1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176   bool Resimplify;
177 
178   Value *isValueEqualityComparison(Instruction *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
199                                              IRBuilder<> &Builder);
200 
201 public:
202   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
203                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
204                  const SimplifyCFGOptions &Opts)
205       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
206 
207   bool run(BasicBlock *BB);
208   bool simplifyOnce(BasicBlock *BB);
209 
210   // Helper to set Resimplify and return change indication.
211   bool requestResimplify() {
212     Resimplify = true;
213     return true;
214   }
215 };
216 
217 } // end anonymous namespace
218 
219 /// Return true if it is safe to merge these two
220 /// terminator instructions together.
221 static bool
222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
223                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
224   if (SI1 == SI2)
225     return false; // Can't merge with self!
226 
227   // It is not safe to merge these two switch instructions if they have a common
228   // successor, and if that successor has a PHI node, and if *that* PHI node has
229   // conflicting incoming values from the two switch blocks.
230   BasicBlock *SI1BB = SI1->getParent();
231   BasicBlock *SI2BB = SI2->getParent();
232 
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   bool Fail = false;
235   for (BasicBlock *Succ : successors(SI2BB))
236     if (SI1Succs.count(Succ))
237       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
238         PHINode *PN = cast<PHINode>(BBI);
239         if (PN->getIncomingValueForBlock(SI1BB) !=
240             PN->getIncomingValueForBlock(SI2BB)) {
241           if (FailBlocks)
242             FailBlocks->insert(Succ);
243           Fail = true;
244         }
245       }
246 
247   return !Fail;
248 }
249 
250 /// Return true if it is safe and profitable to merge these two terminator
251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
252 /// store all PHI nodes in common successors.
253 static bool
254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
255                                 Instruction *Cond,
256                                 SmallVectorImpl<PHINode *> &PhiNodes) {
257   if (SI1 == SI2)
258     return false; // Can't merge with self!
259   assert(SI1->isUnconditional() && SI2->isConditional());
260 
261   // We fold the unconditional branch if we can easily update all PHI nodes in
262   // common successors:
263   // 1> We have a constant incoming value for the conditional branch;
264   // 2> We have "Cond" as the incoming value for the unconditional branch;
265   // 3> SI2->getCondition() and Cond have same operands.
266   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
267   if (!Ci2)
268     return false;
269   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
270         Cond->getOperand(1) == Ci2->getOperand(1)) &&
271       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
272         Cond->getOperand(1) == Ci2->getOperand(0)))
273     return false;
274 
275   BasicBlock *SI1BB = SI1->getParent();
276   BasicBlock *SI2BB = SI2->getParent();
277   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
278   for (BasicBlock *Succ : successors(SI2BB))
279     if (SI1Succs.count(Succ))
280       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
281         PHINode *PN = cast<PHINode>(BBI);
282         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
283             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
284           return false;
285         PhiNodes.push_back(PN);
286       }
287   return true;
288 }
289 
290 /// Update PHI nodes in Succ to indicate that there will now be entries in it
291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
292 /// will be the same as those coming in from ExistPred, an existing predecessor
293 /// of Succ.
294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
295                                   BasicBlock *ExistPred) {
296   for (PHINode &PN : Succ->phis())
297     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
298 }
299 
300 /// Compute an abstract "cost" of speculating the given instruction,
301 /// which is assumed to be safe to speculate. TCC_Free means cheap,
302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
303 /// expensive.
304 static unsigned ComputeSpeculationCost(const User *I,
305                                        const TargetTransformInfo &TTI) {
306   assert(isSafeToSpeculativelyExecute(I) &&
307          "Instruction is not safe to speculatively execute!");
308   return TTI.getUserCost(I);
309 }
310 
311 /// If we have a merge point of an "if condition" as accepted above,
312 /// return true if the specified value dominates the block.  We
313 /// don't handle the true generality of domination here, just a special case
314 /// which works well enough for us.
315 ///
316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
317 /// see if V (which must be an instruction) and its recursive operands
318 /// that do not dominate BB have a combined cost lower than CostRemaining and
319 /// are non-trapping.  If both are true, the instruction is inserted into the
320 /// set and true is returned.
321 ///
322 /// The cost for most non-trapping instructions is defined as 1 except for
323 /// Select whose cost is 2.
324 ///
325 /// After this function returns, CostRemaining is decreased by the cost of
326 /// V plus its non-dominating operands.  If that cost is greater than
327 /// CostRemaining, false is returned and CostRemaining is undefined.
328 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
329                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
330                                 unsigned &CostRemaining,
331                                 const TargetTransformInfo &TTI,
332                                 unsigned Depth = 0) {
333   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
334   // so limit the recursion depth.
335   // TODO: While this recursion limit does prevent pathological behavior, it
336   // would be better to track visited instructions to avoid cycles.
337   if (Depth == MaxSpeculationDepth)
338     return false;
339 
340   Instruction *I = dyn_cast<Instruction>(V);
341   if (!I) {
342     // Non-instructions all dominate instructions, but not all constantexprs
343     // can be executed unconditionally.
344     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345       if (C->canTrap())
346         return false;
347     return true;
348   }
349   BasicBlock *PBB = I->getParent();
350 
351   // We don't want to allow weird loops that might have the "if condition" in
352   // the bottom of this block.
353   if (PBB == BB)
354     return false;
355 
356   // If this instruction is defined in a block that contains an unconditional
357   // branch to BB, then it must be in the 'conditional' part of the "if
358   // statement".  If not, it definitely dominates the region.
359   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
360   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
361     return true;
362 
363   // If we have seen this instruction before, don't count it again.
364   if (AggressiveInsts.count(I))
365     return true;
366 
367   // Okay, it looks like the instruction IS in the "condition".  Check to
368   // see if it's a cheap instruction to unconditionally compute, and if it
369   // only uses stuff defined outside of the condition.  If so, hoist it out.
370   if (!isSafeToSpeculativelyExecute(I))
371     return false;
372 
373   unsigned Cost = ComputeSpeculationCost(I, TTI);
374 
375   // Allow exactly one instruction to be speculated regardless of its cost
376   // (as long as it is safe to do so).
377   // This is intended to flatten the CFG even if the instruction is a division
378   // or other expensive operation. The speculation of an expensive instruction
379   // is expected to be undone in CodeGenPrepare if the speculation has not
380   // enabled further IR optimizations.
381   if (Cost > CostRemaining &&
382       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
383     return false;
384 
385   // Avoid unsigned wrap.
386   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
387 
388   // Okay, we can only really hoist these out if their operands do
389   // not take us over the cost threshold.
390   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
391     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
392                              Depth + 1))
393       return false;
394   // Okay, it's safe to do this!  Remember this instruction.
395   AggressiveInsts.insert(I);
396   return true;
397 }
398 
399 /// Extract ConstantInt from value, looking through IntToPtr
400 /// and PointerNullValue. Return NULL if value is not a constant int.
401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
402   // Normal constant int.
403   ConstantInt *CI = dyn_cast<ConstantInt>(V);
404   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
405     return CI;
406 
407   // This is some kind of pointer constant. Turn it into a pointer-sized
408   // ConstantInt if possible.
409   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
410 
411   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
412   if (isa<ConstantPointerNull>(V))
413     return ConstantInt::get(PtrTy, 0);
414 
415   // IntToPtr const int.
416   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
417     if (CE->getOpcode() == Instruction::IntToPtr)
418       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
419         // The constant is very likely to have the right type already.
420         if (CI->getType() == PtrTy)
421           return CI;
422         else
423           return cast<ConstantInt>(
424               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
425       }
426   return nullptr;
427 }
428 
429 namespace {
430 
431 /// Given a chain of or (||) or and (&&) comparison of a value against a
432 /// constant, this will try to recover the information required for a switch
433 /// structure.
434 /// It will depth-first traverse the chain of comparison, seeking for patterns
435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
436 /// representing the different cases for the switch.
437 /// Note that if the chain is composed of '||' it will build the set of elements
438 /// that matches the comparisons (i.e. any of this value validate the chain)
439 /// while for a chain of '&&' it will build the set elements that make the test
440 /// fail.
441 struct ConstantComparesGatherer {
442   const DataLayout &DL;
443 
444   /// Value found for the switch comparison
445   Value *CompValue = nullptr;
446 
447   /// Extra clause to be checked before the switch
448   Value *Extra = nullptr;
449 
450   /// Set of integers to match in switch
451   SmallVector<ConstantInt *, 8> Vals;
452 
453   /// Number of comparisons matched in the and/or chain
454   unsigned UsedICmps = 0;
455 
456   /// Construct and compute the result for the comparison instruction Cond
457   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
458     gather(Cond);
459   }
460 
461   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
462   ConstantComparesGatherer &
463   operator=(const ConstantComparesGatherer &) = delete;
464 
465 private:
466   /// Try to set the current value used for the comparison, it succeeds only if
467   /// it wasn't set before or if the new value is the same as the old one
468   bool setValueOnce(Value *NewVal) {
469     if (CompValue && CompValue != NewVal)
470       return false;
471     CompValue = NewVal;
472     return (CompValue != nullptr);
473   }
474 
475   /// Try to match Instruction "I" as a comparison against a constant and
476   /// populates the array Vals with the set of values that match (or do not
477   /// match depending on isEQ).
478   /// Return false on failure. On success, the Value the comparison matched
479   /// against is placed in CompValue.
480   /// If CompValue is already set, the function is expected to fail if a match
481   /// is found but the value compared to is different.
482   bool matchInstruction(Instruction *I, bool isEQ) {
483     // If this is an icmp against a constant, handle this as one of the cases.
484     ICmpInst *ICI;
485     ConstantInt *C;
486     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
487           (C = GetConstantInt(I->getOperand(1), DL)))) {
488       return false;
489     }
490 
491     Value *RHSVal;
492     const APInt *RHSC;
493 
494     // Pattern match a special case
495     // (x & ~2^z) == y --> x == y || x == y|2^z
496     // This undoes a transformation done by instcombine to fuse 2 compares.
497     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
498       // It's a little bit hard to see why the following transformations are
499       // correct. Here is a CVC3 program to verify them for 64-bit values:
500 
501       /*
502          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
503          x    : BITVECTOR(64);
504          y    : BITVECTOR(64);
505          z    : BITVECTOR(64);
506          mask : BITVECTOR(64) = BVSHL(ONE, z);
507          QUERY( (y & ~mask = y) =>
508                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
509          );
510          QUERY( (y |  mask = y) =>
511                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
512          );
513       */
514 
515       // Please note that each pattern must be a dual implication (<--> or
516       // iff). One directional implication can create spurious matches. If the
517       // implication is only one-way, an unsatisfiable condition on the left
518       // side can imply a satisfiable condition on the right side. Dual
519       // implication ensures that satisfiable conditions are transformed to
520       // other satisfiable conditions and unsatisfiable conditions are
521       // transformed to other unsatisfiable conditions.
522 
523       // Here is a concrete example of a unsatisfiable condition on the left
524       // implying a satisfiable condition on the right:
525       //
526       // mask = (1 << z)
527       // (x & ~mask) == y  --> (x == y || x == (y | mask))
528       //
529       // Substituting y = 3, z = 0 yields:
530       // (x & -2) == 3 --> (x == 3 || x == 2)
531 
532       // Pattern match a special case:
533       /*
534         QUERY( (y & ~mask = y) =>
535                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
536         );
537       */
538       if (match(ICI->getOperand(0),
539                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
540         APInt Mask = ~*RHSC;
541         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
542           // If we already have a value for the switch, it has to match!
543           if (!setValueOnce(RHSVal))
544             return false;
545 
546           Vals.push_back(C);
547           Vals.push_back(
548               ConstantInt::get(C->getContext(),
549                                C->getValue() | Mask));
550           UsedICmps++;
551           return true;
552         }
553       }
554 
555       // Pattern match a special case:
556       /*
557         QUERY( (y |  mask = y) =>
558                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
559         );
560       */
561       if (match(ICI->getOperand(0),
562                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
563         APInt Mask = *RHSC;
564         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
565           // If we already have a value for the switch, it has to match!
566           if (!setValueOnce(RHSVal))
567             return false;
568 
569           Vals.push_back(C);
570           Vals.push_back(ConstantInt::get(C->getContext(),
571                                           C->getValue() & ~Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // If we already have a value for the switch, it has to match!
578       if (!setValueOnce(ICI->getOperand(0)))
579         return false;
580 
581       UsedICmps++;
582       Vals.push_back(C);
583       return ICI->getOperand(0);
584     }
585 
586     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
587     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
588         ICI->getPredicate(), C->getValue());
589 
590     // Shift the range if the compare is fed by an add. This is the range
591     // compare idiom as emitted by instcombine.
592     Value *CandidateVal = I->getOperand(0);
593     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
594       Span = Span.subtract(*RHSC);
595       CandidateVal = RHSVal;
596     }
597 
598     // If this is an and/!= check, then we are looking to build the set of
599     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
600     // x != 0 && x != 1.
601     if (!isEQ)
602       Span = Span.inverse();
603 
604     // If there are a ton of values, we don't want to make a ginormous switch.
605     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
606       return false;
607     }
608 
609     // If we already have a value for the switch, it has to match!
610     if (!setValueOnce(CandidateVal))
611       return false;
612 
613     // Add all values from the range to the set
614     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
615       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
616 
617     UsedICmps++;
618     return true;
619   }
620 
621   /// Given a potentially 'or'd or 'and'd together collection of icmp
622   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
623   /// the value being compared, and stick the list constants into the Vals
624   /// vector.
625   /// One "Extra" case is allowed to differ from the other.
626   void gather(Value *V) {
627     Instruction *I = dyn_cast<Instruction>(V);
628     bool isEQ = (I->getOpcode() == Instruction::Or);
629 
630     // Keep a stack (SmallVector for efficiency) for depth-first traversal
631     SmallVector<Value *, 8> DFT;
632     SmallPtrSet<Value *, 8> Visited;
633 
634     // Initialize
635     Visited.insert(V);
636     DFT.push_back(V);
637 
638     while (!DFT.empty()) {
639       V = DFT.pop_back_val();
640 
641       if (Instruction *I = dyn_cast<Instruction>(V)) {
642         // If it is a || (or && depending on isEQ), process the operands.
643         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
644           if (Visited.insert(I->getOperand(1)).second)
645             DFT.push_back(I->getOperand(1));
646           if (Visited.insert(I->getOperand(0)).second)
647             DFT.push_back(I->getOperand(0));
648           continue;
649         }
650 
651         // Try to match the current instruction
652         if (matchInstruction(I, isEQ))
653           // Match succeed, continue the loop
654           continue;
655       }
656 
657       // One element of the sequence of || (or &&) could not be match as a
658       // comparison against the same value as the others.
659       // We allow only one "Extra" case to be checked before the switch
660       if (!Extra) {
661         Extra = V;
662         continue;
663       }
664       // Failed to parse a proper sequence, abort now
665       CompValue = nullptr;
666       break;
667     }
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 static void EraseTerminatorAndDCECond(Instruction *TI) {
674   Instruction *Cond = nullptr;
675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676     Cond = dyn_cast<Instruction>(SI->getCondition());
677   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
678     if (BI->isConditional())
679       Cond = dyn_cast<Instruction>(BI->getCondition());
680   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
681     Cond = dyn_cast<Instruction>(IBI->getAddress());
682   }
683 
684   TI->eraseFromParent();
685   if (Cond)
686     RecursivelyDeleteTriviallyDeadInstructions(Cond);
687 }
688 
689 /// Return true if the specified terminator checks
690 /// to see if a value is equal to constant integer value.
691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
692   Value *CV = nullptr;
693   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
694     // Do not permit merging of large switch instructions into their
695     // predecessors unless there is only one predecessor.
696     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
697       CV = SI->getCondition();
698   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
699     if (BI->isConditional() && BI->getCondition()->hasOneUse())
700       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
701         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
702           CV = ICI->getOperand(0);
703       }
704 
705   // Unwrap any lossless ptrtoint cast.
706   if (CV) {
707     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
708       Value *Ptr = PTII->getPointerOperand();
709       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
710         CV = Ptr;
711     }
712   }
713   return CV;
714 }
715 
716 /// Given a value comparison instruction,
717 /// decode all of the 'cases' that it represents and return the 'default' block.
718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
719     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
720   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
721     Cases.reserve(SI->getNumCases());
722     for (auto Case : SI->cases())
723       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
724                                                   Case.getCaseSuccessor()));
725     return SI->getDefaultDest();
726   }
727 
728   BranchInst *BI = cast<BranchInst>(TI);
729   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
730   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
731   Cases.push_back(ValueEqualityComparisonCase(
732       GetConstantInt(ICI->getOperand(1), DL), Succ));
733   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
734 }
735 
736 /// Given a vector of bb/value pairs, remove any entries
737 /// in the list that match the specified block.
738 static void
739 EliminateBlockCases(BasicBlock *BB,
740                     std::vector<ValueEqualityComparisonCase> &Cases) {
741   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
742 }
743 
744 /// Return true if there are any keys in C1 that exist in C2 as well.
745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
746                           std::vector<ValueEqualityComparisonCase> &C2) {
747   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
748 
749   // Make V1 be smaller than V2.
750   if (V1->size() > V2->size())
751     std::swap(V1, V2);
752 
753   if (V1->empty())
754     return false;
755   if (V1->size() == 1) {
756     // Just scan V2.
757     ConstantInt *TheVal = (*V1)[0].Value;
758     for (unsigned i = 0, e = V2->size(); i != e; ++i)
759       if (TheVal == (*V2)[i].Value)
760         return true;
761   }
762 
763   // Otherwise, just sort both lists and compare element by element.
764   array_pod_sort(V1->begin(), V1->end());
765   array_pod_sort(V2->begin(), V2->end());
766   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
767   while (i1 != e1 && i2 != e2) {
768     if ((*V1)[i1].Value == (*V2)[i2].Value)
769       return true;
770     if ((*V1)[i1].Value < (*V2)[i2].Value)
771       ++i1;
772     else
773       ++i2;
774   }
775   return false;
776 }
777 
778 // Set branch weights on SwitchInst. This sets the metadata if there is at
779 // least one non-zero weight.
780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
781   // Check that there is at least one non-zero weight. Otherwise, pass
782   // nullptr to setMetadata which will erase the existing metadata.
783   MDNode *N = nullptr;
784   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
785     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
786   SI->setMetadata(LLVMContext::MD_prof, N);
787 }
788 
789 // Similar to the above, but for branch and select instructions that take
790 // exactly 2 weights.
791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
792                              uint32_t FalseWeight) {
793   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
794   // Check that there is at least one non-zero weight. Otherwise, pass
795   // nullptr to setMetadata which will erase the existing metadata.
796   MDNode *N = nullptr;
797   if (TrueWeight || FalseWeight)
798     N = MDBuilder(I->getParent()->getContext())
799             .createBranchWeights(TrueWeight, FalseWeight);
800   I->setMetadata(LLVMContext::MD_prof, N);
801 }
802 
803 /// If TI is known to be a terminator instruction and its block is known to
804 /// only have a single predecessor block, check to see if that predecessor is
805 /// also a value comparison with the same value, and if that comparison
806 /// determines the outcome of this comparison. If so, simplify TI. This does a
807 /// very limited form of jump threading.
808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
809     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
810   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
811   if (!PredVal)
812     return false; // Not a value comparison in predecessor.
813 
814   Value *ThisVal = isValueEqualityComparison(TI);
815   assert(ThisVal && "This isn't a value comparison!!");
816   if (ThisVal != PredVal)
817     return false; // Different predicates.
818 
819   // TODO: Preserve branch weight metadata, similarly to how
820   // FoldValueComparisonIntoPredecessors preserves it.
821 
822   // Find out information about when control will move from Pred to TI's block.
823   std::vector<ValueEqualityComparisonCase> PredCases;
824   BasicBlock *PredDef =
825       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
826   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
827 
828   // Find information about how control leaves this block.
829   std::vector<ValueEqualityComparisonCase> ThisCases;
830   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
831   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
832 
833   // If TI's block is the default block from Pred's comparison, potentially
834   // simplify TI based on this knowledge.
835   if (PredDef == TI->getParent()) {
836     // If we are here, we know that the value is none of those cases listed in
837     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
838     // can simplify TI.
839     if (!ValuesOverlap(PredCases, ThisCases))
840       return false;
841 
842     if (isa<BranchInst>(TI)) {
843       // Okay, one of the successors of this condbr is dead.  Convert it to a
844       // uncond br.
845       assert(ThisCases.size() == 1 && "Branch can only have one case!");
846       // Insert the new branch.
847       Instruction *NI = Builder.CreateBr(ThisDef);
848       (void)NI;
849 
850       // Remove PHI node entries for the dead edge.
851       ThisCases[0].Dest->removePredecessor(TI->getParent());
852 
853       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
854                         << "Through successor TI: " << *TI << "Leaving: " << *NI
855                         << "\n");
856 
857       EraseTerminatorAndDCECond(TI);
858       return true;
859     }
860 
861     SwitchInst *SI = cast<SwitchInst>(TI);
862     // Okay, TI has cases that are statically dead, prune them away.
