Value *TrueV = ThenV, *FalseV = OrigV; 2521 if (Invert) 2522 std::swap(TrueV, FalseV); 2523 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2524 PN.setIncomingValue(OrigI, V); 2525 PN.setIncomingValue(ThenI, V); 2526 } 2527 2528 // Remove speculated dbg intrinsics. 2529 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2530 // dbg value for the different flows and inserting it after the select. 2531 for (Instruction *I : SpeculatedDbgIntrinsics) 2532 I->eraseFromParent(); 2533 2534 ++NumSpeculations; 2535 return true; 2536 } 2537 2538 /// Return true if we can thread a branch across this block. 2539 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2540 int Size = 0; 2541 2542 SmallPtrSet<const Value *, 32> EphValues; 2543 auto IsEphemeral = [&](const Value *V) { 2544 if (isa<AssumeInst>(V)) 2545 return true; 2546 return isSafeToSpeculativelyExecute(V) && 2547 all_of(V->users(), 2548 [&](const User *U) { return EphValues.count(U); }); 2549 }; 2550 2551 // Walk the loop in reverse so that we can identify ephemeral values properly 2552 // (values only feeding assumes). 2553 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2554 // Can't fold blocks that contain noduplicate or convergent calls. 2555 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2556 if (CI->cannotDuplicate() || CI->isConvergent()) 2557 return false; 2558 2559 // Ignore ephemeral values which are deleted during codegen. 2560 if (IsEphemeral(&I)) 2561 EphValues.insert(&I); 2562 // We will delete Phis while threading, so Phis should not be accounted in 2563 // block's size. 2564 else if (!isa<PHINode>(I)) { 2565 if (Size++ > MaxSmallBlockSize) 2566 return false; // Don't clone large BB's. 2567 } 2568 2569 // We can only support instructions that do not define values that are 2570 // live outside of the current basic block. 2571 for (User *U : I.users()) { 2572 Instruction *UI = cast<Instruction>(U); 2573 if (UI->getParent() != BB || isa<PHINode>(UI)) 2574 return false; 2575 } 2576 2577 // Looks ok, continue checking. 2578 } 2579 2580 return true; 2581 } 2582 2583 /// If we have a conditional branch on a PHI node value that is defined in the 2584 /// same block as the branch and if any PHI entries are constants, thread edges 2585 /// corresponding to that entry to be branches to their ultimate destination. 2586 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2587 const DataLayout &DL, AssumptionCache *AC) { 2588 BasicBlock *BB = BI->getParent(); 2589 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2590 // NOTE: we currently cannot transform this case if the PHI node is used 2591 // outside of the block. 2592 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2593 return false; 2594 2595 // Degenerate case of a single entry PHI. 2596 if (PN->getNumIncomingValues() == 1) { 2597 FoldSingleEntryPHINodes(PN->getParent()); 2598 return true; 2599 } 2600 2601 // Now we know that this block has multiple preds and two succs. 2602 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2603 return false; 2604 2605 // Okay, this is a simple enough basic block. See if any phi values are 2606 // constants. 2607 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2608 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2609 if (!CB || !CB->getType()->isIntegerTy(1)) 2610 continue; 2611 2612 // Okay, we now know that all edges from PredBB should be revectored to 2613 // branch to RealDest. 2614 BasicBlock *PredBB = PN->getIncomingBlock(i); 2615 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2616 2617 if (RealDest == BB) 2618 continue; // Skip self loops. 2619 // Skip if the predecessor's terminator is an indirect branch. 2620 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2621 continue; 2622 2623 SmallVector<DominatorTree::UpdateType, 3> Updates; 2624 2625 // The dest block might have PHI nodes, other predecessors and other 2626 // difficult cases. Instead of being smart about this, just insert a new 2627 // block that jumps to the destination block, effectively splitting 2628 // the edge we are about to create. 2629 BasicBlock *EdgeBB = 2630 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2631 RealDest->getParent(), RealDest); 2632 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2633 if (DTU) 2634 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2635 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2636 2637 // Update PHI nodes. 2638 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2639 2640 // BB may have instructions that are being threaded over. Clone these 2641 // instructions into EdgeBB. We know that there will be no uses of the 2642 // cloned instructions outside of EdgeBB. 2643 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2644 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2645 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2646 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2647 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2648 continue; 2649 } 2650 // Clone the instruction. 2651 Instruction *N = BBI->clone(); 2652 if (BBI->hasName()) 2653 N->setName(BBI->getName() + ".c"); 2654 2655 // Update operands due to translation. 2656 for (Use &Op : N->operands()) { 2657 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2658 if (PI != TranslateMap.end()) 2659 Op = PI->second; 2660 } 2661 2662 // Check for trivial simplification. 2663 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2664 if (!BBI->use_empty()) 2665 TranslateMap[&*BBI] = V; 2666 if (!N->mayHaveSideEffects()) { 2667 N->deleteValue(); // Instruction folded away, don't need actual inst 2668 N = nullptr; 2669 } 2670 } else { 2671 if (!BBI->use_empty()) 2672 TranslateMap[&*BBI] = N; 2673 } 2674 if (N) { 2675 // Insert the new instruction into its new home. 2676 EdgeBB->getInstList().insert(InsertPt, N); 2677 2678 // Register the new instruction with the assumption cache if necessary. 2679 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2680 if (AC) 2681 AC->registerAssumption(Assume); 2682 } 2683 } 2684 2685 // Loop over all of the edges from PredBB to BB, changing them to branch 2686 // to EdgeBB instead. 2687 Instruction *PredBBTI = PredBB->getTerminator(); 2688 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2689 if (PredBBTI->getSuccessor(i) == BB) { 2690 BB->removePredecessor(PredBB); 2691 PredBBTI->setSuccessor(i, EdgeBB); 2692 } 2693 2694 if (DTU) { 2695 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2696 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2697 2698 DTU->applyUpdates(Updates); 2699 } 2700 2701 // Recurse, simplifying any other constants. 2702 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2703 } 2704 2705 return false; 2706 } 2707 2708 /// Given a BB that starts with the specified two-entry PHI node, 2709 /// see if we can eliminate it. 2710 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2711 DomTreeUpdater *DTU, const DataLayout &DL) { 2712 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2713 // statement", which has a very simple dominance structure. Basically, we 2714 // are trying to find the condition that is being branched on, which 2715 // subsequently causes this merge to happen. We really want control 2716 // dependence information for this check, but simplifycfg can't keep it up 2717 // to date, and this catches most of the cases we care about anyway. 2718 BasicBlock *BB = PN->getParent(); 2719 2720 BasicBlock *IfTrue, *IfFalse; 2721 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 2722 if (!DomBI) 2723 return false; 2724 Value *IfCond = DomBI->getCondition(); 2725 // Don't bother if the branch will be constant folded trivially. 2726 if (isa<ConstantInt>(IfCond)) 2727 return false; 2728 2729 BasicBlock *DomBlock = DomBI->getParent(); 2730 SmallVector<BasicBlock *, 2> IfBlocks; 2731 llvm::copy_if( 2732 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 2733 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 2734 }); 2735 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 2736 "Will have either one or two blocks to speculate."); 2737 2738 // If the branch is non-unpredictable, see if we either predictably jump to 2739 // the merge bb (if we have only a single 'then' block), or if we predictably 2740 // jump to one specific 'then' block (if we have two of them). 2741 // It isn't beneficial to speculatively execute the code 2742 // from the block that we know is predictably not entered. 2743 if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) { 2744 uint64_t TWeight, FWeight; 2745 if (DomBI->extractProfMetadata(TWeight, FWeight) && 2746 (TWeight + FWeight) != 0) { 2747 BranchProbability BITrueProb = 2748 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 2749 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 2750 BranchProbability BIFalseProb = BITrueProb.getCompl(); 2751 if (IfBlocks.size() == 1) { 2752 BranchProbability BIBBProb = 2753 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 2754 if (BIBBProb >= Likely) 2755 return false; 2756 } else { 2757 if (BITrueProb >= Likely || BIFalseProb >= Likely) 2758 return false; 2759 } 2760 } 2761 } 2762 2763 // Don't try to fold an unreachable block. For example, the phi node itself 2764 // can't be the candidate if-condition for a select that we want to form. 2765 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 2766 if (IfCondPhiInst->getParent() == BB) 2767 return false; 2768 2769 // Okay, we found that we can merge this two-entry phi node into a select. 2770 // Doing so would require us to fold *all* two entry phi nodes in this block. 2771 // At some point this becomes non-profitable (particularly if the target 2772 // doesn't support cmov's). Only do this transformation if there are two or 2773 // fewer PHI nodes in this block. 2774 unsigned NumPhis = 0; 2775 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2776 if (NumPhis > 2) 2777 return false; 2778 2779 // Loop over the PHI's seeing if we can promote them all to select 2780 // instructions. While we are at it, keep track of the instructions 2781 // that need to be moved to the dominating block. 2782 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2783 InstructionCost Cost = 0; 2784 InstructionCost Budget = 2785 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2786 2787 bool Changed = false; 2788 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2789 PHINode *PN = cast<PHINode>(II++); 2790 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2791 PN->replaceAllUsesWith(V); 2792 PN->eraseFromParent(); 2793 Changed = true; 2794 continue; 2795 } 2796 2797 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2798 Cost, Budget, TTI) || 2799 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2800 Cost, Budget, TTI)) 2801 return Changed; 2802 } 2803 2804 // If we folded the first phi, PN dangles at this point. Refresh it. If 2805 // we ran out of PHIs then we simplified them all. 2806 PN = dyn_cast<PHINode>(BB->begin()); 2807 if (!PN) 2808 return true; 2809 2810 // Return true if at least one of these is a 'not', and another is either 2811 // a 'not' too, or a constant. 2812 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2813 if (!match(V0, m_Not(m_Value()))) 2814 std::swap(V0, V1); 2815 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2816 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2817 }; 2818 2819 // Don't fold i1 branches on PHIs which contain binary operators or 2820 // (possibly inverted) select form of or/ands, unless one of 2821 // the incoming values is an 'not' and another one is freely invertible. 2822 // These can often be turned into switches and other things. 2823 auto IsBinOpOrAnd = [](Value *V) { 2824 return match( 2825 V, m_CombineOr( 2826 m_BinOp(), 2827 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 2828 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 2829 }; 2830 if (PN->getType()->isIntegerTy(1) && 2831 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2832 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2833 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2834 PN->getIncomingValue(1))) 2835 return Changed; 2836 2837 // If all PHI nodes are promotable, check to make sure that all instructions 2838 // in the predecessor blocks can be promoted as well. If not, we won't be able 2839 // to get rid of the control flow, so it's not worth promoting to select 2840 // instructions. 2841 for (BasicBlock *IfBlock : IfBlocks) 2842 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 2843 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2844 !isa<PseudoProbeInst>(I)) { 2845 // This is not an aggressive instruction that we can promote. 2846 // Because of this, we won't be able to get rid of the control flow, so 2847 // the xform is not worth it. 2848 return Changed; 2849 } 2850 2851 // If either of the blocks has it's address taken, we can't do this fold. 2852 if (any_of(IfBlocks, 2853 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 2854 return Changed; 2855 2856 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2857 << " T: " << IfTrue->getName() 2858 << " F: " << IfFalse->getName() << "\n"); 2859 2860 // If we can still promote the PHI nodes after this gauntlet of tests, 2861 // do all of the PHI's now. 2862 2863 // Move all 'aggressive' instructions, which are defined in the 2864 // conditional parts of the if's up to the dominating block. 2865 for (BasicBlock *IfBlock : IfBlocks) 2866 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 2867 2868 IRBuilder<NoFolder> Builder(DomBI); 2869 // Propagate fast-math-flags from phi nodes to replacement selects. 2870 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2871 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2872 if (isa<FPMathOperator>(PN)) 2873 Builder.setFastMathFlags(PN->getFastMathFlags()); 2874 2875 // Change the PHI node into a select instruction. 2876 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 2877 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 2878 2879 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 2880 PN->replaceAllUsesWith(Sel); 2881 Sel->takeName(PN); 2882 PN->eraseFromParent(); 2883 } 2884 2885 // At this point, all IfBlocks are empty, so our if statement 2886 // has been flattened. Change DomBlock to jump directly to our new block to 2887 // avoid other simplifycfg's kicking in on the diamond. 2888 Builder.CreateBr(BB); 2889 2890 SmallVector<DominatorTree::UpdateType, 3> Updates; 2891 if (DTU) { 2892 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2893 for (auto *Successor : successors(DomBlock)) 2894 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2895 } 2896 2897 DomBI->eraseFromParent(); 2898 if (DTU) 2899 DTU->applyUpdates(Updates); 2900 2901 return true; 2902 } 2903 2904 static Value *createLogicalOp(IRBuilderBase &Builder, 2905 Instruction::BinaryOps Opc, Value *LHS, 2906 Value *RHS, const Twine &Name = "") { 2907 // Try to relax logical op to binary op. 2908 if (impliesPoison(RHS, LHS)) 2909 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2910 if (Opc == Instruction::And) 2911 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2912 if (Opc == Instruction::Or) 2913 return Builder.CreateLogicalOr(LHS, RHS, Name); 2914 llvm_unreachable("Invalid logical opcode"); 2915 } 2916 2917 /// Return true if either PBI or BI has branch weight available, and store 2918 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2919 /// not have branch weight, use 1:1 as its weight. 2920 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2921 uint64_t &PredTrueWeight, 2922 uint64_t &PredFalseWeight, 2923 uint64_t &SuccTrueWeight, 2924 uint64_t &SuccFalseWeight) { 2925 bool PredHasWeights = 2926 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2927 bool SuccHasWeights = 2928 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2929 if (PredHasWeights || SuccHasWeights) { 2930 if (!PredHasWeights) 2931 PredTrueWeight = PredFalseWeight = 1; 2932 if (!SuccHasWeights) 2933 SuccTrueWeight = SuccFalseWeight = 1; 2934 return true; 2935 } else { 2936 return false; 2937 } 2938 } 2939 2940 /// Determine if the two branches share a common destination and deduce a glue 2941 /// that joins the branches' conditions to arrive at the common destination if 2942 /// that would be profitable. 2943 static Optional<std::pair<Instruction::BinaryOps, bool>> 2944 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2945 const TargetTransformInfo *TTI) { 2946 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2947 "Both blocks must end with a conditional branches."); 2948 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2949 "PredBB must be a predecessor of BB."); 2950 2951 // We have the potential to fold the conditions together, but if the 2952 // predecessor branch is predictable, we may not want to merge them. 2953 uint64_t PTWeight, PFWeight; 2954 BranchProbability PBITrueProb, Likely; 2955 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 2956 PBI->extractProfMetadata(PTWeight, PFWeight) && 2957 (PTWeight + PFWeight) != 0) { 2958 PBITrueProb = 2959 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2960 Likely = TTI->getPredictableBranchThreshold(); 2961 } 2962 2963 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2964 // Speculate the 2nd condition unless the 1st is probably true. 2965 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2966 return {{Instruction::Or, false}}; 2967 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2968 // Speculate the 2nd condition unless the 1st is probably false. 2969 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2970 return {{Instruction::And, false}}; 2971 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2972 // Speculate the 2nd condition unless the 1st is probably true. 2973 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2974 return {{Instruction::And, true}}; 2975 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2976 // Speculate the 2nd condition unless the 1st is probably false. 2977 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2978 return {{Instruction::Or, true}}; 2979 } 2980 return None; 2981 } 2982 2983 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2984 DomTreeUpdater *DTU, 2985 MemorySSAUpdater *MSSAU, 2986 const TargetTransformInfo *TTI) { 2987 BasicBlock *BB = BI->getParent(); 2988 BasicBlock *PredBlock = PBI->getParent(); 2989 2990 // Determine if the two branches share a common destination. 2991 Instruction::BinaryOps Opc; 2992 bool InvertPredCond; 2993 std::tie(Opc, InvertPredCond) = 2994 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2995 2996 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2997 2998 IRBuilder<> Builder(PBI); 2999 // The builder is used to create instructions to eliminate the branch in BB. 3000 // If BB's terminator has !annotation metadata, add it to the new 3001 // instructions. 3002 Builder.CollectMetadataToCopy(BB->getTerminator(), 3003 {LLVMContext::MD_annotation}); 3004 3005 // If we need to invert the condition in the pred block to match, do so now. 3006 if (InvertPredCond) { 3007 Value *NewCond = PBI->getCondition(); 3008 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3009 CmpInst *CI = cast<CmpInst>(NewCond); 3010 CI->setPredicate(CI->getInversePredicate()); 3011 } else { 3012 NewCond = 3013 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3014 } 3015 3016 PBI->setCondition(NewCond); 3017 PBI->swapSuccessors(); 3018 } 3019 3020 BasicBlock *UniqueSucc = 3021 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3022 3023 // Before cloning instructions, notify the successor basic block that it 3024 // is about to have a new predecessor. This will update PHI nodes, 3025 // which will allow us to update live-out uses of bonus instructions. 