1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
178   if (SI1 == SI2)
179     return false; // Can't merge with self!
180 
181   // It is not safe to merge these two switch instructions if they have a common
182   // successor, and if that successor has a PHI node, and if *that* PHI node has
183   // conflicting incoming values from the two switch blocks.
184   BasicBlock *SI1BB = SI1->getParent();
185   BasicBlock *SI2BB = SI2->getParent();
186   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
187 
188   for (BasicBlock *Succ : successors(SI2BB))
189     if (SI1Succs.count(Succ))
190       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
191         PHINode *PN = cast<PHINode>(BBI);
192         if (PN->getIncomingValueForBlock(SI1BB) !=
193             PN->getIncomingValueForBlock(SI2BB))
194           return false;
195       }
196 
197   return true;
198 }
199 
200 /// Return true if it is safe and profitable to merge these two terminator
201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
202 /// store all PHI nodes in common successors.
203 static bool
204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
205                                 Instruction *Cond,
206                                 SmallVectorImpl<PHINode *> &PhiNodes) {
207   if (SI1 == SI2)
208     return false; // Can't merge with self!
209   assert(SI1->isUnconditional() && SI2->isConditional());
210 
211   // We fold the unconditional branch if we can easily update all PHI nodes in
212   // common successors:
213   // 1> We have a constant incoming value for the conditional branch;
214   // 2> We have "Cond" as the incoming value for the unconditional branch;
215   // 3> SI2->getCondition() and Cond have same operands.
216   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
217   if (!Ci2)
218     return false;
219   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
220         Cond->getOperand(1) == Ci2->getOperand(1)) &&
221       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
222         Cond->getOperand(1) == Ci2->getOperand(0)))
223     return false;
224 
225   BasicBlock *SI1BB = SI1->getParent();
226   BasicBlock *SI2BB = SI2->getParent();
227   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
228   for (BasicBlock *Succ : successors(SI2BB))
229     if (SI1Succs.count(Succ))
230       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
231         PHINode *PN = cast<PHINode>(BBI);
232         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
233             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
234           return false;
235         PhiNodes.push_back(PN);
236       }
237   return true;
238 }
239 
240 /// Update PHI nodes in Succ to indicate that there will now be entries in it
241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
242 /// will be the same as those coming in from ExistPred, an existing predecessor
243 /// of Succ.
244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
245                                   BasicBlock *ExistPred) {
246   if (!isa<PHINode>(Succ->begin()))
247     return; // Quick exit if nothing to do
248 
249   PHINode *PN;
250   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
251     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
252 }
253 
254 /// Compute an abstract "cost" of speculating the given instruction,
255 /// which is assumed to be safe to speculate. TCC_Free means cheap,
256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
257 /// expensive.
258 static unsigned ComputeSpeculationCost(const User *I,
259                                        const TargetTransformInfo &TTI) {
260   assert(isSafeToSpeculativelyExecute(I) &&
261          "Instruction is not safe to speculatively execute!");
262   return TTI.getUserCost(I);
263 }
264 
265 /// If we have a merge point of an "if condition" as accepted above,
266 /// return true if the specified value dominates the block.  We
267 /// don't handle the true generality of domination here, just a special case
268 /// which works well enough for us.
269 ///
270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
271 /// see if V (which must be an instruction) and its recursive operands
272 /// that do not dominate BB have a combined cost lower than CostRemaining and
273 /// are non-trapping.  If both are true, the instruction is inserted into the
274 /// set and true is returned.
275 ///
276 /// The cost for most non-trapping instructions is defined as 1 except for
277 /// Select whose cost is 2.
278 ///
279 /// After this function returns, CostRemaining is decreased by the cost of
280 /// V plus its non-dominating operands.  If that cost is greater than
281 /// CostRemaining, false is returned and CostRemaining is undefined.
282 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
283                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
284                                 unsigned &CostRemaining,
285                                 const TargetTransformInfo &TTI,
286                                 unsigned Depth = 0) {
287   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
288   // so limit the recursion depth.
289   // TODO: While this recursion limit does prevent pathological behavior, it
290   // would be better to track visited instructions to avoid cycles.
291   if (Depth == MaxSpeculationDepth)
292     return false;
293 
294   Instruction *I = dyn_cast<Instruction>(V);
295   if (!I) {
296     // Non-instructions all dominate instructions, but not all constantexprs
297     // can be executed unconditionally.
298     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
299       if (C->canTrap())
300         return false;
301     return true;
302   }
303   BasicBlock *PBB = I->getParent();
304 
305   // We don't want to allow weird loops that might have the "if condition" in
306   // the bottom of this block.
307   if (PBB == BB)
308     return false;
309 
310   // If this instruction is defined in a block that contains an unconditional
311   // branch to BB, then it must be in the 'conditional' part of the "if
312   // statement".  If not, it definitely dominates the region.
313   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
314   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
315     return true;
316 
317   // If we aren't allowing aggressive promotion anymore, then don't consider
318   // instructions in the 'if region'.
319   if (!AggressiveInsts)
320     return false;
321 
322   // If we have seen this instruction before, don't count it again.
323   if (AggressiveInsts->count(I))
324     return true;
325 
326   // Okay, it looks like the instruction IS in the "condition".  Check to
327   // see if it's a cheap instruction to unconditionally compute, and if it
328   // only uses stuff defined outside of the condition.  If so, hoist it out.
329   if (!isSafeToSpeculativelyExecute(I))
330     return false;
331 
332   unsigned Cost = ComputeSpeculationCost(I, TTI);
333 
334   // Allow exactly one instruction to be speculated regardless of its cost
335   // (as long as it is safe to do so).
336   // This is intended to flatten the CFG even if the instruction is a division
337   // or other expensive operation. The speculation of an expensive instruction
338   // is expected to be undone in CodeGenPrepare if the speculation has not
339   // enabled further IR optimizations.
340   if (Cost > CostRemaining &&
341       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
342     return false;
343 
344   // Avoid unsigned wrap.
345   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
346 
347   // Okay, we can only really hoist these out if their operands do
348   // not take us over the cost threshold.
349   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
350     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
351                              Depth + 1))
352       return false;
353   // Okay, it's safe to do this!  Remember this instruction.
354   AggressiveInsts->insert(I);
355   return true;
356 }
357 
358 /// Extract ConstantInt from value, looking through IntToPtr
359 /// and PointerNullValue. Return NULL if value is not a constant int.
360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
361   // Normal constant int.
362   ConstantInt *CI = dyn_cast<ConstantInt>(V);
363   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
364     return CI;
365 
366   // This is some kind of pointer constant. Turn it into a pointer-sized
367   // ConstantInt if possible.
368   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
369 
370   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
371   if (isa<ConstantPointerNull>(V))
372     return ConstantInt::get(PtrTy, 0);
373 
374   // IntToPtr const int.
375   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
376     if (CE->getOpcode() == Instruction::IntToPtr)
377       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
378         // The constant is very likely to have the right type already.
379         if (CI->getType() == PtrTy)
380           return CI;
381         else
382           return cast<ConstantInt>(
383               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
384       }
385   return nullptr;
386 }
387 
388 namespace {
389 
390 /// Given a chain of or (||) or and (&&) comparison of a value against a
391 /// constant, this will try to recover the information required for a switch
392 /// structure.
393 /// It will depth-first traverse the chain of comparison, seeking for patterns
394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
395 /// representing the different cases for the switch.
396 /// Note that if the chain is composed of '||' it will build the set of elements
397 /// that matches the comparisons (i.e. any of this value validate the chain)
398 /// while for a chain of '&&' it will build the set elements that make the test
399 /// fail.
400 struct ConstantComparesGatherer {
401   const DataLayout &DL;
402   Value *CompValue; /// Value found for the switch comparison
403   Value *Extra;     /// Extra clause to be checked before the switch
404   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
405   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
406 
407   /// Construct and compute the result for the comparison instruction Cond
408   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
409       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
410     gather(Cond);
411   }
412 
413   /// Prevent copy
414   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
415   ConstantComparesGatherer &
416   operator=(const ConstantComparesGatherer &) = delete;
417 
418 private:
419   /// Try to set the current value used for the comparison, it succeeds only if
420   /// it wasn't set before or if the new value is the same as the old one
421   bool setValueOnce(Value *NewVal) {
422     if (CompValue && CompValue != NewVal)
423       return false;
424     CompValue = NewVal;
425     return (CompValue != nullptr);
426   }
427 
428   /// Try to match Instruction "I" as a comparison against a constant and
429   /// populates the array Vals with the set of values that match (or do not
430   /// match depending on isEQ).
431   /// Return false on failure. On success, the Value the comparison matched
432   /// against is placed in CompValue.
433   /// If CompValue is already set, the function is expected to fail if a match
434   /// is found but the value compared to is different.
435   bool matchInstruction(Instruction *I, bool isEQ) {
436     // If this is an icmp against a constant, handle this as one of the cases.
437     ICmpInst *ICI;
438     ConstantInt *C;
439     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
440           (C = GetConstantInt(I->getOperand(1), DL)))) {
441       return false;
442     }
443 
444     Value *RHSVal;
445     ConstantInt *RHSC;
446 
447     // Pattern match a special case
448     // (x & ~2^z) == y --> x == y || x == y|2^z
449     // This undoes a transformation done by instcombine to fuse 2 compares.
450     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
451       if (match(ICI->getOperand(0),
452                 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
453         APInt Not = ~RHSC->getValue();
454         if (Not.isPowerOf2() && C->getValue().isPowerOf2() &&
455             Not != C->getValue()) {
456           // If we already have a value for the switch, it has to match!
457           if (!setValueOnce(RHSVal))
458             return false;
459 
460           Vals.push_back(C);
461           Vals.push_back(
462               ConstantInt::get(C->getContext(), C->getValue() | Not));
463           UsedICmps++;
464           return true;
465         }
466       }
467 
468       // If we already have a value for the switch, it has to match!
469       if (!setValueOnce(ICI->getOperand(0)))
470         return false;
471 
472       UsedICmps++;
473       Vals.push_back(C);
474       return ICI->getOperand(0);
475     }
476 
477     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
478     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
479         ICI->getPredicate(), C->getValue());
480 
481     // Shift the range if the compare is fed by an add. This is the range
482     // compare idiom as emitted by instcombine.
483     Value *CandidateVal = I->getOperand(0);
484     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
485       Span = Span.subtract(RHSC->getValue());
486       CandidateVal = RHSVal;
487     }
488 
489     // If this is an and/!= check, then we are looking to build the set of
490     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
491     // x != 0 && x != 1.
492     if (!isEQ)
493       Span = Span.inverse();
494 
495     // If there are a ton of values, we don't want to make a ginormous switch.
496     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
497       return false;
498     }
499 
500     // If we already have a value for the switch, it has to match!
501     if (!setValueOnce(CandidateVal))
502       return false;
503 
504     // Add all values from the range to the set
505     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
506       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
507 
508     UsedICmps++;
509     return true;
510   }
511 
512   /// Given a potentially 'or'd or 'and'd together collection of icmp
513   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
514   /// the value being compared, and stick the list constants into the Vals
515   /// vector.
516   /// One "Extra" case is allowed to differ from the other.
517   void gather(Value *V) {
518     Instruction *I = dyn_cast<Instruction>(V);
519     bool isEQ = (I->getOpcode() == Instruction::Or);
520 
521     // Keep a stack (SmallVector for efficiency) for depth-first traversal
522     SmallVector<Value *, 8> DFT;
523     SmallPtrSet<Value *, 8> Visited;
524 
525     // Initialize
526     Visited.insert(V);
527     DFT.push_back(V);
528 
529     while (!DFT.empty()) {
530       V = DFT.pop_back_val();
531 
532       if (Instruction *I = dyn_cast<Instruction>(V)) {
533         // If it is a || (or && depending on isEQ), process the operands.
534         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
535           if (Visited.insert(I->getOperand(1)).second)
536             DFT.push_back(I->getOperand(1));
537           if (Visited.insert(I->getOperand(0)).second)
538             DFT.push_back(I->getOperand(0));
539           continue;
540         }
541 
542         // Try to match the current instruction
543         if (matchInstruction(I, isEQ))
544           // Match succeed, continue the loop
545           continue;
546       }
547 
548       // One element of the sequence of || (or &&) could not be match as a
549       // comparison against the same value as the others.
550       // We allow only one "Extra" case to be checked before the switch
551       if (!Extra) {
552         Extra = V;
553         continue;
554       }
555       // Failed to parse a proper sequence, abort now
556       CompValue = nullptr;
557       break;
558     }
559   }
560 };
561 }
562 
563 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
564   Instruction *Cond = nullptr;
565   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
566     Cond = dyn_cast<Instruction>(SI->getCondition());
567   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
568     if (BI->isConditional())
569       Cond = dyn_cast<Instruction>(BI->getCondition());
570   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
571     Cond = dyn_cast<Instruction>(IBI->getAddress());
572   }
573 
574   TI->eraseFromParent();
575   if (Cond)
576     RecursivelyDeleteTriviallyDeadInstructions(Cond);
577 }
578 
579 /// Return true if the specified terminator checks
580 /// to see if a value is equal to constant integer value.
581 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
582   Value *CV = nullptr;
583   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
584     // Do not permit merging of large switch instructions into their
585     // predecessors unless there is only one predecessor.
586     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
587                                                pred_end(SI->getParent())) <=
588         128)
589       CV = SI->getCondition();
590   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
591     if (BI->isConditional() && BI->getCondition()->hasOneUse())
592       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
593         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
594           CV = ICI->getOperand(0);
595       }
596 
597   // Unwrap any lossless ptrtoint cast.
598   if (CV) {
599     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
600       Value *Ptr = PTII->getPointerOperand();
601       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
602         CV = Ptr;
603     }
604   }
605   return CV;
606 }
607 
608 /// Given a value comparison instruction,
609 /// decode all of the 'cases' that it represents and return the 'default' block.
610 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
611     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
612   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
613     Cases.reserve(SI->getNumCases());
614     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
615          ++i)
616       Cases.push_back(
617           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
618     return SI->getDefaultDest();
619   }
620 
621   BranchInst *BI = cast<BranchInst>(TI);
622   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
623   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
624   Cases.push_back(ValueEqualityComparisonCase(
625       GetConstantInt(ICI->getOperand(1), DL), Succ));
626   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
627 }
628 
629 /// Given a vector of bb/value pairs, remove any entries
630 /// in the list that match the specified block.
631 static void
632 EliminateBlockCases(BasicBlock *BB,
633                     std::vector<ValueEqualityComparisonCase> &Cases) {
634   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
635 }
636 
637 /// Return true if there are any keys in C1 that exist in C2 as well.
638 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
639                           std::vector<ValueEqualityComparisonCase> &C2) {
640   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
641 
642   // Make V1 be smaller than V2.
643   if (V1->size() > V2->size())
644     std::swap(V1, V2);
645 
646   if (V1->size() == 0)
647     return false;
648   if (V1->size() == 1) {
649     // Just scan V2.
650     ConstantInt *TheVal = (*V1)[0].Value;
651     for (unsigned i = 0, e = V2->size(); i != e; ++i)
652       if (TheVal == (*V2)[i].Value)
653         return true;
654   }
655 
656   // Otherwise, just sort both lists and compare element by element.
657   array_pod_sort(V1->begin(), V1->end());
658   array_pod_sort(V2->begin(), V2->end());
659   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
660   while (i1 != e1 && i2 != e2) {
661     if ((*V1)[i1].Value == (*V2)[i2].Value)
662       return true;
663     if ((*V1)[i1].Value < (*V2)[i2].Value)
664       ++i1;
665     else
666       ++i2;
667   }
668   return false;
669 }
670 
671 /// If TI is known to be a terminator instruction and its block is known to
672 /// only have a single predecessor block, check to see if that predecessor is
673 /// also a value comparison with the same value, and if that comparison
674 /// determines the outcome of this comparison. If so, simplify TI. This does a
675 /// very limited form of jump threading.
676 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
677     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
678   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
679   if (!PredVal)
680     return false; // Not a value comparison in predecessor.
681 
682   Value *ThisVal = isValueEqualityComparison(TI);
683   assert(ThisVal && "This isn't a value comparison!!");
684   if (ThisVal != PredVal)
685     return false; // Different predicates.
686 
687   // TODO: Preserve branch weight metadata, similarly to how
688   // FoldValueComparisonIntoPredecessors preserves it.
689 
690   // Find out information about when control will move from Pred to TI's block.
691   std::vector<ValueEqualityComparisonCase> PredCases;
692   BasicBlock *PredDef =
693       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
694   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
695 
696   // Find information about how control leaves this block.
697   std::vector<ValueEqualityComparisonCase> ThisCases;
698   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
699   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
700 
701   // If TI's block is the default block from Pred's comparison, potentially
702   // simplify TI based on this knowledge.
703   if (PredDef == TI->getParent()) {
704     // If we are here, we know that the value is none of those cases listed in
705     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
706     // can simplify TI.
707     if (!ValuesOverlap(PredCases, ThisCases))
708       return false;
709 
710     if (isa<BranchInst>(TI)) {
711       // Okay, one of the successors of this condbr is dead.  Convert it to a
712       // uncond br.
713       assert(ThisCases.size() == 1 && "Branch can only have one case!");
714       // Insert the new branch.
715       Instruction *NI = Builder.CreateBr(ThisDef);
716       (void)NI;
717 
718       // Remove PHI node entries for the dead edge.
719       ThisCases[0].Dest->removePredecessor(TI->getParent());
720 
721       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
722                    << "Through successor TI: " << *TI << "Leaving: " << *NI
723                    << "\n");
724 
725       EraseTerminatorInstAndDCECond(TI);
726       return true;
727     }
728 
729     SwitchInst *SI = cast<SwitchInst>(TI);
730     // Okay, TI has cases that are statically dead, prune them away.
731     SmallPtrSet<Constant *, 16> DeadCases;
732     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
733       DeadCases.insert(PredCases[i].Value);
734 
735     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
736                  << "Through successor TI: " << *TI);
737 
738     // Collect branch weights into a vector.
739     SmallVector<uint32_t, 8> Weights;
740     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
741     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
742     if (HasWeight)
743       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
744            ++MD_i) {
745         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
746         Weights.push_back(CI->getValue().getZExtValue());
747       }
748     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
749       --i;
750       if (DeadCases.count(i.getCaseValue())) {
751         if (HasWeight) {
752           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
753           Weights.pop_back();
754         }
755         i.getCaseSuccessor()->removePredecessor(TI->getParent());
756         SI->removeCase(i);
757       }
758     }
759     if (HasWeight && Weights.size() >= 2)
760       SI->setMetadata(LLVMContext::MD_prof,
761                       MDBuilder(SI->getParent()->getContext())
762                           .createBranchWeights(Weights));
763 
764     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
765     return true;
766   }
767 
768   // Otherwise, TI's block must correspond to some matched value.  Find out
769   // which value (or set of values) this is.
770   ConstantInt *TIV = nullptr;
771   BasicBlock *TIBB = TI->getParent();
772   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
773     if (PredCases[i].Dest == TIBB) {
774       if (TIV)
775         return false; // Cannot handle multiple values coming to this block.
776       TIV = PredCases[i].Value;
777     }
778   assert(TIV && "No edge from pred to succ?");
779 
780   // Okay, we found the one constant that our value can be if we get into TI's
781   // BB.  Find out which successor will unconditionally be branched to.
782   BasicBlock *TheRealDest = nullptr;
783   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
784     if (ThisCases[i].Value == TIV) {
785       TheRealDest = ThisCases[i].Dest;
786       break;
787     }
788 
789   // If not handled by any explicit cases, it is handled by the default case.
790   if (!TheRealDest)
791     TheRealDest = ThisDef;
792 
793   // Remove PHI node entries for dead edges.
794   BasicBlock *CheckEdge = TheRealDest;
795   for (BasicBlock *Succ : successors(TIBB))
796     if (Succ != CheckEdge)
797       Succ->removePredecessor(TIBB);
798     else
799       CheckEdge = nullptr;
800 
801   // Insert the new branch.
802   Instruction *NI = Builder.CreateBr(TheRealDest);
803   (void)NI;
804 
805   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
806                << "Through successor TI: " << *TI << "Leaving: " << *NI
807                << "\n");
808 
809   EraseTerminatorInstAndDCECond(TI);
810   return true;
811 }
812 
813 namespace {
814 /// This class implements a stable ordering of constant
815 /// integers that does not depend on their address.  This is important for
816 /// applications that sort ConstantInt's to ensure uniqueness.
817 struct ConstantIntOrdering {
818   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
819     return LHS->getValue().ult(RHS->getValue());
820   }
821 };
822 }
823 
824 static int ConstantIntSortPredicate(ConstantInt *const *P1,
825                                     ConstantInt *const *P2) {
826   const ConstantInt *LHS = *P1;
827   const ConstantInt *RHS = *P2;
828   if (LHS == RHS)
829     return 0;
830   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
831 }
832 
833 static inline bool HasBranchWeights(const Instruction *I) {
834   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
835   if (ProfMD && ProfMD->getOperand(0))
836     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
837       return MDS->getString().equals("branch_weights");
838 
839   return false;
840 }
841 
842 /// Get Weights of a given TerminatorInst, the default weight is at the front
843 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
844 /// metadata.
845 static void GetBranchWeights(TerminatorInst *TI,
846                              SmallVectorImpl<uint64_t> &Weights) {
847   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
848   assert(MD);
849   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
850     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
851     Weights.push_back(CI->getValue().getZExtValue());
852   }
853 
854   // If TI is a conditional eq, the default case is the false case,
855   // and the corresponding branch-weight data is at index 2. We swap the
856   // default weight to be the first entry.