863     SmallPtrSet<Constant *, 16> DeadCases;
864     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
865       DeadCases.insert(PredCases[i].Value);
866 
867     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
868                       << "Through successor TI: " << *TI);
869 
870     // Collect branch weights into a vector.
871     SmallVector<uint32_t, 8> Weights;
872     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
873     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
874     if (HasWeight)
875       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
876            ++MD_i) {
877         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
878         Weights.push_back(CI->getValue().getZExtValue());
879       }
880     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
881       --i;
882       if (DeadCases.count(i->getCaseValue())) {
883         if (HasWeight) {
884           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
885           Weights.pop_back();
886         }
887         i->getCaseSuccessor()->removePredecessor(TI->getParent());
888         SI->removeCase(i);
889       }
890     }
891     if (HasWeight && Weights.size() >= 2)
892       setBranchWeights(SI, Weights);
893 
894     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
895     return true;
896   }
897 
898   // Otherwise, TI's block must correspond to some matched value.  Find out
899   // which value (or set of values) this is.
900   ConstantInt *TIV = nullptr;
901   BasicBlock *TIBB = TI->getParent();
902   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
903     if (PredCases[i].Dest == TIBB) {
904       if (TIV)
905         return false; // Cannot handle multiple values coming to this block.
906       TIV = PredCases[i].Value;
907     }
908   assert(TIV && "No edge from pred to succ?");
909 
910   // Okay, we found the one constant that our value can be if we get into TI's
911   // BB.  Find out which successor will unconditionally be branched to.
912   BasicBlock *TheRealDest = nullptr;
913   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
914     if (ThisCases[i].Value == TIV) {
915       TheRealDest = ThisCases[i].Dest;
916       break;
917     }
918 
919   // If not handled by any explicit cases, it is handled by the default case.
920   if (!TheRealDest)
921     TheRealDest = ThisDef;
922 
923   // Remove PHI node entries for dead edges.
924   BasicBlock *CheckEdge = TheRealDest;
925   for (BasicBlock *Succ : successors(TIBB))
926     if (Succ != CheckEdge)
927       Succ->removePredecessor(TIBB);
928     else
929       CheckEdge = nullptr;
930 
931   // Insert the new branch.
932   Instruction *NI = Builder.CreateBr(TheRealDest);
933   (void)NI;
934 
935   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
936                     << "Through successor TI: " << *TI << "Leaving: " << *NI
937                     << "\n");
938 
939   EraseTerminatorAndDCECond(TI);
940   return true;
941 }
942 
943 namespace {
944 
945 /// This class implements a stable ordering of constant
946 /// integers that does not depend on their address.  This is important for
947 /// applications that sort ConstantInt's to ensure uniqueness.
948 struct ConstantIntOrdering {
949   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
950     return LHS->getValue().ult(RHS->getValue());
951   }
952 };
953 
954 } // end anonymous namespace
955 
956 static int ConstantIntSortPredicate(ConstantInt *const *P1,
957                                     ConstantInt *const *P2) {
958   const ConstantInt *LHS = *P1;
959   const ConstantInt *RHS = *P2;
960   if (LHS == RHS)
961     return 0;
962   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
963 }
964 
965 static inline bool HasBranchWeights(const Instruction *I) {
966   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
967   if (ProfMD && ProfMD->getOperand(0))
968     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
969       return MDS->getString().equals("branch_weights");
970 
971   return false;
972 }
973 
974 /// Get Weights of a given terminator, the default weight is at the front
975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
976 /// metadata.
977 static void GetBranchWeights(Instruction *TI,
978                              SmallVectorImpl<uint64_t> &Weights) {
979   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
980   assert(MD);
981   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
982     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
983     Weights.push_back(CI->getValue().getZExtValue());
984   }
985 
986   // If TI is a conditional eq, the default case is the false case,
987   // and the corresponding branch-weight data is at index 2. We swap the
988   // default weight to be the first entry.
989   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
990     assert(Weights.size() == 2);
991     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
992     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
993       std::swap(Weights.front(), Weights.back());
994   }
995 }
996 
997 /// Keep halving the weights until all can fit in uint32_t.
998 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
999   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1000   if (Max > UINT_MAX) {
1001     unsigned Offset = 32 - countLeadingZeros(Max);
1002     for (uint64_t &I : Weights)
1003       I >>= Offset;
1004   }
1005 }
1006 
1007 /// The specified terminator is a value equality comparison instruction
1008 /// (either a switch or a branch on "X == c").
1009 /// See if any of the predecessors of the terminator block are value comparisons
1010 /// on the same value.  If so, and if safe to do so, fold them together.
1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1012                                                          IRBuilder<> &Builder) {
1013   BasicBlock *BB = TI->getParent();
1014   Value *CV = isValueEqualityComparison(TI); // CondVal
1015   assert(CV && "Not a comparison?");
1016   bool Changed = false;
1017 
1018   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1019   while (!Preds.empty()) {
1020     BasicBlock *Pred = Preds.pop_back_val();
1021 
1022     // See if the predecessor is a comparison with the same value.
1023     Instruction *PTI = Pred->getTerminator();
1024     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1025 
1026     if (PCV == CV && TI != PTI) {
1027       SmallSetVector<BasicBlock*, 4> FailBlocks;
1028       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1029         for (auto *Succ : FailBlocks) {
1030           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1031             return false;
1032         }
1033       }
1034 
1035       // Figure out which 'cases' to copy from SI to PSI.
1036       std::vector<ValueEqualityComparisonCase> BBCases;
1037       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1038 
1039       std::vector<ValueEqualityComparisonCase> PredCases;
1040       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1041 
1042       // Based on whether the default edge from PTI goes to BB or not, fill in
1043       // PredCases and PredDefault with the new switch cases we would like to
1044       // build.
1045       SmallVector<BasicBlock *, 8> NewSuccessors;
1046 
1047       // Update the branch weight metadata along the way
1048       SmallVector<uint64_t, 8> Weights;
1049       bool PredHasWeights = HasBranchWeights(PTI);
1050       bool SuccHasWeights = HasBranchWeights(TI);
1051 
1052       if (PredHasWeights) {
1053         GetBranchWeights(PTI, Weights);
1054         // branch-weight metadata is inconsistent here.
1055         if (Weights.size() != 1 + PredCases.size())
1056           PredHasWeights = SuccHasWeights = false;
1057       } else if (SuccHasWeights)
1058         // If there are no predecessor weights but there are successor weights,
1059         // populate Weights with 1, which will later be scaled to the sum of
1060         // successor's weights
1061         Weights.assign(1 + PredCases.size(), 1);
1062 
1063       SmallVector<uint64_t, 8> SuccWeights;
1064       if (SuccHasWeights) {
1065         GetBranchWeights(TI, SuccWeights);
1066         // branch-weight metadata is inconsistent here.
1067         if (SuccWeights.size() != 1 + BBCases.size())
1068           PredHasWeights = SuccHasWeights = false;
1069       } else if (PredHasWeights)
1070         SuccWeights.assign(1 + BBCases.size(), 1);
1071 
1072       if (PredDefault == BB) {
1073         // If this is the default destination from PTI, only the edges in TI
1074         // that don't occur in PTI, or that branch to BB will be activated.
1075         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1076         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1077           if (PredCases[i].Dest != BB)
1078             PTIHandled.insert(PredCases[i].Value);
1079           else {
1080             // The default destination is BB, we don't need explicit targets.
1081             std::swap(PredCases[i], PredCases.back());
1082 
1083             if (PredHasWeights || SuccHasWeights) {
1084               // Increase weight for the default case.
1085               Weights[0] += Weights[i + 1];
1086               std::swap(Weights[i + 1], Weights.back());
1087               Weights.pop_back();
1088             }
1089 
1090             PredCases.pop_back();
1091             --i;
1092             --e;
1093           }
1094 
1095         // Reconstruct the new switch statement we will be building.
1096         if (PredDefault != BBDefault) {
1097           PredDefault->removePredecessor(Pred);
1098           PredDefault = BBDefault;
1099           NewSuccessors.push_back(BBDefault);
1100         }
1101 
1102         unsigned CasesFromPred = Weights.size();
1103         uint64_t ValidTotalSuccWeight = 0;
1104         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1105           if (!PTIHandled.count(BBCases[i].Value) &&
1106               BBCases[i].Dest != BBDefault) {
1107             PredCases.push_back(BBCases[i]);
1108             NewSuccessors.push_back(BBCases[i].Dest);
1109             if (SuccHasWeights || PredHasWeights) {
1110               // The default weight is at index 0, so weight for the ith case
1111               // should be at index i+1. Scale the cases from successor by
1112               // PredDefaultWeight (Weights[0]).
1113               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1114               ValidTotalSuccWeight += SuccWeights[i + 1];
1115             }
1116           }
1117 
1118         if (SuccHasWeights || PredHasWeights) {
1119           ValidTotalSuccWeight += SuccWeights[0];
1120           // Scale the cases from predecessor by ValidTotalSuccWeight.
1121           for (unsigned i = 1; i < CasesFromPred; ++i)
1122             Weights[i] *= ValidTotalSuccWeight;
1123           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1124           Weights[0] *= SuccWeights[0];
1125         }
1126       } else {
1127         // If this is not the default destination from PSI, only the edges
1128         // in SI that occur in PSI with a destination of BB will be
1129         // activated.
1130         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1131         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1132         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1133           if (PredCases[i].Dest == BB) {
1134             PTIHandled.insert(PredCases[i].Value);
1135 
1136             if (PredHasWeights || SuccHasWeights) {
1137               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1138               std::swap(Weights[i + 1], Weights.back());
1139               Weights.pop_back();
1140             }
1141 
1142             std::swap(PredCases[i], PredCases.back());
1143             PredCases.pop_back();
1144             --i;
1145             --e;
1146           }
1147 
1148         // Okay, now we know which constants were sent to BB from the
1149         // predecessor.  Figure out where they will all go now.
1150         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1151           if (PTIHandled.count(BBCases[i].Value)) {
1152             // If this is one we are capable of getting...
1153             if (PredHasWeights || SuccHasWeights)
1154               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1155             PredCases.push_back(BBCases[i]);
1156             NewSuccessors.push_back(BBCases[i].Dest);
1157             PTIHandled.erase(
1158                 BBCases[i].Value); // This constant is taken care of
1159           }
1160 
1161         // If there are any constants vectored to BB that TI doesn't handle,
1162         // they must go to the default destination of TI.
1163         for (ConstantInt *I : PTIHandled) {
1164           if (PredHasWeights || SuccHasWeights)
1165             Weights.push_back(WeightsForHandled[I]);
1166           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1167           NewSuccessors.push_back(BBDefault);
1168         }
1169       }
1170 
1171       // Okay, at this point, we know which new successor Pred will get.  Make
1172       // sure we update the number of entries in the PHI nodes for these
1173       // successors.
1174       for (BasicBlock *NewSuccessor : NewSuccessors)
1175         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1176 
1177       Builder.SetInsertPoint(PTI);
1178       // Convert pointer to int before we switch.
1179       if (CV->getType()->isPointerTy()) {
1180         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1181                                     "magicptr");
1182       }
1183 
1184       // Now that the successors are updated, create the new Switch instruction.
1185       SwitchInst *NewSI =
1186           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1187       NewSI->setDebugLoc(PTI->getDebugLoc());
1188       for (ValueEqualityComparisonCase &V : PredCases)
1189         NewSI->addCase(V.Value, V.Dest);
1190 
1191       if (PredHasWeights || SuccHasWeights) {
1192         // Halve the weights if any of them cannot fit in an uint32_t
1193         FitWeights(Weights);
1194 
1195         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1196 
1197         setBranchWeights(NewSI, MDWeights);
1198       }
1199 
1200       EraseTerminatorAndDCECond(PTI);
1201 
1202       // Okay, last check.  If BB is still a successor of PSI, then we must
1203       // have an infinite loop case.  If so, add an infinitely looping block
1204       // to handle the case to preserve the behavior of the code.
1205       BasicBlock *InfLoopBlock = nullptr;
1206       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1207         if (NewSI->getSuccessor(i) == BB) {
1208           if (!InfLoopBlock) {
1209             // Insert it at the end of the function, because it's either code,
1210             // or it won't matter if it's hot. :)
1211             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1212                                               BB->getParent());
1213             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1214           }
1215           NewSI->setSuccessor(i, InfLoopBlock);
1216         }
1217 
1218       Changed = true;
1219     }
1220   }
1221   return Changed;
1222 }
1223 
1224 // If we would need to insert a select that uses the value of this invoke
1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1226 // can't hoist the invoke, as there is nowhere to put the select in this case.
1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1228                                 Instruction *I1, Instruction *I2) {
1229   for (BasicBlock *Succ : successors(BB1)) {
1230     for (const PHINode &PN : Succ->phis()) {
1231       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1232       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1233       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1234         return false;
1235       }
1236     }
1237   }
1238   return true;
1239 }
1240 
1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1242 
1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1244 /// in the two blocks up into the branch block. The caller of this function
1245 /// guarantees that BI's block dominates BB1 and BB2.
1246 static bool HoistThenElseCodeToIf(BranchInst *BI,
1247                                   const TargetTransformInfo &TTI) {
1248   // This does very trivial matching, with limited scanning, to find identical
1249   // instructions in the two blocks.  In particular, we don't want to get into
1250   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1251   // such, we currently just scan for obviously identical instructions in an
1252   // identical order.
1253   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1254   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1255 
1256   BasicBlock::iterator BB1_Itr = BB1->begin();
1257   BasicBlock::iterator BB2_Itr = BB2->begin();
1258 
1259   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1260   // Skip debug info if it is not identical.
1261   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1262   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1263   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1264     while (isa<DbgInfoIntrinsic>(I1))
1265       I1 = &*BB1_Itr++;
1266     while (isa<DbgInfoIntrinsic>(I2))
1267       I2 = &*BB2_Itr++;
1268   }
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1271     return false;
1272 
1273   BasicBlock *BIParent = BI->getParent();
1274 
1275   bool Changed = false;
1276   do {
1277     // If we are hoisting the terminator instruction, don't move one (making a
1278     // broken BB), instead clone it, and remove BI.
1279     if (I1->isTerminator())
1280       goto HoistTerminator;
1281 
1282     // If we're going to hoist a call, make sure that the two instructions we're
1283     // commoning/hoisting are both marked with musttail, or neither of them is
1284     // marked as such. Otherwise, we might end up in a situation where we hoist
1285     // from a block where the terminator is a `ret` to a block where the terminator
1286     // is a `br`, and `musttail` calls expect to be followed by a return.
1287     auto *C1 = dyn_cast<CallInst>(I1);
1288     auto *C2 = dyn_cast<CallInst>(I2);
1289     if (C1 && C2)
1290       if (C1->isMustTailCall() != C2->isMustTailCall())
1291         return Changed;
1292 
1293     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1294       return Changed;
1295 
1296     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1297       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1298       // The debug location is an integral part of a debug info intrinsic
1299       // and can't be separated from it or replaced.  Instead of attempting
1300       // to merge locations, simply hoist both copies of the intrinsic.
1301       BIParent->getInstList().splice(BI->getIterator(),
1302                                      BB1->getInstList(), I1);
1303       BIParent->getInstList().splice(BI->getIterator(),
1304                                      BB2->getInstList(), I2);
1305       Changed = true;
1306     } else {
1307       // For a normal instruction, we just move one to right before the branch,
1308       // then replace all uses of the other with the first.  Finally, we remove
1309       // the now redundant second instruction.
1310       BIParent->getInstList().splice(BI->getIterator(),
1311                                      BB1->getInstList(), I1);
1312       if (!I2->use_empty())
1313         I2->replaceAllUsesWith(I1);
1314       I1->andIRFlags(I2);
1315       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1316                              LLVMContext::MD_range,
1317                              LLVMContext::MD_fpmath,
1318                              LLVMContext::MD_invariant_load,
1319                              LLVMContext::MD_nonnull,
1320                              LLVMContext::MD_invariant_group,
1321                              LLVMContext::MD_align,
1322                              LLVMContext::MD_dereferenceable,
1323                              LLVMContext::MD_dereferenceable_or_null,
1324                              LLVMContext::MD_mem_parallel_loop_access,
1325                              LLVMContext::MD_access_group};
1326       combineMetadata(I1, I2, KnownIDs, true);
1327 
1328       // I1 and I2 are being combined into a single instruction.  Its debug
1329       // location is the merged locations of the original instructions.
1330       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1331 
1332       I2->eraseFromParent();
1333       Changed = true;
1334     }
1335 
1336     I1 = &*BB1_Itr++;
1337     I2 = &*BB2_Itr++;
1338     // Skip debug info if it is not identical.
1339     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1340     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1341     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1342       while (isa<DbgInfoIntrinsic>(I1))
1343         I1 = &*BB1_Itr++;
1344       while (isa<DbgInfoIntrinsic>(I2))
1345         I2 = &*BB2_Itr++;
1346     }
1347   } while (I1->isIdenticalToWhenDefined(I2));
1348 
1349   return true;
1350 
1351 HoistTerminator:
1352   // It may not be possible to hoist an invoke.
1353   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1354     return Changed;
1355 
1356   for (BasicBlock *Succ : successors(BB1)) {
1357     for (PHINode &PN : Succ->phis()) {
1358       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1359       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1360       if (BB1V == BB2V)
1361         continue;
1362 
1363       // Check for passingValueIsAlwaysUndefined here because we would rather
1364       // eliminate undefined control flow then converting it to a select.
1365       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1366           passingValueIsAlwaysUndefined(BB2V, &PN))
1367         return Changed;
1368 
1369       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1370         return Changed;
1371       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1372         return Changed;
1373     }
1374   }
1375 
1376   // As the parent basic block terminator is a branch instruction which is
1377   // removed at the end of the current transformation, use its previous
1378   // non-debug instruction, as the reference insertion point, which will
1379   // provide the debug location for generated select instructions. For BBs
1380   // with only debug instructions, use an empty debug location.
1381   Instruction *InsertPt =
1382       BIParent->getTerminator()->getPrevNonDebugInstruction();
1383 
1384   // Okay, it is safe to hoist the terminator.
1385   Instruction *NT = I1->clone();
1386   BIParent->getInstList().insert(BI->getIterator(), NT);
1387   if (!NT->getType()->isVoidTy()) {
1388     I1->replaceAllUsesWith(NT);
1389     I2->replaceAllUsesWith(NT);
1390     NT->takeName(I1);
1391   }
1392 
1393   // Ensure terminator gets a debug location, even an unknown one, in case
1394   // it involves inlinable calls.
1395   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1396 
1397   IRBuilder<NoFolder> Builder(NT);
1398   // If an earlier instruction in this BB had a location, adopt it, otherwise
1399   // clear debug locations.
1400   Builder.SetCurrentDebugLocation(InsertPt ? InsertPt->getDebugLoc()
1401                                            : DebugLoc());
1402 
1403   // Hoisting one of the terminators from our successor is a great thing.
1404   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1405   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1406   // nodes, so we insert select instruction to compute the final result.
1407   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1408   for (BasicBlock *Succ : successors(BB1)) {
1409     for (PHINode &PN : Succ->phis()) {
1410       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1411       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1412       if (BB1V == BB2V)
1413         continue;
1414 
1415       // These values do not agree.  Insert a select instruction before NT
1416       // that determines the right value.
1417       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1418       if (!SI)
1419         SI = cast<SelectInst>(
1420             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1421                                  BB1V->getName() + "." + BB2V->getName(), BI));
1422 
1423       // Make the PHI node use the select for all incoming values for BB1/BB2
1424       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1425         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1426           PN.setIncomingValue(i, SI);
1427     }
1428   }
1429 
1430   // Update any PHI nodes in our new successors.
1431   for (BasicBlock *Succ : successors(BB1))
1432     AddPredecessorToBlock(Succ, BIParent, BB1);
1433 
1434   EraseTerminatorAndDCECond(BI);
1435   return true;
1436 }
1437 
1438 // All instructions in Insts belong to different blocks that all unconditionally
1439 // branch to a common successor. Analyze each instruction and return true if it
1440 // would be possible to sink them into their successor, creating one common
1441 // instruction instead. For every value that would be required to be provided by
1442 // PHI node (because an operand varies in each input block), add to PHIOperands.
1443 static bool canSinkInstructions(
1444     ArrayRef<Instruction *> Insts,
1445     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1446   // Prune out obviously bad instructions to move. Any non-store instruction
1447   // must have exactly one use, and we check later that use is by a single,
1448   // common PHI instruction in the successor.
1449   for (auto *I : Insts) {
1450     // These instructions may change or break semantics if moved.
1451     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1452         I->getType()->isTokenTy())
1453       return false;
1454 
1455     // Conservatively return false if I is an inline-asm instruction. Sinking
1456     // and merging inline-asm instructions can potentially create arguments
1457     // that cannot satisfy the inline-asm constraints.
