1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 178 if (SI1 == SI2) 179 return false; // Can't merge with self! 180 181 // It is not safe to merge these two switch instructions if they have a common 182 // successor, and if that successor has a PHI node, and if *that* PHI node has 183 // conflicting incoming values from the two switch blocks. 184 BasicBlock *SI1BB = SI1->getParent(); 185 BasicBlock *SI2BB = SI2->getParent(); 186 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 187 188 for (BasicBlock *Succ : successors(SI2BB)) 189 if (SI1Succs.count(Succ)) 190 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 191 PHINode *PN = cast<PHINode>(BBI); 192 if (PN->getIncomingValueForBlock(SI1BB) != 193 PN->getIncomingValueForBlock(SI2BB)) 194 return false; 195 } 196 197 return true; 198 } 199 200 /// Return true if it is safe and profitable to merge these two terminator 201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 202 /// store all PHI nodes in common successors. 203 static bool 204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 205 Instruction *Cond, 206 SmallVectorImpl<PHINode *> &PhiNodes) { 207 if (SI1 == SI2) 208 return false; // Can't merge with self! 209 assert(SI1->isUnconditional() && SI2->isConditional()); 210 211 // We fold the unconditional branch if we can easily update all PHI nodes in 212 // common successors: 213 // 1> We have a constant incoming value for the conditional branch; 214 // 2> We have "Cond" as the incoming value for the unconditional branch; 215 // 3> SI2->getCondition() and Cond have same operands. 216 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 217 if (!Ci2) 218 return false; 219 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 220 Cond->getOperand(1) == Ci2->getOperand(1)) && 221 !(Cond->getOperand(0) == Ci2->getOperand(1) && 222 Cond->getOperand(1) == Ci2->getOperand(0))) 223 return false; 224 225 BasicBlock *SI1BB = SI1->getParent(); 226 BasicBlock *SI2BB = SI2->getParent(); 227 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 228 for (BasicBlock *Succ : successors(SI2BB)) 229 if (SI1Succs.count(Succ)) 230 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 231 PHINode *PN = cast<PHINode>(BBI); 232 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 233 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 234 return false; 235 PhiNodes.push_back(PN); 236 } 237 return true; 238 } 239 240 /// Update PHI nodes in Succ to indicate that there will now be entries in it 241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 242 /// will be the same as those coming in from ExistPred, an existing predecessor 243 /// of Succ. 244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 245 BasicBlock *ExistPred) { 246 if (!isa<PHINode>(Succ->begin())) 247 return; // Quick exit if nothing to do 248 249 PHINode *PN; 250 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 251 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 252 } 253 254 /// Compute an abstract "cost" of speculating the given instruction, 255 /// which is assumed to be safe to speculate. TCC_Free means cheap, 256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 257 /// expensive. 258 static unsigned ComputeSpeculationCost(const User *I, 259 const TargetTransformInfo &TTI) { 260 assert(isSafeToSpeculativelyExecute(I) && 261 "Instruction is not safe to speculatively execute!"); 262 return TTI.getUserCost(I); 263 } 264 265 /// If we have a merge point of an "if condition" as accepted above, 266 /// return true if the specified value dominates the block. We 267 /// don't handle the true generality of domination here, just a special case 268 /// which works well enough for us. 269 /// 270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 271 /// see if V (which must be an instruction) and its recursive operands 272 /// that do not dominate BB have a combined cost lower than CostRemaining and 273 /// are non-trapping. If both are true, the instruction is inserted into the 274 /// set and true is returned. 275 /// 276 /// The cost for most non-trapping instructions is defined as 1 except for 277 /// Select whose cost is 2. 278 /// 279 /// After this function returns, CostRemaining is decreased by the cost of 280 /// V plus its non-dominating operands. If that cost is greater than 281 /// CostRemaining, false is returned and CostRemaining is undefined. 282 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 283 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 284 unsigned &CostRemaining, 285 const TargetTransformInfo &TTI, 286 unsigned Depth = 0) { 287 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 288 // so limit the recursion depth. 289 // TODO: While this recursion limit does prevent pathological behavior, it 290 // would be better to track visited instructions to avoid cycles. 291 if (Depth == MaxSpeculationDepth) 292 return false; 293 294 Instruction *I = dyn_cast<Instruction>(V); 295 if (!I) { 296 // Non-instructions all dominate instructions, but not all constantexprs 297 // can be executed unconditionally. 298 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 299 if (C->canTrap()) 300 return false; 301 return true; 302 } 303 BasicBlock *PBB = I->getParent(); 304 305 // We don't want to allow weird loops that might have the "if condition" in 306 // the bottom of this block. 307 if (PBB == BB) 308 return false; 309 310 // If this instruction is defined in a block that contains an unconditional 311 // branch to BB, then it must be in the 'conditional' part of the "if 312 // statement". If not, it definitely dominates the region. 313 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 314 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 315 return true; 316 317 // If we aren't allowing aggressive promotion anymore, then don't consider 318 // instructions in the 'if region'. 319 if (!AggressiveInsts) 320 return false; 321 322 // If we have seen this instruction before, don't count it again. 323 if (AggressiveInsts->count(I)) 324 return true; 325 326 // Okay, it looks like the instruction IS in the "condition". Check to 327 // see if it's a cheap instruction to unconditionally compute, and if it 328 // only uses stuff defined outside of the condition. If so, hoist it out. 329 if (!isSafeToSpeculativelyExecute(I)) 330 return false; 331 332 unsigned Cost = ComputeSpeculationCost(I, TTI); 333 334 // Allow exactly one instruction to be speculated regardless of its cost 335 // (as long as it is safe to do so). 336 // This is intended to flatten the CFG even if the instruction is a division 337 // or other expensive operation. The speculation of an expensive instruction 338 // is expected to be undone in CodeGenPrepare if the speculation has not 339 // enabled further IR optimizations. 340 if (Cost > CostRemaining && 341 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 342 return false; 343 344 // Avoid unsigned wrap. 345 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 346 347 // Okay, we can only really hoist these out if their operands do 348 // not take us over the cost threshold. 349 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 350 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 351 Depth + 1)) 352 return false; 353 // Okay, it's safe to do this! Remember this instruction. 354 AggressiveInsts->insert(I); 355 return true; 356 } 357 358 /// Extract ConstantInt from value, looking through IntToPtr 359 /// and PointerNullValue. Return NULL if value is not a constant int. 360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 361 // Normal constant int. 362 ConstantInt *CI = dyn_cast<ConstantInt>(V); 363 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 364 return CI; 365 366 // This is some kind of pointer constant. Turn it into a pointer-sized 367 // ConstantInt if possible. 368 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 369 370 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 371 if (isa<ConstantPointerNull>(V)) 372 return ConstantInt::get(PtrTy, 0); 373 374 // IntToPtr const int. 375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 376 if (CE->getOpcode() == Instruction::IntToPtr) 377 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 378 // The constant is very likely to have the right type already. 379 if (CI->getType() == PtrTy) 380 return CI; 381 else 382 return cast<ConstantInt>( 383 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 384 } 385 return nullptr; 386 } 387 388 namespace { 389 390 /// Given a chain of or (||) or and (&&) comparison of a value against a 391 /// constant, this will try to recover the information required for a switch 392 /// structure. 393 /// It will depth-first traverse the chain of comparison, seeking for patterns 394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 395 /// representing the different cases for the switch. 396 /// Note that if the chain is composed of '||' it will build the set of elements 397 /// that matches the comparisons (i.e. any of this value validate the chain) 398 /// while for a chain of '&&' it will build the set elements that make the test 399 /// fail. 400 struct ConstantComparesGatherer { 401 const DataLayout &DL; 402 Value *CompValue; /// Value found for the switch comparison 403 Value *Extra; /// Extra clause to be checked before the switch 404 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 405 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 406 407 /// Construct and compute the result for the comparison instruction Cond 408 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 409 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 410 gather(Cond); 411 } 412 413 /// Prevent copy 414 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 415 ConstantComparesGatherer & 416 operator=(const ConstantComparesGatherer &) = delete; 417 418 private: 419 /// Try to set the current value used for the comparison, it succeeds only if 420 /// it wasn't set before or if the new value is the same as the old one 421 bool setValueOnce(Value *NewVal) { 422 if (CompValue && CompValue != NewVal) 423 return false; 424 CompValue = NewVal; 425 return (CompValue != nullptr); 426 } 427 428 /// Try to match Instruction "I" as a comparison against a constant and 429 /// populates the array Vals with the set of values that match (or do not 430 /// match depending on isEQ). 431 /// Return false on failure. On success, the Value the comparison matched 432 /// against is placed in CompValue. 433 /// If CompValue is already set, the function is expected to fail if a match 434 /// is found but the value compared to is different. 435 bool matchInstruction(Instruction *I, bool isEQ) { 436 // If this is an icmp against a constant, handle this as one of the cases. 437 ICmpInst *ICI; 438 ConstantInt *C; 439 if (!((ICI = dyn_cast<ICmpInst>(I)) && 440 (C = GetConstantInt(I->getOperand(1), DL)))) { 441 return false; 442 } 443 444 Value *RHSVal; 445 ConstantInt *RHSC; 446 447 // Pattern match a special case 448 // (x & ~2^z) == y --> x == y || x == y|2^z 449 // This undoes a transformation done by instcombine to fuse 2 compares. 450 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 451 if (match(ICI->getOperand(0), 452 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 453 APInt Not = ~RHSC->getValue(); 454 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 455 Not != C->getValue()) { 456 // If we already have a value for the switch, it has to match! 457 if (!setValueOnce(RHSVal)) 458 return false; 459 460 Vals.push_back(C); 461 Vals.push_back( 462 ConstantInt::get(C->getContext(), C->getValue() | Not)); 463 UsedICmps++; 464 return true; 465 } 466 } 467 468 // If we already have a value for the switch, it has to match! 469 if (!setValueOnce(ICI->getOperand(0))) 470 return false; 471 472 UsedICmps++; 473 Vals.push_back(C); 474 return ICI->getOperand(0); 475 } 476 477 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 478 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 479 ICI->getPredicate(), C->getValue()); 480 481 // Shift the range if the compare is fed by an add. This is the range 482 // compare idiom as emitted by instcombine. 483 Value *CandidateVal = I->getOperand(0); 484 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 485 Span = Span.subtract(RHSC->getValue()); 486 CandidateVal = RHSVal; 487 } 488 489 // If this is an and/!= check, then we are looking to build the set of 490 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 491 // x != 0 && x != 1. 492 if (!isEQ) 493 Span = Span.inverse(); 494 495 // If there are a ton of values, we don't want to make a ginormous switch. 496 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 497 return false; 498 } 499 500 // If we already have a value for the switch, it has to match! 501 if (!setValueOnce(CandidateVal)) 502 return false; 503 504 // Add all values from the range to the set 505 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 506 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 507 508 UsedICmps++; 509 return true; 510 } 511 512 /// Given a potentially 'or'd or 'and'd together collection of icmp 513 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 514 /// the value being compared, and stick the list constants into the Vals 515 /// vector. 516 /// One "Extra" case is allowed to differ from the other. 517 void gather(Value *V) { 518 Instruction *I = dyn_cast<Instruction>(V); 519 bool isEQ = (I->getOpcode() == Instruction::Or); 520 521 // Keep a stack (SmallVector for efficiency) for depth-first traversal 522 SmallVector<Value *, 8> DFT; 523 SmallPtrSet<Value *, 8> Visited; 524 525 // Initialize 526 Visited.insert(V); 527 DFT.push_back(V); 528 529 while (!DFT.empty()) { 530 V = DFT.pop_back_val(); 531 532 if (Instruction *I = dyn_cast<Instruction>(V)) { 533 // If it is a || (or && depending on isEQ), process the operands. 534 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 535 if (Visited.insert(I->getOperand(1)).second) 536 DFT.push_back(I->getOperand(1)); 537 if (Visited.insert(I->getOperand(0)).second) 538 DFT.push_back(I->getOperand(0)); 539 continue; 540 } 541 542 // Try to match the current instruction 543 if (matchInstruction(I, isEQ)) 544 // Match succeed, continue the loop 545 continue; 546 } 547 548 // One element of the sequence of || (or &&) could not be match as a 549 // comparison against the same value as the others. 550 // We allow only one "Extra" case to be checked before the switch 551 if (!Extra) { 552 Extra = V; 553 continue; 554 } 555 // Failed to parse a proper sequence, abort now 556 CompValue = nullptr; 557 break; 558 } 559 } 560 }; 561 } 562 563 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 564 Instruction *Cond = nullptr; 565 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 566 Cond = dyn_cast<Instruction>(SI->getCondition()); 567 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 568 if (BI->isConditional()) 569 Cond = dyn_cast<Instruction>(BI->getCondition()); 570 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 571 Cond = dyn_cast<Instruction>(IBI->getAddress()); 572 } 573 574 TI->eraseFromParent(); 575 if (Cond) 576 RecursivelyDeleteTriviallyDeadInstructions(Cond); 577 } 578 579 /// Return true if the specified terminator checks 580 /// to see if a value is equal to constant integer value. 581 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 582 Value *CV = nullptr; 583 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 584 // Do not permit merging of large switch instructions into their 585 // predecessors unless there is only one predecessor. 586 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 587 pred_end(SI->getParent())) <= 588 128) 589 CV = SI->getCondition(); 590 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 591 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 592 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 593 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 594 CV = ICI->getOperand(0); 595 } 596 597 // Unwrap any lossless ptrtoint cast. 598 if (CV) { 599 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 600 Value *Ptr = PTII->getPointerOperand(); 601 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 602 CV = Ptr; 603 } 604 } 605 return CV; 606 } 607 608 /// Given a value comparison instruction, 609 /// decode all of the 'cases' that it represents and return the 'default' block. 610 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 611 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 612 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 613 Cases.reserve(SI->getNumCases()); 614 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 615 ++i) 616 Cases.push_back( 617 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 618 return SI->getDefaultDest(); 619 } 620 621 BranchInst *BI = cast<BranchInst>(TI); 622 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 623 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 624 Cases.push_back(ValueEqualityComparisonCase( 625 GetConstantInt(ICI->getOperand(1), DL), Succ)); 626 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 627 } 628 629 /// Given a vector of bb/value pairs, remove any entries 630 /// in the list that match the specified block. 631 static void 632 EliminateBlockCases(BasicBlock *BB, 633 std::vector<ValueEqualityComparisonCase> &Cases) { 634 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 635 } 636 637 /// Return true if there are any keys in C1 that exist in C2 as well. 638 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 639 std::vector<ValueEqualityComparisonCase> &C2) { 640 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 641 642 // Make V1 be smaller than V2. 643 if (V1->size() > V2->size()) 644 std::swap(V1, V2); 645 646 if (V1->size() == 0) 647 return false; 648 if (V1->size() == 1) { 649 // Just scan V2. 650 ConstantInt *TheVal = (*V1)[0].Value; 651 for (unsigned i = 0, e = V2->size(); i != e; ++i) 652 if (TheVal == (*V2)[i].Value) 653 return true; 654 } 655 656 // Otherwise, just sort both lists and compare element by element. 657 array_pod_sort(V1->begin(), V1->end()); 658 array_pod_sort(V2->begin(), V2->end()); 659 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 660 while (i1 != e1 && i2 != e2) { 661 if ((*V1)[i1].Value == (*V2)[i2].Value) 662 return true; 663 if ((*V1)[i1].Value < (*V2)[i2].Value) 664 ++i1; 665 else 666 ++i2; 667 } 668 return false; 669 } 670 671 /// If TI is known to be a terminator instruction and its block is known to 672 /// only have a single predecessor block, check to see if that predecessor is 673 /// also a value comparison with the same value, and if that comparison 674 /// determines the outcome of this comparison. If so, simplify TI. This does a 675 /// very limited form of jump threading. 676 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 677 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 678 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 679 if (!PredVal) 680 return false; // Not a value comparison in predecessor. 681 682 Value *ThisVal = isValueEqualityComparison(TI); 683 assert(ThisVal && "This isn't a value comparison!!"); 684 if (ThisVal != PredVal) 685 return false; // Different predicates. 686 687 // TODO: Preserve branch weight metadata, similarly to how 688 // FoldValueComparisonIntoPredecessors preserves it. 689 690 // Find out information about when control will move from Pred to TI's block. 691 std::vector<ValueEqualityComparisonCase> PredCases; 692 BasicBlock *PredDef = 693 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 694 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 695 696 // Find information about how control leaves this block. 697 std::vector<ValueEqualityComparisonCase> ThisCases; 698 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 699 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 700 701 // If TI's block is the default block from Pred's comparison, potentially 702 // simplify TI based on this knowledge. 703 if (PredDef == TI->getParent()) { 704 // If we are here, we know that the value is none of those cases listed in 705 // PredCases. If there are any cases in ThisCases that are in PredCases, we 706 // can simplify TI. 707 if (!ValuesOverlap(PredCases, ThisCases)) 708 return false; 709 710 if (isa<BranchInst>(TI)) { 711 // Okay, one of the successors of this condbr is dead. Convert it to a 712 // uncond br. 713 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 714 // Insert the new branch. 715 Instruction *NI = Builder.CreateBr(ThisDef); 716 (void)NI; 717 718 // Remove PHI node entries for the dead edge. 719 ThisCases[0].Dest->removePredecessor(TI->getParent()); 720 721 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 722 << "Through successor TI: " << *TI << "Leaving: " << *NI 723 << "\n"); 724 725 EraseTerminatorInstAndDCECond(TI); 726 return true; 727 } 728 729 SwitchInst *SI = cast<SwitchInst>(TI); 730 // Okay, TI has cases that are statically dead, prune them away. 731 SmallPtrSet<Constant *, 16> DeadCases; 732 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 733 DeadCases.insert(PredCases[i].Value); 734 735 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 736 << "Through successor TI: " << *TI); 737 738 // Collect branch weights into a vector. 739 SmallVector<uint32_t, 8> Weights; 740 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 741 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 742 if (HasWeight) 743 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 744 ++MD_i) { 745 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 746 Weights.push_back(CI->getValue().getZExtValue()); 747 } 748 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 749 --i; 750 if (DeadCases.count(i.getCaseValue())) { 751 if (HasWeight) { 752 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 753 Weights.pop_back(); 754 } 755 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 756 SI->removeCase(i); 757 } 758 } 759 if (HasWeight && Weights.size() >= 2) 760 SI->setMetadata(LLVMContext::MD_prof, 761 MDBuilder(SI->getParent()->getContext()) 762 .createBranchWeights(Weights)); 763 764 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 765 return true; 766 } 767 768 // Otherwise, TI's block must correspond to some matched value. Find out 769 // which value (or set of values) this is. 770 ConstantInt *TIV = nullptr; 771 BasicBlock *TIBB = TI->getParent(); 772 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 773 if (PredCases[i].Dest == TIBB) { 774 if (TIV) 775 return false; // Cannot handle multiple values coming to this block. 776 TIV = PredCases[i].Value; 777 } 778 assert(TIV && "No edge from pred to succ?"); 779 780 // Okay, we found the one constant that our value can be if we get into TI's 781 // BB. Find out which successor will unconditionally be branched to. 782 BasicBlock *TheRealDest = nullptr; 783 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 784 if (ThisCases[i].Value == TIV) { 785 TheRealDest = ThisCases[i].Dest; 786 break; 787 } 788 789 // If not handled by any explicit cases, it is handled by the default case. 790 if (!TheRealDest) 791 TheRealDest = ThisDef; 792 793 // Remove PHI node entries for dead edges. 794 BasicBlock *CheckEdge = TheRealDest; 795 for (BasicBlock *Succ : successors(TIBB)) 796 if (Succ != CheckEdge) 797 Succ->removePredecessor(TIBB); 798 else 799 CheckEdge = nullptr; 800 801 // Insert the new branch. 802 Instruction *NI = Builder.CreateBr(TheRealDest); 803 (void)NI; 804 805 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 806 << "Through successor TI: " << *TI << "Leaving: " << *NI 807 << "\n"); 808 809 EraseTerminatorInstAndDCECond(TI); 810 return true; 811 } 812 813 namespace { 814 /// This class implements a stable ordering of constant 815 /// integers that does not depend on their address. This is important for 816 /// applications that sort ConstantInt's to ensure uniqueness. 817 struct ConstantIntOrdering { 818 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 819 return LHS->getValue().ult(RHS->getValue()); 820 } 821 }; 822 } 823 824 static int ConstantIntSortPredicate(ConstantInt *const *P1, 825 ConstantInt *const *P2) { 826 const ConstantInt *LHS = *P1; 827 const ConstantInt *RHS = *P2; 828 if (LHS == RHS) 829 return 0; 830 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 831 } 832 833 static inline bool HasBranchWeights(const Instruction *I) { 834 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 835 if (ProfMD && ProfMD->getOperand(0)) 836 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 837 return MDS->getString().equals("branch_weights"); 838 839 return false; 840 } 841 842 /// Get Weights of a given TerminatorInst, the default weight is at the front 843 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 844 /// metadata. 