857   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
858     assert(Weights.size() == 2);
859     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
860     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
861       std::swap(Weights.front(), Weights.back());
862   }
863 }
864 
865 /// Keep halving the weights until all can fit in uint32_t.
866 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
867   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
868   if (Max > UINT_MAX) {
869     unsigned Offset = 32 - countLeadingZeros(Max);
870     for (uint64_t &I : Weights)
871       I >>= Offset;
872   }
873 }
874 
875 /// The specified terminator is a value equality comparison instruction
876 /// (either a switch or a branch on "X == c").
877 /// See if any of the predecessors of the terminator block are value comparisons
878 /// on the same value.  If so, and if safe to do so, fold them together.
879 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
880                                                          IRBuilder<> &Builder) {
881   BasicBlock *BB = TI->getParent();
882   Value *CV = isValueEqualityComparison(TI); // CondVal
883   assert(CV && "Not a comparison?");
884   bool Changed = false;
885 
886   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
887   while (!Preds.empty()) {
888     BasicBlock *Pred = Preds.pop_back_val();
889 
890     // See if the predecessor is a comparison with the same value.
891     TerminatorInst *PTI = Pred->getTerminator();
892     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
893 
894     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
895       // Figure out which 'cases' to copy from SI to PSI.
896       std::vector<ValueEqualityComparisonCase> BBCases;
897       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
898 
899       std::vector<ValueEqualityComparisonCase> PredCases;
900       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
901 
902       // Based on whether the default edge from PTI goes to BB or not, fill in
903       // PredCases and PredDefault with the new switch cases we would like to
904       // build.
905       SmallVector<BasicBlock *, 8> NewSuccessors;
906 
907       // Update the branch weight metadata along the way
908       SmallVector<uint64_t, 8> Weights;
909       bool PredHasWeights = HasBranchWeights(PTI);
910       bool SuccHasWeights = HasBranchWeights(TI);
911 
912       if (PredHasWeights) {
913         GetBranchWeights(PTI, Weights);
914         // branch-weight metadata is inconsistent here.
915         if (Weights.size() != 1 + PredCases.size())
916           PredHasWeights = SuccHasWeights = false;
917       } else if (SuccHasWeights)
918         // If there are no predecessor weights but there are successor weights,
919         // populate Weights with 1, which will later be scaled to the sum of
920         // successor's weights
921         Weights.assign(1 + PredCases.size(), 1);
922 
923       SmallVector<uint64_t, 8> SuccWeights;
924       if (SuccHasWeights) {
925         GetBranchWeights(TI, SuccWeights);
926         // branch-weight metadata is inconsistent here.
927         if (SuccWeights.size() != 1 + BBCases.size())
928           PredHasWeights = SuccHasWeights = false;
929       } else if (PredHasWeights)
930         SuccWeights.assign(1 + BBCases.size(), 1);
931 
932       if (PredDefault == BB) {
933         // If this is the default destination from PTI, only the edges in TI
934         // that don't occur in PTI, or that branch to BB will be activated.
935         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
936         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937           if (PredCases[i].Dest != BB)
938             PTIHandled.insert(PredCases[i].Value);
939           else {
940             // The default destination is BB, we don't need explicit targets.
941             std::swap(PredCases[i], PredCases.back());
942 
943             if (PredHasWeights || SuccHasWeights) {
944               // Increase weight for the default case.
945               Weights[0] += Weights[i + 1];
946               std::swap(Weights[i + 1], Weights.back());
947               Weights.pop_back();
948             }
949 
950             PredCases.pop_back();
951             --i;
952             --e;
953           }
954 
955         // Reconstruct the new switch statement we will be building.
956         if (PredDefault != BBDefault) {
957           PredDefault->removePredecessor(Pred);
958           PredDefault = BBDefault;
959           NewSuccessors.push_back(BBDefault);
960         }
961 
962         unsigned CasesFromPred = Weights.size();
963         uint64_t ValidTotalSuccWeight = 0;
964         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
965           if (!PTIHandled.count(BBCases[i].Value) &&
966               BBCases[i].Dest != BBDefault) {
967             PredCases.push_back(BBCases[i]);
968             NewSuccessors.push_back(BBCases[i].Dest);
969             if (SuccHasWeights || PredHasWeights) {
970               // The default weight is at index 0, so weight for the ith case
971               // should be at index i+1. Scale the cases from successor by
972               // PredDefaultWeight (Weights[0]).
973               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
974               ValidTotalSuccWeight += SuccWeights[i + 1];
975             }
976           }
977 
978         if (SuccHasWeights || PredHasWeights) {
979           ValidTotalSuccWeight += SuccWeights[0];
980           // Scale the cases from predecessor by ValidTotalSuccWeight.
981           for (unsigned i = 1; i < CasesFromPred; ++i)
982             Weights[i] *= ValidTotalSuccWeight;
983           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
984           Weights[0] *= SuccWeights[0];
985         }
986       } else {
987         // If this is not the default destination from PSI, only the edges
988         // in SI that occur in PSI with a destination of BB will be
989         // activated.
990         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
991         std::map<ConstantInt *, uint64_t> WeightsForHandled;
992         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
993           if (PredCases[i].Dest == BB) {
994             PTIHandled.insert(PredCases[i].Value);
995 
996             if (PredHasWeights || SuccHasWeights) {
997               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
998               std::swap(Weights[i + 1], Weights.back());
999               Weights.pop_back();
1000             }
1001 
1002             std::swap(PredCases[i], PredCases.back());
1003             PredCases.pop_back();
1004             --i;
1005             --e;
1006           }
1007 
1008         // Okay, now we know which constants were sent to BB from the
1009         // predecessor.  Figure out where they will all go now.
1010         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1011           if (PTIHandled.count(BBCases[i].Value)) {
1012             // If this is one we are capable of getting...
1013             if (PredHasWeights || SuccHasWeights)
1014               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1015             PredCases.push_back(BBCases[i]);
1016             NewSuccessors.push_back(BBCases[i].Dest);
1017             PTIHandled.erase(
1018                 BBCases[i].Value); // This constant is taken care of
1019           }
1020 
1021         // If there are any constants vectored to BB that TI doesn't handle,
1022         // they must go to the default destination of TI.
1023         for (std::set<ConstantInt *, ConstantIntOrdering>::iterator
1024                  I = PTIHandled.begin(),
1025                  E = PTIHandled.end();
1026              I != E; ++I) {
1027           if (PredHasWeights || SuccHasWeights)
1028             Weights.push_back(WeightsForHandled[*I]);
1029           PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
1030           NewSuccessors.push_back(BBDefault);
1031         }
1032       }
1033 
1034       // Okay, at this point, we know which new successor Pred will get.  Make
1035       // sure we update the number of entries in the PHI nodes for these
1036       // successors.
1037       for (BasicBlock *NewSuccessor : NewSuccessors)
1038         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1039 
1040       Builder.SetInsertPoint(PTI);
1041       // Convert pointer to int before we switch.
1042       if (CV->getType()->isPointerTy()) {
1043         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1044                                     "magicptr");
1045       }
1046 
1047       // Now that the successors are updated, create the new Switch instruction.
1048       SwitchInst *NewSI =
1049           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1050       NewSI->setDebugLoc(PTI->getDebugLoc());
1051       for (ValueEqualityComparisonCase &V : PredCases)
1052         NewSI->addCase(V.Value, V.Dest);
1053 
1054       if (PredHasWeights || SuccHasWeights) {
1055         // Halve the weights if any of them cannot fit in an uint32_t
1056         FitWeights(Weights);
1057 
1058         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1059 
1060         NewSI->setMetadata(
1061             LLVMContext::MD_prof,
1062             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1063       }
1064 
1065       EraseTerminatorInstAndDCECond(PTI);
1066 
1067       // Okay, last check.  If BB is still a successor of PSI, then we must
1068       // have an infinite loop case.  If so, add an infinitely looping block
1069       // to handle the case to preserve the behavior of the code.
1070       BasicBlock *InfLoopBlock = nullptr;
1071       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1072         if (NewSI->getSuccessor(i) == BB) {
1073           if (!InfLoopBlock) {
1074             // Insert it at the end of the function, because it's either code,
1075             // or it won't matter if it's hot. :)
1076             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1077                                               BB->getParent());
1078             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1079           }
1080           NewSI->setSuccessor(i, InfLoopBlock);
1081         }
1082 
1083       Changed = true;
1084     }
1085   }
1086   return Changed;
1087 }
1088 
1089 // If we would need to insert a select that uses the value of this invoke
1090 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1091 // can't hoist the invoke, as there is nowhere to put the select in this case.
1092 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1093                                 Instruction *I1, Instruction *I2) {
1094   for (BasicBlock *Succ : successors(BB1)) {
1095     PHINode *PN;
1096     for (BasicBlock::iterator BBI = Succ->begin();
1097          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1098       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1099       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1100       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1101         return false;
1102       }
1103     }
1104   }
1105   return true;
1106 }
1107 
1108 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1109 
1110 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1111 /// in the two blocks up into the branch block. The caller of this function
1112 /// guarantees that BI's block dominates BB1 and BB2.
1113 static bool HoistThenElseCodeToIf(BranchInst *BI,
1114                                   const TargetTransformInfo &TTI) {
1115   // This does very trivial matching, with limited scanning, to find identical
1116   // instructions in the two blocks.  In particular, we don't want to get into
1117   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1118   // such, we currently just scan for obviously identical instructions in an
1119   // identical order.
1120   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1121   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1122 
1123   BasicBlock::iterator BB1_Itr = BB1->begin();
1124   BasicBlock::iterator BB2_Itr = BB2->begin();
1125 
1126   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1127   // Skip debug info if it is not identical.
1128   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1129   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1130   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1131     while (isa<DbgInfoIntrinsic>(I1))
1132       I1 = &*BB1_Itr++;
1133     while (isa<DbgInfoIntrinsic>(I2))
1134       I2 = &*BB2_Itr++;
1135   }
1136   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1137       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1138     return false;
1139 
1140   BasicBlock *BIParent = BI->getParent();
1141 
1142   bool Changed = false;
1143   do {
1144     // If we are hoisting the terminator instruction, don't move one (making a
1145     // broken BB), instead clone it, and remove BI.
1146     if (isa<TerminatorInst>(I1))
1147       goto HoistTerminator;
1148 
1149     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1150       return Changed;
1151 
1152     // For a normal instruction, we just move one to right before the branch,
1153     // then replace all uses of the other with the first.  Finally, we remove
1154     // the now redundant second instruction.
1155     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1156     if (!I2->use_empty())
1157       I2->replaceAllUsesWith(I1);
1158     I1->intersectOptionalDataWith(I2);
1159     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1160                            LLVMContext::MD_range,
1161                            LLVMContext::MD_fpmath,
1162                            LLVMContext::MD_invariant_load,
1163                            LLVMContext::MD_nonnull,
1164                            LLVMContext::MD_invariant_group,
1165                            LLVMContext::MD_align,
1166                            LLVMContext::MD_dereferenceable,
1167                            LLVMContext::MD_dereferenceable_or_null,
1168                            LLVMContext::MD_mem_parallel_loop_access};
1169     combineMetadata(I1, I2, KnownIDs);
1170     I2->eraseFromParent();
1171     Changed = true;
1172 
1173     I1 = &*BB1_Itr++;
1174     I2 = &*BB2_Itr++;
1175     // Skip debug info if it is not identical.
1176     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1177     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1178     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1179       while (isa<DbgInfoIntrinsic>(I1))
1180         I1 = &*BB1_Itr++;
1181       while (isa<DbgInfoIntrinsic>(I2))
1182         I2 = &*BB2_Itr++;
1183     }
1184   } while (I1->isIdenticalToWhenDefined(I2));
1185 
1186   return true;
1187 
1188 HoistTerminator:
1189   // It may not be possible to hoist an invoke.
1190   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1191     return Changed;
1192 
1193   for (BasicBlock *Succ : successors(BB1)) {
1194     PHINode *PN;
1195     for (BasicBlock::iterator BBI = Succ->begin();
1196          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1197       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1198       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1199       if (BB1V == BB2V)
1200         continue;
1201 
1202       // Check for passingValueIsAlwaysUndefined here because we would rather
1203       // eliminate undefined control flow then converting it to a select.
1204       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1205           passingValueIsAlwaysUndefined(BB2V, PN))
1206         return Changed;
1207 
1208       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1209         return Changed;
1210       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1211         return Changed;
1212     }
1213   }
1214 
1215   // Okay, it is safe to hoist the terminator.
1216   Instruction *NT = I1->clone();
1217   BIParent->getInstList().insert(BI->getIterator(), NT);
1218   if (!NT->getType()->isVoidTy()) {
1219     I1->replaceAllUsesWith(NT);
1220     I2->replaceAllUsesWith(NT);
1221     NT->takeName(I1);
1222   }
1223 
1224   IRBuilder<NoFolder> Builder(NT);
1225   // Hoisting one of the terminators from our successor is a great thing.
1226   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1227   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1228   // nodes, so we insert select instruction to compute the final result.
1229   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1230   for (BasicBlock *Succ : successors(BB1)) {
1231     PHINode *PN;
1232     for (BasicBlock::iterator BBI = Succ->begin();
1233          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1234       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1235       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1236       if (BB1V == BB2V)
1237         continue;
1238 
1239       // These values do not agree.  Insert a select instruction before NT
1240       // that determines the right value.
1241       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1242       if (!SI)
1243         SI = cast<SelectInst>(
1244             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1245                                  BB1V->getName() + "." + BB2V->getName(), BI));
1246 
1247       // Make the PHI node use the select for all incoming values for BB1/BB2
1248       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1249         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1250           PN->setIncomingValue(i, SI);
1251     }
1252   }
1253 
1254   // Update any PHI nodes in our new successors.
1255   for (BasicBlock *Succ : successors(BB1))
1256     AddPredecessorToBlock(Succ, BIParent, BB1);
1257 
1258   EraseTerminatorInstAndDCECond(BI);
1259   return true;
1260 }
1261 
1262 /// Given an unconditional branch that goes to BBEnd,
1263 /// check whether BBEnd has only two predecessors and the other predecessor
1264 /// ends with an unconditional branch. If it is true, sink any common code
1265 /// in the two predecessors to BBEnd.
1266 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1267   assert(BI1->isUnconditional());
1268   BasicBlock *BB1 = BI1->getParent();
1269   BasicBlock *BBEnd = BI1->getSuccessor(0);
1270 
1271   // Check that BBEnd has two predecessors and the other predecessor ends with
1272   // an unconditional branch.
1273   pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1274   BasicBlock *Pred0 = *PI++;
1275   if (PI == PE) // Only one predecessor.
1276     return false;
1277   BasicBlock *Pred1 = *PI++;
1278   if (PI != PE) // More than two predecessors.
1279     return false;
1280   BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1281   BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1282   if (!BI2 || !BI2->isUnconditional())
1283     return false;
1284 
1285   // Gather the PHI nodes in BBEnd.
1286   SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap;
1287   Instruction *FirstNonPhiInBBEnd = nullptr;
1288   for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) {
1289     if (PHINode *PN = dyn_cast<PHINode>(I)) {
1290       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1291       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1292       JointValueMap[std::make_pair(BB1V, BB2V)] = PN;
1293     } else {
1294       FirstNonPhiInBBEnd = &*I;
1295       break;
1296     }
1297   }
1298   if (!FirstNonPhiInBBEnd)
1299     return false;
1300 
1301   // This does very trivial matching, with limited scanning, to find identical
1302   // instructions in the two blocks.  We scan backward for obviously identical
1303   // instructions in an identical order.
1304   BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1305                                              RE1 = BB1->getInstList().rend(),
1306                                              RI2 = BB2->getInstList().rbegin(),
1307                                              RE2 = BB2->getInstList().rend();
1308   // Skip debug info.
1309   while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1310     ++RI1;
1311   if (RI1 == RE1)
1312     return false;
1313   while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1314     ++RI2;
1315   if (RI2 == RE2)
1316     return false;
1317   // Skip the unconditional branches.
1318   ++RI1;
1319   ++RI2;
1320 
1321   bool Changed = false;
1322   while (RI1 != RE1 && RI2 != RE2) {
1323     // Skip debug info.
1324     while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1))
1325       ++RI1;
1326     if (RI1 == RE1)
1327       return Changed;
1328     while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2))
1329       ++RI2;
1330     if (RI2 == RE2)
1331       return Changed;
1332 
1333     Instruction *I1 = &*RI1, *I2 = &*RI2;
1334     auto InstPair = std::make_pair(I1, I2);
1335     // I1 and I2 should have a single use in the same PHI node, and they
1336     // perform the same operation.
1337     // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1338     if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) ||
1339         isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() ||
1340         isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1341         I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1342         I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1343         !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair))
1344       return Changed;
1345 
1346     // Check whether we should swap the operands of ICmpInst.
1347     // TODO: Add support of communativity.
1348     ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1349     bool SwapOpnds = false;
1350     if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1351         ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1352         (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1353          ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1354       ICmp2->swapOperands();
1355       SwapOpnds = true;
1356     }
1357     if (!I1->isSameOperationAs(I2)) {
1358       if (SwapOpnds)
1359         ICmp2->swapOperands();
1360       return Changed;
1361     }
1362 
1363     // The operands should be either the same or they need to be generated
1364     // with a PHI node after sinking. We only handle the case where there is
1365     // a single pair of different operands.
1366     Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1367     unsigned Op1Idx = ~0U;
1368     for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1369       if (I1->getOperand(I) == I2->getOperand(I))
1370         continue;
1371       // Early exit if we have more-than one pair of different operands or if
1372       // we need a PHI node to replace a constant.
1373       if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) ||
1374           isa<Constant>(I2->getOperand(I))) {
1375         // If we can't sink the instructions, undo the swapping.
1376         if (SwapOpnds)
1377           ICmp2->swapOperands();
1378         return Changed;
1379       }
1380       DifferentOp1 = I1->getOperand(I);
1381       Op1Idx = I;
1382       DifferentOp2 = I2->getOperand(I);
1383     }
1384 
1385     DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n");
1386     DEBUG(dbgs() << "                         " << *I2 << "\n");
1387 
1388     // We insert the pair of different operands to JointValueMap and
1389     // remove (I1, I2) from JointValueMap.
1390     if (Op1Idx != ~0U) {
1391       auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)];
1392       if (!NewPN) {
1393         NewPN =
1394             PHINode::Create(DifferentOp1->getType(), 2,
1395                             DifferentOp1->getName() + ".sink", &BBEnd->front());
1396         NewPN->addIncoming(DifferentOp1, BB1);
1397         NewPN->addIncoming(DifferentOp2, BB2);
1398         DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1399       }
1400       // I1 should use NewPN instead of DifferentOp1.
1401       I1->setOperand(Op1Idx, NewPN);
1402     }
1403     PHINode *OldPN = JointValueMap[InstPair];
1404     JointValueMap.erase(InstPair);
1405 
1406     // We need to update RE1 and RE2 if we are going to sink the first
1407     // instruction in the basic block down.
1408     bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front());
1409     // Sink the instruction.
1410     BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(),
1411                                 BB1->getInstList(), I1);
1412     if (!OldPN->use_empty())
1413       OldPN->replaceAllUsesWith(I1);
1414     OldPN->eraseFromParent();
1415 
1416     if (!I2->use_empty())
1417       I2->replaceAllUsesWith(I1);
1418     I1->intersectOptionalDataWith(I2);
1419     // TODO: Use combineMetadata here to preserve what metadata we can
1420     // (analogous to the hoisting case above).
1421     I2->eraseFromParent();
1422 
1423     if (UpdateRE1)
1424       RE1 = BB1->getInstList().rend();
1425     if (UpdateRE2)
1426       RE2 = BB2->getInstList().rend();
1427     FirstNonPhiInBBEnd = &*I1;
1428     NumSinkCommons++;
1429     Changed = true;
1430   }
1431   return Changed;
1432 }
1433 
1434 /// \brief Determine if we can hoist sink a sole store instruction out of a
1435 /// conditional block.
1436 ///
1437 /// We are looking for code like the following:
1438 ///   BrBB:
1439 ///     store i32 %add, i32* %arrayidx2
1440 ///     ... // No other stores or function calls (we could be calling a memory
1441 ///     ... // function).
1442 ///     %cmp = icmp ult %x, %y
1443 ///     br i1 %cmp, label %EndBB, label %ThenBB
1444 ///   ThenBB:
1445 ///     store i32 %add5, i32* %arrayidx2
1446 ///     br label EndBB
1447 ///   EndBB:
1448 ///     ...
1449 ///   We are going to transform this into:
1450 ///   BrBB:
1451 ///     store i32 %add, i32* %arrayidx2
1452 ///     ... //
1453 ///     %cmp = icmp ult %x, %y
1454 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1455 ///     store i32 %add.add5, i32* %arrayidx2
1456 ///     ...
1457 ///
1458 /// \return The pointer to the value of the previous store if the store can be
1459 ///         hoisted into the predecessor block. 0 otherwise.
1460 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1461                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1462   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1463   if (!StoreToHoist)
1464     return nullptr;
1465 
1466   // Volatile or atomic.
1467   if (!StoreToHoist->isSimple())
1468     return nullptr;
1469 
1470   Value *StorePtr = StoreToHoist->getPointerOperand();
1471 
1472   // Look for a store to the same pointer in BrBB.
1473   unsigned MaxNumInstToLookAt = 9;
1474   for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend();
1475        RI != RE && MaxNumInstToLookAt; ++RI) {
1476     Instruction *CurI = &*RI;
1477     // Skip debug info.
1478     if (isa<DbgInfoIntrinsic>(CurI))
1479       continue;
1480     --MaxNumInstToLookAt;
1481 
1482     // Could be calling an instruction that effects memory like free().