3026 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3027 3028 // Try to update branch weights. 3029 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3030 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3031 SuccTrueWeight, SuccFalseWeight)) { 3032 SmallVector<uint64_t, 8> NewWeights; 3033 3034 if (PBI->getSuccessor(0) == BB) { 3035 // PBI: br i1 %x, BB, FalseDest 3036 // BI: br i1 %y, UniqueSucc, FalseDest 3037 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3038 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3039 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3040 // TrueWeight for PBI * FalseWeight for BI. 3041 // We assume that total weights of a BranchInst can fit into 32 bits. 3042 // Therefore, we will not have overflow using 64-bit arithmetic. 3043 NewWeights.push_back(PredFalseWeight * 3044 (SuccFalseWeight + SuccTrueWeight) + 3045 PredTrueWeight * SuccFalseWeight); 3046 } else { 3047 // PBI: br i1 %x, TrueDest, BB 3048 // BI: br i1 %y, TrueDest, UniqueSucc 3049 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3050 // FalseWeight for PBI * TrueWeight for BI. 3051 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3052 PredFalseWeight * SuccTrueWeight); 3053 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3054 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3055 } 3056 3057 // Halve the weights if any of them cannot fit in an uint32_t 3058 FitWeights(NewWeights); 3059 3060 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3061 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3062 3063 // TODO: If BB is reachable from all paths through PredBlock, then we 3064 // could replace PBI's branch probabilities with BI's. 3065 } else 3066 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3067 3068 // Now, update the CFG. 3069 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3070 3071 if (DTU) 3072 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3073 {DominatorTree::Delete, PredBlock, BB}}); 3074 3075 // If BI was a loop latch, it may have had associated loop metadata. 3076 // We need to copy it to the new latch, that is, PBI. 3077 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3078 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3079 3080 ValueToValueMapTy VMap; // maps original values to cloned values 3081 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3082 3083 // Now that the Cond was cloned into the predecessor basic block, 3084 // or/and the two conditions together. 3085 Value *BICond = VMap[BI->getCondition()]; 3086 PBI->setCondition( 3087 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3088 3089 // Copy any debug value intrinsics into the end of PredBlock. 3090 for (Instruction &I : *BB) { 3091 if (isa<DbgInfoIntrinsic>(I)) { 3092 Instruction *NewI = I.clone(); 3093 RemapInstruction(NewI, VMap, 3094 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3095 NewI->insertBefore(PBI); 3096 } 3097 } 3098 3099 ++NumFoldBranchToCommonDest; 3100 return true; 3101 } 3102 3103 /// If this basic block is simple enough, and if a predecessor branches to us 3104 /// and one of our successors, fold the block into the predecessor and use 3105 /// logical operations to pick the right destination. 3106 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3107 MemorySSAUpdater *MSSAU, 3108 const TargetTransformInfo *TTI, 3109 unsigned BonusInstThreshold) { 3110 // If this block ends with an unconditional branch, 3111 // let SpeculativelyExecuteBB() deal with it. 3112 if (!BI->isConditional()) 3113 return false; 3114 3115 BasicBlock *BB = BI->getParent(); 3116 TargetTransformInfo::TargetCostKind CostKind = 3117 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3118 : TargetTransformInfo::TCK_SizeAndLatency; 3119 3120 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3121 3122 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3123 Cond->getParent() != BB || !Cond->hasOneUse()) 3124 return false; 3125 3126 // Cond is known to be a compare or binary operator. Check to make sure that 3127 // neither operand is a potentially-trapping constant expression. 3128 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3129 if (CE->canTrap()) 3130 return false; 3131 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3132 if (CE->canTrap()) 3133 return false; 3134 3135 // Finally, don't infinitely unroll conditional loops. 3136 if (is_contained(successors(BB), BB)) 3137 return false; 3138 3139 // With which predecessors will we want to deal with? 3140 SmallVector<BasicBlock *, 8> Preds; 3141 for (BasicBlock *PredBlock : predecessors(BB)) { 3142 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3143 3144 // Check that we have two conditional branches. If there is a PHI node in 3145 // the common successor, verify that the same value flows in from both 3146 // blocks. 3147 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3148 continue; 3149 3150 // Determine if the two branches share a common destination. 3151 Instruction::BinaryOps Opc; 3152 bool InvertPredCond; 3153 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3154 std::tie(Opc, InvertPredCond) = *Recipe; 3155 else 3156 continue; 3157 3158 // Check the cost of inserting the necessary logic before performing the 3159 // transformation. 3160 if (TTI) { 3161 Type *Ty = BI->getCondition()->getType(); 3162 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3163 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3164 !isa<CmpInst>(PBI->getCondition()))) 3165 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3166 3167 if (Cost > BranchFoldThreshold) 3168 continue; 3169 } 3170 3171 // Ok, we do want to deal with this predecessor. Record it. 3172 Preds.emplace_back(PredBlock); 3173 } 3174 3175 // If there aren't any predecessors into which we can fold, 3176 // don't bother checking the cost. 3177 if (Preds.empty()) 3178 return false; 3179 3180 // Only allow this transformation if computing the condition doesn't involve 3181 // too many instructions and these involved instructions can be executed 3182 // unconditionally. We denote all involved instructions except the condition 3183 // as "bonus instructions", and only allow this transformation when the 3184 // number of the bonus instructions we'll need to create when cloning into 3185 // each predecessor does not exceed a certain threshold. 3186 unsigned NumBonusInsts = 0; 3187 const unsigned PredCount = Preds.size(); 3188 for (Instruction &I : *BB) { 3189 // Don't check the branch condition comparison itself. 3190 if (&I == Cond) 3191 continue; 3192 // Ignore dbg intrinsics, and the terminator. 3193 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3194 continue; 3195 // I must be safe to execute unconditionally. 3196 if (!isSafeToSpeculativelyExecute(&I)) 3197 return false; 3198 3199 // Account for the cost of duplicating this instruction into each 3200 // predecessor. 3201 NumBonusInsts += PredCount; 3202 // Early exits once we reach the limit. 3203 if (NumBonusInsts > BonusInstThreshold) 3204 return false; 3205 } 3206 3207 // Ok, we have the budget. Perform the transformation. 3208 for (BasicBlock *PredBlock : Preds) { 3209 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3210 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3211 } 3212 return false; 3213 } 3214 3215 // If there is only one store in BB1 and BB2, return it, otherwise return 3216 // nullptr. 3217 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3218 StoreInst *S = nullptr; 3219 for (auto *BB : {BB1, BB2}) { 3220 if (!BB) 3221 continue; 3222 for (auto &I : *BB) 3223 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3224 if (S) 3225 // Multiple stores seen. 3226 return nullptr; 3227 else 3228 S = SI; 3229 } 3230 } 3231 return S; 3232 } 3233 3234 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3235 Value *AlternativeV = nullptr) { 3236 // PHI is going to be a PHI node that allows the value V that is defined in 3237 // BB to be referenced in BB's only successor. 3238 // 3239 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3240 // doesn't matter to us what the other operand is (it'll never get used). We 3241 // could just create a new PHI with an undef incoming value, but that could 3242 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3243 // other PHI. So here we directly look for some PHI in BB's successor with V 3244 // as an incoming operand. If we find one, we use it, else we create a new 3245 // one. 3246 // 3247 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3248 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3249 // where OtherBB is the single other predecessor of BB's only successor. 3250 PHINode *PHI = nullptr; 3251 BasicBlock *Succ = BB->getSingleSuccessor(); 3252 3253 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3254 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3255 PHI = cast<PHINode>(I); 3256 if (!AlternativeV) 3257 break; 3258 3259 assert(Succ->hasNPredecessors(2)); 3260 auto PredI = pred_begin(Succ); 3261 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3262 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3263 break; 3264 PHI = nullptr; 3265 } 3266 if (PHI) 3267 return PHI; 3268 3269 // If V is not an instruction defined in BB, just return it. 3270 if (!AlternativeV && 3271 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3272 return V; 3273 3274 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3275 PHI->addIncoming(V, BB); 3276 for (BasicBlock *PredBB : predecessors(Succ)) 3277 if (PredBB != BB) 3278 PHI->addIncoming( 3279 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3280 return PHI; 3281 } 3282 3283 static bool mergeConditionalStoreToAddress( 3284 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3285 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3286 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3287 // For every pointer, there must be exactly two stores, one coming from 3288 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3289 // store (to any address) in PTB,PFB or QTB,QFB. 3290 // FIXME: We could relax this restriction with a bit more work and performance 3291 // testing. 3292 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3293 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3294 if (!PStore || !QStore) 3295 return false; 3296 3297 // Now check the stores are compatible. 3298 if (!QStore->isUnordered() || !PStore->isUnordered()) 3299 return false; 3300 3301 // Check that sinking the store won't cause program behavior changes. Sinking 3302 // the store out of the Q blocks won't change any behavior as we're sinking 3303 // from a block to its unconditional successor. But we're moving a store from 3304 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3305 // So we need to check that there are no aliasing loads or stores in 3306 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3307 // operations between PStore and the end of its parent block. 3308 // 3309 // The ideal way to do this is to query AliasAnalysis, but we don't 3310 // preserve AA currently so that is dangerous. Be super safe and just 3311 // check there are no other memory operations at all. 3312 for (auto &I : *QFB->getSinglePredecessor()) 3313 if (I.mayReadOrWriteMemory()) 3314 return false; 3315 for (auto &I : *QFB) 3316 if (&I != QStore && I.mayReadOrWriteMemory()) 3317 return false; 3318 if (QTB) 3319 for (auto &I : *QTB) 3320 if (&I != QStore && I.mayReadOrWriteMemory()) 3321 return false; 3322 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3323 I != E; ++I) 3324 if (&*I != PStore && I->mayReadOrWriteMemory()) 3325 return false; 3326 3327 // If we're not in aggressive mode, we only optimize if we have some 3328 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3329 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3330 if (!BB) 3331 return true; 3332 // Heuristic: if the block can be if-converted/phi-folded and the 3333 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3334 // thread this store. 3335 InstructionCost Cost = 0; 3336 InstructionCost Budget = 3337 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3338 for (auto &I : BB->instructionsWithoutDebug()) { 3339 // Consider terminator instruction to be free. 3340 if (I.isTerminator()) 3341 continue; 3342 // If this is one the stores that we want to speculate out of this BB, 3343 // then don't count it's cost, consider it to be free. 3344 if (auto *S = dyn_cast<StoreInst>(&I)) 3345 if (llvm::find(FreeStores, S)) 3346 continue; 3347 // Else, we have a white-list of instructions that we are ak speculating. 3348 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3349 return false; // Not in white-list - not worthwhile folding. 3350 // And finally, if this is a non-free instruction that we are okay 3351 // speculating, ensure that we consider the speculation budget. 3352 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3353 if (Cost > Budget) 3354 return false; // Eagerly refuse to fold as soon as we're out of budget. 3355 } 3356 assert(Cost <= Budget && 3357 "When we run out of budget we will eagerly return from within the " 3358 "per-instruction loop."); 3359 return true; 3360 }; 3361 3362 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3363 if (!MergeCondStoresAggressively && 3364 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3365 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3366 return false; 3367 3368 // If PostBB has more than two predecessors, we need to split it so we can 3369 // sink the store. 3370 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3371 // We know that QFB's only successor is PostBB. And QFB has a single 3372 // predecessor. If QTB exists, then its only successor is also PostBB. 3373 // If QTB does not exist, then QFB's only predecessor has a conditional 3374 // branch to QFB and PostBB. 3375 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3376 BasicBlock *NewBB = 3377 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3378 if (!NewBB) 3379 return false; 3380 PostBB = NewBB; 3381 } 3382 3383 // OK, we're going to sink the stores to PostBB. The store has to be 3384 // conditional though, so first create the predicate. 3385 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3386 ->getCondition(); 3387 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3388 ->getCondition(); 3389 3390 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3391 PStore->getParent()); 3392 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3393 QStore->getParent(), PPHI); 3394 3395 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3396 3397 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3398 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3399 3400 if (InvertPCond) 3401 PPred = QB.CreateNot(PPred); 3402 if (InvertQCond) 3403 QPred = QB.CreateNot(QPred); 3404 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3405 3406 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3407 /*Unreachable=*/false, 3408 /*BranchWeights=*/nullptr, DTU); 3409 QB.SetInsertPoint(T); 3410 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3411 AAMDNodes AAMD; 3412 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3413 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3414 SI->setAAMetadata(AAMD); 3415 // Choose the minimum alignment. If we could prove both stores execute, we 3416 // could use biggest one. In this case, though, we only know that one of the 3417 // stores executes. And we don't know it's safe to take the alignment from a 3418 // store that doesn't execute. 3419 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3420 3421 QStore->eraseFromParent(); 3422 PStore->eraseFromParent(); 3423 3424 return true; 3425 } 3426 3427 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3428 DomTreeUpdater *DTU, const DataLayout &DL, 3429 const TargetTransformInfo &TTI) { 3430 // The intention here is to find diamonds or triangles (see below) where each 3431 // conditional block contains a store to the same address. Both of these 3432 // stores are conditional, so they can't be unconditionally sunk. But it may 3433 // be profitable to speculatively sink the stores into one merged store at the 3434 // end, and predicate the merged store on the union of the two conditions of 3435 // PBI and QBI. 3436 // 3437 // This can reduce the number of stores executed if both of the conditions are 3438 // true, and can allow the blocks to become small enough to be if-converted. 3439 // This optimization will also chain, so that ladders of test-and-set 3440 // sequences can be if-converted away. 3441 // 3442 // We only deal with simple diamonds or triangles: 3443 // 3444 // PBI or PBI or a combination of the two 3445 // / \ | \ 3446 // PTB PFB | PFB 3447 // \ / | / 3448 // QBI QBI 3449 // / \ | \ 3450 // QTB QFB | QFB 3451 // \ / | / 3452 // PostBB PostBB 3453 // 3454 // We model triangles as a type of diamond with a nullptr "true" block. 3455 // Triangles are canonicalized so that the fallthrough edge is represented by 3456 // a true condition, as in the diagram above. 3457 BasicBlock *PTB = PBI->getSuccessor(0); 3458 BasicBlock *PFB = PBI->getSuccessor(1); 3459 BasicBlock *QTB = QBI->getSuccessor(0); 3460 BasicBlock *QFB = QBI->getSuccessor(1); 3461 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3462 3463 // Make sure we have a good guess for PostBB. If QTB's only successor is 3464 // QFB, then QFB is a better PostBB. 3465 if (QTB->getSingleSuccessor() == QFB) 3466 PostBB = QFB; 3467 3468 // If we couldn't find a good PostBB, stop. 3469 if (!PostBB) 3470 return false; 3471 3472 bool InvertPCond = false, InvertQCond = false; 3473 // Canonicalize fallthroughs to the true branches. 3474 if (PFB == QBI->getParent()) { 3475 std::swap(PFB, PTB); 3476 InvertPCond = true; 3477 } 3478 if (QFB == PostBB) { 3479 std::swap(QFB, QTB); 3480 InvertQCond = true; 3481 } 3482 3483 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3484 // and QFB may not. Model fallthroughs as a nullptr block. 3485 if (PTB == QBI->getParent()) 3486 PTB = nullptr; 3487 if (QTB == PostBB) 3488 QTB = nullptr; 3489 3490 // Legality bailouts. We must have at least the non-fallthrough blocks and 3491 // the post-dominating block, and the non-fallthroughs must only have one 3492 // predecessor. 3493 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3494 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3495 }; 3496 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3497 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3498 return false; 3499 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3500 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3501 return false; 3502 if (!QBI->getParent()->hasNUses(2)) 3503 return false; 3504 3505 // OK, this is a sequence of two diamonds or triangles. 3506 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3507 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3508 for (auto *BB : {PTB, PFB}) { 3509 if (!BB) 3510 continue; 3511 for (auto &I : *BB) 3512 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3513 PStoreAddresses.insert(SI->getPointerOperand()); 3514 } 3515 for (auto *BB : {QTB, QFB}) { 3516 if (!BB) 3517 continue; 3518 for (auto &I : *BB) 3519 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3520 QStoreAddresses.insert(SI->getPointerOperand()); 3521 } 3522 3523 set_intersect(PStoreAddresses, QStoreAddresses); 3524 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3525 // clear what it contains. 