845 static void GetBranchWeights(TerminatorInst *TI, 846 SmallVectorImpl<uint64_t> &Weights) { 847 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 848 assert(MD); 849 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 850 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 851 Weights.push_back(CI->getValue().getZExtValue()); 852 } 853 854 // If TI is a conditional eq, the default case is the false case, 855 // and the corresponding branch-weight data is at index 2. We swap the 856 // default weight to be the first entry. 857 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 858 assert(Weights.size() == 2); 859 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 860 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 861 std::swap(Weights.front(), Weights.back()); 862 } 863 } 864 865 /// Keep halving the weights until all can fit in uint32_t. 866 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 867 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 868 if (Max > UINT_MAX) { 869 unsigned Offset = 32 - countLeadingZeros(Max); 870 for (uint64_t &I : Weights) 871 I >>= Offset; 872 } 873 } 874 875 /// The specified terminator is a value equality comparison instruction 876 /// (either a switch or a branch on "X == c"). 877 /// See if any of the predecessors of the terminator block are value comparisons 878 /// on the same value. If so, and if safe to do so, fold them together. 879 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 880 IRBuilder<> &Builder) { 881 BasicBlock *BB = TI->getParent(); 882 Value *CV = isValueEqualityComparison(TI); // CondVal 883 assert(CV && "Not a comparison?"); 884 bool Changed = false; 885 886 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 887 while (!Preds.empty()) { 888 BasicBlock *Pred = Preds.pop_back_val(); 889 890 // See if the predecessor is a comparison with the same value. 891 TerminatorInst *PTI = Pred->getTerminator(); 892 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 893 894 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 895 // Figure out which 'cases' to copy from SI to PSI. 896 std::vector<ValueEqualityComparisonCase> BBCases; 897 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 898 899 std::vector<ValueEqualityComparisonCase> PredCases; 900 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 901 902 // Based on whether the default edge from PTI goes to BB or not, fill in 903 // PredCases and PredDefault with the new switch cases we would like to 904 // build. 905 SmallVector<BasicBlock *, 8> NewSuccessors; 906 907 // Update the branch weight metadata along the way 908 SmallVector<uint64_t, 8> Weights; 909 bool PredHasWeights = HasBranchWeights(PTI); 910 bool SuccHasWeights = HasBranchWeights(TI); 911 912 if (PredHasWeights) { 913 GetBranchWeights(PTI, Weights); 914 // branch-weight metadata is inconsistent here. 915 if (Weights.size() != 1 + PredCases.size()) 916 PredHasWeights = SuccHasWeights = false; 917 } else if (SuccHasWeights) 918 // If there are no predecessor weights but there are successor weights, 919 // populate Weights with 1, which will later be scaled to the sum of 920 // successor's weights 921 Weights.assign(1 + PredCases.size(), 1); 922 923 SmallVector<uint64_t, 8> SuccWeights; 924 if (SuccHasWeights) { 925 GetBranchWeights(TI, SuccWeights); 926 // branch-weight metadata is inconsistent here. 927 if (SuccWeights.size() != 1 + BBCases.size()) 928 PredHasWeights = SuccHasWeights = false; 929 } else if (PredHasWeights) 930 SuccWeights.assign(1 + BBCases.size(), 1); 931 932 if (PredDefault == BB) { 933 // If this is the default destination from PTI, only the edges in TI 934 // that don't occur in PTI, or that branch to BB will be activated. 935 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 if (PredCases[i].Dest != BB) 938 PTIHandled.insert(PredCases[i].Value); 939 else { 940 // The default destination is BB, we don't need explicit targets. 941 std::swap(PredCases[i], PredCases.back()); 942 943 if (PredHasWeights || SuccHasWeights) { 944 // Increase weight for the default case. 945 Weights[0] += Weights[i + 1]; 946 std::swap(Weights[i + 1], Weights.back()); 947 Weights.pop_back(); 948 } 949 950 PredCases.pop_back(); 951 --i; 952 --e; 953 } 954 955 // Reconstruct the new switch statement we will be building. 956 if (PredDefault != BBDefault) { 957 PredDefault->removePredecessor(Pred); 958 PredDefault = BBDefault; 959 NewSuccessors.push_back(BBDefault); 960 } 961 962 unsigned CasesFromPred = Weights.size(); 963 uint64_t ValidTotalSuccWeight = 0; 964 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 965 if (!PTIHandled.count(BBCases[i].Value) && 966 BBCases[i].Dest != BBDefault) { 967 PredCases.push_back(BBCases[i]); 968 NewSuccessors.push_back(BBCases[i].Dest); 969 if (SuccHasWeights || PredHasWeights) { 970 // The default weight is at index 0, so weight for the ith case 971 // should be at index i+1. Scale the cases from successor by 972 // PredDefaultWeight (Weights[0]). 973 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 974 ValidTotalSuccWeight += SuccWeights[i + 1]; 975 } 976 } 977 978 if (SuccHasWeights || PredHasWeights) { 979 ValidTotalSuccWeight += SuccWeights[0]; 980 // Scale the cases from predecessor by ValidTotalSuccWeight. 981 for (unsigned i = 1; i < CasesFromPred; ++i) 982 Weights[i] *= ValidTotalSuccWeight; 983 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 984 Weights[0] *= SuccWeights[0]; 985 } 986 } else { 987 // If this is not the default destination from PSI, only the edges 988 // in SI that occur in PSI with a destination of BB will be 989 // activated. 990 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 991 std::map<ConstantInt *, uint64_t> WeightsForHandled; 992 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 993 if (PredCases[i].Dest == BB) { 994 PTIHandled.insert(PredCases[i].Value); 995 996 if (PredHasWeights || SuccHasWeights) { 997 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 998 std::swap(Weights[i + 1], Weights.back()); 999 Weights.pop_back(); 1000 } 1001 1002 std::swap(PredCases[i], PredCases.back()); 1003 PredCases.pop_back(); 1004 --i; 1005 --e; 1006 } 1007 1008 // Okay, now we know which constants were sent to BB from the 1009 // predecessor. Figure out where they will all go now. 1010 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1011 if (PTIHandled.count(BBCases[i].Value)) { 1012 // If this is one we are capable of getting... 1013 if (PredHasWeights || SuccHasWeights) 1014 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1015 PredCases.push_back(BBCases[i]); 1016 NewSuccessors.push_back(BBCases[i].Dest); 1017 PTIHandled.erase( 1018 BBCases[i].Value); // This constant is taken care of 1019 } 1020 1021 // If there are any constants vectored to BB that TI doesn't handle, 1022 // they must go to the default destination of TI. 1023 for (std::set<ConstantInt *, ConstantIntOrdering>::iterator 1024 I = PTIHandled.begin(), 1025 E = PTIHandled.end(); 1026 I != E; ++I) { 1027 if (PredHasWeights || SuccHasWeights) 1028 Weights.push_back(WeightsForHandled[*I]); 1029 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1030 NewSuccessors.push_back(BBDefault); 1031 } 1032 } 1033 1034 // Okay, at this point, we know which new successor Pred will get. Make 1035 // sure we update the number of entries in the PHI nodes for these 1036 // successors. 1037 for (BasicBlock *NewSuccessor : NewSuccessors) 1038 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1039 1040 Builder.SetInsertPoint(PTI); 1041 // Convert pointer to int before we switch. 1042 if (CV->getType()->isPointerTy()) { 1043 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1044 "magicptr"); 1045 } 1046 1047 // Now that the successors are updated, create the new Switch instruction. 1048 SwitchInst *NewSI = 1049 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1050 NewSI->setDebugLoc(PTI->getDebugLoc()); 1051 for (ValueEqualityComparisonCase &V : PredCases) 1052 NewSI->addCase(V.Value, V.Dest); 1053 1054 if (PredHasWeights || SuccHasWeights) { 1055 // Halve the weights if any of them cannot fit in an uint32_t 1056 FitWeights(Weights); 1057 1058 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1059 1060 NewSI->setMetadata( 1061 LLVMContext::MD_prof, 1062 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1063 } 1064 1065 EraseTerminatorInstAndDCECond(PTI); 1066 1067 // Okay, last check. If BB is still a successor of PSI, then we must 1068 // have an infinite loop case. If so, add an infinitely looping block 1069 // to handle the case to preserve the behavior of the code. 1070 BasicBlock *InfLoopBlock = nullptr; 1071 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1072 if (NewSI->getSuccessor(i) == BB) { 1073 if (!InfLoopBlock) { 1074 // Insert it at the end of the function, because it's either code, 1075 // or it won't matter if it's hot. :) 1076 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1077 BB->getParent()); 1078 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1079 } 1080 NewSI->setSuccessor(i, InfLoopBlock); 1081 } 1082 1083 Changed = true; 1084 } 1085 } 1086 return Changed; 1087 } 1088 1089 // If we would need to insert a select that uses the value of this invoke 1090 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1091 // can't hoist the invoke, as there is nowhere to put the select in this case. 1092 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1093 Instruction *I1, Instruction *I2) { 1094 for (BasicBlock *Succ : successors(BB1)) { 1095 PHINode *PN; 1096 for (BasicBlock::iterator BBI = Succ->begin(); 1097 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1098 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1099 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1100 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1101 return false; 1102 } 1103 } 1104 } 1105 return true; 1106 } 1107 1108 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1109 1110 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1111 /// in the two blocks up into the branch block. The caller of this function 1112 /// guarantees that BI's block dominates BB1 and BB2. 1113 static bool HoistThenElseCodeToIf(BranchInst *BI, 1114 const TargetTransformInfo &TTI) { 1115 // This does very trivial matching, with limited scanning, to find identical 1116 // instructions in the two blocks. In particular, we don't want to get into 1117 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1118 // such, we currently just scan for obviously identical instructions in an 1119 // identical order. 1120 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1121 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1122 1123 BasicBlock::iterator BB1_Itr = BB1->begin(); 1124 BasicBlock::iterator BB2_Itr = BB2->begin(); 1125 1126 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1127 // Skip debug info if it is not identical. 1128 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1129 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1130 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1131 while (isa<DbgInfoIntrinsic>(I1)) 1132 I1 = &*BB1_Itr++; 1133 while (isa<DbgInfoIntrinsic>(I2)) 1134 I2 = &*BB2_Itr++; 1135 } 1136 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1137 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1138 return false; 1139 1140 BasicBlock *BIParent = BI->getParent(); 1141 1142 bool Changed = false; 1143 do { 1144 // If we are hoisting the terminator instruction, don't move one (making a 1145 // broken BB), instead clone it, and remove BI. 1146 if (isa<TerminatorInst>(I1)) 1147 goto HoistTerminator; 1148 1149 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1150 return Changed; 1151 1152 // For a normal instruction, we just move one to right before the branch, 1153 // then replace all uses of the other with the first. Finally, we remove 1154 // the now redundant second instruction. 1155 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1156 if (!I2->use_empty()) 1157 I2->replaceAllUsesWith(I1); 1158 I1->intersectOptionalDataWith(I2); 1159 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1160 LLVMContext::MD_range, 1161 LLVMContext::MD_fpmath, 1162 LLVMContext::MD_invariant_load, 1163 LLVMContext::MD_nonnull, 1164 LLVMContext::MD_invariant_group, 1165 LLVMContext::MD_align, 1166 LLVMContext::MD_dereferenceable, 1167 LLVMContext::MD_dereferenceable_or_null, 1168 LLVMContext::MD_mem_parallel_loop_access}; 1169 combineMetadata(I1, I2, KnownIDs); 1170 I2->eraseFromParent(); 1171 Changed = true; 1172 1173 I1 = &*BB1_Itr++; 1174 I2 = &*BB2_Itr++; 1175 // Skip debug info if it is not identical. 1176 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1177 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1178 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1179 while (isa<DbgInfoIntrinsic>(I1)) 1180 I1 = &*BB1_Itr++; 1181 while (isa<DbgInfoIntrinsic>(I2)) 1182 I2 = &*BB2_Itr++; 1183 } 1184 } while (I1->isIdenticalToWhenDefined(I2)); 1185 1186 return true; 1187 1188 HoistTerminator: 1189 // It may not be possible to hoist an invoke. 1190 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1191 return Changed; 1192 1193 for (BasicBlock *Succ : successors(BB1)) { 1194 PHINode *PN; 1195 for (BasicBlock::iterator BBI = Succ->begin(); 1196 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1197 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1198 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1199 if (BB1V == BB2V) 1200 continue; 1201 1202 // Check for passingValueIsAlwaysUndefined here because we would rather 1203 // eliminate undefined control flow then converting it to a select. 1204 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1205 passingValueIsAlwaysUndefined(BB2V, PN)) 1206 return Changed; 1207 1208 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1209 return Changed; 1210 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1211 return Changed; 1212 } 1213 } 1214 1215 // Okay, it is safe to hoist the terminator. 1216 Instruction *NT = I1->clone(); 1217 BIParent->getInstList().insert(BI->getIterator(), NT); 1218 if (!NT->getType()->isVoidTy()) { 1219 I1->replaceAllUsesWith(NT); 1220 I2->replaceAllUsesWith(NT); 1221 NT->takeName(I1); 1222 } 1223 1224 IRBuilder<NoFolder> Builder(NT); 1225 // Hoisting one of the terminators from our successor is a great thing. 1226 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1227 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1228 // nodes, so we insert select instruction to compute the final result. 1229 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1230 for (BasicBlock *Succ : successors(BB1)) { 1231 PHINode *PN; 1232 for (BasicBlock::iterator BBI = Succ->begin(); 1233 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1234 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1235 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1236 if (BB1V == BB2V) 1237 continue; 1238 1239 // These values do not agree. Insert a select instruction before NT 1240 // that determines the right value. 1241 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1242 if (!SI) 1243 SI = cast<SelectInst>( 1244 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1245 BB1V->getName() + "." + BB2V->getName(), BI)); 1246 1247 // Make the PHI node use the select for all incoming values for BB1/BB2 1248 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1249 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1250 PN->setIncomingValue(i, SI); 1251 } 1252 } 1253 1254 // Update any PHI nodes in our new successors. 1255 for (BasicBlock *Succ : successors(BB1)) 1256 AddPredecessorToBlock(Succ, BIParent, BB1); 1257 1258 EraseTerminatorInstAndDCECond(BI); 1259 return true; 1260 } 1261 1262 /// Given an unconditional branch that goes to BBEnd, 1263 /// check whether BBEnd has only two predecessors and the other predecessor 1264 /// ends with an unconditional branch. If it is true, sink any common code 1265 /// in the two predecessors to BBEnd. 1266 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1267 assert(BI1->isUnconditional()); 1268 BasicBlock *BB1 = BI1->getParent(); 1269 BasicBlock *BBEnd = BI1->getSuccessor(0); 1270 1271 // Check that BBEnd has two predecessors and the other predecessor ends with 1272 // an unconditional branch. 1273 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1274 BasicBlock *Pred0 = *PI++; 1275 if (PI == PE) // Only one predecessor. 1276 return false; 1277 BasicBlock *Pred1 = *PI++; 1278 if (PI != PE) // More than two predecessors. 1279 return false; 1280 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1281 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1282 if (!BI2 || !BI2->isUnconditional()) 1283 return false; 1284 1285 // Gather the PHI nodes in BBEnd. 1286 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1287 Instruction *FirstNonPhiInBBEnd = nullptr; 1288 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1289 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1290 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1291 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1292 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1293 } else { 1294 FirstNonPhiInBBEnd = &*I; 1295 break; 1296 } 1297 } 1298 if (!FirstNonPhiInBBEnd) 1299 return false; 1300 1301 // This does very trivial matching, with limited scanning, to find identical 1302 // instructions in the two blocks. We scan backward for obviously identical 1303 // instructions in an identical order. 1304 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1305 RE1 = BB1->getInstList().rend(), 1306 RI2 = BB2->getInstList().rbegin(), 1307 RE2 = BB2->getInstList().rend(); 1308 // Skip debug info. 1309 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1310 ++RI1; 1311 if (RI1 == RE1) 1312 return false; 1313 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1314 ++RI2; 1315 if (RI2 == RE2) 1316 return false; 1317 // Skip the unconditional branches. 1318 ++RI1; 1319 ++RI2; 1320 1321 bool Changed = false; 1322 while (RI1 != RE1 && RI2 != RE2) { 1323 // Skip debug info. 1324 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) 1325 ++RI1; 1326 if (RI1 == RE1) 1327 return Changed; 1328 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) 1329 ++RI2; 1330 if (RI2 == RE2) 1331 return Changed; 1332 1333 Instruction *I1 = &*RI1, *I2 = &*RI2; 1334 auto InstPair = std::make_pair(I1, I2); 1335 // I1 and I2 should have a single use in the same PHI node, and they 1336 // perform the same operation. 1337 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1338 if (isa<PHINode>(I1) || isa<PHINode>(I2) || isa<TerminatorInst>(I1) || 1339 isa<TerminatorInst>(I2) || I1->isEHPad() || I2->isEHPad() || 1340 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1341 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1342 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1343 !I1->hasOneUse() || !I2->hasOneUse() || !JointValueMap.count(InstPair)) 1344 return Changed; 1345 1346 // Check whether we should swap the operands of ICmpInst. 1347 // TODO: Add support of communativity. 1348 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1349 bool SwapOpnds = false; 1350 if (ICmp1 && ICmp2 && ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1351 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1352 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1353 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1354 ICmp2->swapOperands(); 1355 SwapOpnds = true; 1356 } 1357 if (!I1->isSameOperationAs(I2)) { 1358 if (SwapOpnds) 1359 ICmp2->swapOperands(); 1360 return Changed; 1361 } 1362 1363 // The operands should be either the same or they need to be generated 1364 // with a PHI node after sinking. We only handle the case where there is 1365 // a single pair of different operands. 1366 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1367 unsigned Op1Idx = ~0U; 1368 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1369 if (I1->getOperand(I) == I2->getOperand(I)) 1370 continue; 1371 // Early exit if we have more-than one pair of different operands or if 1372 // we need a PHI node to replace a constant. 1373 if (Op1Idx != ~0U || isa<Constant>(I1->getOperand(I)) || 1374 isa<Constant>(I2->getOperand(I))) { 1375 // If we can't sink the instructions, undo the swapping. 1376 if (SwapOpnds) 1377 ICmp2->swapOperands(); 1378 return Changed; 1379 } 1380 DifferentOp1 = I1->getOperand(I); 1381 Op1Idx = I; 1382 DifferentOp2 = I2->getOperand(I); 1383 } 1384 1385 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1386 DEBUG(dbgs() << " " << *I2 << "\n"); 1387 1388 // We insert the pair of different operands to JointValueMap and 1389 // remove (I1, I2) from JointValueMap. 1390 if (Op1Idx != ~0U) { 1391 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1392 if (!NewPN) { 1393 NewPN = 1394 PHINode::Create(DifferentOp1->getType(), 2, 1395 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1396 NewPN->addIncoming(DifferentOp1, BB1); 1397 NewPN->addIncoming(DifferentOp2, BB2); 1398 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1399 } 1400 // I1 should use NewPN instead of DifferentOp1. 1401 I1->setOperand(Op1Idx, NewPN); 1402 } 1403 PHINode *OldPN = JointValueMap[InstPair]; 1404 JointValueMap.erase(InstPair); 1405 1406 // We need to update RE1 and RE2 if we are going to sink the first 1407 // instruction in the basic block down. 1408 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front()); 1409 // Sink the instruction. 1410 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1411 BB1->getInstList(), I1); 1412 if (!OldPN->use_empty()) 1413 OldPN->replaceAllUsesWith(I1); 1414 OldPN->eraseFromParent(); 1415 1416 if (!I2->use_empty()) 1417 I2->replaceAllUsesWith(I1); 1418 I1->intersectOptionalDataWith(I2); 1419 // TODO: Use combineMetadata here to preserve what metadata we can 1420 // (analogous to the hoisting case above). 1421 I2->eraseFromParent(); 1422 1423 if (UpdateRE1) 1424 RE1 = BB1->getInstList().rend(); 1425 if (UpdateRE2) 1426 RE2 = BB2->getInstList().rend(); 1427 FirstNonPhiInBBEnd = &*I1; 1428 NumSinkCommons++; 1429 Changed = true; 1430 } 1431 return Changed; 1432 } 1433 1434 /// \brief Determine if we can hoist sink a sole store instruction out of a 1435 /// conditional block. 1436 /// 1437 /// We are looking for code like the following: 1438 /// BrBB: 1439 /// store i32 %add, i32* %arrayidx2 1440 /// ... // No other stores or function calls (we could be calling a memory 1441 /// ... // function). 1442 /// %cmp = icmp ult %x, %y 1443 /// br i1 %cmp, label %EndBB, label %ThenBB 1444 /// ThenBB: 1445 /// store i32 %add5, i32* %arrayidx2 1446 /// br label EndBB 1447 /// EndBB: 1448 /// ... 1449 /// We are going to transform this into: 1450 /// BrBB: 1451 /// store i32 %add, i32* %arrayidx2 1452 /// ... // 1453 /// %cmp = icmp ult %x, %y 1454 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1455 /// store i32 %add.add5, i32* %arrayidx2 1456 /// ... 1457 /// 1458 /// \return The pointer to the value of the previous store if the store can be 1459 /// hoisted into the predecessor block. 0 otherwise. 1460 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1461 BasicBlock *StoreBB, BasicBlock *EndBB) { 1462 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1463 if (!StoreToHoist) 1464 return nullptr; 1465 1466 // Volatile or atomic. 1467 if (!StoreToHoist->isSimple()) 1468 return nullptr; 1469 1470 Value *StorePtr = StoreToHoist->getPointerOperand(); 1471 1472 // Look for a store to the same pointer in BrBB. 1473 unsigned MaxNumInstToLookAt = 9; 1474 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), RE = BrBB->rend(); 1475 RI != RE && MaxNumInstToLookAt; ++RI) { 1476 Instruction *CurI = &*RI; 1477 // Skip debug info. 1478 if (isa<DbgInfoIntrinsic>(CurI)) 1479 continue; 1480 --MaxNumInstToLookAt; 1481 1482 // Could be calling an instruction that effects memory like free(). 1483 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1484 return nullptr; 1485 1486 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1487 // Found the previous store make sure it stores to the same location. 1488 if (SI && SI->getPointerOperand() == StorePtr) 1489 // Found the previous store, return its value operand. 1490 return SI->getValueOperand(); 1491 else if (SI) 1492 return nullptr; // Unknown store. 1493 } 1494 1495 return nullptr; 1496 } 1497 1498 /// \brief Speculate a conditional basic block flattening the CFG. 1499 /// 1500 /// Note that this is a very risky transform currently. Speculating 1501 /// instructions like this is most often not desirable. Instead, there is an MI 1502 /// pass which can do it with full awareness of the resource constraints. 1503 /// However, some cases are "obvious" and we should do directly. An example of 1504 /// this is speculating a single, reasonably cheap instruction. 