1483     if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1484       return nullptr;
1485 
1486     StoreInst *SI = dyn_cast<StoreInst>(CurI);
1487     // Found the previous store make sure it stores to the same location.
1488     if (SI && SI->getPointerOperand() == StorePtr)
1489       // Found the previous store, return its value operand.
1490       return SI->getValueOperand();
1491     else if (SI)
1492       return nullptr; // Unknown store.
1493   }
1494 
1495   return nullptr;
1496 }
1497 
1498 /// \brief Speculate a conditional basic block flattening the CFG.
1499 ///
1500 /// Note that this is a very risky transform currently. Speculating
1501 /// instructions like this is most often not desirable. Instead, there is an MI
1502 /// pass which can do it with full awareness of the resource constraints.
1503 /// However, some cases are "obvious" and we should do directly. An example of
1504 /// this is speculating a single, reasonably cheap instruction.
1505 ///
1506 /// There is only one distinct advantage to flattening the CFG at the IR level:
1507 /// it makes very common but simplistic optimizations such as are common in
1508 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1509 /// modeling their effects with easier to reason about SSA value graphs.
1510 ///
1511 ///
1512 /// An illustration of this transform is turning this IR:
1513 /// \code
1514 ///   BB:
1515 ///     %cmp = icmp ult %x, %y
1516 ///     br i1 %cmp, label %EndBB, label %ThenBB
1517 ///   ThenBB:
1518 ///     %sub = sub %x, %y
1519 ///     br label BB2
1520 ///   EndBB:
1521 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1522 ///     ...
1523 /// \endcode
1524 ///
1525 /// Into this IR:
1526 /// \code
1527 ///   BB:
1528 ///     %cmp = icmp ult %x, %y
1529 ///     %sub = sub %x, %y
1530 ///     %cond = select i1 %cmp, 0, %sub
1531 ///     ...
1532 /// \endcode
1533 ///
1534 /// \returns true if the conditional block is removed.
1535 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1536                                    const TargetTransformInfo &TTI) {
1537   // Be conservative for now. FP select instruction can often be expensive.
1538   Value *BrCond = BI->getCondition();
1539   if (isa<FCmpInst>(BrCond))
1540     return false;
1541 
1542   BasicBlock *BB = BI->getParent();
1543   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1544 
1545   // If ThenBB is actually on the false edge of the conditional branch, remember
1546   // to swap the select operands later.
1547   bool Invert = false;
1548   if (ThenBB != BI->getSuccessor(0)) {
1549     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1550     Invert = true;
1551   }
1552   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1553 
1554   // Keep a count of how many times instructions are used within CondBB when
1555   // they are candidates for sinking into CondBB. Specifically:
1556   // - They are defined in BB, and
1557   // - They have no side effects, and
1558   // - All of their uses are in CondBB.
1559   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1560 
1561   unsigned SpeculationCost = 0;
1562   Value *SpeculatedStoreValue = nullptr;
1563   StoreInst *SpeculatedStore = nullptr;
1564   for (BasicBlock::iterator BBI = ThenBB->begin(),
1565                             BBE = std::prev(ThenBB->end());
1566        BBI != BBE; ++BBI) {
1567     Instruction *I = &*BBI;
1568     // Skip debug info.
1569     if (isa<DbgInfoIntrinsic>(I))
1570       continue;
1571 
1572     // Only speculatively execute a single instruction (not counting the
1573     // terminator) for now.
1574     ++SpeculationCost;
1575     if (SpeculationCost > 1)
1576       return false;
1577 
1578     // Don't hoist the instruction if it's unsafe or expensive.
1579     if (!isSafeToSpeculativelyExecute(I) &&
1580         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1581                                   I, BB, ThenBB, EndBB))))
1582       return false;
1583     if (!SpeculatedStoreValue &&
1584         ComputeSpeculationCost(I, TTI) >
1585             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1586       return false;
1587 
1588     // Store the store speculation candidate.
1589     if (SpeculatedStoreValue)
1590       SpeculatedStore = cast<StoreInst>(I);
1591 
1592     // Do not hoist the instruction if any of its operands are defined but not
1593     // used in BB. The transformation will prevent the operand from
1594     // being sunk into the use block.
1595     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1596       Instruction *OpI = dyn_cast<Instruction>(*i);
1597       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1598         continue; // Not a candidate for sinking.
1599 
1600       ++SinkCandidateUseCounts[OpI];
1601     }
1602   }
1603 
1604   // Consider any sink candidates which are only used in CondBB as costs for
1605   // speculation. Note, while we iterate over a DenseMap here, we are summing
1606   // and so iteration order isn't significant.
1607   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1608            I = SinkCandidateUseCounts.begin(),
1609            E = SinkCandidateUseCounts.end();
1610        I != E; ++I)
1611     if (I->first->getNumUses() == I->second) {
1612       ++SpeculationCost;
1613       if (SpeculationCost > 1)
1614         return false;
1615     }
1616 
1617   // Check that the PHI nodes can be converted to selects.
1618   bool HaveRewritablePHIs = false;
1619   for (BasicBlock::iterator I = EndBB->begin();
1620        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1621     Value *OrigV = PN->getIncomingValueForBlock(BB);
1622     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1623 
1624     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1625     // Skip PHIs which are trivial.
1626     if (ThenV == OrigV)
1627       continue;
1628 
1629     // Don't convert to selects if we could remove undefined behavior instead.
1630     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1631         passingValueIsAlwaysUndefined(ThenV, PN))
1632       return false;
1633 
1634     HaveRewritablePHIs = true;
1635     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1636     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1637     if (!OrigCE && !ThenCE)
1638       continue; // Known safe and cheap.
1639 
1640     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1641         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1642       return false;
1643     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1644     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1645     unsigned MaxCost =
1646         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1647     if (OrigCost + ThenCost > MaxCost)
1648       return false;
1649 
1650     // Account for the cost of an unfolded ConstantExpr which could end up
1651     // getting expanded into Instructions.
1652     // FIXME: This doesn't account for how many operations are combined in the
1653     // constant expression.
1654     ++SpeculationCost;
1655     if (SpeculationCost > 1)
1656       return false;
1657   }
1658 
1659   // If there are no PHIs to process, bail early. This helps ensure idempotence
1660   // as well.
1661   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1662     return false;
1663 
1664   // If we get here, we can hoist the instruction and if-convert.
1665   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1666 
1667   // Insert a select of the value of the speculated store.
1668   if (SpeculatedStoreValue) {
1669     IRBuilder<NoFolder> Builder(BI);
1670     Value *TrueV = SpeculatedStore->getValueOperand();
1671     Value *FalseV = SpeculatedStoreValue;
1672     if (Invert)
1673       std::swap(TrueV, FalseV);
1674     Value *S = Builder.CreateSelect(
1675         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1676     SpeculatedStore->setOperand(0, S);
1677   }
1678 
1679   // Metadata can be dependent on the condition we are hoisting above.
1680   // Conservatively strip all metadata on the instruction.
1681   for (auto &I : *ThenBB)
1682     I.dropUnknownNonDebugMetadata();
1683 
1684   // Hoist the instructions.
1685   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1686                            ThenBB->begin(), std::prev(ThenBB->end()));
1687 
1688   // Insert selects and rewrite the PHI operands.
1689   IRBuilder<NoFolder> Builder(BI);
1690   for (BasicBlock::iterator I = EndBB->begin();
1691        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1692     unsigned OrigI = PN->getBasicBlockIndex(BB);
1693     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1694     Value *OrigV = PN->getIncomingValue(OrigI);
1695     Value *ThenV = PN->getIncomingValue(ThenI);
1696 
1697     // Skip PHIs which are trivial.
1698     if (OrigV == ThenV)
1699       continue;
1700 
1701     // Create a select whose true value is the speculatively executed value and
1702     // false value is the preexisting value. Swap them if the branch
1703     // destinations were inverted.
1704     Value *TrueV = ThenV, *FalseV = OrigV;
1705     if (Invert)
1706       std::swap(TrueV, FalseV);
1707     Value *V = Builder.CreateSelect(
1708         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1709     PN->setIncomingValue(OrigI, V);
1710     PN->setIncomingValue(ThenI, V);
1711   }
1712 
1713   ++NumSpeculations;
1714   return true;
1715 }
1716 
1717 /// Return true if we can thread a branch across this block.
1718 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1719   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1720   unsigned Size = 0;
1721 
1722   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1723     if (isa<DbgInfoIntrinsic>(BBI))
1724       continue;
1725     if (Size > 10)
1726       return false; // Don't clone large BB's.
1727     ++Size;
1728 
1729     // We can only support instructions that do not define values that are
1730     // live outside of the current basic block.
1731     for (User *U : BBI->users()) {
1732       Instruction *UI = cast<Instruction>(U);
1733       if (UI->getParent() != BB || isa<PHINode>(UI))
1734         return false;
1735     }
1736 
1737     // Looks ok, continue checking.
1738   }
1739 
1740   return true;
1741 }
1742 
1743 /// If we have a conditional branch on a PHI node value that is defined in the
1744 /// same block as the branch and if any PHI entries are constants, thread edges
1745 /// corresponding to that entry to be branches to their ultimate destination.
1746 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1747   BasicBlock *BB = BI->getParent();
1748   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1749   // NOTE: we currently cannot transform this case if the PHI node is used
1750   // outside of the block.
1751   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1752     return false;
1753 
1754   // Degenerate case of a single entry PHI.
1755   if (PN->getNumIncomingValues() == 1) {
1756     FoldSingleEntryPHINodes(PN->getParent());
1757     return true;
1758   }
1759 
1760   // Now we know that this block has multiple preds and two succs.
1761   if (!BlockIsSimpleEnoughToThreadThrough(BB))
1762     return false;
1763 
1764   // Can't fold blocks that contain noduplicate or convergent calls.
1765   if (llvm::any_of(*BB, [](const Instruction &I) {
1766         const CallInst *CI = dyn_cast<CallInst>(&I);
1767         return CI && (CI->cannotDuplicate() || CI->isConvergent());
1768       }))
1769     return false;
1770 
1771   // Okay, this is a simple enough basic block.  See if any phi values are
1772   // constants.
1773   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1774     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1775     if (!CB || !CB->getType()->isIntegerTy(1))
1776       continue;
1777 
1778     // Okay, we now know that all edges from PredBB should be revectored to
1779     // branch to RealDest.
1780     BasicBlock *PredBB = PN->getIncomingBlock(i);
1781     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1782 
1783     if (RealDest == BB)
1784       continue; // Skip self loops.
1785     // Skip if the predecessor's terminator is an indirect branch.
1786     if (isa<IndirectBrInst>(PredBB->getTerminator()))
1787       continue;
1788 
1789     // The dest block might have PHI nodes, other predecessors and other
1790     // difficult cases.  Instead of being smart about this, just insert a new
1791     // block that jumps to the destination block, effectively splitting
1792     // the edge we are about to create.
1793     BasicBlock *EdgeBB =
1794         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
1795                            RealDest->getParent(), RealDest);
1796     BranchInst::Create(RealDest, EdgeBB);
1797 
1798     // Update PHI nodes.
1799     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1800 
1801     // BB may have instructions that are being threaded over.  Clone these
1802     // instructions into EdgeBB.  We know that there will be no uses of the
1803     // cloned instructions outside of EdgeBB.
1804     BasicBlock::iterator InsertPt = EdgeBB->begin();
1805     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
1806     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1807       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1808         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1809         continue;
1810       }
1811       // Clone the instruction.
1812       Instruction *N = BBI->clone();
1813       if (BBI->hasName())
1814         N->setName(BBI->getName() + ".c");
1815 
1816       // Update operands due to translation.
1817       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
1818         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
1819         if (PI != TranslateMap.end())
1820           *i = PI->second;
1821       }
1822 
1823       // Check for trivial simplification.
1824       if (Value *V = SimplifyInstruction(N, DL)) {
1825         TranslateMap[&*BBI] = V;
1826         delete N; // Instruction folded away, don't need actual inst
1827       } else {
1828         // Insert the new instruction into its new home.
1829         EdgeBB->getInstList().insert(InsertPt, N);
1830         if (!BBI->use_empty())
1831           TranslateMap[&*BBI] = N;
1832       }
1833     }
1834 
1835     // Loop over all of the edges from PredBB to BB, changing them to branch
1836     // to EdgeBB instead.
1837     TerminatorInst *PredBBTI = PredBB->getTerminator();
1838     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1839       if (PredBBTI->getSuccessor(i) == BB) {
1840         BB->removePredecessor(PredBB);
1841         PredBBTI->setSuccessor(i, EdgeBB);
1842       }
1843 
1844     // Recurse, simplifying any other constants.
1845     return FoldCondBranchOnPHI(BI, DL) | true;
1846   }
1847 
1848   return false;
1849 }
1850 
1851 /// Given a BB that starts with the specified two-entry PHI node,
1852 /// see if we can eliminate it.
1853 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
1854                                 const DataLayout &DL) {
1855   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1856   // statement", which has a very simple dominance structure.  Basically, we
1857   // are trying to find the condition that is being branched on, which
1858   // subsequently causes this merge to happen.  We really want control
1859   // dependence information for this check, but simplifycfg can't keep it up
1860   // to date, and this catches most of the cases we care about anyway.
1861   BasicBlock *BB = PN->getParent();
1862   BasicBlock *IfTrue, *IfFalse;
1863   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1864   if (!IfCond ||
1865       // Don't bother if the branch will be constant folded trivially.
1866       isa<ConstantInt>(IfCond))
1867     return false;
1868 
1869   // Okay, we found that we can merge this two-entry phi node into a select.
1870   // Doing so would require us to fold *all* two entry phi nodes in this block.
1871   // At some point this becomes non-profitable (particularly if the target
1872   // doesn't support cmov's).  Only do this transformation if there are two or
1873   // fewer PHI nodes in this block.
1874   unsigned NumPhis = 0;
1875   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1876     if (NumPhis > 2)
1877       return false;
1878 
1879   // Loop over the PHI's seeing if we can promote them all to select
1880   // instructions.  While we are at it, keep track of the instructions
1881   // that need to be moved to the dominating block.
1882   SmallPtrSet<Instruction *, 4> AggressiveInsts;
1883   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1884            MaxCostVal1 = PHINodeFoldingThreshold;
1885   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
1886   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
1887 
1888   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1889     PHINode *PN = cast<PHINode>(II++);
1890     if (Value *V = SimplifyInstruction(PN, DL)) {
1891       PN->replaceAllUsesWith(V);
1892       PN->eraseFromParent();
1893       continue;
1894     }
1895 
1896     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1897                              MaxCostVal0, TTI) ||
1898         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1899                              MaxCostVal1, TTI))
1900       return false;
1901   }
1902 
1903   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1904   // we ran out of PHIs then we simplified them all.
1905   PN = dyn_cast<PHINode>(BB->begin());
1906   if (!PN)
1907     return true;
1908 
1909   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1910   // often be turned into switches and other things.
1911   if (PN->getType()->isIntegerTy(1) &&
1912       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1913        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1914        isa<BinaryOperator>(IfCond)))
1915     return false;
1916 
1917   // If all PHI nodes are promotable, check to make sure that all instructions
1918   // in the predecessor blocks can be promoted as well. If not, we won't be able
1919   // to get rid of the control flow, so it's not worth promoting to select
1920   // instructions.
1921   BasicBlock *DomBlock = nullptr;
1922   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1923   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1924   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1925     IfBlock1 = nullptr;
1926   } else {
1927     DomBlock = *pred_begin(IfBlock1);
1928     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
1929          ++I)
1930       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1931         // This is not an aggressive instruction that we can promote.
1932         // Because of this, we won't be able to get rid of the control flow, so
1933         // the xform is not worth it.
1934         return false;
1935       }
1936   }
1937 
1938   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1939     IfBlock2 = nullptr;
1940   } else {
1941     DomBlock = *pred_begin(IfBlock2);
1942     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
1943          ++I)
1944       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
1945         // This is not an aggressive instruction that we can promote.
1946         // Because of this, we won't be able to get rid of the control flow, so
1947         // the xform is not worth it.
1948         return false;
1949       }
1950   }
1951 
1952   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1953                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1954 
1955   // If we can still promote the PHI nodes after this gauntlet of tests,
1956   // do all of the PHI's now.
1957   Instruction *InsertPt = DomBlock->getTerminator();
1958   IRBuilder<NoFolder> Builder(InsertPt);
1959 
1960   // Move all 'aggressive' instructions, which are defined in the
1961   // conditional parts of the if's up to the dominating block.
1962   if (IfBlock1)
1963     DomBlock->getInstList().splice(InsertPt->getIterator(),
1964                                    IfBlock1->getInstList(), IfBlock1->begin(),
1965                                    IfBlock1->getTerminator()->getIterator());
1966   if (IfBlock2)
1967     DomBlock->getInstList().splice(InsertPt->getIterator(),
1968                                    IfBlock2->getInstList(), IfBlock2->begin(),
1969                                    IfBlock2->getTerminator()->getIterator());
1970 
1971   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1972     // Change the PHI node into a select instruction.
1973     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1974     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1975 
1976     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
1977     PN->replaceAllUsesWith(Sel);
1978     Sel->takeName(PN);
1979     PN->eraseFromParent();
1980   }
1981 
1982   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1983   // has been flattened.  Change DomBlock to jump directly to our new block to
1984   // avoid other simplifycfg's kicking in on the diamond.
1985   TerminatorInst *OldTI = DomBlock->getTerminator();
1986   Builder.SetInsertPoint(OldTI);
1987   Builder.CreateBr(BB);
1988   OldTI->eraseFromParent();
1989   return true;
1990 }
1991 
1992 /// If we found a conditional branch that goes to two returning blocks,
1993 /// try to merge them together into one return,
1994 /// introducing a select if the return values disagree.
1995 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1996                                            IRBuilder<> &Builder) {
1997   assert(BI->isConditional() && "Must be a conditional branch");
1998   BasicBlock *TrueSucc = BI->getSuccessor(0);
1999   BasicBlock *FalseSucc = BI->getSuccessor(1);
2000   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2001   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2002 
2003   // Check to ensure both blocks are empty (just a return) or optionally empty
2004   // with PHI nodes.  If there are other instructions, merging would cause extra
2005   // computation on one path or the other.
2006   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2007     return false;
2008   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2009     return false;
2010 
2011   Builder.SetInsertPoint(BI);
2012   // Okay, we found a branch that is going to two return nodes.  If
2013   // there is no return value for this function, just change the
2014   // branch into a return.
2015   if (FalseRet->getNumOperands() == 0) {
2016     TrueSucc->removePredecessor(BI->getParent());
2017     FalseSucc->removePredecessor(BI->getParent());
2018     Builder.CreateRetVoid();
2019     EraseTerminatorInstAndDCECond(BI);
2020     return true;
2021   }
2022 
2023   // Otherwise, figure out what the true and false return values are
2024   // so we can insert a new select instruction.
2025   Value *TrueValue = TrueRet->getReturnValue();
2026   Value *FalseValue = FalseRet->getReturnValue();
2027 
2028   // Unwrap any PHI nodes in the return blocks.
2029   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2030     if (TVPN->getParent() == TrueSucc)
2031       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2032   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2033     if (FVPN->getParent() == FalseSucc)
2034       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2035 
2036   // In order for this transformation to be safe, we must be able to
2037   // unconditionally execute both operands to the return.  This is
2038   // normally the case, but we could have a potentially-trapping
2039   // constant expression that prevents this transformation from being
2040   // safe.
2041   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2042     if (TCV->canTrap())
2043       return false;
2044   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2045     if (FCV->canTrap())
2046       return false;
2047 
2048   // Okay, we collected all the mapped values and checked them for sanity, and
2049   // defined to really do this transformation.  First, update the CFG.
2050   TrueSucc->removePredecessor(BI->getParent());
2051   FalseSucc->removePredecessor(BI->getParent());
2052 
2053   // Insert select instructions where needed.
2054   Value *BrCond = BI->getCondition();
2055   if (TrueValue) {
2056     // Insert a select if the results differ.
2057     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2058     } else if (isa<UndefValue>(TrueValue)) {
2059       TrueValue = FalseValue;
2060     } else {
2061       TrueValue =
2062           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2063     }
2064   }
2065 
2066   Value *RI =
2067       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2068 
2069   (void)RI;
2070 
2071   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2072                << "\n  " << *BI << "NewRet = " << *RI
2073                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2074 
2075   EraseTerminatorInstAndDCECond(BI);
2076 
2077   return true;
2078 }
2079 
2080 /// Return true if the given instruction is available
2081 /// in its predecessor block. If yes, the instruction will be removed.
2082 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2083   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2084     return false;
2085   for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
2086     Instruction *PBI = &*I;
2087     // Check whether Inst and PBI generate the same value.
2088     if (Inst->isIdenticalTo(PBI)) {
2089       Inst->replaceAllUsesWith(PBI);
2090       Inst->eraseFromParent();
2091       return true;
2092     }
2093   }
2094   return false;
2095 }
2096 
2097 /// Return true if either PBI or BI has branch weight available, and store
2098 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2099 /// not have branch weight, use 1:1 as its weight.
2100 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2101                                    uint64_t &PredTrueWeight,
2102                                    uint64_t &PredFalseWeight,
2103                                    uint64_t &SuccTrueWeight,
2104                                    uint64_t &SuccFalseWeight) {
2105   bool PredHasWeights =
2106       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2107   bool SuccHasWeights =
2108       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2109   if (PredHasWeights || SuccHasWeights) {
2110     if (!PredHasWeights)
2111       PredTrueWeight = PredFalseWeight = 1;
2112     if (!SuccHasWeights)
2113       SuccTrueWeight = SuccFalseWeight = 1;
2114     return true;
2115   } else {
2116     return false;
2117   }
2118 }
2119 
2120 /// If this basic block is simple enough, and if a predecessor branches to us
2121 /// and one of our successors, fold the block into the predecessor and use
2122 /// logical operations to pick the right destination.