1458     if (const auto *C = dyn_cast<CallInst>(I))
1459       if (C->isInlineAsm())
1460         return false;
1461 
1462     // Everything must have only one use too, apart from stores which
1463     // have no uses.
1464     if (!isa<StoreInst>(I) && !I->hasOneUse())
1465       return false;
1466   }
1467 
1468   const Instruction *I0 = Insts.front();
1469   for (auto *I : Insts)
1470     if (!I->isSameOperationAs(I0))
1471       return false;
1472 
1473   // All instructions in Insts are known to be the same opcode. If they aren't
1474   // stores, check the only user of each is a PHI or in the same block as the
1475   // instruction, because if a user is in the same block as an instruction
1476   // we're contemplating sinking, it must already be determined to be sinkable.
1477   if (!isa<StoreInst>(I0)) {
1478     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1479     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1480     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1481           auto *U = cast<Instruction>(*I->user_begin());
1482           return (PNUse &&
1483                   PNUse->getParent() == Succ &&
1484                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1485                  U->getParent() == I->getParent();
1486         }))
1487       return false;
1488   }
1489 
1490   // Because SROA can't handle speculating stores of selects, try not
1491   // to sink loads or stores of allocas when we'd have to create a PHI for
1492   // the address operand. Also, because it is likely that loads or stores
1493   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1494   // This can cause code churn which can have unintended consequences down
1495   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1496   // FIXME: This is a workaround for a deficiency in SROA - see
1497   // https://llvm.org/bugs/show_bug.cgi?id=30188
1498   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1499         return isa<AllocaInst>(I->getOperand(1));
1500       }))
1501     return false;
1502   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1503         return isa<AllocaInst>(I->getOperand(0));
1504       }))
1505     return false;
1506 
1507   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1508     if (I0->getOperand(OI)->getType()->isTokenTy())
1509       // Don't touch any operand of token type.
1510       return false;
1511 
1512     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1513       assert(I->getNumOperands() == I0->getNumOperands());
1514       return I->getOperand(OI) == I0->getOperand(OI);
1515     };
1516     if (!all_of(Insts, SameAsI0)) {
1517       if (!canReplaceOperandWithVariable(I0, OI))
1518         // We can't create a PHI from this GEP.
1519         return false;
1520       // Don't create indirect calls! The called value is the final operand.
1521       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1522         // FIXME: if the call was *already* indirect, we should do this.
1523         return false;
1524       }
1525       for (auto *I : Insts)
1526         PHIOperands[I].push_back(I->getOperand(OI));
1527     }
1528   }
1529   return true;
1530 }
1531 
1532 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1533 // instruction of every block in Blocks to their common successor, commoning
1534 // into one instruction.
1535 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1536   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1537 
1538   // canSinkLastInstruction returning true guarantees that every block has at
1539   // least one non-terminator instruction.
1540   SmallVector<Instruction*,4> Insts;
1541   for (auto *BB : Blocks) {
1542     Instruction *I = BB->getTerminator();
1543     do {
1544       I = I->getPrevNode();
1545     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1546     if (!isa<DbgInfoIntrinsic>(I))
1547       Insts.push_back(I);
1548   }
1549 
1550   // The only checking we need to do now is that all users of all instructions
1551   // are the same PHI node. canSinkLastInstruction should have checked this but
1552   // it is slightly over-aggressive - it gets confused by commutative instructions
1553   // so double-check it here.
1554   Instruction *I0 = Insts.front();
1555   if (!isa<StoreInst>(I0)) {
1556     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1557     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1558           auto *U = cast<Instruction>(*I->user_begin());
1559           return U == PNUse;
1560         }))
1561       return false;
1562   }
1563 
1564   // We don't need to do any more checking here; canSinkLastInstruction should
1565   // have done it all for us.
1566   SmallVector<Value*, 4> NewOperands;
1567   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1568     // This check is different to that in canSinkLastInstruction. There, we
1569     // cared about the global view once simplifycfg (and instcombine) have
1570     // completed - it takes into account PHIs that become trivially
1571     // simplifiable.  However here we need a more local view; if an operand
1572     // differs we create a PHI and rely on instcombine to clean up the very
1573     // small mess we may make.
1574     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1575       return I->getOperand(O) != I0->getOperand(O);
1576     });
1577     if (!NeedPHI) {
1578       NewOperands.push_back(I0->getOperand(O));
1579       continue;
1580     }
1581 
1582     // Create a new PHI in the successor block and populate it.
1583     auto *Op = I0->getOperand(O);
1584     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1585     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1586                                Op->getName() + ".sink", &BBEnd->front());
1587     for (auto *I : Insts)
1588       PN->addIncoming(I->getOperand(O), I->getParent());
1589     NewOperands.push_back(PN);
1590   }
1591 
1592   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1593   // and move it to the start of the successor block.
1594   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1595     I0->getOperandUse(O).set(NewOperands[O]);
1596   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1597 
1598   // Update metadata and IR flags, and merge debug locations.
1599   for (auto *I : Insts)
1600     if (I != I0) {
1601       // The debug location for the "common" instruction is the merged locations
1602       // of all the commoned instructions.  We start with the original location
1603       // of the "common" instruction and iteratively merge each location in the
1604       // loop below.
1605       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1606       // However, as N-way merge for CallInst is rare, so we use simplified API
1607       // instead of using complex API for N-way merge.
1608       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1609       combineMetadataForCSE(I0, I, true);
1610       I0->andIRFlags(I);
1611     }
1612 
1613   if (!isa<StoreInst>(I0)) {
1614     // canSinkLastInstruction checked that all instructions were used by
1615     // one and only one PHI node. Find that now, RAUW it to our common
1616     // instruction and nuke it.
1617     assert(I0->hasOneUse());
1618     auto *PN = cast<PHINode>(*I0->user_begin());
1619     PN->replaceAllUsesWith(I0);
1620     PN->eraseFromParent();
1621   }
1622 
1623   // Finally nuke all instructions apart from the common instruction.
1624   for (auto *I : Insts)
1625     if (I != I0)
1626       I->eraseFromParent();
1627 
1628   return true;
1629 }
1630 
1631 namespace {
1632 
1633   // LockstepReverseIterator - Iterates through instructions
1634   // in a set of blocks in reverse order from the first non-terminator.
1635   // For example (assume all blocks have size n):
1636   //   LockstepReverseIterator I([B1, B2, B3]);
1637   //   *I-- = [B1[n], B2[n], B3[n]];
1638   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1639   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1640   //   ...
1641   class LockstepReverseIterator {
1642     ArrayRef<BasicBlock*> Blocks;
1643     SmallVector<Instruction*,4> Insts;
1644     bool Fail;
1645 
1646   public:
1647     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1648       reset();
1649     }
1650 
1651     void reset() {
1652       Fail = false;
1653       Insts.clear();
1654       for (auto *BB : Blocks) {
1655         Instruction *Inst = BB->getTerminator();
1656         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1657           Inst = Inst->getPrevNode();
1658         if (!Inst) {
1659           // Block wasn't big enough.
1660           Fail = true;
1661           return;
1662         }
1663         Insts.push_back(Inst);
1664       }
1665     }
1666 
1667     bool isValid() const {
1668       return !Fail;
1669     }
1670 
1671     void operator--() {
1672       if (Fail)
1673         return;
1674       for (auto *&Inst : Insts) {
1675         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1676           Inst = Inst->getPrevNode();
1677         // Already at beginning of block.
1678         if (!Inst) {
1679           Fail = true;
1680           return;
1681         }
1682       }
1683     }
1684 
1685     ArrayRef<Instruction*> operator * () const {
1686       return Insts;
1687     }
1688   };
1689 
1690 } // end anonymous namespace
1691 
1692 /// Check whether BB's predecessors end with unconditional branches. If it is
1693 /// true, sink any common code from the predecessors to BB.
1694 /// We also allow one predecessor to end with conditional branch (but no more
1695 /// than one).
1696 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1697   // We support two situations:
1698   //   (1) all incoming arcs are unconditional
1699   //   (2) one incoming arc is conditional
1700   //
1701   // (2) is very common in switch defaults and
1702   // else-if patterns;
1703   //
1704   //   if (a) f(1);
1705   //   else if (b) f(2);
1706   //
1707   // produces:
1708   //
1709   //       [if]
1710   //      /    \
1711   //    [f(1)] [if]
1712   //      |     | \
1713   //      |     |  |
1714   //      |  [f(2)]|
1715   //       \    | /
1716   //        [ end ]
1717   //
1718   // [end] has two unconditional predecessor arcs and one conditional. The
1719   // conditional refers to the implicit empty 'else' arc. This conditional
1720   // arc can also be caused by an empty default block in a switch.
1721   //
1722   // In this case, we attempt to sink code from all *unconditional* arcs.
1723   // If we can sink instructions from these arcs (determined during the scan
1724   // phase below) we insert a common successor for all unconditional arcs and
1725   // connect that to [end], to enable sinking:
1726   //
1727   //       [if]
1728   //      /    \
1729   //    [x(1)] [if]
1730   //      |     | \
1731   //      |     |  \
1732   //      |  [x(2)] |
1733   //       \   /    |
1734   //   [sink.split] |
1735   //         \     /
1736   //         [ end ]
1737   //
1738   SmallVector<BasicBlock*,4> UnconditionalPreds;
1739   Instruction *Cond = nullptr;
1740   for (auto *B : predecessors(BB)) {
1741     auto *T = B->getTerminator();
1742     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1743       UnconditionalPreds.push_back(B);
1744     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1745       Cond = T;
1746     else
1747       return false;
1748   }
1749   if (UnconditionalPreds.size() < 2)
1750     return false;
1751 
1752   bool Changed = false;
1753   // We take a two-step approach to tail sinking. First we scan from the end of
1754   // each block upwards in lockstep. If the n'th instruction from the end of each
1755   // block can be sunk, those instructions are added to ValuesToSink and we
1756   // carry on. If we can sink an instruction but need to PHI-merge some operands
1757   // (because they're not identical in each instruction) we add these to
1758   // PHIOperands.
1759   unsigned ScanIdx = 0;
1760   SmallPtrSet<Value*,4> InstructionsToSink;
1761   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1762   LockstepReverseIterator LRI(UnconditionalPreds);
1763   while (LRI.isValid() &&
1764          canSinkInstructions(*LRI, PHIOperands)) {
1765     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1766                       << "\n");
1767     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1768     ++ScanIdx;
1769     --LRI;
1770   }
1771 
1772   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1773     unsigned NumPHIdValues = 0;
1774     for (auto *I : *LRI)
1775       for (auto *V : PHIOperands[I])
1776         if (InstructionsToSink.count(V) == 0)
1777           ++NumPHIdValues;
1778     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1779     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1780     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1781         NumPHIInsts++;
1782 
1783     return NumPHIInsts <= 1;
1784   };
1785 
1786   if (ScanIdx > 0 && Cond) {
1787     // Check if we would actually sink anything first! This mutates the CFG and
1788     // adds an extra block. The goal in doing this is to allow instructions that
1789     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1790     // (such as trunc, add) can be sunk and predicated already. So we check that
1791     // we're going to sink at least one non-speculatable instruction.
1792     LRI.reset();
1793     unsigned Idx = 0;
1794     bool Profitable = false;
1795     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1796       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1797         Profitable = true;
1798         break;
1799       }
1800       --LRI;
1801       ++Idx;
1802     }
1803     if (!Profitable)
1804       return false;
1805 
1806     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1807     // We have a conditional edge and we're going to sink some instructions.
1808     // Insert a new block postdominating all blocks we're going to sink from.
1809     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1810       // Edges couldn't be split.
1811       return false;
1812     Changed = true;
1813   }
1814 
1815   // Now that we've analyzed all potential sinking candidates, perform the
1816   // actual sink. We iteratively sink the last non-terminator of the source
1817   // blocks into their common successor unless doing so would require too
1818   // many PHI instructions to be generated (currently only one PHI is allowed
1819   // per sunk instruction).
1820   //
1821   // We can use InstructionsToSink to discount values needing PHI-merging that will
1822   // actually be sunk in a later iteration. This allows us to be more
1823   // aggressive in what we sink. This does allow a false positive where we
1824   // sink presuming a later value will also be sunk, but stop half way through
1825   // and never actually sink it which means we produce more PHIs than intended.
1826   // This is unlikely in practice though.
1827   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1828     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1829                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1830                       << "\n");
1831 
1832     // Because we've sunk every instruction in turn, the current instruction to
1833     // sink is always at index 0.
1834     LRI.reset();
1835     if (!ProfitableToSinkInstruction(LRI)) {
1836       // Too many PHIs would be created.
1837       LLVM_DEBUG(
1838           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1839       break;
1840     }
1841 
1842     if (!sinkLastInstruction(UnconditionalPreds))
1843       return Changed;
1844     NumSinkCommons++;
1845     Changed = true;
1846   }
1847   return Changed;
1848 }
1849 
1850 /// Determine if we can hoist sink a sole store instruction out of a
1851 /// conditional block.
1852 ///
1853 /// We are looking for code like the following:
1854 ///   BrBB:
1855 ///     store i32 %add, i32* %arrayidx2
1856 ///     ... // No other stores or function calls (we could be calling a memory
1857 ///     ... // function).
1858 ///     %cmp = icmp ult %x, %y
1859 ///     br i1 %cmp, label %EndBB, label %ThenBB
1860 ///   ThenBB:
1861 ///     store i32 %add5, i32* %arrayidx2
1862 ///     br label EndBB
1863 ///   EndBB:
1864 ///     ...
1865 ///   We are going to transform this into:
1866 ///   BrBB:
1867 ///     store i32 %add, i32* %arrayidx2
1868 ///     ... //
1869 ///     %cmp = icmp ult %x, %y
1870 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1871 ///     store i32 %add.add5, i32* %arrayidx2
1872 ///     ...
1873 ///
1874 /// \return The pointer to the value of the previous store if the store can be
1875 ///         hoisted into the predecessor block. 0 otherwise.
1876 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1877                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1878   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1879   if (!StoreToHoist)
1880     return nullptr;
1881 
1882   // Volatile or atomic.
1883   if (!StoreToHoist->isSimple())
1884     return nullptr;
1885 
1886   Value *StorePtr = StoreToHoist->getPointerOperand();
1887 
1888   // Look for a store to the same pointer in BrBB.
1889   unsigned MaxNumInstToLookAt = 9;
1890   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1891     if (!MaxNumInstToLookAt)
1892       break;
1893     --MaxNumInstToLookAt;
1894 
1895     // Could be calling an instruction that affects memory like free().
1896     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1897       return nullptr;
1898 
1899     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1900       // Found the previous store make sure it stores to the same location.
1901       if (SI->getPointerOperand() == StorePtr)
1902         // Found the previous store, return its value operand.
1903         return SI->getValueOperand();
1904       return nullptr; // Unknown store.
1905     }
1906   }
1907 
1908   return nullptr;
1909 }
1910 
1911 /// Speculate a conditional basic block flattening the CFG.
1912 ///
1913 /// Note that this is a very risky transform currently. Speculating
1914 /// instructions like this is most often not desirable. Instead, there is an MI
1915 /// pass which can do it with full awareness of the resource constraints.
1916 /// However, some cases are "obvious" and we should do directly. An example of
1917 /// this is speculating a single, reasonably cheap instruction.
1918 ///
1919 /// There is only one distinct advantage to flattening the CFG at the IR level:
1920 /// it makes very common but simplistic optimizations such as are common in
1921 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1922 /// modeling their effects with easier to reason about SSA value graphs.
1923 ///
1924 ///
1925 /// An illustration of this transform is turning this IR:
1926 /// \code
1927 ///   BB:
1928 ///     %cmp = icmp ult %x, %y
1929 ///     br i1 %cmp, label %EndBB, label %ThenBB
1930 ///   ThenBB:
1931 ///     %sub = sub %x, %y
1932 ///     br label BB2
1933 ///   EndBB:
1934 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1935 ///     ...
1936 /// \endcode
1937 ///
1938 /// Into this IR:
1939 /// \code
1940 ///   BB:
1941 ///     %cmp = icmp ult %x, %y
1942 ///     %sub = sub %x, %y
1943 ///     %cond = select i1 %cmp, 0, %sub
1944 ///     ...
1945 /// \endcode
1946 ///
1947 /// \returns true if the conditional block is removed.
1948 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1949                                    const TargetTransformInfo &TTI) {
1950   // Be conservative for now. FP select instruction can often be expensive.
1951   Value *BrCond = BI->getCondition();
1952   if (isa<FCmpInst>(BrCond))
1953     return false;
1954 
1955   BasicBlock *BB = BI->getParent();
1956   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1957 
1958   // If ThenBB is actually on the false edge of the conditional branch, remember
1959   // to swap the select operands later.
1960   bool Invert = false;
1961   if (ThenBB != BI->getSuccessor(0)) {
1962     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1963     Invert = true;
1964   }
1965   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1966 
1967   // Keep a count of how many times instructions are used within ThenBB when
1968   // they are candidates for sinking into ThenBB. Specifically:
1969   // - They are defined in BB, and
1970   // - They have no side effects, and
1971   // - All of their uses are in ThenBB.
1972   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1973 
1974   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1975 
1976   unsigned SpeculationCost = 0;
1977   Value *SpeculatedStoreValue = nullptr;
1978   StoreInst *SpeculatedStore = nullptr;
1979   for (BasicBlock::iterator BBI = ThenBB->begin(),
1980                             BBE = std::prev(ThenBB->end());
1981        BBI != BBE; ++BBI) {
1982     Instruction *I = &*BBI;
1983     // Skip debug info.
1984     if (isa<DbgInfoIntrinsic>(I)) {
1985       SpeculatedDbgIntrinsics.push_back(I);
1986       continue;
1987     }
1988 
1989     // Only speculatively execute a single instruction (not counting the
1990     // terminator) for now.
1991     ++SpeculationCost;
1992     if (SpeculationCost > 1)
1993       return false;
1994 
1995     // Don't hoist the instruction if it's unsafe or expensive.
1996     if (!isSafeToSpeculativelyExecute(I) &&
1997         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1998                                   I, BB, ThenBB, EndBB))))
1999       return false;
2000     if (!SpeculatedStoreValue &&
2001         ComputeSpeculationCost(I, TTI) >
2002             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2003       return false;
2004 
2005     // Store the store speculation candidate.
2006     if (SpeculatedStoreValue)
2007       SpeculatedStore = cast<StoreInst>(I);
2008 
2009     // Do not hoist the instruction if any of its operands are defined but not
2010     // used in BB. The transformation will prevent the operand from
2011     // being sunk into the use block.
2012     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2013       Instruction *OpI = dyn_cast<Instruction>(*i);
2014       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2015         continue; // Not a candidate for sinking.
2016 
2017       ++SinkCandidateUseCounts[OpI];
2018     }
2019   }
2020 
2021   // Consider any sink candidates which are only used in ThenBB as costs for
2022   // speculation. Note, while we iterate over a DenseMap here, we are summing
2023   // and so iteration order isn't significant.
2024   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2025            I = SinkCandidateUseCounts.begin(),
2026            E = SinkCandidateUseCounts.end();
2027        I != E; ++I)
2028     if (I->first->hasNUses(I->second)) {
2029       ++SpeculationCost;
2030       if (SpeculationCost > 1)
2031         return false;
2032     }
2033 
2034   // Check that the PHI nodes can be converted to selects.
2035   bool HaveRewritablePHIs = false;
2036   for (PHINode &PN : EndBB->phis()) {
2037     Value *OrigV = PN.getIncomingValueForBlock(BB);
2038     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2039 
2040     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2041     // Skip PHIs which are trivial.
2042     if (ThenV == OrigV)
2043       continue;
2044 
2045     // Don't convert to selects if we could remove undefined behavior instead.
2046     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2047         passingValueIsAlwaysUndefined(ThenV, &PN))
2048       return false;
2049 
2050     HaveRewritablePHIs = true;
2051     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2052     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2053     if (!OrigCE && !ThenCE)
2054       continue; // Known safe and cheap.
2055 
2056     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2057         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2058       return false;
2059     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2060     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2061     unsigned MaxCost =
2062         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2063     if (OrigCost + ThenCost > MaxCost)
2064       return false;
2065 
2066     // Account for the cost of an unfolded ConstantExpr which could end up
2067     // getting expanded into Instructions.
2068     // FIXME: This doesn't account for how many operations are combined in the
2069     // constant expression.
2070     ++SpeculationCost;
2071     if (SpeculationCost > 1)
2072       return false;
2073   }
2074 
2075   // If there are no PHIs to process, bail early. This helps ensure idempotence
2076   // as well.
2077   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2078     return false;
2079 
2080   // If we get here, we can hoist the instruction and if-convert.
2081   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2082 
2083   // Insert a select of the value of the speculated store.