1505 /// 1506 /// There is only one distinct advantage to flattening the CFG at the IR level: 1507 /// it makes very common but simplistic optimizations such as are common in 1508 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1509 /// modeling their effects with easier to reason about SSA value graphs. 1510 /// 1511 /// 1512 /// An illustration of this transform is turning this IR: 1513 /// \code 1514 /// BB: 1515 /// %cmp = icmp ult %x, %y 1516 /// br i1 %cmp, label %EndBB, label %ThenBB 1517 /// ThenBB: 1518 /// %sub = sub %x, %y 1519 /// br label BB2 1520 /// EndBB: 1521 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1522 /// ... 1523 /// \endcode 1524 /// 1525 /// Into this IR: 1526 /// \code 1527 /// BB: 1528 /// %cmp = icmp ult %x, %y 1529 /// %sub = sub %x, %y 1530 /// %cond = select i1 %cmp, 0, %sub 1531 /// ... 1532 /// \endcode 1533 /// 1534 /// \returns true if the conditional block is removed. 1535 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1536 const TargetTransformInfo &TTI) { 1537 // Be conservative for now. FP select instruction can often be expensive. 1538 Value *BrCond = BI->getCondition(); 1539 if (isa<FCmpInst>(BrCond)) 1540 return false; 1541 1542 BasicBlock *BB = BI->getParent(); 1543 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1544 1545 // If ThenBB is actually on the false edge of the conditional branch, remember 1546 // to swap the select operands later. 1547 bool Invert = false; 1548 if (ThenBB != BI->getSuccessor(0)) { 1549 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1550 Invert = true; 1551 } 1552 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1553 1554 // Keep a count of how many times instructions are used within CondBB when 1555 // they are candidates for sinking into CondBB. Specifically: 1556 // - They are defined in BB, and 1557 // - They have no side effects, and 1558 // - All of their uses are in CondBB. 1559 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1560 1561 unsigned SpeculationCost = 0; 1562 Value *SpeculatedStoreValue = nullptr; 1563 StoreInst *SpeculatedStore = nullptr; 1564 for (BasicBlock::iterator BBI = ThenBB->begin(), 1565 BBE = std::prev(ThenBB->end()); 1566 BBI != BBE; ++BBI) { 1567 Instruction *I = &*BBI; 1568 // Skip debug info. 1569 if (isa<DbgInfoIntrinsic>(I)) 1570 continue; 1571 1572 // Only speculatively execute a single instruction (not counting the 1573 // terminator) for now. 1574 ++SpeculationCost; 1575 if (SpeculationCost > 1) 1576 return false; 1577 1578 // Don't hoist the instruction if it's unsafe or expensive. 1579 if (!isSafeToSpeculativelyExecute(I) && 1580 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1581 I, BB, ThenBB, EndBB)))) 1582 return false; 1583 if (!SpeculatedStoreValue && 1584 ComputeSpeculationCost(I, TTI) > 1585 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1586 return false; 1587 1588 // Store the store speculation candidate. 1589 if (SpeculatedStoreValue) 1590 SpeculatedStore = cast<StoreInst>(I); 1591 1592 // Do not hoist the instruction if any of its operands are defined but not 1593 // used in BB. The transformation will prevent the operand from 1594 // being sunk into the use block. 1595 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1596 Instruction *OpI = dyn_cast<Instruction>(*i); 1597 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1598 continue; // Not a candidate for sinking. 1599 1600 ++SinkCandidateUseCounts[OpI]; 1601 } 1602 } 1603 1604 // Consider any sink candidates which are only used in CondBB as costs for 1605 // speculation. Note, while we iterate over a DenseMap here, we are summing 1606 // and so iteration order isn't significant. 1607 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1608 I = SinkCandidateUseCounts.begin(), 1609 E = SinkCandidateUseCounts.end(); 1610 I != E; ++I) 1611 if (I->first->getNumUses() == I->second) { 1612 ++SpeculationCost; 1613 if (SpeculationCost > 1) 1614 return false; 1615 } 1616 1617 // Check that the PHI nodes can be converted to selects. 1618 bool HaveRewritablePHIs = false; 1619 for (BasicBlock::iterator I = EndBB->begin(); 1620 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1621 Value *OrigV = PN->getIncomingValueForBlock(BB); 1622 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1623 1624 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1625 // Skip PHIs which are trivial. 1626 if (ThenV == OrigV) 1627 continue; 1628 1629 // Don't convert to selects if we could remove undefined behavior instead. 1630 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1631 passingValueIsAlwaysUndefined(ThenV, PN)) 1632 return false; 1633 1634 HaveRewritablePHIs = true; 1635 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1636 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1637 if (!OrigCE && !ThenCE) 1638 continue; // Known safe and cheap. 1639 1640 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1641 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1642 return false; 1643 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1644 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1645 unsigned MaxCost = 1646 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1647 if (OrigCost + ThenCost > MaxCost) 1648 return false; 1649 1650 // Account for the cost of an unfolded ConstantExpr which could end up 1651 // getting expanded into Instructions. 1652 // FIXME: This doesn't account for how many operations are combined in the 1653 // constant expression. 1654 ++SpeculationCost; 1655 if (SpeculationCost > 1) 1656 return false; 1657 } 1658 1659 // If there are no PHIs to process, bail early. This helps ensure idempotence 1660 // as well. 1661 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1662 return false; 1663 1664 // If we get here, we can hoist the instruction and if-convert. 1665 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1666 1667 // Insert a select of the value of the speculated store. 1668 if (SpeculatedStoreValue) { 1669 IRBuilder<NoFolder> Builder(BI); 1670 Value *TrueV = SpeculatedStore->getValueOperand(); 1671 Value *FalseV = SpeculatedStoreValue; 1672 if (Invert) 1673 std::swap(TrueV, FalseV); 1674 Value *S = Builder.CreateSelect( 1675 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1676 SpeculatedStore->setOperand(0, S); 1677 } 1678 1679 // Metadata can be dependent on the condition we are hoisting above. 1680 // Conservatively strip all metadata on the instruction. 1681 for (auto &I : *ThenBB) 1682 I.dropUnknownNonDebugMetadata(); 1683 1684 // Hoist the instructions. 1685 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1686 ThenBB->begin(), std::prev(ThenBB->end())); 1687 1688 // Insert selects and rewrite the PHI operands. 1689 IRBuilder<NoFolder> Builder(BI); 1690 for (BasicBlock::iterator I = EndBB->begin(); 1691 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1692 unsigned OrigI = PN->getBasicBlockIndex(BB); 1693 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1694 Value *OrigV = PN->getIncomingValue(OrigI); 1695 Value *ThenV = PN->getIncomingValue(ThenI); 1696 1697 // Skip PHIs which are trivial. 1698 if (OrigV == ThenV) 1699 continue; 1700 1701 // Create a select whose true value is the speculatively executed value and 1702 // false value is the preexisting value. Swap them if the branch 1703 // destinations were inverted. 1704 Value *TrueV = ThenV, *FalseV = OrigV; 1705 if (Invert) 1706 std::swap(TrueV, FalseV); 1707 Value *V = Builder.CreateSelect( 1708 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1709 PN->setIncomingValue(OrigI, V); 1710 PN->setIncomingValue(ThenI, V); 1711 } 1712 1713 ++NumSpeculations; 1714 return true; 1715 } 1716 1717 /// Return true if we can thread a branch across this block. 1718 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1719 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1720 unsigned Size = 0; 1721 1722 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1723 if (isa<DbgInfoIntrinsic>(BBI)) 1724 continue; 1725 if (Size > 10) 1726 return false; // Don't clone large BB's. 1727 ++Size; 1728 1729 // We can only support instructions that do not define values that are 1730 // live outside of the current basic block. 1731 for (User *U : BBI->users()) { 1732 Instruction *UI = cast<Instruction>(U); 1733 if (UI->getParent() != BB || isa<PHINode>(UI)) 1734 return false; 1735 } 1736 1737 // Looks ok, continue checking. 1738 } 1739 1740 return true; 1741 } 1742 1743 /// If we have a conditional branch on a PHI node value that is defined in the 1744 /// same block as the branch and if any PHI entries are constants, thread edges 1745 /// corresponding to that entry to be branches to their ultimate destination. 1746 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1747 BasicBlock *BB = BI->getParent(); 1748 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1749 // NOTE: we currently cannot transform this case if the PHI node is used 1750 // outside of the block. 1751 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1752 return false; 1753 1754 // Degenerate case of a single entry PHI. 1755 if (PN->getNumIncomingValues() == 1) { 1756 FoldSingleEntryPHINodes(PN->getParent()); 1757 return true; 1758 } 1759 1760 // Now we know that this block has multiple preds and two succs. 1761 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 1762 return false; 1763 1764 // Can't fold blocks that contain noduplicate or convergent calls. 1765 if (llvm::any_of(*BB, [](const Instruction &I) { 1766 const CallInst *CI = dyn_cast<CallInst>(&I); 1767 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1768 })) 1769 return false; 1770 1771 // Okay, this is a simple enough basic block. See if any phi values are 1772 // constants. 1773 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1774 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1775 if (!CB || !CB->getType()->isIntegerTy(1)) 1776 continue; 1777 1778 // Okay, we now know that all edges from PredBB should be revectored to 1779 // branch to RealDest. 1780 BasicBlock *PredBB = PN->getIncomingBlock(i); 1781 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1782 1783 if (RealDest == BB) 1784 continue; // Skip self loops. 1785 // Skip if the predecessor's terminator is an indirect branch. 1786 if (isa<IndirectBrInst>(PredBB->getTerminator())) 1787 continue; 1788 1789 // The dest block might have PHI nodes, other predecessors and other 1790 // difficult cases. Instead of being smart about this, just insert a new 1791 // block that jumps to the destination block, effectively splitting 1792 // the edge we are about to create. 1793 BasicBlock *EdgeBB = 1794 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 1795 RealDest->getParent(), RealDest); 1796 BranchInst::Create(RealDest, EdgeBB); 1797 1798 // Update PHI nodes. 1799 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1800 1801 // BB may have instructions that are being threaded over. Clone these 1802 // instructions into EdgeBB. We know that there will be no uses of the 1803 // cloned instructions outside of EdgeBB. 1804 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1805 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 1806 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1807 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1808 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1809 continue; 1810 } 1811 // Clone the instruction. 1812 Instruction *N = BBI->clone(); 1813 if (BBI->hasName()) 1814 N->setName(BBI->getName() + ".c"); 1815 1816 // Update operands due to translation. 1817 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 1818 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 1819 if (PI != TranslateMap.end()) 1820 *i = PI->second; 1821 } 1822 1823 // Check for trivial simplification. 1824 if (Value *V = SimplifyInstruction(N, DL)) { 1825 TranslateMap[&*BBI] = V; 1826 delete N; // Instruction folded away, don't need actual inst 1827 } else { 1828 // Insert the new instruction into its new home. 1829 EdgeBB->getInstList().insert(InsertPt, N); 1830 if (!BBI->use_empty()) 1831 TranslateMap[&*BBI] = N; 1832 } 1833 } 1834 1835 // Loop over all of the edges from PredBB to BB, changing them to branch 1836 // to EdgeBB instead. 1837 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1838 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1839 if (PredBBTI->getSuccessor(i) == BB) { 1840 BB->removePredecessor(PredBB); 1841 PredBBTI->setSuccessor(i, EdgeBB); 1842 } 1843 1844 // Recurse, simplifying any other constants. 1845 return FoldCondBranchOnPHI(BI, DL) | true; 1846 } 1847 1848 return false; 1849 } 1850 1851 /// Given a BB that starts with the specified two-entry PHI node, 1852 /// see if we can eliminate it. 1853 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1854 const DataLayout &DL) { 1855 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1856 // statement", which has a very simple dominance structure. Basically, we 1857 // are trying to find the condition that is being branched on, which 1858 // subsequently causes this merge to happen. We really want control 1859 // dependence information for this check, but simplifycfg can't keep it up 1860 // to date, and this catches most of the cases we care about anyway. 1861 BasicBlock *BB = PN->getParent(); 1862 BasicBlock *IfTrue, *IfFalse; 1863 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1864 if (!IfCond || 1865 // Don't bother if the branch will be constant folded trivially. 1866 isa<ConstantInt>(IfCond)) 1867 return false; 1868 1869 // Okay, we found that we can merge this two-entry phi node into a select. 1870 // Doing so would require us to fold *all* two entry phi nodes in this block. 1871 // At some point this becomes non-profitable (particularly if the target 1872 // doesn't support cmov's). Only do this transformation if there are two or 1873 // fewer PHI nodes in this block. 1874 unsigned NumPhis = 0; 1875 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1876 if (NumPhis > 2) 1877 return false; 1878 1879 // Loop over the PHI's seeing if we can promote them all to select 1880 // instructions. While we are at it, keep track of the instructions 1881 // that need to be moved to the dominating block. 1882 SmallPtrSet<Instruction *, 4> AggressiveInsts; 1883 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1884 MaxCostVal1 = PHINodeFoldingThreshold; 1885 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1886 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1887 1888 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1889 PHINode *PN = cast<PHINode>(II++); 1890 if (Value *V = SimplifyInstruction(PN, DL)) { 1891 PN->replaceAllUsesWith(V); 1892 PN->eraseFromParent(); 1893 continue; 1894 } 1895 1896 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1897 MaxCostVal0, TTI) || 1898 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1899 MaxCostVal1, TTI)) 1900 return false; 1901 } 1902 1903 // If we folded the first phi, PN dangles at this point. Refresh it. If 1904 // we ran out of PHIs then we simplified them all. 1905 PN = dyn_cast<PHINode>(BB->begin()); 1906 if (!PN) 1907 return true; 1908 1909 // Don't fold i1 branches on PHIs which contain binary operators. These can 1910 // often be turned into switches and other things. 1911 if (PN->getType()->isIntegerTy(1) && 1912 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1913 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1914 isa<BinaryOperator>(IfCond))) 1915 return false; 1916 1917 // If all PHI nodes are promotable, check to make sure that all instructions 1918 // in the predecessor blocks can be promoted as well. If not, we won't be able 1919 // to get rid of the control flow, so it's not worth promoting to select 1920 // instructions. 1921 BasicBlock *DomBlock = nullptr; 1922 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1923 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1924 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1925 IfBlock1 = nullptr; 1926 } else { 1927 DomBlock = *pred_begin(IfBlock1); 1928 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 1929 ++I) 1930 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1931 // This is not an aggressive instruction that we can promote. 1932 // Because of this, we won't be able to get rid of the control flow, so 1933 // the xform is not worth it. 1934 return false; 1935 } 1936 } 1937 1938 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1939 IfBlock2 = nullptr; 1940 } else { 1941 DomBlock = *pred_begin(IfBlock2); 1942 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 1943 ++I) 1944 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1945 // This is not an aggressive instruction that we can promote. 1946 // Because of this, we won't be able to get rid of the control flow, so 1947 // the xform is not worth it. 1948 return false; 1949 } 1950 } 1951 1952 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1953 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1954 1955 // If we can still promote the PHI nodes after this gauntlet of tests, 1956 // do all of the PHI's now. 1957 Instruction *InsertPt = DomBlock->getTerminator(); 1958 IRBuilder<NoFolder> Builder(InsertPt); 1959 1960 // Move all 'aggressive' instructions, which are defined in the 1961 // conditional parts of the if's up to the dominating block. 1962 if (IfBlock1) 1963 DomBlock->getInstList().splice(InsertPt->getIterator(), 1964 IfBlock1->getInstList(), IfBlock1->begin(), 1965 IfBlock1->getTerminator()->getIterator()); 1966 if (IfBlock2) 1967 DomBlock->getInstList().splice(InsertPt->getIterator(), 1968 IfBlock2->getInstList(), IfBlock2->begin(), 1969 IfBlock2->getTerminator()->getIterator()); 1970 1971 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1972 // Change the PHI node into a select instruction. 1973 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1974 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1975 1976 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 1977 PN->replaceAllUsesWith(Sel); 1978 Sel->takeName(PN); 1979 PN->eraseFromParent(); 1980 } 1981 1982 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1983 // has been flattened. Change DomBlock to jump directly to our new block to 1984 // avoid other simplifycfg's kicking in on the diamond. 1985 TerminatorInst *OldTI = DomBlock->getTerminator(); 1986 Builder.SetInsertPoint(OldTI); 1987 Builder.CreateBr(BB); 1988 OldTI->eraseFromParent(); 1989 return true; 1990 } 1991 1992 /// If we found a conditional branch that goes to two returning blocks, 1993 /// try to merge them together into one return, 1994 /// introducing a select if the return values disagree. 1995 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1996 IRBuilder<> &Builder) { 1997 assert(BI->isConditional() && "Must be a conditional branch"); 1998 BasicBlock *TrueSucc = BI->getSuccessor(0); 1999 BasicBlock *FalseSucc = BI->getSuccessor(1); 2000 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2001 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2002 2003 // Check to ensure both blocks are empty (just a return) or optionally empty 2004 // with PHI nodes. If there are other instructions, merging would cause extra 2005 // computation on one path or the other. 2006 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2007 return false; 2008 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2009 return false; 2010 2011 Builder.SetInsertPoint(BI); 2012 // Okay, we found a branch that is going to two return nodes. If 2013 // there is no return value for this function, just change the 2014 // branch into a return. 2015 if (FalseRet->getNumOperands() == 0) { 2016 TrueSucc->removePredecessor(BI->getParent()); 2017 FalseSucc->removePredecessor(BI->getParent()); 2018 Builder.CreateRetVoid(); 2019 EraseTerminatorInstAndDCECond(BI); 2020 return true; 2021 } 2022 2023 // Otherwise, figure out what the true and false return values are 2024 // so we can insert a new select instruction. 2025 Value *TrueValue = TrueRet->getReturnValue(); 2026 Value *FalseValue = FalseRet->getReturnValue(); 2027 2028 // Unwrap any PHI nodes in the return blocks. 2029 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2030 if (TVPN->getParent() == TrueSucc) 2031 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2032 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2033 if (FVPN->getParent() == FalseSucc) 2034 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2035 2036 // In order for this transformation to be safe, we must be able to 2037 // unconditionally execute both operands to the return. This is 2038 // normally the case, but we could have a potentially-trapping 2039 // constant expression that prevents this transformation from being 2040 // safe. 2041 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2042 if (TCV->canTrap()) 2043 return false; 2044 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2045 if (FCV->canTrap()) 2046 return false; 2047 2048 // Okay, we collected all the mapped values and checked them for sanity, and 2049 // defined to really do this transformation. First, update the CFG. 2050 TrueSucc->removePredecessor(BI->getParent()); 2051 FalseSucc->removePredecessor(BI->getParent()); 2052 2053 // Insert select instructions where needed. 2054 Value *BrCond = BI->getCondition(); 2055 if (TrueValue) { 2056 // Insert a select if the results differ. 2057 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2058 } else if (isa<UndefValue>(TrueValue)) { 2059 TrueValue = FalseValue; 2060 } else { 2061 TrueValue = 2062 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2063 } 2064 } 2065 2066 Value *RI = 2067 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2068 2069 (void)RI; 2070 2071 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2072 << "\n " << *BI << "NewRet = " << *RI 2073 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2074 2075 EraseTerminatorInstAndDCECond(BI); 2076 2077 return true; 2078 } 2079 2080 /// Return true if the given instruction is available 2081 /// in its predecessor block. If yes, the instruction will be removed. 2082 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2083 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2084 return false; 2085 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2086 Instruction *PBI = &*I; 2087 // Check whether Inst and PBI generate the same value. 2088 if (Inst->isIdenticalTo(PBI)) { 2089 Inst->replaceAllUsesWith(PBI); 2090 Inst->eraseFromParent(); 2091 return true; 2092 } 2093 } 2094 return false; 2095 } 2096 2097 /// Return true if either PBI or BI has branch weight available, and store 2098 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2099 /// not have branch weight, use 1:1 as its weight. 2100 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2101 uint64_t &PredTrueWeight, 2102 uint64_t &PredFalseWeight, 2103 uint64_t &SuccTrueWeight, 2104 uint64_t &SuccFalseWeight) { 2105 bool PredHasWeights = 2106 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2107 bool SuccHasWeights = 2108 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2109 if (PredHasWeights || SuccHasWeights) { 2110 if (!PredHasWeights) 2111 PredTrueWeight = PredFalseWeight = 1; 2112 if (!SuccHasWeights) 2113 SuccTrueWeight = SuccFalseWeight = 1; 2114 return true; 2115 } else { 2116 return false; 2117 } 2118 } 2119 2120 /// If this basic block is simple enough, and if a predecessor branches to us 2121 /// and one of our successors, fold the block into the predecessor and use 2122 /// logical operations to pick the right destination. 2123 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2124 BasicBlock *BB = BI->getParent(); 2125 2126 Instruction *Cond = nullptr; 2127 if (BI->isConditional()) 2128 Cond = dyn_cast<Instruction>(BI->getCondition()); 2129 else { 2130 // For unconditional branch, check for a simple CFG pattern, where 2131 // BB has a single predecessor and BB's successor is also its predecessor's 2132 // successor. If such pattern exisits, check for CSE between BB and its 2133 // predecessor. 2134 if (BasicBlock *PB = BB->getSinglePredecessor()) 2135 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2136 if (PBI->isConditional() && 2137 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2138 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2139 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2140 Instruction *Curr = &*I++; 2141 if (isa<CmpInst>(Curr)) { 2142 Cond = Curr; 2143 break; 2144 } 2145 // Quit if we can't remove this instruction. 2146 if (!checkCSEInPredecessor(Curr, PB)) 2147 return false; 2148 } 2149 } 2150 2151 if (!Cond) 2152 return false; 2153 } 2154 2155 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2156 Cond->getParent() != BB || !Cond->hasOneUse()) 2157 return false; 2158 2159 // Make sure the instruction after the condition is the cond branch. 