3526 auto &CommonAddresses = PStoreAddresses; 3527 3528 bool Changed = false; 3529 for (auto *Address : CommonAddresses) 3530 Changed |= 3531 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3532 InvertPCond, InvertQCond, DTU, DL, TTI); 3533 return Changed; 3534 } 3535 3536 /// If the previous block ended with a widenable branch, determine if reusing 3537 /// the target block is profitable and legal. This will have the effect of 3538 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3539 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3540 DomTreeUpdater *DTU) { 3541 // TODO: This can be generalized in two important ways: 3542 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3543 // values from the PBI edge. 3544 // 2) We can sink side effecting instructions into BI's fallthrough 3545 // successor provided they doesn't contribute to computation of 3546 // BI's condition. 3547 Value *CondWB, *WC; 3548 BasicBlock *IfTrueBB, *IfFalseBB; 3549 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3550 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3551 return false; 3552 if (!IfFalseBB->phis().empty()) 3553 return false; // TODO 3554 // Use lambda to lazily compute expensive condition after cheap ones. 3555 auto NoSideEffects = [](BasicBlock &BB) { 3556 return !llvm::any_of(BB, [](const Instruction &I) { 3557 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3558 }); 3559 }; 3560 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3561 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3562 NoSideEffects(*BI->getParent())) { 3563 auto *OldSuccessor = BI->getSuccessor(1); 3564 OldSuccessor->removePredecessor(BI->getParent()); 3565 BI->setSuccessor(1, IfFalseBB); 3566 if (DTU) 3567 DTU->applyUpdates( 3568 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3569 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3570 return true; 3571 } 3572 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3573 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3574 NoSideEffects(*BI->getParent())) { 3575 auto *OldSuccessor = BI->getSuccessor(0); 3576 OldSuccessor->removePredecessor(BI->getParent()); 3577 BI->setSuccessor(0, IfFalseBB); 3578 if (DTU) 3579 DTU->applyUpdates( 3580 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3581 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3582 return true; 3583 } 3584 return false; 3585 } 3586 3587 /// If we have a conditional branch as a predecessor of another block, 3588 /// this function tries to simplify it. We know 3589 /// that PBI and BI are both conditional branches, and BI is in one of the 3590 /// successor blocks of PBI - PBI branches to BI. 3591 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3592 DomTreeUpdater *DTU, 3593 const DataLayout &DL, 3594 const TargetTransformInfo &TTI) { 3595 assert(PBI->isConditional() && BI->isConditional()); 3596 BasicBlock *BB = BI->getParent(); 3597 3598 // If this block ends with a branch instruction, and if there is a 3599 // predecessor that ends on a branch of the same condition, make 3600 // this conditional branch redundant. 3601 if (PBI->getCondition() == BI->getCondition() && 3602 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3603 // Okay, the outcome of this conditional branch is statically 3604 // knowable. If this block had a single pred, handle specially. 3605 if (BB->getSinglePredecessor()) { 3606 // Turn this into a branch on constant. 3607 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3608 BI->setCondition( 3609 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3610 return true; // Nuke the branch on constant. 3611 } 3612 3613 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3614 // in the constant and simplify the block result. Subsequent passes of 3615 // simplifycfg will thread the block. 3616 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3617 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3618 PHINode *NewPN = PHINode::Create( 3619 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3620 BI->getCondition()->getName() + ".pr", &BB->front()); 3621 // Okay, we're going to insert the PHI node. Since PBI is not the only 3622 // predecessor, compute the PHI'd conditional value for all of the preds. 3623 // Any predecessor where the condition is not computable we keep symbolic. 3624 for (pred_iterator PI = PB; PI != PE; ++PI) { 3625 BasicBlock *P = *PI; 3626 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3627 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3628 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3629 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3630 NewPN->addIncoming( 3631 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3632 P); 3633 } else { 3634 NewPN->addIncoming(BI->getCondition(), P); 3635 } 3636 } 3637 3638 BI->setCondition(NewPN); 3639 return true; 3640 } 3641 } 3642 3643 // If the previous block ended with a widenable branch, determine if reusing 3644 // the target block is profitable and legal. This will have the effect of 3645 // "widening" PBI, but doesn't require us to reason about hosting safety. 3646 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3647 return true; 3648 3649 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3650 if (CE->canTrap()) 3651 return false; 3652 3653 // If both branches are conditional and both contain stores to the same 3654 // address, remove the stores from the conditionals and create a conditional 3655 // merged store at the end. 3656 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3657 return true; 3658 3659 // If this is a conditional branch in an empty block, and if any 3660 // predecessors are a conditional branch to one of our destinations, 3661 // fold the conditions into logical ops and one cond br. 3662 3663 // Ignore dbg intrinsics. 3664 if (&*BB->instructionsWithoutDebug().begin() != BI) 3665 return false; 3666 3667 int PBIOp, BIOp; 3668 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3669 PBIOp = 0; 3670 BIOp = 0; 3671 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3672 PBIOp = 0; 3673 BIOp = 1; 3674 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3675 PBIOp = 1; 3676 BIOp = 0; 3677 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3678 PBIOp = 1; 3679 BIOp = 1; 3680 } else { 3681 return false; 3682 } 3683 3684 // Check to make sure that the other destination of this branch 3685 // isn't BB itself. If so, this is an infinite loop that will 3686 // keep getting unwound. 3687 if (PBI->getSuccessor(PBIOp) == BB) 3688 return false; 3689 3690 // Do not perform this transformation if it would require 3691 // insertion of a large number of select instructions. For targets 3692 // without predication/cmovs, this is a big pessimization. 3693 3694 // Also do not perform this transformation if any phi node in the common 3695 // destination block can trap when reached by BB or PBB (PR17073). In that 3696 // case, it would be unsafe to hoist the operation into a select instruction. 3697 3698 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3699 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3700 unsigned NumPhis = 0; 3701 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3702 ++II, ++NumPhis) { 3703 if (NumPhis > 2) // Disable this xform. 3704 return false; 3705 3706 PHINode *PN = cast<PHINode>(II); 3707 Value *BIV = PN->getIncomingValueForBlock(BB); 3708 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3709 if (CE->canTrap()) 3710 return false; 3711 3712 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3713 Value *PBIV = PN->getIncomingValue(PBBIdx); 3714 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3715 if (CE->canTrap()) 3716 return false; 3717 } 3718 3719 // Finally, if everything is ok, fold the branches to logical ops. 3720 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3721 3722 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3723 << "AND: " << *BI->getParent()); 3724 3725 SmallVector<DominatorTree::UpdateType, 5> Updates; 3726 3727 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3728 // branch in it, where one edge (OtherDest) goes back to itself but the other 3729 // exits. We don't *know* that the program avoids the infinite loop 3730 // (even though that seems likely). If we do this xform naively, we'll end up 3731 // recursively unpeeling the loop. Since we know that (after the xform is 3732 // done) that the block *is* infinite if reached, we just make it an obviously 3733 // infinite loop with no cond branch. 3734 if (OtherDest == BB) { 3735 // Insert it at the end of the function, because it's either code, 3736 // or it won't matter if it's hot. :) 3737 BasicBlock *InfLoopBlock = 3738 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3739 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3740 if (DTU) 3741 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3742 OtherDest = InfLoopBlock; 3743 } 3744 3745 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3746 3747 // BI may have other predecessors. Because of this, we leave 3748 // it alone, but modify PBI. 3749 3750 // Make sure we get to CommonDest on True&True directions. 3751 Value *PBICond = PBI->getCondition(); 3752 IRBuilder<NoFolder> Builder(PBI); 3753 if (PBIOp) 3754 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3755 3756 Value *BICond = BI->getCondition(); 3757 if (BIOp) 3758 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3759 3760 // Merge the conditions. 3761 Value *Cond = 3762 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3763 3764 // Modify PBI to branch on the new condition to the new dests. 3765 PBI->setCondition(Cond); 3766 PBI->setSuccessor(0, CommonDest); 3767 PBI->setSuccessor(1, OtherDest); 3768 3769 if (DTU) { 3770 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3771 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3772 3773 DTU->applyUpdates(Updates); 3774 } 3775 3776 // Update branch weight for PBI. 3777 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3778 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3779 bool HasWeights = 3780 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3781 SuccTrueWeight, SuccFalseWeight); 3782 if (HasWeights) { 3783 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3784 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3785 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3786 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3787 // The weight to CommonDest should be PredCommon * SuccTotal + 3788 // PredOther * SuccCommon. 3789 // The weight to OtherDest should be PredOther * SuccOther. 3790 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3791 PredOther * SuccCommon, 3792 PredOther * SuccOther}; 3793 // Halve the weights if any of them cannot fit in an uint32_t 3794 FitWeights(NewWeights); 3795 3796 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3797 } 3798 3799 // OtherDest may have phi nodes. If so, add an entry from PBI's 3800 // block that are identical to the entries for BI's block. 3801 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3802 3803 // We know that the CommonDest already had an edge from PBI to 3804 // it. If it has PHIs though, the PHIs may have different 3805 // entries for BB and PBI's BB. If so, insert a select to make 3806 // them agree. 3807 for (PHINode &PN : CommonDest->phis()) { 3808 Value *BIV = PN.getIncomingValueForBlock(BB); 3809 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3810 Value *PBIV = PN.getIncomingValue(PBBIdx); 3811 if (BIV != PBIV) { 3812 // Insert a select in PBI to pick the right value. 3813 SelectInst *NV = cast<SelectInst>( 3814 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3815 PN.setIncomingValue(PBBIdx, NV); 3816 // Although the select has the same condition as PBI, the original branch 3817 // weights for PBI do not apply to the new select because the select's 3818 // 'logical' edges are incoming edges of the phi that is eliminated, not 3819 // the outgoing edges of PBI. 3820 if (HasWeights) { 3821 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3822 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3823 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3824 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3825 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3826 // The weight to PredOtherDest should be PredOther * SuccCommon. 3827 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3828 PredOther * SuccCommon}; 3829 3830 FitWeights(NewWeights); 3831 3832 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3833 } 3834 } 3835 } 3836 3837 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3838 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3839 3840 // This basic block is probably dead. We know it has at least 3841 // one fewer predecessor. 3842 return true; 3843 } 3844 3845 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3846 // true or to FalseBB if Cond is false. 3847 // Takes care of updating the successors and removing the old terminator. 3848 // Also makes sure not to introduce new successors by assuming that edges to 3849 // non-successor TrueBBs and FalseBBs aren't reachable. 3850 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3851 Value *Cond, BasicBlock *TrueBB, 3852 BasicBlock *FalseBB, 3853 uint32_t TrueWeight, 3854 uint32_t FalseWeight) { 3855 auto *BB = OldTerm->getParent(); 3856 // Remove any superfluous successor edges from the CFG. 3857 // First, figure out which successors to preserve. 3858 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3859 // successor. 3860 BasicBlock *KeepEdge1 = TrueBB; 3861 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3862 3863 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3864 3865 // Then remove the rest. 3866 for (BasicBlock *Succ : successors(OldTerm)) { 3867 // Make sure only to keep exactly one copy of each edge. 3868 if (Succ == KeepEdge1) 3869 KeepEdge1 = nullptr; 3870 else if (Succ == KeepEdge2) 3871 KeepEdge2 = nullptr; 3872 else { 3873 Succ->removePredecessor(BB, 3874 /*KeepOneInputPHIs=*/true); 3875 3876 if (Succ != TrueBB && Succ != FalseBB) 3877 RemovedSuccessors.insert(Succ); 3878 } 3879 } 3880 3881 IRBuilder<> Builder(OldTerm); 3882 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3883 3884 // Insert an appropriate new terminator. 3885 if (!KeepEdge1 && !KeepEdge2) { 3886 if (TrueBB == FalseBB) { 3887 // We were only looking for one successor, and it was present. 3888 // Create an unconditional branch to it. 3889 Builder.CreateBr(TrueBB); 3890 } else { 3891 // We found both of the successors we were looking for. 3892 // Create a conditional branch sharing the condition of the select. 3893 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3894 if (TrueWeight != FalseWeight) 3895 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3896 } 3897 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3898 // Neither of the selected blocks were successors, so this 3899 // terminator must be unreachable. 3900 new UnreachableInst(OldTerm->getContext(), OldTerm); 3901 } else { 3902 // One of the selected values was a successor, but the other wasn't. 3903 // Insert an unconditional branch to the one that was found; 3904 // the edge to the one that wasn't must be unreachable. 3905 if (!KeepEdge1) { 3906 // Only TrueBB was found. 3907 Builder.CreateBr(TrueBB); 3908 } else { 3909 // Only FalseBB was found. 3910 Builder.CreateBr(FalseBB); 3911 } 3912 } 3913 3914 EraseTerminatorAndDCECond(OldTerm); 3915 3916 if (DTU) { 3917 SmallVector<DominatorTree::UpdateType, 2> Updates; 3918 Updates.reserve(RemovedSuccessors.size()); 3919 for (auto *RemovedSuccessor : RemovedSuccessors) 3920 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3921 DTU->applyUpdates(Updates); 3922 } 3923 3924 return true; 3925 } 3926 3927 // Replaces 3928 // (switch (select cond, X, Y)) on constant X, Y 3929 // with a branch - conditional if X and Y lead to distinct BBs, 3930 // unconditional otherwise. 3931 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3932 SelectInst *Select) { 3933 // Check for constant integer values in the select. 3934 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3935 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3936 if (!TrueVal || !FalseVal) 3937 return false; 3938 3939 // Find the relevant condition and destinations. 3940 Value *Condition = Select->getCondition(); 3941 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3942 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3943 3944 // Get weight for TrueBB and FalseBB. 3945 uint32_t TrueWeight = 0, FalseWeight = 0; 3946 SmallVector<uint64_t, 8> Weights; 3947 bool HasWeights = HasBranchWeights(SI); 3948 if (HasWeights) { 3949 GetBranchWeights(SI, Weights); 3950 if (Weights.size() == 1 + SI->getNumCases()) { 3951 TrueWeight = 3952 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3953 FalseWeight = 3954 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3955 } 3956 } 3957 3958 // Perform the actual simplification. 3959 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3960 FalseWeight); 3961 } 3962 3963 // Replaces 3964 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3965 // blockaddress(@fn, BlockB))) 3966 // with 3967 // (br cond, BlockA, BlockB). 3968 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3969 SelectInst *SI) { 3970 // Check that both operands of the select are block addresses. 3971 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3972 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3973 if (!TBA || !FBA) 3974 return false; 3975 3976 // Extract the actual blocks. 3977 BasicBlock *TrueBB = TBA->getBasicBlock(); 3978 BasicBlock *FalseBB = FBA->getBasicBlock(); 3979 3980 // Perform the actual simplification. 3981 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3982 0); 3983 } 3984 3985 /// This is called when we find an icmp instruction 3986 /// (a seteq/setne with a constant) as the only instruction in a 3987 /// block that ends with an uncond branch. We are looking for a very specific 3988 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3989 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3990 /// default value goes to an uncond block with a seteq in it, we get something 3991 /// like: 3992 /// 3993 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3994 /// DEFAULT: 3995 /// %tmp = icmp eq i8 %A, 92 3996 /// br label %end 3997 /// end: 3998 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3999 /// 4000 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4001 /// the PHI, merging the third icmp into the switch. 4002 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4003 ICmpInst *ICI, IRBuilder<> &Builder) { 4004 BasicBlock *BB = ICI->getParent(); 4005 4006 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4007 // complex. 4008 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4009 return false; 4010 4011 Value *V = ICI->getOperand(0); 4012 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4013 4014 // The pattern we're looking for is where our only predecessor is a switch on 4015 // 'V' and this block is the default case for the switch. In this case we can 4016 // fold the compared value into the switch to simplify things. 