1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/MemorySSA.h" 31 #include "llvm/Analysis/MemorySSAUpdater.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/NoFolder.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/PatternMatch.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 #include "llvm/Transforms/Utils/SSAUpdater.h" 72 #include "llvm/Transforms/Utils/ValueMapper.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <climits> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <set> 81 #include <tuple> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "simplifycfg" 89 90 // Chosen as 2 so as to be cheap, but still to have enough power to fold 91 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 92 // To catch this, we need to fold a compare and a select, hence '2' being the 93 // minimum reasonable default. 94 static cl::opt<unsigned> PHINodeFoldingThreshold( 95 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 96 cl::desc( 97 "Control the amount of phi node folding to perform (default = 2)")); 98 99 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 100 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 101 cl::desc("Control the maximal total instruction cost that we are willing " 102 "to speculatively execute to fold a 2-entry PHI node into a " 103 "select (default = 4)")); 104 105 static cl::opt<bool> DupRet( 106 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 107 cl::desc("Duplicate return instructions into unconditional branches")); 108 109 static cl::opt<bool> 110 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 111 cl::desc("Hoist common instructions up to the parent block")); 112 113 static cl::opt<bool> 114 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 115 cl::desc("Sink common instructions down to the end block")); 116 117 static cl::opt<bool> HoistCondStores( 118 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 119 cl::desc("Hoist conditional stores if an unconditional store precedes")); 120 121 static cl::opt<bool> MergeCondStores( 122 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 123 cl::desc("Hoist conditional stores even if an unconditional store does not " 124 "precede - hoist multiple conditional stores into a single " 125 "predicated store")); 126 127 static cl::opt<bool> MergeCondStoresAggressively( 128 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 129 cl::desc("When merging conditional stores, do so even if the resultant " 130 "basic blocks are unlikely to be if-converted as a result")); 131 132 static cl::opt<bool> SpeculateOneExpensiveInst( 133 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 134 cl::desc("Allow exactly one expensive instruction to be speculatively " 135 "executed")); 136 137 static cl::opt<unsigned> MaxSpeculationDepth( 138 "max-speculation-depth", cl::Hidden, cl::init(10), 139 cl::desc("Limit maximum recursion depth when calculating costs of " 140 "speculatively executed instructions")); 141 142 static cl::opt<int> 143 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 144 cl::desc("Max size of a block which is still considered " 145 "small enough to thread through")); 146 147 // Two is chosen to allow one negation and a logical combine. 148 static cl::opt<unsigned> 149 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 150 cl::init(2), 151 cl::desc("Maximum cost of combining conditions when " 152 "folding branches")); 153 154 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 155 STATISTIC(NumLinearMaps, 156 "Number of switch instructions turned into linear mapping"); 157 STATISTIC(NumLookupTables, 158 "Number of switch instructions turned into lookup tables"); 159 STATISTIC( 160 NumLookupTablesHoles, 161 "Number of switch instructions turned into lookup tables (holes checked)"); 162 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 163 STATISTIC(NumFoldValueComparisonIntoPredecessors, 164 "Number of value comparisons folded into predecessor basic blocks"); 165 STATISTIC(NumFoldBranchToCommonDest, 166 "Number of branches folded into predecessor basic block"); 167 STATISTIC( 168 NumHoistCommonCode, 169 "Number of common instruction 'blocks' hoisted up to the begin block"); 170 STATISTIC(NumHoistCommonInstrs, 171 "Number of common instructions hoisted up to the begin block"); 172 STATISTIC(NumSinkCommonCode, 173 "Number of common instruction 'blocks' sunk down to the end block"); 174 STATISTIC(NumSinkCommonInstrs, 175 "Number of common instructions sunk down to the end block"); 176 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 177 STATISTIC(NumInvokes, 178 "Number of invokes with empty resume blocks simplified into calls"); 179 180 namespace { 181 182 // The first field contains the value that the switch produces when a certain 183 // case group is selected, and the second field is a vector containing the 184 // cases composing the case group. 185 using SwitchCaseResultVectorTy = 186 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 187 188 // The first field contains the phi node that generates a result of the switch 189 // and the second field contains the value generated for a certain case in the 190 // switch for that PHI. 191 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 192 193 /// ValueEqualityComparisonCase - Represents a case of a switch. 194 struct ValueEqualityComparisonCase { 195 ConstantInt *Value; 196 BasicBlock *Dest; 197 198 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 199 : Value(Value), Dest(Dest) {} 200 201 bool operator<(ValueEqualityComparisonCase RHS) const { 202 // Comparing pointers is ok as we only rely on the order for uniquing. 203 return Value < RHS.Value; 204 } 205 206 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 207 }; 208 209 class SimplifyCFGOpt { 210 const TargetTransformInfo &TTI; 211 const DataLayout &DL; 212 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 213 const SimplifyCFGOptions &Options; 214 bool Resimplify; 215 216 Value *isValueEqualityComparison(Instruction *TI); 217 BasicBlock *GetValueEqualityComparisonCases( 218 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 219 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 220 BasicBlock *Pred, 221 IRBuilder<> &Builder); 222 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 223 IRBuilder<> &Builder); 224 225 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 226 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 227 bool simplifySingleResume(ResumeInst *RI); 228 bool simplifyCommonResume(ResumeInst *RI); 229 bool simplifyCleanupReturn(CleanupReturnInst *RI); 230 bool simplifyUnreachable(UnreachableInst *UI); 231 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 232 bool simplifyIndirectBr(IndirectBrInst *IBI); 233 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 234 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 235 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 236 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 237 238 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 239 IRBuilder<> &Builder); 240 241 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 242 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 243 const TargetTransformInfo &TTI); 244 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 245 BasicBlock *TrueBB, BasicBlock *FalseBB, 246 uint32_t TrueWeight, uint32_t FalseWeight); 247 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 248 const DataLayout &DL); 249 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 250 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 251 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 252 253 public: 254 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 255 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 256 const SimplifyCFGOptions &Opts) 257 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 258 259 bool run(BasicBlock *BB); 260 bool simplifyOnce(BasicBlock *BB); 261 262 // Helper to set Resimplify and return change indication. 263 bool requestResimplify() { 264 Resimplify = true; 265 return true; 266 } 267 }; 268 269 } // end anonymous namespace 270 271 /// Return true if it is safe to merge these two 272 /// terminator instructions together. 273 static bool 274 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 275 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 276 if (SI1 == SI2) 277 return false; // Can't merge with self! 278 279 // It is not safe to merge these two switch instructions if they have a common 280 // successor, and if that successor has a PHI node, and if *that* PHI node has 281 // conflicting incoming values from the two switch blocks. 282 BasicBlock *SI1BB = SI1->getParent(); 283 BasicBlock *SI2BB = SI2->getParent(); 284 285 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 286 bool Fail = false; 287 for (BasicBlock *Succ : successors(SI2BB)) 288 if (SI1Succs.count(Succ)) 289 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 290 PHINode *PN = cast<PHINode>(BBI); 291 if (PN->getIncomingValueForBlock(SI1BB) != 292 PN->getIncomingValueForBlock(SI2BB)) { 293 if (FailBlocks) 294 FailBlocks->insert(Succ); 295 Fail = true; 296 } 297 } 298 299 return !Fail; 300 } 301 302 /// Return true if it is safe and profitable to merge these two terminator 303 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 304 /// store all PHI nodes in common successors. 305 static bool 306 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 307 Instruction *Cond, 308 SmallVectorImpl<PHINode *> &PhiNodes) { 309 if (SI1 == SI2) 310 return false; // Can't merge with self! 311 assert(SI1->isUnconditional() && SI2->isConditional()); 312 313 // We fold the unconditional branch if we can easily update all PHI nodes in 314 // common successors: 315 // 1> We have a constant incoming value for the conditional branch; 316 // 2> We have "Cond" as the incoming value for the unconditional branch; 317 // 3> SI2->getCondition() and Cond have same operands. 318 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 319 if (!Ci2) 320 return false; 321 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 322 Cond->getOperand(1) == Ci2->getOperand(1)) && 323 !(Cond->getOperand(0) == Ci2->getOperand(1) && 324 Cond->getOperand(1) == Ci2->getOperand(0))) 325 return false; 326 327 BasicBlock *SI1BB = SI1->getParent(); 328 BasicBlock *SI2BB = SI2->getParent(); 329 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 330 for (BasicBlock *Succ : successors(SI2BB)) 331 if (SI1Succs.count(Succ)) 332 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 333 PHINode *PN = cast<PHINode>(BBI); 334 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 335 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 336 return false; 337 PhiNodes.push_back(PN); 338 } 339 return true; 340 } 341 342 /// Update PHI nodes in Succ to indicate that there will now be entries in it 343 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 344 /// will be the same as those coming in from ExistPred, an existing predecessor 345 /// of Succ. 346 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 347 BasicBlock *ExistPred, 348 MemorySSAUpdater *MSSAU = nullptr) { 349 for (PHINode &PN : Succ->phis()) 350 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 351 if (MSSAU) 352 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 353 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 354 } 355 356 /// Compute an abstract "cost" of speculating the given instruction, 357 /// which is assumed to be safe to speculate. TCC_Free means cheap, 358 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 359 /// expensive. 360 static unsigned ComputeSpeculationCost(const User *I, 361 const TargetTransformInfo &TTI) { 362 assert(isSafeToSpeculativelyExecute(I) && 363 "Instruction is not safe to speculatively execute!"); 364 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 365 } 366 367 /// If we have a merge point of an "if condition" as accepted above, 368 /// return true if the specified value dominates the block. We 369 /// don't handle the true generality of domination here, just a special case 370 /// which works well enough for us. 371 /// 372 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 373 /// see if V (which must be an instruction) and its recursive operands 374 /// that do not dominate BB have a combined cost lower than CostRemaining and 375 /// are non-trapping. If both are true, the instruction is inserted into the 376 /// set and true is returned. 377 /// 378 /// The cost for most non-trapping instructions is defined as 1 except for 379 /// Select whose cost is 2. 380 /// 381 /// After this function returns, CostRemaining is decreased by the cost of 382 /// V plus its non-dominating operands. If that cost is greater than 383 /// CostRemaining, false is returned and CostRemaining is undefined. 384 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 385 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 386 int &BudgetRemaining, 387 const TargetTransformInfo &TTI, 388 unsigned Depth = 0) { 389 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 390 // so limit the recursion depth. 391 // TODO: While this recursion limit does prevent pathological behavior, it 392 // would be better to track visited instructions to avoid cycles. 393 if (Depth == MaxSpeculationDepth) 394 return false; 395 396 Instruction *I = dyn_cast<Instruction>(V); 397 if (!I) { 398 // Non-instructions all dominate instructions, but not all constantexprs 399 // can be executed unconditionally. 400 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 401 if (C->canTrap()) 402 return false; 403 return true; 404 } 405 BasicBlock *PBB = I->getParent(); 406 407 // We don't want to allow weird loops that might have the "if condition" in 408 // the bottom of this block. 409 if (PBB == BB) 410 return false; 411 412 // If this instruction is defined in a block that contains an unconditional 413 // branch to BB, then it must be in the 'conditional' part of the "if 414 // statement". If not, it definitely dominates the region. 415 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 416 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 417 return true; 418 419 // If we have seen this instruction before, don't count it again. 420 if (AggressiveInsts.count(I)) 421 return true; 422 423 // Okay, it looks like the instruction IS in the "condition". Check to 424 // see if it's a cheap instruction to unconditionally compute, and if it 425 // only uses stuff defined outside of the condition. If so, hoist it out. 426 if (!isSafeToSpeculativelyExecute(I)) 427 return false; 428 429 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 430 431 // Allow exactly one instruction to be speculated regardless of its cost 432 // (as long as it is safe to do so). 433 // This is intended to flatten the CFG even if the instruction is a division 434 // or other expensive operation. The speculation of an expensive instruction 435 // is expected to be undone in CodeGenPrepare if the speculation has not 436 // enabled further IR optimizations. 437 if (BudgetRemaining < 0 && 438 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 439 return false; 440 441 // Okay, we can only really hoist these out if their operands do 442 // not take us over the cost threshold. 443 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 444 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 445 Depth + 1)) 446 return false; 447 // Okay, it's safe to do this! Remember this instruction. 448 AggressiveInsts.insert(I); 449 return true; 450 } 451 452 /// Extract ConstantInt from value, looking through IntToPtr 453 /// and PointerNullValue. Return NULL if value is not a constant int. 454 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 455 // Normal constant int. 456 ConstantInt *CI = dyn_cast<ConstantInt>(V); 457 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 458 return CI; 459 460 // This is some kind of pointer constant. Turn it into a pointer-sized 461 // ConstantInt if possible. 462 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 463 464 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 465 if (isa<ConstantPointerNull>(V)) 466 return ConstantInt::get(PtrTy, 0); 467 468 // IntToPtr const int. 469 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 470 if (CE->getOpcode() == Instruction::IntToPtr) 471 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 472 // The constant is very likely to have the right type already. 473 if (CI->getType() == PtrTy) 474 return CI; 475 else 476 return cast<ConstantInt>( 477 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 478 } 479 return nullptr; 480 } 481 482 namespace { 483 484 /// Given a chain of or (||) or and (&&) comparison of a value against a 485 /// constant, this will try to recover the information required for a switch 486 /// structure. 487 /// It will depth-first traverse the chain of comparison, seeking for patterns 488 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 489 /// representing the different cases for the switch. 490 /// Note that if the chain is composed of '||' it will build the set of elements 491 /// that matches the comparisons (i.e. any of this value validate the chain) 492 /// while for a chain of '&&' it will build the set elements that make the test 493 /// fail. 494 struct ConstantComparesGatherer { 495 const DataLayout &DL; 496 497 /// Value found for the switch comparison 498 Value *CompValue = nullptr; 499 500 /// Extra clause to be checked before the switch 501 Value *Extra = nullptr; 502 503 /// Set of integers to match in switch 504 SmallVector<ConstantInt *, 8> Vals; 505 506 /// Number of comparisons matched in the and/or chain 507 unsigned UsedICmps = 0; 508 509 /// Construct and compute the result for the comparison instruction Cond 510 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 511 gather(Cond); 512 } 513 514 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 515 ConstantComparesGatherer & 516 operator=(const ConstantComparesGatherer &) = delete; 517 518 private: 519 /// Try to set the current value used for the comparison, it succeeds only if 520 /// it wasn't set before or if the new value is the same as the old one 521 bool setValueOnce(Value *NewVal) { 522 if (CompValue && CompValue != NewVal) 523 return false; 524 CompValue = NewVal; 525 return (CompValue != nullptr); 526 } 527 528 /// Try to match Instruction "I" as a comparison against a constant and 529 /// populates the array Vals with the set of values that match (or do not 530 /// match depending on isEQ). 531 /// Return false on failure. On success, the Value the comparison matched 532 /// against is placed in CompValue. 533 /// If CompValue is already set, the function is expected to fail if a match 534 /// is found but the value compared to is different. 535 bool matchInstruction(Instruction *I, bool isEQ) { 536 // If this is an icmp against a constant, handle this as one of the cases. 537 ICmpInst *ICI; 538 ConstantInt *C; 539 if (!((ICI = dyn_cast<ICmpInst>(I)) && 540 (C = GetConstantInt(I->getOperand(1), DL)))) { 541 return false; 542 } 543 544 Value *RHSVal; 545 const APInt *RHSC; 546 547 // Pattern match a special case 548 // (x & ~2^z) == y --> x == y || x == y|2^z 549 // This undoes a transformation done by instcombine to fuse 2 compares. 550 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 551 // It's a little bit hard to see why the following transformations are 552 // correct. Here is a CVC3 program to verify them for 64-bit values: 553 554 /* 555 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 556 x : BITVECTOR(64); 557 y : BITVECTOR(64); 558 z : BITVECTOR(64); 559 mask : BITVECTOR(64) = BVSHL(ONE, z); 560 QUERY( (y & ~mask = y) => 561 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 562 ); 563 QUERY( (y | mask = y) => 564 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 565 ); 566 */ 567 568 // Please note that each pattern must be a dual implication (<--> or 569 // iff). One directional implication can create spurious matches. If the 570 // implication is only one-way, an unsatisfiable condition on the left 571 // side can imply a satisfiable condition on the right side. Dual 572 // implication ensures that satisfiable conditions are transformed to 573 // other satisfiable conditions and unsatisfiable conditions are 574 // transformed to other unsatisfiable conditions. 575 576 // Here is a concrete example of a unsatisfiable condition on the left 577 // implying a satisfiable condition on the right: 578 // 579 // mask = (1 << z) 580 // (x & ~mask) == y --> (x == y || x == (y | mask)) 581 // 582 // Substituting y = 3, z = 0 yields: 583 // (x & -2) == 3 --> (x == 3 || x == 2) 584 585 // Pattern match a special case: 586 /* 587 QUERY( (y & ~mask = y) => 588 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 589 ); 590 */ 591 if (match(ICI->getOperand(0), 592 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 593 APInt Mask = ~*RHSC; 594 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 595 // If we already have a value for the switch, it has to match! 596 if (!setValueOnce(RHSVal)) 597 return false; 598 599 Vals.push_back(C); 600 Vals.push_back( 601 ConstantInt::get(C->getContext(), 602 C->getValue() | Mask)); 603 UsedICmps++; 604 return true; 605 } 606 } 607 608 // Pattern match a special case: 609 /* 610 QUERY( (y | mask = y) => 611 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 612 ); 613 */ 614 if (match(ICI->getOperand(0), 615 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 616 APInt Mask = *RHSC; 617 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 618 // If we already have a value for the switch, it has to match! 619 if (!setValueOnce(RHSVal)) 620 return false; 621 622 Vals.push_back(C); 623 Vals.push_back(ConstantInt::get(C->getContext(), 624 C->getValue() & ~Mask)); 625 UsedICmps++; 626 return true; 627 } 628 } 629 630 // If we already have a value for the switch, it has to match! 631 if (!setValueOnce(ICI->getOperand(0))) 632 return false; 633 634 UsedICmps++; 635 Vals.push_back(C); 636 return ICI->getOperand(0); 637 } 638 639 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 640 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 641 ICI->getPredicate(), C->getValue()); 642 643 // Shift the range if the compare is fed by an add. This is the range 644 // compare idiom as emitted by instcombine. 645 Value *CandidateVal = I->getOperand(0); 646 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 647 Span = Span.subtract(*RHSC); 648 CandidateVal = RHSVal; 649 } 650 651 // If this is an and/!= check, then we are looking to build the set of 652 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 653 // x != 0 && x != 1. 654 if (!isEQ) 655 Span = Span.inverse(); 656 657 // If there are a ton of values, we don't want to make a ginormous switch. 658 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 659 return false; 660 } 661 662 // If we already have a value for the switch, it has to match! 663 if (!setValueOnce(CandidateVal)) 664 return false; 665 666 // Add all values from the range to the set 667 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 668 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 669 670 UsedICmps++; 671 return true; 672 } 673 674 /// Given a potentially 'or'd or 'and'd together collection of icmp 675 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 676 /// the value being compared, and stick the list constants into the Vals 677 /// vector. 678 /// One "Extra" case is allowed to differ from the other. 679 void gather(Value *V) { 680 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 681 682 // Keep a stack (SmallVector for efficiency) for depth-first traversal 683 SmallVector<Value *, 8> DFT; 684 SmallPtrSet<Value *, 8> Visited; 685 686 // Initialize 687 Visited.insert(V); 688 DFT.push_back(V); 689 690 while (!DFT.empty()) { 691 V = DFT.pop_back_val(); 692 693 if (Instruction *I = dyn_cast<Instruction>(V)) { 694 // If it is a || (or && depending on isEQ), process the operands. 695 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 696 if (Visited.insert(I->getOperand(1)).second) 697 DFT.push_back(I->getOperand(1)); 698 if (Visited.insert(I->getOperand(0)).second) 699 DFT.push_back(I->getOperand(0)); 700 continue; 701 } 702 703 // Try to match the current instruction 704 if (matchInstruction(I, isEQ)) 705 // Match succeed, continue the loop 706 continue; 707 } 708 709 // One element of the sequence of || (or &&) could not be match as a 710 // comparison against the same value as the others. 711 // We allow only one "Extra" case to be checked before the switch 712 if (!Extra) { 713 Extra = V; 714 continue; 715 } 716 // Failed to parse a proper sequence, abort now 717 CompValue = nullptr; 718 break; 719 } 720 } 721 }; 722 723 } // end anonymous namespace 724 725 static void EraseTerminatorAndDCECond(Instruction *TI, 726 MemorySSAUpdater *MSSAU = nullptr) { 727 Instruction *Cond = nullptr; 728 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 729 Cond = dyn_cast<Instruction>(SI->getCondition()); 730 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 731 if (BI->isConditional()) 732 Cond = dyn_cast<Instruction>(BI->getCondition()); 733 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 734 Cond = dyn_cast<Instruction>(IBI->getAddress()); 735 } 736 737 TI->eraseFromParent(); 738 if (Cond) 739 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 740 } 741 742 /// Return true if the specified terminator checks 743 /// to see if a value is equal to constant integer value. 744 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 745 Value *CV = nullptr; 746 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 747 // Do not permit merging of large switch instructions into their 748 // predecessors unless there is only one predecessor. 749 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 750 CV = SI->getCondition(); 751 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 752 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 753 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 754 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 755 CV = ICI->getOperand(0); 756 } 757 758 // Unwrap any lossless ptrtoint cast. 759 if (CV) { 760 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 761 Value *Ptr = PTII->getPointerOperand(); 762 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 763 CV = Ptr; 764 } 765 } 766 return CV; 767 } 768 769 /// Given a value comparison instruction, 770 /// decode all of the 'cases' that it represents and return the 'default' block. 771 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 772 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 773 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 774 Cases.reserve(SI->getNumCases()); 775 for (auto Case : SI->cases()) 776 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 777 Case.getCaseSuccessor())); 778 return SI->getDefaultDest(); 779 } 780 781 BranchInst *BI = cast<BranchInst>(TI); 782 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 783 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 784 Cases.push_back(ValueEqualityComparisonCase( 785 GetConstantInt(ICI->getOperand(1), DL), Succ)); 786 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 787 } 788 789 /// Given a vector of bb/value pairs, remove any entries 790 /// in the list that match the specified block. 791 static void 792 EliminateBlockCases(BasicBlock *BB, 793 std::vector<ValueEqualityComparisonCase> &Cases) { 794 llvm::erase_value(Cases, BB); 795 } 796 797 /// Return true if there are any keys in C1 that exist in C2 as well. 798 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 799 std::vector<ValueEqualityComparisonCase> &C2) { 800 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 801 802 // Make V1 be smaller than V2. 803 if (V1->size() > V2->size()) 804 std::swap(V1, V2); 805 806 if (V1->empty()) 807 return false; 808 if (V1->size() == 1) { 809 // Just scan V2. 810 ConstantInt *TheVal = (*V1)[0].Value; 811 for (unsigned i = 0, e = V2->size(); i != e; ++i) 812 if (TheVal == (*V2)[i].Value) 813 return true; 814 } 815 816 // Otherwise, just sort both lists and compare element by element. 817 array_pod_sort(V1->begin(), V1->end()); 818 array_pod_sort(V2->begin(), V2->end()); 819 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 820 while (i1 != e1 && i2 != e2) { 821 if ((*V1)[i1].Value == (*V2)[i2].Value) 822 return true; 823 if ((*V1)[i1].Value < (*V2)[i2].Value) 824 ++i1; 825 else 826 ++i2; 827 } 828 return false; 829 } 830 831 // Set branch weights on SwitchInst. This sets the metadata if there is at 832 // least one non-zero weight. 833 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 838 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 839 SI->setMetadata(LLVMContext::MD_prof, N); 840 } 841 842 // Similar to the above, but for branch and select instructions that take 843 // exactly 2 weights. 844 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 845 uint32_t FalseWeight) { 846 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 847 // Check that there is at least one non-zero weight. Otherwise, pass 848 // nullptr to setMetadata which will erase the existing metadata. 849 MDNode *N = nullptr; 850 if (TrueWeight || FalseWeight) 851 N = MDBuilder(I->getParent()->getContext()) 852 .createBranchWeights(TrueWeight, FalseWeight); 853 I->setMetadata(LLVMContext::MD_prof, N); 854 } 855 856 /// If TI is known to be a terminator instruction and its block is known to 857 /// only have a single predecessor block, check to see if that predecessor is 858 /// also a value comparison with the same value, and if that comparison 859 /// determines the outcome of this comparison. If so, simplify TI. This does a 860 /// very limited form of jump threading. 