2123 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2124   BasicBlock *BB = BI->getParent();
2125 
2126   Instruction *Cond = nullptr;
2127   if (BI->isConditional())
2128     Cond = dyn_cast<Instruction>(BI->getCondition());
2129   else {
2130     // For unconditional branch, check for a simple CFG pattern, where
2131     // BB has a single predecessor and BB's successor is also its predecessor's
2132     // successor. If such pattern exisits, check for CSE between BB and its
2133     // predecessor.
2134     if (BasicBlock *PB = BB->getSinglePredecessor())
2135       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2136         if (PBI->isConditional() &&
2137             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2138              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2139           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2140             Instruction *Curr = &*I++;
2141             if (isa<CmpInst>(Curr)) {
2142               Cond = Curr;
2143               break;
2144             }
2145             // Quit if we can't remove this instruction.
2146             if (!checkCSEInPredecessor(Curr, PB))
2147               return false;
2148           }
2149         }
2150 
2151     if (!Cond)
2152       return false;
2153   }
2154 
2155   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2156       Cond->getParent() != BB || !Cond->hasOneUse())
2157     return false;
2158 
2159   // Make sure the instruction after the condition is the cond branch.
2160   BasicBlock::iterator CondIt = ++Cond->getIterator();
2161 
2162   // Ignore dbg intrinsics.
2163   while (isa<DbgInfoIntrinsic>(CondIt))
2164     ++CondIt;
2165 
2166   if (&*CondIt != BI)
2167     return false;
2168 
2169   // Only allow this transformation if computing the condition doesn't involve
2170   // too many instructions and these involved instructions can be executed
2171   // unconditionally. We denote all involved instructions except the condition
2172   // as "bonus instructions", and only allow this transformation when the
2173   // number of the bonus instructions does not exceed a certain threshold.
2174   unsigned NumBonusInsts = 0;
2175   for (auto I = BB->begin(); Cond != &*I; ++I) {
2176     // Ignore dbg intrinsics.
2177     if (isa<DbgInfoIntrinsic>(I))
2178       continue;
2179     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2180       return false;
2181     // I has only one use and can be executed unconditionally.
2182     Instruction *User = dyn_cast<Instruction>(I->user_back());
2183     if (User == nullptr || User->getParent() != BB)
2184       return false;
2185     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2186     // to use any other instruction, User must be an instruction between next(I)
2187     // and Cond.
2188     ++NumBonusInsts;
2189     // Early exits once we reach the limit.
2190     if (NumBonusInsts > BonusInstThreshold)
2191       return false;
2192   }
2193 
2194   // Cond is known to be a compare or binary operator.  Check to make sure that
2195   // neither operand is a potentially-trapping constant expression.
2196   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2197     if (CE->canTrap())
2198       return false;
2199   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2200     if (CE->canTrap())
2201       return false;
2202 
2203   // Finally, don't infinitely unroll conditional loops.
2204   BasicBlock *TrueDest = BI->getSuccessor(0);
2205   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2206   if (TrueDest == BB || FalseDest == BB)
2207     return false;
2208 
2209   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2210     BasicBlock *PredBlock = *PI;
2211     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2212 
2213     // Check that we have two conditional branches.  If there is a PHI node in
2214     // the common successor, verify that the same value flows in from both
2215     // blocks.
2216     SmallVector<PHINode *, 4> PHIs;
2217     if (!PBI || PBI->isUnconditional() ||
2218         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2219         (!BI->isConditional() &&
2220          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2221       continue;
2222 
2223     // Determine if the two branches share a common destination.
2224     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2225     bool InvertPredCond = false;
2226 
2227     if (BI->isConditional()) {
2228       if (PBI->getSuccessor(0) == TrueDest) {
2229         Opc = Instruction::Or;
2230       } else if (PBI->getSuccessor(1) == FalseDest) {
2231         Opc = Instruction::And;
2232       } else if (PBI->getSuccessor(0) == FalseDest) {
2233         Opc = Instruction::And;
2234         InvertPredCond = true;
2235       } else if (PBI->getSuccessor(1) == TrueDest) {
2236         Opc = Instruction::Or;
2237         InvertPredCond = true;
2238       } else {
2239         continue;
2240       }
2241     } else {
2242       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2243         continue;
2244     }
2245 
2246     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2247     IRBuilder<> Builder(PBI);
2248 
2249     // If we need to invert the condition in the pred block to match, do so now.
2250     if (InvertPredCond) {
2251       Value *NewCond = PBI->getCondition();
2252 
2253       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2254         CmpInst *CI = cast<CmpInst>(NewCond);
2255         CI->setPredicate(CI->getInversePredicate());
2256       } else {
2257         NewCond =
2258             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2259       }
2260 
2261       PBI->setCondition(NewCond);
2262       PBI->swapSuccessors();
2263     }
2264 
2265     // If we have bonus instructions, clone them into the predecessor block.
2266     // Note that there may be multiple predecessor blocks, so we cannot move
2267     // bonus instructions to a predecessor block.
2268     ValueToValueMapTy VMap; // maps original values to cloned values
2269     // We already make sure Cond is the last instruction before BI. Therefore,
2270     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2271     // instructions.
2272     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2273       if (isa<DbgInfoIntrinsic>(BonusInst))
2274         continue;
2275       Instruction *NewBonusInst = BonusInst->clone();
2276       RemapInstruction(NewBonusInst, VMap,
2277                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2278       VMap[&*BonusInst] = NewBonusInst;
2279 
2280       // If we moved a load, we cannot any longer claim any knowledge about
2281       // its potential value. The previous information might have been valid
2282       // only given the branch precondition.
2283       // For an analogous reason, we must also drop all the metadata whose
2284       // semantics we don't understand.
2285       NewBonusInst->dropUnknownNonDebugMetadata();
2286 
2287       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2288       NewBonusInst->takeName(&*BonusInst);
2289       BonusInst->setName(BonusInst->getName() + ".old");
2290     }
2291 
2292     // Clone Cond into the predecessor basic block, and or/and the
2293     // two conditions together.
2294     Instruction *New = Cond->clone();
2295     RemapInstruction(New, VMap,
2296                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2297     PredBlock->getInstList().insert(PBI->getIterator(), New);
2298     New->takeName(Cond);
2299     Cond->setName(New->getName() + ".old");
2300 
2301     if (BI->isConditional()) {
2302       Instruction *NewCond = cast<Instruction>(
2303           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2304       PBI->setCondition(NewCond);
2305 
2306       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2307       bool HasWeights =
2308           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2309                                  SuccTrueWeight, SuccFalseWeight);
2310       SmallVector<uint64_t, 8> NewWeights;
2311 
2312       if (PBI->getSuccessor(0) == BB) {
2313         if (HasWeights) {
2314           // PBI: br i1 %x, BB, FalseDest
2315           // BI:  br i1 %y, TrueDest, FalseDest
2316           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2317           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2318           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2319           //               TrueWeight for PBI * FalseWeight for BI.
2320           // We assume that total weights of a BranchInst can fit into 32 bits.
2321           // Therefore, we will not have overflow using 64-bit arithmetic.
2322           NewWeights.push_back(PredFalseWeight *
2323                                    (SuccFalseWeight + SuccTrueWeight) +
2324                                PredTrueWeight * SuccFalseWeight);
2325         }
2326         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2327         PBI->setSuccessor(0, TrueDest);
2328       }
2329       if (PBI->getSuccessor(1) == BB) {
2330         if (HasWeights) {
2331           // PBI: br i1 %x, TrueDest, BB
2332           // BI:  br i1 %y, TrueDest, FalseDest
2333           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2334           //              FalseWeight for PBI * TrueWeight for BI.
2335           NewWeights.push_back(PredTrueWeight *
2336                                    (SuccFalseWeight + SuccTrueWeight) +
2337                                PredFalseWeight * SuccTrueWeight);
2338           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2339           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2340         }
2341         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2342         PBI->setSuccessor(1, FalseDest);
2343       }
2344       if (NewWeights.size() == 2) {
2345         // Halve the weights if any of them cannot fit in an uint32_t
2346         FitWeights(NewWeights);
2347 
2348         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2349                                            NewWeights.end());
2350         PBI->setMetadata(
2351             LLVMContext::MD_prof,
2352             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2353       } else
2354         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2355     } else {
2356       // Update PHI nodes in the common successors.
2357       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2358         ConstantInt *PBI_C = cast<ConstantInt>(
2359             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2360         assert(PBI_C->getType()->isIntegerTy(1));
2361         Instruction *MergedCond = nullptr;
2362         if (PBI->getSuccessor(0) == TrueDest) {
2363           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2364           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2365           //       is false: !PBI_Cond and BI_Value
2366           Instruction *NotCond = cast<Instruction>(
2367               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2368           MergedCond = cast<Instruction>(
2369               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2370           if (PBI_C->isOne())
2371             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2372                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2373         } else {
2374           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2375           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2376           //       is false: PBI_Cond and BI_Value
2377           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2378               Instruction::And, PBI->getCondition(), New, "and.cond"));
2379           if (PBI_C->isOne()) {
2380             Instruction *NotCond = cast<Instruction>(
2381                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2382             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2383                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2384           }
2385         }
2386         // Update PHI Node.
2387         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2388                                   MergedCond);
2389       }
2390       // Change PBI from Conditional to Unconditional.
2391       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2392       EraseTerminatorInstAndDCECond(PBI);
2393       PBI = New_PBI;
2394     }
2395 
2396     // TODO: If BB is reachable from all paths through PredBlock, then we
2397     // could replace PBI's branch probabilities with BI's.
2398 
2399     // Copy any debug value intrinsics into the end of PredBlock.
2400     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2401       if (isa<DbgInfoIntrinsic>(*I))
2402         I->clone()->insertBefore(PBI);
2403 
2404     return true;
2405   }
2406   return false;
2407 }
2408 
2409 // If there is only one store in BB1 and BB2, return it, otherwise return
2410 // nullptr.
2411 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2412   StoreInst *S = nullptr;
2413   for (auto *BB : {BB1, BB2}) {
2414     if (!BB)
2415       continue;
2416     for (auto &I : *BB)
2417       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2418         if (S)
2419           // Multiple stores seen.
2420           return nullptr;
2421         else
2422           S = SI;
2423       }
2424   }
2425   return S;
2426 }
2427 
2428 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2429                                               Value *AlternativeV = nullptr) {
2430   // PHI is going to be a PHI node that allows the value V that is defined in
2431   // BB to be referenced in BB's only successor.
2432   //
2433   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2434   // doesn't matter to us what the other operand is (it'll never get used). We
2435   // could just create a new PHI with an undef incoming value, but that could
2436   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2437   // other PHI. So here we directly look for some PHI in BB's successor with V
2438   // as an incoming operand. If we find one, we use it, else we create a new
2439   // one.
2440   //
2441   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2442   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2443   // where OtherBB is the single other predecessor of BB's only successor.
2444   PHINode *PHI = nullptr;
2445   BasicBlock *Succ = BB->getSingleSuccessor();
2446 
2447   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2448     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2449       PHI = cast<PHINode>(I);
2450       if (!AlternativeV)
2451         break;
2452 
2453       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2454       auto PredI = pred_begin(Succ);
2455       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2456       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2457         break;
2458       PHI = nullptr;
2459     }
2460   if (PHI)
2461     return PHI;
2462 
2463   // If V is not an instruction defined in BB, just return it.
2464   if (!AlternativeV &&
2465       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2466     return V;
2467 
2468   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2469   PHI->addIncoming(V, BB);
2470   for (BasicBlock *PredBB : predecessors(Succ))
2471     if (PredBB != BB)
2472       PHI->addIncoming(
2473           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2474   return PHI;
2475 }
2476 
2477 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2478                                            BasicBlock *QTB, BasicBlock *QFB,
2479                                            BasicBlock *PostBB, Value *Address,
2480                                            bool InvertPCond, bool InvertQCond) {
2481   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2482     return Operator::getOpcode(&I) == Instruction::BitCast &&
2483            I.getType()->isPointerTy();
2484   };
2485 
2486   // If we're not in aggressive mode, we only optimize if we have some
2487   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2488   auto IsWorthwhile = [&](BasicBlock *BB) {
2489     if (!BB)
2490       return true;
2491     // Heuristic: if the block can be if-converted/phi-folded and the
2492     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2493     // thread this store.
2494     unsigned N = 0;
2495     for (auto &I : *BB) {
2496       // Cheap instructions viable for folding.
2497       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2498           isa<StoreInst>(I))
2499         ++N;
2500       // Free instructions.
2501       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2502                IsaBitcastOfPointerType(I))
2503         continue;
2504       else
2505         return false;
2506     }
2507     return N <= PHINodeFoldingThreshold;
2508   };
2509 
2510   if (!MergeCondStoresAggressively &&
2511       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2512        !IsWorthwhile(QFB)))
2513     return false;
2514 
2515   // For every pointer, there must be exactly two stores, one coming from
2516   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2517   // store (to any address) in PTB,PFB or QTB,QFB.
2518   // FIXME: We could relax this restriction with a bit more work and performance
2519   // testing.
2520   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2521   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2522   if (!PStore || !QStore)
2523     return false;
2524 
2525   // Now check the stores are compatible.
2526   if (!QStore->isUnordered() || !PStore->isUnordered())
2527     return false;
2528 
2529   // Check that sinking the store won't cause program behavior changes. Sinking
2530   // the store out of the Q blocks won't change any behavior as we're sinking
2531   // from a block to its unconditional successor. But we're moving a store from
2532   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2533   // So we need to check that there are no aliasing loads or stores in
2534   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2535   // operations between PStore and the end of its parent block.
2536   //
2537   // The ideal way to do this is to query AliasAnalysis, but we don't
2538   // preserve AA currently so that is dangerous. Be super safe and just
2539   // check there are no other memory operations at all.
2540   for (auto &I : *QFB->getSinglePredecessor())
2541     if (I.mayReadOrWriteMemory())
2542       return false;
2543   for (auto &I : *QFB)
2544     if (&I != QStore && I.mayReadOrWriteMemory())
2545       return false;
2546   if (QTB)
2547     for (auto &I : *QTB)
2548       if (&I != QStore && I.mayReadOrWriteMemory())
2549         return false;
2550   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2551        I != E; ++I)
2552     if (&*I != PStore && I->mayReadOrWriteMemory())
2553       return false;
2554 
2555   // OK, we're going to sink the stores to PostBB. The store has to be
2556   // conditional though, so first create the predicate.
2557   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2558                      ->getCondition();
2559   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2560                      ->getCondition();
2561 
2562   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2563                                                 PStore->getParent());
2564   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2565                                                 QStore->getParent(), PPHI);
2566 
2567   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2568 
2569   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2570   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2571 
2572   if (InvertPCond)
2573     PPred = QB.CreateNot(PPred);
2574   if (InvertQCond)
2575     QPred = QB.CreateNot(QPred);
2576   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2577 
2578   auto *T =
2579       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2580   QB.SetInsertPoint(T);
2581   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2582   AAMDNodes AAMD;
2583   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2584   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2585   SI->setAAMetadata(AAMD);
2586 
2587   QStore->eraseFromParent();
2588   PStore->eraseFromParent();
2589 
2590   return true;
2591 }
2592 
2593 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2594   // The intention here is to find diamonds or triangles (see below) where each
2595   // conditional block contains a store to the same address. Both of these
2596   // stores are conditional, so they can't be unconditionally sunk. But it may
2597   // be profitable to speculatively sink the stores into one merged store at the
2598   // end, and predicate the merged store on the union of the two conditions of
2599   // PBI and QBI.
2600   //
2601   // This can reduce the number of stores executed if both of the conditions are
2602   // true, and can allow the blocks to become small enough to be if-converted.
2603   // This optimization will also chain, so that ladders of test-and-set
2604   // sequences can be if-converted away.
2605   //
2606   // We only deal with simple diamonds or triangles:
2607   //
2608   //     PBI       or      PBI        or a combination of the two
2609   //    /   \               | \
2610   //   PTB  PFB             |  PFB
2611   //    \   /               | /
2612   //     QBI                QBI
2613   //    /  \                | \
2614   //   QTB  QFB             |  QFB
2615   //    \  /                | /
2616   //    PostBB            PostBB
2617   //
2618   // We model triangles as a type of diamond with a nullptr "true" block.
2619   // Triangles are canonicalized so that the fallthrough edge is represented by
2620   // a true condition, as in the diagram above.
2621   //
2622   BasicBlock *PTB = PBI->getSuccessor(0);
2623   BasicBlock *PFB = PBI->getSuccessor(1);
2624   BasicBlock *QTB = QBI->getSuccessor(0);
2625   BasicBlock *QFB = QBI->getSuccessor(1);
2626   BasicBlock *PostBB = QFB->getSingleSuccessor();
2627 
2628   bool InvertPCond = false, InvertQCond = false;
2629   // Canonicalize fallthroughs to the true branches.
2630   if (PFB == QBI->getParent()) {
2631     std::swap(PFB, PTB);
2632     InvertPCond = true;
2633   }
2634   if (QFB == PostBB) {
2635     std::swap(QFB, QTB);
2636     InvertQCond = true;
2637   }
2638 
2639   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2640   // and QFB may not. Model fallthroughs as a nullptr block.
2641   if (PTB == QBI->getParent())
2642     PTB = nullptr;
2643   if (QTB == PostBB)
2644     QTB = nullptr;
2645 
2646   // Legality bailouts. We must have at least the non-fallthrough blocks and
2647   // the post-dominating block, and the non-fallthroughs must only have one
2648   // predecessor.
2649   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2650     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2651   };
2652   if (!PostBB ||
2653       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2654       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2655     return false;
2656   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2657       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2658     return false;
2659   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2660     return false;
2661 
2662   // OK, this is a sequence of two diamonds or triangles.
2663   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2664   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
2665   for (auto *BB : {PTB, PFB}) {
2666     if (!BB)
2667       continue;
2668     for (auto &I : *BB)
2669       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2670         PStoreAddresses.insert(SI->getPointerOperand());
2671   }
2672   for (auto *BB : {QTB, QFB}) {
2673     if (!BB)
2674       continue;
2675     for (auto &I : *BB)
2676       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2677         QStoreAddresses.insert(SI->getPointerOperand());
2678   }
2679 
2680   set_intersect(PStoreAddresses, QStoreAddresses);
2681   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2682   // clear what it contains.
2683   auto &CommonAddresses = PStoreAddresses;
2684 
2685   bool Changed = false;
2686   for (auto *Address : CommonAddresses)
2687     Changed |= mergeConditionalStoreToAddress(
2688         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2689   return Changed;
2690 }
2691 
2692 /// If we have a conditional branch as a predecessor of another block,
2693 /// this function tries to simplify it.  We know
2694 /// that PBI and BI are both conditional branches, and BI is in one of the
2695 /// successor blocks of PBI - PBI branches to BI.
2696 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2697                                            const DataLayout &DL) {
2698   assert(PBI->isConditional() && BI->isConditional());
2699   BasicBlock *BB = BI->getParent();
2700 
2701   // If this block ends with a branch instruction, and if there is a
2702   // predecessor that ends on a branch of the same condition, make
2703   // this conditional branch redundant.
2704   if (PBI->getCondition() == BI->getCondition() &&
2705       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2706     // Okay, the outcome of this conditional branch is statically
2707     // knowable.  If this block had a single pred, handle specially.
2708     if (BB->getSinglePredecessor()) {
2709       // Turn this into a branch on constant.
2710       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2711       BI->setCondition(
2712           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
2713       return true; // Nuke the branch on constant.
2714     }
2715 
2716     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2717     // in the constant and simplify the block result.  Subsequent passes of
2718     // simplifycfg will thread the block.
2719     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2720       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2721       PHINode *NewPN = PHINode::Create(
2722           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2723           BI->getCondition()->getName() + ".pr", &BB->front());
2724       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2725       // predecessor, compute the PHI'd conditional value for all of the preds.
2726       // Any predecessor where the condition is not computable we keep symbolic.
2727       for (pred_iterator PI = PB; PI != PE; ++PI) {
2728         BasicBlock *P = *PI;
2729         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
2730             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
2731             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2732           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2733           NewPN->addIncoming(
2734               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
2735               P);
2736         } else {
2737           NewPN->addIncoming(BI->getCondition(), P);
2738         }
2739       }
2740 
2741       BI->setCondition(NewPN);
2742       return true;
2743     }
2744   }
2745 
2746   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2747     if (CE->canTrap())
2748       return false;
2749 
2750   // If both branches are conditional and both contain stores to the same
2751   // address, remove the stores from the conditionals and create a conditional
2752   // merged store at the end.
2753   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2754     return true;
2755 
2756   // If this is a conditional branch in an empty block, and if any
2757   // predecessors are a conditional branch to one of our destinations,
2758   // fold the conditions into logical ops and one cond br.
2759   BasicBlock::iterator BBI = BB->begin();
2760   // Ignore dbg intrinsics.
2761   while (isa<DbgInfoIntrinsic>(BBI))
2762     ++BBI;
2763   if (&*BBI != BI)
2764     return false;
2765 
2766   int PBIOp, BIOp;
2767   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2768     PBIOp = 0;
2769     BIOp = 0;
2770   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2771     PBIOp = 0;
2772     BIOp = 1;
2773   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2774     PBIOp = 1;
2775     BIOp = 0;
2776   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2777     PBIOp = 1;
2778     BIOp = 1;
2779   } else {
2780     return false;
2781   }
2782 
2783   // Check to make sure that the other destination of this branch
2784   // isn't BB itself.  If so, this is an infinite loop that will
2785   // keep getting unwound.