2084   if (SpeculatedStoreValue) {
2085     IRBuilder<NoFolder> Builder(BI);
2086     Value *TrueV = SpeculatedStore->getValueOperand();
2087     Value *FalseV = SpeculatedStoreValue;
2088     if (Invert)
2089       std::swap(TrueV, FalseV);
2090     Value *S = Builder.CreateSelect(
2091         BrCond, TrueV, FalseV, "spec.store.select", BI);
2092     SpeculatedStore->setOperand(0, S);
2093     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2094                                          SpeculatedStore->getDebugLoc());
2095   }
2096 
2097   // Metadata can be dependent on the condition we are hoisting above.
2098   // Conservatively strip all metadata on the instruction.
2099   for (auto &I : *ThenBB)
2100     I.dropUnknownNonDebugMetadata();
2101 
2102   // Hoist the instructions.
2103   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2104                            ThenBB->begin(), std::prev(ThenBB->end()));
2105 
2106   // Insert selects and rewrite the PHI operands.
2107   IRBuilder<NoFolder> Builder(BI);
2108   for (PHINode &PN : EndBB->phis()) {
2109     unsigned OrigI = PN.getBasicBlockIndex(BB);
2110     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2111     Value *OrigV = PN.getIncomingValue(OrigI);
2112     Value *ThenV = PN.getIncomingValue(ThenI);
2113 
2114     // Skip PHIs which are trivial.
2115     if (OrigV == ThenV)
2116       continue;
2117 
2118     // Create a select whose true value is the speculatively executed value and
2119     // false value is the preexisting value. Swap them if the branch
2120     // destinations were inverted.
2121     Value *TrueV = ThenV, *FalseV = OrigV;
2122     if (Invert)
2123       std::swap(TrueV, FalseV);
2124     Value *V = Builder.CreateSelect(
2125         BrCond, TrueV, FalseV, "spec.select", BI);
2126     PN.setIncomingValue(OrigI, V);
2127     PN.setIncomingValue(ThenI, V);
2128   }
2129 
2130   // Remove speculated dbg intrinsics.
2131   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2132   // dbg value for the different flows and inserting it after the select.
2133   for (Instruction *I : SpeculatedDbgIntrinsics)
2134     I->eraseFromParent();
2135 
2136   ++NumSpeculations;
2137   return true;
2138 }
2139 
2140 /// Return true if we can thread a branch across this block.
2141 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2142   unsigned Size = 0;
2143 
2144   for (Instruction &I : BB->instructionsWithoutDebug()) {
2145     if (Size > 10)
2146       return false; // Don't clone large BB's.
2147     ++Size;
2148 
2149     // We can only support instructions that do not define values that are
2150     // live outside of the current basic block.
2151     for (User *U : I.users()) {
2152       Instruction *UI = cast<Instruction>(U);
2153       if (UI->getParent() != BB || isa<PHINode>(UI))
2154         return false;
2155     }
2156 
2157     // Looks ok, continue checking.
2158   }
2159 
2160   return true;
2161 }
2162 
2163 /// If we have a conditional branch on a PHI node value that is defined in the
2164 /// same block as the branch and if any PHI entries are constants, thread edges
2165 /// corresponding to that entry to be branches to their ultimate destination.
2166 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2167                                 AssumptionCache *AC) {
2168   BasicBlock *BB = BI->getParent();
2169   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2170   // NOTE: we currently cannot transform this case if the PHI node is used
2171   // outside of the block.
2172   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2173     return false;
2174 
2175   // Degenerate case of a single entry PHI.
2176   if (PN->getNumIncomingValues() == 1) {
2177     FoldSingleEntryPHINodes(PN->getParent());
2178     return true;
2179   }
2180 
2181   // Now we know that this block has multiple preds and two succs.
2182   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2183     return false;
2184 
2185   // Can't fold blocks that contain noduplicate or convergent calls.
2186   if (any_of(*BB, [](const Instruction &I) {
2187         const CallInst *CI = dyn_cast<CallInst>(&I);
2188         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2189       }))
2190     return false;
2191 
2192   // Okay, this is a simple enough basic block.  See if any phi values are
2193   // constants.
2194   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2195     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2196     if (!CB || !CB->getType()->isIntegerTy(1))
2197       continue;
2198 
2199     // Okay, we now know that all edges from PredBB should be revectored to
2200     // branch to RealDest.
2201     BasicBlock *PredBB = PN->getIncomingBlock(i);
2202     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2203 
2204     if (RealDest == BB)
2205       continue; // Skip self loops.
2206     // Skip if the predecessor's terminator is an indirect branch.
2207     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2208       continue;
2209 
2210     // The dest block might have PHI nodes, other predecessors and other
2211     // difficult cases.  Instead of being smart about this, just insert a new
2212     // block that jumps to the destination block, effectively splitting
2213     // the edge we are about to create.
2214     BasicBlock *EdgeBB =
2215         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2216                            RealDest->getParent(), RealDest);
2217     BranchInst::Create(RealDest, EdgeBB);
2218 
2219     // Update PHI nodes.
2220     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2221 
2222     // BB may have instructions that are being threaded over.  Clone these
2223     // instructions into EdgeBB.  We know that there will be no uses of the
2224     // cloned instructions outside of EdgeBB.
2225     BasicBlock::iterator InsertPt = EdgeBB->begin();
2226     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2227     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2228       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2229         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2230         continue;
2231       }
2232       // Clone the instruction.
2233       Instruction *N = BBI->clone();
2234       if (BBI->hasName())
2235         N->setName(BBI->getName() + ".c");
2236 
2237       // Update operands due to translation.
2238       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2239         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2240         if (PI != TranslateMap.end())
2241           *i = PI->second;
2242       }
2243 
2244       // Check for trivial simplification.
2245       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2246         if (!BBI->use_empty())
2247           TranslateMap[&*BBI] = V;
2248         if (!N->mayHaveSideEffects()) {
2249           N->deleteValue(); // Instruction folded away, don't need actual inst
2250           N = nullptr;
2251         }
2252       } else {
2253         if (!BBI->use_empty())
2254           TranslateMap[&*BBI] = N;
2255       }
2256       // Insert the new instruction into its new home.
2257       if (N)
2258         EdgeBB->getInstList().insert(InsertPt, N);
2259 
2260       // Register the new instruction with the assumption cache if necessary.
2261       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2262         if (II->getIntrinsicID() == Intrinsic::assume)
2263           AC->registerAssumption(II);
2264     }
2265 
2266     // Loop over all of the edges from PredBB to BB, changing them to branch
2267     // to EdgeBB instead.
2268     Instruction *PredBBTI = PredBB->getTerminator();
2269     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2270       if (PredBBTI->getSuccessor(i) == BB) {
2271         BB->removePredecessor(PredBB);
2272         PredBBTI->setSuccessor(i, EdgeBB);
2273       }
2274 
2275     // Recurse, simplifying any other constants.
2276     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2277   }
2278 
2279   return false;
2280 }
2281 
2282 /// Given a BB that starts with the specified two-entry PHI node,
2283 /// see if we can eliminate it.
2284 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2285                                 const DataLayout &DL) {
2286   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2287   // statement", which has a very simple dominance structure.  Basically, we
2288   // are trying to find the condition that is being branched on, which
2289   // subsequently causes this merge to happen.  We really want control
2290   // dependence information for this check, but simplifycfg can't keep it up
2291   // to date, and this catches most of the cases we care about anyway.
2292   BasicBlock *BB = PN->getParent();
2293   const Function *Fn = BB->getParent();
2294   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2295     return false;
2296 
2297   BasicBlock *IfTrue, *IfFalse;
2298   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2299   if (!IfCond ||
2300       // Don't bother if the branch will be constant folded trivially.
2301       isa<ConstantInt>(IfCond))
2302     return false;
2303 
2304   // Okay, we found that we can merge this two-entry phi node into a select.
2305   // Doing so would require us to fold *all* two entry phi nodes in this block.
2306   // At some point this becomes non-profitable (particularly if the target
2307   // doesn't support cmov's).  Only do this transformation if there are two or
2308   // fewer PHI nodes in this block.
2309   unsigned NumPhis = 0;
2310   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2311     if (NumPhis > 2)
2312       return false;
2313 
2314   // Loop over the PHI's seeing if we can promote them all to select
2315   // instructions.  While we are at it, keep track of the instructions
2316   // that need to be moved to the dominating block.
2317   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2318   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2319            MaxCostVal1 = PHINodeFoldingThreshold;
2320   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2321   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2322 
2323   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2324     PHINode *PN = cast<PHINode>(II++);
2325     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2326       PN->replaceAllUsesWith(V);
2327       PN->eraseFromParent();
2328       continue;
2329     }
2330 
2331     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2332                              MaxCostVal0, TTI) ||
2333         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2334                              MaxCostVal1, TTI))
2335       return false;
2336   }
2337 
2338   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2339   // we ran out of PHIs then we simplified them all.
2340   PN = dyn_cast<PHINode>(BB->begin());
2341   if (!PN)
2342     return true;
2343 
2344   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2345   // often be turned into switches and other things.
2346   if (PN->getType()->isIntegerTy(1) &&
2347       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2348        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2349        isa<BinaryOperator>(IfCond)))
2350     return false;
2351 
2352   // If all PHI nodes are promotable, check to make sure that all instructions
2353   // in the predecessor blocks can be promoted as well. If not, we won't be able
2354   // to get rid of the control flow, so it's not worth promoting to select
2355   // instructions.
2356   BasicBlock *DomBlock = nullptr;
2357   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2358   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2359   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2360     IfBlock1 = nullptr;
2361   } else {
2362     DomBlock = *pred_begin(IfBlock1);
2363     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2364       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2365         // This is not an aggressive instruction that we can promote.
2366         // Because of this, we won't be able to get rid of the control flow, so
2367         // the xform is not worth it.
2368         return false;
2369       }
2370   }
2371 
2372   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2373     IfBlock2 = nullptr;
2374   } else {
2375     DomBlock = *pred_begin(IfBlock2);
2376     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2377       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2378         // This is not an aggressive instruction that we can promote.
2379         // Because of this, we won't be able to get rid of the control flow, so
2380         // the xform is not worth it.
2381         return false;
2382       }
2383   }
2384 
2385   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2386                     << "  T: " << IfTrue->getName()
2387                     << "  F: " << IfFalse->getName() << "\n");
2388 
2389   // If we can still promote the PHI nodes after this gauntlet of tests,
2390   // do all of the PHI's now.
2391   Instruction *InsertPt = DomBlock->getTerminator();
2392   IRBuilder<NoFolder> Builder(InsertPt);
2393 
2394   // Move all 'aggressive' instructions, which are defined in the
2395   // conditional parts of the if's up to the dominating block.
2396   if (IfBlock1)
2397     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2398   if (IfBlock2)
2399     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2400 
2401   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2402     // Change the PHI node into a select instruction.
2403     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2404     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2405 
2406     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2407     PN->replaceAllUsesWith(Sel);
2408     Sel->takeName(PN);
2409     PN->eraseFromParent();
2410   }
2411 
2412   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2413   // has been flattened.  Change DomBlock to jump directly to our new block to
2414   // avoid other simplifycfg's kicking in on the diamond.
2415   Instruction *OldTI = DomBlock->getTerminator();
2416   Builder.SetInsertPoint(OldTI);
2417   Builder.CreateBr(BB);
2418   OldTI->eraseFromParent();
2419   return true;
2420 }
2421 
2422 /// If we found a conditional branch that goes to two returning blocks,
2423 /// try to merge them together into one return,
2424 /// introducing a select if the return values disagree.
2425 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2426                                            IRBuilder<> &Builder) {
2427   assert(BI->isConditional() && "Must be a conditional branch");
2428   BasicBlock *TrueSucc = BI->getSuccessor(0);
2429   BasicBlock *FalseSucc = BI->getSuccessor(1);
2430   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2431   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2432 
2433   // Check to ensure both blocks are empty (just a return) or optionally empty
2434   // with PHI nodes.  If there are other instructions, merging would cause extra
2435   // computation on one path or the other.
2436   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2437     return false;
2438   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2439     return false;
2440 
2441   Builder.SetInsertPoint(BI);
2442   // Okay, we found a branch that is going to two return nodes.  If
2443   // there is no return value for this function, just change the
2444   // branch into a return.
2445   if (FalseRet->getNumOperands() == 0) {
2446     TrueSucc->removePredecessor(BI->getParent());
2447     FalseSucc->removePredecessor(BI->getParent());
2448     Builder.CreateRetVoid();
2449     EraseTerminatorAndDCECond(BI);
2450     return true;
2451   }
2452 
2453   // Otherwise, figure out what the true and false return values are
2454   // so we can insert a new select instruction.
2455   Value *TrueValue = TrueRet->getReturnValue();
2456   Value *FalseValue = FalseRet->getReturnValue();
2457 
2458   // Unwrap any PHI nodes in the return blocks.
2459   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2460     if (TVPN->getParent() == TrueSucc)
2461       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2462   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2463     if (FVPN->getParent() == FalseSucc)
2464       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2465 
2466   // In order for this transformation to be safe, we must be able to
2467   // unconditionally execute both operands to the return.  This is
2468   // normally the case, but we could have a potentially-trapping
2469   // constant expression that prevents this transformation from being
2470   // safe.
2471   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2472     if (TCV->canTrap())
2473       return false;
2474   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2475     if (FCV->canTrap())
2476       return false;
2477 
2478   // Okay, we collected all the mapped values and checked them for sanity, and
2479   // defined to really do this transformation.  First, update the CFG.
2480   TrueSucc->removePredecessor(BI->getParent());
2481   FalseSucc->removePredecessor(BI->getParent());
2482 
2483   // Insert select instructions where needed.
2484   Value *BrCond = BI->getCondition();
2485   if (TrueValue) {
2486     // Insert a select if the results differ.
2487     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2488     } else if (isa<UndefValue>(TrueValue)) {
2489       TrueValue = FalseValue;
2490     } else {
2491       TrueValue =
2492           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2493     }
2494   }
2495 
2496   Value *RI =
2497       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2498 
2499   (void)RI;
2500 
2501   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2502                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2503                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2504 
2505   EraseTerminatorAndDCECond(BI);
2506 
2507   return true;
2508 }
2509 
2510 /// Return true if the given instruction is available
2511 /// in its predecessor block. If yes, the instruction will be removed.
2512 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2513   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2514     return false;
2515   for (Instruction &I : *PB) {
2516     Instruction *PBI = &I;
2517     // Check whether Inst and PBI generate the same value.
2518     if (Inst->isIdenticalTo(PBI)) {
2519       Inst->replaceAllUsesWith(PBI);
2520       Inst->eraseFromParent();
2521       return true;
2522     }
2523   }
2524   return false;
2525 }
2526 
2527 /// Return true if either PBI or BI has branch weight available, and store
2528 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2529 /// not have branch weight, use 1:1 as its weight.
2530 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2531                                    uint64_t &PredTrueWeight,
2532                                    uint64_t &PredFalseWeight,
2533                                    uint64_t &SuccTrueWeight,
2534                                    uint64_t &SuccFalseWeight) {
2535   bool PredHasWeights =
2536       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2537   bool SuccHasWeights =
2538       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2539   if (PredHasWeights || SuccHasWeights) {
2540     if (!PredHasWeights)
2541       PredTrueWeight = PredFalseWeight = 1;
2542     if (!SuccHasWeights)
2543       SuccTrueWeight = SuccFalseWeight = 1;
2544     return true;
2545   } else {
2546     return false;
2547   }
2548 }
2549 
2550 /// If this basic block is simple enough, and if a predecessor branches to us
2551 /// and one of our successors, fold the block into the predecessor and use
2552 /// logical operations to pick the right destination.
2553 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2554   BasicBlock *BB = BI->getParent();
2555 
2556   const unsigned PredCount = pred_size(BB);
2557 
2558   Instruction *Cond = nullptr;
2559   if (BI->isConditional())
2560     Cond = dyn_cast<Instruction>(BI->getCondition());
2561   else {
2562     // For unconditional branch, check for a simple CFG pattern, where
2563     // BB has a single predecessor and BB's successor is also its predecessor's
2564     // successor. If such pattern exists, check for CSE between BB and its
2565     // predecessor.
2566     if (BasicBlock *PB = BB->getSinglePredecessor())
2567       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2568         if (PBI->isConditional() &&
2569             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2570              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2571           for (auto I = BB->instructionsWithoutDebug().begin(),
2572                     E = BB->instructionsWithoutDebug().end();
2573                I != E;) {
2574             Instruction *Curr = &*I++;
2575             if (isa<CmpInst>(Curr)) {
2576               Cond = Curr;
2577               break;
2578             }
2579             // Quit if we can't remove this instruction.
2580             if (!tryCSEWithPredecessor(Curr, PB))
2581               return false;
2582           }
2583         }
2584 
2585     if (!Cond)
2586       return false;
2587   }
2588 
2589   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2590       Cond->getParent() != BB || !Cond->hasOneUse())
2591     return false;
2592 
2593   // Make sure the instruction after the condition is the cond branch.
2594   BasicBlock::iterator CondIt = ++Cond->getIterator();
2595 
2596   // Ignore dbg intrinsics.
2597   while (isa<DbgInfoIntrinsic>(CondIt))
2598     ++CondIt;
2599 
2600   if (&*CondIt != BI)
2601     return false;
2602 
2603   // Only allow this transformation if computing the condition doesn't involve
2604   // too many instructions and these involved instructions can be executed
2605   // unconditionally. We denote all involved instructions except the condition
2606   // as "bonus instructions", and only allow this transformation when the
2607   // number of the bonus instructions we'll need to create when cloning into
2608   // each predecessor does not exceed a certain threshold.
2609   unsigned NumBonusInsts = 0;
2610   for (auto I = BB->begin(); Cond != &*I; ++I) {
2611     // Ignore dbg intrinsics.
2612     if (isa<DbgInfoIntrinsic>(I))
2613       continue;
2614     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2615       return false;
2616     // I has only one use and can be executed unconditionally.
2617     Instruction *User = dyn_cast<Instruction>(I->user_back());
2618     if (User == nullptr || User->getParent() != BB)
2619       return false;
2620     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2621     // to use any other instruction, User must be an instruction between next(I)
2622     // and Cond.
2623 
2624     // Account for the cost of duplicating this instruction into each
2625     // predecessor.
2626     NumBonusInsts += PredCount;
2627     // Early exits once we reach the limit.
2628     if (NumBonusInsts > BonusInstThreshold)
2629       return false;
2630   }
2631 
2632   // Cond is known to be a compare or binary operator.  Check to make sure that
2633   // neither operand is a potentially-trapping constant expression.
2634   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2635     if (CE->canTrap())
2636       return false;
2637   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2638     if (CE->canTrap())
2639       return false;
2640 
2641   // Finally, don't infinitely unroll conditional loops.
2642   BasicBlock *TrueDest = BI->getSuccessor(0);
2643   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2644   if (TrueDest == BB || FalseDest == BB)
2645     return false;
2646 
2647   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2648     BasicBlock *PredBlock = *PI;
2649     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2650 
2651     // Check that we have two conditional branches.  If there is a PHI node in
2652     // the common successor, verify that the same value flows in from both
2653     // blocks.
2654     SmallVector<PHINode *, 4> PHIs;
2655     if (!PBI || PBI->isUnconditional() ||
2656         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2657         (!BI->isConditional() &&
2658          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2659       continue;
2660 
2661     // Determine if the two branches share a common destination.
2662     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2663     bool InvertPredCond = false;
2664 
2665     if (BI->isConditional()) {
2666       if (PBI->getSuccessor(0) == TrueDest) {
2667         Opc = Instruction::Or;
2668       } else if (PBI->getSuccessor(1) == FalseDest) {
2669         Opc = Instruction::And;
2670       } else if (PBI->getSuccessor(0) == FalseDest) {
2671         Opc = Instruction::And;
2672         InvertPredCond = true;
2673       } else if (PBI->getSuccessor(1) == TrueDest) {
2674         Opc = Instruction::Or;
2675         InvertPredCond = true;
2676       } else {
2677         continue;
2678       }
2679     } else {
2680       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2681         continue;
2682     }
2683 
2684     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2685     IRBuilder<> Builder(PBI);
2686 
2687     // If we need to invert the condition in the pred block to match, do so now.
2688     if (InvertPredCond) {
2689       Value *NewCond = PBI->getCondition();
2690 
2691       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2692         CmpInst *CI = cast<CmpInst>(NewCond);
2693         CI->setPredicate(CI->getInversePredicate());
2694       } else {
2695         NewCond =
2696             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2697       }
2698 
2699       PBI->setCondition(NewCond);
2700       PBI->swapSuccessors();
2701     }
2702 
2703     // If we have bonus instructions, clone them into the predecessor block.
2704     // Note that there may be multiple predecessor blocks, so we cannot move
2705     // bonus instructions to a predecessor block.
2706     ValueToValueMapTy VMap; // maps original values to cloned values
2707     // We already make sure Cond is the last instruction before BI. Therefore,
2708     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2709     // instructions.