2160 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2161 2162 // Ignore dbg intrinsics. 2163 while (isa<DbgInfoIntrinsic>(CondIt)) 2164 ++CondIt; 2165 2166 if (&*CondIt != BI) 2167 return false; 2168 2169 // Only allow this transformation if computing the condition doesn't involve 2170 // too many instructions and these involved instructions can be executed 2171 // unconditionally. We denote all involved instructions except the condition 2172 // as "bonus instructions", and only allow this transformation when the 2173 // number of the bonus instructions does not exceed a certain threshold. 2174 unsigned NumBonusInsts = 0; 2175 for (auto I = BB->begin(); Cond != &*I; ++I) { 2176 // Ignore dbg intrinsics. 2177 if (isa<DbgInfoIntrinsic>(I)) 2178 continue; 2179 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2180 return false; 2181 // I has only one use and can be executed unconditionally. 2182 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2183 if (User == nullptr || User->getParent() != BB) 2184 return false; 2185 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2186 // to use any other instruction, User must be an instruction between next(I) 2187 // and Cond. 2188 ++NumBonusInsts; 2189 // Early exits once we reach the limit. 2190 if (NumBonusInsts > BonusInstThreshold) 2191 return false; 2192 } 2193 2194 // Cond is known to be a compare or binary operator. Check to make sure that 2195 // neither operand is a potentially-trapping constant expression. 2196 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2197 if (CE->canTrap()) 2198 return false; 2199 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2200 if (CE->canTrap()) 2201 return false; 2202 2203 // Finally, don't infinitely unroll conditional loops. 2204 BasicBlock *TrueDest = BI->getSuccessor(0); 2205 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2206 if (TrueDest == BB || FalseDest == BB) 2207 return false; 2208 2209 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2210 BasicBlock *PredBlock = *PI; 2211 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2212 2213 // Check that we have two conditional branches. If there is a PHI node in 2214 // the common successor, verify that the same value flows in from both 2215 // blocks. 2216 SmallVector<PHINode *, 4> PHIs; 2217 if (!PBI || PBI->isUnconditional() || 2218 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2219 (!BI->isConditional() && 2220 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2221 continue; 2222 2223 // Determine if the two branches share a common destination. 2224 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2225 bool InvertPredCond = false; 2226 2227 if (BI->isConditional()) { 2228 if (PBI->getSuccessor(0) == TrueDest) { 2229 Opc = Instruction::Or; 2230 } else if (PBI->getSuccessor(1) == FalseDest) { 2231 Opc = Instruction::And; 2232 } else if (PBI->getSuccessor(0) == FalseDest) { 2233 Opc = Instruction::And; 2234 InvertPredCond = true; 2235 } else if (PBI->getSuccessor(1) == TrueDest) { 2236 Opc = Instruction::Or; 2237 InvertPredCond = true; 2238 } else { 2239 continue; 2240 } 2241 } else { 2242 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2243 continue; 2244 } 2245 2246 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2247 IRBuilder<> Builder(PBI); 2248 2249 // If we need to invert the condition in the pred block to match, do so now. 2250 if (InvertPredCond) { 2251 Value *NewCond = PBI->getCondition(); 2252 2253 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2254 CmpInst *CI = cast<CmpInst>(NewCond); 2255 CI->setPredicate(CI->getInversePredicate()); 2256 } else { 2257 NewCond = 2258 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2259 } 2260 2261 PBI->setCondition(NewCond); 2262 PBI->swapSuccessors(); 2263 } 2264 2265 // If we have bonus instructions, clone them into the predecessor block. 2266 // Note that there may be multiple predecessor blocks, so we cannot move 2267 // bonus instructions to a predecessor block. 2268 ValueToValueMapTy VMap; // maps original values to cloned values 2269 // We already make sure Cond is the last instruction before BI. Therefore, 2270 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2271 // instructions. 2272 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2273 if (isa<DbgInfoIntrinsic>(BonusInst)) 2274 continue; 2275 Instruction *NewBonusInst = BonusInst->clone(); 2276 RemapInstruction(NewBonusInst, VMap, 2277 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2278 VMap[&*BonusInst] = NewBonusInst; 2279 2280 // If we moved a load, we cannot any longer claim any knowledge about 2281 // its potential value. The previous information might have been valid 2282 // only given the branch precondition. 2283 // For an analogous reason, we must also drop all the metadata whose 2284 // semantics we don't understand. 2285 NewBonusInst->dropUnknownNonDebugMetadata(); 2286 2287 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2288 NewBonusInst->takeName(&*BonusInst); 2289 BonusInst->setName(BonusInst->getName() + ".old"); 2290 } 2291 2292 // Clone Cond into the predecessor basic block, and or/and the 2293 // two conditions together. 2294 Instruction *New = Cond->clone(); 2295 RemapInstruction(New, VMap, 2296 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2297 PredBlock->getInstList().insert(PBI->getIterator(), New); 2298 New->takeName(Cond); 2299 Cond->setName(New->getName() + ".old"); 2300 2301 if (BI->isConditional()) { 2302 Instruction *NewCond = cast<Instruction>( 2303 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2304 PBI->setCondition(NewCond); 2305 2306 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2307 bool HasWeights = 2308 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2309 SuccTrueWeight, SuccFalseWeight); 2310 SmallVector<uint64_t, 8> NewWeights; 2311 2312 if (PBI->getSuccessor(0) == BB) { 2313 if (HasWeights) { 2314 // PBI: br i1 %x, BB, FalseDest 2315 // BI: br i1 %y, TrueDest, FalseDest 2316 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2317 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2318 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2319 // TrueWeight for PBI * FalseWeight for BI. 2320 // We assume that total weights of a BranchInst can fit into 32 bits. 2321 // Therefore, we will not have overflow using 64-bit arithmetic. 2322 NewWeights.push_back(PredFalseWeight * 2323 (SuccFalseWeight + SuccTrueWeight) + 2324 PredTrueWeight * SuccFalseWeight); 2325 } 2326 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2327 PBI->setSuccessor(0, TrueDest); 2328 } 2329 if (PBI->getSuccessor(1) == BB) { 2330 if (HasWeights) { 2331 // PBI: br i1 %x, TrueDest, BB 2332 // BI: br i1 %y, TrueDest, FalseDest 2333 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2334 // FalseWeight for PBI * TrueWeight for BI. 2335 NewWeights.push_back(PredTrueWeight * 2336 (SuccFalseWeight + SuccTrueWeight) + 2337 PredFalseWeight * SuccTrueWeight); 2338 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2339 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2340 } 2341 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2342 PBI->setSuccessor(1, FalseDest); 2343 } 2344 if (NewWeights.size() == 2) { 2345 // Halve the weights if any of them cannot fit in an uint32_t 2346 FitWeights(NewWeights); 2347 2348 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2349 NewWeights.end()); 2350 PBI->setMetadata( 2351 LLVMContext::MD_prof, 2352 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2353 } else 2354 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2355 } else { 2356 // Update PHI nodes in the common successors. 2357 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2358 ConstantInt *PBI_C = cast<ConstantInt>( 2359 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2360 assert(PBI_C->getType()->isIntegerTy(1)); 2361 Instruction *MergedCond = nullptr; 2362 if (PBI->getSuccessor(0) == TrueDest) { 2363 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2364 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2365 // is false: !PBI_Cond and BI_Value 2366 Instruction *NotCond = cast<Instruction>( 2367 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2368 MergedCond = cast<Instruction>( 2369 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2370 if (PBI_C->isOne()) 2371 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2372 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2373 } else { 2374 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2375 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2376 // is false: PBI_Cond and BI_Value 2377 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2378 Instruction::And, PBI->getCondition(), New, "and.cond")); 2379 if (PBI_C->isOne()) { 2380 Instruction *NotCond = cast<Instruction>( 2381 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2382 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2383 Instruction::Or, NotCond, MergedCond, "or.cond")); 2384 } 2385 } 2386 // Update PHI Node. 2387 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2388 MergedCond); 2389 } 2390 // Change PBI from Conditional to Unconditional. 2391 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2392 EraseTerminatorInstAndDCECond(PBI); 2393 PBI = New_PBI; 2394 } 2395 2396 // TODO: If BB is reachable from all paths through PredBlock, then we 2397 // could replace PBI's branch probabilities with BI's. 2398 2399 // Copy any debug value intrinsics into the end of PredBlock. 2400 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2401 if (isa<DbgInfoIntrinsic>(*I)) 2402 I->clone()->insertBefore(PBI); 2403 2404 return true; 2405 } 2406 return false; 2407 } 2408 2409 // If there is only one store in BB1 and BB2, return it, otherwise return 2410 // nullptr. 2411 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2412 StoreInst *S = nullptr; 2413 for (auto *BB : {BB1, BB2}) { 2414 if (!BB) 2415 continue; 2416 for (auto &I : *BB) 2417 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2418 if (S) 2419 // Multiple stores seen. 2420 return nullptr; 2421 else 2422 S = SI; 2423 } 2424 } 2425 return S; 2426 } 2427 2428 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2429 Value *AlternativeV = nullptr) { 2430 // PHI is going to be a PHI node that allows the value V that is defined in 2431 // BB to be referenced in BB's only successor. 2432 // 2433 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2434 // doesn't matter to us what the other operand is (it'll never get used). We 2435 // could just create a new PHI with an undef incoming value, but that could 2436 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2437 // other PHI. So here we directly look for some PHI in BB's successor with V 2438 // as an incoming operand. If we find one, we use it, else we create a new 2439 // one. 2440 // 2441 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2442 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2443 // where OtherBB is the single other predecessor of BB's only successor. 2444 PHINode *PHI = nullptr; 2445 BasicBlock *Succ = BB->getSingleSuccessor(); 2446 2447 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2448 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2449 PHI = cast<PHINode>(I); 2450 if (!AlternativeV) 2451 break; 2452 2453 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2454 auto PredI = pred_begin(Succ); 2455 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2456 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2457 break; 2458 PHI = nullptr; 2459 } 2460 if (PHI) 2461 return PHI; 2462 2463 // If V is not an instruction defined in BB, just return it. 2464 if (!AlternativeV && 2465 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2466 return V; 2467 2468 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2469 PHI->addIncoming(V, BB); 2470 for (BasicBlock *PredBB : predecessors(Succ)) 2471 if (PredBB != BB) 2472 PHI->addIncoming( 2473 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2474 return PHI; 2475 } 2476 2477 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2478 BasicBlock *QTB, BasicBlock *QFB, 2479 BasicBlock *PostBB, Value *Address, 2480 bool InvertPCond, bool InvertQCond) { 2481 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2482 return Operator::getOpcode(&I) == Instruction::BitCast && 2483 I.getType()->isPointerTy(); 2484 }; 2485 2486 // If we're not in aggressive mode, we only optimize if we have some 2487 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2488 auto IsWorthwhile = [&](BasicBlock *BB) { 2489 if (!BB) 2490 return true; 2491 // Heuristic: if the block can be if-converted/phi-folded and the 2492 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2493 // thread this store. 2494 unsigned N = 0; 2495 for (auto &I : *BB) { 2496 // Cheap instructions viable for folding. 2497 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2498 isa<StoreInst>(I)) 2499 ++N; 2500 // Free instructions. 2501 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2502 IsaBitcastOfPointerType(I)) 2503 continue; 2504 else 2505 return false; 2506 } 2507 return N <= PHINodeFoldingThreshold; 2508 }; 2509 2510 if (!MergeCondStoresAggressively && 2511 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2512 !IsWorthwhile(QFB))) 2513 return false; 2514 2515 // For every pointer, there must be exactly two stores, one coming from 2516 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2517 // store (to any address) in PTB,PFB or QTB,QFB. 2518 // FIXME: We could relax this restriction with a bit more work and performance 2519 // testing. 2520 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2521 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2522 if (!PStore || !QStore) 2523 return false; 2524 2525 // Now check the stores are compatible. 2526 if (!QStore->isUnordered() || !PStore->isUnordered()) 2527 return false; 2528 2529 // Check that sinking the store won't cause program behavior changes. Sinking 2530 // the store out of the Q blocks won't change any behavior as we're sinking 2531 // from a block to its unconditional successor. But we're moving a store from 2532 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2533 // So we need to check that there are no aliasing loads or stores in 2534 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2535 // operations between PStore and the end of its parent block. 2536 // 2537 // The ideal way to do this is to query AliasAnalysis, but we don't 2538 // preserve AA currently so that is dangerous. Be super safe and just 2539 // check there are no other memory operations at all. 2540 for (auto &I : *QFB->getSinglePredecessor()) 2541 if (I.mayReadOrWriteMemory()) 2542 return false; 2543 for (auto &I : *QFB) 2544 if (&I != QStore && I.mayReadOrWriteMemory()) 2545 return false; 2546 if (QTB) 2547 for (auto &I : *QTB) 2548 if (&I != QStore && I.mayReadOrWriteMemory()) 2549 return false; 2550 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2551 I != E; ++I) 2552 if (&*I != PStore && I->mayReadOrWriteMemory()) 2553 return false; 2554 2555 // OK, we're going to sink the stores to PostBB. The store has to be 2556 // conditional though, so first create the predicate. 2557 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2558 ->getCondition(); 2559 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2560 ->getCondition(); 2561 2562 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2563 PStore->getParent()); 2564 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2565 QStore->getParent(), PPHI); 2566 2567 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2568 2569 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2570 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2571 2572 if (InvertPCond) 2573 PPred = QB.CreateNot(PPred); 2574 if (InvertQCond) 2575 QPred = QB.CreateNot(QPred); 2576 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2577 2578 auto *T = 2579 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2580 QB.SetInsertPoint(T); 2581 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2582 AAMDNodes AAMD; 2583 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2584 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2585 SI->setAAMetadata(AAMD); 2586 2587 QStore->eraseFromParent(); 2588 PStore->eraseFromParent(); 2589 2590 return true; 2591 } 2592 2593 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2594 // The intention here is to find diamonds or triangles (see below) where each 2595 // conditional block contains a store to the same address. Both of these 2596 // stores are conditional, so they can't be unconditionally sunk. But it may 2597 // be profitable to speculatively sink the stores into one merged store at the 2598 // end, and predicate the merged store on the union of the two conditions of 2599 // PBI and QBI. 2600 // 2601 // This can reduce the number of stores executed if both of the conditions are 2602 // true, and can allow the blocks to become small enough to be if-converted. 2603 // This optimization will also chain, so that ladders of test-and-set 2604 // sequences can be if-converted away. 2605 // 2606 // We only deal with simple diamonds or triangles: 2607 // 2608 // PBI or PBI or a combination of the two 2609 // / \ | \ 2610 // PTB PFB | PFB 2611 // \ / | / 2612 // QBI QBI 2613 // / \ | \ 2614 // QTB QFB | QFB 2615 // \ / | / 2616 // PostBB PostBB 2617 // 2618 // We model triangles as a type of diamond with a nullptr "true" block. 2619 // Triangles are canonicalized so that the fallthrough edge is represented by 2620 // a true condition, as in the diagram above. 2621 // 2622 BasicBlock *PTB = PBI->getSuccessor(0); 2623 BasicBlock *PFB = PBI->getSuccessor(1); 2624 BasicBlock *QTB = QBI->getSuccessor(0); 2625 BasicBlock *QFB = QBI->getSuccessor(1); 2626 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2627 2628 bool InvertPCond = false, InvertQCond = false; 2629 // Canonicalize fallthroughs to the true branches. 2630 if (PFB == QBI->getParent()) { 2631 std::swap(PFB, PTB); 2632 InvertPCond = true; 2633 } 2634 if (QFB == PostBB) { 2635 std::swap(QFB, QTB); 2636 InvertQCond = true; 2637 } 2638 2639 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2640 // and QFB may not. Model fallthroughs as a nullptr block. 2641 if (PTB == QBI->getParent()) 2642 PTB = nullptr; 2643 if (QTB == PostBB) 2644 QTB = nullptr; 2645 2646 // Legality bailouts. We must have at least the non-fallthrough blocks and 2647 // the post-dominating block, and the non-fallthroughs must only have one 2648 // predecessor. 2649 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2650 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2651 }; 2652 if (!PostBB || 2653 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2654 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2655 return false; 2656 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2657 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2658 return false; 2659 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2660 return false; 2661 2662 // OK, this is a sequence of two diamonds or triangles. 2663 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2664 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2665 for (auto *BB : {PTB, PFB}) { 2666 if (!BB) 2667 continue; 2668 for (auto &I : *BB) 2669 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2670 PStoreAddresses.insert(SI->getPointerOperand()); 2671 } 2672 for (auto *BB : {QTB, QFB}) { 2673 if (!BB) 2674 continue; 2675 for (auto &I : *BB) 2676 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2677 QStoreAddresses.insert(SI->getPointerOperand()); 2678 } 2679 2680 set_intersect(PStoreAddresses, QStoreAddresses); 2681 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2682 // clear what it contains. 2683 auto &CommonAddresses = PStoreAddresses; 2684 2685 bool Changed = false; 2686 for (auto *Address : CommonAddresses) 2687 Changed |= mergeConditionalStoreToAddress( 2688 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2689 return Changed; 2690 } 2691 2692 /// If we have a conditional branch as a predecessor of another block, 2693 /// this function tries to simplify it. We know 2694 /// that PBI and BI are both conditional branches, and BI is in one of the 2695 /// successor blocks of PBI - PBI branches to BI. 2696 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2697 const DataLayout &DL) { 2698 assert(PBI->isConditional() && BI->isConditional()); 2699 BasicBlock *BB = BI->getParent(); 2700 2701 // If this block ends with a branch instruction, and if there is a 2702 // predecessor that ends on a branch of the same condition, make 2703 // this conditional branch redundant. 2704 if (PBI->getCondition() == BI->getCondition() && 2705 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2706 // Okay, the outcome of this conditional branch is statically 2707 // knowable. If this block had a single pred, handle specially. 2708 if (BB->getSinglePredecessor()) { 2709 // Turn this into a branch on constant. 2710 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2711 BI->setCondition( 2712 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 2713 return true; // Nuke the branch on constant. 2714 } 2715 2716 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2717 // in the constant and simplify the block result. Subsequent passes of 2718 // simplifycfg will thread the block. 2719 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2720 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2721 PHINode *NewPN = PHINode::Create( 2722 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2723 BI->getCondition()->getName() + ".pr", &BB->front()); 2724 // Okay, we're going to insert the PHI node. Since PBI is not the only 2725 // predecessor, compute the PHI'd conditional value for all of the preds. 2726 // Any predecessor where the condition is not computable we keep symbolic. 2727 for (pred_iterator PI = PB; PI != PE; ++PI) { 2728 BasicBlock *P = *PI; 2729 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 2730 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 2731 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2732 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2733 NewPN->addIncoming( 2734 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 2735 P); 2736 } else { 2737 NewPN->addIncoming(BI->getCondition(), P); 2738 } 2739 } 2740 2741 BI->setCondition(NewPN); 2742 return true; 2743 } 2744 } 2745 2746 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2747 if (CE->canTrap()) 2748 return false; 2749 2750 // If both branches are conditional and both contain stores to the same 2751 // address, remove the stores from the conditionals and create a conditional 2752 // merged store at the end. 2753 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2754 return true; 2755 2756 // If this is a conditional branch in an empty block, and if any 2757 // predecessors are a conditional branch to one of our destinations, 2758 // fold the conditions into logical ops and one cond br. 2759 BasicBlock::iterator BBI = BB->begin(); 2760 // Ignore dbg intrinsics. 2761 while (isa<DbgInfoIntrinsic>(BBI)) 2762 ++BBI; 2763 if (&*BBI != BI) 2764 return false; 2765 2766 int PBIOp, BIOp; 2767 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2768 PBIOp = 0; 2769 BIOp = 0; 2770 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2771 PBIOp = 0; 2772 BIOp = 1; 2773 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2774 PBIOp = 1; 2775 BIOp = 0; 2776 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2777 PBIOp = 1; 2778 BIOp = 1; 2779 } else { 2780 return false; 2781 } 2782 2783 // Check to make sure that the other destination of this branch 2784 // isn't BB itself. If so, this is an infinite loop that will 2785 // keep getting unwound. 2786 if (PBI->getSuccessor(PBIOp) == BB) 2787 return false; 2788 2789 // Do not perform this transformation if it would require 2790 // insertion of a large number of select instructions. For targets 2791 // without predication/cmovs, this is a big pessimization. 2792 2793 // Also do not perform this transformation if any phi node in the common 2794 // destination block can trap when reached by BB or PBB (PR17073). In that 2795 // case, it would be unsafe to hoist the operation into a select instruction. 2796 2797 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2798 unsigned NumPhis = 0; 2799 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 2800 ++II, ++NumPhis) { 2801 if (NumPhis > 2) // Disable this xform. 