2786   if (PBI->getSuccessor(PBIOp) == BB)
2787     return false;
2788 
2789   // Do not perform this transformation if it would require
2790   // insertion of a large number of select instructions. For targets
2791   // without predication/cmovs, this is a big pessimization.
2792 
2793   // Also do not perform this transformation if any phi node in the common
2794   // destination block can trap when reached by BB or PBB (PR17073). In that
2795   // case, it would be unsafe to hoist the operation into a select instruction.
2796 
2797   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2798   unsigned NumPhis = 0;
2799   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
2800        ++II, ++NumPhis) {
2801     if (NumPhis > 2) // Disable this xform.
2802       return false;
2803 
2804     PHINode *PN = cast<PHINode>(II);
2805     Value *BIV = PN->getIncomingValueForBlock(BB);
2806     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2807       if (CE->canTrap())
2808         return false;
2809 
2810     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2811     Value *PBIV = PN->getIncomingValue(PBBIdx);
2812     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2813       if (CE->canTrap())
2814         return false;
2815   }
2816 
2817   // Finally, if everything is ok, fold the branches to logical ops.
2818   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2819 
2820   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2821                << "AND: " << *BI->getParent());
2822 
2823   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2824   // branch in it, where one edge (OtherDest) goes back to itself but the other
2825   // exits.  We don't *know* that the program avoids the infinite loop
2826   // (even though that seems likely).  If we do this xform naively, we'll end up
2827   // recursively unpeeling the loop.  Since we know that (after the xform is
2828   // done) that the block *is* infinite if reached, we just make it an obviously
2829   // infinite loop with no cond branch.
2830   if (OtherDest == BB) {
2831     // Insert it at the end of the function, because it's either code,
2832     // or it won't matter if it's hot. :)
2833     BasicBlock *InfLoopBlock =
2834         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
2835     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2836     OtherDest = InfLoopBlock;
2837   }
2838 
2839   DEBUG(dbgs() << *PBI->getParent()->getParent());
2840 
2841   // BI may have other predecessors.  Because of this, we leave
2842   // it alone, but modify PBI.
2843 
2844   // Make sure we get to CommonDest on True&True directions.
2845   Value *PBICond = PBI->getCondition();
2846   IRBuilder<NoFolder> Builder(PBI);
2847   if (PBIOp)
2848     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
2849 
2850   Value *BICond = BI->getCondition();
2851   if (BIOp)
2852     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
2853 
2854   // Merge the conditions.
2855   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2856 
2857   // Modify PBI to branch on the new condition to the new dests.
2858   PBI->setCondition(Cond);
2859   PBI->setSuccessor(0, CommonDest);
2860   PBI->setSuccessor(1, OtherDest);
2861 
2862   // Update branch weight for PBI.
2863   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2864   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
2865   bool HasWeights =
2866       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2867                              SuccTrueWeight, SuccFalseWeight);
2868   if (HasWeights) {
2869     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2870     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2871     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2872     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2873     // The weight to CommonDest should be PredCommon * SuccTotal +
2874     //                                    PredOther * SuccCommon.
2875     // The weight to OtherDest should be PredOther * SuccOther.
2876     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
2877                                   PredOther * SuccCommon,
2878                               PredOther * SuccOther};
2879     // Halve the weights if any of them cannot fit in an uint32_t
2880     FitWeights(NewWeights);
2881 
2882     PBI->setMetadata(LLVMContext::MD_prof,
2883                      MDBuilder(BI->getContext())
2884                          .createBranchWeights(NewWeights[0], NewWeights[1]));
2885   }
2886 
2887   // OtherDest may have phi nodes.  If so, add an entry from PBI's
2888   // block that are identical to the entries for BI's block.
2889   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2890 
2891   // We know that the CommonDest already had an edge from PBI to
2892   // it.  If it has PHIs though, the PHIs may have different
2893   // entries for BB and PBI's BB.  If so, insert a select to make
2894   // them agree.
2895   PHINode *PN;
2896   for (BasicBlock::iterator II = CommonDest->begin();
2897        (PN = dyn_cast<PHINode>(II)); ++II) {
2898     Value *BIV = PN->getIncomingValueForBlock(BB);
2899     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2900     Value *PBIV = PN->getIncomingValue(PBBIdx);
2901     if (BIV != PBIV) {
2902       // Insert a select in PBI to pick the right value.
2903       SelectInst *NV = cast<SelectInst>(
2904           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
2905       PN->setIncomingValue(PBBIdx, NV);
2906       // Although the select has the same condition as PBI, the original branch
2907       // weights for PBI do not apply to the new select because the select's
2908       // 'logical' edges are incoming edges of the phi that is eliminated, not
2909       // the outgoing edges of PBI.
2910       if (HasWeights) {
2911         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2912         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
2913         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2914         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2915         // The weight to PredCommonDest should be PredCommon * SuccTotal.
2916         // The weight to PredOtherDest should be PredOther * SuccCommon.
2917         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
2918                                   PredOther * SuccCommon};
2919 
2920         FitWeights(NewWeights);
2921 
2922         NV->setMetadata(LLVMContext::MD_prof,
2923                         MDBuilder(BI->getContext())
2924                             .createBranchWeights(NewWeights[0], NewWeights[1]));
2925       }
2926     }
2927   }
2928 
2929   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2930   DEBUG(dbgs() << *PBI->getParent()->getParent());
2931 
2932   // This basic block is probably dead.  We know it has at least
2933   // one fewer predecessor.
2934   return true;
2935 }
2936 
2937 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
2938 // true or to FalseBB if Cond is false.
2939 // Takes care of updating the successors and removing the old terminator.
2940 // Also makes sure not to introduce new successors by assuming that edges to
2941 // non-successor TrueBBs and FalseBBs aren't reachable.
2942 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2943                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
2944                                        uint32_t TrueWeight,
2945                                        uint32_t FalseWeight) {
2946   // Remove any superfluous successor edges from the CFG.
2947   // First, figure out which successors to preserve.
2948   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2949   // successor.
2950   BasicBlock *KeepEdge1 = TrueBB;
2951   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2952 
2953   // Then remove the rest.
2954   for (BasicBlock *Succ : OldTerm->successors()) {
2955     // Make sure only to keep exactly one copy of each edge.
2956     if (Succ == KeepEdge1)
2957       KeepEdge1 = nullptr;
2958     else if (Succ == KeepEdge2)
2959       KeepEdge2 = nullptr;
2960     else
2961       Succ->removePredecessor(OldTerm->getParent(),
2962                               /*DontDeleteUselessPHIs=*/true);
2963   }
2964 
2965   IRBuilder<> Builder(OldTerm);
2966   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2967 
2968   // Insert an appropriate new terminator.
2969   if (!KeepEdge1 && !KeepEdge2) {
2970     if (TrueBB == FalseBB)
2971       // We were only looking for one successor, and it was present.
2972       // Create an unconditional branch to it.
2973       Builder.CreateBr(TrueBB);
2974     else {
2975       // We found both of the successors we were looking for.
2976       // Create a conditional branch sharing the condition of the select.
2977       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2978       if (TrueWeight != FalseWeight)
2979         NewBI->setMetadata(LLVMContext::MD_prof,
2980                            MDBuilder(OldTerm->getContext())
2981                                .createBranchWeights(TrueWeight, FalseWeight));
2982     }
2983   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2984     // Neither of the selected blocks were successors, so this
2985     // terminator must be unreachable.
2986     new UnreachableInst(OldTerm->getContext(), OldTerm);
2987   } else {
2988     // One of the selected values was a successor, but the other wasn't.
2989     // Insert an unconditional branch to the one that was found;
2990     // the edge to the one that wasn't must be unreachable.
2991     if (!KeepEdge1)
2992       // Only TrueBB was found.
2993       Builder.CreateBr(TrueBB);
2994     else
2995       // Only FalseBB was found.
2996       Builder.CreateBr(FalseBB);
2997   }
2998 
2999   EraseTerminatorInstAndDCECond(OldTerm);
3000   return true;
3001 }
3002 
3003 // Replaces
3004 //   (switch (select cond, X, Y)) on constant X, Y
3005 // with a branch - conditional if X and Y lead to distinct BBs,
3006 // unconditional otherwise.
3007 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3008   // Check for constant integer values in the select.
3009   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3010   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3011   if (!TrueVal || !FalseVal)
3012     return false;
3013 
3014   // Find the relevant condition and destinations.
3015   Value *Condition = Select->getCondition();
3016   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3017   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3018 
3019   // Get weight for TrueBB and FalseBB.
3020   uint32_t TrueWeight = 0, FalseWeight = 0;
3021   SmallVector<uint64_t, 8> Weights;
3022   bool HasWeights = HasBranchWeights(SI);
3023   if (HasWeights) {
3024     GetBranchWeights(SI, Weights);
3025     if (Weights.size() == 1 + SI->getNumCases()) {
3026       TrueWeight =
3027           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3028       FalseWeight =
3029           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3030     }
3031   }
3032 
3033   // Perform the actual simplification.
3034   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3035                                     FalseWeight);
3036 }
3037 
3038 // Replaces
3039 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3040 //                             blockaddress(@fn, BlockB)))
3041 // with
3042 //   (br cond, BlockA, BlockB).
3043 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3044   // Check that both operands of the select are block addresses.
3045   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3046   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3047   if (!TBA || !FBA)
3048     return false;
3049 
3050   // Extract the actual blocks.
3051   BasicBlock *TrueBB = TBA->getBasicBlock();
3052   BasicBlock *FalseBB = FBA->getBasicBlock();
3053 
3054   // Perform the actual simplification.
3055   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3056                                     0);
3057 }
3058 
3059 /// This is called when we find an icmp instruction
3060 /// (a seteq/setne with a constant) as the only instruction in a
3061 /// block that ends with an uncond branch.  We are looking for a very specific
3062 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3063 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3064 /// default value goes to an uncond block with a seteq in it, we get something
3065 /// like:
3066 ///
3067 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3068 /// DEFAULT:
3069 ///   %tmp = icmp eq i8 %A, 92
3070 ///   br label %end
3071 /// end:
3072 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3073 ///
3074 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3075 /// the PHI, merging the third icmp into the switch.
3076 static bool TryToSimplifyUncondBranchWithICmpInIt(
3077     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3078     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3079     AssumptionCache *AC) {
3080   BasicBlock *BB = ICI->getParent();
3081 
3082   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3083   // complex.
3084   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3085     return false;
3086 
3087   Value *V = ICI->getOperand(0);
3088   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3089 
3090   // The pattern we're looking for is where our only predecessor is a switch on
3091   // 'V' and this block is the default case for the switch.  In this case we can
3092   // fold the compared value into the switch to simplify things.
3093   BasicBlock *Pred = BB->getSinglePredecessor();
3094   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3095     return false;
3096 
3097   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3098   if (SI->getCondition() != V)
3099     return false;
3100 
3101   // If BB is reachable on a non-default case, then we simply know the value of
3102   // V in this block.  Substitute it and constant fold the icmp instruction
3103   // away.
3104   if (SI->getDefaultDest() != BB) {
3105     ConstantInt *VVal = SI->findCaseDest(BB);
3106     assert(VVal && "Should have a unique destination value");
3107     ICI->setOperand(0, VVal);
3108 
3109     if (Value *V = SimplifyInstruction(ICI, DL)) {
3110       ICI->replaceAllUsesWith(V);
3111       ICI->eraseFromParent();
3112     }
3113     // BB is now empty, so it is likely to simplify away.
3114     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3115   }
3116 
3117   // Ok, the block is reachable from the default dest.  If the constant we're
3118   // comparing exists in one of the other edges, then we can constant fold ICI
3119   // and zap it.
3120   if (SI->findCaseValue(Cst) != SI->case_default()) {
3121     Value *V;
3122     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3123       V = ConstantInt::getFalse(BB->getContext());
3124     else
3125       V = ConstantInt::getTrue(BB->getContext());
3126 
3127     ICI->replaceAllUsesWith(V);
3128     ICI->eraseFromParent();
3129     // BB is now empty, so it is likely to simplify away.
3130     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3131   }
3132 
3133   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3134   // the block.
3135   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3136   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3137   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3138       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3139     return false;
3140 
3141   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3142   // true in the PHI.
3143   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3144   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3145 
3146   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3147     std::swap(DefaultCst, NewCst);
3148 
3149   // Replace ICI (which is used by the PHI for the default value) with true or
3150   // false depending on if it is EQ or NE.
3151   ICI->replaceAllUsesWith(DefaultCst);
3152   ICI->eraseFromParent();
3153 
3154   // Okay, the switch goes to this block on a default value.  Add an edge from
3155   // the switch to the merge point on the compared value.
3156   BasicBlock *NewBB =
3157       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3158   SmallVector<uint64_t, 8> Weights;
3159   bool HasWeights = HasBranchWeights(SI);
3160   if (HasWeights) {
3161     GetBranchWeights(SI, Weights);
3162     if (Weights.size() == 1 + SI->getNumCases()) {
3163       // Split weight for default case to case for "Cst".
3164       Weights[0] = (Weights[0] + 1) >> 1;
3165       Weights.push_back(Weights[0]);
3166 
3167       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3168       SI->setMetadata(
3169           LLVMContext::MD_prof,
3170           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3171     }
3172   }
3173   SI->addCase(Cst, NewBB);
3174 
3175   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3176   Builder.SetInsertPoint(NewBB);
3177   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3178   Builder.CreateBr(SuccBlock);
3179   PHIUse->addIncoming(NewCst, NewBB);
3180   return true;
3181 }
3182 
3183 /// The specified branch is a conditional branch.
3184 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3185 /// fold it into a switch instruction if so.
3186 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3187                                       const DataLayout &DL) {
3188   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3189   if (!Cond)
3190     return false;
3191 
3192   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3193   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3194   // 'setne's and'ed together, collect them.
3195 
3196   // Try to gather values from a chain of and/or to be turned into a switch
3197   ConstantComparesGatherer ConstantCompare(Cond, DL);
3198   // Unpack the result
3199   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3200   Value *CompVal = ConstantCompare.CompValue;
3201   unsigned UsedICmps = ConstantCompare.UsedICmps;
3202   Value *ExtraCase = ConstantCompare.Extra;
3203 
3204   // If we didn't have a multiply compared value, fail.
3205   if (!CompVal)
3206     return false;
3207 
3208   // Avoid turning single icmps into a switch.
3209   if (UsedICmps <= 1)
3210     return false;
3211 
3212   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3213 
3214   // There might be duplicate constants in the list, which the switch
3215   // instruction can't handle, remove them now.
3216   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3217   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3218 
3219   // If Extra was used, we require at least two switch values to do the
3220   // transformation.  A switch with one value is just a conditional branch.
3221   if (ExtraCase && Values.size() < 2)
3222     return false;
3223 
3224   // TODO: Preserve branch weight metadata, similarly to how
3225   // FoldValueComparisonIntoPredecessors preserves it.
3226 
3227   // Figure out which block is which destination.
3228   BasicBlock *DefaultBB = BI->getSuccessor(1);
3229   BasicBlock *EdgeBB = BI->getSuccessor(0);
3230   if (!TrueWhenEqual)
3231     std::swap(DefaultBB, EdgeBB);
3232 
3233   BasicBlock *BB = BI->getParent();
3234 
3235   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3236                << " cases into SWITCH.  BB is:\n"
3237                << *BB);
3238 
3239   // If there are any extra values that couldn't be folded into the switch
3240   // then we evaluate them with an explicit branch first.  Split the block
3241   // right before the condbr to handle it.
3242   if (ExtraCase) {
3243     BasicBlock *NewBB =
3244         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3245     // Remove the uncond branch added to the old block.
3246     TerminatorInst *OldTI = BB->getTerminator();
3247     Builder.SetInsertPoint(OldTI);
3248 
3249     if (TrueWhenEqual)
3250       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3251     else
3252       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3253 
3254     OldTI->eraseFromParent();
3255 
3256     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3257     // for the edge we just added.
3258     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3259 
3260     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3261                  << "\nEXTRABB = " << *BB);
3262     BB = NewBB;
3263   }
3264 
3265   Builder.SetInsertPoint(BI);
3266   // Convert pointer to int before we switch.
3267   if (CompVal->getType()->isPointerTy()) {
3268     CompVal = Builder.CreatePtrToInt(
3269         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3270   }
3271 
3272   // Create the new switch instruction now.
3273   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3274 
3275   // Add all of the 'cases' to the switch instruction.
3276   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3277     New->addCase(Values[i], EdgeBB);
3278 
3279   // We added edges from PI to the EdgeBB.  As such, if there were any
3280   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3281   // the number of edges added.
3282   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3283     PHINode *PN = cast<PHINode>(BBI);
3284     Value *InVal = PN->getIncomingValueForBlock(BB);
3285     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3286       PN->addIncoming(InVal, BB);
3287   }
3288 
3289   // Erase the old branch instruction.
3290   EraseTerminatorInstAndDCECond(BI);
3291 
3292   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3293   return true;
3294 }
3295 
3296 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3297   if (isa<PHINode>(RI->getValue()))
3298     return SimplifyCommonResume(RI);
3299   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3300            RI->getValue() == RI->getParent()->getFirstNonPHI())
3301     // The resume must unwind the exception that caused control to branch here.
3302     return SimplifySingleResume(RI);
3303 
3304   return false;
3305 }
3306 
3307 // Simplify resume that is shared by several landing pads (phi of landing pad).
3308 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3309   BasicBlock *BB = RI->getParent();
3310 
3311   // Check that there are no other instructions except for debug intrinsics
3312   // between the phi of landing pads (RI->getValue()) and resume instruction.
3313   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3314                        E = RI->getIterator();
3315   while (++I != E)
3316     if (!isa<DbgInfoIntrinsic>(I))
3317       return false;
3318 
3319   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3320   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3321 
3322   // Check incoming blocks to see if any of them are trivial.
3323   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3324        Idx++) {
3325     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3326     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3327 
3328     // If the block has other successors, we can not delete it because
3329     // it has other dependents.
3330     if (IncomingBB->getUniqueSuccessor() != BB)
3331       continue;
3332 
3333     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3334     // Not the landing pad that caused the control to branch here.
3335     if (IncomingValue != LandingPad)
3336       continue;
3337 
3338     bool isTrivial = true;
3339 
3340     I = IncomingBB->getFirstNonPHI()->getIterator();
3341     E = IncomingBB->getTerminator()->getIterator();
3342     while (++I != E)
3343       if (!isa<DbgInfoIntrinsic>(I)) {
3344         isTrivial = false;
3345         break;
3346       }
3347 
3348     if (isTrivial)
3349       TrivialUnwindBlocks.insert(IncomingBB);
3350   }
3351 
3352   // If no trivial unwind blocks, don't do any simplifications.
3353   if (TrivialUnwindBlocks.empty())
3354     return false;
3355 
3356   // Turn all invokes that unwind here into calls.
3357   for (auto *TrivialBB : TrivialUnwindBlocks) {
3358     // Blocks that will be simplified should be removed from the phi node.
3359     // Note there could be multiple edges to the resume block, and we need
3360     // to remove them all.
3361     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3362       BB->removePredecessor(TrivialBB, true);
3363 
3364     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3365          PI != PE;) {
3366       BasicBlock *Pred = *PI++;
3367       removeUnwindEdge(Pred);
3368     }
3369 
3370     // In each SimplifyCFG run, only the current processed block can be erased.
3371     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3372     // of erasing TrivialBB, we only remove the branch to the common resume
3373     // block so that we can later erase the resume block since it has no
3374     // predecessors.
3375     TrivialBB->getTerminator()->eraseFromParent();
3376     new UnreachableInst(RI->getContext(), TrivialBB);
3377   }
3378 
3379   // Delete the resume block if all its predecessors have been removed.
3380   if (pred_empty(BB))
3381     BB->eraseFromParent();
3382 
3383   return !TrivialUnwindBlocks.empty();
3384 }
3385 
3386 // Simplify resume that is only used by a single (non-phi) landing pad.
3387 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3388   BasicBlock *BB = RI->getParent();
3389   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3390   assert(RI->getValue() == LPInst &&
3391          "Resume must unwind the exception that caused control to here");
3392 
3393   // Check that there are no other instructions except for debug intrinsics.
3394   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3395   while (++I != E)
3396     if (!isa<DbgInfoIntrinsic>(I))
3397       return false;
3398 
3399   // Turn all invokes that unwind here into calls and delete the basic block.
3400   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3401     BasicBlock *Pred = *PI++;
3402     removeUnwindEdge(Pred);
3403   }
3404 
3405   // The landingpad is now unreachable.  Zap it.
3406   BB->eraseFromParent();
3407   if (LoopHeaders)
3408     LoopHeaders->erase(BB);
3409   return true;
3410 }
3411 
3412 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3413   // If this is a trivial cleanup pad that executes no instructions, it can be
3414   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3415   // that is an EH pad will be updated to continue to the caller and any
3416   // predecessor that terminates with an invoke instruction will have its invoke
3417   // instruction converted to a call instruction.  If the cleanup pad being
3418   // simplified does not continue to the caller, each predecessor will be
3419   // updated to continue to the unwind destination of the cleanup pad being
3420   // simplified.
3421   BasicBlock *BB = RI->getParent();
3422   CleanupPadInst *CPInst = RI->getCleanupPad();
3423   if (CPInst->getParent() != BB)
3424     // This isn't an empty cleanup.
3425     return false;
3426 
3427   // Check that there are no other instructions except for benign intrinsics.