861 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 862 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 863 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 864 if (!PredVal) 865 return false; // Not a value comparison in predecessor. 866 867 Value *ThisVal = isValueEqualityComparison(TI); 868 assert(ThisVal && "This isn't a value comparison!!"); 869 if (ThisVal != PredVal) 870 return false; // Different predicates. 871 872 // TODO: Preserve branch weight metadata, similarly to how 873 // FoldValueComparisonIntoPredecessors preserves it. 874 875 // Find out information about when control will move from Pred to TI's block. 876 std::vector<ValueEqualityComparisonCase> PredCases; 877 BasicBlock *PredDef = 878 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 879 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 880 881 // Find information about how control leaves this block. 882 std::vector<ValueEqualityComparisonCase> ThisCases; 883 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 884 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 885 886 // If TI's block is the default block from Pred's comparison, potentially 887 // simplify TI based on this knowledge. 888 if (PredDef == TI->getParent()) { 889 // If we are here, we know that the value is none of those cases listed in 890 // PredCases. If there are any cases in ThisCases that are in PredCases, we 891 // can simplify TI. 892 if (!ValuesOverlap(PredCases, ThisCases)) 893 return false; 894 895 if (isa<BranchInst>(TI)) { 896 // Okay, one of the successors of this condbr is dead. Convert it to a 897 // uncond br. 898 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 899 // Insert the new branch. 900 Instruction *NI = Builder.CreateBr(ThisDef); 901 (void)NI; 902 903 // Remove PHI node entries for the dead edge. 904 ThisCases[0].Dest->removePredecessor(TI->getParent()); 905 906 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 907 << "Through successor TI: " << *TI << "Leaving: " << *NI 908 << "\n"); 909 910 EraseTerminatorAndDCECond(TI); 911 return true; 912 } 913 914 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 915 // Okay, TI has cases that are statically dead, prune them away. 916 SmallPtrSet<Constant *, 16> DeadCases; 917 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 918 DeadCases.insert(PredCases[i].Value); 919 920 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 921 << "Through successor TI: " << *TI); 922 923 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 924 --i; 925 if (DeadCases.count(i->getCaseValue())) { 926 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 927 SI.removeCase(i); 928 } 929 } 930 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 931 return true; 932 } 933 934 // Otherwise, TI's block must correspond to some matched value. Find out 935 // which value (or set of values) this is. 936 ConstantInt *TIV = nullptr; 937 BasicBlock *TIBB = TI->getParent(); 938 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 939 if (PredCases[i].Dest == TIBB) { 940 if (TIV) 941 return false; // Cannot handle multiple values coming to this block. 942 TIV = PredCases[i].Value; 943 } 944 assert(TIV && "No edge from pred to succ?"); 945 946 // Okay, we found the one constant that our value can be if we get into TI's 947 // BB. Find out which successor will unconditionally be branched to. 948 BasicBlock *TheRealDest = nullptr; 949 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 950 if (ThisCases[i].Value == TIV) { 951 TheRealDest = ThisCases[i].Dest; 952 break; 953 } 954 955 // If not handled by any explicit cases, it is handled by the default case. 956 if (!TheRealDest) 957 TheRealDest = ThisDef; 958 959 // Remove PHI node entries for dead edges. 960 BasicBlock *CheckEdge = TheRealDest; 961 for (BasicBlock *Succ : successors(TIBB)) 962 if (Succ != CheckEdge) 963 Succ->removePredecessor(TIBB); 964 else 965 CheckEdge = nullptr; 966 967 // Insert the new branch. 968 Instruction *NI = Builder.CreateBr(TheRealDest); 969 (void)NI; 970 971 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 972 << "Through successor TI: " << *TI << "Leaving: " << *NI 973 << "\n"); 974 975 EraseTerminatorAndDCECond(TI); 976 return true; 977 } 978 979 namespace { 980 981 /// This class implements a stable ordering of constant 982 /// integers that does not depend on their address. This is important for 983 /// applications that sort ConstantInt's to ensure uniqueness. 984 struct ConstantIntOrdering { 985 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 986 return LHS->getValue().ult(RHS->getValue()); 987 } 988 }; 989 990 } // end anonymous namespace 991 992 static int ConstantIntSortPredicate(ConstantInt *const *P1, 993 ConstantInt *const *P2) { 994 const ConstantInt *LHS = *P1; 995 const ConstantInt *RHS = *P2; 996 if (LHS == RHS) 997 return 0; 998 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 999 } 1000 1001 static inline bool HasBranchWeights(const Instruction *I) { 1002 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1003 if (ProfMD && ProfMD->getOperand(0)) 1004 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1005 return MDS->getString().equals("branch_weights"); 1006 1007 return false; 1008 } 1009 1010 /// Get Weights of a given terminator, the default weight is at the front 1011 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1012 /// metadata. 1013 static void GetBranchWeights(Instruction *TI, 1014 SmallVectorImpl<uint64_t> &Weights) { 1015 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1016 assert(MD); 1017 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1018 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1019 Weights.push_back(CI->getValue().getZExtValue()); 1020 } 1021 1022 // If TI is a conditional eq, the default case is the false case, 1023 // and the corresponding branch-weight data is at index 2. We swap the 1024 // default weight to be the first entry. 1025 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1026 assert(Weights.size() == 2); 1027 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1028 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1029 std::swap(Weights.front(), Weights.back()); 1030 } 1031 } 1032 1033 /// Keep halving the weights until all can fit in uint32_t. 1034 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1035 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1036 if (Max > UINT_MAX) { 1037 unsigned Offset = 32 - countLeadingZeros(Max); 1038 for (uint64_t &I : Weights) 1039 I >>= Offset; 1040 } 1041 } 1042 1043 /// The specified terminator is a value equality comparison instruction 1044 /// (either a switch or a branch on "X == c"). 1045 /// See if any of the predecessors of the terminator block are value comparisons 1046 /// on the same value. If so, and if safe to do so, fold them together. 1047 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1048 IRBuilder<> &Builder) { 1049 BasicBlock *BB = TI->getParent(); 1050 Value *CV = isValueEqualityComparison(TI); // CondVal 1051 assert(CV && "Not a comparison?"); 1052 1053 bool Changed = false; 1054 1055 auto _ = make_scope_exit([&]() { 1056 if (Changed) 1057 ++NumFoldValueComparisonIntoPredecessors; 1058 }); 1059 1060 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1061 while (!Preds.empty()) { 1062 BasicBlock *Pred = Preds.pop_back_val(); 1063 1064 // See if the predecessor is a comparison with the same value. 1065 Instruction *PTI = Pred->getTerminator(); 1066 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1067 1068 if (PCV == CV && TI != PTI) { 1069 SmallSetVector<BasicBlock*, 4> FailBlocks; 1070 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1071 for (auto *Succ : FailBlocks) { 1072 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1073 return false; 1074 } 1075 } 1076 1077 // Figure out which 'cases' to copy from SI to PSI. 1078 std::vector<ValueEqualityComparisonCase> BBCases; 1079 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1080 1081 std::vector<ValueEqualityComparisonCase> PredCases; 1082 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1083 1084 // Based on whether the default edge from PTI goes to BB or not, fill in 1085 // PredCases and PredDefault with the new switch cases we would like to 1086 // build. 1087 SmallVector<BasicBlock *, 8> NewSuccessors; 1088 1089 // Update the branch weight metadata along the way 1090 SmallVector<uint64_t, 8> Weights; 1091 bool PredHasWeights = HasBranchWeights(PTI); 1092 bool SuccHasWeights = HasBranchWeights(TI); 1093 1094 if (PredHasWeights) { 1095 GetBranchWeights(PTI, Weights); 1096 // branch-weight metadata is inconsistent here. 1097 if (Weights.size() != 1 + PredCases.size()) 1098 PredHasWeights = SuccHasWeights = false; 1099 } else if (SuccHasWeights) 1100 // If there are no predecessor weights but there are successor weights, 1101 // populate Weights with 1, which will later be scaled to the sum of 1102 // successor's weights 1103 Weights.assign(1 + PredCases.size(), 1); 1104 1105 SmallVector<uint64_t, 8> SuccWeights; 1106 if (SuccHasWeights) { 1107 GetBranchWeights(TI, SuccWeights); 1108 // branch-weight metadata is inconsistent here. 1109 if (SuccWeights.size() != 1 + BBCases.size()) 1110 PredHasWeights = SuccHasWeights = false; 1111 } else if (PredHasWeights) 1112 SuccWeights.assign(1 + BBCases.size(), 1); 1113 1114 if (PredDefault == BB) { 1115 // If this is the default destination from PTI, only the edges in TI 1116 // that don't occur in PTI, or that branch to BB will be activated. 1117 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1118 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1119 if (PredCases[i].Dest != BB) 1120 PTIHandled.insert(PredCases[i].Value); 1121 else { 1122 // The default destination is BB, we don't need explicit targets. 1123 std::swap(PredCases[i], PredCases.back()); 1124 1125 if (PredHasWeights || SuccHasWeights) { 1126 // Increase weight for the default case. 1127 Weights[0] += Weights[i + 1]; 1128 std::swap(Weights[i + 1], Weights.back()); 1129 Weights.pop_back(); 1130 } 1131 1132 PredCases.pop_back(); 1133 --i; 1134 --e; 1135 } 1136 1137 // Reconstruct the new switch statement we will be building. 1138 if (PredDefault != BBDefault) { 1139 PredDefault->removePredecessor(Pred); 1140 PredDefault = BBDefault; 1141 NewSuccessors.push_back(BBDefault); 1142 } 1143 1144 unsigned CasesFromPred = Weights.size(); 1145 uint64_t ValidTotalSuccWeight = 0; 1146 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1147 if (!PTIHandled.count(BBCases[i].Value) && 1148 BBCases[i].Dest != BBDefault) { 1149 PredCases.push_back(BBCases[i]); 1150 NewSuccessors.push_back(BBCases[i].Dest); 1151 if (SuccHasWeights || PredHasWeights) { 1152 // The default weight is at index 0, so weight for the ith case 1153 // should be at index i+1. Scale the cases from successor by 1154 // PredDefaultWeight (Weights[0]). 1155 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1156 ValidTotalSuccWeight += SuccWeights[i + 1]; 1157 } 1158 } 1159 1160 if (SuccHasWeights || PredHasWeights) { 1161 ValidTotalSuccWeight += SuccWeights[0]; 1162 // Scale the cases from predecessor by ValidTotalSuccWeight. 1163 for (unsigned i = 1; i < CasesFromPred; ++i) 1164 Weights[i] *= ValidTotalSuccWeight; 1165 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1166 Weights[0] *= SuccWeights[0]; 1167 } 1168 } else { 1169 // If this is not the default destination from PSI, only the edges 1170 // in SI that occur in PSI with a destination of BB will be 1171 // activated. 1172 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1173 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1174 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1175 if (PredCases[i].Dest == BB) { 1176 PTIHandled.insert(PredCases[i].Value); 1177 1178 if (PredHasWeights || SuccHasWeights) { 1179 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1180 std::swap(Weights[i + 1], Weights.back()); 1181 Weights.pop_back(); 1182 } 1183 1184 std::swap(PredCases[i], PredCases.back()); 1185 PredCases.pop_back(); 1186 --i; 1187 --e; 1188 } 1189 1190 // Okay, now we know which constants were sent to BB from the 1191 // predecessor. Figure out where they will all go now. 1192 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1193 if (PTIHandled.count(BBCases[i].Value)) { 1194 // If this is one we are capable of getting... 1195 if (PredHasWeights || SuccHasWeights) 1196 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1197 PredCases.push_back(BBCases[i]); 1198 NewSuccessors.push_back(BBCases[i].Dest); 1199 PTIHandled.erase( 1200 BBCases[i].Value); // This constant is taken care of 1201 } 1202 1203 // If there are any constants vectored to BB that TI doesn't handle, 1204 // they must go to the default destination of TI. 1205 for (ConstantInt *I : PTIHandled) { 1206 if (PredHasWeights || SuccHasWeights) 1207 Weights.push_back(WeightsForHandled[I]); 1208 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1209 NewSuccessors.push_back(BBDefault); 1210 } 1211 } 1212 1213 // Okay, at this point, we know which new successor Pred will get. Make 1214 // sure we update the number of entries in the PHI nodes for these 1215 // successors. 1216 for (BasicBlock *NewSuccessor : NewSuccessors) 1217 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1218 1219 Builder.SetInsertPoint(PTI); 1220 // Convert pointer to int before we switch. 1221 if (CV->getType()->isPointerTy()) { 1222 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1223 "magicptr"); 1224 } 1225 1226 // Now that the successors are updated, create the new Switch instruction. 1227 SwitchInst *NewSI = 1228 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1229 NewSI->setDebugLoc(PTI->getDebugLoc()); 1230 for (ValueEqualityComparisonCase &V : PredCases) 1231 NewSI->addCase(V.Value, V.Dest); 1232 1233 if (PredHasWeights || SuccHasWeights) { 1234 // Halve the weights if any of them cannot fit in an uint32_t 1235 FitWeights(Weights); 1236 1237 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1238 1239 setBranchWeights(NewSI, MDWeights); 1240 } 1241 1242 EraseTerminatorAndDCECond(PTI); 1243 1244 // Okay, last check. If BB is still a successor of PSI, then we must 1245 // have an infinite loop case. If so, add an infinitely looping block 1246 // to handle the case to preserve the behavior of the code. 1247 BasicBlock *InfLoopBlock = nullptr; 1248 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1249 if (NewSI->getSuccessor(i) == BB) { 1250 if (!InfLoopBlock) { 1251 // Insert it at the end of the function, because it's either code, 1252 // or it won't matter if it's hot. :) 1253 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1254 BB->getParent()); 1255 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1256 } 1257 NewSI->setSuccessor(i, InfLoopBlock); 1258 } 1259 1260 Changed = true; 1261 } 1262 } 1263 return Changed; 1264 } 1265 1266 // If we would need to insert a select that uses the value of this invoke 1267 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1268 // can't hoist the invoke, as there is nowhere to put the select in this case. 1269 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1270 Instruction *I1, Instruction *I2) { 1271 for (BasicBlock *Succ : successors(BB1)) { 1272 for (const PHINode &PN : Succ->phis()) { 1273 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1274 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1275 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1276 return false; 1277 } 1278 } 1279 } 1280 return true; 1281 } 1282 1283 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1284 1285 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1286 /// in the two blocks up into the branch block. The caller of this function 1287 /// guarantees that BI's block dominates BB1 and BB2. 1288 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1289 const TargetTransformInfo &TTI) { 1290 // This does very trivial matching, with limited scanning, to find identical 1291 // instructions in the two blocks. In particular, we don't want to get into 1292 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1293 // such, we currently just scan for obviously identical instructions in an 1294 // identical order. 1295 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1296 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1297 1298 BasicBlock::iterator BB1_Itr = BB1->begin(); 1299 BasicBlock::iterator BB2_Itr = BB2->begin(); 1300 1301 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1302 // Skip debug info if it is not identical. 1303 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1304 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1305 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1306 while (isa<DbgInfoIntrinsic>(I1)) 1307 I1 = &*BB1_Itr++; 1308 while (isa<DbgInfoIntrinsic>(I2)) 1309 I2 = &*BB2_Itr++; 1310 } 1311 // FIXME: Can we define a safety predicate for CallBr? 1312 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1313 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1314 isa<CallBrInst>(I1)) 1315 return false; 1316 1317 BasicBlock *BIParent = BI->getParent(); 1318 1319 bool Changed = false; 1320 1321 auto _ = make_scope_exit([&]() { 1322 if (Changed) 1323 ++NumHoistCommonCode; 1324 }); 1325 1326 do { 1327 // If we are hoisting the terminator instruction, don't move one (making a 1328 // broken BB), instead clone it, and remove BI. 1329 if (I1->isTerminator()) 1330 goto HoistTerminator; 1331 1332 // If we're going to hoist a call, make sure that the two instructions we're 1333 // commoning/hoisting are both marked with musttail, or neither of them is 1334 // marked as such. Otherwise, we might end up in a situation where we hoist 1335 // from a block where the terminator is a `ret` to a block where the terminator 1336 // is a `br`, and `musttail` calls expect to be followed by a return. 1337 auto *C1 = dyn_cast<CallInst>(I1); 1338 auto *C2 = dyn_cast<CallInst>(I2); 1339 if (C1 && C2) 1340 if (C1->isMustTailCall() != C2->isMustTailCall()) 1341 return Changed; 1342 1343 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1344 return Changed; 1345 1346 // If any of the two call sites has nomerge attribute, stop hoisting. 1347 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1348 if (CB1->cannotMerge()) 1349 return Changed; 1350 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1351 if (CB2->cannotMerge()) 1352 return Changed; 1353 1354 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1355 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1356 // The debug location is an integral part of a debug info intrinsic 1357 // and can't be separated from it or replaced. Instead of attempting 1358 // to merge locations, simply hoist both copies of the intrinsic. 1359 BIParent->getInstList().splice(BI->getIterator(), 1360 BB1->getInstList(), I1); 1361 BIParent->getInstList().splice(BI->getIterator(), 1362 BB2->getInstList(), I2); 1363 Changed = true; 1364 } else { 1365 // For a normal instruction, we just move one to right before the branch, 1366 // then replace all uses of the other with the first. Finally, we remove 1367 // the now redundant second instruction. 1368 BIParent->getInstList().splice(BI->getIterator(), 1369 BB1->getInstList(), I1); 1370 if (!I2->use_empty()) 1371 I2->replaceAllUsesWith(I1); 1372 I1->andIRFlags(I2); 1373 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1374 LLVMContext::MD_range, 1375 LLVMContext::MD_fpmath, 1376 LLVMContext::MD_invariant_load, 1377 LLVMContext::MD_nonnull, 1378 LLVMContext::MD_invariant_group, 1379 LLVMContext::MD_align, 1380 LLVMContext::MD_dereferenceable, 1381 LLVMContext::MD_dereferenceable_or_null, 1382 LLVMContext::MD_mem_parallel_loop_access, 1383 LLVMContext::MD_access_group, 1384 LLVMContext::MD_preserve_access_index}; 1385 combineMetadata(I1, I2, KnownIDs, true); 1386 1387 // I1 and I2 are being combined into a single instruction. Its debug 1388 // location is the merged locations of the original instructions. 1389 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1390 1391 I2->eraseFromParent(); 1392 Changed = true; 1393 } 1394 ++NumHoistCommonInstrs; 1395 1396 I1 = &*BB1_Itr++; 1397 I2 = &*BB2_Itr++; 1398 // Skip debug info if it is not identical. 1399 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1400 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1401 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1402 while (isa<DbgInfoIntrinsic>(I1)) 1403 I1 = &*BB1_Itr++; 1404 while (isa<DbgInfoIntrinsic>(I2)) 1405 I2 = &*BB2_Itr++; 1406 } 1407 } while (I1->isIdenticalToWhenDefined(I2)); 1408 1409 return true; 1410 1411 HoistTerminator: 1412 // It may not be possible to hoist an invoke. 1413 // FIXME: Can we define a safety predicate for CallBr? 1414 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1415 return Changed; 1416 1417 // TODO: callbr hoisting currently disabled pending further study. 1418 if (isa<CallBrInst>(I1)) 1419 return Changed; 1420 1421 for (BasicBlock *Succ : successors(BB1)) { 1422 for (PHINode &PN : Succ->phis()) { 1423 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1424 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1425 if (BB1V == BB2V) 1426 continue; 1427 1428 // Check for passingValueIsAlwaysUndefined here because we would rather 1429 // eliminate undefined control flow then converting it to a select. 1430 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1431 passingValueIsAlwaysUndefined(BB2V, &PN)) 1432 return Changed; 1433 1434 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1435 return Changed; 1436 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1437 return Changed; 1438 } 1439 } 1440 1441 // Okay, it is safe to hoist the terminator. 1442 Instruction *NT = I1->clone(); 1443 BIParent->getInstList().insert(BI->getIterator(), NT); 1444 if (!NT->getType()->isVoidTy()) { 1445 I1->replaceAllUsesWith(NT); 1446 I2->replaceAllUsesWith(NT); 1447 NT->takeName(I1); 1448 } 1449 Changed = true; 1450 ++NumHoistCommonInstrs; 1451 1452 // Ensure terminator gets a debug location, even an unknown one, in case 1453 // it involves inlinable calls. 1454 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1455 1456 // PHIs created below will adopt NT's merged DebugLoc. 1457 IRBuilder<NoFolder> Builder(NT); 1458 1459 // Hoisting one of the terminators from our successor is a great thing. 1460 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1461 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1462 // nodes, so we insert select instruction to compute the final result. 1463 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1464 for (BasicBlock *Succ : successors(BB1)) { 1465 for (PHINode &PN : Succ->phis()) { 1466 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1467 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1468 if (BB1V == BB2V) 1469 continue; 1470 1471 // These values do not agree. Insert a select instruction before NT 1472 // that determines the right value. 1473 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1474 if (!SI) { 1475 // Propagate fast-math-flags from phi node to its replacement select. 1476 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1477 if (isa<FPMathOperator>(PN)) 1478 Builder.setFastMathFlags(PN.getFastMathFlags()); 1479 1480 SI = cast<SelectInst>( 1481 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1482 BB1V->getName() + "." + BB2V->getName(), BI)); 1483 } 1484 1485 // Make the PHI node use the select for all incoming values for BB1/BB2 1486 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1487 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1488 PN.setIncomingValue(i, SI); 1489 } 1490 } 1491 1492 // Update any PHI nodes in our new successors. 1493 for (BasicBlock *Succ : successors(BB1)) 1494 AddPredecessorToBlock(Succ, BIParent, BB1); 1495 1496 EraseTerminatorAndDCECond(BI); 1497 return Changed; 1498 } 1499 1500 // Check lifetime markers. 1501 static bool isLifeTimeMarker(const Instruction *I) { 1502 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1503 switch (II->getIntrinsicID()) { 1504 default: 1505 break; 1506 case Intrinsic::lifetime_start: 1507 case Intrinsic::lifetime_end: 1508 return true; 1509 } 1510 } 1511 return false; 1512 } 1513 1514 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1515 // into variables. 1516 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1517 int OpIdx) { 1518 return !isa<IntrinsicInst>(I); 1519 } 1520 1521 // All instructions in Insts belong to different blocks that all unconditionally 1522 // branch to a common successor. Analyze each instruction and return true if it 1523 // would be possible to sink them into their successor, creating one common 1524 // instruction instead. For every value that would be required to be provided by 1525 // PHI node (because an operand varies in each input block), add to PHIOperands. 1526 static bool canSinkInstructions( 1527 ArrayRef<Instruction *> Insts, 1528 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1529 // Prune out obviously bad instructions to move. Each instruction must have 1530 // exactly zero or one use, and we check later that use is by a single, common 1531 // PHI instruction in the successor. 1532 bool HasUse = !Insts.front()->user_empty(); 1533 for (auto *I : Insts) { 1534 // These instructions may change or break semantics if moved. 1535 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1536 I->getType()->isTokenTy()) 1537 return false; 1538 1539 // Conservatively return false if I is an inline-asm instruction. Sinking 1540 // and merging inline-asm instructions can potentially create arguments 1541 // that cannot satisfy the inline-asm constraints. 1542 // If the instruction has nomerge attribute, return false. 1543 if (const auto *C = dyn_cast<CallBase>(I)) 1544 if (C->isInlineAsm() || C->cannotMerge()) 1545 return false; 1546 1547 // Each instruction must have zero or one use. 1548 if (HasUse && !I->hasOneUse()) 1549 return false; 1550 if (!HasUse && !I->user_empty()) 1551 return false; 1552 } 1553 1554 const Instruction *I0 = Insts.front(); 1555 for (auto *I : Insts) 1556 if (!I->isSameOperationAs(I0)) 1557 return false; 1558 1559 // All instructions in Insts are known to be the same opcode. If they have a 1560 // use, check that the only user is a PHI or in the same block as the 1561 // instruction, because if a user is in the same block as an instruction we're 1562 // contemplating sinking, it must already be determined to be sinkable. 1563 if (HasUse) { 1564 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1565 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1566 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1567 auto *U = cast<Instruction>(*I->user_begin()); 1568 return (PNUse && 1569 PNUse->getParent() == Succ && 1570 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1571 U->getParent() == I->getParent(); 1572 })) 1573 return false; 1574 } 1575 1576 // Because SROA can't handle speculating stores of selects, try not to sink 1577 // loads, stores or lifetime markers of allocas when we'd have to create a 1578 // PHI for the address operand. Also, because it is likely that loads or 1579 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1580 // them. 1581 // This can cause code churn which can have unintended consequences down 1582 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1583 // FIXME: This is a workaround for a deficiency in SROA - see 1584 // https://llvm.org/bugs/show_bug.cgi?id=30188 1585 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1586 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1587 })) 1588 return false; 1589 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1590 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1591 })) 1592 return false; 1593 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1594 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1595 })) 1596 return false; 1597 1598 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1599 Value *Op = I0->getOperand(OI); 1600 if (Op->getType()->isTokenTy()) 1601 // Don't touch any operand of token type. 1602 return false; 1603 1604 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1605 assert(I->getNumOperands() == I0->getNumOperands()); 1606 return I->getOperand(OI) == I0->getOperand(OI); 1607 }; 1608 if (!all_of(Insts, SameAsI0)) { 1609 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1610 !canReplaceOperandWithVariable(I0, OI)) 1611 // We can't create a PHI from this GEP. 1612 return false; 1613 // Don't create indirect calls! The called value is the final operand. 1614 if (isa<CallBase>(I0) && OI == OE - 1) { 1615 // FIXME: if the call was *already* indirect, we should do this. 1616 return false; 1617 } 1618 for (auto *I : Insts) 1619 PHIOperands[I].push_back(I->getOperand(OI)); 1620 } 1621 } 1622 return true; 1623 } 1624 1625 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1626 // instruction of every block in Blocks to their common successor, commoning 1627 // into one instruction. 1628 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1629 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1630 1631 // canSinkLastInstruction returning true guarantees that every block has at 1632 // least one non-terminator instruction. 