2802 return false; 2803 2804 PHINode *PN = cast<PHINode>(II); 2805 Value *BIV = PN->getIncomingValueForBlock(BB); 2806 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2807 if (CE->canTrap()) 2808 return false; 2809 2810 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2811 Value *PBIV = PN->getIncomingValue(PBBIdx); 2812 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2813 if (CE->canTrap()) 2814 return false; 2815 } 2816 2817 // Finally, if everything is ok, fold the branches to logical ops. 2818 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2819 2820 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2821 << "AND: " << *BI->getParent()); 2822 2823 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2824 // branch in it, where one edge (OtherDest) goes back to itself but the other 2825 // exits. We don't *know* that the program avoids the infinite loop 2826 // (even though that seems likely). If we do this xform naively, we'll end up 2827 // recursively unpeeling the loop. Since we know that (after the xform is 2828 // done) that the block *is* infinite if reached, we just make it an obviously 2829 // infinite loop with no cond branch. 2830 if (OtherDest == BB) { 2831 // Insert it at the end of the function, because it's either code, 2832 // or it won't matter if it's hot. :) 2833 BasicBlock *InfLoopBlock = 2834 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 2835 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2836 OtherDest = InfLoopBlock; 2837 } 2838 2839 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2840 2841 // BI may have other predecessors. Because of this, we leave 2842 // it alone, but modify PBI. 2843 2844 // Make sure we get to CommonDest on True&True directions. 2845 Value *PBICond = PBI->getCondition(); 2846 IRBuilder<NoFolder> Builder(PBI); 2847 if (PBIOp) 2848 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 2849 2850 Value *BICond = BI->getCondition(); 2851 if (BIOp) 2852 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 2853 2854 // Merge the conditions. 2855 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2856 2857 // Modify PBI to branch on the new condition to the new dests. 2858 PBI->setCondition(Cond); 2859 PBI->setSuccessor(0, CommonDest); 2860 PBI->setSuccessor(1, OtherDest); 2861 2862 // Update branch weight for PBI. 2863 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2864 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 2865 bool HasWeights = 2866 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2867 SuccTrueWeight, SuccFalseWeight); 2868 if (HasWeights) { 2869 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2870 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2871 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2872 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2873 // The weight to CommonDest should be PredCommon * SuccTotal + 2874 // PredOther * SuccCommon. 2875 // The weight to OtherDest should be PredOther * SuccOther. 2876 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2877 PredOther * SuccCommon, 2878 PredOther * SuccOther}; 2879 // Halve the weights if any of them cannot fit in an uint32_t 2880 FitWeights(NewWeights); 2881 2882 PBI->setMetadata(LLVMContext::MD_prof, 2883 MDBuilder(BI->getContext()) 2884 .createBranchWeights(NewWeights[0], NewWeights[1])); 2885 } 2886 2887 // OtherDest may have phi nodes. If so, add an entry from PBI's 2888 // block that are identical to the entries for BI's block. 2889 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2890 2891 // We know that the CommonDest already had an edge from PBI to 2892 // it. If it has PHIs though, the PHIs may have different 2893 // entries for BB and PBI's BB. If so, insert a select to make 2894 // them agree. 2895 PHINode *PN; 2896 for (BasicBlock::iterator II = CommonDest->begin(); 2897 (PN = dyn_cast<PHINode>(II)); ++II) { 2898 Value *BIV = PN->getIncomingValueForBlock(BB); 2899 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2900 Value *PBIV = PN->getIncomingValue(PBBIdx); 2901 if (BIV != PBIV) { 2902 // Insert a select in PBI to pick the right value. 2903 SelectInst *NV = cast<SelectInst>( 2904 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 2905 PN->setIncomingValue(PBBIdx, NV); 2906 // Although the select has the same condition as PBI, the original branch 2907 // weights for PBI do not apply to the new select because the select's 2908 // 'logical' edges are incoming edges of the phi that is eliminated, not 2909 // the outgoing edges of PBI. 2910 if (HasWeights) { 2911 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2912 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 2913 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2914 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2915 // The weight to PredCommonDest should be PredCommon * SuccTotal. 2916 // The weight to PredOtherDest should be PredOther * SuccCommon. 2917 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 2918 PredOther * SuccCommon}; 2919 2920 FitWeights(NewWeights); 2921 2922 NV->setMetadata(LLVMContext::MD_prof, 2923 MDBuilder(BI->getContext()) 2924 .createBranchWeights(NewWeights[0], NewWeights[1])); 2925 } 2926 } 2927 } 2928 2929 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2930 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2931 2932 // This basic block is probably dead. We know it has at least 2933 // one fewer predecessor. 2934 return true; 2935 } 2936 2937 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2938 // true or to FalseBB if Cond is false. 2939 // Takes care of updating the successors and removing the old terminator. 2940 // Also makes sure not to introduce new successors by assuming that edges to 2941 // non-successor TrueBBs and FalseBBs aren't reachable. 2942 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2943 BasicBlock *TrueBB, BasicBlock *FalseBB, 2944 uint32_t TrueWeight, 2945 uint32_t FalseWeight) { 2946 // Remove any superfluous successor edges from the CFG. 2947 // First, figure out which successors to preserve. 2948 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2949 // successor. 2950 BasicBlock *KeepEdge1 = TrueBB; 2951 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2952 2953 // Then remove the rest. 2954 for (BasicBlock *Succ : OldTerm->successors()) { 2955 // Make sure only to keep exactly one copy of each edge. 2956 if (Succ == KeepEdge1) 2957 KeepEdge1 = nullptr; 2958 else if (Succ == KeepEdge2) 2959 KeepEdge2 = nullptr; 2960 else 2961 Succ->removePredecessor(OldTerm->getParent(), 2962 /*DontDeleteUselessPHIs=*/true); 2963 } 2964 2965 IRBuilder<> Builder(OldTerm); 2966 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2967 2968 // Insert an appropriate new terminator. 2969 if (!KeepEdge1 && !KeepEdge2) { 2970 if (TrueBB == FalseBB) 2971 // We were only looking for one successor, and it was present. 2972 // Create an unconditional branch to it. 2973 Builder.CreateBr(TrueBB); 2974 else { 2975 // We found both of the successors we were looking for. 2976 // Create a conditional branch sharing the condition of the select. 2977 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2978 if (TrueWeight != FalseWeight) 2979 NewBI->setMetadata(LLVMContext::MD_prof, 2980 MDBuilder(OldTerm->getContext()) 2981 .createBranchWeights(TrueWeight, FalseWeight)); 2982 } 2983 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2984 // Neither of the selected blocks were successors, so this 2985 // terminator must be unreachable. 2986 new UnreachableInst(OldTerm->getContext(), OldTerm); 2987 } else { 2988 // One of the selected values was a successor, but the other wasn't. 2989 // Insert an unconditional branch to the one that was found; 2990 // the edge to the one that wasn't must be unreachable. 2991 if (!KeepEdge1) 2992 // Only TrueBB was found. 2993 Builder.CreateBr(TrueBB); 2994 else 2995 // Only FalseBB was found. 2996 Builder.CreateBr(FalseBB); 2997 } 2998 2999 EraseTerminatorInstAndDCECond(OldTerm); 3000 return true; 3001 } 3002 3003 // Replaces 3004 // (switch (select cond, X, Y)) on constant X, Y 3005 // with a branch - conditional if X and Y lead to distinct BBs, 3006 // unconditional otherwise. 3007 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3008 // Check for constant integer values in the select. 3009 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3010 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3011 if (!TrueVal || !FalseVal) 3012 return false; 3013 3014 // Find the relevant condition and destinations. 3015 Value *Condition = Select->getCondition(); 3016 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3017 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3018 3019 // Get weight for TrueBB and FalseBB. 3020 uint32_t TrueWeight = 0, FalseWeight = 0; 3021 SmallVector<uint64_t, 8> Weights; 3022 bool HasWeights = HasBranchWeights(SI); 3023 if (HasWeights) { 3024 GetBranchWeights(SI, Weights); 3025 if (Weights.size() == 1 + SI->getNumCases()) { 3026 TrueWeight = 3027 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3028 FalseWeight = 3029 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3030 } 3031 } 3032 3033 // Perform the actual simplification. 3034 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3035 FalseWeight); 3036 } 3037 3038 // Replaces 3039 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3040 // blockaddress(@fn, BlockB))) 3041 // with 3042 // (br cond, BlockA, BlockB). 3043 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3044 // Check that both operands of the select are block addresses. 3045 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3046 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3047 if (!TBA || !FBA) 3048 return false; 3049 3050 // Extract the actual blocks. 3051 BasicBlock *TrueBB = TBA->getBasicBlock(); 3052 BasicBlock *FalseBB = FBA->getBasicBlock(); 3053 3054 // Perform the actual simplification. 3055 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3056 0); 3057 } 3058 3059 /// This is called when we find an icmp instruction 3060 /// (a seteq/setne with a constant) as the only instruction in a 3061 /// block that ends with an uncond branch. We are looking for a very specific 3062 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3063 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3064 /// default value goes to an uncond block with a seteq in it, we get something 3065 /// like: 3066 /// 3067 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3068 /// DEFAULT: 3069 /// %tmp = icmp eq i8 %A, 92 3070 /// br label %end 3071 /// end: 3072 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3073 /// 3074 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3075 /// the PHI, merging the third icmp into the switch. 3076 static bool TryToSimplifyUncondBranchWithICmpInIt( 3077 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3078 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3079 AssumptionCache *AC) { 3080 BasicBlock *BB = ICI->getParent(); 3081 3082 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3083 // complex. 3084 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3085 return false; 3086 3087 Value *V = ICI->getOperand(0); 3088 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3089 3090 // The pattern we're looking for is where our only predecessor is a switch on 3091 // 'V' and this block is the default case for the switch. In this case we can 3092 // fold the compared value into the switch to simplify things. 3093 BasicBlock *Pred = BB->getSinglePredecessor(); 3094 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3095 return false; 3096 3097 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3098 if (SI->getCondition() != V) 3099 return false; 3100 3101 // If BB is reachable on a non-default case, then we simply know the value of 3102 // V in this block. Substitute it and constant fold the icmp instruction 3103 // away. 3104 if (SI->getDefaultDest() != BB) { 3105 ConstantInt *VVal = SI->findCaseDest(BB); 3106 assert(VVal && "Should have a unique destination value"); 3107 ICI->setOperand(0, VVal); 3108 3109 if (Value *V = SimplifyInstruction(ICI, DL)) { 3110 ICI->replaceAllUsesWith(V); 3111 ICI->eraseFromParent(); 3112 } 3113 // BB is now empty, so it is likely to simplify away. 3114 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3115 } 3116 3117 // Ok, the block is reachable from the default dest. If the constant we're 3118 // comparing exists in one of the other edges, then we can constant fold ICI 3119 // and zap it. 3120 if (SI->findCaseValue(Cst) != SI->case_default()) { 3121 Value *V; 3122 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3123 V = ConstantInt::getFalse(BB->getContext()); 3124 else 3125 V = ConstantInt::getTrue(BB->getContext()); 3126 3127 ICI->replaceAllUsesWith(V); 3128 ICI->eraseFromParent(); 3129 // BB is now empty, so it is likely to simplify away. 3130 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3131 } 3132 3133 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3134 // the block. 3135 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3136 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3137 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3138 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3139 return false; 3140 3141 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3142 // true in the PHI. 3143 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3144 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3145 3146 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3147 std::swap(DefaultCst, NewCst); 3148 3149 // Replace ICI (which is used by the PHI for the default value) with true or 3150 // false depending on if it is EQ or NE. 3151 ICI->replaceAllUsesWith(DefaultCst); 3152 ICI->eraseFromParent(); 3153 3154 // Okay, the switch goes to this block on a default value. Add an edge from 3155 // the switch to the merge point on the compared value. 3156 BasicBlock *NewBB = 3157 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3158 SmallVector<uint64_t, 8> Weights; 3159 bool HasWeights = HasBranchWeights(SI); 3160 if (HasWeights) { 3161 GetBranchWeights(SI, Weights); 3162 if (Weights.size() == 1 + SI->getNumCases()) { 3163 // Split weight for default case to case for "Cst". 3164 Weights[0] = (Weights[0] + 1) >> 1; 3165 Weights.push_back(Weights[0]); 3166 3167 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3168 SI->setMetadata( 3169 LLVMContext::MD_prof, 3170 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3171 } 3172 } 3173 SI->addCase(Cst, NewBB); 3174 3175 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3176 Builder.SetInsertPoint(NewBB); 3177 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3178 Builder.CreateBr(SuccBlock); 3179 PHIUse->addIncoming(NewCst, NewBB); 3180 return true; 3181 } 3182 3183 /// The specified branch is a conditional branch. 3184 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3185 /// fold it into a switch instruction if so. 3186 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3187 const DataLayout &DL) { 3188 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3189 if (!Cond) 3190 return false; 3191 3192 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3193 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3194 // 'setne's and'ed together, collect them. 3195 3196 // Try to gather values from a chain of and/or to be turned into a switch 3197 ConstantComparesGatherer ConstantCompare(Cond, DL); 3198 // Unpack the result 3199 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3200 Value *CompVal = ConstantCompare.CompValue; 3201 unsigned UsedICmps = ConstantCompare.UsedICmps; 3202 Value *ExtraCase = ConstantCompare.Extra; 3203 3204 // If we didn't have a multiply compared value, fail. 3205 if (!CompVal) 3206 return false; 3207 3208 // Avoid turning single icmps into a switch. 3209 if (UsedICmps <= 1) 3210 return false; 3211 3212 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3213 3214 // There might be duplicate constants in the list, which the switch 3215 // instruction can't handle, remove them now. 3216 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3217 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3218 3219 // If Extra was used, we require at least two switch values to do the 3220 // transformation. A switch with one value is just a conditional branch. 3221 if (ExtraCase && Values.size() < 2) 3222 return false; 3223 3224 // TODO: Preserve branch weight metadata, similarly to how 3225 // FoldValueComparisonIntoPredecessors preserves it. 3226 3227 // Figure out which block is which destination. 3228 BasicBlock *DefaultBB = BI->getSuccessor(1); 3229 BasicBlock *EdgeBB = BI->getSuccessor(0); 3230 if (!TrueWhenEqual) 3231 std::swap(DefaultBB, EdgeBB); 3232 3233 BasicBlock *BB = BI->getParent(); 3234 3235 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3236 << " cases into SWITCH. BB is:\n" 3237 << *BB); 3238 3239 // If there are any extra values that couldn't be folded into the switch 3240 // then we evaluate them with an explicit branch first. Split the block 3241 // right before the condbr to handle it. 3242 if (ExtraCase) { 3243 BasicBlock *NewBB = 3244 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3245 // Remove the uncond branch added to the old block. 3246 TerminatorInst *OldTI = BB->getTerminator(); 3247 Builder.SetInsertPoint(OldTI); 3248 3249 if (TrueWhenEqual) 3250 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3251 else 3252 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3253 3254 OldTI->eraseFromParent(); 3255 3256 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3257 // for the edge we just added. 3258 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3259 3260 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3261 << "\nEXTRABB = " << *BB); 3262 BB = NewBB; 3263 } 3264 3265 Builder.SetInsertPoint(BI); 3266 // Convert pointer to int before we switch. 3267 if (CompVal->getType()->isPointerTy()) { 3268 CompVal = Builder.CreatePtrToInt( 3269 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3270 } 3271 3272 // Create the new switch instruction now. 3273 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3274 3275 // Add all of the 'cases' to the switch instruction. 3276 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3277 New->addCase(Values[i], EdgeBB); 3278 3279 // We added edges from PI to the EdgeBB. As such, if there were any 3280 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3281 // the number of edges added. 3282 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3283 PHINode *PN = cast<PHINode>(BBI); 3284 Value *InVal = PN->getIncomingValueForBlock(BB); 3285 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3286 PN->addIncoming(InVal, BB); 3287 } 3288 3289 // Erase the old branch instruction. 3290 EraseTerminatorInstAndDCECond(BI); 3291 3292 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3293 return true; 3294 } 3295 3296 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3297 if (isa<PHINode>(RI->getValue())) 3298 return SimplifyCommonResume(RI); 3299 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3300 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3301 // The resume must unwind the exception that caused control to branch here. 3302 return SimplifySingleResume(RI); 3303 3304 return false; 3305 } 3306 3307 // Simplify resume that is shared by several landing pads (phi of landing pad). 3308 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3309 BasicBlock *BB = RI->getParent(); 3310 3311 // Check that there are no other instructions except for debug intrinsics 3312 // between the phi of landing pads (RI->getValue()) and resume instruction. 3313 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3314 E = RI->getIterator(); 3315 while (++I != E) 3316 if (!isa<DbgInfoIntrinsic>(I)) 3317 return false; 3318 3319 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3320 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3321 3322 // Check incoming blocks to see if any of them are trivial. 3323 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3324 Idx++) { 3325 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3326 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3327 3328 // If the block has other successors, we can not delete it because 3329 // it has other dependents. 3330 if (IncomingBB->getUniqueSuccessor() != BB) 3331 continue; 3332 3333 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3334 // Not the landing pad that caused the control to branch here. 3335 if (IncomingValue != LandingPad) 3336 continue; 3337 3338 bool isTrivial = true; 3339 3340 I = IncomingBB->getFirstNonPHI()->getIterator(); 3341 E = IncomingBB->getTerminator()->getIterator(); 3342 while (++I != E) 3343 if (!isa<DbgInfoIntrinsic>(I)) { 3344 isTrivial = false; 3345 break; 3346 } 3347 3348 if (isTrivial) 3349 TrivialUnwindBlocks.insert(IncomingBB); 3350 } 3351 3352 // If no trivial unwind blocks, don't do any simplifications. 3353 if (TrivialUnwindBlocks.empty()) 3354 return false; 3355 3356 // Turn all invokes that unwind here into calls. 3357 for (auto *TrivialBB : TrivialUnwindBlocks) { 3358 // Blocks that will be simplified should be removed from the phi node. 3359 // Note there could be multiple edges to the resume block, and we need 3360 // to remove them all. 3361 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3362 BB->removePredecessor(TrivialBB, true); 3363 3364 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3365 PI != PE;) { 3366 BasicBlock *Pred = *PI++; 3367 removeUnwindEdge(Pred); 3368 } 3369 3370 // In each SimplifyCFG run, only the current processed block can be erased. 3371 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3372 // of erasing TrivialBB, we only remove the branch to the common resume 3373 // block so that we can later erase the resume block since it has no 3374 // predecessors. 3375 TrivialBB->getTerminator()->eraseFromParent(); 3376 new UnreachableInst(RI->getContext(), TrivialBB); 3377 } 3378 3379 // Delete the resume block if all its predecessors have been removed. 3380 if (pred_empty(BB)) 3381 BB->eraseFromParent(); 3382 3383 return !TrivialUnwindBlocks.empty(); 3384 } 3385 3386 // Simplify resume that is only used by a single (non-phi) landing pad. 3387 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3388 BasicBlock *BB = RI->getParent(); 3389 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3390 assert(RI->getValue() == LPInst && 3391 "Resume must unwind the exception that caused control to here"); 3392 3393 // Check that there are no other instructions except for debug intrinsics. 3394 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3395 while (++I != E) 3396 if (!isa<DbgInfoIntrinsic>(I)) 3397 return false; 3398 3399 // Turn all invokes that unwind here into calls and delete the basic block. 3400 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3401 BasicBlock *Pred = *PI++; 3402 removeUnwindEdge(Pred); 3403 } 3404 3405 // The landingpad is now unreachable. Zap it. 3406 BB->eraseFromParent(); 3407 if (LoopHeaders) 3408 LoopHeaders->erase(BB); 3409 return true; 3410 } 3411 3412 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3413 // If this is a trivial cleanup pad that executes no instructions, it can be 3414 // eliminated. If the cleanup pad continues to the caller, any predecessor 3415 // that is an EH pad will be updated to continue to the caller and any 3416 // predecessor that terminates with an invoke instruction will have its invoke 3417 // instruction converted to a call instruction. If the cleanup pad being 3418 // simplified does not continue to the caller, each predecessor will be 3419 // updated to continue to the unwind destination of the cleanup pad being 3420 // simplified. 3421 BasicBlock *BB = RI->getParent(); 3422 CleanupPadInst *CPInst = RI->getCleanupPad(); 3423 if (CPInst->getParent() != BB) 3424 // This isn't an empty cleanup. 3425 return false; 3426 3427 // Check that there are no other instructions except for benign intrinsics. 3428 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3429 while (++I != E) { 3430 auto *II = dyn_cast<IntrinsicInst>(I); 3431 if (!II) 3432 return false; 3433 3434 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3435 switch (IntrinsicID) { 3436 case Intrinsic::dbg_declare: 3437 case Intrinsic::dbg_value: 3438 case Intrinsic::lifetime_end: 3439 break; 3440 default: 3441 return false; 3442 } 3443 } 3444 3445 // If the cleanup return we are simplifying unwinds to the caller, this will 3446 // set UnwindDest to nullptr. 3447 BasicBlock *UnwindDest = RI->getUnwindDest(); 3448 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3449 3450 // We're about to remove BB from the control flow. Before we do, sink any 3451 // PHINodes into the unwind destination. Doing this before changing the 3452 // control flow avoids some potentially slow checks, since we can currently 3453 // be certain that UnwindDest and BB have no common predecessors (since they 3454 // are both EH pads). 