4017 BasicBlock *Pred = BB->getSinglePredecessor(); 4018 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4019 return false; 4020 4021 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4022 if (SI->getCondition() != V) 4023 return false; 4024 4025 // If BB is reachable on a non-default case, then we simply know the value of 4026 // V in this block. Substitute it and constant fold the icmp instruction 4027 // away. 4028 if (SI->getDefaultDest() != BB) { 4029 ConstantInt *VVal = SI->findCaseDest(BB); 4030 assert(VVal && "Should have a unique destination value"); 4031 ICI->setOperand(0, VVal); 4032 4033 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4034 ICI->replaceAllUsesWith(V); 4035 ICI->eraseFromParent(); 4036 } 4037 // BB is now empty, so it is likely to simplify away. 4038 return requestResimplify(); 4039 } 4040 4041 // Ok, the block is reachable from the default dest. If the constant we're 4042 // comparing exists in one of the other edges, then we can constant fold ICI 4043 // and zap it. 4044 if (SI->findCaseValue(Cst) != SI->case_default()) { 4045 Value *V; 4046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4047 V = ConstantInt::getFalse(BB->getContext()); 4048 else 4049 V = ConstantInt::getTrue(BB->getContext()); 4050 4051 ICI->replaceAllUsesWith(V); 4052 ICI->eraseFromParent(); 4053 // BB is now empty, so it is likely to simplify away. 4054 return requestResimplify(); 4055 } 4056 4057 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4058 // the block. 4059 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4060 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4061 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4062 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4063 return false; 4064 4065 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4066 // true in the PHI. 4067 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4068 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4069 4070 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4071 std::swap(DefaultCst, NewCst); 4072 4073 // Replace ICI (which is used by the PHI for the default value) with true or 4074 // false depending on if it is EQ or NE. 4075 ICI->replaceAllUsesWith(DefaultCst); 4076 ICI->eraseFromParent(); 4077 4078 SmallVector<DominatorTree::UpdateType, 2> Updates; 4079 4080 // Okay, the switch goes to this block on a default value. Add an edge from 4081 // the switch to the merge point on the compared value. 4082 BasicBlock *NewBB = 4083 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4084 { 4085 SwitchInstProfUpdateWrapper SIW(*SI); 4086 auto W0 = SIW.getSuccessorWeight(0); 4087 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4088 if (W0) { 4089 NewW = ((uint64_t(*W0) + 1) >> 1); 4090 SIW.setSuccessorWeight(0, *NewW); 4091 } 4092 SIW.addCase(Cst, NewBB, NewW); 4093 if (DTU) 4094 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4095 } 4096 4097 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4098 Builder.SetInsertPoint(NewBB); 4099 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4100 Builder.CreateBr(SuccBlock); 4101 PHIUse->addIncoming(NewCst, NewBB); 4102 if (DTU) { 4103 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4104 DTU->applyUpdates(Updates); 4105 } 4106 return true; 4107 } 4108 4109 /// The specified branch is a conditional branch. 4110 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4111 /// fold it into a switch instruction if so. 4112 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4113 IRBuilder<> &Builder, 4114 const DataLayout &DL) { 4115 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4116 if (!Cond) 4117 return false; 4118 4119 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4120 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4121 // 'setne's and'ed together, collect them. 4122 4123 // Try to gather values from a chain of and/or to be turned into a switch 4124 ConstantComparesGatherer ConstantCompare(Cond, DL); 4125 // Unpack the result 4126 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4127 Value *CompVal = ConstantCompare.CompValue; 4128 unsigned UsedICmps = ConstantCompare.UsedICmps; 4129 Value *ExtraCase = ConstantCompare.Extra; 4130 4131 // If we didn't have a multiply compared value, fail. 4132 if (!CompVal) 4133 return false; 4134 4135 // Avoid turning single icmps into a switch. 4136 if (UsedICmps <= 1) 4137 return false; 4138 4139 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4140 4141 // There might be duplicate constants in the list, which the switch 4142 // instruction can't handle, remove them now. 4143 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4144 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4145 4146 // If Extra was used, we require at least two switch values to do the 4147 // transformation. A switch with one value is just a conditional branch. 4148 if (ExtraCase && Values.size() < 2) 4149 return false; 4150 4151 // TODO: Preserve branch weight metadata, similarly to how 4152 // FoldValueComparisonIntoPredecessors preserves it. 4153 4154 // Figure out which block is which destination. 4155 BasicBlock *DefaultBB = BI->getSuccessor(1); 4156 BasicBlock *EdgeBB = BI->getSuccessor(0); 4157 if (!TrueWhenEqual) 4158 std::swap(DefaultBB, EdgeBB); 4159 4160 BasicBlock *BB = BI->getParent(); 4161 4162 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4163 << " cases into SWITCH. BB is:\n" 4164 << *BB); 4165 4166 SmallVector<DominatorTree::UpdateType, 2> Updates; 4167 4168 // If there are any extra values that couldn't be folded into the switch 4169 // then we evaluate them with an explicit branch first. Split the block 4170 // right before the condbr to handle it. 4171 if (ExtraCase) { 4172 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4173 /*MSSAU=*/nullptr, "switch.early.test"); 4174 4175 // Remove the uncond branch added to the old block. 4176 Instruction *OldTI = BB->getTerminator(); 4177 Builder.SetInsertPoint(OldTI); 4178 4179 // There can be an unintended UB if extra values are Poison. Before the 4180 // transformation, extra values may not be evaluated according to the 4181 // condition, and it will not raise UB. But after transformation, we are 4182 // evaluating extra values before checking the condition, and it will raise 4183 // UB. It can be solved by adding freeze instruction to extra values. 4184 AssumptionCache *AC = Options.AC; 4185 4186 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 4187 ExtraCase = Builder.CreateFreeze(ExtraCase); 4188 4189 if (TrueWhenEqual) 4190 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4191 else 4192 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4193 4194 OldTI->eraseFromParent(); 4195 4196 if (DTU) 4197 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4198 4199 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4200 // for the edge we just added. 4201 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4202 4203 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4204 << "\nEXTRABB = " << *BB); 4205 BB = NewBB; 4206 } 4207 4208 Builder.SetInsertPoint(BI); 4209 // Convert pointer to int before we switch. 4210 if (CompVal->getType()->isPointerTy()) { 4211 CompVal = Builder.CreatePtrToInt( 4212 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4213 } 4214 4215 // Create the new switch instruction now. 4216 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4217 4218 // Add all of the 'cases' to the switch instruction. 4219 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4220 New->addCase(Values[i], EdgeBB); 4221 4222 // We added edges from PI to the EdgeBB. As such, if there were any 4223 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4224 // the number of edges added. 4225 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4226 PHINode *PN = cast<PHINode>(BBI); 4227 Value *InVal = PN->getIncomingValueForBlock(BB); 4228 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4229 PN->addIncoming(InVal, BB); 4230 } 4231 4232 // Erase the old branch instruction. 4233 EraseTerminatorAndDCECond(BI); 4234 if (DTU) 4235 DTU->applyUpdates(Updates); 4236 4237 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4238 return true; 4239 } 4240 4241 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4242 if (isa<PHINode>(RI->getValue())) 4243 return simplifyCommonResume(RI); 4244 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4245 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4246 // The resume must unwind the exception that caused control to branch here. 4247 return simplifySingleResume(RI); 4248 4249 return false; 4250 } 4251 4252 // Check if cleanup block is empty 4253 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4254 for (Instruction &I : R) { 4255 auto *II = dyn_cast<IntrinsicInst>(&I); 4256 if (!II) 4257 return false; 4258 4259 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4260 switch (IntrinsicID) { 4261 case Intrinsic::dbg_declare: 4262 case Intrinsic::dbg_value: 4263 case Intrinsic::dbg_label: 4264 case Intrinsic::lifetime_end: 4265 break; 4266 default: 4267 return false; 4268 } 4269 } 4270 return true; 4271 } 4272 4273 // Simplify resume that is shared by several landing pads (phi of landing pad). 4274 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4275 BasicBlock *BB = RI->getParent(); 4276 4277 // Check that there are no other instructions except for debug and lifetime 4278 // intrinsics between the phi's and resume instruction. 4279 if (!isCleanupBlockEmpty( 4280 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4281 return false; 4282 4283 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4284 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4285 4286 // Check incoming blocks to see if any of them are trivial. 4287 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4288 Idx++) { 4289 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4290 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4291 4292 // If the block has other successors, we can not delete it because 4293 // it has other dependents. 4294 if (IncomingBB->getUniqueSuccessor() != BB) 4295 continue; 4296 4297 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4298 // Not the landing pad that caused the control to branch here. 4299 if (IncomingValue != LandingPad) 4300 continue; 4301 4302 if (isCleanupBlockEmpty( 4303 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4304 TrivialUnwindBlocks.insert(IncomingBB); 4305 } 4306 4307 // If no trivial unwind blocks, don't do any simplifications. 4308 if (TrivialUnwindBlocks.empty()) 4309 return false; 4310 4311 // Turn all invokes that unwind here into calls. 4312 for (auto *TrivialBB : TrivialUnwindBlocks) { 4313 // Blocks that will be simplified should be removed from the phi node. 4314 // Note there could be multiple edges to the resume block, and we need 4315 // to remove them all. 4316 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4317 BB->removePredecessor(TrivialBB, true); 4318 4319 for (BasicBlock *Pred : 4320 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4321 removeUnwindEdge(Pred, DTU); 4322 ++NumInvokes; 4323 } 4324 4325 // In each SimplifyCFG run, only the current processed block can be erased. 4326 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4327 // of erasing TrivialBB, we only remove the branch to the common resume 4328 // block so that we can later erase the resume block since it has no 4329 // predecessors. 4330 TrivialBB->getTerminator()->eraseFromParent(); 4331 new UnreachableInst(RI->getContext(), TrivialBB); 4332 if (DTU) 4333 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4334 } 4335 4336 // Delete the resume block if all its predecessors have been removed. 4337 if (pred_empty(BB)) 4338 DeleteDeadBlock(BB, DTU); 4339 4340 return !TrivialUnwindBlocks.empty(); 4341 } 4342 4343 // Simplify resume that is only used by a single (non-phi) landing pad. 4344 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4345 BasicBlock *BB = RI->getParent(); 4346 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4347 assert(RI->getValue() == LPInst && 4348 "Resume must unwind the exception that caused control to here"); 4349 4350 // Check that there are no other instructions except for debug intrinsics. 4351 if (!isCleanupBlockEmpty( 4352 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4353 return false; 4354 4355 // Turn all invokes that unwind here into calls and delete the basic block. 4356 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4357 removeUnwindEdge(Pred, DTU); 4358 ++NumInvokes; 4359 } 4360 4361 // The landingpad is now unreachable. Zap it. 4362 DeleteDeadBlock(BB, DTU); 4363 return true; 4364 } 4365 4366 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4367 // If this is a trivial cleanup pad that executes no instructions, it can be 4368 // eliminated. If the cleanup pad continues to the caller, any predecessor 4369 // that is an EH pad will be updated to continue to the caller and any 4370 // predecessor that terminates with an invoke instruction will have its invoke 4371 // instruction converted to a call instruction. If the cleanup pad being 4372 // simplified does not continue to the caller, each predecessor will be 4373 // updated to continue to the unwind destination of the cleanup pad being 4374 // simplified. 4375 BasicBlock *BB = RI->getParent(); 4376 CleanupPadInst *CPInst = RI->getCleanupPad(); 4377 if (CPInst->getParent() != BB) 4378 // This isn't an empty cleanup. 4379 return false; 4380 4381 // We cannot kill the pad if it has multiple uses. This typically arises 4382 // from unreachable basic blocks. 4383 if (!CPInst->hasOneUse()) 4384 return false; 4385 4386 // Check that there are no other instructions except for benign intrinsics. 4387 if (!isCleanupBlockEmpty( 4388 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4389 return false; 4390 4391 // If the cleanup return we are simplifying unwinds to the caller, this will 4392 // set UnwindDest to nullptr. 4393 BasicBlock *UnwindDest = RI->getUnwindDest(); 4394 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4395 4396 // We're about to remove BB from the control flow. Before we do, sink any 4397 // PHINodes into the unwind destination. Doing this before changing the 4398 // control flow avoids some potentially slow checks, since we can currently 4399 // be certain that UnwindDest and BB have no common predecessors (since they 4400 // are both EH pads). 4401 if (UnwindDest) { 4402 // First, go through the PHI nodes in UnwindDest and update any nodes that 4403 // reference the block we are removing 4404 for (PHINode &DestPN : UnwindDest->phis()) { 4405 int Idx = DestPN.getBasicBlockIndex(BB); 4406 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4407 assert(Idx != -1); 4408 // This PHI node has an incoming value that corresponds to a control 4409 // path through the cleanup pad we are removing. If the incoming 4410 // value is in the cleanup pad, it must be a PHINode (because we 4411 // verified above that the block is otherwise empty). Otherwise, the 4412 // value is either a constant or a value that dominates the cleanup 4413 // pad being removed. 4414 // 4415 // Because BB and UnwindDest are both EH pads, all of their 4416 // predecessors must unwind to these blocks, and since no instruction 4417 // can have multiple unwind destinations, there will be no overlap in 4418 // incoming blocks between SrcPN and DestPN. 4419 Value *SrcVal = DestPN.getIncomingValue(Idx); 4420 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4421 4422 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4423 for (auto *Pred : predecessors(BB)) { 4424 Value *Incoming = 4425 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4426 DestPN.addIncoming(Incoming, Pred); 4427 } 4428 } 4429 4430 // Sink any remaining PHI nodes directly into UnwindDest. 4431 Instruction *InsertPt = DestEHPad; 4432 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4433 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4434 // If the PHI node has no uses or all of its uses are in this basic 4435 // block (meaning they are debug or lifetime intrinsics), just leave 4436 // it. It will be erased when we erase BB below. 4437 continue; 4438 4439 // Otherwise, sink this PHI node into UnwindDest. 4440 // Any predecessors to UnwindDest which are not already represented 4441 // must be back edges which inherit the value from the path through 4442 // BB. In this case, the PHI value must reference itself. 4443 for (auto *pred : predecessors(UnwindDest)) 4444 if (pred != BB) 4445 PN.addIncoming(&PN, pred); 4446 PN.moveBefore(InsertPt); 4447 // Also, add a dummy incoming value for the original BB itself, 4448 // so that the PHI is well-formed until we drop said predecessor. 4449 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4450 } 4451 } 4452 4453 std::vector<DominatorTree::UpdateType> Updates; 4454 4455 // We use make_early_inc_range here because we will remove all predecessors. 4456 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4457 if (UnwindDest == nullptr) { 4458 if (DTU) { 4459 DTU->applyUpdates(Updates); 4460 Updates.clear(); 4461 } 4462 removeUnwindEdge(PredBB, DTU); 4463 ++NumInvokes; 4464 } else { 4465 BB->removePredecessor(PredBB); 4466 Instruction *TI = PredBB->getTerminator(); 4467 TI->replaceUsesOfWith(BB, UnwindDest); 4468 if (DTU) { 4469 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4470 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4471 } 4472 } 4473 } 4474 4475 if (DTU) 4476 DTU->applyUpdates(Updates); 4477 4478 DeleteDeadBlock(BB, DTU); 4479 4480 return true; 4481 } 4482 4483 // Try to merge two cleanuppads together. 4484 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4485 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4486 // with. 4487 BasicBlock *UnwindDest = RI->getUnwindDest(); 4488 if (!UnwindDest) 4489 return false; 4490 4491 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4492 // be safe to merge without code duplication. 4493 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4494 return false; 4495 4496 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4497 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4498 if (!SuccessorCleanupPad) 4499 return false; 4500 4501 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4502 // Replace any uses of the successor cleanupad with the predecessor pad 4503 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4504 // funclet bundle operands. 4505 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4506 // Remove the old cleanuppad. 4507 SuccessorCleanupPad->eraseFromParent(); 4508 // Now, we simply replace the cleanupret with a branch to the unwind 4509 // destination. 4510 BranchInst::Create(UnwindDest, RI->getParent()); 4511 RI->eraseFromParent(); 4512 4513 return true; 4514 } 4515 4516 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4517 // It is possible to transiantly have an undef cleanuppad operand because we 4518 // have deleted some, but not all, dead blocks. 4519 // Eventually, this block will be deleted. 4520 if (isa<UndefValue>(RI->getOperand(0))) 4521 return false; 4522 4523 if (mergeCleanupPad(RI)) 4524 return true; 4525 4526 if (removeEmptyCleanup(RI, DTU)) 4527 return true; 4528 4529 return false; 4530 } 4531 4532 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 4533 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4534 BasicBlock *BB = UI->getParent(); 4535 4536 bool Changed = false; 4537 4538 // If there are any instructions immediately before the unreachable that can 4539 // be removed, do so. 4540 while (UI->getIterator() != BB->begin()) { 4541 BasicBlock::iterator BBI = UI->getIterator(); 4542 --BBI; 4543 4544 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 4545 break; // Can not drop any more instructions. We're done here. 4546 // Otherwise, this instruction can be freely erased, 4547 // even if it is not side-effect free. 4548 4549 // Note that deleting EH's here is in fact okay, although it involves a bit 4550 // of subtle reasoning. If this inst is an EH, all the predecessors of this 4551 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 4552 // and we can therefore guarantee this block will be erased. 