2710     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2711       if (isa<DbgInfoIntrinsic>(BonusInst))
2712         continue;
2713       Instruction *NewBonusInst = BonusInst->clone();
2714       RemapInstruction(NewBonusInst, VMap,
2715                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2716       VMap[&*BonusInst] = NewBonusInst;
2717 
2718       // If we moved a load, we cannot any longer claim any knowledge about
2719       // its potential value. The previous information might have been valid
2720       // only given the branch precondition.
2721       // For an analogous reason, we must also drop all the metadata whose
2722       // semantics we don't understand.
2723       NewBonusInst->dropUnknownNonDebugMetadata();
2724 
2725       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2726       NewBonusInst->takeName(&*BonusInst);
2727       BonusInst->setName(BonusInst->getName() + ".old");
2728     }
2729 
2730     // Clone Cond into the predecessor basic block, and or/and the
2731     // two conditions together.
2732     Instruction *CondInPred = Cond->clone();
2733     RemapInstruction(CondInPred, VMap,
2734                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2735     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2736     CondInPred->takeName(Cond);
2737     Cond->setName(CondInPred->getName() + ".old");
2738 
2739     if (BI->isConditional()) {
2740       Instruction *NewCond = cast<Instruction>(
2741           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2742       PBI->setCondition(NewCond);
2743 
2744       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2745       bool HasWeights =
2746           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2747                                  SuccTrueWeight, SuccFalseWeight);
2748       SmallVector<uint64_t, 8> NewWeights;
2749 
2750       if (PBI->getSuccessor(0) == BB) {
2751         if (HasWeights) {
2752           // PBI: br i1 %x, BB, FalseDest
2753           // BI:  br i1 %y, TrueDest, FalseDest
2754           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2755           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2756           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2757           //               TrueWeight for PBI * FalseWeight for BI.
2758           // We assume that total weights of a BranchInst can fit into 32 bits.
2759           // Therefore, we will not have overflow using 64-bit arithmetic.
2760           NewWeights.push_back(PredFalseWeight *
2761                                    (SuccFalseWeight + SuccTrueWeight) +
2762                                PredTrueWeight * SuccFalseWeight);
2763         }
2764         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2765         PBI->setSuccessor(0, TrueDest);
2766       }
2767       if (PBI->getSuccessor(1) == BB) {
2768         if (HasWeights) {
2769           // PBI: br i1 %x, TrueDest, BB
2770           // BI:  br i1 %y, TrueDest, FalseDest
2771           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2772           //              FalseWeight for PBI * TrueWeight for BI.
2773           NewWeights.push_back(PredTrueWeight *
2774                                    (SuccFalseWeight + SuccTrueWeight) +
2775                                PredFalseWeight * SuccTrueWeight);
2776           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2777           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2778         }
2779         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2780         PBI->setSuccessor(1, FalseDest);
2781       }
2782       if (NewWeights.size() == 2) {
2783         // Halve the weights if any of them cannot fit in an uint32_t
2784         FitWeights(NewWeights);
2785 
2786         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2787                                            NewWeights.end());
2788         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2789       } else
2790         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2791     } else {
2792       // Update PHI nodes in the common successors.
2793       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2794         ConstantInt *PBI_C = cast<ConstantInt>(
2795             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2796         assert(PBI_C->getType()->isIntegerTy(1));
2797         Instruction *MergedCond = nullptr;
2798         if (PBI->getSuccessor(0) == TrueDest) {
2799           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2800           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2801           //       is false: !PBI_Cond and BI_Value
2802           Instruction *NotCond = cast<Instruction>(
2803               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2804           MergedCond = cast<Instruction>(
2805                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2806                                    "and.cond"));
2807           if (PBI_C->isOne())
2808             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2809                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2810         } else {
2811           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2812           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2813           //       is false: PBI_Cond and BI_Value
2814           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2815               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2816           if (PBI_C->isOne()) {
2817             Instruction *NotCond = cast<Instruction>(
2818                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2819             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2820                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2821           }
2822         }
2823         // Update PHI Node.
2824         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2825                                   MergedCond);
2826       }
2827       // Change PBI from Conditional to Unconditional.
2828       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2829       EraseTerminatorAndDCECond(PBI);
2830       PBI = New_PBI;
2831     }
2832 
2833     // If BI was a loop latch, it may have had associated loop metadata.
2834     // We need to copy it to the new latch, that is, PBI.
2835     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2836       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2837 
2838     // TODO: If BB is reachable from all paths through PredBlock, then we
2839     // could replace PBI's branch probabilities with BI's.
2840 
2841     // Copy any debug value intrinsics into the end of PredBlock.
2842     for (Instruction &I : *BB)
2843       if (isa<DbgInfoIntrinsic>(I))
2844         I.clone()->insertBefore(PBI);
2845 
2846     return true;
2847   }
2848   return false;
2849 }
2850 
2851 // If there is only one store in BB1 and BB2, return it, otherwise return
2852 // nullptr.
2853 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2854   StoreInst *S = nullptr;
2855   for (auto *BB : {BB1, BB2}) {
2856     if (!BB)
2857       continue;
2858     for (auto &I : *BB)
2859       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2860         if (S)
2861           // Multiple stores seen.
2862           return nullptr;
2863         else
2864           S = SI;
2865       }
2866   }
2867   return S;
2868 }
2869 
2870 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2871                                               Value *AlternativeV = nullptr) {
2872   // PHI is going to be a PHI node that allows the value V that is defined in
2873   // BB to be referenced in BB's only successor.
2874   //
2875   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2876   // doesn't matter to us what the other operand is (it'll never get used). We
2877   // could just create a new PHI with an undef incoming value, but that could
2878   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2879   // other PHI. So here we directly look for some PHI in BB's successor with V
2880   // as an incoming operand. If we find one, we use it, else we create a new
2881   // one.
2882   //
2883   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2884   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2885   // where OtherBB is the single other predecessor of BB's only successor.
2886   PHINode *PHI = nullptr;
2887   BasicBlock *Succ = BB->getSingleSuccessor();
2888 
2889   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2890     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2891       PHI = cast<PHINode>(I);
2892       if (!AlternativeV)
2893         break;
2894 
2895       assert(Succ->hasNPredecessors(2));
2896       auto PredI = pred_begin(Succ);
2897       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2898       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2899         break;
2900       PHI = nullptr;
2901     }
2902   if (PHI)
2903     return PHI;
2904 
2905   // If V is not an instruction defined in BB, just return it.
2906   if (!AlternativeV &&
2907       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2908     return V;
2909 
2910   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2911   PHI->addIncoming(V, BB);
2912   for (BasicBlock *PredBB : predecessors(Succ))
2913     if (PredBB != BB)
2914       PHI->addIncoming(
2915           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2916   return PHI;
2917 }
2918 
2919 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2920                                            BasicBlock *QTB, BasicBlock *QFB,
2921                                            BasicBlock *PostBB, Value *Address,
2922                                            bool InvertPCond, bool InvertQCond,
2923                                            const DataLayout &DL) {
2924   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2925     return Operator::getOpcode(&I) == Instruction::BitCast &&
2926            I.getType()->isPointerTy();
2927   };
2928 
2929   // If we're not in aggressive mode, we only optimize if we have some
2930   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2931   auto IsWorthwhile = [&](BasicBlock *BB) {
2932     if (!BB)
2933       return true;
2934     // Heuristic: if the block can be if-converted/phi-folded and the
2935     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2936     // thread this store.
2937     unsigned N = 0;
2938     for (auto &I : BB->instructionsWithoutDebug()) {
2939       // Cheap instructions viable for folding.
2940       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2941           isa<StoreInst>(I))
2942         ++N;
2943       // Free instructions.
2944       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2945         continue;
2946       else
2947         return false;
2948     }
2949     // The store we want to merge is counted in N, so add 1 to make sure
2950     // we're counting the instructions that would be left.
2951     return N <= (PHINodeFoldingThreshold + 1);
2952   };
2953 
2954   if (!MergeCondStoresAggressively &&
2955       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2956        !IsWorthwhile(QFB)))
2957     return false;
2958 
2959   // For every pointer, there must be exactly two stores, one coming from
2960   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2961   // store (to any address) in PTB,PFB or QTB,QFB.
2962   // FIXME: We could relax this restriction with a bit more work and performance
2963   // testing.
2964   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2965   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2966   if (!PStore || !QStore)
2967     return false;
2968 
2969   // Now check the stores are compatible.
2970   if (!QStore->isUnordered() || !PStore->isUnordered())
2971     return false;
2972 
2973   // Check that sinking the store won't cause program behavior changes. Sinking
2974   // the store out of the Q blocks won't change any behavior as we're sinking
2975   // from a block to its unconditional successor. But we're moving a store from
2976   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2977   // So we need to check that there are no aliasing loads or stores in
2978   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2979   // operations between PStore and the end of its parent block.
2980   //
2981   // The ideal way to do this is to query AliasAnalysis, but we don't
2982   // preserve AA currently so that is dangerous. Be super safe and just
2983   // check there are no other memory operations at all.
2984   for (auto &I : *QFB->getSinglePredecessor())
2985     if (I.mayReadOrWriteMemory())
2986       return false;
2987   for (auto &I : *QFB)
2988     if (&I != QStore && I.mayReadOrWriteMemory())
2989       return false;
2990   if (QTB)
2991     for (auto &I : *QTB)
2992       if (&I != QStore && I.mayReadOrWriteMemory())
2993         return false;
2994   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2995        I != E; ++I)
2996     if (&*I != PStore && I->mayReadOrWriteMemory())
2997       return false;
2998 
2999   // If PostBB has more than two predecessors, we need to split it so we can
3000   // sink the store.
3001   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3002     // We know that QFB's only successor is PostBB. And QFB has a single
3003     // predecessor. If QTB exists, then its only successor is also PostBB.
3004     // If QTB does not exist, then QFB's only predecessor has a conditional
3005     // branch to QFB and PostBB.
3006     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3007     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3008                                                "condstore.split");
3009     if (!NewBB)
3010       return false;
3011     PostBB = NewBB;
3012   }
3013 
3014   // OK, we're going to sink the stores to PostBB. The store has to be
3015   // conditional though, so first create the predicate.
3016   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3017                      ->getCondition();
3018   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3019                      ->getCondition();
3020 
3021   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3022                                                 PStore->getParent());
3023   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3024                                                 QStore->getParent(), PPHI);
3025 
3026   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3027 
3028   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3029   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3030 
3031   if (InvertPCond)
3032     PPred = QB.CreateNot(PPred);
3033   if (InvertQCond)
3034     QPred = QB.CreateNot(QPred);
3035   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3036 
3037   auto *T =
3038       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3039   QB.SetInsertPoint(T);
3040   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3041   AAMDNodes AAMD;
3042   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3043   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3044   SI->setAAMetadata(AAMD);
3045   unsigned PAlignment = PStore->getAlignment();
3046   unsigned QAlignment = QStore->getAlignment();
3047   unsigned TypeAlignment =
3048       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3049   unsigned MinAlignment;
3050   unsigned MaxAlignment;
3051   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3052   // Choose the minimum alignment. If we could prove both stores execute, we
3053   // could use biggest one.  In this case, though, we only know that one of the
3054   // stores executes.  And we don't know it's safe to take the alignment from a
3055   // store that doesn't execute.
3056   if (MinAlignment != 0) {
3057     // Choose the minimum of all non-zero alignments.
3058     SI->setAlignment(MinAlignment);
3059   } else if (MaxAlignment != 0) {
3060     // Choose the minimal alignment between the non-zero alignment and the ABI
3061     // default alignment for the type of the stored value.
3062     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3063   } else {
3064     // If both alignments are zero, use ABI default alignment for the type of
3065     // the stored value.
3066     SI->setAlignment(TypeAlignment);
3067   }
3068 
3069   QStore->eraseFromParent();
3070   PStore->eraseFromParent();
3071 
3072   return true;
3073 }
3074 
3075 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3076                                    const DataLayout &DL) {
3077   // The intention here is to find diamonds or triangles (see below) where each
3078   // conditional block contains a store to the same address. Both of these
3079   // stores are conditional, so they can't be unconditionally sunk. But it may
3080   // be profitable to speculatively sink the stores into one merged store at the
3081   // end, and predicate the merged store on the union of the two conditions of
3082   // PBI and QBI.
3083   //
3084   // This can reduce the number of stores executed if both of the conditions are
3085   // true, and can allow the blocks to become small enough to be if-converted.
3086   // This optimization will also chain, so that ladders of test-and-set
3087   // sequences can be if-converted away.
3088   //
3089   // We only deal with simple diamonds or triangles:
3090   //
3091   //     PBI       or      PBI        or a combination of the two
3092   //    /   \               | \
3093   //   PTB  PFB             |  PFB
3094   //    \   /               | /
3095   //     QBI                QBI
3096   //    /  \                | \
3097   //   QTB  QFB             |  QFB
3098   //    \  /                | /
3099   //    PostBB            PostBB
3100   //
3101   // We model triangles as a type of diamond with a nullptr "true" block.
3102   // Triangles are canonicalized so that the fallthrough edge is represented by
3103   // a true condition, as in the diagram above.
3104   BasicBlock *PTB = PBI->getSuccessor(0);
3105   BasicBlock *PFB = PBI->getSuccessor(1);
3106   BasicBlock *QTB = QBI->getSuccessor(0);
3107   BasicBlock *QFB = QBI->getSuccessor(1);
3108   BasicBlock *PostBB = QFB->getSingleSuccessor();
3109 
3110   // Make sure we have a good guess for PostBB. If QTB's only successor is
3111   // QFB, then QFB is a better PostBB.
3112   if (QTB->getSingleSuccessor() == QFB)
3113     PostBB = QFB;
3114 
3115   // If we couldn't find a good PostBB, stop.
3116   if (!PostBB)
3117     return false;
3118 
3119   bool InvertPCond = false, InvertQCond = false;
3120   // Canonicalize fallthroughs to the true branches.
3121   if (PFB == QBI->getParent()) {
3122     std::swap(PFB, PTB);
3123     InvertPCond = true;
3124   }
3125   if (QFB == PostBB) {
3126     std::swap(QFB, QTB);
3127     InvertQCond = true;
3128   }
3129 
3130   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3131   // and QFB may not. Model fallthroughs as a nullptr block.
3132   if (PTB == QBI->getParent())
3133     PTB = nullptr;
3134   if (QTB == PostBB)
3135     QTB = nullptr;
3136 
3137   // Legality bailouts. We must have at least the non-fallthrough blocks and
3138   // the post-dominating block, and the non-fallthroughs must only have one
3139   // predecessor.
3140   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3141     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3142   };
3143   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3144       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3145     return false;
3146   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3147       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3148     return false;
3149   if (!QBI->getParent()->hasNUses(2))
3150     return false;
3151 
3152   // OK, this is a sequence of two diamonds or triangles.
3153   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3154   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3155   for (auto *BB : {PTB, PFB}) {
3156     if (!BB)
3157       continue;
3158     for (auto &I : *BB)
3159       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3160         PStoreAddresses.insert(SI->getPointerOperand());
3161   }
3162   for (auto *BB : {QTB, QFB}) {
3163     if (!BB)
3164       continue;
3165     for (auto &I : *BB)
3166       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3167         QStoreAddresses.insert(SI->getPointerOperand());
3168   }
3169 
3170   set_intersect(PStoreAddresses, QStoreAddresses);
3171   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3172   // clear what it contains.
3173   auto &CommonAddresses = PStoreAddresses;
3174 
3175   bool Changed = false;
3176   for (auto *Address : CommonAddresses)
3177     Changed |= mergeConditionalStoreToAddress(
3178         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3179   return Changed;
3180 }
3181 
3182 /// If we have a conditional branch as a predecessor of another block,
3183 /// this function tries to simplify it.  We know
3184 /// that PBI and BI are both conditional branches, and BI is in one of the
3185 /// successor blocks of PBI - PBI branches to BI.
3186 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3187                                            const DataLayout &DL) {
3188   assert(PBI->isConditional() && BI->isConditional());
3189   BasicBlock *BB = BI->getParent();
3190 
3191   // If this block ends with a branch instruction, and if there is a
3192   // predecessor that ends on a branch of the same condition, make
3193   // this conditional branch redundant.
3194   if (PBI->getCondition() == BI->getCondition() &&
3195       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3196     // Okay, the outcome of this conditional branch is statically
3197     // knowable.  If this block had a single pred, handle specially.
3198     if (BB->getSinglePredecessor()) {
3199       // Turn this into a branch on constant.
3200       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3201       BI->setCondition(
3202           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3203       return true; // Nuke the branch on constant.
3204     }
3205 
3206     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3207     // in the constant and simplify the block result.  Subsequent passes of
3208     // simplifycfg will thread the block.
3209     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3210       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3211       PHINode *NewPN = PHINode::Create(
3212           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3213           BI->getCondition()->getName() + ".pr", &BB->front());
3214       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3215       // predecessor, compute the PHI'd conditional value for all of the preds.
3216       // Any predecessor where the condition is not computable we keep symbolic.
3217       for (pred_iterator PI = PB; PI != PE; ++PI) {
3218         BasicBlock *P = *PI;
3219         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3220             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3221             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3222           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3223           NewPN->addIncoming(
3224               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3225               P);
3226         } else {
3227           NewPN->addIncoming(BI->getCondition(), P);
3228         }
3229       }
3230 
3231       BI->setCondition(NewPN);
3232       return true;
3233     }
3234   }
3235 
3236   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3237     if (CE->canTrap())
3238       return false;
3239 
3240   // If both branches are conditional and both contain stores to the same
3241   // address, remove the stores from the conditionals and create a conditional
3242   // merged store at the end.
3243   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3244     return true;
3245 
3246   // If this is a conditional branch in an empty block, and if any
3247   // predecessors are a conditional branch to one of our destinations,
3248   // fold the conditions into logical ops and one cond br.
3249 
3250   // Ignore dbg intrinsics.
3251   if (&*BB->instructionsWithoutDebug().begin() != BI)
3252     return false;
3253 
3254   int PBIOp, BIOp;
3255   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3256     PBIOp = 0;
3257     BIOp = 0;
3258   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3259     PBIOp = 0;
3260     BIOp = 1;
3261   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3262     PBIOp = 1;
3263     BIOp = 0;
3264   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3265     PBIOp = 1;
3266     BIOp = 1;
3267   } else {
3268     return false;
3269   }
3270 
3271   // Check to make sure that the other destination of this branch
3272   // isn't BB itself.  If so, this is an infinite loop that will
3273   // keep getting unwound.
3274   if (PBI->getSuccessor(PBIOp) == BB)
3275     return false;
3276 
3277   // Do not perform this transformation if it would require
3278   // insertion of a large number of select instructions. For targets
3279   // without predication/cmovs, this is a big pessimization.
3280 
3281   // Also do not perform this transformation if any phi node in the common
3282   // destination block can trap when reached by BB or PBB (PR17073). In that
3283   // case, it would be unsafe to hoist the operation into a select instruction.
3284 
3285   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3286   unsigned NumPhis = 0;
3287   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3288        ++II, ++NumPhis) {
3289     if (NumPhis > 2) // Disable this xform.
3290       return false;
3291 
3292     PHINode *PN = cast<PHINode>(II);
3293     Value *BIV = PN->getIncomingValueForBlock(BB);
3294     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3295       if (CE->canTrap())
3296         return false;
3297 
3298     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3299     Value *PBIV = PN->getIncomingValue(PBBIdx);
3300     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3301       if (CE->canTrap())
3302         return false;
3303   }
3304 
3305   // Finally, if everything is ok, fold the branches to logical ops.
3306   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3307 
3308   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3309                     << "AND: " << *BI->getParent());
3310 
3311   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3312   // branch in it, where one edge (OtherDest) goes back to itself but the other
3313   // exits.  We don't *know* that the program avoids the infinite loop
3314   // (even though that seems likely).  If we do this xform naively, we'll end up
3315   // recursively unpeeling the loop.  Since we know that (after the xform is
3316   // done) that the block *is* infinite if reached, we just make it an obviously
3317   // infinite loop with no cond branch.
3318   if (OtherDest == BB) {
3319     // Insert it at the end of the function, because it's either code,
3320     // or it won't matter if it's hot. :)
3321     BasicBlock *InfLoopBlock =
3322         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3323     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3324     OtherDest = InfLoopBlock;
3325   }
3326 
3327   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3328 
3329   // BI may have other predecessors.  Because of this, we leave
3330   // it alone, but modify PBI.
3331 
3332   // Make sure we get to CommonDest on True&True directions.
3333   Value *PBICond = PBI->getCondition();
3334   IRBuilder<NoFolder> Builder(PBI);
3335   if (PBIOp)
3336     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3337 
3338   Value *BICond = BI->getCondition();
3339   if (BIOp)
3340     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3341 
3342   // Merge the conditions.
3343   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3344 
3345   // Modify PBI to branch on the new condition to the new dests.