3455 if (UnwindDest) { 3456 // First, go through the PHI nodes in UnwindDest and update any nodes that 3457 // reference the block we are removing 3458 for (BasicBlock::iterator I = UnwindDest->begin(), 3459 IE = DestEHPad->getIterator(); 3460 I != IE; ++I) { 3461 PHINode *DestPN = cast<PHINode>(I); 3462 3463 int Idx = DestPN->getBasicBlockIndex(BB); 3464 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3465 assert(Idx != -1); 3466 // This PHI node has an incoming value that corresponds to a control 3467 // path through the cleanup pad we are removing. If the incoming 3468 // value is in the cleanup pad, it must be a PHINode (because we 3469 // verified above that the block is otherwise empty). Otherwise, the 3470 // value is either a constant or a value that dominates the cleanup 3471 // pad being removed. 3472 // 3473 // Because BB and UnwindDest are both EH pads, all of their 3474 // predecessors must unwind to these blocks, and since no instruction 3475 // can have multiple unwind destinations, there will be no overlap in 3476 // incoming blocks between SrcPN and DestPN. 3477 Value *SrcVal = DestPN->getIncomingValue(Idx); 3478 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3479 3480 // Remove the entry for the block we are deleting. 3481 DestPN->removeIncomingValue(Idx, false); 3482 3483 if (SrcPN && SrcPN->getParent() == BB) { 3484 // If the incoming value was a PHI node in the cleanup pad we are 3485 // removing, we need to merge that PHI node's incoming values into 3486 // DestPN. 3487 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3488 SrcIdx != SrcE; ++SrcIdx) { 3489 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3490 SrcPN->getIncomingBlock(SrcIdx)); 3491 } 3492 } else { 3493 // Otherwise, the incoming value came from above BB and 3494 // so we can just reuse it. We must associate all of BB's 3495 // predecessors with this value. 3496 for (auto *pred : predecessors(BB)) { 3497 DestPN->addIncoming(SrcVal, pred); 3498 } 3499 } 3500 } 3501 3502 // Sink any remaining PHI nodes directly into UnwindDest. 3503 Instruction *InsertPt = DestEHPad; 3504 for (BasicBlock::iterator I = BB->begin(), 3505 IE = BB->getFirstNonPHI()->getIterator(); 3506 I != IE;) { 3507 // The iterator must be incremented here because the instructions are 3508 // being moved to another block. 3509 PHINode *PN = cast<PHINode>(I++); 3510 if (PN->use_empty()) 3511 // If the PHI node has no uses, just leave it. It will be erased 3512 // when we erase BB below. 3513 continue; 3514 3515 // Otherwise, sink this PHI node into UnwindDest. 3516 // Any predecessors to UnwindDest which are not already represented 3517 // must be back edges which inherit the value from the path through 3518 // BB. In this case, the PHI value must reference itself. 3519 for (auto *pred : predecessors(UnwindDest)) 3520 if (pred != BB) 3521 PN->addIncoming(PN, pred); 3522 PN->moveBefore(InsertPt); 3523 } 3524 } 3525 3526 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3527 // The iterator must be updated here because we are removing this pred. 3528 BasicBlock *PredBB = *PI++; 3529 if (UnwindDest == nullptr) { 3530 removeUnwindEdge(PredBB); 3531 } else { 3532 TerminatorInst *TI = PredBB->getTerminator(); 3533 TI->replaceUsesOfWith(BB, UnwindDest); 3534 } 3535 } 3536 3537 // The cleanup pad is now unreachable. Zap it. 3538 BB->eraseFromParent(); 3539 return true; 3540 } 3541 3542 // Try to merge two cleanuppads together. 3543 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3544 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3545 // with. 3546 BasicBlock *UnwindDest = RI->getUnwindDest(); 3547 if (!UnwindDest) 3548 return false; 3549 3550 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3551 // be safe to merge without code duplication. 3552 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3553 return false; 3554 3555 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3556 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3557 if (!SuccessorCleanupPad) 3558 return false; 3559 3560 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3561 // Replace any uses of the successor cleanupad with the predecessor pad 3562 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3563 // funclet bundle operands. 3564 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3565 // Remove the old cleanuppad. 3566 SuccessorCleanupPad->eraseFromParent(); 3567 // Now, we simply replace the cleanupret with a branch to the unwind 3568 // destination. 3569 BranchInst::Create(UnwindDest, RI->getParent()); 3570 RI->eraseFromParent(); 3571 3572 return true; 3573 } 3574 3575 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3576 // It is possible to transiantly have an undef cleanuppad operand because we 3577 // have deleted some, but not all, dead blocks. 3578 // Eventually, this block will be deleted. 3579 if (isa<UndefValue>(RI->getOperand(0))) 3580 return false; 3581 3582 if (mergeCleanupPad(RI)) 3583 return true; 3584 3585 if (removeEmptyCleanup(RI)) 3586 return true; 3587 3588 return false; 3589 } 3590 3591 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3592 BasicBlock *BB = RI->getParent(); 3593 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3594 return false; 3595 3596 // Find predecessors that end with branches. 3597 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3598 SmallVector<BranchInst *, 8> CondBranchPreds; 3599 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3600 BasicBlock *P = *PI; 3601 TerminatorInst *PTI = P->getTerminator(); 3602 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3603 if (BI->isUnconditional()) 3604 UncondBranchPreds.push_back(P); 3605 else 3606 CondBranchPreds.push_back(BI); 3607 } 3608 } 3609 3610 // If we found some, do the transformation! 3611 if (!UncondBranchPreds.empty() && DupRet) { 3612 while (!UncondBranchPreds.empty()) { 3613 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3614 DEBUG(dbgs() << "FOLDING: " << *BB 3615 << "INTO UNCOND BRANCH PRED: " << *Pred); 3616 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3617 } 3618 3619 // If we eliminated all predecessors of the block, delete the block now. 3620 if (pred_empty(BB)) { 3621 // We know there are no successors, so just nuke the block. 3622 BB->eraseFromParent(); 3623 if (LoopHeaders) 3624 LoopHeaders->erase(BB); 3625 } 3626 3627 return true; 3628 } 3629 3630 // Check out all of the conditional branches going to this return 3631 // instruction. If any of them just select between returns, change the 3632 // branch itself into a select/return pair. 3633 while (!CondBranchPreds.empty()) { 3634 BranchInst *BI = CondBranchPreds.pop_back_val(); 3635 3636 // Check to see if the non-BB successor is also a return block. 3637 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3638 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3639 SimplifyCondBranchToTwoReturns(BI, Builder)) 3640 return true; 3641 } 3642 return false; 3643 } 3644 3645 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3646 BasicBlock *BB = UI->getParent(); 3647 3648 bool Changed = false; 3649 3650 // If there are any instructions immediately before the unreachable that can 3651 // be removed, do so. 3652 while (UI->getIterator() != BB->begin()) { 3653 BasicBlock::iterator BBI = UI->getIterator(); 3654 --BBI; 3655 // Do not delete instructions that can have side effects which might cause 3656 // the unreachable to not be reachable; specifically, calls and volatile 3657 // operations may have this effect. 3658 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3659 break; 3660 3661 if (BBI->mayHaveSideEffects()) { 3662 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3663 if (SI->isVolatile()) 3664 break; 3665 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3666 if (LI->isVolatile()) 3667 break; 3668 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3669 if (RMWI->isVolatile()) 3670 break; 3671 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3672 if (CXI->isVolatile()) 3673 break; 3674 } else if (isa<CatchPadInst>(BBI)) { 3675 // A catchpad may invoke exception object constructors and such, which 3676 // in some languages can be arbitrary code, so be conservative by 3677 // default. 3678 // For CoreCLR, it just involves a type test, so can be removed. 3679 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3680 EHPersonality::CoreCLR) 3681 break; 3682 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3683 !isa<LandingPadInst>(BBI)) { 3684 break; 3685 } 3686 // Note that deleting LandingPad's here is in fact okay, although it 3687 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3688 // all the predecessors of this block will be the unwind edges of Invokes, 3689 // and we can therefore guarantee this block will be erased. 3690 } 3691 3692 // Delete this instruction (any uses are guaranteed to be dead) 3693 if (!BBI->use_empty()) 3694 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3695 BBI->eraseFromParent(); 3696 Changed = true; 3697 } 3698 3699 // If the unreachable instruction is the first in the block, take a gander 3700 // at all of the predecessors of this instruction, and simplify them. 3701 if (&BB->front() != UI) 3702 return Changed; 3703 3704 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 3705 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3706 TerminatorInst *TI = Preds[i]->getTerminator(); 3707 IRBuilder<> Builder(TI); 3708 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3709 if (BI->isUnconditional()) { 3710 if (BI->getSuccessor(0) == BB) { 3711 new UnreachableInst(TI->getContext(), TI); 3712 TI->eraseFromParent(); 3713 Changed = true; 3714 } 3715 } else { 3716 if (BI->getSuccessor(0) == BB) { 3717 Builder.CreateBr(BI->getSuccessor(1)); 3718 EraseTerminatorInstAndDCECond(BI); 3719 } else if (BI->getSuccessor(1) == BB) { 3720 Builder.CreateBr(BI->getSuccessor(0)); 3721 EraseTerminatorInstAndDCECond(BI); 3722 Changed = true; 3723 } 3724 } 3725 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3726 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 3727 ++i) 3728 if (i.getCaseSuccessor() == BB) { 3729 BB->removePredecessor(SI->getParent()); 3730 SI->removeCase(i); 3731 --i; 3732 --e; 3733 Changed = true; 3734 } 3735 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3736 if (II->getUnwindDest() == BB) { 3737 removeUnwindEdge(TI->getParent()); 3738 Changed = true; 3739 } 3740 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3741 if (CSI->getUnwindDest() == BB) { 3742 removeUnwindEdge(TI->getParent()); 3743 Changed = true; 3744 continue; 3745 } 3746 3747 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3748 E = CSI->handler_end(); 3749 I != E; ++I) { 3750 if (*I == BB) { 3751 CSI->removeHandler(I); 3752 --I; 3753 --E; 3754 Changed = true; 3755 } 3756 } 3757 if (CSI->getNumHandlers() == 0) { 3758 BasicBlock *CatchSwitchBB = CSI->getParent(); 3759 if (CSI->hasUnwindDest()) { 3760 // Redirect preds to the unwind dest 3761 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3762 } else { 3763 // Rewrite all preds to unwind to caller (or from invoke to call). 3764 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3765 for (BasicBlock *EHPred : EHPreds) 3766 removeUnwindEdge(EHPred); 3767 } 3768 // The catchswitch is no longer reachable. 3769 new UnreachableInst(CSI->getContext(), CSI); 3770 CSI->eraseFromParent(); 3771 Changed = true; 3772 } 3773 } else if (isa<CleanupReturnInst>(TI)) { 3774 new UnreachableInst(TI->getContext(), TI); 3775 TI->eraseFromParent(); 3776 Changed = true; 3777 } 3778 } 3779 3780 // If this block is now dead, remove it. 3781 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 3782 // We know there are no successors, so just nuke the block. 3783 BB->eraseFromParent(); 3784 if (LoopHeaders) 3785 LoopHeaders->erase(BB); 3786 return true; 3787 } 3788 3789 return Changed; 3790 } 3791 3792 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3793 assert(Cases.size() >= 1); 3794 3795 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3796 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3797 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3798 return false; 3799 } 3800 return true; 3801 } 3802 3803 /// Turn a switch with two reachable destinations into an integer range 3804 /// comparison and branch. 3805 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3806 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3807 3808 bool HasDefault = 3809 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3810 3811 // Partition the cases into two sets with different destinations. 3812 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3813 BasicBlock *DestB = nullptr; 3814 SmallVector<ConstantInt *, 16> CasesA; 3815 SmallVector<ConstantInt *, 16> CasesB; 3816 3817 for (SwitchInst::CaseIt I : SI->cases()) { 3818 BasicBlock *Dest = I.getCaseSuccessor(); 3819 if (!DestA) 3820 DestA = Dest; 3821 if (Dest == DestA) { 3822 CasesA.push_back(I.getCaseValue()); 3823 continue; 3824 } 3825 if (!DestB) 3826 DestB = Dest; 3827 if (Dest == DestB) { 3828 CasesB.push_back(I.getCaseValue()); 3829 continue; 3830 } 3831 return false; // More than two destinations. 3832 } 3833 3834 assert(DestA && DestB && 3835 "Single-destination switch should have been folded."); 3836 assert(DestA != DestB); 3837 assert(DestB != SI->getDefaultDest()); 3838 assert(!CasesB.empty() && "There must be non-default cases."); 3839 assert(!CasesA.empty() || HasDefault); 3840 3841 // Figure out if one of the sets of cases form a contiguous range. 3842 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3843 BasicBlock *ContiguousDest = nullptr; 3844 BasicBlock *OtherDest = nullptr; 3845 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3846 ContiguousCases = &CasesA; 3847 ContiguousDest = DestA; 3848 OtherDest = DestB; 3849 } else if (CasesAreContiguous(CasesB)) { 3850 ContiguousCases = &CasesB; 3851 ContiguousDest = DestB; 3852 OtherDest = DestA; 3853 } else 3854 return false; 3855 3856 // Start building the compare and branch. 3857 3858 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3859 Constant *NumCases = 3860 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3861 3862 Value *Sub = SI->getCondition(); 3863 if (!Offset->isNullValue()) 3864 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3865 3866 Value *Cmp; 3867 // If NumCases overflowed, then all possible values jump to the successor. 3868 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3869 Cmp = ConstantInt::getTrue(SI->getContext()); 3870 else 3871 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3872 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3873 3874 // Update weight for the newly-created conditional branch. 3875 if (HasBranchWeights(SI)) { 3876 SmallVector<uint64_t, 8> Weights; 3877 GetBranchWeights(SI, Weights); 3878 if (Weights.size() == 1 + SI->getNumCases()) { 3879 uint64_t TrueWeight = 0; 3880 uint64_t FalseWeight = 0; 3881 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3882 if (SI->getSuccessor(I) == ContiguousDest) 3883 TrueWeight += Weights[I]; 3884 else 3885 FalseWeight += Weights[I]; 3886 } 3887 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3888 TrueWeight /= 2; 3889 FalseWeight /= 2; 3890 } 3891 NewBI->setMetadata(LLVMContext::MD_prof, 3892 MDBuilder(SI->getContext()) 3893 .createBranchWeights((uint32_t)TrueWeight, 3894 (uint32_t)FalseWeight)); 3895 } 3896 } 3897 3898 // Prune obsolete incoming values off the successors' PHI nodes. 3899 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3900 unsigned PreviousEdges = ContiguousCases->size(); 3901 if (ContiguousDest == SI->getDefaultDest()) 3902 ++PreviousEdges; 3903 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3904 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3905 } 3906 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3907 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3908 if (OtherDest == SI->getDefaultDest()) 3909 ++PreviousEdges; 3910 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3911 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3912 } 3913 3914 // Drop the switch. 3915 SI->eraseFromParent(); 3916 3917 return true; 3918 } 3919 3920 /// Compute masked bits for the condition of a switch 3921 /// and use it to remove dead cases. 3922 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3923 const DataLayout &DL) { 3924 Value *Cond = SI->getCondition(); 3925 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3926 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3927 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3928 3929 // We can also eliminate cases by determining that their values are outside of 3930 // the limited range of the condition based on how many significant (non-sign) 3931 // bits are in the condition value. 3932 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 3933 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 3934 3935 // Gather dead cases. 3936 SmallVector<ConstantInt *, 8> DeadCases; 3937 for (auto &Case : SI->cases()) { 3938 APInt CaseVal = Case.getCaseValue()->getValue(); 3939 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 3940 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 3941 DeadCases.push_back(Case.getCaseValue()); 3942 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 3943 } 3944 } 3945 3946 // If we can prove that the cases must cover all possible values, the 3947 // default destination becomes dead and we can remove it. If we know some 3948 // of the bits in the value, we can use that to more precisely compute the 3949 // number of possible unique case values. 3950 bool HasDefault = 3951 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3952 const unsigned NumUnknownBits = 3953 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 3954 assert(NumUnknownBits <= Bits); 3955 if (HasDefault && DeadCases.empty() && 3956 NumUnknownBits < 64 /* avoid overflow */ && 3957 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3958 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3959 BasicBlock *NewDefault = 3960 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 3961 SI->setDefaultDest(&*NewDefault); 3962 SplitBlock(&*NewDefault, &NewDefault->front()); 3963 auto *OldTI = NewDefault->getTerminator(); 3964 new UnreachableInst(SI->getContext(), OldTI); 3965 EraseTerminatorInstAndDCECond(OldTI); 3966 return true; 3967 } 3968 3969 SmallVector<uint64_t, 8> Weights; 3970 bool HasWeight = HasBranchWeights(SI); 3971 if (HasWeight) { 3972 GetBranchWeights(SI, Weights); 3973 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3974 } 3975 3976 // Remove dead cases from the switch. 3977 for (ConstantInt *DeadCase : DeadCases) { 3978 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 3979 assert(Case != SI->case_default() && 3980 "Case was not found. Probably mistake in DeadCases forming."); 3981 if (HasWeight) { 3982 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 3983 Weights.pop_back(); 3984 } 3985 3986 // Prune unused values from PHI nodes. 3987 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3988 SI->removeCase(Case); 3989 } 3990 if (HasWeight && Weights.size() >= 2) { 3991 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3992 SI->setMetadata(LLVMContext::MD_prof, 3993 MDBuilder(SI->getParent()->getContext()) 3994 .createBranchWeights(MDWeights)); 3995 } 3996 3997 return !DeadCases.empty(); 3998 } 3999 4000 /// If BB would be eligible for simplification by 4001 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4002 /// by an unconditional branch), look at the phi node for BB in the successor 4003 /// block and see if the incoming value is equal to CaseValue. If so, return 4004 /// the phi node, and set PhiIndex to BB's index in the phi node. 4005 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4006 BasicBlock *BB, int *PhiIndex) { 4007 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4008 return nullptr; // BB must be empty to be a candidate for simplification. 4009 if (!BB->getSinglePredecessor()) 4010 return nullptr; // BB must be dominated by the switch. 4011 4012 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4013 if (!Branch || !Branch->isUnconditional()) 4014 return nullptr; // Terminator must be unconditional branch. 4015 4016 BasicBlock *Succ = Branch->getSuccessor(0); 4017 4018 BasicBlock::iterator I = Succ->begin(); 4019 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4020 int Idx = PHI->getBasicBlockIndex(BB); 4021 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4022 4023 Value *InValue = PHI->getIncomingValue(Idx); 4024 if (InValue != CaseValue) 4025 continue; 4026 4027 *PhiIndex = Idx; 4028 return PHI; 4029 } 4030 4031 return nullptr; 4032 } 4033 4034 /// Try to forward the condition of a switch instruction to a phi node 4035 /// dominated by the switch, if that would mean that some of the destination 4036 /// blocks of the switch can be folded away. 4037 /// Returns true if a change is made. 4038 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4039 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4040 ForwardingNodesMap ForwardingNodes; 4041 4042 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4043 ++I) { 4044 ConstantInt *CaseValue = I.getCaseValue(); 4045 BasicBlock *CaseDest = I.getCaseSuccessor(); 4046 4047 int PhiIndex; 4048 PHINode *PHI = 4049 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4050 if (!PHI) 4051 continue; 4052 4053 ForwardingNodes[PHI].push_back(PhiIndex); 4054 } 4055 4056 bool Changed = false; 4057 4058 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4059 E = ForwardingNodes.end(); 4060 I != E; ++I) { 4061 PHINode *Phi = I->first; 4062 SmallVectorImpl<int> &Indexes = I->second; 4063 4064 if (Indexes.size() < 2) 4065 continue; 4066 4067 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4068 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4069 Changed = true; 4070 } 4071 4072 return Changed; 4073 } 4074 4075 /// Return true if the backend will be able to handle 4076 /// initializing an array of constants like C. 4077 static bool ValidLookupTableConstant(Constant *C) { 4078 if (C->isThreadDependent()) 4079 return false; 4080 if (C->isDLLImportDependent()) 4081 return false; 4082 4083 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4084 return CE->isGEPWithNoNotionalOverIndexing(); 4085 4086 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4087 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4088 isa<UndefValue>(C); 4089 } 4090 4091 /// If V is a Constant, return it. Otherwise, try to look up 4092 /// its constant value in ConstantPool, returning 0 if it's not there. 4093 static Constant * 4094 LookupConstant(Value *V, 4095 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4096 if (Constant *C = dyn_cast<Constant>(V)) 4097 return C; 4098 return ConstantPool.lookup(V); 4099 } 4100 4101 /// Try to fold instruction I into a constant. This works for 4102 /// simple instructions such as binary operations where both operands are 4103 /// constant or can be replaced by constants from the ConstantPool. Returns the 4104 /// resulting constant on success, 0 otherwise. 4105 static Constant * 4106 ConstantFold(Instruction *I, const DataLayout &DL, 4107 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4108 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4109 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4110 if (!A) 4111 return nullptr; 4112 if (A->isAllOnesValue()) 4113 return LookupConstant(Select->getTrueValue(), ConstantPool); 4114 if (A->isNullValue()) 4115 return LookupConstant(Select->getFalseValue(), ConstantPool); 4116 return nullptr; 4117 } 4118 4119 SmallVector<Constant *, 4> COps; 4120 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4121 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4122 COps.push_back(A); 4123 else 4124 return nullptr; 4125 } 4126 4127 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4128 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4129 COps[1], DL); 4130 } 4131 4132 return ConstantFoldInstOperands(I, COps, DL); 4133 } 4134 4135 /// Try to determine the resulting constant values in phi nodes 4136 /// at the common destination basic block, *CommonDest, for one of the case 4137 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4138 /// case), of a switch instruction SI. 4139 static bool 4140 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4141 BasicBlock **CommonDest, 4142 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4143 const DataLayout &DL) { 4144 // The block from which we enter the common destination. 