4553 4554 // Delete this instruction (any uses are guaranteed to be dead) 4555 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 4556 BBI->eraseFromParent(); 4557 Changed = true; 4558 } 4559 4560 // If the unreachable instruction is the first in the block, take a gander 4561 // at all of the predecessors of this instruction, and simplify them. 4562 if (&BB->front() != UI) 4563 return Changed; 4564 4565 std::vector<DominatorTree::UpdateType> Updates; 4566 4567 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4568 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4569 auto *Predecessor = Preds[i]; 4570 Instruction *TI = Predecessor->getTerminator(); 4571 IRBuilder<> Builder(TI); 4572 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4573 // We could either have a proper unconditional branch, 4574 // or a degenerate conditional branch with matching destinations. 4575 if (all_of(BI->successors(), 4576 [BB](auto *Successor) { return Successor == BB; })) { 4577 new UnreachableInst(TI->getContext(), TI); 4578 TI->eraseFromParent(); 4579 Changed = true; 4580 } else { 4581 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4582 Value* Cond = BI->getCondition(); 4583 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4584 "The destinations are guaranteed to be different here."); 4585 if (BI->getSuccessor(0) == BB) { 4586 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4587 Builder.CreateBr(BI->getSuccessor(1)); 4588 } else { 4589 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4590 Builder.CreateAssumption(Cond); 4591 Builder.CreateBr(BI->getSuccessor(0)); 4592 } 4593 EraseTerminatorAndDCECond(BI); 4594 Changed = true; 4595 } 4596 if (DTU) 4597 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4598 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4599 SwitchInstProfUpdateWrapper SU(*SI); 4600 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4601 if (i->getCaseSuccessor() != BB) { 4602 ++i; 4603 continue; 4604 } 4605 BB->removePredecessor(SU->getParent()); 4606 i = SU.removeCase(i); 4607 e = SU->case_end(); 4608 Changed = true; 4609 } 4610 // Note that the default destination can't be removed! 4611 if (DTU && SI->getDefaultDest() != BB) 4612 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4613 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4614 if (II->getUnwindDest() == BB) { 4615 if (DTU) { 4616 DTU->applyUpdates(Updates); 4617 Updates.clear(); 4618 } 4619 removeUnwindEdge(TI->getParent(), DTU); 4620 Changed = true; 4621 } 4622 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4623 if (CSI->getUnwindDest() == BB) { 4624 if (DTU) { 4625 DTU->applyUpdates(Updates); 4626 Updates.clear(); 4627 } 4628 removeUnwindEdge(TI->getParent(), DTU); 4629 Changed = true; 4630 continue; 4631 } 4632 4633 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4634 E = CSI->handler_end(); 4635 I != E; ++I) { 4636 if (*I == BB) { 4637 CSI->removeHandler(I); 4638 --I; 4639 --E; 4640 Changed = true; 4641 } 4642 } 4643 if (DTU) 4644 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4645 if (CSI->getNumHandlers() == 0) { 4646 if (CSI->hasUnwindDest()) { 4647 // Redirect all predecessors of the block containing CatchSwitchInst 4648 // to instead branch to the CatchSwitchInst's unwind destination. 4649 if (DTU) { 4650 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4651 Updates.push_back({DominatorTree::Insert, 4652 PredecessorOfPredecessor, 4653 CSI->getUnwindDest()}); 4654 Updates.push_back({DominatorTree::Delete, 4655 PredecessorOfPredecessor, Predecessor}); 4656 } 4657 } 4658 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4659 } else { 4660 // Rewrite all preds to unwind to caller (or from invoke to call). 4661 if (DTU) { 4662 DTU->applyUpdates(Updates); 4663 Updates.clear(); 4664 } 4665 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4666 for (BasicBlock *EHPred : EHPreds) 4667 removeUnwindEdge(EHPred, DTU); 4668 } 4669 // The catchswitch is no longer reachable. 4670 new UnreachableInst(CSI->getContext(), CSI); 4671 CSI->eraseFromParent(); 4672 Changed = true; 4673 } 4674 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4675 (void)CRI; 4676 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4677 "Expected to always have an unwind to BB."); 4678 if (DTU) 4679 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4680 new UnreachableInst(TI->getContext(), TI); 4681 TI->eraseFromParent(); 4682 Changed = true; 4683 } 4684 } 4685 4686 if (DTU) 4687 DTU->applyUpdates(Updates); 4688 4689 // If this block is now dead, remove it. 4690 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4691 DeleteDeadBlock(BB, DTU); 4692 return true; 4693 } 4694 4695 return Changed; 4696 } 4697 4698 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4699 assert(Cases.size() >= 1); 4700 4701 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4702 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4703 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4704 return false; 4705 } 4706 return true; 4707 } 4708 4709 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4710 DomTreeUpdater *DTU) { 4711 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4712 auto *BB = Switch->getParent(); 4713 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4714 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4715 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4716 Switch->setDefaultDest(&*NewDefaultBlock); 4717 if (DTU) 4718 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4719 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4720 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4721 SmallVector<DominatorTree::UpdateType, 2> Updates; 4722 if (DTU) 4723 for (auto *Successor : successors(NewDefaultBlock)) 4724 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4725 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4726 new UnreachableInst(Switch->getContext(), NewTerminator); 4727 EraseTerminatorAndDCECond(NewTerminator); 4728 if (DTU) 4729 DTU->applyUpdates(Updates); 4730 } 4731 4732 /// Turn a switch with two reachable destinations into an integer range 4733 /// comparison and branch. 4734 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4735 IRBuilder<> &Builder) { 4736 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4737 4738 bool HasDefault = 4739 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4740 4741 auto *BB = SI->getParent(); 4742 4743 // Partition the cases into two sets with different destinations. 4744 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4745 BasicBlock *DestB = nullptr; 4746 SmallVector<ConstantInt *, 16> CasesA; 4747 SmallVector<ConstantInt *, 16> CasesB; 4748 4749 for (auto Case : SI->cases()) { 4750 BasicBlock *Dest = Case.getCaseSuccessor(); 4751 if (!DestA) 4752 DestA = Dest; 4753 if (Dest == DestA) { 4754 CasesA.push_back(Case.getCaseValue()); 4755 continue; 4756 } 4757 if (!DestB) 4758 DestB = Dest; 4759 if (Dest == DestB) { 4760 CasesB.push_back(Case.getCaseValue()); 4761 continue; 4762 } 4763 return false; // More than two destinations. 4764 } 4765 4766 assert(DestA && DestB && 4767 "Single-destination switch should have been folded."); 4768 assert(DestA != DestB); 4769 assert(DestB != SI->getDefaultDest()); 4770 assert(!CasesB.empty() && "There must be non-default cases."); 4771 assert(!CasesA.empty() || HasDefault); 4772 4773 // Figure out if one of the sets of cases form a contiguous range. 4774 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4775 BasicBlock *ContiguousDest = nullptr; 4776 BasicBlock *OtherDest = nullptr; 4777 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4778 ContiguousCases = &CasesA; 4779 ContiguousDest = DestA; 4780 OtherDest = DestB; 4781 } else if (CasesAreContiguous(CasesB)) { 4782 ContiguousCases = &CasesB; 4783 ContiguousDest = DestB; 4784 OtherDest = DestA; 4785 } else 4786 return false; 4787 4788 // Start building the compare and branch. 4789 4790 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4791 Constant *NumCases = 4792 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4793 4794 Value *Sub = SI->getCondition(); 4795 if (!Offset->isNullValue()) 4796 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4797 4798 Value *Cmp; 4799 // If NumCases overflowed, then all possible values jump to the successor. 4800 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4801 Cmp = ConstantInt::getTrue(SI->getContext()); 4802 else 4803 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4804 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4805 4806 // Update weight for the newly-created conditional branch. 4807 if (HasBranchWeights(SI)) { 4808 SmallVector<uint64_t, 8> Weights; 4809 GetBranchWeights(SI, Weights); 4810 if (Weights.size() == 1 + SI->getNumCases()) { 4811 uint64_t TrueWeight = 0; 4812 uint64_t FalseWeight = 0; 4813 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4814 if (SI->getSuccessor(I) == ContiguousDest) 4815 TrueWeight += Weights[I]; 4816 else 4817 FalseWeight += Weights[I]; 4818 } 4819 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4820 TrueWeight /= 2; 4821 FalseWeight /= 2; 4822 } 4823 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4824 } 4825 } 4826 4827 // Prune obsolete incoming values off the successors' PHI nodes. 4828 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4829 unsigned PreviousEdges = ContiguousCases->size(); 4830 if (ContiguousDest == SI->getDefaultDest()) 4831 ++PreviousEdges; 4832 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4833 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4834 } 4835 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4836 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4837 if (OtherDest == SI->getDefaultDest()) 4838 ++PreviousEdges; 4839 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4840 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4841 } 4842 4843 // Clean up the default block - it may have phis or other instructions before 4844 // the unreachable terminator. 4845 if (!HasDefault) 4846 createUnreachableSwitchDefault(SI, DTU); 4847 4848 auto *UnreachableDefault = SI->getDefaultDest(); 4849 4850 // Drop the switch. 4851 SI->eraseFromParent(); 4852 4853 if (!HasDefault && DTU) 4854 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4855 4856 return true; 4857 } 4858 4859 /// Compute masked bits for the condition of a switch 4860 /// and use it to remove dead cases. 4861 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4862 AssumptionCache *AC, 4863 const DataLayout &DL) { 4864 Value *Cond = SI->getCondition(); 4865 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4866 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4867 4868 // We can also eliminate cases by determining that their values are outside of 4869 // the limited range of the condition based on how many significant (non-sign) 4870 // bits are in the condition value. 4871 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4872 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4873 4874 // Gather dead cases. 4875 SmallVector<ConstantInt *, 8> DeadCases; 4876 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 4877 for (auto &Case : SI->cases()) { 4878 auto *Successor = Case.getCaseSuccessor(); 4879 if (DTU) 4880 ++NumPerSuccessorCases[Successor]; 4881 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4882 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4883 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4884 DeadCases.push_back(Case.getCaseValue()); 4885 if (DTU) 4886 --NumPerSuccessorCases[Successor]; 4887 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4888 << " is dead.\n"); 4889 } 4890 } 4891 4892 // If we can prove that the cases must cover all possible values, the 4893 // default destination becomes dead and we can remove it. If we know some 4894 // of the bits in the value, we can use that to more precisely compute the 4895 // number of possible unique case values. 4896 bool HasDefault = 4897 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4898 const unsigned NumUnknownBits = 4899 Bits - (Known.Zero | Known.One).countPopulation(); 4900 assert(NumUnknownBits <= Bits); 4901 if (HasDefault && DeadCases.empty() && 4902 NumUnknownBits < 64 /* avoid overflow */ && 4903 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4904 createUnreachableSwitchDefault(SI, DTU); 4905 return true; 4906 } 4907 4908 if (DeadCases.empty()) 4909 return false; 4910 4911 SwitchInstProfUpdateWrapper SIW(*SI); 4912 for (ConstantInt *DeadCase : DeadCases) { 4913 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4914 assert(CaseI != SI->case_default() && 4915 "Case was not found. Probably mistake in DeadCases forming."); 4916 // Prune unused values from PHI nodes. 4917 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4918 SIW.removeCase(CaseI); 4919 } 4920 4921 if (DTU) { 4922 std::vector<DominatorTree::UpdateType> Updates; 4923 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4924 if (I.second == 0) 4925 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4926 DTU->applyUpdates(Updates); 4927 } 4928 4929 return true; 4930 } 4931 4932 /// If BB would be eligible for simplification by 4933 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4934 /// by an unconditional branch), look at the phi node for BB in the successor 4935 /// block and see if the incoming value is equal to CaseValue. If so, return 4936 /// the phi node, and set PhiIndex to BB's index in the phi node. 4937 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4938 BasicBlock *BB, int *PhiIndex) { 4939 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4940 return nullptr; // BB must be empty to be a candidate for simplification. 4941 if (!BB->getSinglePredecessor()) 4942 return nullptr; // BB must be dominated by the switch. 4943 4944 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4945 if (!Branch || !Branch->isUnconditional()) 4946 return nullptr; // Terminator must be unconditional branch. 4947 4948 BasicBlock *Succ = Branch->getSuccessor(0); 4949 4950 for (PHINode &PHI : Succ->phis()) { 4951 int Idx = PHI.getBasicBlockIndex(BB); 4952 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4953 4954 Value *InValue = PHI.getIncomingValue(Idx); 4955 if (InValue != CaseValue) 4956 continue; 4957 4958 *PhiIndex = Idx; 4959 return &PHI; 4960 } 4961 4962 return nullptr; 4963 } 4964 4965 /// Try to forward the condition of a switch instruction to a phi node 4966 /// dominated by the switch, if that would mean that some of the destination 4967 /// blocks of the switch can be folded away. Return true if a change is made. 4968 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4969 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4970 4971 ForwardingNodesMap ForwardingNodes; 4972 BasicBlock *SwitchBlock = SI->getParent(); 4973 bool Changed = false; 4974 for (auto &Case : SI->cases()) { 4975 ConstantInt *CaseValue = Case.getCaseValue(); 4976 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4977 4978 // Replace phi operands in successor blocks that are using the constant case 4979 // value rather than the switch condition variable: 4980 // switchbb: 4981 // switch i32 %x, label %default [ 4982 // i32 17, label %succ 4983 // ... 4984 // succ: 4985 // %r = phi i32 ... [ 17, %switchbb ] ... 4986 // --> 4987 // %r = phi i32 ... [ %x, %switchbb ] ... 4988 4989 for (PHINode &Phi : CaseDest->phis()) { 4990 // This only works if there is exactly 1 incoming edge from the switch to 4991 // a phi. If there is >1, that means multiple cases of the switch map to 1 4992 // value in the phi, and that phi value is not the switch condition. Thus, 4993 // this transform would not make sense (the phi would be invalid because 4994 // a phi can't have different incoming values from the same block). 4995 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4996 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4997 count(Phi.blocks(), SwitchBlock) == 1) { 4998 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4999 Changed = true; 5000 } 5001 } 5002 5003 // Collect phi nodes that are indirectly using this switch's case constants. 5004 int PhiIdx; 5005 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5006 ForwardingNodes[Phi].push_back(PhiIdx); 5007 } 5008 5009 for (auto &ForwardingNode : ForwardingNodes) { 5010 PHINode *Phi = ForwardingNode.first; 5011 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5012 if (Indexes.size() < 2) 5013 continue; 5014 5015 for (int Index : Indexes) 5016 Phi->setIncomingValue(Index, SI->getCondition()); 5017 Changed = true; 5018 } 5019 5020 return Changed; 5021 } 5022 5023 /// Return true if the backend will be able to handle 5024 /// initializing an array of constants like C. 5025 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5026 if (C->isThreadDependent()) 5027 return false; 5028 if (C->isDLLImportDependent()) 5029 return false; 5030 5031 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5032 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5033 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5034 return false; 5035 5036 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5037 if (!CE->isGEPWithNoNotionalOverIndexing()) 5038 return false; 5039 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5040 return false; 5041 } 5042 5043 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5044 return false; 5045 5046 return true; 5047 } 5048 5049 /// If V is a Constant, return it. Otherwise, try to look up 5050 /// its constant value in ConstantPool, returning 0 if it's not there. 5051 static Constant * 5052 LookupConstant(Value *V, 5053 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5054 if (Constant *C = dyn_cast<Constant>(V)) 5055 return C; 5056 return ConstantPool.lookup(V); 5057 } 5058 5059 /// Try to fold instruction I into a constant. This works for 5060 /// simple instructions such as binary operations where both operands are 5061 /// constant or can be replaced by constants from the ConstantPool. Returns the 5062 /// resulting constant on success, 0 otherwise. 5063 static Constant * 5064 ConstantFold(Instruction *I, const DataLayout &DL, 5065 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5066 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5067 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5068 if (!A) 5069 return nullptr; 5070 if (A->isAllOnesValue()) 5071 return LookupConstant(Select->getTrueValue(), ConstantPool); 5072 if (A->isNullValue()) 5073 return LookupConstant(Select->getFalseValue(), ConstantPool); 5074 return nullptr; 5075 } 5076 5077 SmallVector<Constant *, 4> COps; 5078 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5079 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5080 COps.push_back(A); 5081 else 5082 return nullptr; 5083 } 5084 5085 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5086 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5087 COps[1], DL); 5088 } 5089 5090 return ConstantFoldInstOperands(I, COps, DL); 5091 } 5092 5093 /// Try to determine the resulting constant values in phi nodes 5094 /// at the common destination basic block, *CommonDest, for one of the case 5095 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5096 /// case), of a switch instruction SI. 5097 static bool 5098 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5099 BasicBlock **CommonDest, 5100 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5101 const DataLayout &DL, const TargetTransformInfo &TTI) { 5102 // The block from which we enter the common destination. 