3346   PBI->setCondition(Cond);
3347   PBI->setSuccessor(0, CommonDest);
3348   PBI->setSuccessor(1, OtherDest);
3349 
3350   // Update branch weight for PBI.
3351   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3352   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3353   bool HasWeights =
3354       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3355                              SuccTrueWeight, SuccFalseWeight);
3356   if (HasWeights) {
3357     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3358     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3359     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3360     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3361     // The weight to CommonDest should be PredCommon * SuccTotal +
3362     //                                    PredOther * SuccCommon.
3363     // The weight to OtherDest should be PredOther * SuccOther.
3364     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3365                                   PredOther * SuccCommon,
3366                               PredOther * SuccOther};
3367     // Halve the weights if any of them cannot fit in an uint32_t
3368     FitWeights(NewWeights);
3369 
3370     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3371   }
3372 
3373   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3374   // block that are identical to the entries for BI's block.
3375   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3376 
3377   // We know that the CommonDest already had an edge from PBI to
3378   // it.  If it has PHIs though, the PHIs may have different
3379   // entries for BB and PBI's BB.  If so, insert a select to make
3380   // them agree.
3381   for (PHINode &PN : CommonDest->phis()) {
3382     Value *BIV = PN.getIncomingValueForBlock(BB);
3383     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3384     Value *PBIV = PN.getIncomingValue(PBBIdx);
3385     if (BIV != PBIV) {
3386       // Insert a select in PBI to pick the right value.
3387       SelectInst *NV = cast<SelectInst>(
3388           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3389       PN.setIncomingValue(PBBIdx, NV);
3390       // Although the select has the same condition as PBI, the original branch
3391       // weights for PBI do not apply to the new select because the select's
3392       // 'logical' edges are incoming edges of the phi that is eliminated, not
3393       // the outgoing edges of PBI.
3394       if (HasWeights) {
3395         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3396         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3397         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3398         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3399         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3400         // The weight to PredOtherDest should be PredOther * SuccCommon.
3401         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3402                                   PredOther * SuccCommon};
3403 
3404         FitWeights(NewWeights);
3405 
3406         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3407       }
3408     }
3409   }
3410 
3411   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3412   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3413 
3414   // This basic block is probably dead.  We know it has at least
3415   // one fewer predecessor.
3416   return true;
3417 }
3418 
3419 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3420 // true or to FalseBB if Cond is false.
3421 // Takes care of updating the successors and removing the old terminator.
3422 // Also makes sure not to introduce new successors by assuming that edges to
3423 // non-successor TrueBBs and FalseBBs aren't reachable.
3424 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3425                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3426                                        uint32_t TrueWeight,
3427                                        uint32_t FalseWeight) {
3428   // Remove any superfluous successor edges from the CFG.
3429   // First, figure out which successors to preserve.
3430   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3431   // successor.
3432   BasicBlock *KeepEdge1 = TrueBB;
3433   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3434 
3435   // Then remove the rest.
3436   for (BasicBlock *Succ : successors(OldTerm)) {
3437     // Make sure only to keep exactly one copy of each edge.
3438     if (Succ == KeepEdge1)
3439       KeepEdge1 = nullptr;
3440     else if (Succ == KeepEdge2)
3441       KeepEdge2 = nullptr;
3442     else
3443       Succ->removePredecessor(OldTerm->getParent(),
3444                               /*DontDeleteUselessPHIs=*/true);
3445   }
3446 
3447   IRBuilder<> Builder(OldTerm);
3448   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3449 
3450   // Insert an appropriate new terminator.
3451   if (!KeepEdge1 && !KeepEdge2) {
3452     if (TrueBB == FalseBB)
3453       // We were only looking for one successor, and it was present.
3454       // Create an unconditional branch to it.
3455       Builder.CreateBr(TrueBB);
3456     else {
3457       // We found both of the successors we were looking for.
3458       // Create a conditional branch sharing the condition of the select.
3459       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3460       if (TrueWeight != FalseWeight)
3461         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3462     }
3463   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3464     // Neither of the selected blocks were successors, so this
3465     // terminator must be unreachable.
3466     new UnreachableInst(OldTerm->getContext(), OldTerm);
3467   } else {
3468     // One of the selected values was a successor, but the other wasn't.
3469     // Insert an unconditional branch to the one that was found;
3470     // the edge to the one that wasn't must be unreachable.
3471     if (!KeepEdge1)
3472       // Only TrueBB was found.
3473       Builder.CreateBr(TrueBB);
3474     else
3475       // Only FalseBB was found.
3476       Builder.CreateBr(FalseBB);
3477   }
3478 
3479   EraseTerminatorAndDCECond(OldTerm);
3480   return true;
3481 }
3482 
3483 // Replaces
3484 //   (switch (select cond, X, Y)) on constant X, Y
3485 // with a branch - conditional if X and Y lead to distinct BBs,
3486 // unconditional otherwise.
3487 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3488   // Check for constant integer values in the select.
3489   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3490   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3491   if (!TrueVal || !FalseVal)
3492     return false;
3493 
3494   // Find the relevant condition and destinations.
3495   Value *Condition = Select->getCondition();
3496   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3497   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3498 
3499   // Get weight for TrueBB and FalseBB.
3500   uint32_t TrueWeight = 0, FalseWeight = 0;
3501   SmallVector<uint64_t, 8> Weights;
3502   bool HasWeights = HasBranchWeights(SI);
3503   if (HasWeights) {
3504     GetBranchWeights(SI, Weights);
3505     if (Weights.size() == 1 + SI->getNumCases()) {
3506       TrueWeight =
3507           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3508       FalseWeight =
3509           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3510     }
3511   }
3512 
3513   // Perform the actual simplification.
3514   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3515                                     FalseWeight);
3516 }
3517 
3518 // Replaces
3519 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3520 //                             blockaddress(@fn, BlockB)))
3521 // with
3522 //   (br cond, BlockA, BlockB).
3523 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3524   // Check that both operands of the select are block addresses.
3525   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3526   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3527   if (!TBA || !FBA)
3528     return false;
3529 
3530   // Extract the actual blocks.
3531   BasicBlock *TrueBB = TBA->getBasicBlock();
3532   BasicBlock *FalseBB = FBA->getBasicBlock();
3533 
3534   // Perform the actual simplification.
3535   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3536                                     0);
3537 }
3538 
3539 /// This is called when we find an icmp instruction
3540 /// (a seteq/setne with a constant) as the only instruction in a
3541 /// block that ends with an uncond branch.  We are looking for a very specific
3542 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3543 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3544 /// default value goes to an uncond block with a seteq in it, we get something
3545 /// like:
3546 ///
3547 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3548 /// DEFAULT:
3549 ///   %tmp = icmp eq i8 %A, 92
3550 ///   br label %end
3551 /// end:
3552 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3553 ///
3554 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3555 /// the PHI, merging the third icmp into the switch.
3556 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3557     ICmpInst *ICI, IRBuilder<> &Builder) {
3558   BasicBlock *BB = ICI->getParent();
3559 
3560   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3561   // complex.
3562   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3563     return false;
3564 
3565   Value *V = ICI->getOperand(0);
3566   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3567 
3568   // The pattern we're looking for is where our only predecessor is a switch on
3569   // 'V' and this block is the default case for the switch.  In this case we can
3570   // fold the compared value into the switch to simplify things.
3571   BasicBlock *Pred = BB->getSinglePredecessor();
3572   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3573     return false;
3574 
3575   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3576   if (SI->getCondition() != V)
3577     return false;
3578 
3579   // If BB is reachable on a non-default case, then we simply know the value of
3580   // V in this block.  Substitute it and constant fold the icmp instruction
3581   // away.
3582   if (SI->getDefaultDest() != BB) {
3583     ConstantInt *VVal = SI->findCaseDest(BB);
3584     assert(VVal && "Should have a unique destination value");
3585     ICI->setOperand(0, VVal);
3586 
3587     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3588       ICI->replaceAllUsesWith(V);
3589       ICI->eraseFromParent();
3590     }
3591     // BB is now empty, so it is likely to simplify away.
3592     return requestResimplify();
3593   }
3594 
3595   // Ok, the block is reachable from the default dest.  If the constant we're
3596   // comparing exists in one of the other edges, then we can constant fold ICI
3597   // and zap it.
3598   if (SI->findCaseValue(Cst) != SI->case_default()) {
3599     Value *V;
3600     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3601       V = ConstantInt::getFalse(BB->getContext());
3602     else
3603       V = ConstantInt::getTrue(BB->getContext());
3604 
3605     ICI->replaceAllUsesWith(V);
3606     ICI->eraseFromParent();
3607     // BB is now empty, so it is likely to simplify away.
3608     return requestResimplify();
3609   }
3610 
3611   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3612   // the block.
3613   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3614   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3615   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3616       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3617     return false;
3618 
3619   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3620   // true in the PHI.
3621   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3622   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3623 
3624   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3625     std::swap(DefaultCst, NewCst);
3626 
3627   // Replace ICI (which is used by the PHI for the default value) with true or
3628   // false depending on if it is EQ or NE.
3629   ICI->replaceAllUsesWith(DefaultCst);
3630   ICI->eraseFromParent();
3631 
3632   // Okay, the switch goes to this block on a default value.  Add an edge from
3633   // the switch to the merge point on the compared value.
3634   BasicBlock *NewBB =
3635       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3636   SmallVector<uint64_t, 8> Weights;
3637   bool HasWeights = HasBranchWeights(SI);
3638   if (HasWeights) {
3639     GetBranchWeights(SI, Weights);
3640     if (Weights.size() == 1 + SI->getNumCases()) {
3641       // Split weight for default case to case for "Cst".
3642       Weights[0] = (Weights[0] + 1) >> 1;
3643       Weights.push_back(Weights[0]);
3644 
3645       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3646       setBranchWeights(SI, MDWeights);
3647     }
3648   }
3649   SI->addCase(Cst, NewBB);
3650 
3651   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3652   Builder.SetInsertPoint(NewBB);
3653   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3654   Builder.CreateBr(SuccBlock);
3655   PHIUse->addIncoming(NewCst, NewBB);
3656   return true;
3657 }
3658 
3659 /// The specified branch is a conditional branch.
3660 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3661 /// fold it into a switch instruction if so.
3662 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3663                                       const DataLayout &DL) {
3664   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3665   if (!Cond)
3666     return false;
3667 
3668   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3669   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3670   // 'setne's and'ed together, collect them.
3671 
3672   // Try to gather values from a chain of and/or to be turned into a switch
3673   ConstantComparesGatherer ConstantCompare(Cond, DL);
3674   // Unpack the result
3675   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3676   Value *CompVal = ConstantCompare.CompValue;
3677   unsigned UsedICmps = ConstantCompare.UsedICmps;
3678   Value *ExtraCase = ConstantCompare.Extra;
3679 
3680   // If we didn't have a multiply compared value, fail.
3681   if (!CompVal)
3682     return false;
3683 
3684   // Avoid turning single icmps into a switch.
3685   if (UsedICmps <= 1)
3686     return false;
3687 
3688   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3689 
3690   // There might be duplicate constants in the list, which the switch
3691   // instruction can't handle, remove them now.
3692   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3693   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3694 
3695   // If Extra was used, we require at least two switch values to do the
3696   // transformation.  A switch with one value is just a conditional branch.
3697   if (ExtraCase && Values.size() < 2)
3698     return false;
3699 
3700   // TODO: Preserve branch weight metadata, similarly to how
3701   // FoldValueComparisonIntoPredecessors preserves it.
3702 
3703   // Figure out which block is which destination.
3704   BasicBlock *DefaultBB = BI->getSuccessor(1);
3705   BasicBlock *EdgeBB = BI->getSuccessor(0);
3706   if (!TrueWhenEqual)
3707     std::swap(DefaultBB, EdgeBB);
3708 
3709   BasicBlock *BB = BI->getParent();
3710 
3711   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3712                     << " cases into SWITCH.  BB is:\n"
3713                     << *BB);
3714 
3715   // If there are any extra values that couldn't be folded into the switch
3716   // then we evaluate them with an explicit branch first.  Split the block
3717   // right before the condbr to handle it.
3718   if (ExtraCase) {
3719     BasicBlock *NewBB =
3720         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3721     // Remove the uncond branch added to the old block.
3722     Instruction *OldTI = BB->getTerminator();
3723     Builder.SetInsertPoint(OldTI);
3724 
3725     if (TrueWhenEqual)
3726       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3727     else
3728       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3729 
3730     OldTI->eraseFromParent();
3731 
3732     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3733     // for the edge we just added.
3734     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3735 
3736     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3737                       << "\nEXTRABB = " << *BB);
3738     BB = NewBB;
3739   }
3740 
3741   Builder.SetInsertPoint(BI);
3742   // Convert pointer to int before we switch.
3743   if (CompVal->getType()->isPointerTy()) {
3744     CompVal = Builder.CreatePtrToInt(
3745         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3746   }
3747 
3748   // Create the new switch instruction now.
3749   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3750 
3751   // Add all of the 'cases' to the switch instruction.
3752   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3753     New->addCase(Values[i], EdgeBB);
3754 
3755   // We added edges from PI to the EdgeBB.  As such, if there were any
3756   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3757   // the number of edges added.
3758   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3759     PHINode *PN = cast<PHINode>(BBI);
3760     Value *InVal = PN->getIncomingValueForBlock(BB);
3761     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3762       PN->addIncoming(InVal, BB);
3763   }
3764 
3765   // Erase the old branch instruction.
3766   EraseTerminatorAndDCECond(BI);
3767 
3768   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3769   return true;
3770 }
3771 
3772 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3773   if (isa<PHINode>(RI->getValue()))
3774     return SimplifyCommonResume(RI);
3775   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3776            RI->getValue() == RI->getParent()->getFirstNonPHI())
3777     // The resume must unwind the exception that caused control to branch here.
3778     return SimplifySingleResume(RI);
3779 
3780   return false;
3781 }
3782 
3783 // Simplify resume that is shared by several landing pads (phi of landing pad).
3784 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3785   BasicBlock *BB = RI->getParent();
3786 
3787   // Check that there are no other instructions except for debug intrinsics
3788   // between the phi of landing pads (RI->getValue()) and resume instruction.
3789   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3790                        E = RI->getIterator();
3791   while (++I != E)
3792     if (!isa<DbgInfoIntrinsic>(I))
3793       return false;
3794 
3795   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3796   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3797 
3798   // Check incoming blocks to see if any of them are trivial.
3799   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3800        Idx++) {
3801     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3802     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3803 
3804     // If the block has other successors, we can not delete it because
3805     // it has other dependents.
3806     if (IncomingBB->getUniqueSuccessor() != BB)
3807       continue;
3808 
3809     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3810     // Not the landing pad that caused the control to branch here.
3811     if (IncomingValue != LandingPad)
3812       continue;
3813 
3814     bool isTrivial = true;
3815 
3816     I = IncomingBB->getFirstNonPHI()->getIterator();
3817     E = IncomingBB->getTerminator()->getIterator();
3818     while (++I != E)
3819       if (!isa<DbgInfoIntrinsic>(I)) {
3820         isTrivial = false;
3821         break;
3822       }
3823 
3824     if (isTrivial)
3825       TrivialUnwindBlocks.insert(IncomingBB);
3826   }
3827 
3828   // If no trivial unwind blocks, don't do any simplifications.
3829   if (TrivialUnwindBlocks.empty())
3830     return false;
3831 
3832   // Turn all invokes that unwind here into calls.
3833   for (auto *TrivialBB : TrivialUnwindBlocks) {
3834     // Blocks that will be simplified should be removed from the phi node.
3835     // Note there could be multiple edges to the resume block, and we need
3836     // to remove them all.
3837     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3838       BB->removePredecessor(TrivialBB, true);
3839 
3840     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3841          PI != PE;) {
3842       BasicBlock *Pred = *PI++;
3843       removeUnwindEdge(Pred);
3844     }
3845 
3846     // In each SimplifyCFG run, only the current processed block can be erased.
3847     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3848     // of erasing TrivialBB, we only remove the branch to the common resume
3849     // block so that we can later erase the resume block since it has no
3850     // predecessors.
3851     TrivialBB->getTerminator()->eraseFromParent();
3852     new UnreachableInst(RI->getContext(), TrivialBB);
3853   }
3854 
3855   // Delete the resume block if all its predecessors have been removed.
3856   if (pred_empty(BB))
3857     BB->eraseFromParent();
3858 
3859   return !TrivialUnwindBlocks.empty();
3860 }
3861 
3862 // Simplify resume that is only used by a single (non-phi) landing pad.
3863 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3864   BasicBlock *BB = RI->getParent();
3865   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3866   assert(RI->getValue() == LPInst &&
3867          "Resume must unwind the exception that caused control to here");
3868 
3869   // Check that there are no other instructions except for debug intrinsics.
3870   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3871   while (++I != E)
3872     if (!isa<DbgInfoIntrinsic>(I))
3873       return false;
3874 
3875   // Turn all invokes that unwind here into calls and delete the basic block.
3876   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3877     BasicBlock *Pred = *PI++;
3878     removeUnwindEdge(Pred);
3879   }
3880 
3881   // The landingpad is now unreachable.  Zap it.
3882   if (LoopHeaders)
3883     LoopHeaders->erase(BB);
3884   BB->eraseFromParent();
3885   return true;
3886 }
3887 
3888 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3889   // If this is a trivial cleanup pad that executes no instructions, it can be
3890   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3891   // that is an EH pad will be updated to continue to the caller and any
3892   // predecessor that terminates with an invoke instruction will have its invoke
3893   // instruction converted to a call instruction.  If the cleanup pad being
3894   // simplified does not continue to the caller, each predecessor will be
3895   // updated to continue to the unwind destination of the cleanup pad being
3896   // simplified.
3897   BasicBlock *BB = RI->getParent();
3898   CleanupPadInst *CPInst = RI->getCleanupPad();
3899   if (CPInst->getParent() != BB)
3900     // This isn't an empty cleanup.
3901     return false;
3902 
3903   // We cannot kill the pad if it has multiple uses.  This typically arises
3904   // from unreachable basic blocks.
3905   if (!CPInst->hasOneUse())
3906     return false;
3907 
3908   // Check that there are no other instructions except for benign intrinsics.
3909   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3910   while (++I != E) {
3911     auto *II = dyn_cast<IntrinsicInst>(I);
3912     if (!II)
3913       return false;
3914 
3915     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3916     switch (IntrinsicID) {
3917     case Intrinsic::dbg_declare:
3918     case Intrinsic::dbg_value:
3919     case Intrinsic::dbg_label:
3920     case Intrinsic::lifetime_end:
3921       break;
3922     default:
3923       return false;
3924     }
3925   }
3926 
3927   // If the cleanup return we are simplifying unwinds to the caller, this will
3928   // set UnwindDest to nullptr.
3929   BasicBlock *UnwindDest = RI->getUnwindDest();
3930   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3931 
3932   // We're about to remove BB from the control flow.  Before we do, sink any
3933   // PHINodes into the unwind destination.  Doing this before changing the
3934   // control flow avoids some potentially slow checks, since we can currently
3935   // be certain that UnwindDest and BB have no common predecessors (since they
3936   // are both EH pads).
3937   if (UnwindDest) {
3938     // First, go through the PHI nodes in UnwindDest and update any nodes that
3939     // reference the block we are removing
3940     for (BasicBlock::iterator I = UnwindDest->begin(),
3941                               IE = DestEHPad->getIterator();
3942          I != IE; ++I) {
3943       PHINode *DestPN = cast<PHINode>(I);
3944 
3945       int Idx = DestPN->getBasicBlockIndex(BB);
3946       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3947       assert(Idx != -1);
3948       // This PHI node has an incoming value that corresponds to a control
3949       // path through the cleanup pad we are removing.  If the incoming
3950       // value is in the cleanup pad, it must be a PHINode (because we
3951       // verified above that the block is otherwise empty).  Otherwise, the
3952       // value is either a constant or a value that dominates the cleanup
3953       // pad being removed.
3954       //
3955       // Because BB and UnwindDest are both EH pads, all of their
3956       // predecessors must unwind to these blocks, and since no instruction
3957       // can have multiple unwind destinations, there will be no overlap in
3958       // incoming blocks between SrcPN and DestPN.
3959       Value *SrcVal = DestPN->getIncomingValue(Idx);
3960       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3961 
3962       // Remove the entry for the block we are deleting.
3963       DestPN->removeIncomingValue(Idx, false);
3964 
3965       if (SrcPN && SrcPN->getParent() == BB) {
3966         // If the incoming value was a PHI node in the cleanup pad we are
3967         // removing, we need to merge that PHI node's incoming values into
3968         // DestPN.
3969         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3970              SrcIdx != SrcE; ++SrcIdx) {
3971           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3972                               SrcPN->getIncomingBlock(SrcIdx));
3973         }
3974       } else {
3975         // Otherwise, the incoming value came from above BB and
3976         // so we can just reuse it.  We must associate all of BB's
3977         // predecessors with this value.