4145 BasicBlock *Pred = SI->getParent(); 4146 4147 // If CaseDest is empty except for some side-effect free instructions through 4148 // which we can constant-propagate the CaseVal, continue to its successor. 4149 SmallDenseMap<Value *, Constant *> ConstantPool; 4150 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4151 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4152 ++I) { 4153 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4154 // If the terminator is a simple branch, continue to the next block. 4155 if (T->getNumSuccessors() != 1) 4156 return false; 4157 Pred = CaseDest; 4158 CaseDest = T->getSuccessor(0); 4159 } else if (isa<DbgInfoIntrinsic>(I)) { 4160 // Skip debug intrinsic. 4161 continue; 4162 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4163 // Instruction is side-effect free and constant. 4164 4165 // If the instruction has uses outside this block or a phi node slot for 4166 // the block, it is not safe to bypass the instruction since it would then 4167 // no longer dominate all its uses. 4168 for (auto &Use : I->uses()) { 4169 User *User = Use.getUser(); 4170 if (Instruction *I = dyn_cast<Instruction>(User)) 4171 if (I->getParent() == CaseDest) 4172 continue; 4173 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4174 if (Phi->getIncomingBlock(Use) == CaseDest) 4175 continue; 4176 return false; 4177 } 4178 4179 ConstantPool.insert(std::make_pair(&*I, C)); 4180 } else { 4181 break; 4182 } 4183 } 4184 4185 // If we did not have a CommonDest before, use the current one. 4186 if (!*CommonDest) 4187 *CommonDest = CaseDest; 4188 // If the destination isn't the common one, abort. 4189 if (CaseDest != *CommonDest) 4190 return false; 4191 4192 // Get the values for this case from phi nodes in the destination block. 4193 BasicBlock::iterator I = (*CommonDest)->begin(); 4194 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4195 int Idx = PHI->getBasicBlockIndex(Pred); 4196 if (Idx == -1) 4197 continue; 4198 4199 Constant *ConstVal = 4200 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4201 if (!ConstVal) 4202 return false; 4203 4204 // Be conservative about which kinds of constants we support. 4205 if (!ValidLookupTableConstant(ConstVal)) 4206 return false; 4207 4208 Res.push_back(std::make_pair(PHI, ConstVal)); 4209 } 4210 4211 return Res.size() > 0; 4212 } 4213 4214 // Helper function used to add CaseVal to the list of cases that generate 4215 // Result. 4216 static void MapCaseToResult(ConstantInt *CaseVal, 4217 SwitchCaseResultVectorTy &UniqueResults, 4218 Constant *Result) { 4219 for (auto &I : UniqueResults) { 4220 if (I.first == Result) { 4221 I.second.push_back(CaseVal); 4222 return; 4223 } 4224 } 4225 UniqueResults.push_back( 4226 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4227 } 4228 4229 // Helper function that initializes a map containing 4230 // results for the PHI node of the common destination block for a switch 4231 // instruction. Returns false if multiple PHI nodes have been found or if 4232 // there is not a common destination block for the switch. 4233 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4234 BasicBlock *&CommonDest, 4235 SwitchCaseResultVectorTy &UniqueResults, 4236 Constant *&DefaultResult, 4237 const DataLayout &DL) { 4238 for (auto &I : SI->cases()) { 4239 ConstantInt *CaseVal = I.getCaseValue(); 4240 4241 // Resulting value at phi nodes for this case value. 4242 SwitchCaseResultsTy Results; 4243 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4244 DL)) 4245 return false; 4246 4247 // Only one value per case is permitted 4248 if (Results.size() > 1) 4249 return false; 4250 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4251 4252 // Check the PHI consistency. 4253 if (!PHI) 4254 PHI = Results[0].first; 4255 else if (PHI != Results[0].first) 4256 return false; 4257 } 4258 // Find the default result value. 4259 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4260 BasicBlock *DefaultDest = SI->getDefaultDest(); 4261 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4262 DL); 4263 // If the default value is not found abort unless the default destination 4264 // is unreachable. 4265 DefaultResult = 4266 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4267 if ((!DefaultResult && 4268 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4269 return false; 4270 4271 return true; 4272 } 4273 4274 // Helper function that checks if it is possible to transform a switch with only 4275 // two cases (or two cases + default) that produces a result into a select. 4276 // Example: 4277 // switch (a) { 4278 // case 10: %0 = icmp eq i32 %a, 10 4279 // return 10; %1 = select i1 %0, i32 10, i32 4 4280 // case 20: ----> %2 = icmp eq i32 %a, 20 4281 // return 2; %3 = select i1 %2, i32 2, i32 %1 4282 // default: 4283 // return 4; 4284 // } 4285 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4286 Constant *DefaultResult, Value *Condition, 4287 IRBuilder<> &Builder) { 4288 assert(ResultVector.size() == 2 && 4289 "We should have exactly two unique results at this point"); 4290 // If we are selecting between only two cases transform into a simple 4291 // select or a two-way select if default is possible. 4292 if (ResultVector[0].second.size() == 1 && 4293 ResultVector[1].second.size() == 1) { 4294 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4295 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4296 4297 bool DefaultCanTrigger = DefaultResult; 4298 Value *SelectValue = ResultVector[1].first; 4299 if (DefaultCanTrigger) { 4300 Value *const ValueCompare = 4301 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4302 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4303 DefaultResult, "switch.select"); 4304 } 4305 Value *const ValueCompare = 4306 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4307 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4308 SelectValue, "switch.select"); 4309 } 4310 4311 return nullptr; 4312 } 4313 4314 // Helper function to cleanup a switch instruction that has been converted into 4315 // a select, fixing up PHI nodes and basic blocks. 4316 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4317 Value *SelectValue, 4318 IRBuilder<> &Builder) { 4319 BasicBlock *SelectBB = SI->getParent(); 4320 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4321 PHI->removeIncomingValue(SelectBB); 4322 PHI->addIncoming(SelectValue, SelectBB); 4323 4324 Builder.CreateBr(PHI->getParent()); 4325 4326 // Remove the switch. 4327 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4328 BasicBlock *Succ = SI->getSuccessor(i); 4329 4330 if (Succ == PHI->getParent()) 4331 continue; 4332 Succ->removePredecessor(SelectBB); 4333 } 4334 SI->eraseFromParent(); 4335 } 4336 4337 /// If the switch is only used to initialize one or more 4338 /// phi nodes in a common successor block with only two different 4339 /// constant values, replace the switch with select. 4340 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4341 AssumptionCache *AC, const DataLayout &DL) { 4342 Value *const Cond = SI->getCondition(); 4343 PHINode *PHI = nullptr; 4344 BasicBlock *CommonDest = nullptr; 4345 Constant *DefaultResult; 4346 SwitchCaseResultVectorTy UniqueResults; 4347 // Collect all the cases that will deliver the same value from the switch. 4348 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4349 DL)) 4350 return false; 4351 // Selects choose between maximum two values. 4352 if (UniqueResults.size() != 2) 4353 return false; 4354 assert(PHI != nullptr && "PHI for value select not found"); 4355 4356 Builder.SetInsertPoint(SI); 4357 Value *SelectValue = 4358 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4359 if (SelectValue) { 4360 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4361 return true; 4362 } 4363 // The switch couldn't be converted into a select. 4364 return false; 4365 } 4366 4367 namespace { 4368 /// This class represents a lookup table that can be used to replace a switch. 4369 class SwitchLookupTable { 4370 public: 4371 /// Create a lookup table to use as a switch replacement with the contents 4372 /// of Values, using DefaultValue to fill any holes in the table. 4373 SwitchLookupTable( 4374 Module &M, uint64_t TableSize, ConstantInt *Offset, 4375 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4376 Constant *DefaultValue, const DataLayout &DL); 4377 4378 /// Build instructions with Builder to retrieve the value at 4379 /// the position given by Index in the lookup table. 4380 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4381 4382 /// Return true if a table with TableSize elements of 4383 /// type ElementType would fit in a target-legal register. 4384 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4385 Type *ElementType); 4386 4387 private: 4388 // Depending on the contents of the table, it can be represented in 4389 // different ways. 4390 enum { 4391 // For tables where each element contains the same value, we just have to 4392 // store that single value and return it for each lookup. 4393 SingleValueKind, 4394 4395 // For tables where there is a linear relationship between table index 4396 // and values. We calculate the result with a simple multiplication 4397 // and addition instead of a table lookup. 4398 LinearMapKind, 4399 4400 // For small tables with integer elements, we can pack them into a bitmap 4401 // that fits into a target-legal register. Values are retrieved by 4402 // shift and mask operations. 4403 BitMapKind, 4404 4405 // The table is stored as an array of values. Values are retrieved by load 4406 // instructions from the table. 4407 ArrayKind 4408 } Kind; 4409 4410 // For SingleValueKind, this is the single value. 4411 Constant *SingleValue; 4412 4413 // For BitMapKind, this is the bitmap. 4414 ConstantInt *BitMap; 4415 IntegerType *BitMapElementTy; 4416 4417 // For LinearMapKind, these are the constants used to derive the value. 4418 ConstantInt *LinearOffset; 4419 ConstantInt *LinearMultiplier; 4420 4421 // For ArrayKind, this is the array. 4422 GlobalVariable *Array; 4423 }; 4424 } 4425 4426 SwitchLookupTable::SwitchLookupTable( 4427 Module &M, uint64_t TableSize, ConstantInt *Offset, 4428 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4429 Constant *DefaultValue, const DataLayout &DL) 4430 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4431 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4432 assert(Values.size() && "Can't build lookup table without values!"); 4433 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4434 4435 // If all values in the table are equal, this is that value. 4436 SingleValue = Values.begin()->second; 4437 4438 Type *ValueType = Values.begin()->second->getType(); 4439 4440 // Build up the table contents. 4441 SmallVector<Constant *, 64> TableContents(TableSize); 4442 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4443 ConstantInt *CaseVal = Values[I].first; 4444 Constant *CaseRes = Values[I].second; 4445 assert(CaseRes->getType() == ValueType); 4446 4447 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4448 TableContents[Idx] = CaseRes; 4449 4450 if (CaseRes != SingleValue) 4451 SingleValue = nullptr; 4452 } 4453 4454 // Fill in any holes in the table with the default result. 4455 if (Values.size() < TableSize) { 4456 assert(DefaultValue && 4457 "Need a default value to fill the lookup table holes."); 4458 assert(DefaultValue->getType() == ValueType); 4459 for (uint64_t I = 0; I < TableSize; ++I) { 4460 if (!TableContents[I]) 4461 TableContents[I] = DefaultValue; 4462 } 4463 4464 if (DefaultValue != SingleValue) 4465 SingleValue = nullptr; 4466 } 4467 4468 // If each element in the table contains the same value, we only need to store 4469 // that single value. 4470 if (SingleValue) { 4471 Kind = SingleValueKind; 4472 return; 4473 } 4474 4475 // Check if we can derive the value with a linear transformation from the 4476 // table index. 4477 if (isa<IntegerType>(ValueType)) { 4478 bool LinearMappingPossible = true; 4479 APInt PrevVal; 4480 APInt DistToPrev; 4481 assert(TableSize >= 2 && "Should be a SingleValue table."); 4482 // Check if there is the same distance between two consecutive values. 4483 for (uint64_t I = 0; I < TableSize; ++I) { 4484 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4485 if (!ConstVal) { 4486 // This is an undef. We could deal with it, but undefs in lookup tables 4487 // are very seldom. It's probably not worth the additional complexity. 4488 LinearMappingPossible = false; 4489 break; 4490 } 4491 APInt Val = ConstVal->getValue(); 4492 if (I != 0) { 4493 APInt Dist = Val - PrevVal; 4494 if (I == 1) { 4495 DistToPrev = Dist; 4496 } else if (Dist != DistToPrev) { 4497 LinearMappingPossible = false; 4498 break; 4499 } 4500 } 4501 PrevVal = Val; 4502 } 4503 if (LinearMappingPossible) { 4504 LinearOffset = cast<ConstantInt>(TableContents[0]); 4505 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4506 Kind = LinearMapKind; 4507 ++NumLinearMaps; 4508 return; 4509 } 4510 } 4511 4512 // If the type is integer and the table fits in a register, build a bitmap. 4513 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4514 IntegerType *IT = cast<IntegerType>(ValueType); 4515 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4516 for (uint64_t I = TableSize; I > 0; --I) { 4517 TableInt <<= IT->getBitWidth(); 4518 // Insert values into the bitmap. Undef values are set to zero. 4519 if (!isa<UndefValue>(TableContents[I - 1])) { 4520 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4521 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4522 } 4523 } 4524 BitMap = ConstantInt::get(M.getContext(), TableInt); 4525 BitMapElementTy = IT; 4526 Kind = BitMapKind; 4527 ++NumBitMaps; 4528 return; 4529 } 4530 4531 // Store the table in an array. 4532 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4533 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4534 4535 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4536 GlobalVariable::PrivateLinkage, Initializer, 4537 "switch.table"); 4538 Array->setUnnamedAddr(true); 4539 Kind = ArrayKind; 4540 } 4541 4542 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4543 switch (Kind) { 4544 case SingleValueKind: 4545 return SingleValue; 4546 case LinearMapKind: { 4547 // Derive the result value from the input value. 4548 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4549 false, "switch.idx.cast"); 4550 if (!LinearMultiplier->isOne()) 4551 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4552 if (!LinearOffset->isZero()) 4553 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4554 return Result; 4555 } 4556 case BitMapKind: { 4557 // Type of the bitmap (e.g. i59). 4558 IntegerType *MapTy = BitMap->getType(); 4559 4560 // Cast Index to the same type as the bitmap. 4561 // Note: The Index is <= the number of elements in the table, so 4562 // truncating it to the width of the bitmask is safe. 4563 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4564 4565 // Multiply the shift amount by the element width. 4566 ShiftAmt = Builder.CreateMul( 4567 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4568 "switch.shiftamt"); 4569 4570 // Shift down. 4571 Value *DownShifted = 4572 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4573 // Mask off. 4574 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4575 } 4576 case ArrayKind: { 4577 // Make sure the table index will not overflow when treated as signed. 4578 IntegerType *IT = cast<IntegerType>(Index->getType()); 4579 uint64_t TableSize = 4580 Array->getInitializer()->getType()->getArrayNumElements(); 4581 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4582 Index = Builder.CreateZExt( 4583 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4584 "switch.tableidx.zext"); 4585 4586 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4587 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4588 GEPIndices, "switch.gep"); 4589 return Builder.CreateLoad(GEP, "switch.load"); 4590 } 4591 } 4592 llvm_unreachable("Unknown lookup table kind!"); 4593 } 4594 4595 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4596 uint64_t TableSize, 4597 Type *ElementType) { 4598 auto *IT = dyn_cast<IntegerType>(ElementType); 4599 if (!IT) 4600 return false; 4601 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4602 // are <= 15, we could try to narrow the type. 4603 4604 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4605 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4606 return false; 4607 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4608 } 4609 4610 /// Determine whether a lookup table should be built for this switch, based on 4611 /// the number of cases, size of the table, and the types of the results. 4612 static bool 4613 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4614 const TargetTransformInfo &TTI, const DataLayout &DL, 4615 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4616 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4617 return false; // TableSize overflowed, or mul below might overflow. 4618 4619 bool AllTablesFitInRegister = true; 4620 bool HasIllegalType = false; 4621 for (const auto &I : ResultTypes) { 4622 Type *Ty = I.second; 4623 4624 // Saturate this flag to true. 4625 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4626 4627 // Saturate this flag to false. 4628 AllTablesFitInRegister = 4629 AllTablesFitInRegister && 4630 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4631 4632 // If both flags saturate, we're done. NOTE: This *only* works with 4633 // saturating flags, and all flags have to saturate first due to the 4634 // non-deterministic behavior of iterating over a dense map. 4635 if (HasIllegalType && !AllTablesFitInRegister) 4636 break; 4637 } 4638 4639 // If each table would fit in a register, we should build it anyway. 4640 if (AllTablesFitInRegister) 4641 return true; 4642 4643 // Don't build a table that doesn't fit in-register if it has illegal types. 4644 if (HasIllegalType) 4645 return false; 4646 4647 // The table density should be at least 40%. This is the same criterion as for 4648 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4649 // FIXME: Find the best cut-off. 4650 return SI->getNumCases() * 10 >= TableSize * 4; 4651 } 4652 4653 /// Try to reuse the switch table index compare. Following pattern: 4654 /// \code 4655 /// if (idx < tablesize) 4656 /// r = table[idx]; // table does not contain default_value 4657 /// else 4658 /// r = default_value; 4659 /// if (r != default_value) 4660 /// ... 4661 /// \endcode 4662 /// Is optimized to: 4663 /// \code 4664 /// cond = idx < tablesize; 4665 /// if (cond) 4666 /// r = table[idx]; 4667 /// else 4668 /// r = default_value; 4669 /// if (cond) 4670 /// ... 4671 /// \endcode 4672 /// Jump threading will then eliminate the second if(cond). 4673 static void reuseTableCompare( 4674 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4675 Constant *DefaultValue, 4676 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4677 4678 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4679 if (!CmpInst) 4680 return; 4681 4682 // We require that the compare is in the same block as the phi so that jump 4683 // threading can do its work afterwards. 4684 if (CmpInst->getParent() != PhiBlock) 4685 return; 4686 4687 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4688 if (!CmpOp1) 4689 return; 4690 4691 Value *RangeCmp = RangeCheckBranch->getCondition(); 4692 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4693 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4694 4695 // Check if the compare with the default value is constant true or false. 4696 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4697 DefaultValue, CmpOp1, true); 4698 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4699 return; 4700 4701 // Check if the compare with the case values is distinct from the default 4702 // compare result. 4703 for (auto ValuePair : Values) { 4704 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4705 ValuePair.second, CmpOp1, true); 4706 if (!CaseConst || CaseConst == DefaultConst) 4707 return; 4708 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4709 "Expect true or false as compare result."); 4710 } 4711 4712 // Check if the branch instruction dominates the phi node. It's a simple 4713 // dominance check, but sufficient for our needs. 4714 // Although this check is invariant in the calling loops, it's better to do it 4715 // at this late stage. Practically we do it at most once for a switch. 4716 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4717 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4718 BasicBlock *Pred = *PI; 4719 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4720 return; 4721 } 4722 4723 if (DefaultConst == FalseConst) { 4724 // The compare yields the same result. We can replace it. 4725 CmpInst->replaceAllUsesWith(RangeCmp); 4726 ++NumTableCmpReuses; 4727 } else { 4728 // The compare yields the same result, just inverted. We can replace it. 4729 Value *InvertedTableCmp = BinaryOperator::CreateXor( 4730 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4731 RangeCheckBranch); 4732 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4733 ++NumTableCmpReuses; 4734 } 4735 } 4736 4737 /// If the switch is only used to initialize one or more phi nodes in a common 4738 /// successor block with different constant values, replace the switch with 4739 /// lookup tables. 4740 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4741 const DataLayout &DL, 4742 const TargetTransformInfo &TTI) { 4743 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4744 4745 // Only build lookup table when we have a target that supports it. 4746 if (!TTI.shouldBuildLookupTables()) 4747 return false; 4748 4749 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4750 // split off a dense part and build a lookup table for that. 4751 4752 // FIXME: This creates arrays of GEPs to constant strings, which means each 4753 // GEP needs a runtime relocation in PIC code. We should just build one big 4754 // string and lookup indices into that. 4755 4756 // Ignore switches with less than three cases. Lookup tables will not make 4757 // them 4758 // faster, so we don't analyze them. 4759 if (SI->getNumCases() < 3) 4760 return false; 4761 4762 // Figure out the corresponding result for each case value and phi node in the 4763 // common destination, as well as the min and max case values. 4764 assert(SI->case_begin() != SI->case_end()); 4765 SwitchInst::CaseIt CI = SI->case_begin(); 4766 ConstantInt *MinCaseVal = CI.getCaseValue(); 4767 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4768 4769 BasicBlock *CommonDest = nullptr; 4770 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 4771 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 4772 SmallDenseMap<PHINode *, Constant *> DefaultResults; 4773 SmallDenseMap<PHINode *, Type *> ResultTypes; 4774 SmallVector<PHINode *, 4> PHIs; 4775 4776 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4777 ConstantInt *CaseVal = CI.getCaseValue(); 4778 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4779 MinCaseVal = CaseVal; 4780 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4781 MaxCaseVal = CaseVal; 4782 4783 // Resulting value at phi nodes for this case value. 4784 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 4785 ResultsTy Results; 4786 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4787 Results, DL)) 4788 return false; 4789 4790 // Append the result from this case to the list for each phi. 4791 for (const auto &I : Results) { 4792 PHINode *PHI = I.first; 4793 Constant *Value = I.second; 4794 if (!ResultLists.count(PHI)) 4795 PHIs.push_back(PHI); 4796 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4797 } 4798 } 4799 4800 // Keep track of the result types. 4801 for (PHINode *PHI : PHIs) { 4802 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4803 } 4804 4805 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4806 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4807 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4808 bool TableHasHoles = (NumResults < TableSize); 4809 4810 // If the table has holes, we need a constant result for the default case 4811 // or a bitmask that fits in a register. 4812 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 4813 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4814 &CommonDest, DefaultResultsList, DL); 4815 4816 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4817 if (NeedMask) { 4818 // As an extra penalty for the validity test we require more cases. 4819 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4820 return false; 4821 if (!DL.fitsInLegalInteger(TableSize)) 4822 return false; 4823 } 4824 4825 for (const auto &I : DefaultResultsList) { 4826 PHINode *PHI = I.first; 4827 Constant *Result = I.second; 4828 DefaultResults[PHI] = Result; 4829 } 4830 4831 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4832 return false; 4833 4834 // Create the BB that does the lookups. 