1633 SmallVector<Instruction*,4> Insts; 1634 for (auto *BB : Blocks) { 1635 Instruction *I = BB->getTerminator(); 1636 do { 1637 I = I->getPrevNode(); 1638 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1639 if (!isa<DbgInfoIntrinsic>(I)) 1640 Insts.push_back(I); 1641 } 1642 1643 // The only checking we need to do now is that all users of all instructions 1644 // are the same PHI node. canSinkLastInstruction should have checked this but 1645 // it is slightly over-aggressive - it gets confused by commutative instructions 1646 // so double-check it here. 1647 Instruction *I0 = Insts.front(); 1648 if (!I0->user_empty()) { 1649 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1650 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1651 auto *U = cast<Instruction>(*I->user_begin()); 1652 return U == PNUse; 1653 })) 1654 return false; 1655 } 1656 1657 // We don't need to do any more checking here; canSinkLastInstruction should 1658 // have done it all for us. 1659 SmallVector<Value*, 4> NewOperands; 1660 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1661 // This check is different to that in canSinkLastInstruction. There, we 1662 // cared about the global view once simplifycfg (and instcombine) have 1663 // completed - it takes into account PHIs that become trivially 1664 // simplifiable. However here we need a more local view; if an operand 1665 // differs we create a PHI and rely on instcombine to clean up the very 1666 // small mess we may make. 1667 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1668 return I->getOperand(O) != I0->getOperand(O); 1669 }); 1670 if (!NeedPHI) { 1671 NewOperands.push_back(I0->getOperand(O)); 1672 continue; 1673 } 1674 1675 // Create a new PHI in the successor block and populate it. 1676 auto *Op = I0->getOperand(O); 1677 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1678 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1679 Op->getName() + ".sink", &BBEnd->front()); 1680 for (auto *I : Insts) 1681 PN->addIncoming(I->getOperand(O), I->getParent()); 1682 NewOperands.push_back(PN); 1683 } 1684 1685 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1686 // and move it to the start of the successor block. 1687 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1688 I0->getOperandUse(O).set(NewOperands[O]); 1689 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1690 1691 // Update metadata and IR flags, and merge debug locations. 1692 for (auto *I : Insts) 1693 if (I != I0) { 1694 // The debug location for the "common" instruction is the merged locations 1695 // of all the commoned instructions. We start with the original location 1696 // of the "common" instruction and iteratively merge each location in the 1697 // loop below. 1698 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1699 // However, as N-way merge for CallInst is rare, so we use simplified API 1700 // instead of using complex API for N-way merge. 1701 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1702 combineMetadataForCSE(I0, I, true); 1703 I0->andIRFlags(I); 1704 } 1705 1706 if (!I0->user_empty()) { 1707 // canSinkLastInstruction checked that all instructions were used by 1708 // one and only one PHI node. Find that now, RAUW it to our common 1709 // instruction and nuke it. 1710 auto *PN = cast<PHINode>(*I0->user_begin()); 1711 PN->replaceAllUsesWith(I0); 1712 PN->eraseFromParent(); 1713 } 1714 1715 // Finally nuke all instructions apart from the common instruction. 1716 for (auto *I : Insts) 1717 if (I != I0) 1718 I->eraseFromParent(); 1719 1720 return true; 1721 } 1722 1723 namespace { 1724 1725 // LockstepReverseIterator - Iterates through instructions 1726 // in a set of blocks in reverse order from the first non-terminator. 1727 // For example (assume all blocks have size n): 1728 // LockstepReverseIterator I([B1, B2, B3]); 1729 // *I-- = [B1[n], B2[n], B3[n]]; 1730 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1731 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1732 // ... 1733 class LockstepReverseIterator { 1734 ArrayRef<BasicBlock*> Blocks; 1735 SmallVector<Instruction*,4> Insts; 1736 bool Fail; 1737 1738 public: 1739 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1740 reset(); 1741 } 1742 1743 void reset() { 1744 Fail = false; 1745 Insts.clear(); 1746 for (auto *BB : Blocks) { 1747 Instruction *Inst = BB->getTerminator(); 1748 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1749 Inst = Inst->getPrevNode(); 1750 if (!Inst) { 1751 // Block wasn't big enough. 1752 Fail = true; 1753 return; 1754 } 1755 Insts.push_back(Inst); 1756 } 1757 } 1758 1759 bool isValid() const { 1760 return !Fail; 1761 } 1762 1763 void operator--() { 1764 if (Fail) 1765 return; 1766 for (auto *&Inst : Insts) { 1767 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1768 Inst = Inst->getPrevNode(); 1769 // Already at beginning of block. 1770 if (!Inst) { 1771 Fail = true; 1772 return; 1773 } 1774 } 1775 } 1776 1777 ArrayRef<Instruction*> operator * () const { 1778 return Insts; 1779 } 1780 }; 1781 1782 } // end anonymous namespace 1783 1784 /// Check whether BB's predecessors end with unconditional branches. If it is 1785 /// true, sink any common code from the predecessors to BB. 1786 /// We also allow one predecessor to end with conditional branch (but no more 1787 /// than one). 1788 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1789 // We support two situations: 1790 // (1) all incoming arcs are unconditional 1791 // (2) one incoming arc is conditional 1792 // 1793 // (2) is very common in switch defaults and 1794 // else-if patterns; 1795 // 1796 // if (a) f(1); 1797 // else if (b) f(2); 1798 // 1799 // produces: 1800 // 1801 // [if] 1802 // / \ 1803 // [f(1)] [if] 1804 // | | \ 1805 // | | | 1806 // | [f(2)]| 1807 // \ | / 1808 // [ end ] 1809 // 1810 // [end] has two unconditional predecessor arcs and one conditional. The 1811 // conditional refers to the implicit empty 'else' arc. This conditional 1812 // arc can also be caused by an empty default block in a switch. 1813 // 1814 // In this case, we attempt to sink code from all *unconditional* arcs. 1815 // If we can sink instructions from these arcs (determined during the scan 1816 // phase below) we insert a common successor for all unconditional arcs and 1817 // connect that to [end], to enable sinking: 1818 // 1819 // [if] 1820 // / \ 1821 // [x(1)] [if] 1822 // | | \ 1823 // | | \ 1824 // | [x(2)] | 1825 // \ / | 1826 // [sink.split] | 1827 // \ / 1828 // [ end ] 1829 // 1830 SmallVector<BasicBlock*,4> UnconditionalPreds; 1831 Instruction *Cond = nullptr; 1832 for (auto *B : predecessors(BB)) { 1833 auto *T = B->getTerminator(); 1834 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1835 UnconditionalPreds.push_back(B); 1836 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1837 Cond = T; 1838 else 1839 return false; 1840 } 1841 if (UnconditionalPreds.size() < 2) 1842 return false; 1843 1844 // We take a two-step approach to tail sinking. First we scan from the end of 1845 // each block upwards in lockstep. If the n'th instruction from the end of each 1846 // block can be sunk, those instructions are added to ValuesToSink and we 1847 // carry on. If we can sink an instruction but need to PHI-merge some operands 1848 // (because they're not identical in each instruction) we add these to 1849 // PHIOperands. 1850 unsigned ScanIdx = 0; 1851 SmallPtrSet<Value*,4> InstructionsToSink; 1852 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1853 LockstepReverseIterator LRI(UnconditionalPreds); 1854 while (LRI.isValid() && 1855 canSinkInstructions(*LRI, PHIOperands)) { 1856 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1857 << "\n"); 1858 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1859 ++ScanIdx; 1860 --LRI; 1861 } 1862 1863 // If no instructions can be sunk, early-return. 1864 if (ScanIdx == 0) 1865 return false; 1866 1867 bool Changed = false; 1868 1869 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1870 unsigned NumPHIdValues = 0; 1871 for (auto *I : *LRI) 1872 for (auto *V : PHIOperands[I]) 1873 if (InstructionsToSink.count(V) == 0) 1874 ++NumPHIdValues; 1875 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1876 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1877 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1878 NumPHIInsts++; 1879 1880 return NumPHIInsts <= 1; 1881 }; 1882 1883 if (Cond) { 1884 // Check if we would actually sink anything first! This mutates the CFG and 1885 // adds an extra block. The goal in doing this is to allow instructions that 1886 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1887 // (such as trunc, add) can be sunk and predicated already. So we check that 1888 // we're going to sink at least one non-speculatable instruction. 1889 LRI.reset(); 1890 unsigned Idx = 0; 1891 bool Profitable = false; 1892 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1893 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1894 Profitable = true; 1895 break; 1896 } 1897 --LRI; 1898 ++Idx; 1899 } 1900 if (!Profitable) 1901 return false; 1902 1903 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1904 // We have a conditional edge and we're going to sink some instructions. 1905 // Insert a new block postdominating all blocks we're going to sink from. 1906 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1907 // Edges couldn't be split. 1908 return false; 1909 Changed = true; 1910 } 1911 1912 // Now that we've analyzed all potential sinking candidates, perform the 1913 // actual sink. We iteratively sink the last non-terminator of the source 1914 // blocks into their common successor unless doing so would require too 1915 // many PHI instructions to be generated (currently only one PHI is allowed 1916 // per sunk instruction). 1917 // 1918 // We can use InstructionsToSink to discount values needing PHI-merging that will 1919 // actually be sunk in a later iteration. This allows us to be more 1920 // aggressive in what we sink. This does allow a false positive where we 1921 // sink presuming a later value will also be sunk, but stop half way through 1922 // and never actually sink it which means we produce more PHIs than intended. 1923 // This is unlikely in practice though. 1924 unsigned SinkIdx = 0; 1925 for (; SinkIdx != ScanIdx; ++SinkIdx) { 1926 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1927 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1928 << "\n"); 1929 1930 // Because we've sunk every instruction in turn, the current instruction to 1931 // sink is always at index 0. 1932 LRI.reset(); 1933 if (!ProfitableToSinkInstruction(LRI)) { 1934 // Too many PHIs would be created. 1935 LLVM_DEBUG( 1936 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1937 break; 1938 } 1939 1940 if (!sinkLastInstruction(UnconditionalPreds)) { 1941 LLVM_DEBUG( 1942 dbgs() 1943 << "SINK: stopping here, failed to actually sink instruction!\n"); 1944 break; 1945 } 1946 1947 NumSinkCommonInstrs++; 1948 Changed = true; 1949 } 1950 if (SinkIdx != 0) 1951 ++NumSinkCommonCode; 1952 return Changed; 1953 } 1954 1955 /// Determine if we can hoist sink a sole store instruction out of a 1956 /// conditional block. 1957 /// 1958 /// We are looking for code like the following: 1959 /// BrBB: 1960 /// store i32 %add, i32* %arrayidx2 1961 /// ... // No other stores or function calls (we could be calling a memory 1962 /// ... // function). 1963 /// %cmp = icmp ult %x, %y 1964 /// br i1 %cmp, label %EndBB, label %ThenBB 1965 /// ThenBB: 1966 /// store i32 %add5, i32* %arrayidx2 1967 /// br label EndBB 1968 /// EndBB: 1969 /// ... 1970 /// We are going to transform this into: 1971 /// BrBB: 1972 /// store i32 %add, i32* %arrayidx2 1973 /// ... // 1974 /// %cmp = icmp ult %x, %y 1975 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1976 /// store i32 %add.add5, i32* %arrayidx2 1977 /// ... 1978 /// 1979 /// \return The pointer to the value of the previous store if the store can be 1980 /// hoisted into the predecessor block. 0 otherwise. 1981 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1982 BasicBlock *StoreBB, BasicBlock *EndBB) { 1983 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1984 if (!StoreToHoist) 1985 return nullptr; 1986 1987 // Volatile or atomic. 1988 if (!StoreToHoist->isSimple()) 1989 return nullptr; 1990 1991 Value *StorePtr = StoreToHoist->getPointerOperand(); 1992 1993 // Look for a store to the same pointer in BrBB. 1994 unsigned MaxNumInstToLookAt = 9; 1995 // Skip pseudo probe intrinsic calls which are not really killing any memory 1996 // accesses. 1997 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 1998 if (!MaxNumInstToLookAt) 1999 break; 2000 --MaxNumInstToLookAt; 2001 2002 // Could be calling an instruction that affects memory like free(). 2003 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2004 return nullptr; 2005 2006 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2007 // Found the previous store make sure it stores to the same location. 2008 if (SI->getPointerOperand() == StorePtr) 2009 // Found the previous store, return its value operand. 2010 return SI->getValueOperand(); 2011 return nullptr; // Unknown store. 2012 } 2013 } 2014 2015 return nullptr; 2016 } 2017 2018 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2019 /// converted to selects. 2020 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2021 BasicBlock *EndBB, 2022 unsigned &SpeculatedInstructions, 2023 int &BudgetRemaining, 2024 const TargetTransformInfo &TTI) { 2025 TargetTransformInfo::TargetCostKind CostKind = 2026 BB->getParent()->hasMinSize() 2027 ? TargetTransformInfo::TCK_CodeSize 2028 : TargetTransformInfo::TCK_SizeAndLatency; 2029 2030 bool HaveRewritablePHIs = false; 2031 for (PHINode &PN : EndBB->phis()) { 2032 Value *OrigV = PN.getIncomingValueForBlock(BB); 2033 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2034 2035 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2036 // Skip PHIs which are trivial. 2037 if (ThenV == OrigV) 2038 continue; 2039 2040 BudgetRemaining -= 2041 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2042 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2043 2044 // Don't convert to selects if we could remove undefined behavior instead. 2045 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2046 passingValueIsAlwaysUndefined(ThenV, &PN)) 2047 return false; 2048 2049 HaveRewritablePHIs = true; 2050 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2051 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2052 if (!OrigCE && !ThenCE) 2053 continue; // Known safe and cheap. 2054 2055 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2056 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2057 return false; 2058 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2059 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2060 unsigned MaxCost = 2061 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2062 if (OrigCost + ThenCost > MaxCost) 2063 return false; 2064 2065 // Account for the cost of an unfolded ConstantExpr which could end up 2066 // getting expanded into Instructions. 2067 // FIXME: This doesn't account for how many operations are combined in the 2068 // constant expression. 2069 ++SpeculatedInstructions; 2070 if (SpeculatedInstructions > 1) 2071 return false; 2072 } 2073 2074 return HaveRewritablePHIs; 2075 } 2076 2077 /// Speculate a conditional basic block flattening the CFG. 2078 /// 2079 /// Note that this is a very risky transform currently. Speculating 2080 /// instructions like this is most often not desirable. Instead, there is an MI 2081 /// pass which can do it with full awareness of the resource constraints. 2082 /// However, some cases are "obvious" and we should do directly. An example of 2083 /// this is speculating a single, reasonably cheap instruction. 2084 /// 2085 /// There is only one distinct advantage to flattening the CFG at the IR level: 2086 /// it makes very common but simplistic optimizations such as are common in 2087 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2088 /// modeling their effects with easier to reason about SSA value graphs. 2089 /// 2090 /// 2091 /// An illustration of this transform is turning this IR: 2092 /// \code 2093 /// BB: 2094 /// %cmp = icmp ult %x, %y 2095 /// br i1 %cmp, label %EndBB, label %ThenBB 2096 /// ThenBB: 2097 /// %sub = sub %x, %y 2098 /// br label BB2 2099 /// EndBB: 2100 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2101 /// ... 2102 /// \endcode 2103 /// 2104 /// Into this IR: 2105 /// \code 2106 /// BB: 2107 /// %cmp = icmp ult %x, %y 2108 /// %sub = sub %x, %y 2109 /// %cond = select i1 %cmp, 0, %sub 2110 /// ... 2111 /// \endcode 2112 /// 2113 /// \returns true if the conditional block is removed. 2114 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2115 const TargetTransformInfo &TTI) { 2116 // Be conservative for now. FP select instruction can often be expensive. 2117 Value *BrCond = BI->getCondition(); 2118 if (isa<FCmpInst>(BrCond)) 2119 return false; 2120 2121 BasicBlock *BB = BI->getParent(); 2122 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2123 int BudgetRemaining = 2124 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2125 2126 // If ThenBB is actually on the false edge of the conditional branch, remember 2127 // to swap the select operands later. 2128 bool Invert = false; 2129 if (ThenBB != BI->getSuccessor(0)) { 2130 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2131 Invert = true; 2132 } 2133 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2134 2135 // Keep a count of how many times instructions are used within ThenBB when 2136 // they are candidates for sinking into ThenBB. Specifically: 2137 // - They are defined in BB, and 2138 // - They have no side effects, and 2139 // - All of their uses are in ThenBB. 2140 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2141 2142 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2143 2144 unsigned SpeculatedInstructions = 0; 2145 Value *SpeculatedStoreValue = nullptr; 2146 StoreInst *SpeculatedStore = nullptr; 2147 for (BasicBlock::iterator BBI = ThenBB->begin(), 2148 BBE = std::prev(ThenBB->end()); 2149 BBI != BBE; ++BBI) { 2150 Instruction *I = &*BBI; 2151 // Skip debug info. 2152 if (isa<DbgInfoIntrinsic>(I)) { 2153 SpeculatedDbgIntrinsics.push_back(I); 2154 continue; 2155 } 2156 2157 // Skip pseudo probes. The consequence is we lose track of the branch 2158 // probability for ThenBB, which is fine since the optimization here takes 2159 // place regardless of the branch probability. 2160 if (isa<PseudoProbeInst>(I)) { 2161 SpeculatedDbgIntrinsics.push_back(I); 2162 continue; 2163 } 2164 2165 // Only speculatively execute a single instruction (not counting the 2166 // terminator) for now. 2167 ++SpeculatedInstructions; 2168 if (SpeculatedInstructions > 1) 2169 return false; 2170 2171 // Don't hoist the instruction if it's unsafe or expensive. 2172 if (!isSafeToSpeculativelyExecute(I) && 2173 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2174 I, BB, ThenBB, EndBB)))) 2175 return false; 2176 if (!SpeculatedStoreValue && 2177 ComputeSpeculationCost(I, TTI) > 2178 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2179 return false; 2180 2181 // Store the store speculation candidate. 2182 if (SpeculatedStoreValue) 2183 SpeculatedStore = cast<StoreInst>(I); 2184 2185 // Do not hoist the instruction if any of its operands are defined but not 2186 // used in BB. The transformation will prevent the operand from 2187 // being sunk into the use block. 2188 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2189 Instruction *OpI = dyn_cast<Instruction>(*i); 2190 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2191 continue; // Not a candidate for sinking. 2192 2193 ++SinkCandidateUseCounts[OpI]; 2194 } 2195 } 2196 2197 // Consider any sink candidates which are only used in ThenBB as costs for 2198 // speculation. Note, while we iterate over a DenseMap here, we are summing 2199 // and so iteration order isn't significant. 2200 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2201 I = SinkCandidateUseCounts.begin(), 2202 E = SinkCandidateUseCounts.end(); 2203 I != E; ++I) 2204 if (I->first->hasNUses(I->second)) { 2205 ++SpeculatedInstructions; 2206 if (SpeculatedInstructions > 1) 2207 return false; 2208 } 2209 2210 // Check that we can insert the selects and that it's not too expensive to do 2211 // so. 2212 bool Convert = SpeculatedStore != nullptr; 2213 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2214 SpeculatedInstructions, 2215 BudgetRemaining, TTI); 2216 if (!Convert || BudgetRemaining < 0) 2217 return false; 2218 2219 // If we get here, we can hoist the instruction and if-convert. 2220 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2221 2222 // Insert a select of the value of the speculated store. 2223 if (SpeculatedStoreValue) { 2224 IRBuilder<NoFolder> Builder(BI); 2225 Value *TrueV = SpeculatedStore->getValueOperand(); 2226 Value *FalseV = SpeculatedStoreValue; 2227 if (Invert) 2228 std::swap(TrueV, FalseV); 2229 Value *S = Builder.CreateSelect( 2230 BrCond, TrueV, FalseV, "spec.store.select", BI); 2231 SpeculatedStore->setOperand(0, S); 2232 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2233 SpeculatedStore->getDebugLoc()); 2234 } 2235 2236 // Metadata can be dependent on the condition we are hoisting above. 2237 // Conservatively strip all metadata on the instruction. Drop the debug loc 2238 // to avoid making it appear as if the condition is a constant, which would 2239 // be misleading while debugging. 2240 for (auto &I : *ThenBB) { 2241 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2242 I.setDebugLoc(DebugLoc()); 2243 I.dropUnknownNonDebugMetadata(); 2244 } 2245 2246 // Hoist the instructions. 2247 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2248 ThenBB->begin(), std::prev(ThenBB->end())); 2249 2250 // Insert selects and rewrite the PHI operands. 2251 IRBuilder<NoFolder> Builder(BI); 2252 for (PHINode &PN : EndBB->phis()) { 2253 unsigned OrigI = PN.getBasicBlockIndex(BB); 2254 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2255 Value *OrigV = PN.getIncomingValue(OrigI); 2256 Value *ThenV = PN.getIncomingValue(ThenI); 2257 2258 // Skip PHIs which are trivial. 2259 if (OrigV == ThenV) 2260 continue; 2261 2262 // Create a select whose true value is the speculatively executed value and 2263 // false value is the pre-existing value. Swap them if the branch 2264 // destinations were inverted. 2265 Value *TrueV = ThenV, *FalseV = OrigV; 2266 if (Invert) 2267 std::swap(TrueV, FalseV); 2268 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2269 PN.setIncomingValue(OrigI, V); 2270 PN.setIncomingValue(ThenI, V); 2271 } 2272 2273 // Remove speculated dbg intrinsics. 2274 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2275 // dbg value for the different flows and inserting it after the select. 2276 for (Instruction *I : SpeculatedDbgIntrinsics) 2277 I->eraseFromParent(); 2278 2279 ++NumSpeculations; 2280 return true; 2281 } 2282 2283 /// Return true if we can thread a branch across this block. 2284 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2285 int Size = 0; 2286 2287 for (Instruction &I : BB->instructionsWithoutDebug()) { 2288 if (Size > MaxSmallBlockSize) 2289 return false; // Don't clone large BB's. 2290 2291 // Can't fold blocks that contain noduplicate or convergent calls. 2292 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2293 if (CI->cannotDuplicate() || CI->isConvergent()) 2294 return false; 2295 2296 // We will delete Phis while threading, so Phis should not be accounted in 2297 // block's size 2298 if (!isa<PHINode>(I)) 2299 ++Size; 2300 2301 // We can only support instructions that do not define values that are 2302 // live outside of the current basic block. 2303 for (User *U : I.users()) { 2304 Instruction *UI = cast<Instruction>(U); 2305 if (UI->getParent() != BB || isa<PHINode>(UI)) 2306 return false; 2307 } 2308 2309 // Looks ok, continue checking. 2310 } 2311 2312 return true; 2313 } 2314 2315 /// If we have a conditional branch on a PHI node value that is defined in the 2316 /// same block as the branch and if any PHI entries are constants, thread edges 2317 /// corresponding to that entry to be branches to their ultimate destination. 2318 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2319 AssumptionCache *AC) { 2320 BasicBlock *BB = BI->getParent(); 2321 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2322 // NOTE: we currently cannot transform this case if the PHI node is used 2323 // outside of the block. 2324 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2325 return false; 2326 2327 // Degenerate case of a single entry PHI. 2328 if (PN->getNumIncomingValues() == 1) { 2329 FoldSingleEntryPHINodes(PN->getParent()); 2330 return true; 2331 } 2332 2333 // Now we know that this block has multiple preds and two succs. 2334 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2335 return false; 2336 2337 // Okay, this is a simple enough basic block. See if any phi values are 2338 // constants. 2339 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2340 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2341 if (!CB || !CB->getType()->isIntegerTy(1)) 2342 continue; 2343 2344 // Okay, we now know that all edges from PredBB should be revectored to 2345 // branch to RealDest. 2346 BasicBlock *PredBB = PN->getIncomingBlock(i); 2347 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2348 2349 if (RealDest == BB) 2350 continue; // Skip self loops. 2351 // Skip if the predecessor's terminator is an indirect branch. 2352 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2353 continue; 2354 2355 // The dest block might have PHI nodes, other predecessors and other 2356 // difficult cases. Instead of being smart about this, just insert a new 2357 // block that jumps to the destination block, effectively splitting 2358 // the edge we are about to create. 2359 BasicBlock *EdgeBB = 2360 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2361 RealDest->getParent(), RealDest); 2362 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2363 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2364 2365 // Update PHI nodes. 2366 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2367 2368 // BB may have instructions that are being threaded over. Clone these 2369 // instructions into EdgeBB. We know that there will be no uses of the 2370 // cloned instructions outside of EdgeBB. 2371 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2372 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2373 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2374 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2375 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2376 continue; 2377 } 2378 // Clone the instruction. 2379 Instruction *N = BBI->clone(); 2380 if (BBI->hasName()) 2381 N->setName(BBI->getName() + ".c"); 2382 2383 // Update operands due to translation. 2384 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2385 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2386 if (PI != TranslateMap.end()) 2387 *i = PI->second; 2388 } 2389 2390 // Check for trivial simplification. 2391 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2392 if (!BBI->use_empty()) 2393 TranslateMap[&*BBI] = V; 2394 if (!N->mayHaveSideEffects()) { 2395 N->deleteValue(); // Instruction folded away, don't need actual inst 2396 N = nullptr; 2397 } 2398 } else { 2399 if (!BBI->use_empty()) 2400 TranslateMap[&*BBI] = N; 2401 } 2402 if (N) { 2403 // Insert the new instruction into its new home. 2404 EdgeBB->getInstList().insert(InsertPt, N); 2405 2406 // Register the new instruction with the assumption cache if necessary. 2407 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2408 AC->registerAssumption(cast<IntrinsicInst>(N)); 2409 } 2410 } 2411 2412 // Loop over all of the edges from PredBB to BB, changing them to branch 2413 // to EdgeBB instead. 2414 Instruction *PredBBTI = PredBB->getTerminator(); 2415 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2416 if (PredBBTI->getSuccessor(i) == BB) { 2417 BB->removePredecessor(PredBB); 2418 PredBBTI->setSuccessor(i, EdgeBB); 2419 } 2420 2421 // Recurse, simplifying any other constants. 2422 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2423 } 2424 2425 return false; 2426 } 2427 2428 /// Given a BB that starts with the specified two-entry PHI node, 2429 /// see if we can eliminate it. 2430 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2431 const DataLayout &DL) { 2432 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2433 // statement", which has a very simple dominance structure. Basically, we 2434 // are trying to find the condition that is being branched on, which 2435 // subsequently causes this merge to happen. We really want control 2436 // dependence information for this check, but simplifycfg can't keep it up 2437 // to date, and this catches most of the cases we care about anyway. 2438 BasicBlock *BB = PN->getParent(); 2439 2440 BasicBlock *IfTrue, *IfFalse; 2441 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2442 if (!IfCond || 2443 // Don't bother if the branch will be constant folded trivially. 2444 isa<ConstantInt>(IfCond)) 2445 return false; 2446 2447 // Okay, we found that we can merge this two-entry phi node into a select. 2448 // Doing so would require us to fold *all* two entry phi nodes in this block. 2449 // At some point this becomes non-profitable (particularly if the target 2450 // doesn't support cmov's). Only do this transformation if there are two or 2451 // fewer PHI nodes in this block. 2452 unsigned NumPhis = 0; 2453 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2454 if (NumPhis > 2) 2455 return false; 2456 2457 // Loop over the PHI's seeing if we can promote them all to select 2458 // instructions. While we are at it, keep track of the instructions 2459 // that need to be moved to the dominating block. 2460 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2461 int BudgetRemaining = 2462 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2463 2464 bool Changed = false; 2465 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2466 PHINode *PN = cast<PHINode>(II++); 2467 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2468 PN->replaceAllUsesWith(V); 2469 PN->eraseFromParent(); 2470 Changed = true; 2471 continue; 2472 } 2473 2474 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2475 BudgetRemaining, TTI) || 2476 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2477 BudgetRemaining, TTI)) 2478 return Changed; 2479 } 2480 2481 // If we folded the first phi, PN dangles at this point. Refresh it. If 2482 // we ran out of PHIs then we simplified them all. 2483 PN = dyn_cast<PHINode>(BB->begin()); 2484 if (!PN) 2485 return true; 2486 2487 // Return true if at least one of these is a 'not', and another is either 2488 // a 'not' too, or a constant. 