5103 BasicBlock *Pred = SI->getParent(); 5104 5105 // If CaseDest is empty except for some side-effect free instructions through 5106 // which we can constant-propagate the CaseVal, continue to its successor. 5107 SmallDenseMap<Value *, Constant *> ConstantPool; 5108 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5109 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5110 if (I.isTerminator()) { 5111 // If the terminator is a simple branch, continue to the next block. 5112 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5113 return false; 5114 Pred = CaseDest; 5115 CaseDest = I.getSuccessor(0); 5116 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5117 // Instruction is side-effect free and constant. 5118 5119 // If the instruction has uses outside this block or a phi node slot for 5120 // the block, it is not safe to bypass the instruction since it would then 5121 // no longer dominate all its uses. 5122 for (auto &Use : I.uses()) { 5123 User *User = Use.getUser(); 5124 if (Instruction *I = dyn_cast<Instruction>(User)) 5125 if (I->getParent() == CaseDest) 5126 continue; 5127 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5128 if (Phi->getIncomingBlock(Use) == CaseDest) 5129 continue; 5130 return false; 5131 } 5132 5133 ConstantPool.insert(std::make_pair(&I, C)); 5134 } else { 5135 break; 5136 } 5137 } 5138 5139 // If we did not have a CommonDest before, use the current one. 5140 if (!*CommonDest) 5141 *CommonDest = CaseDest; 5142 // If the destination isn't the common one, abort. 5143 if (CaseDest != *CommonDest) 5144 return false; 5145 5146 // Get the values for this case from phi nodes in the destination block. 5147 for (PHINode &PHI : (*CommonDest)->phis()) { 5148 int Idx = PHI.getBasicBlockIndex(Pred); 5149 if (Idx == -1) 5150 continue; 5151 5152 Constant *ConstVal = 5153 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5154 if (!ConstVal) 5155 return false; 5156 5157 // Be conservative about which kinds of constants we support. 5158 if (!ValidLookupTableConstant(ConstVal, TTI)) 5159 return false; 5160 5161 Res.push_back(std::make_pair(&PHI, ConstVal)); 5162 } 5163 5164 return Res.size() > 0; 5165 } 5166 5167 // Helper function used to add CaseVal to the list of cases that generate 5168 // Result. Returns the updated number of cases that generate this result. 5169 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5170 SwitchCaseResultVectorTy &UniqueResults, 5171 Constant *Result) { 5172 for (auto &I : UniqueResults) { 5173 if (I.first == Result) { 5174 I.second.push_back(CaseVal); 5175 return I.second.size(); 5176 } 5177 } 5178 UniqueResults.push_back( 5179 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5180 return 1; 5181 } 5182 5183 // Helper function that initializes a map containing 5184 // results for the PHI node of the common destination block for a switch 5185 // instruction. Returns false if multiple PHI nodes have been found or if 5186 // there is not a common destination block for the switch. 5187 static bool 5188 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5189 SwitchCaseResultVectorTy &UniqueResults, 5190 Constant *&DefaultResult, const DataLayout &DL, 5191 const TargetTransformInfo &TTI, 5192 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5193 for (auto &I : SI->cases()) { 5194 ConstantInt *CaseVal = I.getCaseValue(); 5195 5196 // Resulting value at phi nodes for this case value. 5197 SwitchCaseResultsTy Results; 5198 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5199 DL, TTI)) 5200 return false; 5201 5202 // Only one value per case is permitted. 5203 if (Results.size() > 1) 5204 return false; 5205 5206 // Add the case->result mapping to UniqueResults. 5207 const uintptr_t NumCasesForResult = 5208 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5209 5210 // Early out if there are too many cases for this result. 5211 if (NumCasesForResult > MaxCasesPerResult) 5212 return false; 5213 5214 // Early out if there are too many unique results. 5215 if (UniqueResults.size() > MaxUniqueResults) 5216 return false; 5217 5218 // Check the PHI consistency. 5219 if (!PHI) 5220 PHI = Results[0].first; 5221 else if (PHI != Results[0].first) 5222 return false; 5223 } 5224 // Find the default result value. 5225 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5226 BasicBlock *DefaultDest = SI->getDefaultDest(); 5227 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5228 DL, TTI); 5229 // If the default value is not found abort unless the default destination 5230 // is unreachable. 5231 DefaultResult = 5232 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5233 if ((!DefaultResult && 5234 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5235 return false; 5236 5237 return true; 5238 } 5239 5240 // Helper function that checks if it is possible to transform a switch with only 5241 // two cases (or two cases + default) that produces a result into a select. 5242 // Example: 5243 // switch (a) { 5244 // case 10: %0 = icmp eq i32 %a, 10 5245 // return 10; %1 = select i1 %0, i32 10, i32 4 5246 // case 20: ----> %2 = icmp eq i32 %a, 20 5247 // return 2; %3 = select i1 %2, i32 2, i32 %1 5248 // default: 5249 // return 4; 5250 // } 5251 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5252 Constant *DefaultResult, Value *Condition, 5253 IRBuilder<> &Builder) { 5254 // If we are selecting between only two cases transform into a simple 5255 // select or a two-way select if default is possible. 5256 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5257 ResultVector[1].second.size() == 1) { 5258 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5259 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5260 5261 bool DefaultCanTrigger = DefaultResult; 5262 Value *SelectValue = ResultVector[1].first; 5263 if (DefaultCanTrigger) { 5264 Value *const ValueCompare = 5265 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5266 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5267 DefaultResult, "switch.select"); 5268 } 5269 Value *const ValueCompare = 5270 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5271 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5272 SelectValue, "switch.select"); 5273 } 5274 5275 // Handle the degenerate case where two cases have the same value. 5276 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5277 DefaultResult) { 5278 Value *Cmp1 = Builder.CreateICmpEQ( 5279 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5280 Value *Cmp2 = Builder.CreateICmpEQ( 5281 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5282 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5283 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5284 } 5285 5286 return nullptr; 5287 } 5288 5289 // Helper function to cleanup a switch instruction that has been converted into 5290 // a select, fixing up PHI nodes and basic blocks. 5291 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5292 Value *SelectValue, 5293 IRBuilder<> &Builder, 5294 DomTreeUpdater *DTU) { 5295 std::vector<DominatorTree::UpdateType> Updates; 5296 5297 BasicBlock *SelectBB = SI->getParent(); 5298 BasicBlock *DestBB = PHI->getParent(); 5299 5300 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5301 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5302 Builder.CreateBr(DestBB); 5303 5304 // Remove the switch. 5305 5306 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5307 PHI->removeIncomingValue(SelectBB); 5308 PHI->addIncoming(SelectValue, SelectBB); 5309 5310 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5311 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5312 BasicBlock *Succ = SI->getSuccessor(i); 5313 5314 if (Succ == DestBB) 5315 continue; 5316 Succ->removePredecessor(SelectBB); 5317 if (DTU && RemovedSuccessors.insert(Succ).second) 5318 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5319 } 5320 SI->eraseFromParent(); 5321 if (DTU) 5322 DTU->applyUpdates(Updates); 5323 } 5324 5325 /// If the switch is only used to initialize one or more 5326 /// phi nodes in a common successor block with only two different 5327 /// constant values, replace the switch with select. 5328 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5329 DomTreeUpdater *DTU, const DataLayout &DL, 5330 const TargetTransformInfo &TTI) { 5331 Value *const Cond = SI->getCondition(); 5332 PHINode *PHI = nullptr; 5333 BasicBlock *CommonDest = nullptr; 5334 Constant *DefaultResult; 5335 SwitchCaseResultVectorTy UniqueResults; 5336 // Collect all the cases that will deliver the same value from the switch. 5337 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5338 DL, TTI, /*MaxUniqueResults*/2, 5339 /*MaxCasesPerResult*/2)) 5340 return false; 5341 assert(PHI != nullptr && "PHI for value select not found"); 5342 5343 Builder.SetInsertPoint(SI); 5344 Value *SelectValue = 5345 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5346 if (SelectValue) { 5347 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5348 return true; 5349 } 5350 // The switch couldn't be converted into a select. 5351 return false; 5352 } 5353 5354 namespace { 5355 5356 /// This class represents a lookup table that can be used to replace a switch. 5357 class SwitchLookupTable { 5358 public: 5359 /// Create a lookup table to use as a switch replacement with the contents 5360 /// of Values, using DefaultValue to fill any holes in the table. 5361 SwitchLookupTable( 5362 Module &M, uint64_t TableSize, ConstantInt *Offset, 5363 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5364 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5365 5366 /// Build instructions with Builder to retrieve the value at 5367 /// the position given by Index in the lookup table. 5368 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5369 5370 /// Return true if a table with TableSize elements of 5371 /// type ElementType would fit in a target-legal register. 5372 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5373 Type *ElementType); 5374 5375 private: 5376 // Depending on the contents of the table, it can be represented in 5377 // different ways. 5378 enum { 5379 // For tables where each element contains the same value, we just have to 5380 // store that single value and return it for each lookup. 5381 SingleValueKind, 5382 5383 // For tables where there is a linear relationship between table index 5384 // and values. We calculate the result with a simple multiplication 5385 // and addition instead of a table lookup. 5386 LinearMapKind, 5387 5388 // For small tables with integer elements, we can pack them into a bitmap 5389 // that fits into a target-legal register. Values are retrieved by 5390 // shift and mask operations. 5391 BitMapKind, 5392 5393 // The table is stored as an array of values. Values are retrieved by load 5394 // instructions from the table. 5395 ArrayKind 5396 } Kind; 5397 5398 // For SingleValueKind, this is the single value. 5399 Constant *SingleValue = nullptr; 5400 5401 // For BitMapKind, this is the bitmap. 5402 ConstantInt *BitMap = nullptr; 5403 IntegerType *BitMapElementTy = nullptr; 5404 5405 // For LinearMapKind, these are the constants used to derive the value. 5406 ConstantInt *LinearOffset = nullptr; 5407 ConstantInt *LinearMultiplier = nullptr; 5408 5409 // For ArrayKind, this is the array. 5410 GlobalVariable *Array = nullptr; 5411 }; 5412 5413 } // end anonymous namespace 5414 5415 SwitchLookupTable::SwitchLookupTable( 5416 Module &M, uint64_t TableSize, ConstantInt *Offset, 5417 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5418 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5419 assert(Values.size() && "Can't build lookup table without values!"); 5420 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5421 5422 // If all values in the table are equal, this is that value. 5423 SingleValue = Values.begin()->second; 5424 5425 Type *ValueType = Values.begin()->second->getType(); 5426 5427 // Build up the table contents. 5428 SmallVector<Constant *, 64> TableContents(TableSize); 5429 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5430 ConstantInt *CaseVal = Values[I].first; 5431 Constant *CaseRes = Values[I].second; 5432 assert(CaseRes->getType() == ValueType); 5433 5434 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5435 TableContents[Idx] = CaseRes; 5436 5437 if (CaseRes != SingleValue) 5438 SingleValue = nullptr; 5439 } 5440 5441 // Fill in any holes in the table with the default result. 5442 if (Values.size() < TableSize) { 5443 assert(DefaultValue && 5444 "Need a default value to fill the lookup table holes."); 5445 assert(DefaultValue->getType() == ValueType); 5446 for (uint64_t I = 0; I < TableSize; ++I) { 5447 if (!TableContents[I]) 5448 TableContents[I] = DefaultValue; 5449 } 5450 5451 if (DefaultValue != SingleValue) 5452 SingleValue = nullptr; 5453 } 5454 5455 // If each element in the table contains the same value, we only need to store 5456 // that single value. 5457 if (SingleValue) { 5458 Kind = SingleValueKind; 5459 return; 5460 } 5461 5462 // Check if we can derive the value with a linear transformation from the 5463 // table index. 5464 if (isa<IntegerType>(ValueType)) { 5465 bool LinearMappingPossible = true; 5466 APInt PrevVal; 5467 APInt DistToPrev; 5468 assert(TableSize >= 2 && "Should be a SingleValue table."); 5469 // Check if there is the same distance between two consecutive values. 5470 for (uint64_t I = 0; I < TableSize; ++I) { 5471 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5472 if (!ConstVal) { 5473 // This is an undef. We could deal with it, but undefs in lookup tables 5474 // are very seldom. It's probably not worth the additional complexity. 5475 LinearMappingPossible = false; 5476 break; 5477 } 5478 const APInt &Val = ConstVal->getValue(); 5479 if (I != 0) { 5480 APInt Dist = Val - PrevVal; 5481 if (I == 1) { 5482 DistToPrev = Dist; 5483 } else if (Dist != DistToPrev) { 5484 LinearMappingPossible = false; 5485 break; 5486 } 5487 } 5488 PrevVal = Val; 5489 } 5490 if (LinearMappingPossible) { 5491 LinearOffset = cast<ConstantInt>(TableContents[0]); 5492 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5493 Kind = LinearMapKind; 5494 ++NumLinearMaps; 5495 return; 5496 } 5497 } 5498 5499 // If the type is integer and the table fits in a register, build a bitmap. 5500 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5501 IntegerType *IT = cast<IntegerType>(ValueType); 5502 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5503 for (uint64_t I = TableSize; I > 0; --I) { 5504 TableInt <<= IT->getBitWidth(); 5505 // Insert values into the bitmap. Undef values are set to zero. 5506 if (!isa<UndefValue>(TableContents[I - 1])) { 5507 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5508 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5509 } 5510 } 5511 BitMap = ConstantInt::get(M.getContext(), TableInt); 5512 BitMapElementTy = IT; 5513 Kind = BitMapKind; 5514 ++NumBitMaps; 5515 return; 5516 } 5517 5518 // Store the table in an array. 5519 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5520 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5521 5522 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5523 GlobalVariable::PrivateLinkage, Initializer, 5524 "switch.table." + FuncName); 5525 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5526 // Set the alignment to that of an array items. We will be only loading one 5527 // value out of it. 5528 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5529 Kind = ArrayKind; 5530 } 5531 5532 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5533 switch (Kind) { 5534 case SingleValueKind: 5535 return SingleValue; 5536 case LinearMapKind: { 5537 // Derive the result value from the input value. 5538 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5539 false, "switch.idx.cast"); 5540 if (!LinearMultiplier->isOne()) 5541 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5542 if (!LinearOffset->isZero()) 5543 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5544 return Result; 5545 } 5546 case BitMapKind: { 5547 // Type of the bitmap (e.g. i59). 5548 IntegerType *MapTy = BitMap->getType(); 5549 5550 // Cast Index to the same type as the bitmap. 5551 // Note: The Index is <= the number of elements in the table, so 5552 // truncating it to the width of the bitmask is safe. 5553 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5554 5555 // Multiply the shift amount by the element width. 5556 ShiftAmt = Builder.CreateMul( 5557 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5558 "switch.shiftamt"); 5559 5560 // Shift down. 5561 Value *DownShifted = 5562 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5563 // Mask off. 5564 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5565 } 5566 case ArrayKind: { 5567 // Make sure the table index will not overflow when treated as signed. 5568 IntegerType *IT = cast<IntegerType>(Index->getType()); 5569 uint64_t TableSize = 5570 Array->getInitializer()->getType()->getArrayNumElements(); 5571 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5572 Index = Builder.CreateZExt( 5573 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5574 "switch.tableidx.zext"); 5575 5576 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5577 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5578 GEPIndices, "switch.gep"); 5579 return Builder.CreateLoad( 5580 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5581 "switch.load"); 5582 } 5583 } 5584 llvm_unreachable("Unknown lookup table kind!"); 5585 } 5586 5587 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5588 uint64_t TableSize, 5589 Type *ElementType) { 5590 auto *IT = dyn_cast<IntegerType>(ElementType); 5591 if (!IT) 5592 return false; 5593 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5594 // are <= 15, we could try to narrow the type. 5595 5596 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5597 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5598 return false; 5599 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5600 } 5601 5602 /// Determine whether a lookup table should be built for this switch, based on 5603 /// the number of cases, size of the table, and the types of the results. 5604 static bool 5605 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5606 const TargetTransformInfo &TTI, const DataLayout &DL, 5607 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5608 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5609 return false; // TableSize overflowed, or mul below might overflow. 5610 5611 bool AllTablesFitInRegister = true; 5612 bool HasIllegalType = false; 5613 for (const auto &I : ResultTypes) { 5614 Type *Ty = I.second; 5615 5616 // Saturate this flag to true. 5617 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5618 5619 // Saturate this flag to false. 5620 AllTablesFitInRegister = 5621 AllTablesFitInRegister && 5622 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5623 5624 // If both flags saturate, we're done. NOTE: This *only* works with 5625 // saturating flags, and all flags have to saturate first due to the 5626 // non-deterministic behavior of iterating over a dense map. 5627 if (HasIllegalType && !AllTablesFitInRegister) 5628 break; 5629 } 5630 5631 // If each table would fit in a register, we should build it anyway. 