3978         for (auto *pred : predecessors(BB)) {
3979           DestPN->addIncoming(SrcVal, pred);
3980         }
3981       }
3982     }
3983 
3984     // Sink any remaining PHI nodes directly into UnwindDest.
3985     Instruction *InsertPt = DestEHPad;
3986     for (BasicBlock::iterator I = BB->begin(),
3987                               IE = BB->getFirstNonPHI()->getIterator();
3988          I != IE;) {
3989       // The iterator must be incremented here because the instructions are
3990       // being moved to another block.
3991       PHINode *PN = cast<PHINode>(I++);
3992       if (PN->use_empty())
3993         // If the PHI node has no uses, just leave it.  It will be erased
3994         // when we erase BB below.
3995         continue;
3996 
3997       // Otherwise, sink this PHI node into UnwindDest.
3998       // Any predecessors to UnwindDest which are not already represented
3999       // must be back edges which inherit the value from the path through
4000       // BB.  In this case, the PHI value must reference itself.
4001       for (auto *pred : predecessors(UnwindDest))
4002         if (pred != BB)
4003           PN->addIncoming(PN, pred);
4004       PN->moveBefore(InsertPt);
4005     }
4006   }
4007 
4008   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4009     // The iterator must be updated here because we are removing this pred.
4010     BasicBlock *PredBB = *PI++;
4011     if (UnwindDest == nullptr) {
4012       removeUnwindEdge(PredBB);
4013     } else {
4014       Instruction *TI = PredBB->getTerminator();
4015       TI->replaceUsesOfWith(BB, UnwindDest);
4016     }
4017   }
4018 
4019   // The cleanup pad is now unreachable.  Zap it.
4020   BB->eraseFromParent();
4021   return true;
4022 }
4023 
4024 // Try to merge two cleanuppads together.
4025 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4026   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4027   // with.
4028   BasicBlock *UnwindDest = RI->getUnwindDest();
4029   if (!UnwindDest)
4030     return false;
4031 
4032   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4033   // be safe to merge without code duplication.
4034   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4035     return false;
4036 
4037   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4038   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4039   if (!SuccessorCleanupPad)
4040     return false;
4041 
4042   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4043   // Replace any uses of the successor cleanupad with the predecessor pad
4044   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4045   // funclet bundle operands.
4046   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4047   // Remove the old cleanuppad.
4048   SuccessorCleanupPad->eraseFromParent();
4049   // Now, we simply replace the cleanupret with a branch to the unwind
4050   // destination.
4051   BranchInst::Create(UnwindDest, RI->getParent());
4052   RI->eraseFromParent();
4053 
4054   return true;
4055 }
4056 
4057 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4058   // It is possible to transiantly have an undef cleanuppad operand because we
4059   // have deleted some, but not all, dead blocks.
4060   // Eventually, this block will be deleted.
4061   if (isa<UndefValue>(RI->getOperand(0)))
4062     return false;
4063 
4064   if (mergeCleanupPad(RI))
4065     return true;
4066 
4067   if (removeEmptyCleanup(RI))
4068     return true;
4069 
4070   return false;
4071 }
4072 
4073 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4074   BasicBlock *BB = RI->getParent();
4075   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4076     return false;
4077 
4078   // Find predecessors that end with branches.
4079   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4080   SmallVector<BranchInst *, 8> CondBranchPreds;
4081   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4082     BasicBlock *P = *PI;
4083     Instruction *PTI = P->getTerminator();
4084     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4085       if (BI->isUnconditional())
4086         UncondBranchPreds.push_back(P);
4087       else
4088         CondBranchPreds.push_back(BI);
4089     }
4090   }
4091 
4092   // If we found some, do the transformation!
4093   if (!UncondBranchPreds.empty() && DupRet) {
4094     while (!UncondBranchPreds.empty()) {
4095       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4096       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4097                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4098       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4099     }
4100 
4101     // If we eliminated all predecessors of the block, delete the block now.
4102     if (pred_empty(BB)) {
4103       // We know there are no successors, so just nuke the block.
4104       if (LoopHeaders)
4105         LoopHeaders->erase(BB);
4106       BB->eraseFromParent();
4107     }
4108 
4109     return true;
4110   }
4111 
4112   // Check out all of the conditional branches going to this return
4113   // instruction.  If any of them just select between returns, change the
4114   // branch itself into a select/return pair.
4115   while (!CondBranchPreds.empty()) {
4116     BranchInst *BI = CondBranchPreds.pop_back_val();
4117 
4118     // Check to see if the non-BB successor is also a return block.
4119     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4120         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4121         SimplifyCondBranchToTwoReturns(BI, Builder))
4122       return true;
4123   }
4124   return false;
4125 }
4126 
4127 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4128   BasicBlock *BB = UI->getParent();
4129 
4130   bool Changed = false;
4131 
4132   // If there are any instructions immediately before the unreachable that can
4133   // be removed, do so.
4134   while (UI->getIterator() != BB->begin()) {
4135     BasicBlock::iterator BBI = UI->getIterator();
4136     --BBI;
4137     // Do not delete instructions that can have side effects which might cause
4138     // the unreachable to not be reachable; specifically, calls and volatile
4139     // operations may have this effect.
4140     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4141       break;
4142 
4143     if (BBI->mayHaveSideEffects()) {
4144       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4145         if (SI->isVolatile())
4146           break;
4147       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4148         if (LI->isVolatile())
4149           break;
4150       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4151         if (RMWI->isVolatile())
4152           break;
4153       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4154         if (CXI->isVolatile())
4155           break;
4156       } else if (isa<CatchPadInst>(BBI)) {
4157         // A catchpad may invoke exception object constructors and such, which
4158         // in some languages can be arbitrary code, so be conservative by
4159         // default.
4160         // For CoreCLR, it just involves a type test, so can be removed.
4161         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4162             EHPersonality::CoreCLR)
4163           break;
4164       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4165                  !isa<LandingPadInst>(BBI)) {
4166         break;
4167       }
4168       // Note that deleting LandingPad's here is in fact okay, although it
4169       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4170       // all the predecessors of this block will be the unwind edges of Invokes,
4171       // and we can therefore guarantee this block will be erased.
4172     }
4173 
4174     // Delete this instruction (any uses are guaranteed to be dead)
4175     if (!BBI->use_empty())
4176       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4177     BBI->eraseFromParent();
4178     Changed = true;
4179   }
4180 
4181   // If the unreachable instruction is the first in the block, take a gander
4182   // at all of the predecessors of this instruction, and simplify them.
4183   if (&BB->front() != UI)
4184     return Changed;
4185 
4186   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4187   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4188     Instruction *TI = Preds[i]->getTerminator();
4189     IRBuilder<> Builder(TI);
4190     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4191       if (BI->isUnconditional()) {
4192         if (BI->getSuccessor(0) == BB) {
4193           new UnreachableInst(TI->getContext(), TI);
4194           TI->eraseFromParent();
4195           Changed = true;
4196         }
4197       } else {
4198         if (BI->getSuccessor(0) == BB) {
4199           Builder.CreateBr(BI->getSuccessor(1));
4200           EraseTerminatorAndDCECond(BI);
4201         } else if (BI->getSuccessor(1) == BB) {
4202           Builder.CreateBr(BI->getSuccessor(0));
4203           EraseTerminatorAndDCECond(BI);
4204           Changed = true;
4205         }
4206       }
4207     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4208       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4209         if (i->getCaseSuccessor() != BB) {
4210           ++i;
4211           continue;
4212         }
4213         BB->removePredecessor(SI->getParent());
4214         i = SI->removeCase(i);
4215         e = SI->case_end();
4216         Changed = true;
4217       }
4218     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4219       if (II->getUnwindDest() == BB) {
4220         removeUnwindEdge(TI->getParent());
4221         Changed = true;
4222       }
4223     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4224       if (CSI->getUnwindDest() == BB) {
4225         removeUnwindEdge(TI->getParent());
4226         Changed = true;
4227         continue;
4228       }
4229 
4230       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4231                                              E = CSI->handler_end();
4232            I != E; ++I) {
4233         if (*I == BB) {
4234           CSI->removeHandler(I);
4235           --I;
4236           --E;
4237           Changed = true;
4238         }
4239       }
4240       if (CSI->getNumHandlers() == 0) {
4241         BasicBlock *CatchSwitchBB = CSI->getParent();
4242         if (CSI->hasUnwindDest()) {
4243           // Redirect preds to the unwind dest
4244           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4245         } else {
4246           // Rewrite all preds to unwind to caller (or from invoke to call).
4247           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4248           for (BasicBlock *EHPred : EHPreds)
4249             removeUnwindEdge(EHPred);
4250         }
4251         // The catchswitch is no longer reachable.
4252         new UnreachableInst(CSI->getContext(), CSI);
4253         CSI->eraseFromParent();
4254         Changed = true;
4255       }
4256     } else if (isa<CleanupReturnInst>(TI)) {
4257       new UnreachableInst(TI->getContext(), TI);
4258       TI->eraseFromParent();
4259       Changed = true;
4260     }
4261   }
4262 
4263   // If this block is now dead, remove it.
4264   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4265     // We know there are no successors, so just nuke the block.
4266     if (LoopHeaders)
4267       LoopHeaders->erase(BB);
4268     BB->eraseFromParent();
4269     return true;
4270   }
4271 
4272   return Changed;
4273 }
4274 
4275 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4276   assert(Cases.size() >= 1);
4277 
4278   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4279   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4280     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4281       return false;
4282   }
4283   return true;
4284 }
4285 
4286 /// Turn a switch with two reachable destinations into an integer range
4287 /// comparison and branch.
4288 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4289   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4290 
4291   bool HasDefault =
4292       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4293 
4294   // Partition the cases into two sets with different destinations.
4295   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4296   BasicBlock *DestB = nullptr;
4297   SmallVector<ConstantInt *, 16> CasesA;
4298   SmallVector<ConstantInt *, 16> CasesB;
4299 
4300   for (auto Case : SI->cases()) {
4301     BasicBlock *Dest = Case.getCaseSuccessor();
4302     if (!DestA)
4303       DestA = Dest;
4304     if (Dest == DestA) {
4305       CasesA.push_back(Case.getCaseValue());
4306       continue;
4307     }
4308     if (!DestB)
4309       DestB = Dest;
4310     if (Dest == DestB) {
4311       CasesB.push_back(Case.getCaseValue());
4312       continue;
4313     }
4314     return false; // More than two destinations.
4315   }
4316 
4317   assert(DestA && DestB &&
4318          "Single-destination switch should have been folded.");
4319   assert(DestA != DestB);
4320   assert(DestB != SI->getDefaultDest());
4321   assert(!CasesB.empty() && "There must be non-default cases.");
4322   assert(!CasesA.empty() || HasDefault);
4323 
4324   // Figure out if one of the sets of cases form a contiguous range.
4325   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4326   BasicBlock *ContiguousDest = nullptr;
4327   BasicBlock *OtherDest = nullptr;
4328   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4329     ContiguousCases = &CasesA;
4330     ContiguousDest = DestA;
4331     OtherDest = DestB;
4332   } else if (CasesAreContiguous(CasesB)) {
4333     ContiguousCases = &CasesB;
4334     ContiguousDest = DestB;
4335     OtherDest = DestA;
4336   } else
4337     return false;
4338 
4339   // Start building the compare and branch.
4340 
4341   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4342   Constant *NumCases =
4343       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4344 
4345   Value *Sub = SI->getCondition();
4346   if (!Offset->isNullValue())
4347     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4348 
4349   Value *Cmp;
4350   // If NumCases overflowed, then all possible values jump to the successor.
4351   if (NumCases->isNullValue() && !ContiguousCases->empty())
4352     Cmp = ConstantInt::getTrue(SI->getContext());
4353   else
4354     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4355   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4356 
4357   // Update weight for the newly-created conditional branch.
4358   if (HasBranchWeights(SI)) {
4359     SmallVector<uint64_t, 8> Weights;
4360     GetBranchWeights(SI, Weights);
4361     if (Weights.size() == 1 + SI->getNumCases()) {
4362       uint64_t TrueWeight = 0;
4363       uint64_t FalseWeight = 0;
4364       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4365         if (SI->getSuccessor(I) == ContiguousDest)
4366           TrueWeight += Weights[I];
4367         else
4368           FalseWeight += Weights[I];
4369       }
4370       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4371         TrueWeight /= 2;
4372         FalseWeight /= 2;
4373       }
4374       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4375     }
4376   }
4377 
4378   // Prune obsolete incoming values off the successors' PHI nodes.
4379   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4380     unsigned PreviousEdges = ContiguousCases->size();
4381     if (ContiguousDest == SI->getDefaultDest())
4382       ++PreviousEdges;
4383     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4384       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4385   }
4386   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4387     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4388     if (OtherDest == SI->getDefaultDest())
4389       ++PreviousEdges;
4390     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4391       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4392   }
4393 
4394   // Drop the switch.
4395   SI->eraseFromParent();
4396 
4397   return true;
4398 }
4399 
4400 /// Compute masked bits for the condition of a switch
4401 /// and use it to remove dead cases.
4402 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4403                                      const DataLayout &DL) {
4404   Value *Cond = SI->getCondition();
4405   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4406   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4407 
4408   // We can also eliminate cases by determining that their values are outside of
4409   // the limited range of the condition based on how many significant (non-sign)
4410   // bits are in the condition value.
4411   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4412   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4413 
4414   // Gather dead cases.
4415   SmallVector<ConstantInt *, 8> DeadCases;
4416   for (auto &Case : SI->cases()) {
4417     const APInt &CaseVal = Case.getCaseValue()->getValue();
4418     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4419         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4420       DeadCases.push_back(Case.getCaseValue());
4421       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4422                         << " is dead.\n");
4423     }
4424   }
4425 
4426   // If we can prove that the cases must cover all possible values, the
4427   // default destination becomes dead and we can remove it.  If we know some
4428   // of the bits in the value, we can use that to more precisely compute the
4429   // number of possible unique case values.
4430   bool HasDefault =
4431       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4432   const unsigned NumUnknownBits =
4433       Bits - (Known.Zero | Known.One).countPopulation();
4434   assert(NumUnknownBits <= Bits);
4435   if (HasDefault && DeadCases.empty() &&
4436       NumUnknownBits < 64 /* avoid overflow */ &&
4437       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4438     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4439     BasicBlock *NewDefault =
4440         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4441     SI->setDefaultDest(&*NewDefault);
4442     SplitBlock(&*NewDefault, &NewDefault->front());
4443     auto *OldTI = NewDefault->getTerminator();
4444     new UnreachableInst(SI->getContext(), OldTI);
4445     EraseTerminatorAndDCECond(OldTI);
4446     return true;
4447   }
4448 
4449   SmallVector<uint64_t, 8> Weights;
4450   bool HasWeight = HasBranchWeights(SI);
4451   if (HasWeight) {
4452     GetBranchWeights(SI, Weights);
4453     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4454   }
4455 
4456   // Remove dead cases from the switch.
4457   for (ConstantInt *DeadCase : DeadCases) {
4458     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4459     assert(CaseI != SI->case_default() &&
4460            "Case was not found. Probably mistake in DeadCases forming.");
4461     if (HasWeight) {
4462       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4463       Weights.pop_back();
4464     }
4465 
4466     // Prune unused values from PHI nodes.
4467     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4468     SI->removeCase(CaseI);
4469   }
4470   if (HasWeight && Weights.size() >= 2) {
4471     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4472     setBranchWeights(SI, MDWeights);
4473   }
4474 
4475   return !DeadCases.empty();
4476 }
4477 
4478 /// If BB would be eligible for simplification by
4479 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4480 /// by an unconditional branch), look at the phi node for BB in the successor
4481 /// block and see if the incoming value is equal to CaseValue. If so, return
4482 /// the phi node, and set PhiIndex to BB's index in the phi node.
4483 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4484                                               BasicBlock *BB, int *PhiIndex) {
4485   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4486     return nullptr; // BB must be empty to be a candidate for simplification.
4487   if (!BB->getSinglePredecessor())
4488     return nullptr; // BB must be dominated by the switch.
4489 
4490   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4491   if (!Branch || !Branch->isUnconditional())
4492     return nullptr; // Terminator must be unconditional branch.
4493 
4494   BasicBlock *Succ = Branch->getSuccessor(0);
4495 
4496   for (PHINode &PHI : Succ->phis()) {
4497     int Idx = PHI.getBasicBlockIndex(BB);
4498     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4499 
4500     Value *InValue = PHI.getIncomingValue(Idx);
4501     if (InValue != CaseValue)
4502       continue;
4503 
4504     *PhiIndex = Idx;
4505     return &PHI;
4506   }
4507 
4508   return nullptr;
4509 }
4510 
4511 /// Try to forward the condition of a switch instruction to a phi node
4512 /// dominated by the switch, if that would mean that some of the destination
4513 /// blocks of the switch can be folded away. Return true if a change is made.
4514 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4515   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4516 
4517   ForwardingNodesMap ForwardingNodes;
4518   BasicBlock *SwitchBlock = SI->getParent();
4519   bool Changed = false;
4520   for (auto &Case : SI->cases()) {
4521     ConstantInt *CaseValue = Case.getCaseValue();
4522     BasicBlock *CaseDest = Case.getCaseSuccessor();
4523 
4524     // Replace phi operands in successor blocks that are using the constant case
4525     // value rather than the switch condition variable:
4526     //   switchbb:
4527     //   switch i32 %x, label %default [
4528     //     i32 17, label %succ
4529     //   ...
4530     //   succ:
4531     //     %r = phi i32 ... [ 17, %switchbb ] ...
4532     // -->
4533     //     %r = phi i32 ... [ %x, %switchbb ] ...
4534 
4535     for (PHINode &Phi : CaseDest->phis()) {
4536       // This only works if there is exactly 1 incoming edge from the switch to
4537       // a phi. If there is >1, that means multiple cases of the switch map to 1
4538       // value in the phi, and that phi value is not the switch condition. Thus,
4539       // this transform would not make sense (the phi would be invalid because
4540       // a phi can't have different incoming values from the same block).
4541       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4542       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4543           count(Phi.blocks(), SwitchBlock) == 1) {
4544         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4545         Changed = true;
4546       }
4547     }
4548 
4549     // Collect phi nodes that are indirectly using this switch's case constants.
4550     int PhiIdx;
4551     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4552       ForwardingNodes[Phi].push_back(PhiIdx);
4553   }
4554 
4555   for (auto &ForwardingNode : ForwardingNodes) {
4556     PHINode *Phi = ForwardingNode.first;
4557     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4558     if (Indexes.size() < 2)
4559       continue;
4560 
4561     for (int Index : Indexes)
4562       Phi->setIncomingValue(Index, SI->getCondition());
4563     Changed = true;
4564   }
4565 
4566   return Changed;
4567 }
4568 
4569 /// Return true if the backend will be able to handle
4570 /// initializing an array of constants like C.
4571 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4572   if (C->isThreadDependent())
4573     return false;
4574   if (C->isDLLImportDependent())
4575     return false;
4576 
4577   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4578       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4579       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4580     return false;
4581 
4582   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4583     if (!CE->isGEPWithNoNotionalOverIndexing())
4584       return false;
4585     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4586       return false;
4587   }
4588 
4589   if (!TTI.shouldBuildLookupTablesForConstant(C))
4590     return false;
4591 
4592   return true;
4593 }
4594 
4595 /// If V is a Constant, return it. Otherwise, try to look up
4596 /// its constant value in ConstantPool, returning 0 if it's not there.
4597 static Constant *
4598 LookupConstant(Value *V,
4599                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4600   if (Constant *C = dyn_cast<Constant>(V))
4601     return C;
4602   return ConstantPool.lookup(V);
4603 }
4604 
4605 /// Try to fold instruction I into a constant. This works for
4606 /// simple instructions such as binary operations where both operands are
4607 /// constant or can be replaced by constants from the ConstantPool. Returns the
4608 /// resulting constant on success, 0 otherwise.
4609 static Constant *
4610 ConstantFold(Instruction *I, const DataLayout &DL,
4611              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4612   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4613     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4614     if (!A)
4615       return nullptr;
4616     if (A->isAllOnesValue())
4617       return LookupConstant(Select->getTrueValue(), ConstantPool);
4618     if (A->isNullValue())
4619       return LookupConstant(Select->getFalseValue(), ConstantPool);
4620     return nullptr;
4621   }
4622 
4623   SmallVector<Constant *, 4> COps;
4624   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4625     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4626       COps.push_back(A);
4627     else
4628       return nullptr;
4629   }
4630 
4631   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4632     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4633                                            COps[1], DL);
4634   }
4635 
4636   return ConstantFoldInstOperands(I, COps, DL);
4637 }
4638 
4639 /// Try to determine the resulting constant values in phi nodes
4640 /// at the common destination basic block, *CommonDest, for one of the case
4641 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4642 /// case), of a switch instruction SI.