2489 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2490 if (!match(V0, m_Not(m_Value()))) 2491 std::swap(V0, V1); 2492 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2493 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2494 }; 2495 2496 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2497 // of the incoming values is an 'not' and another one is freely invertible. 2498 // These can often be turned into switches and other things. 2499 if (PN->getType()->isIntegerTy(1) && 2500 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2501 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2502 isa<BinaryOperator>(IfCond)) && 2503 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2504 PN->getIncomingValue(1))) 2505 return Changed; 2506 2507 // If all PHI nodes are promotable, check to make sure that all instructions 2508 // in the predecessor blocks can be promoted as well. If not, we won't be able 2509 // to get rid of the control flow, so it's not worth promoting to select 2510 // instructions. 2511 BasicBlock *DomBlock = nullptr; 2512 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2513 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2514 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2515 IfBlock1 = nullptr; 2516 } else { 2517 DomBlock = *pred_begin(IfBlock1); 2518 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2519 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2520 !isa<PseudoProbeInst>(I)) { 2521 // This is not an aggressive instruction that we can promote. 2522 // Because of this, we won't be able to get rid of the control flow, so 2523 // the xform is not worth it. 2524 return Changed; 2525 } 2526 } 2527 2528 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2529 IfBlock2 = nullptr; 2530 } else { 2531 DomBlock = *pred_begin(IfBlock2); 2532 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2533 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2534 !isa<PseudoProbeInst>(I)) { 2535 // This is not an aggressive instruction that we can promote. 2536 // Because of this, we won't be able to get rid of the control flow, so 2537 // the xform is not worth it. 2538 return Changed; 2539 } 2540 } 2541 assert(DomBlock && "Failed to find root DomBlock"); 2542 2543 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2544 << " T: " << IfTrue->getName() 2545 << " F: " << IfFalse->getName() << "\n"); 2546 2547 // If we can still promote the PHI nodes after this gauntlet of tests, 2548 // do all of the PHI's now. 2549 Instruction *InsertPt = DomBlock->getTerminator(); 2550 IRBuilder<NoFolder> Builder(InsertPt); 2551 2552 // Move all 'aggressive' instructions, which are defined in the 2553 // conditional parts of the if's up to the dominating block. 2554 if (IfBlock1) 2555 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2556 if (IfBlock2) 2557 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2558 2559 // Propagate fast-math-flags from phi nodes to replacement selects. 2560 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2561 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2562 if (isa<FPMathOperator>(PN)) 2563 Builder.setFastMathFlags(PN->getFastMathFlags()); 2564 2565 // Change the PHI node into a select instruction. 2566 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2567 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2568 2569 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2570 PN->replaceAllUsesWith(Sel); 2571 Sel->takeName(PN); 2572 PN->eraseFromParent(); 2573 } 2574 2575 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2576 // has been flattened. Change DomBlock to jump directly to our new block to 2577 // avoid other simplifycfg's kicking in on the diamond. 2578 Instruction *OldTI = DomBlock->getTerminator(); 2579 Builder.SetInsertPoint(OldTI); 2580 Builder.CreateBr(BB); 2581 OldTI->eraseFromParent(); 2582 return true; 2583 } 2584 2585 /// If we found a conditional branch that goes to two returning blocks, 2586 /// try to merge them together into one return, 2587 /// introducing a select if the return values disagree. 2588 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2589 IRBuilder<> &Builder) { 2590 assert(BI->isConditional() && "Must be a conditional branch"); 2591 BasicBlock *TrueSucc = BI->getSuccessor(0); 2592 BasicBlock *FalseSucc = BI->getSuccessor(1); 2593 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2594 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2595 2596 // Check to ensure both blocks are empty (just a return) or optionally empty 2597 // with PHI nodes. If there are other instructions, merging would cause extra 2598 // computation on one path or the other. 2599 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2600 return false; 2601 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2602 return false; 2603 2604 Builder.SetInsertPoint(BI); 2605 // Okay, we found a branch that is going to two return nodes. If 2606 // there is no return value for this function, just change the 2607 // branch into a return. 2608 if (FalseRet->getNumOperands() == 0) { 2609 TrueSucc->removePredecessor(BI->getParent()); 2610 FalseSucc->removePredecessor(BI->getParent()); 2611 Builder.CreateRetVoid(); 2612 EraseTerminatorAndDCECond(BI); 2613 return true; 2614 } 2615 2616 // Otherwise, figure out what the true and false return values are 2617 // so we can insert a new select instruction. 2618 Value *TrueValue = TrueRet->getReturnValue(); 2619 Value *FalseValue = FalseRet->getReturnValue(); 2620 2621 // Unwrap any PHI nodes in the return blocks. 2622 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2623 if (TVPN->getParent() == TrueSucc) 2624 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2625 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2626 if (FVPN->getParent() == FalseSucc) 2627 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2628 2629 // In order for this transformation to be safe, we must be able to 2630 // unconditionally execute both operands to the return. This is 2631 // normally the case, but we could have a potentially-trapping 2632 // constant expression that prevents this transformation from being 2633 // safe. 2634 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2635 if (TCV->canTrap()) 2636 return false; 2637 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2638 if (FCV->canTrap()) 2639 return false; 2640 2641 // Okay, we collected all the mapped values and checked them for sanity, and 2642 // defined to really do this transformation. First, update the CFG. 2643 TrueSucc->removePredecessor(BI->getParent()); 2644 FalseSucc->removePredecessor(BI->getParent()); 2645 2646 // Insert select instructions where needed. 2647 Value *BrCond = BI->getCondition(); 2648 if (TrueValue) { 2649 // Insert a select if the results differ. 2650 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2651 } else if (isa<UndefValue>(TrueValue)) { 2652 TrueValue = FalseValue; 2653 } else { 2654 TrueValue = 2655 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2656 } 2657 } 2658 2659 Value *RI = 2660 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2661 2662 (void)RI; 2663 2664 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2665 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2666 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2667 2668 EraseTerminatorAndDCECond(BI); 2669 2670 return true; 2671 } 2672 2673 /// Return true if the given instruction is available 2674 /// in its predecessor block. If yes, the instruction will be removed. 2675 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2676 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2677 return false; 2678 for (Instruction &I : *PB) { 2679 Instruction *PBI = &I; 2680 // Check whether Inst and PBI generate the same value. 2681 if (Inst->isIdenticalTo(PBI)) { 2682 Inst->replaceAllUsesWith(PBI); 2683 Inst->eraseFromParent(); 2684 return true; 2685 } 2686 } 2687 return false; 2688 } 2689 2690 /// Return true if either PBI or BI has branch weight available, and store 2691 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2692 /// not have branch weight, use 1:1 as its weight. 2693 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2694 uint64_t &PredTrueWeight, 2695 uint64_t &PredFalseWeight, 2696 uint64_t &SuccTrueWeight, 2697 uint64_t &SuccFalseWeight) { 2698 bool PredHasWeights = 2699 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2700 bool SuccHasWeights = 2701 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2702 if (PredHasWeights || SuccHasWeights) { 2703 if (!PredHasWeights) 2704 PredTrueWeight = PredFalseWeight = 1; 2705 if (!SuccHasWeights) 2706 SuccTrueWeight = SuccFalseWeight = 1; 2707 return true; 2708 } else { 2709 return false; 2710 } 2711 } 2712 2713 /// Given \p BB block, for each instruction in said block, insert trivial 2714 /// (single value) PHI nodes into each successor block of \p BB block, and 2715 /// rewrite all the the non-PHI (or PHI uses not in successors of \p BB block) 2716 /// uses of instructions of \p BB block to use newly-inserted PHI nodes. 2717 /// NOTE: even though it would be correct to not deal with multi-predecessor 2718 /// successor blocks, or uses within the \p BB block, we may be dealing 2719 /// with an unreachable IR, where many invariants don't hold... 2720 static void FormTrivialSSAPHI(BasicBlock *BB) { 2721 SmallSetVector<BasicBlock *, 16> Successors(succ_begin(BB), succ_end(BB)); 2722 2723 // Process instructions in reverse order. There is no correctness reason for 2724 // that order, but it allows us to consistently insert new PHI nodes 2725 // at the top of blocks, while maintaining their relative order. 2726 for (Instruction &DefInstr : make_range(BB->rbegin(), BB->rend())) { 2727 SmallVector<std::reference_wrapper<Use>, 16> UsesToRewrite; 2728 2729 // Cache which uses we'll want to rewrite. 2730 copy_if(DefInstr.uses(), std::back_inserter(UsesToRewrite), 2731 [BB, &DefInstr, &Successors](Use &U) { 2732 auto *User = cast<Instruction>(U.getUser()); 2733 auto *UserBB = User->getParent(); 2734 // Generally, ignore users in the same block as the instruction 2735 // itself, unless the use[r] either comes before, or is [by] the 2736 // instruction itself, which means we are in an unreachable IR. 2737 if (UserBB == BB) 2738 return !DefInstr.comesBefore(User); 2739 // Otherwise, rewrite all non-PHI users, 2740 // or PHI users in non-successor blocks. 2741 return !isa<PHINode>(User) || !Successors.contains(UserBB); 2742 }); 2743 2744 // So, do we have uses to rewrite? 2745 if (UsesToRewrite.empty()) 2746 continue; // Check next remaining instruction. 2747 2748 SSAUpdater SSAUpdate; 2749 SSAUpdate.Initialize(DefInstr.getType(), DefInstr.getName()); 2750 2751 // Create a new PHI node in each successor block. 2752 // WARNING: the iteration order is externally-observable, 2753 // and therefore must be stable! 2754 for (BasicBlock *Successor : Successors) { 2755 IRBuilder<> Builder(&Successor->front()); 2756 auto *PN = Builder.CreatePHI(DefInstr.getType(), pred_size(Successor), 2757 DefInstr.getName()); 2758 // By default, have an 'undef' incoming value for each predecessor. 2759 for (BasicBlock *PredsOfSucc : predecessors(Successor)) 2760 PN->addIncoming(UndefValue::get(DefInstr.getType()), PredsOfSucc); 2761 // .. but receive the correct value when coming from the right block. 2762 PN->setIncomingValueForBlock(BB, &DefInstr); 2763 // And make note of that PHI. 2764 SSAUpdate.AddAvailableValue(Successor, PN); 2765 } 2766 2767 // And finally, rewrite all the problematic uses to use the new PHI nodes. 2768 while (!UsesToRewrite.empty()) 2769 SSAUpdate.RewriteUseAfterInsertions(UsesToRewrite.pop_back_val()); 2770 } 2771 } 2772 2773 /// If this basic block is simple enough, and if a predecessor branches to us 2774 /// and one of our successors, fold the block into the predecessor and use 2775 /// logical operations to pick the right destination. 2776 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2777 const TargetTransformInfo *TTI, 2778 unsigned BonusInstThreshold) { 2779 BasicBlock *BB = BI->getParent(); 2780 2781 const unsigned PredCount = pred_size(BB); 2782 2783 bool Changed = false; 2784 2785 auto _ = make_scope_exit([&]() { 2786 if (Changed) 2787 ++NumFoldBranchToCommonDest; 2788 }); 2789 2790 TargetTransformInfo::TargetCostKind CostKind = 2791 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2792 : TargetTransformInfo::TCK_SizeAndLatency; 2793 2794 Instruction *Cond = nullptr; 2795 if (BI->isConditional()) 2796 Cond = dyn_cast<Instruction>(BI->getCondition()); 2797 else { 2798 // For unconditional branch, check for a simple CFG pattern, where 2799 // BB has a single predecessor and BB's successor is also its predecessor's 2800 // successor. If such pattern exists, check for CSE between BB and its 2801 // predecessor. 2802 if (BasicBlock *PB = BB->getSinglePredecessor()) 2803 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2804 if (PBI->isConditional() && 2805 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2806 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2807 for (auto I = BB->instructionsWithoutDebug().begin(), 2808 E = BB->instructionsWithoutDebug().end(); 2809 I != E;) { 2810 Instruction *Curr = &*I++; 2811 if (isa<CmpInst>(Curr)) { 2812 Cond = Curr; 2813 break; 2814 } 2815 // Quit if we can't remove this instruction. 2816 if (!tryCSEWithPredecessor(Curr, PB)) 2817 return Changed; 2818 Changed = true; 2819 } 2820 } 2821 2822 if (!Cond) 2823 return Changed; 2824 } 2825 2826 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2827 Cond->getParent() != BB || !Cond->hasOneUse()) 2828 return Changed; 2829 2830 // Only allow this transformation if computing the condition doesn't involve 2831 // too many instructions and these involved instructions can be executed 2832 // unconditionally. We denote all involved instructions except the condition 2833 // as "bonus instructions", and only allow this transformation when the 2834 // number of the bonus instructions we'll need to create when cloning into 2835 // each predecessor does not exceed a certain threshold. 2836 unsigned NumBonusInsts = 0; 2837 for (Instruction &I : *BB) { 2838 // Don't check the branch condition comparison itself. 2839 if (&I == Cond) 2840 continue; 2841 // Ignore dbg intrinsics, and the terminator. 2842 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 2843 continue; 2844 // I must be safe to execute unconditionally. 2845 if (!isSafeToSpeculativelyExecute(&I)) 2846 return Changed; 2847 2848 // Account for the cost of duplicating this instruction into each 2849 // predecessor. 2850 NumBonusInsts += PredCount; 2851 // Early exits once we reach the limit. 2852 if (NumBonusInsts > BonusInstThreshold) 2853 return Changed; 2854 } 2855 2856 // Cond is known to be a compare or binary operator. Check to make sure that 2857 // neither operand is a potentially-trapping constant expression. 2858 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2859 if (CE->canTrap()) 2860 return Changed; 2861 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2862 if (CE->canTrap()) 2863 return Changed; 2864 2865 // Finally, don't infinitely unroll conditional loops. 2866 BasicBlock *TrueDest = BI->getSuccessor(0); 2867 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2868 if (TrueDest == BB || FalseDest == BB) 2869 return Changed; 2870 2871 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2872 BasicBlock *PredBlock = *PI; 2873 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2874 2875 // Check that we have two conditional branches. If there is a PHI node in 2876 // the common successor, verify that the same value flows in from both 2877 // blocks. 2878 SmallVector<PHINode *, 4> PHIs; 2879 if (!PBI || PBI->isUnconditional() || 2880 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2881 (!BI->isConditional() && 2882 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2883 continue; 2884 2885 // Determine if the two branches share a common destination. 2886 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2887 bool InvertPredCond = false; 2888 2889 if (BI->isConditional()) { 2890 if (PBI->getSuccessor(0) == TrueDest) { 2891 Opc = Instruction::Or; 2892 } else if (PBI->getSuccessor(1) == FalseDest) { 2893 Opc = Instruction::And; 2894 } else if (PBI->getSuccessor(0) == FalseDest) { 2895 Opc = Instruction::And; 2896 InvertPredCond = true; 2897 } else if (PBI->getSuccessor(1) == TrueDest) { 2898 Opc = Instruction::Or; 2899 InvertPredCond = true; 2900 } else { 2901 continue; 2902 } 2903 } else { 2904 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2905 continue; 2906 } 2907 2908 // Check the cost of inserting the necessary logic before performing the 2909 // transformation. 2910 if (TTI && Opc != Instruction::BinaryOpsEnd) { 2911 Type *Ty = BI->getCondition()->getType(); 2912 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 2913 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 2914 !isa<CmpInst>(PBI->getCondition()))) 2915 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 2916 2917 if (Cost > BranchFoldThreshold) 2918 continue; 2919 } 2920 2921 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2922 Changed = true; 2923 2924 IRBuilder<> Builder(PBI); 2925 2926 // If we need to invert the condition in the pred block to match, do so now. 2927 if (InvertPredCond) { 2928 Value *NewCond = PBI->getCondition(); 2929 2930 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2931 CmpInst *CI = cast<CmpInst>(NewCond); 2932 CI->setPredicate(CI->getInversePredicate()); 2933 } else { 2934 NewCond = 2935 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2936 } 2937 2938 PBI->setCondition(NewCond); 2939 PBI->swapSuccessors(); 2940 } 2941 2942 // Ensure that the bonus instructions are *only* used by the PHI nodes, 2943 // because the successor basic block is about to get a new predecessor 2944 // and non-PHI uses will become invalid. 2945 FormTrivialSSAPHI(BB); 2946 2947 // Before cloning instructions, notify the successor basic block that it 2948 // is about to have a new predecessor. This will update PHI nodes, 2949 // which will allow us to update live-out uses of bonus instructions. 2950 if (BI->isConditional()) 2951 AddPredecessorToBlock(PBI->getSuccessor(0) == BB ? TrueDest : FalseDest, 2952 PredBlock, BB, MSSAU); 2953 2954 // If we have bonus instructions, clone them into the predecessor block. 2955 // Note that there may be multiple predecessor blocks, so we cannot move 2956 // bonus instructions to a predecessor block. 2957 ValueToValueMapTy VMap; // maps original values to cloned values 2958 Instruction *CondInPred; 2959 for (Instruction &BonusInst : *BB) { 2960 if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst)) 2961 continue; 2962 2963 Instruction *NewBonusInst = BonusInst.clone(); 2964 2965 if (&BonusInst == Cond) 2966 CondInPred = NewBonusInst; 2967 2968 // When we fold the bonus instructions we want to make sure we 2969 // reset their debug locations in order to avoid stepping on dead 2970 // code caused by folding dead branches. 2971 NewBonusInst->setDebugLoc(DebugLoc()); 2972 2973 RemapInstruction(NewBonusInst, VMap, 2974 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2975 VMap[&BonusInst] = NewBonusInst; 2976 2977 // If we moved a load, we cannot any longer claim any knowledge about 2978 // its potential value. The previous information might have been valid 2979 // only given the branch precondition. 2980 // For an analogous reason, we must also drop all the metadata whose 2981 // semantics we don't understand. 2982 NewBonusInst->dropUnknownNonDebugMetadata(); 2983 2984 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2985 NewBonusInst->takeName(&BonusInst); 2986 BonusInst.setName(BonusInst.getName() + ".old"); 2987 BonusInst.replaceUsesWithIf(NewBonusInst, [BB](Use &U) { 2988 auto *User = cast<Instruction>(U.getUser()); 2989 // Ignore the original bonus instructions themselves. 2990 if (User->getParent() == BB) 2991 return false; 2992 // Otherwise, we've got a PHI node. Don't touch incoming values 2993 // for same block as the bonus instruction itself. 2994 return cast<PHINode>(User)->getIncomingBlock(U) != BB; 2995 }); 2996 } 2997 2998 // Now that the Cond was cloned into the predecessor basic block, 2999 // or/and the two conditions together. 3000 if (BI->isConditional()) { 3001 Instruction *NewCond = cast<Instruction>( 3002 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 3003 PBI->setCondition(NewCond); 3004 3005 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3006 bool HasWeights = 3007 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3008 SuccTrueWeight, SuccFalseWeight); 3009 SmallVector<uint64_t, 8> NewWeights; 3010 3011 if (PBI->getSuccessor(0) == BB) { 3012 if (HasWeights) { 3013 // PBI: br i1 %x, BB, FalseDest 3014 // BI: br i1 %y, TrueDest, FalseDest 3015 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3016 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3017 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3018 // TrueWeight for PBI * FalseWeight for BI. 3019 // We assume that total weights of a BranchInst can fit into 32 bits. 3020 // Therefore, we will not have overflow using 64-bit arithmetic. 3021 NewWeights.push_back(PredFalseWeight * 3022 (SuccFalseWeight + SuccTrueWeight) + 3023 PredTrueWeight * SuccFalseWeight); 3024 } 3025 PBI->setSuccessor(0, TrueDest); 3026 } 3027 if (PBI->getSuccessor(1) == BB) { 3028 if (HasWeights) { 3029 // PBI: br i1 %x, TrueDest, BB 3030 // BI: br i1 %y, TrueDest, FalseDest 3031 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3032 // FalseWeight for PBI * TrueWeight for BI. 3033 NewWeights.push_back(PredTrueWeight * 3034 (SuccFalseWeight + SuccTrueWeight) + 3035 PredFalseWeight * SuccTrueWeight); 3036 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3037 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3038 } 3039 PBI->setSuccessor(1, FalseDest); 3040 } 3041 if (NewWeights.size() == 2) { 3042 // Halve the weights if any of them cannot fit in an uint32_t 3043 FitWeights(NewWeights); 3044 3045 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 3046 NewWeights.end()); 3047 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3048 } else 3049 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3050 } else { 3051 // Update PHI nodes in the common successors. 3052 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 3053 ConstantInt *PBI_C = cast<ConstantInt>( 3054 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 3055 assert(PBI_C->getType()->isIntegerTy(1)); 3056 Instruction *MergedCond = nullptr; 3057 if (PBI->getSuccessor(0) == TrueDest) { 3058 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 3059 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 3060 // is false: !PBI_Cond and BI_Value 3061 Instruction *NotCond = cast<Instruction>( 3062 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3063 MergedCond = cast<Instruction>( 3064 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 3065 "and.cond")); 3066 if (PBI_C->isOne()) 3067 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3068 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 3069 } else { 3070 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 3071 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 3072 // is false: PBI_Cond and BI_Value 3073 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3074 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 3075 if (PBI_C->isOne()) { 3076 Instruction *NotCond = cast<Instruction>( 3077 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3078 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3079 Instruction::Or, NotCond, MergedCond, "or.cond")); 3080 } 3081 } 3082 // Update PHI Node. 3083 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 3084 } 3085 3086 // PBI is changed to branch to TrueDest below. Remove itself from 3087 // potential phis from all other successors. 3088 if (MSSAU) 3089 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 3090 3091 // Change PBI from Conditional to Unconditional. 3092 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 3093 EraseTerminatorAndDCECond(PBI, MSSAU); 3094 PBI = New_PBI; 3095 } 3096 3097 // If BI was a loop latch, it may have had associated loop metadata. 3098 // We need to copy it to the new latch, that is, PBI. 3099 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3100 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3101 3102 // TODO: If BB is reachable from all paths through PredBlock, then we 3103 // could replace PBI's branch probabilities with BI's. 3104 3105 // Copy any debug value intrinsics into the end of PredBlock. 3106 for (Instruction &I : *BB) { 3107 if (isa<DbgInfoIntrinsic>(I)) { 3108 Instruction *NewI = I.clone(); 3109 RemapInstruction(NewI, VMap, 3110 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3111 NewI->insertBefore(PBI); 3112 } 3113 } 3114 3115 return Changed; 3116 } 3117 return Changed; 3118 } 3119 3120 // If there is only one store in BB1 and BB2, return it, otherwise return 3121 // nullptr. 3122 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3123 StoreInst *S = nullptr; 3124 for (auto *BB : {BB1, BB2}) { 3125 if (!BB) 3126 continue; 3127 for (auto &I : *BB) 3128 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3129 if (S) 3130 // Multiple stores seen. 3131 return nullptr; 3132 else 3133 S = SI; 3134 } 3135 } 3136 return S; 3137 } 3138 3139 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3140 Value *AlternativeV = nullptr) { 3141 // PHI is going to be a PHI node that allows the value V that is defined in 3142 // BB to be referenced in BB's only successor. 3143 // 3144 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3145 // doesn't matter to us what the other operand is (it'll never get used). We 3146 // could just create a new PHI with an undef incoming value, but that could 3147 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3148 // other PHI. So here we directly look for some PHI in BB's successor with V 3149 // as an incoming operand. If we find one, we use it, else we create a new 3150 // one. 3151 // 3152 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3153 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3154 // where OtherBB is the single other predecessor of BB's only successor. 3155 PHINode *PHI = nullptr; 3156 BasicBlock *Succ = BB->getSingleSuccessor(); 3157 3158 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3159 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3160 PHI = cast<PHINode>(I); 3161 if (!AlternativeV) 3162 break; 3163 3164 assert(Succ->hasNPredecessors(2)); 3165 auto PredI = pred_begin(Succ); 3166 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3167 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3168 break; 3169 PHI = nullptr; 3170 } 3171 if (PHI) 3172 return PHI; 3173 3174 // If V is not an instruction defined in BB, just return it. 3175 if (!AlternativeV && 3176 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3177 return V; 3178 3179 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3180 PHI->addIncoming(V, BB); 3181 for (BasicBlock *PredBB : predecessors(Succ)) 3182 if (PredBB != BB) 3183 PHI->addIncoming( 3184 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3185 return PHI; 3186 } 3187 3188 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 3189 BasicBlock *QTB, BasicBlock *QFB, 3190 BasicBlock *PostBB, Value *Address, 3191 bool InvertPCond, bool InvertQCond, 3192 const DataLayout &DL, 3193 const TargetTransformInfo &TTI) { 3194 // For every pointer, there must be exactly two stores, one coming from 3195 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3196 // store (to any address) in PTB,PFB or QTB,QFB. 3197 // FIXME: We could relax this restriction with a bit more work and performance 3198 // testing. 3199 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3200 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3201 if (!PStore || !QStore) 3202 return false; 3203 3204 // Now check the stores are compatible. 3205 if (!QStore->isUnordered() || !PStore->isUnordered()) 3206 return false; 3207 3208 // Check that sinking the store won't cause program behavior changes. Sinking 3209 // the store out of the Q blocks won't change any behavior as we're sinking 3210 // from a block to its unconditional successor. But we're moving a store from 3211 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3212 // So we need to check that there are no aliasing loads or stores in 3213 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3214 // operations between PStore and the end of its parent block. 3215 // 3216 // The ideal way to do this is to query AliasAnalysis, but we don't 3217 // preserve AA currently so that is dangerous. Be super safe and just 3218 // check there are no other memory operations at all. 3219 for (auto &I : *QFB->getSinglePredecessor()) 3220 if (I.mayReadOrWriteMemory()) 3221 return false; 3222 for (auto &I : *QFB) 3223 if (&I != QStore && I.mayReadOrWriteMemory()) 3224 return false; 3225 if (QTB) 3226 for (auto &I : *QTB) 3227 if (&I != QStore && I.mayReadOrWriteMemory()) 3228 return false; 3229 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3230 I != E; ++I) 3231 if (&*I != PStore && I->mayReadOrWriteMemory()) 3232 return false; 3233 3234 // If we're not in aggressive mode, we only optimize if we have some 3235 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3236 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3237 if (!BB) 3238 return true; 3239 // Heuristic: if the block can be if-converted/phi-folded and the 3240 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3241 // thread this store. 