5632 if (AllTablesFitInRegister) 5633 return true; 5634 5635 // Don't build a table that doesn't fit in-register if it has illegal types. 5636 if (HasIllegalType) 5637 return false; 5638 5639 // The table density should be at least 40%. This is the same criterion as for 5640 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5641 // FIXME: Find the best cut-off. 5642 return SI->getNumCases() * 10 >= TableSize * 4; 5643 } 5644 5645 /// Try to reuse the switch table index compare. Following pattern: 5646 /// \code 5647 /// if (idx < tablesize) 5648 /// r = table[idx]; // table does not contain default_value 5649 /// else 5650 /// r = default_value; 5651 /// if (r != default_value) 5652 /// ... 5653 /// \endcode 5654 /// Is optimized to: 5655 /// \code 5656 /// cond = idx < tablesize; 5657 /// if (cond) 5658 /// r = table[idx]; 5659 /// else 5660 /// r = default_value; 5661 /// if (cond) 5662 /// ... 5663 /// \endcode 5664 /// Jump threading will then eliminate the second if(cond). 5665 static void reuseTableCompare( 5666 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5667 Constant *DefaultValue, 5668 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5669 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5670 if (!CmpInst) 5671 return; 5672 5673 // We require that the compare is in the same block as the phi so that jump 5674 // threading can do its work afterwards. 5675 if (CmpInst->getParent() != PhiBlock) 5676 return; 5677 5678 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5679 if (!CmpOp1) 5680 return; 5681 5682 Value *RangeCmp = RangeCheckBranch->getCondition(); 5683 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5684 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5685 5686 // Check if the compare with the default value is constant true or false. 5687 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5688 DefaultValue, CmpOp1, true); 5689 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5690 return; 5691 5692 // Check if the compare with the case values is distinct from the default 5693 // compare result. 5694 for (auto ValuePair : Values) { 5695 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5696 ValuePair.second, CmpOp1, true); 5697 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5698 return; 5699 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5700 "Expect true or false as compare result."); 5701 } 5702 5703 // Check if the branch instruction dominates the phi node. It's a simple 5704 // dominance check, but sufficient for our needs. 5705 // Although this check is invariant in the calling loops, it's better to do it 5706 // at this late stage. Practically we do it at most once for a switch. 5707 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5708 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5709 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5710 return; 5711 } 5712 5713 if (DefaultConst == FalseConst) { 5714 // The compare yields the same result. We can replace it. 5715 CmpInst->replaceAllUsesWith(RangeCmp); 5716 ++NumTableCmpReuses; 5717 } else { 5718 // The compare yields the same result, just inverted. We can replace it. 5719 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5720 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5721 RangeCheckBranch); 5722 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5723 ++NumTableCmpReuses; 5724 } 5725 } 5726 5727 /// If the switch is only used to initialize one or more phi nodes in a common 5728 /// successor block with different constant values, replace the switch with 5729 /// lookup tables. 5730 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5731 DomTreeUpdater *DTU, const DataLayout &DL, 5732 const TargetTransformInfo &TTI) { 5733 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5734 5735 BasicBlock *BB = SI->getParent(); 5736 Function *Fn = BB->getParent(); 5737 // Only build lookup table when we have a target that supports it or the 5738 // attribute is not set. 5739 if (!TTI.shouldBuildLookupTables() || 5740 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5741 return false; 5742 5743 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5744 // split off a dense part and build a lookup table for that. 5745 5746 // FIXME: This creates arrays of GEPs to constant strings, which means each 5747 // GEP needs a runtime relocation in PIC code. We should just build one big 5748 // string and lookup indices into that. 5749 5750 // Ignore switches with less than three cases. Lookup tables will not make 5751 // them faster, so we don't analyze them. 5752 if (SI->getNumCases() < 3) 5753 return false; 5754 5755 // Figure out the corresponding result for each case value and phi node in the 5756 // common destination, as well as the min and max case values. 5757 assert(!SI->cases().empty()); 5758 SwitchInst::CaseIt CI = SI->case_begin(); 5759 ConstantInt *MinCaseVal = CI->getCaseValue(); 5760 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5761 5762 BasicBlock *CommonDest = nullptr; 5763 5764 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5765 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5766 5767 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5768 SmallDenseMap<PHINode *, Type *> ResultTypes; 5769 SmallVector<PHINode *, 4> PHIs; 5770 5771 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5772 ConstantInt *CaseVal = CI->getCaseValue(); 5773 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5774 MinCaseVal = CaseVal; 5775 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5776 MaxCaseVal = CaseVal; 5777 5778 // Resulting value at phi nodes for this case value. 5779 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5780 ResultsTy Results; 5781 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5782 Results, DL, TTI)) 5783 return false; 5784 5785 // Append the result from this case to the list for each phi. 5786 for (const auto &I : Results) { 5787 PHINode *PHI = I.first; 5788 Constant *Value = I.second; 5789 if (!ResultLists.count(PHI)) 5790 PHIs.push_back(PHI); 5791 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5792 } 5793 } 5794 5795 // Keep track of the result types. 5796 for (PHINode *PHI : PHIs) { 5797 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5798 } 5799 5800 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5801 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5802 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5803 bool TableHasHoles = (NumResults < TableSize); 5804 5805 // If the table has holes, we need a constant result for the default case 5806 // or a bitmask that fits in a register. 5807 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5808 bool HasDefaultResults = 5809 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5810 DefaultResultsList, DL, TTI); 5811 5812 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5813 if (NeedMask) { 5814 // As an extra penalty for the validity test we require more cases. 5815 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5816 return false; 5817 if (!DL.fitsInLegalInteger(TableSize)) 5818 return false; 5819 } 5820 5821 for (const auto &I : DefaultResultsList) { 5822 PHINode *PHI = I.first; 5823 Constant *Result = I.second; 5824 DefaultResults[PHI] = Result; 5825 } 5826 5827 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5828 return false; 5829 5830 std::vector<DominatorTree::UpdateType> Updates; 5831 5832 // Create the BB that does the lookups. 5833 Module &Mod = *CommonDest->getParent()->getParent(); 5834 BasicBlock *LookupBB = BasicBlock::Create( 5835 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5836 5837 // Compute the table index value. 5838 Builder.SetInsertPoint(SI); 5839 Value *TableIndex; 5840 if (MinCaseVal->isNullValue()) 5841 TableIndex = SI->getCondition(); 5842 else 5843 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5844 "switch.tableidx"); 5845 5846 // Compute the maximum table size representable by the integer type we are 5847 // switching upon. 5848 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5849 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5850 assert(MaxTableSize >= TableSize && 5851 "It is impossible for a switch to have more entries than the max " 5852 "representable value of its input integer type's size."); 5853 5854 // If the default destination is unreachable, or if the lookup table covers 5855 // all values of the conditional variable, branch directly to the lookup table 5856 // BB. Otherwise, check that the condition is within the case range. 5857 const bool DefaultIsReachable = 5858 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5859 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5860 BranchInst *RangeCheckBranch = nullptr; 5861 5862 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5863 Builder.CreateBr(LookupBB); 5864 if (DTU) 5865 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5866 // Note: We call removeProdecessor later since we need to be able to get the 5867 // PHI value for the default case in case we're using a bit mask. 5868 } else { 5869 Value *Cmp = Builder.CreateICmpULT( 5870 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5871 RangeCheckBranch = 5872 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5873 if (DTU) 5874 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5875 } 5876 5877 // Populate the BB that does the lookups. 5878 Builder.SetInsertPoint(LookupBB); 5879 5880 if (NeedMask) { 5881 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5882 // re-purposed to do the hole check, and we create a new LookupBB. 5883 BasicBlock *MaskBB = LookupBB; 5884 MaskBB->setName("switch.hole_check"); 5885 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5886 CommonDest->getParent(), CommonDest); 5887 5888 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5889 // unnecessary illegal types. 5890 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5891 APInt MaskInt(TableSizePowOf2, 0); 5892 APInt One(TableSizePowOf2, 1); 5893 // Build bitmask; fill in a 1 bit for every case. 5894 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5895 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5896 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5897 .getLimitedValue(); 5898 MaskInt |= One << Idx; 5899 } 5900 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5901 5902 // Get the TableIndex'th bit of the bitmask. 5903 // If this bit is 0 (meaning hole) jump to the default destination, 5904 // else continue with table lookup. 5905 IntegerType *MapTy = TableMask->getType(); 5906 Value *MaskIndex = 5907 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5908 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5909 Value *LoBit = Builder.CreateTrunc( 5910 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5911 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5912 if (DTU) { 5913 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5914 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5915 } 5916 Builder.SetInsertPoint(LookupBB); 5917 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5918 } 5919 5920 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5921 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5922 // do not delete PHINodes here. 5923 SI->getDefaultDest()->removePredecessor(BB, 5924 /*KeepOneInputPHIs=*/true); 5925 if (DTU) 5926 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5927 } 5928 5929 for (PHINode *PHI : PHIs) { 5930 const ResultListTy &ResultList = ResultLists[PHI]; 5931 5932 // If using a bitmask, use any value to fill the lookup table holes. 5933 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5934 StringRef FuncName = Fn->getName(); 5935 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5936 FuncName); 5937 5938 Value *Result = Table.BuildLookup(TableIndex, Builder); 5939 5940 // Do a small peephole optimization: re-use the switch table compare if 5941 // possible. 5942 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5943 BasicBlock *PhiBlock = PHI->getParent(); 5944 // Search for compare instructions which use the phi. 5945 for (auto *User : PHI->users()) { 5946 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5947 } 5948 } 5949 5950 PHI->addIncoming(Result, LookupBB); 5951 } 5952 5953 Builder.CreateBr(CommonDest); 5954 if (DTU) 5955 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5956 5957 // Remove the switch. 5958 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 5959 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5960 BasicBlock *Succ = SI->getSuccessor(i); 5961 5962 if (Succ == SI->getDefaultDest()) 5963 continue; 5964 Succ->removePredecessor(BB); 5965 RemovedSuccessors.insert(Succ); 5966 } 5967 SI->eraseFromParent(); 5968 5969 if (DTU) { 5970 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5971 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5972 DTU->applyUpdates(Updates); 5973 } 5974 5975 ++NumLookupTables; 5976 if (NeedMask) 5977 ++NumLookupTablesHoles; 5978 return true; 5979 } 5980 5981 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5982 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5983 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5984 uint64_t Range = Diff + 1; 5985 uint64_t NumCases = Values.size(); 5986 // 40% is the default density for building a jump table in optsize/minsize mode. 5987 uint64_t MinDensity = 40; 5988 5989 return NumCases * 100 >= Range * MinDensity; 5990 } 5991 5992 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5993 /// of cases. 5994 /// 5995 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5996 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5997 /// 5998 /// This converts a sparse switch into a dense switch which allows better 5999 /// lowering and could also allow transforming into a lookup table. 6000 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6001 const DataLayout &DL, 6002 const TargetTransformInfo &TTI) { 6003 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6004 if (CondTy->getIntegerBitWidth() > 64 || 6005 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6006 return false; 6007 // Only bother with this optimization if there are more than 3 switch cases; 6008 // SDAG will only bother creating jump tables for 4 or more cases. 6009 if (SI->getNumCases() < 4) 6010 return false; 6011 6012 // This transform is agnostic to the signedness of the input or case values. We 6013 // can treat the case values as signed or unsigned. We can optimize more common 6014 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6015 // as signed. 6016 SmallVector<int64_t,4> Values; 6017 for (auto &C : SI->cases()) 6018 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6019 llvm::sort(Values); 6020 6021 // If the switch is already dense, there's nothing useful to do here. 6022 if (isSwitchDense(Values)) 6023 return false; 6024 6025 // First, transform the values such that they start at zero and ascend. 6026 int64_t Base = Values[0]; 6027 for (auto &V : Values) 6028 V -= (uint64_t)(Base); 6029 6030 // Now we have signed numbers that have been shifted so that, given enough 6031 // precision, there are no negative values. Since the rest of the transform 6032 // is bitwise only, we switch now to an unsigned representation. 6033 6034 // This transform can be done speculatively because it is so cheap - it 6035 // results in a single rotate operation being inserted. 6036 // FIXME: It's possible that optimizing a switch on powers of two might also 6037 // be beneficial - flag values are often powers of two and we could use a CLZ 6038 // as the key function. 6039 6040 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6041 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6042 // less than 64. 6043 unsigned Shift = 64; 6044 for (auto &V : Values) 6045 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6046 assert(Shift < 64); 6047 if (Shift > 0) 6048 for (auto &V : Values) 6049 V = (int64_t)((uint64_t)V >> Shift); 6050 6051 if (!isSwitchDense(Values)) 6052 // Transform didn't create a dense switch. 6053 return false; 6054 6055 // The obvious transform is to shift the switch condition right and emit a 6056 // check that the condition actually cleanly divided by GCD, i.e. 6057 // C & (1 << Shift - 1) == 0 6058 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6059 // 6060 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6061 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6062 // are nonzero then the switch condition will be very large and will hit the 6063 // default case. 6064 6065 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6066 Builder.SetInsertPoint(SI); 6067 auto *ShiftC = ConstantInt::get(Ty, Shift); 6068 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6069 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6070 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6071 auto *Rot = Builder.CreateOr(LShr, Shl); 6072 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6073 6074 for (auto Case : SI->cases()) { 6075 auto *Orig = Case.getCaseValue(); 6076 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6077 Case.setValue( 6078 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6079 } 6080 return true; 6081 } 6082 6083 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6084 BasicBlock *BB = SI->getParent(); 6085 6086 if (isValueEqualityComparison(SI)) { 6087 // If we only have one predecessor, and if it is a branch on this value, 6088 // see if that predecessor totally determines the outcome of this switch. 6089 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6090 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6091 return requestResimplify(); 6092 6093 Value *Cond = SI->getCondition(); 6094 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6095 if (SimplifySwitchOnSelect(SI, Select)) 6096 return requestResimplify(); 6097 6098 // If the block only contains the switch, see if we can fold the block 6099 // away into any preds. 6100 if (SI == &*BB->instructionsWithoutDebug().begin()) 6101 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6102 return requestResimplify(); 6103 } 6104 6105 // Try to transform the switch into an icmp and a branch. 6106 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6107 return requestResimplify(); 6108 6109 // Remove unreachable cases. 6110 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6111 return requestResimplify(); 6112 6113 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6114 return requestResimplify(); 6115 6116 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6117 return requestResimplify(); 6118 6119 // The conversion from switch to lookup tables results in difficult-to-analyze 6120 // code and makes pruning branches much harder. This is a problem if the 6121 // switch expression itself can still be restricted as a result of inlining or 6122 // CVP. Therefore, only apply this transformation during late stages of the 6123 // optimisation pipeline. 6124 if (Options.ConvertSwitchToLookupTable && 6125 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6126 return requestResimplify(); 6127 6128 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6129 return requestResimplify(); 6130 6131 return false; 6132 } 6133 6134 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6135 BasicBlock *BB = IBI->getParent(); 6136 bool Changed = false; 6137 6138 // Eliminate redundant destinations. 