4835 Module &Mod = *CommonDest->getParent()->getParent(); 4836 BasicBlock *LookupBB = BasicBlock::Create( 4837 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 4838 4839 // Compute the table index value. 4840 Builder.SetInsertPoint(SI); 4841 Value *TableIndex = 4842 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 4843 4844 // Compute the maximum table size representable by the integer type we are 4845 // switching upon. 4846 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4847 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4848 assert(MaxTableSize >= TableSize && 4849 "It is impossible for a switch to have more entries than the max " 4850 "representable value of its input integer type's size."); 4851 4852 // If the default destination is unreachable, or if the lookup table covers 4853 // all values of the conditional variable, branch directly to the lookup table 4854 // BB. Otherwise, check that the condition is within the case range. 4855 const bool DefaultIsReachable = 4856 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4857 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4858 BranchInst *RangeCheckBranch = nullptr; 4859 4860 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4861 Builder.CreateBr(LookupBB); 4862 // Note: We call removeProdecessor later since we need to be able to get the 4863 // PHI value for the default case in case we're using a bit mask. 4864 } else { 4865 Value *Cmp = Builder.CreateICmpULT( 4866 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 4867 RangeCheckBranch = 4868 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4869 } 4870 4871 // Populate the BB that does the lookups. 4872 Builder.SetInsertPoint(LookupBB); 4873 4874 if (NeedMask) { 4875 // Before doing the lookup we do the hole check. 4876 // The LookupBB is therefore re-purposed to do the hole check 4877 // and we create a new LookupBB. 4878 BasicBlock *MaskBB = LookupBB; 4879 MaskBB->setName("switch.hole_check"); 4880 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 4881 CommonDest->getParent(), CommonDest); 4882 4883 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4884 // unnecessary illegal types. 4885 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4886 APInt MaskInt(TableSizePowOf2, 0); 4887 APInt One(TableSizePowOf2, 1); 4888 // Build bitmask; fill in a 1 bit for every case. 4889 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4890 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4891 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 4892 .getLimitedValue(); 4893 MaskInt |= One << Idx; 4894 } 4895 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4896 4897 // Get the TableIndex'th bit of the bitmask. 4898 // If this bit is 0 (meaning hole) jump to the default destination, 4899 // else continue with table lookup. 4900 IntegerType *MapTy = TableMask->getType(); 4901 Value *MaskIndex = 4902 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 4903 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 4904 Value *LoBit = Builder.CreateTrunc( 4905 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 4906 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4907 4908 Builder.SetInsertPoint(LookupBB); 4909 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4910 } 4911 4912 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4913 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4914 // do not delete PHINodes here. 4915 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4916 /*DontDeleteUselessPHIs=*/true); 4917 } 4918 4919 bool ReturnedEarly = false; 4920 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4921 PHINode *PHI = PHIs[I]; 4922 const ResultListTy &ResultList = ResultLists[PHI]; 4923 4924 // If using a bitmask, use any value to fill the lookup table holes. 4925 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4926 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4927 4928 Value *Result = Table.BuildLookup(TableIndex, Builder); 4929 4930 // If the result is used to return immediately from the function, we want to 4931 // do that right here. 4932 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4933 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4934 Builder.CreateRet(Result); 4935 ReturnedEarly = true; 4936 break; 4937 } 4938 4939 // Do a small peephole optimization: re-use the switch table compare if 4940 // possible. 4941 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4942 BasicBlock *PhiBlock = PHI->getParent(); 4943 // Search for compare instructions which use the phi. 4944 for (auto *User : PHI->users()) { 4945 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4946 } 4947 } 4948 4949 PHI->addIncoming(Result, LookupBB); 4950 } 4951 4952 if (!ReturnedEarly) 4953 Builder.CreateBr(CommonDest); 4954 4955 // Remove the switch. 4956 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4957 BasicBlock *Succ = SI->getSuccessor(i); 4958 4959 if (Succ == SI->getDefaultDest()) 4960 continue; 4961 Succ->removePredecessor(SI->getParent()); 4962 } 4963 SI->eraseFromParent(); 4964 4965 ++NumLookupTables; 4966 if (NeedMask) 4967 ++NumLookupTablesHoles; 4968 return true; 4969 } 4970 4971 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4972 BasicBlock *BB = SI->getParent(); 4973 4974 if (isValueEqualityComparison(SI)) { 4975 // If we only have one predecessor, and if it is a branch on this value, 4976 // see if that predecessor totally determines the outcome of this switch. 4977 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4978 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4979 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4980 4981 Value *Cond = SI->getCondition(); 4982 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4983 if (SimplifySwitchOnSelect(SI, Select)) 4984 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4985 4986 // If the block only contains the switch, see if we can fold the block 4987 // away into any preds. 4988 BasicBlock::iterator BBI = BB->begin(); 4989 // Ignore dbg intrinsics. 4990 while (isa<DbgInfoIntrinsic>(BBI)) 4991 ++BBI; 4992 if (SI == &*BBI) 4993 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4994 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4995 } 4996 4997 // Try to transform the switch into an icmp and a branch. 4998 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4999 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5000 5001 // Remove unreachable cases. 5002 if (EliminateDeadSwitchCases(SI, AC, DL)) 5003 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5004 5005 if (SwitchToSelect(SI, Builder, AC, DL)) 5006 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5007 5008 if (ForwardSwitchConditionToPHI(SI)) 5009 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5010 5011 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5012 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5013 5014 return false; 5015 } 5016 5017 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5018 BasicBlock *BB = IBI->getParent(); 5019 bool Changed = false; 5020 5021 // Eliminate redundant destinations. 5022 SmallPtrSet<Value *, 8> Succs; 5023 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5024 BasicBlock *Dest = IBI->getDestination(i); 5025 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5026 Dest->removePredecessor(BB); 5027 IBI->removeDestination(i); 5028 --i; 5029 --e; 5030 Changed = true; 5031 } 5032 } 5033 5034 if (IBI->getNumDestinations() == 0) { 5035 // If the indirectbr has no successors, change it to unreachable. 5036 new UnreachableInst(IBI->getContext(), IBI); 5037 EraseTerminatorInstAndDCECond(IBI); 5038 return true; 5039 } 5040 5041 if (IBI->getNumDestinations() == 1) { 5042 // If the indirectbr has one successor, change it to a direct branch. 5043 BranchInst::Create(IBI->getDestination(0), IBI); 5044 EraseTerminatorInstAndDCECond(IBI); 5045 return true; 5046 } 5047 5048 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5049 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5050 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5051 } 5052 return Changed; 5053 } 5054 5055 /// Given an block with only a single landing pad and a unconditional branch 5056 /// try to find another basic block which this one can be merged with. This 5057 /// handles cases where we have multiple invokes with unique landing pads, but 5058 /// a shared handler. 5059 /// 5060 /// We specifically choose to not worry about merging non-empty blocks 5061 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5062 /// practice, the optimizer produces empty landing pad blocks quite frequently 5063 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5064 /// sinking in this file) 5065 /// 5066 /// This is primarily a code size optimization. We need to avoid performing 5067 /// any transform which might inhibit optimization (such as our ability to 5068 /// specialize a particular handler via tail commoning). We do this by not 5069 /// merging any blocks which require us to introduce a phi. Since the same 5070 /// values are flowing through both blocks, we don't loose any ability to 5071 /// specialize. If anything, we make such specialization more likely. 5072 /// 5073 /// TODO - This transformation could remove entries from a phi in the target 5074 /// block when the inputs in the phi are the same for the two blocks being 5075 /// merged. In some cases, this could result in removal of the PHI entirely. 5076 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5077 BasicBlock *BB) { 5078 auto Succ = BB->getUniqueSuccessor(); 5079 assert(Succ); 5080 // If there's a phi in the successor block, we'd likely have to introduce 5081 // a phi into the merged landing pad block. 5082 if (isa<PHINode>(*Succ->begin())) 5083 return false; 5084 5085 for (BasicBlock *OtherPred : predecessors(Succ)) { 5086 if (BB == OtherPred) 5087 continue; 5088 BasicBlock::iterator I = OtherPred->begin(); 5089 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5090 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5091 continue; 5092 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5093 } 5094 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5095 if (!BI2 || !BI2->isIdenticalTo(BI)) 5096 continue; 5097 5098 // We've found an identical block. Update our predecessors to take that 5099 // path instead and make ourselves dead. 5100 SmallSet<BasicBlock *, 16> Preds; 5101 Preds.insert(pred_begin(BB), pred_end(BB)); 5102 for (BasicBlock *Pred : Preds) { 5103 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5104 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5105 "unexpected successor"); 5106 II->setUnwindDest(OtherPred); 5107 } 5108 5109 // The debug info in OtherPred doesn't cover the merged control flow that 5110 // used to go through BB. We need to delete it or update it. 5111 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5112 Instruction &Inst = *I; 5113 I++; 5114 if (isa<DbgInfoIntrinsic>(Inst)) 5115 Inst.eraseFromParent(); 5116 } 5117 5118 SmallSet<BasicBlock *, 16> Succs; 5119 Succs.insert(succ_begin(BB), succ_end(BB)); 5120 for (BasicBlock *Succ : Succs) { 5121 Succ->removePredecessor(BB); 5122 } 5123 5124 IRBuilder<> Builder(BI); 5125 Builder.CreateUnreachable(); 5126 BI->eraseFromParent(); 5127 return true; 5128 } 5129 return false; 5130 } 5131 5132 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5133 IRBuilder<> &Builder) { 5134 BasicBlock *BB = BI->getParent(); 5135 5136 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5137 return true; 5138 5139 // If the Terminator is the only non-phi instruction, simplify the block. 5140 // if LoopHeader is provided, check if the block is a loop header 5141 // (This is for early invocations before loop simplify and vectorization 5142 // to keep canonical loop forms for nested loops. 5143 // These blocks can be eliminated when the pass is invoked later 5144 // in the back-end.) 5145 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5146 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5147 (!LoopHeaders || !LoopHeaders->count(BB)) && 5148 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5149 return true; 5150 5151 // If the only instruction in the block is a seteq/setne comparison 5152 // against a constant, try to simplify the block. 5153 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5154 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5155 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5156 ; 5157 if (I->isTerminator() && 5158 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5159 BonusInstThreshold, AC)) 5160 return true; 5161 } 5162 5163 // See if we can merge an empty landing pad block with another which is 5164 // equivalent. 5165 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5166 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5167 } 5168 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5169 return true; 5170 } 5171 5172 // If this basic block is ONLY a compare and a branch, and if a predecessor 5173 // branches to us and our successor, fold the comparison into the 5174 // predecessor and use logical operations to update the incoming value 5175 // for PHI nodes in common successor. 5176 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5177 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5178 return false; 5179 } 5180 5181 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5182 BasicBlock *PredPred = nullptr; 5183 for (auto *P : predecessors(BB)) { 5184 BasicBlock *PPred = P->getSinglePredecessor(); 5185 if (!PPred || (PredPred && PredPred != PPred)) 5186 return nullptr; 5187 PredPred = PPred; 5188 } 5189 return PredPred; 5190 } 5191 5192 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5193 BasicBlock *BB = BI->getParent(); 5194 5195 // Conditional branch 5196 if (isValueEqualityComparison(BI)) { 5197 // If we only have one predecessor, and if it is a branch on this value, 5198 // see if that predecessor totally determines the outcome of this 5199 // switch. 5200 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5201 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5202 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5203 5204 // This block must be empty, except for the setcond inst, if it exists. 5205 // Ignore dbg intrinsics. 5206 BasicBlock::iterator I = BB->begin(); 5207 // Ignore dbg intrinsics. 5208 while (isa<DbgInfoIntrinsic>(I)) 5209 ++I; 5210 if (&*I == BI) { 5211 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5212 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5213 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5214 ++I; 5215 // Ignore dbg intrinsics. 5216 while (isa<DbgInfoIntrinsic>(I)) 5217 ++I; 5218 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5219 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5220 } 5221 } 5222 5223 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5224 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5225 return true; 5226 5227 // If this basic block has a single dominating predecessor block and the 5228 // dominating block's condition implies BI's condition, we know the direction 5229 // of the BI branch. 5230 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5231 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5232 if (PBI && PBI->isConditional() && 5233 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5234 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5235 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5236 Optional<bool> Implication = isImpliedCondition( 5237 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5238 if (Implication) { 5239 // Turn this into a branch on constant. 5240 auto *OldCond = BI->getCondition(); 5241 ConstantInt *CI = *Implication 5242 ? ConstantInt::getTrue(BB->getContext()) 5243 : ConstantInt::getFalse(BB->getContext()); 5244 BI->setCondition(CI); 5245 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5246 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5247 } 5248 } 5249 } 5250 5251 // If this basic block is ONLY a compare and a branch, and if a predecessor 5252 // branches to us and one of our successors, fold the comparison into the 5253 // predecessor and use logical operations to pick the right destination. 5254 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5255 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5256 5257 // We have a conditional branch to two blocks that are only reachable 5258 // from BI. We know that the condbr dominates the two blocks, so see if 5259 // there is any identical code in the "then" and "else" blocks. If so, we 5260 // can hoist it up to the branching block. 5261 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5262 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5263 if (HoistThenElseCodeToIf(BI, TTI)) 5264 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5265 } else { 5266 // If Successor #1 has multiple preds, we may be able to conditionally 5267 // execute Successor #0 if it branches to Successor #1. 5268 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5269 if (Succ0TI->getNumSuccessors() == 1 && 5270 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5271 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5272 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5273 } 5274 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5275 // If Successor #0 has multiple preds, we may be able to conditionally 5276 // execute Successor #1 if it branches to Successor #0. 5277 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5278 if (Succ1TI->getNumSuccessors() == 1 && 5279 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5280 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5281 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5282 } 5283 5284 // If this is a branch on a phi node in the current block, thread control 5285 // through this block if any PHI node entries are constants. 5286 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5287 if (PN->getParent() == BI->getParent()) 5288 if (FoldCondBranchOnPHI(BI, DL)) 5289 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5290 5291 // Scan predecessor blocks for conditional branches. 5292 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5293 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5294 if (PBI != BI && PBI->isConditional()) 5295 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5296 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5297 5298 // Look for diamond patterns. 5299 if (MergeCondStores) 5300 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5301 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5302 if (PBI != BI && PBI->isConditional()) 5303 if (mergeConditionalStores(PBI, BI)) 5304 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5305 5306 return false; 5307 } 5308 5309 /// Check if passing a value to an instruction will cause undefined behavior. 5310 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5311 Constant *C = dyn_cast<Constant>(V); 5312 if (!C) 5313 return false; 5314 5315 if (I->use_empty()) 5316 return false; 5317 5318 if (C->isNullValue()) { 5319 // Only look at the first use, avoid hurting compile time with long uselists 5320 User *Use = *I->user_begin(); 5321 5322 // Now make sure that there are no instructions in between that can alter 5323 // control flow (eg. calls) 5324 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5325 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5326 return false; 5327 5328 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5329 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5330 if (GEP->getPointerOperand() == I) 5331 return passingValueIsAlwaysUndefined(V, GEP); 5332 5333 // Look through bitcasts. 5334 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5335 return passingValueIsAlwaysUndefined(V, BC); 5336 5337 // Load from null is undefined. 5338 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5339 if (!LI->isVolatile()) 5340 return LI->getPointerAddressSpace() == 0; 5341 5342 // Store to null is undefined. 5343 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5344 if (!SI->isVolatile()) 5345 return SI->getPointerAddressSpace() == 0 && 5346 SI->getPointerOperand() == I; 5347 } 5348 return false; 5349 } 5350 5351 /// If BB has an incoming value that will always trigger undefined behavior 5352 /// (eg. null pointer dereference), remove the branch leading here. 5353 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5354 for (BasicBlock::iterator i = BB->begin(); 5355 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5356 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5357 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5358 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5359 IRBuilder<> Builder(T); 5360 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5361 BB->removePredecessor(PHI->getIncomingBlock(i)); 5362 // Turn uncoditional branches into unreachables and remove the dead 5363 // destination from conditional branches. 5364 if (BI->isUnconditional()) 5365 Builder.CreateUnreachable(); 5366 else 5367 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5368 : BI->getSuccessor(0)); 5369 BI->eraseFromParent(); 5370 return true; 5371 } 5372 // TODO: SwitchInst. 5373 } 5374 5375 return false; 5376 } 5377 5378 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5379 bool Changed = false; 5380 5381 assert(BB && BB->getParent() && "Block not embedded in function!"); 5382 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5383 5384 // Remove basic blocks that have no predecessors (except the entry block)... 5385 // or that just have themself as a predecessor. These are unreachable. 5386 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5387 BB->getSinglePredecessor() == BB) { 5388 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5389 DeleteDeadBlock(BB); 5390 return true; 5391 } 5392 5393 // Check to see if we can constant propagate this terminator instruction 5394 // away... 5395 Changed |= ConstantFoldTerminator(BB, true); 5396 5397 // Check for and eliminate duplicate PHI nodes in this block. 5398 Changed |= EliminateDuplicatePHINodes(BB); 5399 5400 // Check for and remove branches that will always cause undefined behavior. 5401 Changed |= removeUndefIntroducingPredecessor(BB); 5402 5403 // Merge basic blocks into their predecessor if there is only one distinct 5404 // pred, and if there is only one distinct successor of the predecessor, and 5405 // if there are no PHI nodes. 5406 // 5407 if (MergeBlockIntoPredecessor(BB)) 5408 return true; 5409 5410 IRBuilder<> Builder(BB); 5411 5412 // If there is a trivial two-entry PHI node in this basic block, and we can 5413 // eliminate it, do so now. 5414 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5415 if (PN->getNumIncomingValues() == 2) 5416 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5417 5418 Builder.SetInsertPoint(BB->getTerminator()); 5419 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5420 if (BI->isUnconditional()) { 5421 if (SimplifyUncondBranch(BI, Builder)) 5422 return true; 5423 } else { 5424 if (SimplifyCondBranch(BI, Builder)) 5425 return true; 5426 } 5427 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5428 if (SimplifyReturn(RI, Builder)) 5429 return true; 5430 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5431 if (SimplifyResume(RI, Builder)) 5432 return true; 5433 } else if (CleanupReturnInst *RI = 5434 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5435 if (SimplifyCleanupReturn(RI)) 5436 return true; 5437 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5438 if (SimplifySwitch(SI, Builder)) 5439 return true; 5440 } else if (UnreachableInst *UI = 5441 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5442 if (SimplifyUnreachable(UI)) 5443 return true; 5444 } else if (IndirectBrInst *IBI = 5445 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5446 if (SimplifyIndirectBr(IBI)) 5447 return true; 5448 } 5449 5450 return Changed; 5451 } 5452 5453 /// This function is used to do simplification of a CFG. 5454 /// For example, it adjusts branches to branches to eliminate the extra hop, 5455 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5456 /// of the CFG. It returns true if a modification was made. 5457 /// 5458 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5459 unsigned BonusInstThreshold, AssumptionCache *AC, 5460 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5461 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5462 BonusInstThreshold, AC, LoopHeaders) 5463 .run(BB); 5464 } 5465