3242 int BudgetRemaining = 3243 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3244 for (auto &I : BB->instructionsWithoutDebug()) { 3245 // Consider terminator instruction to be free. 3246 if (I.isTerminator()) 3247 continue; 3248 // If this is one the stores that we want to speculate out of this BB, 3249 // then don't count it's cost, consider it to be free. 3250 if (auto *S = dyn_cast<StoreInst>(&I)) 3251 if (llvm::find(FreeStores, S)) 3252 continue; 3253 // Else, we have a white-list of instructions that we are ak speculating. 3254 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3255 return false; // Not in white-list - not worthwhile folding. 3256 // And finally, if this is a non-free instruction that we are okay 3257 // speculating, ensure that we consider the speculation budget. 3258 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3259 if (BudgetRemaining < 0) 3260 return false; // Eagerly refuse to fold as soon as we're out of budget. 3261 } 3262 assert(BudgetRemaining >= 0 && 3263 "When we run out of budget we will eagerly return from within the " 3264 "per-instruction loop."); 3265 return true; 3266 }; 3267 3268 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3269 if (!MergeCondStoresAggressively && 3270 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3271 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3272 return false; 3273 3274 // If PostBB has more than two predecessors, we need to split it so we can 3275 // sink the store. 3276 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3277 // We know that QFB's only successor is PostBB. And QFB has a single 3278 // predecessor. If QTB exists, then its only successor is also PostBB. 3279 // If QTB does not exist, then QFB's only predecessor has a conditional 3280 // branch to QFB and PostBB. 3281 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3282 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3283 "condstore.split"); 3284 if (!NewBB) 3285 return false; 3286 PostBB = NewBB; 3287 } 3288 3289 // OK, we're going to sink the stores to PostBB. The store has to be 3290 // conditional though, so first create the predicate. 3291 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3292 ->getCondition(); 3293 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3294 ->getCondition(); 3295 3296 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3297 PStore->getParent()); 3298 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3299 QStore->getParent(), PPHI); 3300 3301 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3302 3303 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3304 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3305 3306 if (InvertPCond) 3307 PPred = QB.CreateNot(PPred); 3308 if (InvertQCond) 3309 QPred = QB.CreateNot(QPred); 3310 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3311 3312 auto *T = 3313 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3314 QB.SetInsertPoint(T); 3315 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3316 AAMDNodes AAMD; 3317 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3318 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3319 SI->setAAMetadata(AAMD); 3320 // Choose the minimum alignment. If we could prove both stores execute, we 3321 // could use biggest one. In this case, though, we only know that one of the 3322 // stores executes. And we don't know it's safe to take the alignment from a 3323 // store that doesn't execute. 3324 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3325 3326 QStore->eraseFromParent(); 3327 PStore->eraseFromParent(); 3328 3329 return true; 3330 } 3331 3332 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3333 const DataLayout &DL, 3334 const TargetTransformInfo &TTI) { 3335 // The intention here is to find diamonds or triangles (see below) where each 3336 // conditional block contains a store to the same address. Both of these 3337 // stores are conditional, so they can't be unconditionally sunk. But it may 3338 // be profitable to speculatively sink the stores into one merged store at the 3339 // end, and predicate the merged store on the union of the two conditions of 3340 // PBI and QBI. 3341 // 3342 // This can reduce the number of stores executed if both of the conditions are 3343 // true, and can allow the blocks to become small enough to be if-converted. 3344 // This optimization will also chain, so that ladders of test-and-set 3345 // sequences can be if-converted away. 3346 // 3347 // We only deal with simple diamonds or triangles: 3348 // 3349 // PBI or PBI or a combination of the two 3350 // / \ | \ 3351 // PTB PFB | PFB 3352 // \ / | / 3353 // QBI QBI 3354 // / \ | \ 3355 // QTB QFB | QFB 3356 // \ / | / 3357 // PostBB PostBB 3358 // 3359 // We model triangles as a type of diamond with a nullptr "true" block. 3360 // Triangles are canonicalized so that the fallthrough edge is represented by 3361 // a true condition, as in the diagram above. 3362 BasicBlock *PTB = PBI->getSuccessor(0); 3363 BasicBlock *PFB = PBI->getSuccessor(1); 3364 BasicBlock *QTB = QBI->getSuccessor(0); 3365 BasicBlock *QFB = QBI->getSuccessor(1); 3366 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3367 3368 // Make sure we have a good guess for PostBB. If QTB's only successor is 3369 // QFB, then QFB is a better PostBB. 3370 if (QTB->getSingleSuccessor() == QFB) 3371 PostBB = QFB; 3372 3373 // If we couldn't find a good PostBB, stop. 3374 if (!PostBB) 3375 return false; 3376 3377 bool InvertPCond = false, InvertQCond = false; 3378 // Canonicalize fallthroughs to the true branches. 3379 if (PFB == QBI->getParent()) { 3380 std::swap(PFB, PTB); 3381 InvertPCond = true; 3382 } 3383 if (QFB == PostBB) { 3384 std::swap(QFB, QTB); 3385 InvertQCond = true; 3386 } 3387 3388 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3389 // and QFB may not. Model fallthroughs as a nullptr block. 3390 if (PTB == QBI->getParent()) 3391 PTB = nullptr; 3392 if (QTB == PostBB) 3393 QTB = nullptr; 3394 3395 // Legality bailouts. We must have at least the non-fallthrough blocks and 3396 // the post-dominating block, and the non-fallthroughs must only have one 3397 // predecessor. 3398 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3399 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3400 }; 3401 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3402 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3403 return false; 3404 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3405 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3406 return false; 3407 if (!QBI->getParent()->hasNUses(2)) 3408 return false; 3409 3410 // OK, this is a sequence of two diamonds or triangles. 3411 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3412 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3413 for (auto *BB : {PTB, PFB}) { 3414 if (!BB) 3415 continue; 3416 for (auto &I : *BB) 3417 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3418 PStoreAddresses.insert(SI->getPointerOperand()); 3419 } 3420 for (auto *BB : {QTB, QFB}) { 3421 if (!BB) 3422 continue; 3423 for (auto &I : *BB) 3424 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3425 QStoreAddresses.insert(SI->getPointerOperand()); 3426 } 3427 3428 set_intersect(PStoreAddresses, QStoreAddresses); 3429 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3430 // clear what it contains. 3431 auto &CommonAddresses = PStoreAddresses; 3432 3433 bool Changed = false; 3434 for (auto *Address : CommonAddresses) 3435 Changed |= mergeConditionalStoreToAddress( 3436 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3437 return Changed; 3438 } 3439 3440 3441 /// If the previous block ended with a widenable branch, determine if reusing 3442 /// the target block is profitable and legal. This will have the effect of 3443 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3444 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3445 // TODO: This can be generalized in two important ways: 3446 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3447 // values from the PBI edge. 3448 // 2) We can sink side effecting instructions into BI's fallthrough 3449 // successor provided they doesn't contribute to computation of 3450 // BI's condition. 3451 Value *CondWB, *WC; 3452 BasicBlock *IfTrueBB, *IfFalseBB; 3453 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3454 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3455 return false; 3456 if (!IfFalseBB->phis().empty()) 3457 return false; // TODO 3458 // Use lambda to lazily compute expensive condition after cheap ones. 3459 auto NoSideEffects = [](BasicBlock &BB) { 3460 return !llvm::any_of(BB, [](const Instruction &I) { 3461 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3462 }); 3463 }; 3464 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3465 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3466 NoSideEffects(*BI->getParent())) { 3467 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3468 BI->setSuccessor(1, IfFalseBB); 3469 return true; 3470 } 3471 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3472 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3473 NoSideEffects(*BI->getParent())) { 3474 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3475 BI->setSuccessor(0, IfFalseBB); 3476 return true; 3477 } 3478 return false; 3479 } 3480 3481 /// If we have a conditional branch as a predecessor of another block, 3482 /// this function tries to simplify it. We know 3483 /// that PBI and BI are both conditional branches, and BI is in one of the 3484 /// successor blocks of PBI - PBI branches to BI. 3485 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3486 const DataLayout &DL, 3487 const TargetTransformInfo &TTI) { 3488 assert(PBI->isConditional() && BI->isConditional()); 3489 BasicBlock *BB = BI->getParent(); 3490 3491 // If this block ends with a branch instruction, and if there is a 3492 // predecessor that ends on a branch of the same condition, make 3493 // this conditional branch redundant. 3494 if (PBI->getCondition() == BI->getCondition() && 3495 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3496 // Okay, the outcome of this conditional branch is statically 3497 // knowable. If this block had a single pred, handle specially. 3498 if (BB->getSinglePredecessor()) { 3499 // Turn this into a branch on constant. 3500 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3501 BI->setCondition( 3502 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3503 return true; // Nuke the branch on constant. 3504 } 3505 3506 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3507 // in the constant and simplify the block result. Subsequent passes of 3508 // simplifycfg will thread the block. 3509 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3510 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3511 PHINode *NewPN = PHINode::Create( 3512 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3513 BI->getCondition()->getName() + ".pr", &BB->front()); 3514 // Okay, we're going to insert the PHI node. Since PBI is not the only 3515 // predecessor, compute the PHI'd conditional value for all of the preds. 3516 // Any predecessor where the condition is not computable we keep symbolic. 3517 for (pred_iterator PI = PB; PI != PE; ++PI) { 3518 BasicBlock *P = *PI; 3519 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3520 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3521 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3522 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3523 NewPN->addIncoming( 3524 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3525 P); 3526 } else { 3527 NewPN->addIncoming(BI->getCondition(), P); 3528 } 3529 } 3530 3531 BI->setCondition(NewPN); 3532 return true; 3533 } 3534 } 3535 3536 // If the previous block ended with a widenable branch, determine if reusing 3537 // the target block is profitable and legal. This will have the effect of 3538 // "widening" PBI, but doesn't require us to reason about hosting safety. 3539 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3540 return true; 3541 3542 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3543 if (CE->canTrap()) 3544 return false; 3545 3546 // If both branches are conditional and both contain stores to the same 3547 // address, remove the stores from the conditionals and create a conditional 3548 // merged store at the end. 3549 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3550 return true; 3551 3552 // If this is a conditional branch in an empty block, and if any 3553 // predecessors are a conditional branch to one of our destinations, 3554 // fold the conditions into logical ops and one cond br. 3555 3556 // Ignore dbg intrinsics. 3557 if (&*BB->instructionsWithoutDebug().begin() != BI) 3558 return false; 3559 3560 int PBIOp, BIOp; 3561 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3562 PBIOp = 0; 3563 BIOp = 0; 3564 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3565 PBIOp = 0; 3566 BIOp = 1; 3567 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3568 PBIOp = 1; 3569 BIOp = 0; 3570 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3571 PBIOp = 1; 3572 BIOp = 1; 3573 } else { 3574 return false; 3575 } 3576 3577 // Check to make sure that the other destination of this branch 3578 // isn't BB itself. If so, this is an infinite loop that will 3579 // keep getting unwound. 3580 if (PBI->getSuccessor(PBIOp) == BB) 3581 return false; 3582 3583 // Do not perform this transformation if it would require 3584 // insertion of a large number of select instructions. For targets 3585 // without predication/cmovs, this is a big pessimization. 3586 3587 // Also do not perform this transformation if any phi node in the common 3588 // destination block can trap when reached by BB or PBB (PR17073). In that 3589 // case, it would be unsafe to hoist the operation into a select instruction. 3590 3591 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3592 unsigned NumPhis = 0; 3593 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3594 ++II, ++NumPhis) { 3595 if (NumPhis > 2) // Disable this xform. 3596 return false; 3597 3598 PHINode *PN = cast<PHINode>(II); 3599 Value *BIV = PN->getIncomingValueForBlock(BB); 3600 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3601 if (CE->canTrap()) 3602 return false; 3603 3604 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3605 Value *PBIV = PN->getIncomingValue(PBBIdx); 3606 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3607 if (CE->canTrap()) 3608 return false; 3609 } 3610 3611 // Finally, if everything is ok, fold the branches to logical ops. 3612 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3613 3614 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3615 << "AND: " << *BI->getParent()); 3616 3617 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3618 // branch in it, where one edge (OtherDest) goes back to itself but the other 3619 // exits. We don't *know* that the program avoids the infinite loop 3620 // (even though that seems likely). If we do this xform naively, we'll end up 3621 // recursively unpeeling the loop. Since we know that (after the xform is 3622 // done) that the block *is* infinite if reached, we just make it an obviously 3623 // infinite loop with no cond branch. 3624 if (OtherDest == BB) { 3625 // Insert it at the end of the function, because it's either code, 3626 // or it won't matter if it's hot. :) 3627 BasicBlock *InfLoopBlock = 3628 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3629 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3630 OtherDest = InfLoopBlock; 3631 } 3632 3633 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3634 3635 // BI may have other predecessors. Because of this, we leave 3636 // it alone, but modify PBI. 3637 3638 // Make sure we get to CommonDest on True&True directions. 3639 Value *PBICond = PBI->getCondition(); 3640 IRBuilder<NoFolder> Builder(PBI); 3641 if (PBIOp) 3642 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3643 3644 Value *BICond = BI->getCondition(); 3645 if (BIOp) 3646 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3647 3648 // Merge the conditions. 3649 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3650 3651 // Modify PBI to branch on the new condition to the new dests. 3652 PBI->setCondition(Cond); 3653 PBI->setSuccessor(0, CommonDest); 3654 PBI->setSuccessor(1, OtherDest); 3655 3656 // Update branch weight for PBI. 3657 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3658 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3659 bool HasWeights = 3660 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3661 SuccTrueWeight, SuccFalseWeight); 3662 if (HasWeights) { 3663 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3664 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3665 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3666 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3667 // The weight to CommonDest should be PredCommon * SuccTotal + 3668 // PredOther * SuccCommon. 3669 // The weight to OtherDest should be PredOther * SuccOther. 3670 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3671 PredOther * SuccCommon, 3672 PredOther * SuccOther}; 3673 // Halve the weights if any of them cannot fit in an uint32_t 3674 FitWeights(NewWeights); 3675 3676 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3677 } 3678 3679 // OtherDest may have phi nodes. If so, add an entry from PBI's 3680 // block that are identical to the entries for BI's block. 3681 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3682 3683 // We know that the CommonDest already had an edge from PBI to 3684 // it. If it has PHIs though, the PHIs may have different 3685 // entries for BB and PBI's BB. If so, insert a select to make 3686 // them agree. 3687 for (PHINode &PN : CommonDest->phis()) { 3688 Value *BIV = PN.getIncomingValueForBlock(BB); 3689 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3690 Value *PBIV = PN.getIncomingValue(PBBIdx); 3691 if (BIV != PBIV) { 3692 // Insert a select in PBI to pick the right value. 3693 SelectInst *NV = cast<SelectInst>( 3694 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3695 PN.setIncomingValue(PBBIdx, NV); 3696 // Although the select has the same condition as PBI, the original branch 3697 // weights for PBI do not apply to the new select because the select's 3698 // 'logical' edges are incoming edges of the phi that is eliminated, not 3699 // the outgoing edges of PBI. 3700 if (HasWeights) { 3701 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3702 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3703 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3704 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3705 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3706 // The weight to PredOtherDest should be PredOther * SuccCommon. 3707 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3708 PredOther * SuccCommon}; 3709 3710 FitWeights(NewWeights); 3711 3712 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3713 } 3714 } 3715 } 3716 3717 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3718 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3719 3720 // This basic block is probably dead. We know it has at least 3721 // one fewer predecessor. 3722 return true; 3723 } 3724 3725 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3726 // true or to FalseBB if Cond is false. 3727 // Takes care of updating the successors and removing the old terminator. 3728 // Also makes sure not to introduce new successors by assuming that edges to 3729 // non-successor TrueBBs and FalseBBs aren't reachable. 3730 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3731 Value *Cond, BasicBlock *TrueBB, 3732 BasicBlock *FalseBB, 3733 uint32_t TrueWeight, 3734 uint32_t FalseWeight) { 3735 // Remove any superfluous successor edges from the CFG. 3736 // First, figure out which successors to preserve. 3737 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3738 // successor. 3739 BasicBlock *KeepEdge1 = TrueBB; 3740 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3741 3742 // Then remove the rest. 3743 for (BasicBlock *Succ : successors(OldTerm)) { 3744 // Make sure only to keep exactly one copy of each edge. 3745 if (Succ == KeepEdge1) 3746 KeepEdge1 = nullptr; 3747 else if (Succ == KeepEdge2) 3748 KeepEdge2 = nullptr; 3749 else 3750 Succ->removePredecessor(OldTerm->getParent(), 3751 /*KeepOneInputPHIs=*/true); 3752 } 3753 3754 IRBuilder<> Builder(OldTerm); 3755 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3756 3757 // Insert an appropriate new terminator. 3758 if (!KeepEdge1 && !KeepEdge2) { 3759 if (TrueBB == FalseBB) 3760 // We were only looking for one successor, and it was present. 3761 // Create an unconditional branch to it. 3762 Builder.CreateBr(TrueBB); 3763 else { 3764 // We found both of the successors we were looking for. 3765 // Create a conditional branch sharing the condition of the select. 3766 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3767 if (TrueWeight != FalseWeight) 3768 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3769 } 3770 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3771 // Neither of the selected blocks were successors, so this 3772 // terminator must be unreachable. 3773 new UnreachableInst(OldTerm->getContext(), OldTerm); 3774 } else { 3775 // One of the selected values was a successor, but the other wasn't. 3776 // Insert an unconditional branch to the one that was found; 3777 // the edge to the one that wasn't must be unreachable. 3778 if (!KeepEdge1) 3779 // Only TrueBB was found. 3780 Builder.CreateBr(TrueBB); 3781 else 3782 // Only FalseBB was found. 3783 Builder.CreateBr(FalseBB); 3784 } 3785 3786 EraseTerminatorAndDCECond(OldTerm); 3787 return true; 3788 } 3789 3790 // Replaces 3791 // (switch (select cond, X, Y)) on constant X, Y 3792 // with a branch - conditional if X and Y lead to distinct BBs, 3793 // unconditional otherwise. 3794 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3795 SelectInst *Select) { 3796 // Check for constant integer values in the select. 3797 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3798 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3799 if (!TrueVal || !FalseVal) 3800 return false; 3801 3802 // Find the relevant condition and destinations. 3803 Value *Condition = Select->getCondition(); 3804 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3805 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3806 3807 // Get weight for TrueBB and FalseBB. 3808 uint32_t TrueWeight = 0, FalseWeight = 0; 3809 SmallVector<uint64_t, 8> Weights; 3810 bool HasWeights = HasBranchWeights(SI); 3811 if (HasWeights) { 3812 GetBranchWeights(SI, Weights); 3813 if (Weights.size() == 1 + SI->getNumCases()) { 3814 TrueWeight = 3815 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3816 FalseWeight = 3817 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3818 } 3819 } 3820 3821 // Perform the actual simplification. 3822 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3823 FalseWeight); 3824 } 3825 3826 // Replaces 3827 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3828 // blockaddress(@fn, BlockB))) 3829 // with 3830 // (br cond, BlockA, BlockB). 3831 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3832 SelectInst *SI) { 3833 // Check that both operands of the select are block addresses. 3834 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3835 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3836 if (!TBA || !FBA) 3837 return false; 3838 3839 // Extract the actual blocks. 3840 BasicBlock *TrueBB = TBA->getBasicBlock(); 3841 BasicBlock *FalseBB = FBA->getBasicBlock(); 3842 3843 // Perform the actual simplification. 3844 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3845 0); 3846 } 3847 3848 /// This is called when we find an icmp instruction 3849 /// (a seteq/setne with a constant) as the only instruction in a 3850 /// block that ends with an uncond branch. We are looking for a very specific 3851 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3852 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3853 /// default value goes to an uncond block with a seteq in it, we get something 3854 /// like: 3855 /// 3856 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3857 /// DEFAULT: 3858 /// %tmp = icmp eq i8 %A, 92 3859 /// br label %end 3860 /// end: 3861 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3862 /// 3863 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3864 /// the PHI, merging the third icmp into the switch. 3865 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3866 ICmpInst *ICI, IRBuilder<> &Builder) { 3867 BasicBlock *BB = ICI->getParent(); 3868 3869 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3870 // complex. 3871 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3872 return false; 3873 3874 Value *V = ICI->getOperand(0); 3875 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3876 3877 // The pattern we're looking for is where our only predecessor is a switch on 3878 // 'V' and this block is the default case for the switch. In this case we can 3879 // fold the compared value into the switch to simplify things. 3880 BasicBlock *Pred = BB->getSinglePredecessor(); 3881 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3882 return false; 3883 3884 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3885 if (SI->getCondition() != V) 3886 return false; 3887 3888 // If BB is reachable on a non-default case, then we simply know the value of 3889 // V in this block. Substitute it and constant fold the icmp instruction 3890 // away. 3891 if (SI->getDefaultDest() != BB) { 3892 ConstantInt *VVal = SI->findCaseDest(BB); 3893 assert(VVal && "Should have a unique destination value"); 3894 ICI->setOperand(0, VVal); 3895 3896 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3897 ICI->replaceAllUsesWith(V); 3898 ICI->eraseFromParent(); 3899 } 3900 // BB is now empty, so it is likely to simplify away. 3901 return requestResimplify(); 3902 } 3903 3904 // Ok, the block is reachable from the default dest. If the constant we're 3905 // comparing exists in one of the other edges, then we can constant fold ICI 3906 // and zap it. 3907 if (SI->findCaseValue(Cst) != SI->case_default()) { 3908 Value *V; 3909 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3910 V = ConstantInt::getFalse(BB->getContext()); 3911 else 3912 V = ConstantInt::getTrue(BB->getContext()); 3913 3914 ICI->replaceAllUsesWith(V); 3915 ICI->eraseFromParent(); 3916 // BB is now empty, so it is likely to simplify away. 3917 return requestResimplify(); 3918 } 3919 3920 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3921 // the block. 3922 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3923 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3924 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3925 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3926 return false; 3927 3928 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3929 // true in the PHI. 3930 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3931 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3932 3933 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3934 std::swap(DefaultCst, NewCst); 3935 3936 // Replace ICI (which is used by the PHI for the default value) with true or 3937 // false depending on if it is EQ or NE. 3938 ICI->replaceAllUsesWith(DefaultCst); 3939 ICI->eraseFromParent(); 3940 3941 // Okay, the switch goes to this block on a default value. Add an edge from 3942 // the switch to the merge point on the compared value. 3943 BasicBlock *NewBB = 3944 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3945 { 3946 SwitchInstProfUpdateWrapper SIW(*SI); 3947 auto W0 = SIW.getSuccessorWeight(0); 3948 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3949 if (W0) { 3950 NewW = ((uint64_t(*W0) + 1) >> 1); 3951 SIW.setSuccessorWeight(0, *NewW); 3952 } 3953 SIW.addCase(Cst, NewBB, NewW); 3954 } 3955 3956 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3957 Builder.SetInsertPoint(NewBB); 3958 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3959 Builder.CreateBr(SuccBlock); 3960 PHIUse->addIncoming(NewCst, NewBB); 3961 return true; 3962 } 3963 3964 /// The specified branch is a conditional branch. 3965 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3966 /// fold it into a switch instruction if so. 3967 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3968 IRBuilder<> &Builder, 3969 const DataLayout &DL) { 3970 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3971 if (!Cond) 3972 return false; 3973 3974 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3975 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3976 // 'setne's and'ed together, collect them. 3977 3978 // Try to gather values from a chain of and/or to be turned into a switch 3979 ConstantComparesGatherer ConstantCompare(Cond, DL); 3980 // Unpack the result 3981 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3982 Value *CompVal = ConstantCompare.CompValue; 3983 unsigned UsedICmps = ConstantCompare.UsedICmps; 3984 Value *ExtraCase = ConstantCompare.Extra; 3985 3986 // If we didn't have a multiply compared value, fail. 3987 if (!CompVal) 3988 return false; 3989 3990 // Avoid turning single icmps into a switch. 3991 if (UsedICmps <= 1) 3992 return false; 3993 3994 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3995 3996 // There might be duplicate constants in the list, which the switch 3997 // instruction can't handle, remove them now. 3998 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3999 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4000 4001 // If Extra was used, we require at least two switch values to do the 4002 // transformation. A switch with one value is just a conditional branch. 