6139 SmallPtrSet<Value *, 8> Succs; 6140 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6141 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6142 BasicBlock *Dest = IBI->getDestination(i); 6143 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6144 if (!Dest->hasAddressTaken()) 6145 RemovedSuccs.insert(Dest); 6146 Dest->removePredecessor(BB); 6147 IBI->removeDestination(i); 6148 --i; 6149 --e; 6150 Changed = true; 6151 } 6152 } 6153 6154 if (DTU) { 6155 std::vector<DominatorTree::UpdateType> Updates; 6156 Updates.reserve(RemovedSuccs.size()); 6157 for (auto *RemovedSucc : RemovedSuccs) 6158 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6159 DTU->applyUpdates(Updates); 6160 } 6161 6162 if (IBI->getNumDestinations() == 0) { 6163 // If the indirectbr has no successors, change it to unreachable. 6164 new UnreachableInst(IBI->getContext(), IBI); 6165 EraseTerminatorAndDCECond(IBI); 6166 return true; 6167 } 6168 6169 if (IBI->getNumDestinations() == 1) { 6170 // If the indirectbr has one successor, change it to a direct branch. 6171 BranchInst::Create(IBI->getDestination(0), IBI); 6172 EraseTerminatorAndDCECond(IBI); 6173 return true; 6174 } 6175 6176 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6177 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6178 return requestResimplify(); 6179 } 6180 return Changed; 6181 } 6182 6183 /// Given an block with only a single landing pad and a unconditional branch 6184 /// try to find another basic block which this one can be merged with. This 6185 /// handles cases where we have multiple invokes with unique landing pads, but 6186 /// a shared handler. 6187 /// 6188 /// We specifically choose to not worry about merging non-empty blocks 6189 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6190 /// practice, the optimizer produces empty landing pad blocks quite frequently 6191 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6192 /// sinking in this file) 6193 /// 6194 /// This is primarily a code size optimization. We need to avoid performing 6195 /// any transform which might inhibit optimization (such as our ability to 6196 /// specialize a particular handler via tail commoning). We do this by not 6197 /// merging any blocks which require us to introduce a phi. Since the same 6198 /// values are flowing through both blocks, we don't lose any ability to 6199 /// specialize. If anything, we make such specialization more likely. 6200 /// 6201 /// TODO - This transformation could remove entries from a phi in the target 6202 /// block when the inputs in the phi are the same for the two blocks being 6203 /// merged. In some cases, this could result in removal of the PHI entirely. 6204 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6205 BasicBlock *BB, DomTreeUpdater *DTU) { 6206 auto Succ = BB->getUniqueSuccessor(); 6207 assert(Succ); 6208 // If there's a phi in the successor block, we'd likely have to introduce 6209 // a phi into the merged landing pad block. 6210 if (isa<PHINode>(*Succ->begin())) 6211 return false; 6212 6213 for (BasicBlock *OtherPred : predecessors(Succ)) { 6214 if (BB == OtherPred) 6215 continue; 6216 BasicBlock::iterator I = OtherPred->begin(); 6217 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6218 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6219 continue; 6220 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6221 ; 6222 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6223 if (!BI2 || !BI2->isIdenticalTo(BI)) 6224 continue; 6225 6226 std::vector<DominatorTree::UpdateType> Updates; 6227 6228 // We've found an identical block. Update our predecessors to take that 6229 // path instead and make ourselves dead. 6230 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6231 for (BasicBlock *Pred : Preds) { 6232 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6233 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6234 "unexpected successor"); 6235 II->setUnwindDest(OtherPred); 6236 if (DTU) { 6237 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6238 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6239 } 6240 } 6241 6242 // The debug info in OtherPred doesn't cover the merged control flow that 6243 // used to go through BB. We need to delete it or update it. 6244 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6245 Instruction &Inst = *I; 6246 I++; 6247 if (isa<DbgInfoIntrinsic>(Inst)) 6248 Inst.eraseFromParent(); 6249 } 6250 6251 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6252 for (BasicBlock *Succ : Succs) { 6253 Succ->removePredecessor(BB); 6254 if (DTU) 6255 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6256 } 6257 6258 IRBuilder<> Builder(BI); 6259 Builder.CreateUnreachable(); 6260 BI->eraseFromParent(); 6261 if (DTU) 6262 DTU->applyUpdates(Updates); 6263 return true; 6264 } 6265 return false; 6266 } 6267 6268 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6269 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6270 : simplifyCondBranch(Branch, Builder); 6271 } 6272 6273 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6274 IRBuilder<> &Builder) { 6275 BasicBlock *BB = BI->getParent(); 6276 BasicBlock *Succ = BI->getSuccessor(0); 6277 6278 // If the Terminator is the only non-phi instruction, simplify the block. 6279 // If LoopHeader is provided, check if the block or its successor is a loop 6280 // header. (This is for early invocations before loop simplify and 6281 // vectorization to keep canonical loop forms for nested loops. These blocks 6282 // can be eliminated when the pass is invoked later in the back-end.) 6283 // Note that if BB has only one predecessor then we do not introduce new 6284 // backedge, so we can eliminate BB. 6285 bool NeedCanonicalLoop = 6286 Options.NeedCanonicalLoop && 6287 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6288 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6289 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6290 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6291 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6292 return true; 6293 6294 // If the only instruction in the block is a seteq/setne comparison against a 6295 // constant, try to simplify the block. 6296 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6297 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6298 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6299 ; 6300 if (I->isTerminator() && 6301 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6302 return true; 6303 } 6304 6305 // See if we can merge an empty landing pad block with another which is 6306 // equivalent. 6307 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6308 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6309 ; 6310 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6311 return true; 6312 } 6313 6314 // If this basic block is ONLY a compare and a branch, and if a predecessor 6315 // branches to us and our successor, fold the comparison into the 6316 // predecessor and use logical operations to update the incoming value 6317 // for PHI nodes in common successor. 6318 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6319 Options.BonusInstThreshold)) 6320 return requestResimplify(); 6321 return false; 6322 } 6323 6324 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6325 BasicBlock *PredPred = nullptr; 6326 for (auto *P : predecessors(BB)) { 6327 BasicBlock *PPred = P->getSinglePredecessor(); 6328 if (!PPred || (PredPred && PredPred != PPred)) 6329 return nullptr; 6330 PredPred = PPred; 6331 } 6332 return PredPred; 6333 } 6334 6335 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6336 BasicBlock *BB = BI->getParent(); 6337 if (!Options.SimplifyCondBranch) 6338 return false; 6339 6340 // Conditional branch 6341 if (isValueEqualityComparison(BI)) { 6342 // If we only have one predecessor, and if it is a branch on this value, 6343 // see if that predecessor totally determines the outcome of this 6344 // switch. 6345 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6346 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6347 return requestResimplify(); 6348 6349 // This block must be empty, except for the setcond inst, if it exists. 6350 // Ignore dbg and pseudo intrinsics. 6351 auto I = BB->instructionsWithoutDebug(true).begin(); 6352 if (&*I == BI) { 6353 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6354 return requestResimplify(); 6355 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6356 ++I; 6357 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6358 return requestResimplify(); 6359 } 6360 } 6361 6362 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6363 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6364 return true; 6365 6366 // If this basic block has dominating predecessor blocks and the dominating 6367 // blocks' conditions imply BI's condition, we know the direction of BI. 6368 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6369 if (Imp) { 6370 // Turn this into a branch on constant. 6371 auto *OldCond = BI->getCondition(); 6372 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6373 : ConstantInt::getFalse(BB->getContext()); 6374 BI->setCondition(TorF); 6375 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6376 return requestResimplify(); 6377 } 6378 6379 // If this basic block is ONLY a compare and a branch, and if a predecessor 6380 // branches to us and one of our successors, fold the comparison into the 6381 // predecessor and use logical operations to pick the right destination. 6382 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6383 Options.BonusInstThreshold)) 6384 return requestResimplify(); 6385 6386 // We have a conditional branch to two blocks that are only reachable 6387 // from BI. We know that the condbr dominates the two blocks, so see if 6388 // there is any identical code in the "then" and "else" blocks. If so, we 6389 // can hoist it up to the branching block. 6390 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6391 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6392 if (HoistCommon && 6393 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6394 return requestResimplify(); 6395 } else { 6396 // If Successor #1 has multiple preds, we may be able to conditionally 6397 // execute Successor #0 if it branches to Successor #1. 6398 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6399 if (Succ0TI->getNumSuccessors() == 1 && 6400 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6401 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6402 return requestResimplify(); 6403 } 6404 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6405 // If Successor #0 has multiple preds, we may be able to conditionally 6406 // execute Successor #1 if it branches to Successor #0. 6407 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6408 if (Succ1TI->getNumSuccessors() == 1 && 6409 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6410 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6411 return requestResimplify(); 6412 } 6413 6414 // If this is a branch on a phi node in the current block, thread control 6415 // through this block if any PHI node entries are constants. 6416 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6417 if (PN->getParent() == BI->getParent()) 6418 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6419 return requestResimplify(); 6420 6421 // Scan predecessor blocks for conditional branches. 6422 for (BasicBlock *Pred : predecessors(BB)) 6423 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6424 if (PBI != BI && PBI->isConditional()) 6425 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6426 return requestResimplify(); 6427 6428 // Look for diamond patterns. 6429 if (MergeCondStores) 6430 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6431 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6432 if (PBI != BI && PBI->isConditional()) 6433 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6434 return requestResimplify(); 6435 6436 return false; 6437 } 6438 6439 /// Check if passing a value to an instruction will cause undefined behavior. 6440 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6441 Constant *C = dyn_cast<Constant>(V); 6442 if (!C) 6443 return false; 6444 6445 if (I->use_empty()) 6446 return false; 6447 6448 if (C->isNullValue() || isa<UndefValue>(C)) { 6449 // Only look at the first use, avoid hurting compile time with long uselists 6450 User *Use = *I->user_begin(); 6451 6452 // Now make sure that there are no instructions in between that can alter 6453 // control flow (eg. calls) 6454 for (BasicBlock::iterator 6455 i = ++BasicBlock::iterator(I), 6456 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6457 i != UI; ++i) { 6458 if (i == I->getParent()->end()) 6459 return false; 6460 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6461 return false; 6462 } 6463 6464 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6465 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6466 if (GEP->getPointerOperand() == I) { 6467 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6468 PtrValueMayBeModified = true; 6469 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6470 } 6471 6472 // Look through bitcasts. 6473 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6474 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6475 6476 // Load from null is undefined. 6477 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6478 if (!LI->isVolatile()) 6479 return !NullPointerIsDefined(LI->getFunction(), 6480 LI->getPointerAddressSpace()); 6481 6482 // Store to null is undefined. 6483 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6484 if (!SI->isVolatile()) 6485 return (!NullPointerIsDefined(SI->getFunction(), 6486 SI->getPointerAddressSpace())) && 6487 SI->getPointerOperand() == I; 6488 6489 if (auto *CB = dyn_cast<CallBase>(Use)) { 6490 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6491 return false; 6492 // A call to null is undefined. 6493 if (CB->getCalledOperand() == I) 6494 return true; 6495 6496 if (C->isNullValue()) { 6497 for (const llvm::Use &Arg : CB->args()) 6498 if (Arg == I) { 6499 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6500 if (CB->isPassingUndefUB(ArgIdx) && 6501 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6502 // Passing null to a nonnnull+noundef argument is undefined. 6503 return !PtrValueMayBeModified; 6504 } 6505 } 6506 } else if (isa<UndefValue>(C)) { 6507 // Passing undef to a noundef argument is undefined. 6508 for (const llvm::Use &Arg : CB->args()) 6509 if (Arg == I) { 6510 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6511 if (CB->isPassingUndefUB(ArgIdx)) { 6512 // Passing undef to a noundef argument is undefined. 6513 return true; 6514 } 6515 } 6516 } 6517 } 6518 } 6519 return false; 6520 } 6521 6522 /// If BB has an incoming value that will always trigger undefined behavior 6523 /// (eg. null pointer dereference), remove the branch leading here. 6524 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6525 DomTreeUpdater *DTU) { 6526 for (PHINode &PHI : BB->phis()) 6527 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6528 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6529 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6530 Instruction *T = Predecessor->getTerminator(); 6531 IRBuilder<> Builder(T); 6532 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6533 BB->removePredecessor(Predecessor); 6534 // Turn uncoditional branches into unreachables and remove the dead 6535 // destination from conditional branches. 6536 if (BI->isUnconditional()) 6537 Builder.CreateUnreachable(); 6538 else 6539 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6540 : BI->getSuccessor(0)); 6541 BI->eraseFromParent(); 6542 if (DTU) 6543 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6544 return true; 6545 } 6546 // TODO: SwitchInst. 6547 } 6548 6549 return false; 6550 } 6551 6552 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6553 bool Changed = false; 6554 6555 assert(BB && BB->getParent() && "Block not embedded in function!"); 6556 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6557 6558 // Remove basic blocks that have no predecessors (except the entry block)... 6559 // or that just have themself as a predecessor. These are unreachable. 6560 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6561 BB->getSinglePredecessor() == BB) { 6562 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6563 DeleteDeadBlock(BB, DTU); 6564 return true; 6565 } 6566 6567 // Check to see if we can constant propagate this terminator instruction 6568 // away... 6569 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6570 /*TLI=*/nullptr, DTU); 6571 6572 // Check for and eliminate duplicate PHI nodes in this block. 6573 Changed |= EliminateDuplicatePHINodes(BB); 6574 6575 // Check for and remove branches that will always cause undefined behavior. 6576 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6577 6578 // Merge basic blocks into their predecessor if there is only one distinct 6579 // pred, and if there is only one distinct successor of the predecessor, and 6580 // if there are no PHI nodes. 6581 if (MergeBlockIntoPredecessor(BB, DTU)) 6582 return true; 6583 6584 if (SinkCommon && Options.SinkCommonInsts) 6585 if (SinkCommonCodeFromPredecessors(BB, DTU)) { 6586 // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 6587 // so we may now how duplicate PHI's. 6588 // Let's rerun EliminateDuplicatePHINodes() first, 6589 // before FoldTwoEntryPHINode() potentially converts them into select's, 6590 // after which we'd need a whole EarlyCSE pass run to cleanup them. 6591 return true; 6592 } 6593 6594 IRBuilder<> Builder(BB); 6595 6596 if (Options.FoldTwoEntryPHINode) { 6597 // If there is a trivial two-entry PHI node in this basic block, and we can 6598 // eliminate it, do so now. 6599 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6600 if (PN->getNumIncomingValues() == 2) 6601 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6602 } 6603 6604 Instruction *Terminator = BB->getTerminator(); 6605 Builder.SetInsertPoint(Terminator); 6606 switch (Terminator->getOpcode()) { 6607 case Instruction::Br: 6608 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6609 break; 6610 case Instruction::Resume: 6611 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6612 break; 6613 case Instruction::CleanupRet: 6614 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6615 break; 6616 case Instruction::Switch: 6617 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6618 break; 6619 case Instruction::Unreachable: 6620 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6621 break; 6622 case Instruction::IndirectBr: 6623 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6624 break; 6625 } 6626 6627 return Changed; 6628 } 6629 6630 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6631 bool Changed = simplifyOnceImpl(BB); 6632 6633 return Changed; 6634 } 6635 6636 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6637 bool Changed = false; 6638 6639 // Repeated simplify BB as long as resimplification is requested. 6640 do { 6641 Resimplify = false; 6642 6643 // Perform one round of simplifcation. Resimplify flag will be set if 6644 // another iteration is requested. 6645 Changed |= simplifyOnce(BB); 6646 } while (Resimplify); 6647 6648 return Changed; 6649 } 6650 6651 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6652 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6653 ArrayRef<WeakVH> LoopHeaders) { 6654 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6655 Options) 6656 .run(BB); 6657 } 6658