3428   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3429   while (++I != E) {
3430     auto *II = dyn_cast<IntrinsicInst>(I);
3431     if (!II)
3432       return false;
3433 
3434     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3435     switch (IntrinsicID) {
3436     case Intrinsic::dbg_declare:
3437     case Intrinsic::dbg_value:
3438     case Intrinsic::lifetime_end:
3439       break;
3440     default:
3441       return false;
3442     }
3443   }
3444 
3445   // If the cleanup return we are simplifying unwinds to the caller, this will
3446   // set UnwindDest to nullptr.
3447   BasicBlock *UnwindDest = RI->getUnwindDest();
3448   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3449 
3450   // We're about to remove BB from the control flow.  Before we do, sink any
3451   // PHINodes into the unwind destination.  Doing this before changing the
3452   // control flow avoids some potentially slow checks, since we can currently
3453   // be certain that UnwindDest and BB have no common predecessors (since they
3454   // are both EH pads).
3455   if (UnwindDest) {
3456     // First, go through the PHI nodes in UnwindDest and update any nodes that
3457     // reference the block we are removing
3458     for (BasicBlock::iterator I = UnwindDest->begin(),
3459                               IE = DestEHPad->getIterator();
3460          I != IE; ++I) {
3461       PHINode *DestPN = cast<PHINode>(I);
3462 
3463       int Idx = DestPN->getBasicBlockIndex(BB);
3464       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3465       assert(Idx != -1);
3466       // This PHI node has an incoming value that corresponds to a control
3467       // path through the cleanup pad we are removing.  If the incoming
3468       // value is in the cleanup pad, it must be a PHINode (because we
3469       // verified above that the block is otherwise empty).  Otherwise, the
3470       // value is either a constant or a value that dominates the cleanup
3471       // pad being removed.
3472       //
3473       // Because BB and UnwindDest are both EH pads, all of their
3474       // predecessors must unwind to these blocks, and since no instruction
3475       // can have multiple unwind destinations, there will be no overlap in
3476       // incoming blocks between SrcPN and DestPN.
3477       Value *SrcVal = DestPN->getIncomingValue(Idx);
3478       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3479 
3480       // Remove the entry for the block we are deleting.
3481       DestPN->removeIncomingValue(Idx, false);
3482 
3483       if (SrcPN && SrcPN->getParent() == BB) {
3484         // If the incoming value was a PHI node in the cleanup pad we are
3485         // removing, we need to merge that PHI node's incoming values into
3486         // DestPN.
3487         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3488              SrcIdx != SrcE; ++SrcIdx) {
3489           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3490                               SrcPN->getIncomingBlock(SrcIdx));
3491         }
3492       } else {
3493         // Otherwise, the incoming value came from above BB and
3494         // so we can just reuse it.  We must associate all of BB's
3495         // predecessors with this value.
3496         for (auto *pred : predecessors(BB)) {
3497           DestPN->addIncoming(SrcVal, pred);
3498         }
3499       }
3500     }
3501 
3502     // Sink any remaining PHI nodes directly into UnwindDest.
3503     Instruction *InsertPt = DestEHPad;
3504     for (BasicBlock::iterator I = BB->begin(),
3505                               IE = BB->getFirstNonPHI()->getIterator();
3506          I != IE;) {
3507       // The iterator must be incremented here because the instructions are
3508       // being moved to another block.
3509       PHINode *PN = cast<PHINode>(I++);
3510       if (PN->use_empty())
3511         // If the PHI node has no uses, just leave it.  It will be erased
3512         // when we erase BB below.
3513         continue;
3514 
3515       // Otherwise, sink this PHI node into UnwindDest.
3516       // Any predecessors to UnwindDest which are not already represented
3517       // must be back edges which inherit the value from the path through
3518       // BB.  In this case, the PHI value must reference itself.
3519       for (auto *pred : predecessors(UnwindDest))
3520         if (pred != BB)
3521           PN->addIncoming(PN, pred);
3522       PN->moveBefore(InsertPt);
3523     }
3524   }
3525 
3526   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3527     // The iterator must be updated here because we are removing this pred.
3528     BasicBlock *PredBB = *PI++;
3529     if (UnwindDest == nullptr) {
3530       removeUnwindEdge(PredBB);
3531     } else {
3532       TerminatorInst *TI = PredBB->getTerminator();
3533       TI->replaceUsesOfWith(BB, UnwindDest);
3534     }
3535   }
3536 
3537   // The cleanup pad is now unreachable.  Zap it.
3538   BB->eraseFromParent();
3539   return true;
3540 }
3541 
3542 // Try to merge two cleanuppads together.
3543 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3544   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3545   // with.
3546   BasicBlock *UnwindDest = RI->getUnwindDest();
3547   if (!UnwindDest)
3548     return false;
3549 
3550   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3551   // be safe to merge without code duplication.
3552   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3553     return false;
3554 
3555   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3556   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3557   if (!SuccessorCleanupPad)
3558     return false;
3559 
3560   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3561   // Replace any uses of the successor cleanupad with the predecessor pad
3562   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3563   // funclet bundle operands.
3564   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3565   // Remove the old cleanuppad.
3566   SuccessorCleanupPad->eraseFromParent();
3567   // Now, we simply replace the cleanupret with a branch to the unwind
3568   // destination.
3569   BranchInst::Create(UnwindDest, RI->getParent());
3570   RI->eraseFromParent();
3571 
3572   return true;
3573 }
3574 
3575 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3576   // It is possible to transiantly have an undef cleanuppad operand because we
3577   // have deleted some, but not all, dead blocks.
3578   // Eventually, this block will be deleted.
3579   if (isa<UndefValue>(RI->getOperand(0)))
3580     return false;
3581 
3582   if (mergeCleanupPad(RI))
3583     return true;
3584 
3585   if (removeEmptyCleanup(RI))
3586     return true;
3587 
3588   return false;
3589 }
3590 
3591 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3592   BasicBlock *BB = RI->getParent();
3593   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3594     return false;
3595 
3596   // Find predecessors that end with branches.
3597   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3598   SmallVector<BranchInst *, 8> CondBranchPreds;
3599   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3600     BasicBlock *P = *PI;
3601     TerminatorInst *PTI = P->getTerminator();
3602     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3603       if (BI->isUnconditional())
3604         UncondBranchPreds.push_back(P);
3605       else
3606         CondBranchPreds.push_back(BI);
3607     }
3608   }
3609 
3610   // If we found some, do the transformation!
3611   if (!UncondBranchPreds.empty() && DupRet) {
3612     while (!UncondBranchPreds.empty()) {
3613       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3614       DEBUG(dbgs() << "FOLDING: " << *BB
3615                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3616       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3617     }
3618 
3619     // If we eliminated all predecessors of the block, delete the block now.
3620     if (pred_empty(BB)) {
3621       // We know there are no successors, so just nuke the block.
3622       BB->eraseFromParent();
3623       if (LoopHeaders)
3624         LoopHeaders->erase(BB);
3625     }
3626 
3627     return true;
3628   }
3629 
3630   // Check out all of the conditional branches going to this return
3631   // instruction.  If any of them just select between returns, change the
3632   // branch itself into a select/return pair.
3633   while (!CondBranchPreds.empty()) {
3634     BranchInst *BI = CondBranchPreds.pop_back_val();
3635 
3636     // Check to see if the non-BB successor is also a return block.
3637     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3638         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3639         SimplifyCondBranchToTwoReturns(BI, Builder))
3640       return true;
3641   }
3642   return false;
3643 }
3644 
3645 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3646   BasicBlock *BB = UI->getParent();
3647 
3648   bool Changed = false;
3649 
3650   // If there are any instructions immediately before the unreachable that can
3651   // be removed, do so.
3652   while (UI->getIterator() != BB->begin()) {
3653     BasicBlock::iterator BBI = UI->getIterator();
3654     --BBI;
3655     // Do not delete instructions that can have side effects which might cause
3656     // the unreachable to not be reachable; specifically, calls and volatile
3657     // operations may have this effect.
3658     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
3659       break;
3660 
3661     if (BBI->mayHaveSideEffects()) {
3662       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3663         if (SI->isVolatile())
3664           break;
3665       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3666         if (LI->isVolatile())
3667           break;
3668       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3669         if (RMWI->isVolatile())
3670           break;
3671       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3672         if (CXI->isVolatile())
3673           break;
3674       } else if (isa<CatchPadInst>(BBI)) {
3675         // A catchpad may invoke exception object constructors and such, which
3676         // in some languages can be arbitrary code, so be conservative by
3677         // default.
3678         // For CoreCLR, it just involves a type test, so can be removed.
3679         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3680             EHPersonality::CoreCLR)
3681           break;
3682       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3683                  !isa<LandingPadInst>(BBI)) {
3684         break;
3685       }
3686       // Note that deleting LandingPad's here is in fact okay, although it
3687       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3688       // all the predecessors of this block will be the unwind edges of Invokes,
3689       // and we can therefore guarantee this block will be erased.
3690     }
3691 
3692     // Delete this instruction (any uses are guaranteed to be dead)
3693     if (!BBI->use_empty())
3694       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3695     BBI->eraseFromParent();
3696     Changed = true;
3697   }
3698 
3699   // If the unreachable instruction is the first in the block, take a gander
3700   // at all of the predecessors of this instruction, and simplify them.
3701   if (&BB->front() != UI)
3702     return Changed;
3703 
3704   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
3705   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3706     TerminatorInst *TI = Preds[i]->getTerminator();
3707     IRBuilder<> Builder(TI);
3708     if (auto *BI = dyn_cast<BranchInst>(TI)) {
3709       if (BI->isUnconditional()) {
3710         if (BI->getSuccessor(0) == BB) {
3711           new UnreachableInst(TI->getContext(), TI);
3712           TI->eraseFromParent();
3713           Changed = true;
3714         }
3715       } else {
3716         if (BI->getSuccessor(0) == BB) {
3717           Builder.CreateBr(BI->getSuccessor(1));
3718           EraseTerminatorInstAndDCECond(BI);
3719         } else if (BI->getSuccessor(1) == BB) {
3720           Builder.CreateBr(BI->getSuccessor(0));
3721           EraseTerminatorInstAndDCECond(BI);
3722           Changed = true;
3723         }
3724       }
3725     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3726       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
3727            ++i)
3728         if (i.getCaseSuccessor() == BB) {
3729           BB->removePredecessor(SI->getParent());
3730           SI->removeCase(i);
3731           --i;
3732           --e;
3733           Changed = true;
3734         }
3735     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3736       if (II->getUnwindDest() == BB) {
3737         removeUnwindEdge(TI->getParent());
3738         Changed = true;
3739       }
3740     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3741       if (CSI->getUnwindDest() == BB) {
3742         removeUnwindEdge(TI->getParent());
3743         Changed = true;
3744         continue;
3745       }
3746 
3747       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3748                                              E = CSI->handler_end();
3749            I != E; ++I) {
3750         if (*I == BB) {
3751           CSI->removeHandler(I);
3752           --I;
3753           --E;
3754           Changed = true;
3755         }
3756       }
3757       if (CSI->getNumHandlers() == 0) {
3758         BasicBlock *CatchSwitchBB = CSI->getParent();
3759         if (CSI->hasUnwindDest()) {
3760           // Redirect preds to the unwind dest
3761           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3762         } else {
3763           // Rewrite all preds to unwind to caller (or from invoke to call).
3764           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3765           for (BasicBlock *EHPred : EHPreds)
3766             removeUnwindEdge(EHPred);
3767         }
3768         // The catchswitch is no longer reachable.
3769         new UnreachableInst(CSI->getContext(), CSI);
3770         CSI->eraseFromParent();
3771         Changed = true;
3772       }
3773     } else if (isa<CleanupReturnInst>(TI)) {
3774       new UnreachableInst(TI->getContext(), TI);
3775       TI->eraseFromParent();
3776       Changed = true;
3777     }
3778   }
3779 
3780   // If this block is now dead, remove it.
3781   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
3782     // We know there are no successors, so just nuke the block.
3783     BB->eraseFromParent();
3784     if (LoopHeaders)
3785       LoopHeaders->erase(BB);
3786     return true;
3787   }
3788 
3789   return Changed;
3790 }
3791 
3792 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3793   assert(Cases.size() >= 1);
3794 
3795   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3796   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3797     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3798       return false;
3799   }
3800   return true;
3801 }
3802 
3803 /// Turn a switch with two reachable destinations into an integer range
3804 /// comparison and branch.
3805 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3806   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3807 
3808   bool HasDefault =
3809       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3810 
3811   // Partition the cases into two sets with different destinations.
3812   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3813   BasicBlock *DestB = nullptr;
3814   SmallVector<ConstantInt *, 16> CasesA;
3815   SmallVector<ConstantInt *, 16> CasesB;
3816 
3817   for (SwitchInst::CaseIt I : SI->cases()) {
3818     BasicBlock *Dest = I.getCaseSuccessor();
3819     if (!DestA)
3820       DestA = Dest;
3821     if (Dest == DestA) {
3822       CasesA.push_back(I.getCaseValue());
3823       continue;
3824     }
3825     if (!DestB)
3826       DestB = Dest;
3827     if (Dest == DestB) {
3828       CasesB.push_back(I.getCaseValue());
3829       continue;
3830     }
3831     return false; // More than two destinations.
3832   }
3833 
3834   assert(DestA && DestB &&
3835          "Single-destination switch should have been folded.");
3836   assert(DestA != DestB);
3837   assert(DestB != SI->getDefaultDest());
3838   assert(!CasesB.empty() && "There must be non-default cases.");
3839   assert(!CasesA.empty() || HasDefault);
3840 
3841   // Figure out if one of the sets of cases form a contiguous range.
3842   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3843   BasicBlock *ContiguousDest = nullptr;
3844   BasicBlock *OtherDest = nullptr;
3845   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
3846     ContiguousCases = &CasesA;
3847     ContiguousDest = DestA;
3848     OtherDest = DestB;
3849   } else if (CasesAreContiguous(CasesB)) {
3850     ContiguousCases = &CasesB;
3851     ContiguousDest = DestB;
3852     OtherDest = DestA;
3853   } else
3854     return false;
3855 
3856   // Start building the compare and branch.
3857 
3858   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
3859   Constant *NumCases =
3860       ConstantInt::get(Offset->getType(), ContiguousCases->size());
3861 
3862   Value *Sub = SI->getCondition();
3863   if (!Offset->isNullValue())
3864     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
3865 
3866   Value *Cmp;
3867   // If NumCases overflowed, then all possible values jump to the successor.
3868   if (NumCases->isNullValue() && !ContiguousCases->empty())
3869     Cmp = ConstantInt::getTrue(SI->getContext());
3870   else
3871     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3872   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
3873 
3874   // Update weight for the newly-created conditional branch.
3875   if (HasBranchWeights(SI)) {
3876     SmallVector<uint64_t, 8> Weights;
3877     GetBranchWeights(SI, Weights);
3878     if (Weights.size() == 1 + SI->getNumCases()) {
3879       uint64_t TrueWeight = 0;
3880       uint64_t FalseWeight = 0;
3881       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
3882         if (SI->getSuccessor(I) == ContiguousDest)
3883           TrueWeight += Weights[I];
3884         else
3885           FalseWeight += Weights[I];
3886       }
3887       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
3888         TrueWeight /= 2;
3889         FalseWeight /= 2;
3890       }
3891       NewBI->setMetadata(LLVMContext::MD_prof,
3892                          MDBuilder(SI->getContext())
3893                              .createBranchWeights((uint32_t)TrueWeight,
3894                                                   (uint32_t)FalseWeight));
3895     }
3896   }
3897 
3898   // Prune obsolete incoming values off the successors' PHI nodes.
3899   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
3900     unsigned PreviousEdges = ContiguousCases->size();
3901     if (ContiguousDest == SI->getDefaultDest())
3902       ++PreviousEdges;
3903     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3904       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3905   }
3906   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
3907     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
3908     if (OtherDest == SI->getDefaultDest())
3909       ++PreviousEdges;
3910     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
3911       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3912   }
3913 
3914   // Drop the switch.
3915   SI->eraseFromParent();
3916 
3917   return true;
3918 }
3919 
3920 /// Compute masked bits for the condition of a switch
3921 /// and use it to remove dead cases.
3922 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
3923                                      const DataLayout &DL) {
3924   Value *Cond = SI->getCondition();
3925   unsigned Bits = Cond->getType()->getIntegerBitWidth();
3926   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3927   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
3928 
3929   // We can also eliminate cases by determining that their values are outside of
3930   // the limited range of the condition based on how many significant (non-sign)
3931   // bits are in the condition value.
3932   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
3933   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
3934 
3935   // Gather dead cases.
3936   SmallVector<ConstantInt *, 8> DeadCases;
3937   for (auto &Case : SI->cases()) {
3938     APInt CaseVal = Case.getCaseValue()->getValue();
3939     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
3940         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
3941       DeadCases.push_back(Case.getCaseValue());
3942       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
3943     }
3944   }
3945 
3946   // If we can prove that the cases must cover all possible values, the
3947   // default destination becomes dead and we can remove it.  If we know some
3948   // of the bits in the value, we can use that to more precisely compute the
3949   // number of possible unique case values.
3950   bool HasDefault =
3951       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3952   const unsigned NumUnknownBits =
3953       Bits - (KnownZero.Or(KnownOne)).countPopulation();
3954   assert(NumUnknownBits <= Bits);
3955   if (HasDefault && DeadCases.empty() &&
3956       NumUnknownBits < 64 /* avoid overflow */ &&
3957       SI->getNumCases() == (1ULL << NumUnknownBits)) {
3958     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
3959     BasicBlock *NewDefault =
3960         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
3961     SI->setDefaultDest(&*NewDefault);
3962     SplitBlock(&*NewDefault, &NewDefault->front());
3963     auto *OldTI = NewDefault->getTerminator();
3964     new UnreachableInst(SI->getContext(), OldTI);
3965     EraseTerminatorInstAndDCECond(OldTI);
3966     return true;
3967   }
3968 
3969   SmallVector<uint64_t, 8> Weights;
3970   bool HasWeight = HasBranchWeights(SI);
3971   if (HasWeight) {
3972     GetBranchWeights(SI, Weights);
3973     HasWeight = (Weights.size() == 1 + SI->getNumCases());
3974   }
3975 
3976   // Remove dead cases from the switch.
3977   for (ConstantInt *DeadCase : DeadCases) {
3978     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
3979     assert(Case != SI->case_default() &&
3980            "Case was not found. Probably mistake in DeadCases forming.");
3981     if (HasWeight) {
3982       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
3983       Weights.pop_back();
3984     }
3985 
3986     // Prune unused values from PHI nodes.
3987     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3988     SI->removeCase(Case);
3989   }
3990   if (HasWeight && Weights.size() >= 2) {
3991     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3992     SI->setMetadata(LLVMContext::MD_prof,
3993                     MDBuilder(SI->getParent()->getContext())
3994                         .createBranchWeights(MDWeights));
3995   }
3996 
3997   return !DeadCases.empty();
3998 }
3999 
4000 /// If BB would be eligible for simplification by
4001 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4002 /// by an unconditional branch), look at the phi node for BB in the successor
4003 /// block and see if the incoming value is equal to CaseValue. If so, return
4004 /// the phi node, and set PhiIndex to BB's index in the phi node.
4005 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4006                                               BasicBlock *BB, int *PhiIndex) {
4007   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4008     return nullptr; // BB must be empty to be a candidate for simplification.
4009   if (!BB->getSinglePredecessor())
4010     return nullptr; // BB must be dominated by the switch.
4011 
4012   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4013   if (!Branch || !Branch->isUnconditional())
4014     return nullptr; // Terminator must be unconditional branch.
4015 
4016   BasicBlock *Succ = Branch->getSuccessor(0);
4017 
4018   BasicBlock::iterator I = Succ->begin();
4019   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4020     int Idx = PHI->getBasicBlockIndex(BB);
4021     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4022 
4023     Value *InValue = PHI->getIncomingValue(Idx);
4024     if (InValue != CaseValue)
4025       continue;
4026 
4027     *PhiIndex = Idx;
4028     return PHI;
4029   }
4030 
4031   return nullptr;
4032 }
4033 
4034 /// Try to forward the condition of a switch instruction to a phi node
4035 /// dominated by the switch, if that would mean that some of the destination
4036 /// blocks of the switch can be folded away.
4037 /// Returns true if a change is made.
4038 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4039   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4040   ForwardingNodesMap ForwardingNodes;
4041 
4042   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4043        ++I) {
4044     ConstantInt *CaseValue = I.getCaseValue();
4045     BasicBlock *CaseDest = I.getCaseSuccessor();
4046 
4047     int PhiIndex;
4048     PHINode *PHI =
4049         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4050     if (!PHI)
4051       continue;
4052 
4053     ForwardingNodes[PHI].push_back(PhiIndex);
4054   }
4055 
4056   bool Changed = false;
4057 
4058   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4059                                     E = ForwardingNodes.end();
4060        I != E; ++I) {
4061     PHINode *Phi = I->first;
4062     SmallVectorImpl<int> &Indexes = I->second;
4063 
4064     if (Indexes.size() < 2)
4065       continue;
4066 
4067     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4068       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4069     Changed = true;
4070   }
4071 
4072   return Changed;
4073 }
4074 
4075 /// Return true if the backend will be able to handle
4076 /// initializing an array of constants like C.
4077 static bool ValidLookupTableConstant(Constant *C) {
4078   if (C->isThreadDependent())
4079     return false;
4080   if (C->isDLLImportDependent())
4081     return false;
4082 
4083   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4084     return CE->isGEPWithNoNotionalOverIndexing();
4085 
4086   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4087          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4088          isa<UndefValue>(C);
4089 }
4090 
4091 /// If V is a Constant, return it. Otherwise, try to look up
4092 /// its constant value in ConstantPool, returning 0 if it's not there.