4003 if (ExtraCase && Values.size() < 2) 4004 return false; 4005 4006 // TODO: Preserve branch weight metadata, similarly to how 4007 // FoldValueComparisonIntoPredecessors preserves it. 4008 4009 // Figure out which block is which destination. 4010 BasicBlock *DefaultBB = BI->getSuccessor(1); 4011 BasicBlock *EdgeBB = BI->getSuccessor(0); 4012 if (!TrueWhenEqual) 4013 std::swap(DefaultBB, EdgeBB); 4014 4015 BasicBlock *BB = BI->getParent(); 4016 4017 // MSAN does not like undefs as branch condition which can be introduced 4018 // with "explicit branch". 4019 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4020 return false; 4021 4022 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4023 << " cases into SWITCH. BB is:\n" 4024 << *BB); 4025 4026 // If there are any extra values that couldn't be folded into the switch 4027 // then we evaluate them with an explicit branch first. Split the block 4028 // right before the condbr to handle it. 4029 if (ExtraCase) { 4030 BasicBlock *NewBB = 4031 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 4032 // Remove the uncond branch added to the old block. 4033 Instruction *OldTI = BB->getTerminator(); 4034 Builder.SetInsertPoint(OldTI); 4035 4036 if (TrueWhenEqual) 4037 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4038 else 4039 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4040 4041 OldTI->eraseFromParent(); 4042 4043 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4044 // for the edge we just added. 4045 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4046 4047 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4048 << "\nEXTRABB = " << *BB); 4049 BB = NewBB; 4050 } 4051 4052 Builder.SetInsertPoint(BI); 4053 // Convert pointer to int before we switch. 4054 if (CompVal->getType()->isPointerTy()) { 4055 CompVal = Builder.CreatePtrToInt( 4056 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4057 } 4058 4059 // Create the new switch instruction now. 4060 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4061 4062 // Add all of the 'cases' to the switch instruction. 4063 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4064 New->addCase(Values[i], EdgeBB); 4065 4066 // We added edges from PI to the EdgeBB. As such, if there were any 4067 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4068 // the number of edges added. 4069 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4070 PHINode *PN = cast<PHINode>(BBI); 4071 Value *InVal = PN->getIncomingValueForBlock(BB); 4072 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4073 PN->addIncoming(InVal, BB); 4074 } 4075 4076 // Erase the old branch instruction. 4077 EraseTerminatorAndDCECond(BI); 4078 4079 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4080 return true; 4081 } 4082 4083 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4084 if (isa<PHINode>(RI->getValue())) 4085 return simplifyCommonResume(RI); 4086 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4087 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4088 // The resume must unwind the exception that caused control to branch here. 4089 return simplifySingleResume(RI); 4090 4091 return false; 4092 } 4093 4094 // Check if cleanup block is empty 4095 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4096 for (Instruction &I : R) { 4097 auto *II = dyn_cast<IntrinsicInst>(&I); 4098 if (!II) 4099 return false; 4100 4101 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4102 switch (IntrinsicID) { 4103 case Intrinsic::dbg_declare: 4104 case Intrinsic::dbg_value: 4105 case Intrinsic::dbg_label: 4106 case Intrinsic::lifetime_end: 4107 break; 4108 default: 4109 return false; 4110 } 4111 } 4112 return true; 4113 } 4114 4115 // Simplify resume that is shared by several landing pads (phi of landing pad). 4116 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4117 BasicBlock *BB = RI->getParent(); 4118 4119 // Check that there are no other instructions except for debug and lifetime 4120 // intrinsics between the phi's and resume instruction. 4121 if (!isCleanupBlockEmpty( 4122 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4123 return false; 4124 4125 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4126 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4127 4128 // Check incoming blocks to see if any of them are trivial. 4129 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4130 Idx++) { 4131 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4132 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4133 4134 // If the block has other successors, we can not delete it because 4135 // it has other dependents. 4136 if (IncomingBB->getUniqueSuccessor() != BB) 4137 continue; 4138 4139 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4140 // Not the landing pad that caused the control to branch here. 4141 if (IncomingValue != LandingPad) 4142 continue; 4143 4144 if (isCleanupBlockEmpty( 4145 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4146 TrivialUnwindBlocks.insert(IncomingBB); 4147 } 4148 4149 // If no trivial unwind blocks, don't do any simplifications. 4150 if (TrivialUnwindBlocks.empty()) 4151 return false; 4152 4153 // Turn all invokes that unwind here into calls. 4154 for (auto *TrivialBB : TrivialUnwindBlocks) { 4155 // Blocks that will be simplified should be removed from the phi node. 4156 // Note there could be multiple edges to the resume block, and we need 4157 // to remove them all. 4158 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4159 BB->removePredecessor(TrivialBB, true); 4160 4161 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4162 PI != PE;) { 4163 BasicBlock *Pred = *PI++; 4164 removeUnwindEdge(Pred); 4165 ++NumInvokes; 4166 } 4167 4168 // In each SimplifyCFG run, only the current processed block can be erased. 4169 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4170 // of erasing TrivialBB, we only remove the branch to the common resume 4171 // block so that we can later erase the resume block since it has no 4172 // predecessors. 4173 TrivialBB->getTerminator()->eraseFromParent(); 4174 new UnreachableInst(RI->getContext(), TrivialBB); 4175 } 4176 4177 // Delete the resume block if all its predecessors have been removed. 4178 if (pred_empty(BB)) 4179 BB->eraseFromParent(); 4180 4181 return !TrivialUnwindBlocks.empty(); 4182 } 4183 4184 // Simplify resume that is only used by a single (non-phi) landing pad. 4185 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4186 BasicBlock *BB = RI->getParent(); 4187 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4188 assert(RI->getValue() == LPInst && 4189 "Resume must unwind the exception that caused control to here"); 4190 4191 // Check that there are no other instructions except for debug intrinsics. 4192 if (!isCleanupBlockEmpty( 4193 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4194 return false; 4195 4196 // Turn all invokes that unwind here into calls and delete the basic block. 4197 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4198 BasicBlock *Pred = *PI++; 4199 removeUnwindEdge(Pred); 4200 ++NumInvokes; 4201 } 4202 4203 // The landingpad is now unreachable. Zap it. 4204 if (LoopHeaders) 4205 LoopHeaders->erase(BB); 4206 BB->eraseFromParent(); 4207 return true; 4208 } 4209 4210 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4211 // If this is a trivial cleanup pad that executes no instructions, it can be 4212 // eliminated. If the cleanup pad continues to the caller, any predecessor 4213 // that is an EH pad will be updated to continue to the caller and any 4214 // predecessor that terminates with an invoke instruction will have its invoke 4215 // instruction converted to a call instruction. If the cleanup pad being 4216 // simplified does not continue to the caller, each predecessor will be 4217 // updated to continue to the unwind destination of the cleanup pad being 4218 // simplified. 4219 BasicBlock *BB = RI->getParent(); 4220 CleanupPadInst *CPInst = RI->getCleanupPad(); 4221 if (CPInst->getParent() != BB) 4222 // This isn't an empty cleanup. 4223 return false; 4224 4225 // We cannot kill the pad if it has multiple uses. This typically arises 4226 // from unreachable basic blocks. 4227 if (!CPInst->hasOneUse()) 4228 return false; 4229 4230 // Check that there are no other instructions except for benign intrinsics. 4231 if (!isCleanupBlockEmpty( 4232 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4233 return false; 4234 4235 // If the cleanup return we are simplifying unwinds to the caller, this will 4236 // set UnwindDest to nullptr. 4237 BasicBlock *UnwindDest = RI->getUnwindDest(); 4238 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4239 4240 // We're about to remove BB from the control flow. Before we do, sink any 4241 // PHINodes into the unwind destination. Doing this before changing the 4242 // control flow avoids some potentially slow checks, since we can currently 4243 // be certain that UnwindDest and BB have no common predecessors (since they 4244 // are both EH pads). 4245 if (UnwindDest) { 4246 // First, go through the PHI nodes in UnwindDest and update any nodes that 4247 // reference the block we are removing 4248 for (BasicBlock::iterator I = UnwindDest->begin(), 4249 IE = DestEHPad->getIterator(); 4250 I != IE; ++I) { 4251 PHINode *DestPN = cast<PHINode>(I); 4252 4253 int Idx = DestPN->getBasicBlockIndex(BB); 4254 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4255 assert(Idx != -1); 4256 // This PHI node has an incoming value that corresponds to a control 4257 // path through the cleanup pad we are removing. If the incoming 4258 // value is in the cleanup pad, it must be a PHINode (because we 4259 // verified above that the block is otherwise empty). Otherwise, the 4260 // value is either a constant or a value that dominates the cleanup 4261 // pad being removed. 4262 // 4263 // Because BB and UnwindDest are both EH pads, all of their 4264 // predecessors must unwind to these blocks, and since no instruction 4265 // can have multiple unwind destinations, there will be no overlap in 4266 // incoming blocks between SrcPN and DestPN. 4267 Value *SrcVal = DestPN->getIncomingValue(Idx); 4268 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4269 4270 // Remove the entry for the block we are deleting. 4271 DestPN->removeIncomingValue(Idx, false); 4272 4273 if (SrcPN && SrcPN->getParent() == BB) { 4274 // If the incoming value was a PHI node in the cleanup pad we are 4275 // removing, we need to merge that PHI node's incoming values into 4276 // DestPN. 4277 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4278 SrcIdx != SrcE; ++SrcIdx) { 4279 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4280 SrcPN->getIncomingBlock(SrcIdx)); 4281 } 4282 } else { 4283 // Otherwise, the incoming value came from above BB and 4284 // so we can just reuse it. We must associate all of BB's 4285 // predecessors with this value. 4286 for (auto *pred : predecessors(BB)) { 4287 DestPN->addIncoming(SrcVal, pred); 4288 } 4289 } 4290 } 4291 4292 // Sink any remaining PHI nodes directly into UnwindDest. 4293 Instruction *InsertPt = DestEHPad; 4294 for (BasicBlock::iterator I = BB->begin(), 4295 IE = BB->getFirstNonPHI()->getIterator(); 4296 I != IE;) { 4297 // The iterator must be incremented here because the instructions are 4298 // being moved to another block. 4299 PHINode *PN = cast<PHINode>(I++); 4300 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4301 // If the PHI node has no uses or all of its uses are in this basic 4302 // block (meaning they are debug or lifetime intrinsics), just leave 4303 // it. It will be erased when we erase BB below. 4304 continue; 4305 4306 // Otherwise, sink this PHI node into UnwindDest. 4307 // Any predecessors to UnwindDest which are not already represented 4308 // must be back edges which inherit the value from the path through 4309 // BB. In this case, the PHI value must reference itself. 4310 for (auto *pred : predecessors(UnwindDest)) 4311 if (pred != BB) 4312 PN->addIncoming(PN, pred); 4313 PN->moveBefore(InsertPt); 4314 } 4315 } 4316 4317 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4318 // The iterator must be updated here because we are removing this pred. 4319 BasicBlock *PredBB = *PI++; 4320 if (UnwindDest == nullptr) { 4321 removeUnwindEdge(PredBB); 4322 ++NumInvokes; 4323 } else { 4324 Instruction *TI = PredBB->getTerminator(); 4325 TI->replaceUsesOfWith(BB, UnwindDest); 4326 } 4327 } 4328 4329 // The cleanup pad is now unreachable. Zap it. 4330 BB->eraseFromParent(); 4331 return true; 4332 } 4333 4334 // Try to merge two cleanuppads together. 4335 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4336 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4337 // with. 4338 BasicBlock *UnwindDest = RI->getUnwindDest(); 4339 if (!UnwindDest) 4340 return false; 4341 4342 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4343 // be safe to merge without code duplication. 4344 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4345 return false; 4346 4347 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4348 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4349 if (!SuccessorCleanupPad) 4350 return false; 4351 4352 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4353 // Replace any uses of the successor cleanupad with the predecessor pad 4354 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4355 // funclet bundle operands. 4356 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4357 // Remove the old cleanuppad. 4358 SuccessorCleanupPad->eraseFromParent(); 4359 // Now, we simply replace the cleanupret with a branch to the unwind 4360 // destination. 4361 BranchInst::Create(UnwindDest, RI->getParent()); 4362 RI->eraseFromParent(); 4363 4364 return true; 4365 } 4366 4367 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4368 // It is possible to transiantly have an undef cleanuppad operand because we 4369 // have deleted some, but not all, dead blocks. 4370 // Eventually, this block will be deleted. 4371 if (isa<UndefValue>(RI->getOperand(0))) 4372 return false; 4373 4374 if (mergeCleanupPad(RI)) 4375 return true; 4376 4377 if (removeEmptyCleanup(RI)) 4378 return true; 4379 4380 return false; 4381 } 4382 4383 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4384 BasicBlock *BB = RI->getParent(); 4385 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4386 return false; 4387 4388 // Find predecessors that end with branches. 4389 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4390 SmallVector<BranchInst *, 8> CondBranchPreds; 4391 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4392 BasicBlock *P = *PI; 4393 Instruction *PTI = P->getTerminator(); 4394 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4395 if (BI->isUnconditional()) 4396 UncondBranchPreds.push_back(P); 4397 else 4398 CondBranchPreds.push_back(BI); 4399 } 4400 } 4401 4402 // If we found some, do the transformation! 4403 if (!UncondBranchPreds.empty() && DupRet) { 4404 while (!UncondBranchPreds.empty()) { 4405 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4406 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4407 << "INTO UNCOND BRANCH PRED: " << *Pred); 4408 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4409 } 4410 4411 // If we eliminated all predecessors of the block, delete the block now. 4412 if (pred_empty(BB)) { 4413 // We know there are no successors, so just nuke the block. 4414 if (LoopHeaders) 4415 LoopHeaders->erase(BB); 4416 BB->eraseFromParent(); 4417 } 4418 4419 return true; 4420 } 4421 4422 // Check out all of the conditional branches going to this return 4423 // instruction. If any of them just select between returns, change the 4424 // branch itself into a select/return pair. 4425 while (!CondBranchPreds.empty()) { 4426 BranchInst *BI = CondBranchPreds.pop_back_val(); 4427 4428 // Check to see if the non-BB successor is also a return block. 4429 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4430 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4431 SimplifyCondBranchToTwoReturns(BI, Builder)) 4432 return true; 4433 } 4434 return false; 4435 } 4436 4437 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4438 BasicBlock *BB = UI->getParent(); 4439 4440 bool Changed = false; 4441 4442 // If there are any instructions immediately before the unreachable that can 4443 // be removed, do so. 4444 while (UI->getIterator() != BB->begin()) { 4445 BasicBlock::iterator BBI = UI->getIterator(); 4446 --BBI; 4447 // Do not delete instructions that can have side effects which might cause 4448 // the unreachable to not be reachable; specifically, calls and volatile 4449 // operations may have this effect. 4450 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4451 break; 4452 4453 if (BBI->mayHaveSideEffects()) { 4454 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4455 if (SI->isVolatile()) 4456 break; 4457 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4458 if (LI->isVolatile()) 4459 break; 4460 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4461 if (RMWI->isVolatile()) 4462 break; 4463 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4464 if (CXI->isVolatile()) 4465 break; 4466 } else if (isa<CatchPadInst>(BBI)) { 4467 // A catchpad may invoke exception object constructors and such, which 4468 // in some languages can be arbitrary code, so be conservative by 4469 // default. 4470 // For CoreCLR, it just involves a type test, so can be removed. 4471 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4472 EHPersonality::CoreCLR) 4473 break; 4474 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4475 !isa<LandingPadInst>(BBI)) { 4476 break; 4477 } 4478 // Note that deleting LandingPad's here is in fact okay, although it 4479 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4480 // all the predecessors of this block will be the unwind edges of Invokes, 4481 // and we can therefore guarantee this block will be erased. 4482 } 4483 4484 // Delete this instruction (any uses are guaranteed to be dead) 4485 if (!BBI->use_empty()) 4486 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4487 BBI->eraseFromParent(); 4488 Changed = true; 4489 } 4490 4491 // If the unreachable instruction is the first in the block, take a gander 4492 // at all of the predecessors of this instruction, and simplify them. 4493 if (&BB->front() != UI) 4494 return Changed; 4495 4496 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4497 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4498 Instruction *TI = Preds[i]->getTerminator(); 4499 IRBuilder<> Builder(TI); 4500 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4501 if (BI->isUnconditional()) { 4502 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4503 new UnreachableInst(TI->getContext(), TI); 4504 TI->eraseFromParent(); 4505 Changed = true; 4506 } else { 4507 Value* Cond = BI->getCondition(); 4508 if (BI->getSuccessor(0) == BB) { 4509 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4510 Builder.CreateBr(BI->getSuccessor(1)); 4511 } else { 4512 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4513 Builder.CreateAssumption(Cond); 4514 Builder.CreateBr(BI->getSuccessor(0)); 4515 } 4516 EraseTerminatorAndDCECond(BI); 4517 Changed = true; 4518 } 4519 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4520 SwitchInstProfUpdateWrapper SU(*SI); 4521 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4522 if (i->getCaseSuccessor() != BB) { 4523 ++i; 4524 continue; 4525 } 4526 BB->removePredecessor(SU->getParent()); 4527 i = SU.removeCase(i); 4528 e = SU->case_end(); 4529 Changed = true; 4530 } 4531 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4532 if (II->getUnwindDest() == BB) { 4533 removeUnwindEdge(TI->getParent()); 4534 Changed = true; 4535 } 4536 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4537 if (CSI->getUnwindDest() == BB) { 4538 removeUnwindEdge(TI->getParent()); 4539 Changed = true; 4540 continue; 4541 } 4542 4543 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4544 E = CSI->handler_end(); 4545 I != E; ++I) { 4546 if (*I == BB) { 4547 CSI->removeHandler(I); 4548 --I; 4549 --E; 4550 Changed = true; 4551 } 4552 } 4553 if (CSI->getNumHandlers() == 0) { 4554 BasicBlock *CatchSwitchBB = CSI->getParent(); 4555 if (CSI->hasUnwindDest()) { 4556 // Redirect preds to the unwind dest 4557 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4558 } else { 4559 // Rewrite all preds to unwind to caller (or from invoke to call). 4560 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4561 for (BasicBlock *EHPred : EHPreds) 4562 removeUnwindEdge(EHPred); 4563 } 4564 // The catchswitch is no longer reachable. 4565 new UnreachableInst(CSI->getContext(), CSI); 4566 CSI->eraseFromParent(); 4567 Changed = true; 4568 } 4569 } else if (isa<CleanupReturnInst>(TI)) { 4570 new UnreachableInst(TI->getContext(), TI); 4571 TI->eraseFromParent(); 4572 Changed = true; 4573 } 4574 } 4575 4576 // If this block is now dead, remove it. 4577 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4578 // We know there are no successors, so just nuke the block. 4579 if (LoopHeaders) 4580 LoopHeaders->erase(BB); 4581 BB->eraseFromParent(); 4582 return true; 4583 } 4584 4585 return Changed; 4586 } 4587 4588 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4589 assert(Cases.size() >= 1); 4590 4591 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4592 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4593 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4594 return false; 4595 } 4596 return true; 4597 } 4598 4599 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4600 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4601 BasicBlock *NewDefaultBlock = 4602 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4603 Switch->setDefaultDest(&*NewDefaultBlock); 4604 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4605 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4606 new UnreachableInst(Switch->getContext(), NewTerminator); 4607 EraseTerminatorAndDCECond(NewTerminator); 4608 } 4609 4610 /// Turn a switch with two reachable destinations into an integer range 4611 /// comparison and branch. 4612 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4613 IRBuilder<> &Builder) { 4614 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4615 4616 bool HasDefault = 4617 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4618 4619 // Partition the cases into two sets with different destinations. 4620 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4621 BasicBlock *DestB = nullptr; 4622 SmallVector<ConstantInt *, 16> CasesA; 4623 SmallVector<ConstantInt *, 16> CasesB; 4624 4625 for (auto Case : SI->cases()) { 4626 BasicBlock *Dest = Case.getCaseSuccessor(); 4627 if (!DestA) 4628 DestA = Dest; 4629 if (Dest == DestA) { 4630 CasesA.push_back(Case.getCaseValue()); 4631 continue; 4632 } 4633 if (!DestB) 4634 DestB = Dest; 4635 if (Dest == DestB) { 4636 CasesB.push_back(Case.getCaseValue()); 4637 continue; 4638 } 4639 return false; // More than two destinations. 4640 } 4641 4642 assert(DestA && DestB && 4643 "Single-destination switch should have been folded."); 4644 assert(DestA != DestB); 4645 assert(DestB != SI->getDefaultDest()); 4646 assert(!CasesB.empty() && "There must be non-default cases."); 4647 assert(!CasesA.empty() || HasDefault); 4648 4649 // Figure out if one of the sets of cases form a contiguous range. 4650 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4651 BasicBlock *ContiguousDest = nullptr; 4652 BasicBlock *OtherDest = nullptr; 4653 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4654 ContiguousCases = &CasesA; 4655 ContiguousDest = DestA; 4656 OtherDest = DestB; 4657 } else if (CasesAreContiguous(CasesB)) { 4658 ContiguousCases = &CasesB; 4659 ContiguousDest = DestB; 4660 OtherDest = DestA; 4661 } else 4662 return false; 4663 4664 // Start building the compare and branch. 4665 4666 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4667 Constant *NumCases = 4668 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4669 4670 Value *Sub = SI->getCondition(); 4671 if (!Offset->isNullValue()) 4672 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4673 4674 Value *Cmp; 4675 // If NumCases overflowed, then all possible values jump to the successor. 4676 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4677 Cmp = ConstantInt::getTrue(SI->getContext()); 4678 else 4679 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4680 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4681 4682 // Update weight for the newly-created conditional branch. 4683 if (HasBranchWeights(SI)) { 4684 SmallVector<uint64_t, 8> Weights; 4685 GetBranchWeights(SI, Weights); 4686 if (Weights.size() == 1 + SI->getNumCases()) { 4687 uint64_t TrueWeight = 0; 4688 uint64_t FalseWeight = 0; 4689 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4690 if (SI->getSuccessor(I) == ContiguousDest) 4691 TrueWeight += Weights[I]; 4692 else 4693 FalseWeight += Weights[I]; 4694 } 4695 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4696 TrueWeight /= 2; 4697 FalseWeight /= 2; 4698 } 4699 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4700 } 4701 } 4702 4703 // Prune obsolete incoming values off the successors' PHI nodes. 4704 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4705 unsigned PreviousEdges = ContiguousCases->size(); 4706 if (ContiguousDest == SI->getDefaultDest()) 4707 ++PreviousEdges; 4708 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4709 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4710 } 4711 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4712 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4713 if (OtherDest == SI->getDefaultDest()) 4714 ++PreviousEdges; 4715 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4716 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4717 } 4718 4719 // Clean up the default block - it may have phis or other instructions before 4720 // the unreachable terminator. 4721 if (!HasDefault) 4722 createUnreachableSwitchDefault(SI); 4723 4724 // Drop the switch. 4725 SI->eraseFromParent(); 4726 4727 return true; 4728 } 4729 4730 /// Compute masked bits for the condition of a switch 4731 /// and use it to remove dead cases. 4732 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4733 const DataLayout &DL) { 4734 Value *Cond = SI->getCondition(); 4735 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4736 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4737 4738 // We can also eliminate cases by determining that their values are outside of 4739 // the limited range of the condition based on how many significant (non-sign) 4740 // bits are in the condition value. 4741 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4742 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4743 4744 // Gather dead cases. 4745 SmallVector<ConstantInt *, 8> DeadCases; 4746 for (auto &Case : SI->cases()) { 4747 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4748 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4749 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4750 DeadCases.push_back(Case.getCaseValue()); 4751 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4752 << " is dead.\n"); 4753 } 4754 } 4755 4756 // If we can prove that the cases must cover all possible values, the 4757 // default destination becomes dead and we can remove it. If we know some 4758 // of the bits in the value, we can use that to more precisely compute the 4759 // number of possible unique case values. 4760 bool HasDefault = 4761 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4762 const unsigned NumUnknownBits = 4763 Bits - (Known.Zero | Known.One).countPopulation(); 4764 assert(NumUnknownBits <= Bits); 4765 if (HasDefault && DeadCases.empty() && 4766 NumUnknownBits < 64 /* avoid overflow */ && 4767 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4768 createUnreachableSwitchDefault(SI); 4769 return true; 4770 } 4771 4772 if (DeadCases.empty()) 4773 return false; 4774 4775 SwitchInstProfUpdateWrapper SIW(*SI); 4776 for (ConstantInt *DeadCase : DeadCases) { 4777 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4778 assert(CaseI != SI->case_default() && 4779 "Case was not found. Probably mistake in DeadCases forming."); 4780 // Prune unused values from PHI nodes. 4781 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4782 SIW.removeCase(CaseI); 4783 } 4784 4785 return true; 4786 } 4787 4788 /// If BB would be eligible for simplification by 4789 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4790 /// by an unconditional branch), look at the phi node for BB in the successor 4791 /// block and see if the incoming value is equal to CaseValue. If so, return 4792 /// the phi node, and set PhiIndex to BB's index in the phi node. 4793 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4794 BasicBlock *BB, int *PhiIndex) { 4795 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4796 return nullptr; // BB must be empty to be a candidate for simplification. 4797 if (!BB->getSinglePredecessor()) 4798 return nullptr; // BB must be dominated by the switch. 4799 4800 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4801 if (!Branch || !Branch->isUnconditional()) 4802 return nullptr; // Terminator must be unconditional branch. 