4093 static Constant *
4094 LookupConstant(Value *V,
4095                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4096   if (Constant *C = dyn_cast<Constant>(V))
4097     return C;
4098   return ConstantPool.lookup(V);
4099 }
4100 
4101 /// Try to fold instruction I into a constant. This works for
4102 /// simple instructions such as binary operations where both operands are
4103 /// constant or can be replaced by constants from the ConstantPool. Returns the
4104 /// resulting constant on success, 0 otherwise.
4105 static Constant *
4106 ConstantFold(Instruction *I, const DataLayout &DL,
4107              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4108   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4109     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4110     if (!A)
4111       return nullptr;
4112     if (A->isAllOnesValue())
4113       return LookupConstant(Select->getTrueValue(), ConstantPool);
4114     if (A->isNullValue())
4115       return LookupConstant(Select->getFalseValue(), ConstantPool);
4116     return nullptr;
4117   }
4118 
4119   SmallVector<Constant *, 4> COps;
4120   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4121     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4122       COps.push_back(A);
4123     else
4124       return nullptr;
4125   }
4126 
4127   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4128     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4129                                            COps[1], DL);
4130   }
4131 
4132   return ConstantFoldInstOperands(I, COps, DL);
4133 }
4134 
4135 /// Try to determine the resulting constant values in phi nodes
4136 /// at the common destination basic block, *CommonDest, for one of the case
4137 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4138 /// case), of a switch instruction SI.
4139 static bool
4140 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4141                BasicBlock **CommonDest,
4142                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4143                const DataLayout &DL) {
4144   // The block from which we enter the common destination.
4145   BasicBlock *Pred = SI->getParent();
4146 
4147   // If CaseDest is empty except for some side-effect free instructions through
4148   // which we can constant-propagate the CaseVal, continue to its successor.
4149   SmallDenseMap<Value *, Constant *> ConstantPool;
4150   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4151   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4152        ++I) {
4153     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4154       // If the terminator is a simple branch, continue to the next block.
4155       if (T->getNumSuccessors() != 1)
4156         return false;
4157       Pred = CaseDest;
4158       CaseDest = T->getSuccessor(0);
4159     } else if (isa<DbgInfoIntrinsic>(I)) {
4160       // Skip debug intrinsic.
4161       continue;
4162     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4163       // Instruction is side-effect free and constant.
4164 
4165       // If the instruction has uses outside this block or a phi node slot for
4166       // the block, it is not safe to bypass the instruction since it would then
4167       // no longer dominate all its uses.
4168       for (auto &Use : I->uses()) {
4169         User *User = Use.getUser();
4170         if (Instruction *I = dyn_cast<Instruction>(User))
4171           if (I->getParent() == CaseDest)
4172             continue;
4173         if (PHINode *Phi = dyn_cast<PHINode>(User))
4174           if (Phi->getIncomingBlock(Use) == CaseDest)
4175             continue;
4176         return false;
4177       }
4178 
4179       ConstantPool.insert(std::make_pair(&*I, C));
4180     } else {
4181       break;
4182     }
4183   }
4184 
4185   // If we did not have a CommonDest before, use the current one.
4186   if (!*CommonDest)
4187     *CommonDest = CaseDest;
4188   // If the destination isn't the common one, abort.
4189   if (CaseDest != *CommonDest)
4190     return false;
4191 
4192   // Get the values for this case from phi nodes in the destination block.
4193   BasicBlock::iterator I = (*CommonDest)->begin();
4194   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4195     int Idx = PHI->getBasicBlockIndex(Pred);
4196     if (Idx == -1)
4197       continue;
4198 
4199     Constant *ConstVal =
4200         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4201     if (!ConstVal)
4202       return false;
4203 
4204     // Be conservative about which kinds of constants we support.
4205     if (!ValidLookupTableConstant(ConstVal))
4206       return false;
4207 
4208     Res.push_back(std::make_pair(PHI, ConstVal));
4209   }
4210 
4211   return Res.size() > 0;
4212 }
4213 
4214 // Helper function used to add CaseVal to the list of cases that generate
4215 // Result.
4216 static void MapCaseToResult(ConstantInt *CaseVal,
4217                             SwitchCaseResultVectorTy &UniqueResults,
4218                             Constant *Result) {
4219   for (auto &I : UniqueResults) {
4220     if (I.first == Result) {
4221       I.second.push_back(CaseVal);
4222       return;
4223     }
4224   }
4225   UniqueResults.push_back(
4226       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4227 }
4228 
4229 // Helper function that initializes a map containing
4230 // results for the PHI node of the common destination block for a switch
4231 // instruction. Returns false if multiple PHI nodes have been found or if
4232 // there is not a common destination block for the switch.
4233 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4234                                   BasicBlock *&CommonDest,
4235                                   SwitchCaseResultVectorTy &UniqueResults,
4236                                   Constant *&DefaultResult,
4237                                   const DataLayout &DL) {
4238   for (auto &I : SI->cases()) {
4239     ConstantInt *CaseVal = I.getCaseValue();
4240 
4241     // Resulting value at phi nodes for this case value.
4242     SwitchCaseResultsTy Results;
4243     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4244                         DL))
4245       return false;
4246 
4247     // Only one value per case is permitted
4248     if (Results.size() > 1)
4249       return false;
4250     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4251 
4252     // Check the PHI consistency.
4253     if (!PHI)
4254       PHI = Results[0].first;
4255     else if (PHI != Results[0].first)
4256       return false;
4257   }
4258   // Find the default result value.
4259   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4260   BasicBlock *DefaultDest = SI->getDefaultDest();
4261   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4262                  DL);
4263   // If the default value is not found abort unless the default destination
4264   // is unreachable.
4265   DefaultResult =
4266       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4267   if ((!DefaultResult &&
4268        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4269     return false;
4270 
4271   return true;
4272 }
4273 
4274 // Helper function that checks if it is possible to transform a switch with only
4275 // two cases (or two cases + default) that produces a result into a select.
4276 // Example:
4277 // switch (a) {
4278 //   case 10:                %0 = icmp eq i32 %a, 10
4279 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4280 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4281 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4282 //   default:
4283 //     return 4;
4284 // }
4285 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4286                                    Constant *DefaultResult, Value *Condition,
4287                                    IRBuilder<> &Builder) {
4288   assert(ResultVector.size() == 2 &&
4289          "We should have exactly two unique results at this point");
4290   // If we are selecting between only two cases transform into a simple
4291   // select or a two-way select if default is possible.
4292   if (ResultVector[0].second.size() == 1 &&
4293       ResultVector[1].second.size() == 1) {
4294     ConstantInt *const FirstCase = ResultVector[0].second[0];
4295     ConstantInt *const SecondCase = ResultVector[1].second[0];
4296 
4297     bool DefaultCanTrigger = DefaultResult;
4298     Value *SelectValue = ResultVector[1].first;
4299     if (DefaultCanTrigger) {
4300       Value *const ValueCompare =
4301           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4302       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4303                                          DefaultResult, "switch.select");
4304     }
4305     Value *const ValueCompare =
4306         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4307     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4308                                 SelectValue, "switch.select");
4309   }
4310 
4311   return nullptr;
4312 }
4313 
4314 // Helper function to cleanup a switch instruction that has been converted into
4315 // a select, fixing up PHI nodes and basic blocks.
4316 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4317                                               Value *SelectValue,
4318                                               IRBuilder<> &Builder) {
4319   BasicBlock *SelectBB = SI->getParent();
4320   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4321     PHI->removeIncomingValue(SelectBB);
4322   PHI->addIncoming(SelectValue, SelectBB);
4323 
4324   Builder.CreateBr(PHI->getParent());
4325 
4326   // Remove the switch.
4327   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4328     BasicBlock *Succ = SI->getSuccessor(i);
4329 
4330     if (Succ == PHI->getParent())
4331       continue;
4332     Succ->removePredecessor(SelectBB);
4333   }
4334   SI->eraseFromParent();
4335 }
4336 
4337 /// If the switch is only used to initialize one or more
4338 /// phi nodes in a common successor block with only two different
4339 /// constant values, replace the switch with select.
4340 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4341                            AssumptionCache *AC, const DataLayout &DL) {
4342   Value *const Cond = SI->getCondition();
4343   PHINode *PHI = nullptr;
4344   BasicBlock *CommonDest = nullptr;
4345   Constant *DefaultResult;
4346   SwitchCaseResultVectorTy UniqueResults;
4347   // Collect all the cases that will deliver the same value from the switch.
4348   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4349                              DL))
4350     return false;
4351   // Selects choose between maximum two values.
4352   if (UniqueResults.size() != 2)
4353     return false;
4354   assert(PHI != nullptr && "PHI for value select not found");
4355 
4356   Builder.SetInsertPoint(SI);
4357   Value *SelectValue =
4358       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4359   if (SelectValue) {
4360     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4361     return true;
4362   }
4363   // The switch couldn't be converted into a select.
4364   return false;
4365 }
4366 
4367 namespace {
4368 /// This class represents a lookup table that can be used to replace a switch.
4369 class SwitchLookupTable {
4370 public:
4371   /// Create a lookup table to use as a switch replacement with the contents
4372   /// of Values, using DefaultValue to fill any holes in the table.
4373   SwitchLookupTable(
4374       Module &M, uint64_t TableSize, ConstantInt *Offset,
4375       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4376       Constant *DefaultValue, const DataLayout &DL);
4377 
4378   /// Build instructions with Builder to retrieve the value at
4379   /// the position given by Index in the lookup table.
4380   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4381 
4382   /// Return true if a table with TableSize elements of
4383   /// type ElementType would fit in a target-legal register.
4384   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4385                                  Type *ElementType);
4386 
4387 private:
4388   // Depending on the contents of the table, it can be represented in
4389   // different ways.
4390   enum {
4391     // For tables where each element contains the same value, we just have to
4392     // store that single value and return it for each lookup.
4393     SingleValueKind,
4394 
4395     // For tables where there is a linear relationship between table index
4396     // and values. We calculate the result with a simple multiplication
4397     // and addition instead of a table lookup.
4398     LinearMapKind,
4399 
4400     // For small tables with integer elements, we can pack them into a bitmap
4401     // that fits into a target-legal register. Values are retrieved by
4402     // shift and mask operations.
4403     BitMapKind,
4404 
4405     // The table is stored as an array of values. Values are retrieved by load
4406     // instructions from the table.
4407     ArrayKind
4408   } Kind;
4409 
4410   // For SingleValueKind, this is the single value.
4411   Constant *SingleValue;
4412 
4413   // For BitMapKind, this is the bitmap.
4414   ConstantInt *BitMap;
4415   IntegerType *BitMapElementTy;
4416 
4417   // For LinearMapKind, these are the constants used to derive the value.
4418   ConstantInt *LinearOffset;
4419   ConstantInt *LinearMultiplier;
4420 
4421   // For ArrayKind, this is the array.
4422   GlobalVariable *Array;
4423 };
4424 }
4425 
4426 SwitchLookupTable::SwitchLookupTable(
4427     Module &M, uint64_t TableSize, ConstantInt *Offset,
4428     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4429     Constant *DefaultValue, const DataLayout &DL)
4430     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4431       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4432   assert(Values.size() && "Can't build lookup table without values!");
4433   assert(TableSize >= Values.size() && "Can't fit values in table!");
4434 
4435   // If all values in the table are equal, this is that value.
4436   SingleValue = Values.begin()->second;
4437 
4438   Type *ValueType = Values.begin()->second->getType();
4439 
4440   // Build up the table contents.
4441   SmallVector<Constant *, 64> TableContents(TableSize);
4442   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4443     ConstantInt *CaseVal = Values[I].first;
4444     Constant *CaseRes = Values[I].second;
4445     assert(CaseRes->getType() == ValueType);
4446 
4447     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4448     TableContents[Idx] = CaseRes;
4449 
4450     if (CaseRes != SingleValue)
4451       SingleValue = nullptr;
4452   }
4453 
4454   // Fill in any holes in the table with the default result.
4455   if (Values.size() < TableSize) {
4456     assert(DefaultValue &&
4457            "Need a default value to fill the lookup table holes.");
4458     assert(DefaultValue->getType() == ValueType);
4459     for (uint64_t I = 0; I < TableSize; ++I) {
4460       if (!TableContents[I])
4461         TableContents[I] = DefaultValue;
4462     }
4463 
4464     if (DefaultValue != SingleValue)
4465       SingleValue = nullptr;
4466   }
4467 
4468   // If each element in the table contains the same value, we only need to store
4469   // that single value.
4470   if (SingleValue) {
4471     Kind = SingleValueKind;
4472     return;
4473   }
4474 
4475   // Check if we can derive the value with a linear transformation from the
4476   // table index.
4477   if (isa<IntegerType>(ValueType)) {
4478     bool LinearMappingPossible = true;
4479     APInt PrevVal;
4480     APInt DistToPrev;
4481     assert(TableSize >= 2 && "Should be a SingleValue table.");
4482     // Check if there is the same distance between two consecutive values.
4483     for (uint64_t I = 0; I < TableSize; ++I) {
4484       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4485       if (!ConstVal) {
4486         // This is an undef. We could deal with it, but undefs in lookup tables
4487         // are very seldom. It's probably not worth the additional complexity.
4488         LinearMappingPossible = false;
4489         break;
4490       }
4491       APInt Val = ConstVal->getValue();
4492       if (I != 0) {
4493         APInt Dist = Val - PrevVal;
4494         if (I == 1) {
4495           DistToPrev = Dist;
4496         } else if (Dist != DistToPrev) {
4497           LinearMappingPossible = false;
4498           break;
4499         }
4500       }
4501       PrevVal = Val;
4502     }
4503     if (LinearMappingPossible) {
4504       LinearOffset = cast<ConstantInt>(TableContents[0]);
4505       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4506       Kind = LinearMapKind;
4507       ++NumLinearMaps;
4508       return;
4509     }
4510   }
4511 
4512   // If the type is integer and the table fits in a register, build a bitmap.
4513   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4514     IntegerType *IT = cast<IntegerType>(ValueType);
4515     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4516     for (uint64_t I = TableSize; I > 0; --I) {
4517       TableInt <<= IT->getBitWidth();
4518       // Insert values into the bitmap. Undef values are set to zero.
4519       if (!isa<UndefValue>(TableContents[I - 1])) {
4520         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4521         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4522       }
4523     }
4524     BitMap = ConstantInt::get(M.getContext(), TableInt);
4525     BitMapElementTy = IT;
4526     Kind = BitMapKind;
4527     ++NumBitMaps;
4528     return;
4529   }
4530 
4531   // Store the table in an array.
4532   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4533   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4534 
4535   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4536                              GlobalVariable::PrivateLinkage, Initializer,
4537                              "switch.table");
4538   Array->setUnnamedAddr(true);
4539   Kind = ArrayKind;
4540 }
4541 
4542 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4543   switch (Kind) {
4544   case SingleValueKind:
4545     return SingleValue;
4546   case LinearMapKind: {
4547     // Derive the result value from the input value.
4548     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4549                                           false, "switch.idx.cast");
4550     if (!LinearMultiplier->isOne())
4551       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4552     if (!LinearOffset->isZero())
4553       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4554     return Result;
4555   }
4556   case BitMapKind: {
4557     // Type of the bitmap (e.g. i59).
4558     IntegerType *MapTy = BitMap->getType();
4559 
4560     // Cast Index to the same type as the bitmap.
4561     // Note: The Index is <= the number of elements in the table, so
4562     // truncating it to the width of the bitmask is safe.
4563     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4564 
4565     // Multiply the shift amount by the element width.
4566     ShiftAmt = Builder.CreateMul(
4567         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4568         "switch.shiftamt");
4569 
4570     // Shift down.
4571     Value *DownShifted =
4572         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4573     // Mask off.
4574     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4575   }
4576   case ArrayKind: {
4577     // Make sure the table index will not overflow when treated as signed.
4578     IntegerType *IT = cast<IntegerType>(Index->getType());
4579     uint64_t TableSize =
4580         Array->getInitializer()->getType()->getArrayNumElements();
4581     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4582       Index = Builder.CreateZExt(
4583           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4584           "switch.tableidx.zext");
4585 
4586     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4587     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4588                                            GEPIndices, "switch.gep");
4589     return Builder.CreateLoad(GEP, "switch.load");
4590   }
4591   }
4592   llvm_unreachable("Unknown lookup table kind!");
4593 }
4594 
4595 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4596                                            uint64_t TableSize,
4597                                            Type *ElementType) {
4598   auto *IT = dyn_cast<IntegerType>(ElementType);
4599   if (!IT)
4600     return false;
4601   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4602   // are <= 15, we could try to narrow the type.
4603 
4604   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4605   if (TableSize >= UINT_MAX / IT->getBitWidth())
4606     return false;
4607   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4608 }
4609 
4610 /// Determine whether a lookup table should be built for this switch, based on
4611 /// the number of cases, size of the table, and the types of the results.
4612 static bool
4613 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4614                        const TargetTransformInfo &TTI, const DataLayout &DL,
4615                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4616   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4617     return false; // TableSize overflowed, or mul below might overflow.
4618 
4619   bool AllTablesFitInRegister = true;
4620   bool HasIllegalType = false;
4621   for (const auto &I : ResultTypes) {
4622     Type *Ty = I.second;
4623 
4624     // Saturate this flag to true.
4625     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4626 
4627     // Saturate this flag to false.
4628     AllTablesFitInRegister =
4629         AllTablesFitInRegister &&
4630         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4631 
4632     // If both flags saturate, we're done. NOTE: This *only* works with
4633     // saturating flags, and all flags have to saturate first due to the
4634     // non-deterministic behavior of iterating over a dense map.
4635     if (HasIllegalType && !AllTablesFitInRegister)
4636       break;
4637   }
4638 
4639   // If each table would fit in a register, we should build it anyway.
4640   if (AllTablesFitInRegister)
4641     return true;
4642 
4643   // Don't build a table that doesn't fit in-register if it has illegal types.
4644   if (HasIllegalType)
4645     return false;
4646 
4647   // The table density should be at least 40%. This is the same criterion as for
4648   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4649   // FIXME: Find the best cut-off.
4650   return SI->getNumCases() * 10 >= TableSize * 4;
4651 }
4652 
4653 /// Try to reuse the switch table index compare. Following pattern:
4654 /// \code
4655 ///     if (idx < tablesize)
4656 ///        r = table[idx]; // table does not contain default_value
4657 ///     else
4658 ///        r = default_value;
4659 ///     if (r != default_value)
4660 ///        ...
4661 /// \endcode
4662 /// Is optimized to:
4663 /// \code
4664 ///     cond = idx < tablesize;
4665 ///     if (cond)
4666 ///        r = table[idx];
4667 ///     else
4668 ///        r = default_value;
4669 ///     if (cond)
4670 ///        ...
4671 /// \endcode
4672 /// Jump threading will then eliminate the second if(cond).
4673 static void reuseTableCompare(
4674     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
4675     Constant *DefaultValue,
4676     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
4677 
4678   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4679   if (!CmpInst)
4680     return;
4681 
4682   // We require that the compare is in the same block as the phi so that jump
4683   // threading can do its work afterwards.
4684   if (CmpInst->getParent() != PhiBlock)
4685     return;
4686 
4687   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4688   if (!CmpOp1)
4689     return;
4690 
4691   Value *RangeCmp = RangeCheckBranch->getCondition();
4692   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4693   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4694 
4695   // Check if the compare with the default value is constant true or false.
4696   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4697                                                  DefaultValue, CmpOp1, true);
4698   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4699     return;
4700 
4701   // Check if the compare with the case values is distinct from the default
4702   // compare result.
4703   for (auto ValuePair : Values) {
4704     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4705                                                 ValuePair.second, CmpOp1, true);
4706     if (!CaseConst || CaseConst == DefaultConst)
4707       return;
4708     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4709            "Expect true or false as compare result.");
4710   }
4711 
4712   // Check if the branch instruction dominates the phi node. It's a simple
4713   // dominance check, but sufficient for our needs.
4714   // Although this check is invariant in the calling loops, it's better to do it
4715   // at this late stage. Practically we do it at most once for a switch.
4716   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4717   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4718     BasicBlock *Pred = *PI;
4719     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4720       return;
4721   }
4722 
4723   if (DefaultConst == FalseConst) {
4724     // The compare yields the same result. We can replace it.
4725     CmpInst->replaceAllUsesWith(RangeCmp);
4726     ++NumTableCmpReuses;
4727   } else {
4728     // The compare yields the same result, just inverted. We can replace it.
4729     Value *InvertedTableCmp = BinaryOperator::CreateXor(
4730         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4731         RangeCheckBranch);
4732     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4733     ++NumTableCmpReuses;
4734   }
4735 }
4736 
4737 /// If the switch is only used to initialize one or more phi nodes in a common
4738 /// successor block with different constant values, replace the switch with
4739 /// lookup tables.
4740 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4741                                 const DataLayout &DL,
4742                                 const TargetTransformInfo &TTI) {
4743   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4744 
4745   // Only build lookup table when we have a target that supports it.
4746   if (!TTI.shouldBuildLookupTables())
4747     return false;
4748 
4749   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4750   // split off a dense part and build a lookup table for that.
4751 
4752   // FIXME: This creates arrays of GEPs to constant strings, which means each
4753   // GEP needs a runtime relocation in PIC code. We should just build one big
4754   // string and lookup indices into that.
4755 
4756   // Ignore switches with less than three cases. Lookup tables will not make
4757   // them
4758   // faster, so we don't analyze them.
4759   if (SI->getNumCases() < 3)
4760     return false;
4761 
4762   // Figure out the corresponding result for each case value and phi node in the
4763   // common destination, as well as the min and max case values.