4803 4804 BasicBlock *Succ = Branch->getSuccessor(0); 4805 4806 for (PHINode &PHI : Succ->phis()) { 4807 int Idx = PHI.getBasicBlockIndex(BB); 4808 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4809 4810 Value *InValue = PHI.getIncomingValue(Idx); 4811 if (InValue != CaseValue) 4812 continue; 4813 4814 *PhiIndex = Idx; 4815 return &PHI; 4816 } 4817 4818 return nullptr; 4819 } 4820 4821 /// Try to forward the condition of a switch instruction to a phi node 4822 /// dominated by the switch, if that would mean that some of the destination 4823 /// blocks of the switch can be folded away. Return true if a change is made. 4824 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4825 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4826 4827 ForwardingNodesMap ForwardingNodes; 4828 BasicBlock *SwitchBlock = SI->getParent(); 4829 bool Changed = false; 4830 for (auto &Case : SI->cases()) { 4831 ConstantInt *CaseValue = Case.getCaseValue(); 4832 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4833 4834 // Replace phi operands in successor blocks that are using the constant case 4835 // value rather than the switch condition variable: 4836 // switchbb: 4837 // switch i32 %x, label %default [ 4838 // i32 17, label %succ 4839 // ... 4840 // succ: 4841 // %r = phi i32 ... [ 17, %switchbb ] ... 4842 // --> 4843 // %r = phi i32 ... [ %x, %switchbb ] ... 4844 4845 for (PHINode &Phi : CaseDest->phis()) { 4846 // This only works if there is exactly 1 incoming edge from the switch to 4847 // a phi. If there is >1, that means multiple cases of the switch map to 1 4848 // value in the phi, and that phi value is not the switch condition. Thus, 4849 // this transform would not make sense (the phi would be invalid because 4850 // a phi can't have different incoming values from the same block). 4851 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4852 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4853 count(Phi.blocks(), SwitchBlock) == 1) { 4854 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4855 Changed = true; 4856 } 4857 } 4858 4859 // Collect phi nodes that are indirectly using this switch's case constants. 4860 int PhiIdx; 4861 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4862 ForwardingNodes[Phi].push_back(PhiIdx); 4863 } 4864 4865 for (auto &ForwardingNode : ForwardingNodes) { 4866 PHINode *Phi = ForwardingNode.first; 4867 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4868 if (Indexes.size() < 2) 4869 continue; 4870 4871 for (int Index : Indexes) 4872 Phi->setIncomingValue(Index, SI->getCondition()); 4873 Changed = true; 4874 } 4875 4876 return Changed; 4877 } 4878 4879 /// Return true if the backend will be able to handle 4880 /// initializing an array of constants like C. 4881 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4882 if (C->isThreadDependent()) 4883 return false; 4884 if (C->isDLLImportDependent()) 4885 return false; 4886 4887 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4888 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4889 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4890 return false; 4891 4892 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4893 if (!CE->isGEPWithNoNotionalOverIndexing()) 4894 return false; 4895 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4896 return false; 4897 } 4898 4899 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4900 return false; 4901 4902 return true; 4903 } 4904 4905 /// If V is a Constant, return it. Otherwise, try to look up 4906 /// its constant value in ConstantPool, returning 0 if it's not there. 4907 static Constant * 4908 LookupConstant(Value *V, 4909 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4910 if (Constant *C = dyn_cast<Constant>(V)) 4911 return C; 4912 return ConstantPool.lookup(V); 4913 } 4914 4915 /// Try to fold instruction I into a constant. This works for 4916 /// simple instructions such as binary operations where both operands are 4917 /// constant or can be replaced by constants from the ConstantPool. Returns the 4918 /// resulting constant on success, 0 otherwise. 4919 static Constant * 4920 ConstantFold(Instruction *I, const DataLayout &DL, 4921 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4922 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4923 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4924 if (!A) 4925 return nullptr; 4926 if (A->isAllOnesValue()) 4927 return LookupConstant(Select->getTrueValue(), ConstantPool); 4928 if (A->isNullValue()) 4929 return LookupConstant(Select->getFalseValue(), ConstantPool); 4930 return nullptr; 4931 } 4932 4933 SmallVector<Constant *, 4> COps; 4934 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4935 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4936 COps.push_back(A); 4937 else 4938 return nullptr; 4939 } 4940 4941 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4942 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4943 COps[1], DL); 4944 } 4945 4946 return ConstantFoldInstOperands(I, COps, DL); 4947 } 4948 4949 /// Try to determine the resulting constant values in phi nodes 4950 /// at the common destination basic block, *CommonDest, for one of the case 4951 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4952 /// case), of a switch instruction SI. 4953 static bool 4954 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4955 BasicBlock **CommonDest, 4956 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4957 const DataLayout &DL, const TargetTransformInfo &TTI) { 4958 // The block from which we enter the common destination. 4959 BasicBlock *Pred = SI->getParent(); 4960 4961 // If CaseDest is empty except for some side-effect free instructions through 4962 // which we can constant-propagate the CaseVal, continue to its successor. 4963 SmallDenseMap<Value *, Constant *> ConstantPool; 4964 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4965 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4966 if (I.isTerminator()) { 4967 // If the terminator is a simple branch, continue to the next block. 4968 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4969 return false; 4970 Pred = CaseDest; 4971 CaseDest = I.getSuccessor(0); 4972 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4973 // Instruction is side-effect free and constant. 4974 4975 // If the instruction has uses outside this block or a phi node slot for 4976 // the block, it is not safe to bypass the instruction since it would then 4977 // no longer dominate all its uses. 4978 for (auto &Use : I.uses()) { 4979 User *User = Use.getUser(); 4980 if (Instruction *I = dyn_cast<Instruction>(User)) 4981 if (I->getParent() == CaseDest) 4982 continue; 4983 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4984 if (Phi->getIncomingBlock(Use) == CaseDest) 4985 continue; 4986 return false; 4987 } 4988 4989 ConstantPool.insert(std::make_pair(&I, C)); 4990 } else { 4991 break; 4992 } 4993 } 4994 4995 // If we did not have a CommonDest before, use the current one. 4996 if (!*CommonDest) 4997 *CommonDest = CaseDest; 4998 // If the destination isn't the common one, abort. 4999 if (CaseDest != *CommonDest) 5000 return false; 5001 5002 // Get the values for this case from phi nodes in the destination block. 5003 for (PHINode &PHI : (*CommonDest)->phis()) { 5004 int Idx = PHI.getBasicBlockIndex(Pred); 5005 if (Idx == -1) 5006 continue; 5007 5008 Constant *ConstVal = 5009 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5010 if (!ConstVal) 5011 return false; 5012 5013 // Be conservative about which kinds of constants we support. 5014 if (!ValidLookupTableConstant(ConstVal, TTI)) 5015 return false; 5016 5017 Res.push_back(std::make_pair(&PHI, ConstVal)); 5018 } 5019 5020 return Res.size() > 0; 5021 } 5022 5023 // Helper function used to add CaseVal to the list of cases that generate 5024 // Result. Returns the updated number of cases that generate this result. 5025 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5026 SwitchCaseResultVectorTy &UniqueResults, 5027 Constant *Result) { 5028 for (auto &I : UniqueResults) { 5029 if (I.first == Result) { 5030 I.second.push_back(CaseVal); 5031 return I.second.size(); 5032 } 5033 } 5034 UniqueResults.push_back( 5035 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5036 return 1; 5037 } 5038 5039 // Helper function that initializes a map containing 5040 // results for the PHI node of the common destination block for a switch 5041 // instruction. Returns false if multiple PHI nodes have been found or if 5042 // there is not a common destination block for the switch. 5043 static bool 5044 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5045 SwitchCaseResultVectorTy &UniqueResults, 5046 Constant *&DefaultResult, const DataLayout &DL, 5047 const TargetTransformInfo &TTI, 5048 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5049 for (auto &I : SI->cases()) { 5050 ConstantInt *CaseVal = I.getCaseValue(); 5051 5052 // Resulting value at phi nodes for this case value. 5053 SwitchCaseResultsTy Results; 5054 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5055 DL, TTI)) 5056 return false; 5057 5058 // Only one value per case is permitted. 5059 if (Results.size() > 1) 5060 return false; 5061 5062 // Add the case->result mapping to UniqueResults. 5063 const uintptr_t NumCasesForResult = 5064 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5065 5066 // Early out if there are too many cases for this result. 5067 if (NumCasesForResult > MaxCasesPerResult) 5068 return false; 5069 5070 // Early out if there are too many unique results. 5071 if (UniqueResults.size() > MaxUniqueResults) 5072 return false; 5073 5074 // Check the PHI consistency. 5075 if (!PHI) 5076 PHI = Results[0].first; 5077 else if (PHI != Results[0].first) 5078 return false; 5079 } 5080 // Find the default result value. 5081 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5082 BasicBlock *DefaultDest = SI->getDefaultDest(); 5083 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5084 DL, TTI); 5085 // If the default value is not found abort unless the default destination 5086 // is unreachable. 5087 DefaultResult = 5088 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5089 if ((!DefaultResult && 5090 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5091 return false; 5092 5093 return true; 5094 } 5095 5096 // Helper function that checks if it is possible to transform a switch with only 5097 // two cases (or two cases + default) that produces a result into a select. 5098 // Example: 5099 // switch (a) { 5100 // case 10: %0 = icmp eq i32 %a, 10 5101 // return 10; %1 = select i1 %0, i32 10, i32 4 5102 // case 20: ----> %2 = icmp eq i32 %a, 20 5103 // return 2; %3 = select i1 %2, i32 2, i32 %1 5104 // default: 5105 // return 4; 5106 // } 5107 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5108 Constant *DefaultResult, Value *Condition, 5109 IRBuilder<> &Builder) { 5110 assert(ResultVector.size() == 2 && 5111 "We should have exactly two unique results at this point"); 5112 // If we are selecting between only two cases transform into a simple 5113 // select or a two-way select if default is possible. 5114 if (ResultVector[0].second.size() == 1 && 5115 ResultVector[1].second.size() == 1) { 5116 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5117 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5118 5119 bool DefaultCanTrigger = DefaultResult; 5120 Value *SelectValue = ResultVector[1].first; 5121 if (DefaultCanTrigger) { 5122 Value *const ValueCompare = 5123 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5124 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5125 DefaultResult, "switch.select"); 5126 } 5127 Value *const ValueCompare = 5128 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5129 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5130 SelectValue, "switch.select"); 5131 } 5132 5133 return nullptr; 5134 } 5135 5136 // Helper function to cleanup a switch instruction that has been converted into 5137 // a select, fixing up PHI nodes and basic blocks. 5138 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5139 Value *SelectValue, 5140 IRBuilder<> &Builder) { 5141 BasicBlock *SelectBB = SI->getParent(); 5142 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5143 PHI->removeIncomingValue(SelectBB); 5144 PHI->addIncoming(SelectValue, SelectBB); 5145 5146 Builder.CreateBr(PHI->getParent()); 5147 5148 // Remove the switch. 5149 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5150 BasicBlock *Succ = SI->getSuccessor(i); 5151 5152 if (Succ == PHI->getParent()) 5153 continue; 5154 Succ->removePredecessor(SelectBB); 5155 } 5156 SI->eraseFromParent(); 5157 } 5158 5159 /// If the switch is only used to initialize one or more 5160 /// phi nodes in a common successor block with only two different 5161 /// constant values, replace the switch with select. 5162 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5163 const DataLayout &DL, 5164 const TargetTransformInfo &TTI) { 5165 Value *const Cond = SI->getCondition(); 5166 PHINode *PHI = nullptr; 5167 BasicBlock *CommonDest = nullptr; 5168 Constant *DefaultResult; 5169 SwitchCaseResultVectorTy UniqueResults; 5170 // Collect all the cases that will deliver the same value from the switch. 5171 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5172 DL, TTI, 2, 1)) 5173 return false; 5174 // Selects choose between maximum two values. 5175 if (UniqueResults.size() != 2) 5176 return false; 5177 assert(PHI != nullptr && "PHI for value select not found"); 5178 5179 Builder.SetInsertPoint(SI); 5180 Value *SelectValue = 5181 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5182 if (SelectValue) { 5183 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5184 return true; 5185 } 5186 // The switch couldn't be converted into a select. 5187 return false; 5188 } 5189 5190 namespace { 5191 5192 /// This class represents a lookup table that can be used to replace a switch. 5193 class SwitchLookupTable { 5194 public: 5195 /// Create a lookup table to use as a switch replacement with the contents 5196 /// of Values, using DefaultValue to fill any holes in the table. 5197 SwitchLookupTable( 5198 Module &M, uint64_t TableSize, ConstantInt *Offset, 5199 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5200 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5201 5202 /// Build instructions with Builder to retrieve the value at 5203 /// the position given by Index in the lookup table. 5204 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5205 5206 /// Return true if a table with TableSize elements of 5207 /// type ElementType would fit in a target-legal register. 5208 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5209 Type *ElementType); 5210 5211 private: 5212 // Depending on the contents of the table, it can be represented in 5213 // different ways. 5214 enum { 5215 // For tables where each element contains the same value, we just have to 5216 // store that single value and return it for each lookup. 5217 SingleValueKind, 5218 5219 // For tables where there is a linear relationship between table index 5220 // and values. We calculate the result with a simple multiplication 5221 // and addition instead of a table lookup. 5222 LinearMapKind, 5223 5224 // For small tables with integer elements, we can pack them into a bitmap 5225 // that fits into a target-legal register. Values are retrieved by 5226 // shift and mask operations. 5227 BitMapKind, 5228 5229 // The table is stored as an array of values. Values are retrieved by load 5230 // instructions from the table. 5231 ArrayKind 5232 } Kind; 5233 5234 // For SingleValueKind, this is the single value. 5235 Constant *SingleValue = nullptr; 5236 5237 // For BitMapKind, this is the bitmap. 5238 ConstantInt *BitMap = nullptr; 5239 IntegerType *BitMapElementTy = nullptr; 5240 5241 // For LinearMapKind, these are the constants used to derive the value. 5242 ConstantInt *LinearOffset = nullptr; 5243 ConstantInt *LinearMultiplier = nullptr; 5244 5245 // For ArrayKind, this is the array. 5246 GlobalVariable *Array = nullptr; 5247 }; 5248 5249 } // end anonymous namespace 5250 5251 SwitchLookupTable::SwitchLookupTable( 5252 Module &M, uint64_t TableSize, ConstantInt *Offset, 5253 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5254 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5255 assert(Values.size() && "Can't build lookup table without values!"); 5256 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5257 5258 // If all values in the table are equal, this is that value. 5259 SingleValue = Values.begin()->second; 5260 5261 Type *ValueType = Values.begin()->second->getType(); 5262 5263 // Build up the table contents. 5264 SmallVector<Constant *, 64> TableContents(TableSize); 5265 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5266 ConstantInt *CaseVal = Values[I].first; 5267 Constant *CaseRes = Values[I].second; 5268 assert(CaseRes->getType() == ValueType); 5269 5270 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5271 TableContents[Idx] = CaseRes; 5272 5273 if (CaseRes != SingleValue) 5274 SingleValue = nullptr; 5275 } 5276 5277 // Fill in any holes in the table with the default result. 5278 if (Values.size() < TableSize) { 5279 assert(DefaultValue && 5280 "Need a default value to fill the lookup table holes."); 5281 assert(DefaultValue->getType() == ValueType); 5282 for (uint64_t I = 0; I < TableSize; ++I) { 5283 if (!TableContents[I]) 5284 TableContents[I] = DefaultValue; 5285 } 5286 5287 if (DefaultValue != SingleValue) 5288 SingleValue = nullptr; 5289 } 5290 5291 // If each element in the table contains the same value, we only need to store 5292 // that single value. 5293 if (SingleValue) { 5294 Kind = SingleValueKind; 5295 return; 5296 } 5297 5298 // Check if we can derive the value with a linear transformation from the 5299 // table index. 5300 if (isa<IntegerType>(ValueType)) { 5301 bool LinearMappingPossible = true; 5302 APInt PrevVal; 5303 APInt DistToPrev; 5304 assert(TableSize >= 2 && "Should be a SingleValue table."); 5305 // Check if there is the same distance between two consecutive values. 5306 for (uint64_t I = 0; I < TableSize; ++I) { 5307 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5308 if (!ConstVal) { 5309 // This is an undef. We could deal with it, but undefs in lookup tables 5310 // are very seldom. It's probably not worth the additional complexity. 5311 LinearMappingPossible = false; 5312 break; 5313 } 5314 const APInt &Val = ConstVal->getValue(); 5315 if (I != 0) { 5316 APInt Dist = Val - PrevVal; 5317 if (I == 1) { 5318 DistToPrev = Dist; 5319 } else if (Dist != DistToPrev) { 5320 LinearMappingPossible = false; 5321 break; 5322 } 5323 } 5324 PrevVal = Val; 5325 } 5326 if (LinearMappingPossible) { 5327 LinearOffset = cast<ConstantInt>(TableContents[0]); 5328 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5329 Kind = LinearMapKind; 5330 ++NumLinearMaps; 5331 return; 5332 } 5333 } 5334 5335 // If the type is integer and the table fits in a register, build a bitmap. 5336 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5337 IntegerType *IT = cast<IntegerType>(ValueType); 5338 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5339 for (uint64_t I = TableSize; I > 0; --I) { 5340 TableInt <<= IT->getBitWidth(); 5341 // Insert values into the bitmap. Undef values are set to zero. 5342 if (!isa<UndefValue>(TableContents[I - 1])) { 5343 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5344 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5345 } 5346 } 5347 BitMap = ConstantInt::get(M.getContext(), TableInt); 5348 BitMapElementTy = IT; 5349 Kind = BitMapKind; 5350 ++NumBitMaps; 5351 return; 5352 } 5353 5354 // Store the table in an array. 5355 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5356 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5357 5358 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5359 GlobalVariable::PrivateLinkage, Initializer, 5360 "switch.table." + FuncName); 5361 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5362 // Set the alignment to that of an array items. We will be only loading one 5363 // value out of it. 5364 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5365 Kind = ArrayKind; 5366 } 5367 5368 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5369 switch (Kind) { 5370 case SingleValueKind: 5371 return SingleValue; 5372 case LinearMapKind: { 5373 // Derive the result value from the input value. 5374 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5375 false, "switch.idx.cast"); 5376 if (!LinearMultiplier->isOne()) 5377 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5378 if (!LinearOffset->isZero()) 5379 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5380 return Result; 5381 } 5382 case BitMapKind: { 5383 // Type of the bitmap (e.g. i59). 5384 IntegerType *MapTy = BitMap->getType(); 5385 5386 // Cast Index to the same type as the bitmap. 5387 // Note: The Index is <= the number of elements in the table, so 5388 // truncating it to the width of the bitmask is safe. 5389 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5390 5391 // Multiply the shift amount by the element width. 5392 ShiftAmt = Builder.CreateMul( 5393 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5394 "switch.shiftamt"); 5395 5396 // Shift down. 5397 Value *DownShifted = 5398 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5399 // Mask off. 5400 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5401 } 5402 case ArrayKind: { 5403 // Make sure the table index will not overflow when treated as signed. 5404 IntegerType *IT = cast<IntegerType>(Index->getType()); 5405 uint64_t TableSize = 5406 Array->getInitializer()->getType()->getArrayNumElements(); 5407 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5408 Index = Builder.CreateZExt( 5409 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5410 "switch.tableidx.zext"); 5411 5412 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5413 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5414 GEPIndices, "switch.gep"); 5415 return Builder.CreateLoad( 5416 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5417 "switch.load"); 5418 } 5419 } 5420 llvm_unreachable("Unknown lookup table kind!"); 5421 } 5422 5423 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5424 uint64_t TableSize, 5425 Type *ElementType) { 5426 auto *IT = dyn_cast<IntegerType>(ElementType); 5427 if (!IT) 5428 return false; 5429 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5430 // are <= 15, we could try to narrow the type. 5431 5432 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5433 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5434 return false; 5435 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5436 } 5437 5438 /// Determine whether a lookup table should be built for this switch, based on 5439 /// the number of cases, size of the table, and the types of the results. 5440 static bool 5441 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5442 const TargetTransformInfo &TTI, const DataLayout &DL, 5443 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5444 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5445 return false; // TableSize overflowed, or mul below might overflow. 5446 5447 bool AllTablesFitInRegister = true; 5448 bool HasIllegalType = false; 5449 for (const auto &I : ResultTypes) { 5450 Type *Ty = I.second; 5451 5452 // Saturate this flag to true. 5453 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5454 5455 // Saturate this flag to false. 5456 AllTablesFitInRegister = 5457 AllTablesFitInRegister && 5458 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5459 5460 // If both flags saturate, we're done. NOTE: This *only* works with 5461 // saturating flags, and all flags have to saturate first due to the 5462 // non-deterministic behavior of iterating over a dense map. 5463 if (HasIllegalType && !AllTablesFitInRegister) 5464 break; 5465 } 5466 5467 // If each table would fit in a register, we should build it anyway. 5468 if (AllTablesFitInRegister) 5469 return true; 5470 5471 // Don't build a table that doesn't fit in-register if it has illegal types. 5472 if (HasIllegalType) 5473 return false; 5474 5475 // The table density should be at least 40%. This is the same criterion as for 5476 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5477 // FIXME: Find the best cut-off. 5478 return SI->getNumCases() * 10 >= TableSize * 4; 5479 } 5480 5481 /// Try to reuse the switch table index compare. Following pattern: 5482 /// \code 5483 /// if (idx < tablesize) 5484 /// r = table[idx]; // table does not contain default_value 5485 /// else 5486 /// r = default_value; 5487 /// if (r != default_value) 5488 /// ... 5489 /// \endcode 5490 /// Is optimized to: 5491 /// \code 5492 /// cond = idx < tablesize; 5493 /// if (cond) 5494 /// r = table[idx]; 5495 /// else 5496 /// r = default_value; 5497 /// if (cond) 5498 /// ... 5499 /// \endcode 5500 /// Jump threading will then eliminate the second if(cond). 5501 static void reuseTableCompare( 5502 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5503 Constant *DefaultValue, 5504 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5505 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5506 if (!CmpInst) 5507 return; 5508 5509 // We require that the compare is in the same block as the phi so that jump 5510 // threading can do its work afterwards. 5511 if (CmpInst->getParent() != PhiBlock) 5512 return; 5513 5514 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5515 if (!CmpOp1) 5516 return; 5517 5518 Value *RangeCmp = RangeCheckBranch->getCondition(); 5519 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5520 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5521 5522 // Check if the compare with the default value is constant true or false. 5523 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5524 DefaultValue, CmpOp1, true); 5525 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5526 return; 5527 5528 // Check if the compare with the case values is distinct from the default 5529 // compare result. 5530 for (auto ValuePair : Values) { 5531 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5532 ValuePair.second, CmpOp1, true); 5533 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5534 return; 5535 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5536 "Expect true or false as compare result."); 5537 } 5538 5539 // Check if the branch instruction dominates the phi node. It's a simple 5540 // dominance check, but sufficient for our needs. 5541 // Although this check is invariant in the calling loops, it's better to do it 5542 // at this late stage. Practically we do it at most once for a switch. 5543 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5544 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5545 BasicBlock *Pred = *PI; 5546 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5547 return; 5548 } 5549 5550 if (DefaultConst == FalseConst) { 5551 // The compare yields the same result. We can replace it. 5552 CmpInst->replaceAllUsesWith(RangeCmp); 5553 ++NumTableCmpReuses; 5554 } else { 5555 // The compare yields the same result, just inverted. We can replace it. 5556 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5557 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5558 RangeCheckBranch); 5559 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5560 ++NumTableCmpReuses; 5561 } 5562 } 5563 5564 /// If the switch is only used to initialize one or more phi nodes in a common 5565 /// successor block with different constant values, replace the switch with 5566 /// lookup tables. 5567 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5568 const DataLayout &DL, 5569 const TargetTransformInfo &TTI) { 5570 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5571 5572 Function *Fn = SI->getParent()->getParent(); 5573 // Only build lookup table when we have a target that supports it or the 5574 // attribute is not set. 5575 if (!TTI.shouldBuildLookupTables() || 5576 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5577 return false; 5578 5579 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5580 // split off a dense part and build a lookup table for that. 5581 5582 // FIXME: This creates arrays of GEPs to constant strings, which means each 5583 // GEP needs a runtime relocation in PIC code. We should just build one big 5584 // string and lookup indices into that. 5585 5586 // Ignore switches with less than three cases. Lookup tables will not make 5587 // them faster, so we don't analyze them. 5588 if (SI->getNumCases() < 3) 5589 return false; 5590 5591 // Figure out the corresponding result for each case value and phi node in the 5592 // common destination, as well as the min and max case values. 5593 assert(!SI->cases().empty()); 5594 SwitchInst::CaseIt CI = SI->case_begin(); 5595 ConstantInt *MinCaseVal = CI->getCaseValue(); 5596 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5597 5598 BasicBlock *CommonDest = nullptr; 5599 5600 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5601 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5602 5603 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5604 SmallDenseMap<PHINode *, Type *> ResultTypes; 5605 SmallVector<PHINode *, 4> PHIs; 5606 5607 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5608 ConstantInt *CaseVal = CI->getCaseValue(); 5609 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5610 MinCaseVal = CaseVal; 5611 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5612 MaxCaseVal = CaseVal; 5613 5614 // Resulting value at phi nodes for this case value. 5615 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5616 ResultsTy Results; 5617 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5618 Results, DL, TTI)) 5619 return false; 5620 5621 // Append the result from this case to the list for each phi. 5622 for (const auto &I : Results) { 5623 PHINode *PHI = I.first; 5624 Constant *Value = I.second; 5625 if (!ResultLists.count(PHI)) 5626 PHIs.push_back(PHI); 5627 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5628 } 5629 } 5630 5631 // Keep track of the result types. 5632 for (PHINode *PHI : PHIs) { 5633 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5634 } 5635 5636 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5637 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5638 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5639 bool TableHasHoles = (NumResults < TableSize); 5640 5641 // If the table has holes, we need a constant result for the default case 5642 // or a bitmask that fits in a register. 