4764   assert(SI->case_begin() != SI->case_end());
4765   SwitchInst::CaseIt CI = SI->case_begin();
4766   ConstantInt *MinCaseVal = CI.getCaseValue();
4767   ConstantInt *MaxCaseVal = CI.getCaseValue();
4768 
4769   BasicBlock *CommonDest = nullptr;
4770   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
4771   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
4772   SmallDenseMap<PHINode *, Constant *> DefaultResults;
4773   SmallDenseMap<PHINode *, Type *> ResultTypes;
4774   SmallVector<PHINode *, 4> PHIs;
4775 
4776   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4777     ConstantInt *CaseVal = CI.getCaseValue();
4778     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4779       MinCaseVal = CaseVal;
4780     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4781       MaxCaseVal = CaseVal;
4782 
4783     // Resulting value at phi nodes for this case value.
4784     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
4785     ResultsTy Results;
4786     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4787                         Results, DL))
4788       return false;
4789 
4790     // Append the result from this case to the list for each phi.
4791     for (const auto &I : Results) {
4792       PHINode *PHI = I.first;
4793       Constant *Value = I.second;
4794       if (!ResultLists.count(PHI))
4795         PHIs.push_back(PHI);
4796       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4797     }
4798   }
4799 
4800   // Keep track of the result types.
4801   for (PHINode *PHI : PHIs) {
4802     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4803   }
4804 
4805   uint64_t NumResults = ResultLists[PHIs[0]].size();
4806   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4807   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4808   bool TableHasHoles = (NumResults < TableSize);
4809 
4810   // If the table has holes, we need a constant result for the default case
4811   // or a bitmask that fits in a register.
4812   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
4813   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4814                                           &CommonDest, DefaultResultsList, DL);
4815 
4816   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4817   if (NeedMask) {
4818     // As an extra penalty for the validity test we require more cases.
4819     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4820       return false;
4821     if (!DL.fitsInLegalInteger(TableSize))
4822       return false;
4823   }
4824 
4825   for (const auto &I : DefaultResultsList) {
4826     PHINode *PHI = I.first;
4827     Constant *Result = I.second;
4828     DefaultResults[PHI] = Result;
4829   }
4830 
4831   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4832     return false;
4833 
4834   // Create the BB that does the lookups.
4835   Module &Mod = *CommonDest->getParent()->getParent();
4836   BasicBlock *LookupBB = BasicBlock::Create(
4837       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
4838 
4839   // Compute the table index value.
4840   Builder.SetInsertPoint(SI);
4841   Value *TableIndex =
4842       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
4843 
4844   // Compute the maximum table size representable by the integer type we are
4845   // switching upon.
4846   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
4847   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
4848   assert(MaxTableSize >= TableSize &&
4849          "It is impossible for a switch to have more entries than the max "
4850          "representable value of its input integer type's size.");
4851 
4852   // If the default destination is unreachable, or if the lookup table covers
4853   // all values of the conditional variable, branch directly to the lookup table
4854   // BB. Otherwise, check that the condition is within the case range.
4855   const bool DefaultIsReachable =
4856       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4857   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
4858   BranchInst *RangeCheckBranch = nullptr;
4859 
4860   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4861     Builder.CreateBr(LookupBB);
4862     // Note: We call removeProdecessor later since we need to be able to get the
4863     // PHI value for the default case in case we're using a bit mask.
4864   } else {
4865     Value *Cmp = Builder.CreateICmpULT(
4866         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
4867     RangeCheckBranch =
4868         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
4869   }
4870 
4871   // Populate the BB that does the lookups.
4872   Builder.SetInsertPoint(LookupBB);
4873 
4874   if (NeedMask) {
4875     // Before doing the lookup we do the hole check.
4876     // The LookupBB is therefore re-purposed to do the hole check
4877     // and we create a new LookupBB.
4878     BasicBlock *MaskBB = LookupBB;
4879     MaskBB->setName("switch.hole_check");
4880     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
4881                                   CommonDest->getParent(), CommonDest);
4882 
4883     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
4884     // unnecessary illegal types.
4885     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
4886     APInt MaskInt(TableSizePowOf2, 0);
4887     APInt One(TableSizePowOf2, 1);
4888     // Build bitmask; fill in a 1 bit for every case.
4889     const ResultListTy &ResultList = ResultLists[PHIs[0]];
4890     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
4891       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
4892                          .getLimitedValue();
4893       MaskInt |= One << Idx;
4894     }
4895     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
4896 
4897     // Get the TableIndex'th bit of the bitmask.
4898     // If this bit is 0 (meaning hole) jump to the default destination,
4899     // else continue with table lookup.
4900     IntegerType *MapTy = TableMask->getType();
4901     Value *MaskIndex =
4902         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
4903     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
4904     Value *LoBit = Builder.CreateTrunc(
4905         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
4906     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
4907 
4908     Builder.SetInsertPoint(LookupBB);
4909     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
4910   }
4911 
4912   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
4913     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
4914     // do not delete PHINodes here.
4915     SI->getDefaultDest()->removePredecessor(SI->getParent(),
4916                                             /*DontDeleteUselessPHIs=*/true);
4917   }
4918 
4919   bool ReturnedEarly = false;
4920   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
4921     PHINode *PHI = PHIs[I];
4922     const ResultListTy &ResultList = ResultLists[PHI];
4923 
4924     // If using a bitmask, use any value to fill the lookup table holes.
4925     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
4926     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
4927 
4928     Value *Result = Table.BuildLookup(TableIndex, Builder);
4929 
4930     // If the result is used to return immediately from the function, we want to
4931     // do that right here.
4932     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
4933         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
4934       Builder.CreateRet(Result);
4935       ReturnedEarly = true;
4936       break;
4937     }
4938 
4939     // Do a small peephole optimization: re-use the switch table compare if
4940     // possible.
4941     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
4942       BasicBlock *PhiBlock = PHI->getParent();
4943       // Search for compare instructions which use the phi.
4944       for (auto *User : PHI->users()) {
4945         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
4946       }
4947     }
4948 
4949     PHI->addIncoming(Result, LookupBB);
4950   }
4951 
4952   if (!ReturnedEarly)
4953     Builder.CreateBr(CommonDest);
4954 
4955   // Remove the switch.
4956   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4957     BasicBlock *Succ = SI->getSuccessor(i);
4958 
4959     if (Succ == SI->getDefaultDest())
4960       continue;
4961     Succ->removePredecessor(SI->getParent());
4962   }
4963   SI->eraseFromParent();
4964 
4965   ++NumLookupTables;
4966   if (NeedMask)
4967     ++NumLookupTablesHoles;
4968   return true;
4969 }
4970 
4971 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
4972   BasicBlock *BB = SI->getParent();
4973 
4974   if (isValueEqualityComparison(SI)) {
4975     // If we only have one predecessor, and if it is a branch on this value,
4976     // see if that predecessor totally determines the outcome of this switch.
4977     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4978       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
4979         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4980 
4981     Value *Cond = SI->getCondition();
4982     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
4983       if (SimplifySwitchOnSelect(SI, Select))
4984         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4985 
4986     // If the block only contains the switch, see if we can fold the block
4987     // away into any preds.
4988     BasicBlock::iterator BBI = BB->begin();
4989     // Ignore dbg intrinsics.
4990     while (isa<DbgInfoIntrinsic>(BBI))
4991       ++BBI;
4992     if (SI == &*BBI)
4993       if (FoldValueComparisonIntoPredecessors(SI, Builder))
4994         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
4995   }
4996 
4997   // Try to transform the switch into an icmp and a branch.
4998   if (TurnSwitchRangeIntoICmp(SI, Builder))
4999     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5000 
5001   // Remove unreachable cases.
5002   if (EliminateDeadSwitchCases(SI, AC, DL))
5003     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5004 
5005   if (SwitchToSelect(SI, Builder, AC, DL))
5006     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5007 
5008   if (ForwardSwitchConditionToPHI(SI))
5009     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5010 
5011   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5012     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5013 
5014   return false;
5015 }
5016 
5017 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5018   BasicBlock *BB = IBI->getParent();
5019   bool Changed = false;
5020 
5021   // Eliminate redundant destinations.
5022   SmallPtrSet<Value *, 8> Succs;
5023   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5024     BasicBlock *Dest = IBI->getDestination(i);
5025     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5026       Dest->removePredecessor(BB);
5027       IBI->removeDestination(i);
5028       --i;
5029       --e;
5030       Changed = true;
5031     }
5032   }
5033 
5034   if (IBI->getNumDestinations() == 0) {
5035     // If the indirectbr has no successors, change it to unreachable.
5036     new UnreachableInst(IBI->getContext(), IBI);
5037     EraseTerminatorInstAndDCECond(IBI);
5038     return true;
5039   }
5040 
5041   if (IBI->getNumDestinations() == 1) {
5042     // If the indirectbr has one successor, change it to a direct branch.
5043     BranchInst::Create(IBI->getDestination(0), IBI);
5044     EraseTerminatorInstAndDCECond(IBI);
5045     return true;
5046   }
5047 
5048   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5049     if (SimplifyIndirectBrOnSelect(IBI, SI))
5050       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5051   }
5052   return Changed;
5053 }
5054 
5055 /// Given an block with only a single landing pad and a unconditional branch
5056 /// try to find another basic block which this one can be merged with.  This
5057 /// handles cases where we have multiple invokes with unique landing pads, but
5058 /// a shared handler.
5059 ///
5060 /// We specifically choose to not worry about merging non-empty blocks
5061 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5062 /// practice, the optimizer produces empty landing pad blocks quite frequently
5063 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5064 /// sinking in this file)
5065 ///
5066 /// This is primarily a code size optimization.  We need to avoid performing
5067 /// any transform which might inhibit optimization (such as our ability to
5068 /// specialize a particular handler via tail commoning).  We do this by not
5069 /// merging any blocks which require us to introduce a phi.  Since the same
5070 /// values are flowing through both blocks, we don't loose any ability to
5071 /// specialize.  If anything, we make such specialization more likely.
5072 ///
5073 /// TODO - This transformation could remove entries from a phi in the target
5074 /// block when the inputs in the phi are the same for the two blocks being
5075 /// merged.  In some cases, this could result in removal of the PHI entirely.
5076 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5077                                  BasicBlock *BB) {
5078   auto Succ = BB->getUniqueSuccessor();
5079   assert(Succ);
5080   // If there's a phi in the successor block, we'd likely have to introduce
5081   // a phi into the merged landing pad block.
5082   if (isa<PHINode>(*Succ->begin()))
5083     return false;
5084 
5085   for (BasicBlock *OtherPred : predecessors(Succ)) {
5086     if (BB == OtherPred)
5087       continue;
5088     BasicBlock::iterator I = OtherPred->begin();
5089     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5090     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5091       continue;
5092     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5093     }
5094     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5095     if (!BI2 || !BI2->isIdenticalTo(BI))
5096       continue;
5097 
5098     // We've found an identical block.  Update our predecessors to take that
5099     // path instead and make ourselves dead.
5100     SmallSet<BasicBlock *, 16> Preds;
5101     Preds.insert(pred_begin(BB), pred_end(BB));
5102     for (BasicBlock *Pred : Preds) {
5103       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5104       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5105              "unexpected successor");
5106       II->setUnwindDest(OtherPred);
5107     }
5108 
5109     // The debug info in OtherPred doesn't cover the merged control flow that
5110     // used to go through BB.  We need to delete it or update it.
5111     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5112       Instruction &Inst = *I;
5113       I++;
5114       if (isa<DbgInfoIntrinsic>(Inst))
5115         Inst.eraseFromParent();
5116     }
5117 
5118     SmallSet<BasicBlock *, 16> Succs;
5119     Succs.insert(succ_begin(BB), succ_end(BB));
5120     for (BasicBlock *Succ : Succs) {
5121       Succ->removePredecessor(BB);
5122     }
5123 
5124     IRBuilder<> Builder(BI);
5125     Builder.CreateUnreachable();
5126     BI->eraseFromParent();
5127     return true;
5128   }
5129   return false;
5130 }
5131 
5132 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5133                                           IRBuilder<> &Builder) {
5134   BasicBlock *BB = BI->getParent();
5135 
5136   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5137     return true;
5138 
5139   // If the Terminator is the only non-phi instruction, simplify the block.
5140   // if LoopHeader is provided, check if the block is a loop header
5141   // (This is for early invocations before loop simplify and vectorization
5142   // to keep canonical loop forms for nested loops.
5143   // These blocks can be eliminated when the pass is invoked later
5144   // in the back-end.)
5145   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5146   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5147       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5148       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5149     return true;
5150 
5151   // If the only instruction in the block is a seteq/setne comparison
5152   // against a constant, try to simplify the block.
5153   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5154     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5155       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5156         ;
5157       if (I->isTerminator() &&
5158           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5159                                                 BonusInstThreshold, AC))
5160         return true;
5161     }
5162 
5163   // See if we can merge an empty landing pad block with another which is
5164   // equivalent.
5165   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5166     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5167     }
5168     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5169       return true;
5170   }
5171 
5172   // If this basic block is ONLY a compare and a branch, and if a predecessor
5173   // branches to us and our successor, fold the comparison into the
5174   // predecessor and use logical operations to update the incoming value
5175   // for PHI nodes in common successor.
5176   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5177     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5178   return false;
5179 }
5180 
5181 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5182   BasicBlock *PredPred = nullptr;
5183   for (auto *P : predecessors(BB)) {
5184     BasicBlock *PPred = P->getSinglePredecessor();
5185     if (!PPred || (PredPred && PredPred != PPred))
5186       return nullptr;
5187     PredPred = PPred;
5188   }
5189   return PredPred;
5190 }
5191 
5192 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5193   BasicBlock *BB = BI->getParent();
5194 
5195   // Conditional branch
5196   if (isValueEqualityComparison(BI)) {
5197     // If we only have one predecessor, and if it is a branch on this value,
5198     // see if that predecessor totally determines the outcome of this
5199     // switch.
5200     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5201       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5202         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5203 
5204     // This block must be empty, except for the setcond inst, if it exists.
5205     // Ignore dbg intrinsics.
5206     BasicBlock::iterator I = BB->begin();
5207     // Ignore dbg intrinsics.
5208     while (isa<DbgInfoIntrinsic>(I))
5209       ++I;
5210     if (&*I == BI) {
5211       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5212         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5213     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5214       ++I;
5215       // Ignore dbg intrinsics.
5216       while (isa<DbgInfoIntrinsic>(I))
5217         ++I;
5218       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5219         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5220     }
5221   }
5222 
5223   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5224   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5225     return true;
5226 
5227   // If this basic block has a single dominating predecessor block and the
5228   // dominating block's condition implies BI's condition, we know the direction
5229   // of the BI branch.
5230   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5231     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5232     if (PBI && PBI->isConditional() &&
5233         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5234         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5235       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5236       Optional<bool> Implication = isImpliedCondition(
5237           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5238       if (Implication) {
5239         // Turn this into a branch on constant.
5240         auto *OldCond = BI->getCondition();
5241         ConstantInt *CI = *Implication
5242                               ? ConstantInt::getTrue(BB->getContext())
5243                               : ConstantInt::getFalse(BB->getContext());
5244         BI->setCondition(CI);
5245         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5246         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5247       }
5248     }
5249   }
5250 
5251   // If this basic block is ONLY a compare and a branch, and if a predecessor
5252   // branches to us and one of our successors, fold the comparison into the
5253   // predecessor and use logical operations to pick the right destination.
5254   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5255     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5256 
5257   // We have a conditional branch to two blocks that are only reachable
5258   // from BI.  We know that the condbr dominates the two blocks, so see if
5259   // there is any identical code in the "then" and "else" blocks.  If so, we
5260   // can hoist it up to the branching block.
5261   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5262     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5263       if (HoistThenElseCodeToIf(BI, TTI))
5264         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5265     } else {
5266       // If Successor #1 has multiple preds, we may be able to conditionally
5267       // execute Successor #0 if it branches to Successor #1.
5268       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5269       if (Succ0TI->getNumSuccessors() == 1 &&
5270           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5271         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5272           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5273     }
5274   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5275     // If Successor #0 has multiple preds, we may be able to conditionally
5276     // execute Successor #1 if it branches to Successor #0.
5277     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5278     if (Succ1TI->getNumSuccessors() == 1 &&
5279         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5280       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5281         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5282   }
5283 
5284   // If this is a branch on a phi node in the current block, thread control
5285   // through this block if any PHI node entries are constants.
5286   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5287     if (PN->getParent() == BI->getParent())
5288       if (FoldCondBranchOnPHI(BI, DL))
5289         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5290 
5291   // Scan predecessor blocks for conditional branches.
5292   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5293     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5294       if (PBI != BI && PBI->isConditional())
5295         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5296           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5297 
5298   // Look for diamond patterns.
5299   if (MergeCondStores)
5300     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5301       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5302         if (PBI != BI && PBI->isConditional())
5303           if (mergeConditionalStores(PBI, BI))
5304             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5305 
5306   return false;
5307 }
5308 
5309 /// Check if passing a value to an instruction will cause undefined behavior.
5310 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5311   Constant *C = dyn_cast<Constant>(V);
5312   if (!C)
5313     return false;
5314 
5315   if (I->use_empty())
5316     return false;
5317 
5318   if (C->isNullValue()) {
5319     // Only look at the first use, avoid hurting compile time with long uselists
5320     User *Use = *I->user_begin();
5321 
5322     // Now make sure that there are no instructions in between that can alter
5323     // control flow (eg. calls)
5324     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
5325       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5326         return false;
5327 
5328     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5329     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5330       if (GEP->getPointerOperand() == I)
5331         return passingValueIsAlwaysUndefined(V, GEP);
5332 
5333     // Look through bitcasts.
5334     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5335       return passingValueIsAlwaysUndefined(V, BC);
5336 
5337     // Load from null is undefined.
5338     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5339       if (!LI->isVolatile())
5340         return LI->getPointerAddressSpace() == 0;
5341 
5342     // Store to null is undefined.
5343     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5344       if (!SI->isVolatile())
5345         return SI->getPointerAddressSpace() == 0 &&
5346                SI->getPointerOperand() == I;
5347   }
5348   return false;
5349 }
5350 
5351 /// If BB has an incoming value that will always trigger undefined behavior
5352 /// (eg. null pointer dereference), remove the branch leading here.
5353 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5354   for (BasicBlock::iterator i = BB->begin();
5355        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5356     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5357       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5358         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5359         IRBuilder<> Builder(T);
5360         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5361           BB->removePredecessor(PHI->getIncomingBlock(i));
5362           // Turn uncoditional branches into unreachables and remove the dead
5363           // destination from conditional branches.
5364           if (BI->isUnconditional())
5365             Builder.CreateUnreachable();
5366           else
5367             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5368                                                        : BI->getSuccessor(0));
5369           BI->eraseFromParent();
5370           return true;
5371         }
5372         // TODO: SwitchInst.
5373       }
5374 
5375   return false;
5376 }
5377 
5378 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5379   bool Changed = false;
5380 
5381   assert(BB && BB->getParent() && "Block not embedded in function!");
5382   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5383 
5384   // Remove basic blocks that have no predecessors (except the entry block)...
5385   // or that just have themself as a predecessor.  These are unreachable.
5386   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5387       BB->getSinglePredecessor() == BB) {
5388     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5389     DeleteDeadBlock(BB);
5390     return true;
5391   }
5392 
5393   // Check to see if we can constant propagate this terminator instruction
5394   // away...
5395   Changed |= ConstantFoldTerminator(BB, true);
5396 
5397   // Check for and eliminate duplicate PHI nodes in this block.
5398   Changed |= EliminateDuplicatePHINodes(BB);
5399 
5400   // Check for and remove branches that will always cause undefined behavior.
5401   Changed |= removeUndefIntroducingPredecessor(BB);
5402 
5403   // Merge basic blocks into their predecessor if there is only one distinct
5404   // pred, and if there is only one distinct successor of the predecessor, and
5405   // if there are no PHI nodes.
5406   //
5407   if (MergeBlockIntoPredecessor(BB))
5408     return true;
5409 
5410   IRBuilder<> Builder(BB);
5411 
5412   // If there is a trivial two-entry PHI node in this basic block, and we can
5413   // eliminate it, do so now.
5414   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5415     if (PN->getNumIncomingValues() == 2)
5416       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5417 
5418   Builder.SetInsertPoint(BB->getTerminator());
5419   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5420     if (BI->isUnconditional()) {
5421       if (SimplifyUncondBranch(BI, Builder))
5422         return true;
5423     } else {
5424       if (SimplifyCondBranch(BI, Builder))
5425         return true;
5426     }
5427   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5428     if (SimplifyReturn(RI, Builder))
5429       return true;
5430   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5431     if (SimplifyResume(RI, Builder))
5432       return true;
5433   } else if (CleanupReturnInst *RI =
5434                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5435     if (SimplifyCleanupReturn(RI))
5436       return true;
5437   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5438     if (SimplifySwitch(SI, Builder))
5439       return true;
5440   } else if (UnreachableInst *UI =
5441                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5442     if (SimplifyUnreachable(UI))
5443       return true;
5444   } else if (IndirectBrInst *IBI =
5445                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5446     if (SimplifyIndirectBr(IBI))
5447       return true;
5448   }
5449 
5450   return Changed;
5451 }
5452 
5453 /// This function is used to do simplification of a CFG.
5454 /// For example, it adjusts branches to branches to eliminate the extra hop,
5455 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5456 /// of the CFG.  It returns true if a modification was made.
5457 ///
5458 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5459                        unsigned BonusInstThreshold, AssumptionCache *AC,
5460                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5461   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5462                         BonusInstThreshold, AC, LoopHeaders)
5463       .run(BB);
5464 }
5465