5643 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5644 bool HasDefaultResults = 5645 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5646 DefaultResultsList, DL, TTI); 5647 5648 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5649 if (NeedMask) { 5650 // As an extra penalty for the validity test we require more cases. 5651 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5652 return false; 5653 if (!DL.fitsInLegalInteger(TableSize)) 5654 return false; 5655 } 5656 5657 for (const auto &I : DefaultResultsList) { 5658 PHINode *PHI = I.first; 5659 Constant *Result = I.second; 5660 DefaultResults[PHI] = Result; 5661 } 5662 5663 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5664 return false; 5665 5666 // Create the BB that does the lookups. 5667 Module &Mod = *CommonDest->getParent()->getParent(); 5668 BasicBlock *LookupBB = BasicBlock::Create( 5669 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5670 5671 // Compute the table index value. 5672 Builder.SetInsertPoint(SI); 5673 Value *TableIndex; 5674 if (MinCaseVal->isNullValue()) 5675 TableIndex = SI->getCondition(); 5676 else 5677 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5678 "switch.tableidx"); 5679 5680 // Compute the maximum table size representable by the integer type we are 5681 // switching upon. 5682 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5683 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5684 assert(MaxTableSize >= TableSize && 5685 "It is impossible for a switch to have more entries than the max " 5686 "representable value of its input integer type's size."); 5687 5688 // If the default destination is unreachable, or if the lookup table covers 5689 // all values of the conditional variable, branch directly to the lookup table 5690 // BB. Otherwise, check that the condition is within the case range. 5691 const bool DefaultIsReachable = 5692 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5693 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5694 BranchInst *RangeCheckBranch = nullptr; 5695 5696 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5697 Builder.CreateBr(LookupBB); 5698 // Note: We call removeProdecessor later since we need to be able to get the 5699 // PHI value for the default case in case we're using a bit mask. 5700 } else { 5701 Value *Cmp = Builder.CreateICmpULT( 5702 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5703 RangeCheckBranch = 5704 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5705 } 5706 5707 // Populate the BB that does the lookups. 5708 Builder.SetInsertPoint(LookupBB); 5709 5710 if (NeedMask) { 5711 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5712 // re-purposed to do the hole check, and we create a new LookupBB. 5713 BasicBlock *MaskBB = LookupBB; 5714 MaskBB->setName("switch.hole_check"); 5715 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5716 CommonDest->getParent(), CommonDest); 5717 5718 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5719 // unnecessary illegal types. 5720 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5721 APInt MaskInt(TableSizePowOf2, 0); 5722 APInt One(TableSizePowOf2, 1); 5723 // Build bitmask; fill in a 1 bit for every case. 5724 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5725 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5726 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5727 .getLimitedValue(); 5728 MaskInt |= One << Idx; 5729 } 5730 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5731 5732 // Get the TableIndex'th bit of the bitmask. 5733 // If this bit is 0 (meaning hole) jump to the default destination, 5734 // else continue with table lookup. 5735 IntegerType *MapTy = TableMask->getType(); 5736 Value *MaskIndex = 5737 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5738 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5739 Value *LoBit = Builder.CreateTrunc( 5740 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5741 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5742 5743 Builder.SetInsertPoint(LookupBB); 5744 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5745 } 5746 5747 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5748 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5749 // do not delete PHINodes here. 5750 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5751 /*KeepOneInputPHIs=*/true); 5752 } 5753 5754 bool ReturnedEarly = false; 5755 for (PHINode *PHI : PHIs) { 5756 const ResultListTy &ResultList = ResultLists[PHI]; 5757 5758 // If using a bitmask, use any value to fill the lookup table holes. 5759 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5760 StringRef FuncName = Fn->getName(); 5761 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5762 FuncName); 5763 5764 Value *Result = Table.BuildLookup(TableIndex, Builder); 5765 5766 // If the result is used to return immediately from the function, we want to 5767 // do that right here. 5768 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5769 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5770 Builder.CreateRet(Result); 5771 ReturnedEarly = true; 5772 break; 5773 } 5774 5775 // Do a small peephole optimization: re-use the switch table compare if 5776 // possible. 5777 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5778 BasicBlock *PhiBlock = PHI->getParent(); 5779 // Search for compare instructions which use the phi. 5780 for (auto *User : PHI->users()) { 5781 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5782 } 5783 } 5784 5785 PHI->addIncoming(Result, LookupBB); 5786 } 5787 5788 if (!ReturnedEarly) 5789 Builder.CreateBr(CommonDest); 5790 5791 // Remove the switch. 5792 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5793 BasicBlock *Succ = SI->getSuccessor(i); 5794 5795 if (Succ == SI->getDefaultDest()) 5796 continue; 5797 Succ->removePredecessor(SI->getParent()); 5798 } 5799 SI->eraseFromParent(); 5800 5801 ++NumLookupTables; 5802 if (NeedMask) 5803 ++NumLookupTablesHoles; 5804 return true; 5805 } 5806 5807 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5808 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5809 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5810 uint64_t Range = Diff + 1; 5811 uint64_t NumCases = Values.size(); 5812 // 40% is the default density for building a jump table in optsize/minsize mode. 5813 uint64_t MinDensity = 40; 5814 5815 return NumCases * 100 >= Range * MinDensity; 5816 } 5817 5818 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5819 /// of cases. 5820 /// 5821 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5822 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5823 /// 5824 /// This converts a sparse switch into a dense switch which allows better 5825 /// lowering and could also allow transforming into a lookup table. 5826 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5827 const DataLayout &DL, 5828 const TargetTransformInfo &TTI) { 5829 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5830 if (CondTy->getIntegerBitWidth() > 64 || 5831 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5832 return false; 5833 // Only bother with this optimization if there are more than 3 switch cases; 5834 // SDAG will only bother creating jump tables for 4 or more cases. 5835 if (SI->getNumCases() < 4) 5836 return false; 5837 5838 // This transform is agnostic to the signedness of the input or case values. We 5839 // can treat the case values as signed or unsigned. We can optimize more common 5840 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5841 // as signed. 5842 SmallVector<int64_t,4> Values; 5843 for (auto &C : SI->cases()) 5844 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5845 llvm::sort(Values); 5846 5847 // If the switch is already dense, there's nothing useful to do here. 5848 if (isSwitchDense(Values)) 5849 return false; 5850 5851 // First, transform the values such that they start at zero and ascend. 5852 int64_t Base = Values[0]; 5853 for (auto &V : Values) 5854 V -= (uint64_t)(Base); 5855 5856 // Now we have signed numbers that have been shifted so that, given enough 5857 // precision, there are no negative values. Since the rest of the transform 5858 // is bitwise only, we switch now to an unsigned representation. 5859 5860 // This transform can be done speculatively because it is so cheap - it 5861 // results in a single rotate operation being inserted. 5862 // FIXME: It's possible that optimizing a switch on powers of two might also 5863 // be beneficial - flag values are often powers of two and we could use a CLZ 5864 // as the key function. 5865 5866 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5867 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5868 // less than 64. 5869 unsigned Shift = 64; 5870 for (auto &V : Values) 5871 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5872 assert(Shift < 64); 5873 if (Shift > 0) 5874 for (auto &V : Values) 5875 V = (int64_t)((uint64_t)V >> Shift); 5876 5877 if (!isSwitchDense(Values)) 5878 // Transform didn't create a dense switch. 5879 return false; 5880 5881 // The obvious transform is to shift the switch condition right and emit a 5882 // check that the condition actually cleanly divided by GCD, i.e. 5883 // C & (1 << Shift - 1) == 0 5884 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5885 // 5886 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5887 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5888 // are nonzero then the switch condition will be very large and will hit the 5889 // default case. 5890 5891 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5892 Builder.SetInsertPoint(SI); 5893 auto *ShiftC = ConstantInt::get(Ty, Shift); 5894 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5895 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5896 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5897 auto *Rot = Builder.CreateOr(LShr, Shl); 5898 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5899 5900 for (auto Case : SI->cases()) { 5901 auto *Orig = Case.getCaseValue(); 5902 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5903 Case.setValue( 5904 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5905 } 5906 return true; 5907 } 5908 5909 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5910 BasicBlock *BB = SI->getParent(); 5911 5912 if (isValueEqualityComparison(SI)) { 5913 // If we only have one predecessor, and if it is a branch on this value, 5914 // see if that predecessor totally determines the outcome of this switch. 5915 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5916 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5917 return requestResimplify(); 5918 5919 Value *Cond = SI->getCondition(); 5920 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5921 if (SimplifySwitchOnSelect(SI, Select)) 5922 return requestResimplify(); 5923 5924 // If the block only contains the switch, see if we can fold the block 5925 // away into any preds. 5926 if (SI == &*BB->instructionsWithoutDebug().begin()) 5927 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5928 return requestResimplify(); 5929 } 5930 5931 // Try to transform the switch into an icmp and a branch. 5932 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5933 return requestResimplify(); 5934 5935 // Remove unreachable cases. 5936 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5937 return requestResimplify(); 5938 5939 if (switchToSelect(SI, Builder, DL, TTI)) 5940 return requestResimplify(); 5941 5942 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5943 return requestResimplify(); 5944 5945 // The conversion from switch to lookup tables results in difficult-to-analyze 5946 // code and makes pruning branches much harder. This is a problem if the 5947 // switch expression itself can still be restricted as a result of inlining or 5948 // CVP. Therefore, only apply this transformation during late stages of the 5949 // optimisation pipeline. 5950 if (Options.ConvertSwitchToLookupTable && 5951 SwitchToLookupTable(SI, Builder, DL, TTI)) 5952 return requestResimplify(); 5953 5954 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5955 return requestResimplify(); 5956 5957 return false; 5958 } 5959 5960 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5961 BasicBlock *BB = IBI->getParent(); 5962 bool Changed = false; 5963 5964 // Eliminate redundant destinations. 5965 SmallPtrSet<Value *, 8> Succs; 5966 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5967 BasicBlock *Dest = IBI->getDestination(i); 5968 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5969 Dest->removePredecessor(BB); 5970 IBI->removeDestination(i); 5971 --i; 5972 --e; 5973 Changed = true; 5974 } 5975 } 5976 5977 if (IBI->getNumDestinations() == 0) { 5978 // If the indirectbr has no successors, change it to unreachable. 5979 new UnreachableInst(IBI->getContext(), IBI); 5980 EraseTerminatorAndDCECond(IBI); 5981 return true; 5982 } 5983 5984 if (IBI->getNumDestinations() == 1) { 5985 // If the indirectbr has one successor, change it to a direct branch. 5986 BranchInst::Create(IBI->getDestination(0), IBI); 5987 EraseTerminatorAndDCECond(IBI); 5988 return true; 5989 } 5990 5991 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5992 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5993 return requestResimplify(); 5994 } 5995 return Changed; 5996 } 5997 5998 /// Given an block with only a single landing pad and a unconditional branch 5999 /// try to find another basic block which this one can be merged with. This 6000 /// handles cases where we have multiple invokes with unique landing pads, but 6001 /// a shared handler. 6002 /// 6003 /// We specifically choose to not worry about merging non-empty blocks 6004 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6005 /// practice, the optimizer produces empty landing pad blocks quite frequently 6006 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6007 /// sinking in this file) 6008 /// 6009 /// This is primarily a code size optimization. We need to avoid performing 6010 /// any transform which might inhibit optimization (such as our ability to 6011 /// specialize a particular handler via tail commoning). We do this by not 6012 /// merging any blocks which require us to introduce a phi. Since the same 6013 /// values are flowing through both blocks, we don't lose any ability to 6014 /// specialize. If anything, we make such specialization more likely. 6015 /// 6016 /// TODO - This transformation could remove entries from a phi in the target 6017 /// block when the inputs in the phi are the same for the two blocks being 6018 /// merged. In some cases, this could result in removal of the PHI entirely. 6019 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6020 BasicBlock *BB) { 6021 auto Succ = BB->getUniqueSuccessor(); 6022 assert(Succ); 6023 // If there's a phi in the successor block, we'd likely have to introduce 6024 // a phi into the merged landing pad block. 6025 if (isa<PHINode>(*Succ->begin())) 6026 return false; 6027 6028 for (BasicBlock *OtherPred : predecessors(Succ)) { 6029 if (BB == OtherPred) 6030 continue; 6031 BasicBlock::iterator I = OtherPred->begin(); 6032 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6033 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6034 continue; 6035 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6036 ; 6037 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6038 if (!BI2 || !BI2->isIdenticalTo(BI)) 6039 continue; 6040 6041 // We've found an identical block. Update our predecessors to take that 6042 // path instead and make ourselves dead. 6043 SmallPtrSet<BasicBlock *, 16> Preds; 6044 Preds.insert(pred_begin(BB), pred_end(BB)); 6045 for (BasicBlock *Pred : Preds) { 6046 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6047 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6048 "unexpected successor"); 6049 II->setUnwindDest(OtherPred); 6050 } 6051 6052 // The debug info in OtherPred doesn't cover the merged control flow that 6053 // used to go through BB. We need to delete it or update it. 6054 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6055 Instruction &Inst = *I; 6056 I++; 6057 if (isa<DbgInfoIntrinsic>(Inst)) 6058 Inst.eraseFromParent(); 6059 } 6060 6061 SmallPtrSet<BasicBlock *, 16> Succs; 6062 Succs.insert(succ_begin(BB), succ_end(BB)); 6063 for (BasicBlock *Succ : Succs) { 6064 Succ->removePredecessor(BB); 6065 } 6066 6067 IRBuilder<> Builder(BI); 6068 Builder.CreateUnreachable(); 6069 BI->eraseFromParent(); 6070 return true; 6071 } 6072 return false; 6073 } 6074 6075 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6076 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6077 : simplifyCondBranch(Branch, Builder); 6078 } 6079 6080 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6081 IRBuilder<> &Builder) { 6082 BasicBlock *BB = BI->getParent(); 6083 BasicBlock *Succ = BI->getSuccessor(0); 6084 6085 // If the Terminator is the only non-phi instruction, simplify the block. 6086 // If LoopHeader is provided, check if the block or its successor is a loop 6087 // header. (This is for early invocations before loop simplify and 6088 // vectorization to keep canonical loop forms for nested loops. These blocks 6089 // can be eliminated when the pass is invoked later in the back-end.) 6090 // Note that if BB has only one predecessor then we do not introduce new 6091 // backedge, so we can eliminate BB. 6092 bool NeedCanonicalLoop = 6093 Options.NeedCanonicalLoop && 6094 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6095 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6096 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6097 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6098 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 6099 return true; 6100 6101 // If the only instruction in the block is a seteq/setne comparison against a 6102 // constant, try to simplify the block. 6103 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6104 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6105 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6106 ; 6107 if (I->isTerminator() && 6108 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6109 return true; 6110 } 6111 6112 // See if we can merge an empty landing pad block with another which is 6113 // equivalent. 6114 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6115 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6116 ; 6117 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 6118 return true; 6119 } 6120 6121 // If this basic block is ONLY a compare and a branch, and if a predecessor 6122 // branches to us and our successor, fold the comparison into the 6123 // predecessor and use logical operations to update the incoming value 6124 // for PHI nodes in common successor. 6125 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6126 return requestResimplify(); 6127 return false; 6128 } 6129 6130 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6131 BasicBlock *PredPred = nullptr; 6132 for (auto *P : predecessors(BB)) { 6133 BasicBlock *PPred = P->getSinglePredecessor(); 6134 if (!PPred || (PredPred && PredPred != PPred)) 6135 return nullptr; 6136 PredPred = PPred; 6137 } 6138 return PredPred; 6139 } 6140 6141 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6142 BasicBlock *BB = BI->getParent(); 6143 if (!Options.SimplifyCondBranch) 6144 return false; 6145 6146 // Conditional branch 6147 if (isValueEqualityComparison(BI)) { 6148 // If we only have one predecessor, and if it is a branch on this value, 6149 // see if that predecessor totally determines the outcome of this 6150 // switch. 6151 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6152 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6153 return requestResimplify(); 6154 6155 // This block must be empty, except for the setcond inst, if it exists. 6156 // Ignore dbg intrinsics. 6157 auto I = BB->instructionsWithoutDebug().begin(); 6158 if (&*I == BI) { 6159 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6160 return requestResimplify(); 6161 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6162 ++I; 6163 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6164 return requestResimplify(); 6165 } 6166 } 6167 6168 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6169 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6170 return true; 6171 6172 // If this basic block has dominating predecessor blocks and the dominating 6173 // blocks' conditions imply BI's condition, we know the direction of BI. 6174 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6175 if (Imp) { 6176 // Turn this into a branch on constant. 6177 auto *OldCond = BI->getCondition(); 6178 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6179 : ConstantInt::getFalse(BB->getContext()); 6180 BI->setCondition(TorF); 6181 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6182 return requestResimplify(); 6183 } 6184 6185 // If this basic block is ONLY a compare and a branch, and if a predecessor 6186 // branches to us and one of our successors, fold the comparison into the 6187 // predecessor and use logical operations to pick the right destination. 6188 if (FoldBranchToCommonDest(BI, nullptr, &TTI, Options.BonusInstThreshold)) 6189 return requestResimplify(); 6190 6191 // We have a conditional branch to two blocks that are only reachable 6192 // from BI. We know that the condbr dominates the two blocks, so see if 6193 // there is any identical code in the "then" and "else" blocks. If so, we 6194 // can hoist it up to the branching block. 6195 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6196 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6197 if (HoistCommon && Options.HoistCommonInsts) 6198 if (HoistThenElseCodeToIf(BI, TTI)) 6199 return requestResimplify(); 6200 } else { 6201 // If Successor #1 has multiple preds, we may be able to conditionally 6202 // execute Successor #0 if it branches to Successor #1. 6203 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6204 if (Succ0TI->getNumSuccessors() == 1 && 6205 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6206 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6207 return requestResimplify(); 6208 } 6209 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6210 // If Successor #0 has multiple preds, we may be able to conditionally 6211 // execute Successor #1 if it branches to Successor #0. 6212 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6213 if (Succ1TI->getNumSuccessors() == 1 && 6214 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6215 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6216 return requestResimplify(); 6217 } 6218 6219 // If this is a branch on a phi node in the current block, thread control 6220 // through this block if any PHI node entries are constants. 6221 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6222 if (PN->getParent() == BI->getParent()) 6223 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6224 return requestResimplify(); 6225 6226 // Scan predecessor blocks for conditional branches. 6227 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6228 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6229 if (PBI != BI && PBI->isConditional()) 6230 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6231 return requestResimplify(); 6232 6233 // Look for diamond patterns. 6234 if (MergeCondStores) 6235 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6236 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6237 if (PBI != BI && PBI->isConditional()) 6238 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6239 return requestResimplify(); 6240 6241 return false; 6242 } 6243 6244 /// Check if passing a value to an instruction will cause undefined behavior. 6245 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6246 Constant *C = dyn_cast<Constant>(V); 6247 if (!C) 6248 return false; 6249 6250 if (I->use_empty()) 6251 return false; 6252 6253 if (C->isNullValue() || isa<UndefValue>(C)) { 6254 // Only look at the first use, avoid hurting compile time with long uselists 6255 User *Use = *I->user_begin(); 6256 6257 // Now make sure that there are no instructions in between that can alter 6258 // control flow (eg. calls) 6259 for (BasicBlock::iterator 6260 i = ++BasicBlock::iterator(I), 6261 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6262 i != UI; ++i) 6263 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6264 return false; 6265 6266 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6267 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6268 if (GEP->getPointerOperand() == I) 6269 return passingValueIsAlwaysUndefined(V, GEP); 6270 6271 // Look through bitcasts. 6272 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6273 return passingValueIsAlwaysUndefined(V, BC); 6274 6275 // Load from null is undefined. 6276 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6277 if (!LI->isVolatile()) 6278 return !NullPointerIsDefined(LI->getFunction(), 6279 LI->getPointerAddressSpace()); 6280 6281 // Store to null is undefined. 6282 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6283 if (!SI->isVolatile()) 6284 return (!NullPointerIsDefined(SI->getFunction(), 6285 SI->getPointerAddressSpace())) && 6286 SI->getPointerOperand() == I; 6287 6288 // A call to null is undefined. 6289 if (auto *CB = dyn_cast<CallBase>(Use)) 6290 return !NullPointerIsDefined(CB->getFunction()) && 6291 CB->getCalledOperand() == I; 6292 } 6293 return false; 6294 } 6295 6296 /// If BB has an incoming value that will always trigger undefined behavior 6297 /// (eg. null pointer dereference), remove the branch leading here. 6298 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6299 for (PHINode &PHI : BB->phis()) 6300 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6301 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6302 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6303 IRBuilder<> Builder(T); 6304 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6305 BB->removePredecessor(PHI.getIncomingBlock(i)); 6306 // Turn uncoditional branches into unreachables and remove the dead 6307 // destination from conditional branches. 6308 if (BI->isUnconditional()) 6309 Builder.CreateUnreachable(); 6310 else 6311 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6312 : BI->getSuccessor(0)); 6313 BI->eraseFromParent(); 6314 return true; 6315 } 6316 // TODO: SwitchInst. 6317 } 6318 6319 return false; 6320 } 6321 6322 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6323 bool Changed = false; 6324 6325 assert(BB && BB->getParent() && "Block not embedded in function!"); 6326 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6327 6328 // Remove basic blocks that have no predecessors (except the entry block)... 6329 // or that just have themself as a predecessor. These are unreachable. 6330 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6331 BB->getSinglePredecessor() == BB) { 6332 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6333 DeleteDeadBlock(BB); 6334 return true; 6335 } 6336 6337 // Check to see if we can constant propagate this terminator instruction 6338 // away... 6339 Changed |= ConstantFoldTerminator(BB, true); 6340 6341 // Check for and eliminate duplicate PHI nodes in this block. 6342 Changed |= EliminateDuplicatePHINodes(BB); 6343 6344 // Check for and remove branches that will always cause undefined behavior. 6345 Changed |= removeUndefIntroducingPredecessor(BB); 6346 6347 // Merge basic blocks into their predecessor if there is only one distinct 6348 // pred, and if there is only one distinct successor of the predecessor, and 6349 // if there are no PHI nodes. 6350 if (MergeBlockIntoPredecessor(BB)) 6351 return true; 6352 6353 if (SinkCommon && Options.SinkCommonInsts) 6354 Changed |= SinkCommonCodeFromPredecessors(BB); 6355 6356 IRBuilder<> Builder(BB); 6357 6358 if (Options.FoldTwoEntryPHINode) { 6359 // If there is a trivial two-entry PHI node in this basic block, and we can 6360 // eliminate it, do so now. 6361 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6362 if (PN->getNumIncomingValues() == 2) 6363 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6364 } 6365 6366 Instruction *Terminator = BB->getTerminator(); 6367 Builder.SetInsertPoint(Terminator); 6368 switch (Terminator->getOpcode()) { 6369 case Instruction::Br: 6370 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6371 break; 6372 case Instruction::Ret: 6373 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6374 break; 6375 case Instruction::Resume: 6376 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6377 break; 6378 case Instruction::CleanupRet: 6379 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6380 break; 6381 case Instruction::Switch: 6382 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6383 break; 6384 case Instruction::Unreachable: 6385 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6386 break; 6387 case Instruction::IndirectBr: 6388 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6389 break; 6390 } 6391 6392 return Changed; 6393 } 6394 6395 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6396 bool Changed = false; 6397 6398 // Repeated simplify BB as long as resimplification is requested. 6399 do { 6400 Resimplify = false; 6401 6402 // Perform one round of simplifcation. Resimplify flag will be set if 6403 // another iteration is requested. 6404 Changed |= simplifyOnce(BB); 6405 } while (Resimplify); 6406 6407 return Changed; 6408 } 6409 6410 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6411 const SimplifyCFGOptions &Options, 6412 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6413 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6414 Options) 6415 .run(BB); 6416 } 6417