4643 static bool
4644 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4645                BasicBlock **CommonDest,
4646                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4647                const DataLayout &DL, const TargetTransformInfo &TTI) {
4648   // The block from which we enter the common destination.
4649   BasicBlock *Pred = SI->getParent();
4650 
4651   // If CaseDest is empty except for some side-effect free instructions through
4652   // which we can constant-propagate the CaseVal, continue to its successor.
4653   SmallDenseMap<Value *, Constant *> ConstantPool;
4654   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4655   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4656     if (I.isTerminator()) {
4657       // If the terminator is a simple branch, continue to the next block.
4658       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4659         return false;
4660       Pred = CaseDest;
4661       CaseDest = I.getSuccessor(0);
4662     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4663       // Instruction is side-effect free and constant.
4664 
4665       // If the instruction has uses outside this block or a phi node slot for
4666       // the block, it is not safe to bypass the instruction since it would then
4667       // no longer dominate all its uses.
4668       for (auto &Use : I.uses()) {
4669         User *User = Use.getUser();
4670         if (Instruction *I = dyn_cast<Instruction>(User))
4671           if (I->getParent() == CaseDest)
4672             continue;
4673         if (PHINode *Phi = dyn_cast<PHINode>(User))
4674           if (Phi->getIncomingBlock(Use) == CaseDest)
4675             continue;
4676         return false;
4677       }
4678 
4679       ConstantPool.insert(std::make_pair(&I, C));
4680     } else {
4681       break;
4682     }
4683   }
4684 
4685   // If we did not have a CommonDest before, use the current one.
4686   if (!*CommonDest)
4687     *CommonDest = CaseDest;
4688   // If the destination isn't the common one, abort.
4689   if (CaseDest != *CommonDest)
4690     return false;
4691 
4692   // Get the values for this case from phi nodes in the destination block.
4693   for (PHINode &PHI : (*CommonDest)->phis()) {
4694     int Idx = PHI.getBasicBlockIndex(Pred);
4695     if (Idx == -1)
4696       continue;
4697 
4698     Constant *ConstVal =
4699         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4700     if (!ConstVal)
4701       return false;
4702 
4703     // Be conservative about which kinds of constants we support.
4704     if (!ValidLookupTableConstant(ConstVal, TTI))
4705       return false;
4706 
4707     Res.push_back(std::make_pair(&PHI, ConstVal));
4708   }
4709 
4710   return Res.size() > 0;
4711 }
4712 
4713 // Helper function used to add CaseVal to the list of cases that generate
4714 // Result. Returns the updated number of cases that generate this result.
4715 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4716                                  SwitchCaseResultVectorTy &UniqueResults,
4717                                  Constant *Result) {
4718   for (auto &I : UniqueResults) {
4719     if (I.first == Result) {
4720       I.second.push_back(CaseVal);
4721       return I.second.size();
4722     }
4723   }
4724   UniqueResults.push_back(
4725       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4726   return 1;
4727 }
4728 
4729 // Helper function that initializes a map containing
4730 // results for the PHI node of the common destination block for a switch
4731 // instruction. Returns false if multiple PHI nodes have been found or if
4732 // there is not a common destination block for the switch.
4733 static bool
4734 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4735                       SwitchCaseResultVectorTy &UniqueResults,
4736                       Constant *&DefaultResult, const DataLayout &DL,
4737                       const TargetTransformInfo &TTI,
4738                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4739   for (auto &I : SI->cases()) {
4740     ConstantInt *CaseVal = I.getCaseValue();
4741 
4742     // Resulting value at phi nodes for this case value.
4743     SwitchCaseResultsTy Results;
4744     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4745                         DL, TTI))
4746       return false;
4747 
4748     // Only one value per case is permitted.
4749     if (Results.size() > 1)
4750       return false;
4751 
4752     // Add the case->result mapping to UniqueResults.
4753     const uintptr_t NumCasesForResult =
4754         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4755 
4756     // Early out if there are too many cases for this result.
4757     if (NumCasesForResult > MaxCasesPerResult)
4758       return false;
4759 
4760     // Early out if there are too many unique results.
4761     if (UniqueResults.size() > MaxUniqueResults)
4762       return false;
4763 
4764     // Check the PHI consistency.
4765     if (!PHI)
4766       PHI = Results[0].first;
4767     else if (PHI != Results[0].first)
4768       return false;
4769   }
4770   // Find the default result value.
4771   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4772   BasicBlock *DefaultDest = SI->getDefaultDest();
4773   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4774                  DL, TTI);
4775   // If the default value is not found abort unless the default destination
4776   // is unreachable.
4777   DefaultResult =
4778       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4779   if ((!DefaultResult &&
4780        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4781     return false;
4782 
4783   return true;
4784 }
4785 
4786 // Helper function that checks if it is possible to transform a switch with only
4787 // two cases (or two cases + default) that produces a result into a select.
4788 // Example:
4789 // switch (a) {
4790 //   case 10:                %0 = icmp eq i32 %a, 10
4791 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4792 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4793 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4794 //   default:
4795 //     return 4;
4796 // }
4797 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4798                                    Constant *DefaultResult, Value *Condition,
4799                                    IRBuilder<> &Builder) {
4800   assert(ResultVector.size() == 2 &&
4801          "We should have exactly two unique results at this point");
4802   // If we are selecting between only two cases transform into a simple
4803   // select or a two-way select if default is possible.
4804   if (ResultVector[0].second.size() == 1 &&
4805       ResultVector[1].second.size() == 1) {
4806     ConstantInt *const FirstCase = ResultVector[0].second[0];
4807     ConstantInt *const SecondCase = ResultVector[1].second[0];
4808 
4809     bool DefaultCanTrigger = DefaultResult;
4810     Value *SelectValue = ResultVector[1].first;
4811     if (DefaultCanTrigger) {
4812       Value *const ValueCompare =
4813           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4814       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4815                                          DefaultResult, "switch.select");
4816     }
4817     Value *const ValueCompare =
4818         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4819     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4820                                 SelectValue, "switch.select");
4821   }
4822 
4823   return nullptr;
4824 }
4825 
4826 // Helper function to cleanup a switch instruction that has been converted into
4827 // a select, fixing up PHI nodes and basic blocks.
4828 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4829                                               Value *SelectValue,
4830                                               IRBuilder<> &Builder) {
4831   BasicBlock *SelectBB = SI->getParent();
4832   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4833     PHI->removeIncomingValue(SelectBB);
4834   PHI->addIncoming(SelectValue, SelectBB);
4835 
4836   Builder.CreateBr(PHI->getParent());
4837 
4838   // Remove the switch.
4839   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4840     BasicBlock *Succ = SI->getSuccessor(i);
4841 
4842     if (Succ == PHI->getParent())
4843       continue;
4844     Succ->removePredecessor(SelectBB);
4845   }
4846   SI->eraseFromParent();
4847 }
4848 
4849 /// If the switch is only used to initialize one or more
4850 /// phi nodes in a common successor block with only two different
4851 /// constant values, replace the switch with select.
4852 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4853                            const DataLayout &DL,
4854                            const TargetTransformInfo &TTI) {
4855   Value *const Cond = SI->getCondition();
4856   PHINode *PHI = nullptr;
4857   BasicBlock *CommonDest = nullptr;
4858   Constant *DefaultResult;
4859   SwitchCaseResultVectorTy UniqueResults;
4860   // Collect all the cases that will deliver the same value from the switch.
4861   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4862                              DL, TTI, 2, 1))
4863     return false;
4864   // Selects choose between maximum two values.
4865   if (UniqueResults.size() != 2)
4866     return false;
4867   assert(PHI != nullptr && "PHI for value select not found");
4868 
4869   Builder.SetInsertPoint(SI);
4870   Value *SelectValue =
4871       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4872   if (SelectValue) {
4873     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4874     return true;
4875   }
4876   // The switch couldn't be converted into a select.
4877   return false;
4878 }
4879 
4880 namespace {
4881 
4882 /// This class represents a lookup table that can be used to replace a switch.
4883 class SwitchLookupTable {
4884 public:
4885   /// Create a lookup table to use as a switch replacement with the contents
4886   /// of Values, using DefaultValue to fill any holes in the table.
4887   SwitchLookupTable(
4888       Module &M, uint64_t TableSize, ConstantInt *Offset,
4889       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4890       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4891 
4892   /// Build instructions with Builder to retrieve the value at
4893   /// the position given by Index in the lookup table.
4894   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4895 
4896   /// Return true if a table with TableSize elements of
4897   /// type ElementType would fit in a target-legal register.
4898   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4899                                  Type *ElementType);
4900 
4901 private:
4902   // Depending on the contents of the table, it can be represented in
4903   // different ways.
4904   enum {
4905     // For tables where each element contains the same value, we just have to
4906     // store that single value and return it for each lookup.
4907     SingleValueKind,
4908 
4909     // For tables where there is a linear relationship between table index
4910     // and values. We calculate the result with a simple multiplication
4911     // and addition instead of a table lookup.
4912     LinearMapKind,
4913 
4914     // For small tables with integer elements, we can pack them into a bitmap
4915     // that fits into a target-legal register. Values are retrieved by
4916     // shift and mask operations.
4917     BitMapKind,
4918 
4919     // The table is stored as an array of values. Values are retrieved by load
4920     // instructions from the table.
4921     ArrayKind
4922   } Kind;
4923 
4924   // For SingleValueKind, this is the single value.
4925   Constant *SingleValue = nullptr;
4926 
4927   // For BitMapKind, this is the bitmap.
4928   ConstantInt *BitMap = nullptr;
4929   IntegerType *BitMapElementTy = nullptr;
4930 
4931   // For LinearMapKind, these are the constants used to derive the value.
4932   ConstantInt *LinearOffset = nullptr;
4933   ConstantInt *LinearMultiplier = nullptr;
4934 
4935   // For ArrayKind, this is the array.
4936   GlobalVariable *Array = nullptr;
4937 };
4938 
4939 } // end anonymous namespace
4940 
4941 SwitchLookupTable::SwitchLookupTable(
4942     Module &M, uint64_t TableSize, ConstantInt *Offset,
4943     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4944     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4945   assert(Values.size() && "Can't build lookup table without values!");
4946   assert(TableSize >= Values.size() && "Can't fit values in table!");
4947 
4948   // If all values in the table are equal, this is that value.
4949   SingleValue = Values.begin()->second;
4950 
4951   Type *ValueType = Values.begin()->second->getType();
4952 
4953   // Build up the table contents.
4954   SmallVector<Constant *, 64> TableContents(TableSize);
4955   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4956     ConstantInt *CaseVal = Values[I].first;
4957     Constant *CaseRes = Values[I].second;
4958     assert(CaseRes->getType() == ValueType);
4959 
4960     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4961     TableContents[Idx] = CaseRes;
4962 
4963     if (CaseRes != SingleValue)
4964       SingleValue = nullptr;
4965   }
4966 
4967   // Fill in any holes in the table with the default result.
4968   if (Values.size() < TableSize) {
4969     assert(DefaultValue &&
4970            "Need a default value to fill the lookup table holes.");
4971     assert(DefaultValue->getType() == ValueType);
4972     for (uint64_t I = 0; I < TableSize; ++I) {
4973       if (!TableContents[I])
4974         TableContents[I] = DefaultValue;
4975     }
4976 
4977     if (DefaultValue != SingleValue)
4978       SingleValue = nullptr;
4979   }
4980 
4981   // If each element in the table contains the same value, we only need to store
4982   // that single value.
4983   if (SingleValue) {
4984     Kind = SingleValueKind;
4985     return;
4986   }
4987 
4988   // Check if we can derive the value with a linear transformation from the
4989   // table index.
4990   if (isa<IntegerType>(ValueType)) {
4991     bool LinearMappingPossible = true;
4992     APInt PrevVal;
4993     APInt DistToPrev;
4994     assert(TableSize >= 2 && "Should be a SingleValue table.");
4995     // Check if there is the same distance between two consecutive values.
4996     for (uint64_t I = 0; I < TableSize; ++I) {
4997       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4998       if (!ConstVal) {
4999         // This is an undef. We could deal with it, but undefs in lookup tables
5000         // are very seldom. It's probably not worth the additional complexity.
5001         LinearMappingPossible = false;
5002         break;
5003       }
5004       const APInt &Val = ConstVal->getValue();
5005       if (I != 0) {
5006         APInt Dist = Val - PrevVal;
5007         if (I == 1) {
5008           DistToPrev = Dist;
5009         } else if (Dist != DistToPrev) {
5010           LinearMappingPossible = false;
5011           break;
5012         }
5013       }
5014       PrevVal = Val;
5015     }
5016     if (LinearMappingPossible) {
5017       LinearOffset = cast<ConstantInt>(TableContents[0]);
5018       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5019       Kind = LinearMapKind;
5020       ++NumLinearMaps;
5021       return;
5022     }
5023   }
5024 
5025   // If the type is integer and the table fits in a register, build a bitmap.
5026   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5027     IntegerType *IT = cast<IntegerType>(ValueType);
5028     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5029     for (uint64_t I = TableSize; I > 0; --I) {
5030       TableInt <<= IT->getBitWidth();
5031       // Insert values into the bitmap. Undef values are set to zero.
5032       if (!isa<UndefValue>(TableContents[I - 1])) {
5033         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5034         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5035       }
5036     }
5037     BitMap = ConstantInt::get(M.getContext(), TableInt);
5038     BitMapElementTy = IT;
5039     Kind = BitMapKind;
5040     ++NumBitMaps;
5041     return;
5042   }
5043 
5044   // Store the table in an array.
5045   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5046   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5047 
5048   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5049                              GlobalVariable::PrivateLinkage, Initializer,
5050                              "switch.table." + FuncName);
5051   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5052   // Set the alignment to that of an array items. We will be only loading one
5053   // value out of it.
5054   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5055   Kind = ArrayKind;
5056 }
5057 
5058 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5059   switch (Kind) {
5060   case SingleValueKind:
5061     return SingleValue;
5062   case LinearMapKind: {
5063     // Derive the result value from the input value.
5064     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5065                                           false, "switch.idx.cast");
5066     if (!LinearMultiplier->isOne())
5067       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5068     if (!LinearOffset->isZero())
5069       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5070     return Result;
5071   }
5072   case BitMapKind: {
5073     // Type of the bitmap (e.g. i59).
5074     IntegerType *MapTy = BitMap->getType();
5075 
5076     // Cast Index to the same type as the bitmap.
5077     // Note: The Index is <= the number of elements in the table, so
5078     // truncating it to the width of the bitmask is safe.
5079     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5080 
5081     // Multiply the shift amount by the element width.
5082     ShiftAmt = Builder.CreateMul(
5083         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5084         "switch.shiftamt");
5085 
5086     // Shift down.
5087     Value *DownShifted =
5088         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5089     // Mask off.
5090     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5091   }
5092   case ArrayKind: {
5093     // Make sure the table index will not overflow when treated as signed.
5094     IntegerType *IT = cast<IntegerType>(Index->getType());
5095     uint64_t TableSize =
5096         Array->getInitializer()->getType()->getArrayNumElements();
5097     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5098       Index = Builder.CreateZExt(
5099           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5100           "switch.tableidx.zext");
5101 
5102     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5103     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5104                                            GEPIndices, "switch.gep");
5105     return Builder.CreateLoad(GEP, "switch.load");
5106   }
5107   }
5108   llvm_unreachable("Unknown lookup table kind!");
5109 }
5110 
5111 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5112                                            uint64_t TableSize,
5113                                            Type *ElementType) {
5114   auto *IT = dyn_cast<IntegerType>(ElementType);
5115   if (!IT)
5116     return false;
5117   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5118   // are <= 15, we could try to narrow the type.
5119 
5120   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5121   if (TableSize >= UINT_MAX / IT->getBitWidth())
5122     return false;
5123   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5124 }
5125 
5126 /// Determine whether a lookup table should be built for this switch, based on
5127 /// the number of cases, size of the table, and the types of the results.
5128 static bool
5129 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5130                        const TargetTransformInfo &TTI, const DataLayout &DL,
5131                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5132   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5133     return false; // TableSize overflowed, or mul below might overflow.
5134 
5135   bool AllTablesFitInRegister = true;
5136   bool HasIllegalType = false;
5137   for (const auto &I : ResultTypes) {
5138     Type *Ty = I.second;
5139 
5140     // Saturate this flag to true.
5141     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5142 
5143     // Saturate this flag to false.
5144     AllTablesFitInRegister =
5145         AllTablesFitInRegister &&
5146         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5147 
5148     // If both flags saturate, we're done. NOTE: This *only* works with
5149     // saturating flags, and all flags have to saturate first due to the
5150     // non-deterministic behavior of iterating over a dense map.
5151     if (HasIllegalType && !AllTablesFitInRegister)
5152       break;
5153   }
5154 
5155   // If each table would fit in a register, we should build it anyway.
5156   if (AllTablesFitInRegister)
5157     return true;
5158 
5159   // Don't build a table that doesn't fit in-register if it has illegal types.
5160   if (HasIllegalType)
5161     return false;
5162 
5163   // The table density should be at least 40%. This is the same criterion as for
5164   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5165   // FIXME: Find the best cut-off.
5166   return SI->getNumCases() * 10 >= TableSize * 4;
5167 }
5168 
5169 /// Try to reuse the switch table index compare. Following pattern:
5170 /// \code
5171 ///     if (idx < tablesize)
5172 ///        r = table[idx]; // table does not contain default_value
5173 ///     else
5174 ///        r = default_value;
5175 ///     if (r != default_value)
5176 ///        ...
5177 /// \endcode
5178 /// Is optimized to:
5179 /// \code
5180 ///     cond = idx < tablesize;
5181 ///     if (cond)
5182 ///        r = table[idx];
5183 ///     else
5184 ///        r = default_value;
5185 ///     if (cond)
5186 ///        ...
5187 /// \endcode
5188 /// Jump threading will then eliminate the second if(cond).
5189 static void reuseTableCompare(
5190     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5191     Constant *DefaultValue,
5192     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5193   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5194   if (!CmpInst)
5195     return;
5196 
5197   // We require that the compare is in the same block as the phi so that jump
5198   // threading can do its work afterwards.
5199   if (CmpInst->getParent() != PhiBlock)
5200     return;
5201 
5202   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5203   if (!CmpOp1)
5204     return;
5205 
5206   Value *RangeCmp = RangeCheckBranch->getCondition();
5207   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5208   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5209 
5210   // Check if the compare with the default value is constant true or false.
5211   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5212                                                  DefaultValue, CmpOp1, true);
5213   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5214     return;
5215 
5216   // Check if the compare with the case values is distinct from the default
5217   // compare result.
5218   for (auto ValuePair : Values) {
5219     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5220                                                 ValuePair.second, CmpOp1, true);
5221     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5222       return;
5223     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5224            "Expect true or false as compare result.");
5225   }
5226 
5227   // Check if the branch instruction dominates the phi node. It's a simple
5228   // dominance check, but sufficient for our needs.
5229   // Although this check is invariant in the calling loops, it's better to do it
5230   // at this late stage. Practically we do it at most once for a switch.
5231   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5232   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5233     BasicBlock *Pred = *PI;
5234     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5235       return;
5236   }
5237 
5238   if (DefaultConst == FalseConst) {
5239     // The compare yields the same result. We can replace it.
5240     CmpInst->replaceAllUsesWith(RangeCmp);
5241     ++NumTableCmpReuses;
5242   } else {
5243     // The compare yields the same result, just inverted. We can replace it.
5244     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5245         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5246         RangeCheckBranch);
5247     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5248     ++NumTableCmpReuses;
5249   }
5250 }
5251 
5252 /// If the switch is only used to initialize one or more phi nodes in a common
5253 /// successor block with different constant values, replace the switch with
5254 /// lookup tables.
5255 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5256                                 const DataLayout &DL,
5257                                 const TargetTransformInfo &TTI) {
5258   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5259 
5260   Function *Fn = SI->getParent()->getParent();
5261   // Only build lookup table when we have a target that supports it or the
5262   // attribute is not set.
5263   if (!TTI.shouldBuildLookupTables() ||
5264       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5265     return false;
5266 
5267   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5268   // split off a dense part and build a lookup table for that.
5269 
5270   // FIXME: This creates arrays of GEPs to constant strings, which means each
5271   // GEP needs a runtime relocation in PIC code. We should just build one big
5272   // string and lookup indices into that.
5273 
5274   // Ignore switches with less than three cases. Lookup tables will not make
5275   // them faster, so we don't analyze them.
5276   if (SI->getNumCases() < 3)
5277     return false;
5278 
5279   // Figure out the corresponding result for each case value and phi node in the
5280   // common destination, as well as the min and max case values.
5281   assert(!empty(SI->cases()));
5282   SwitchInst::CaseIt CI = SI->case_begin();
5283   ConstantInt *MinCaseVal = CI->getCaseValue();
5284   ConstantInt *MaxCaseVal = CI->getCaseValue();
5285 
5286   BasicBlock *CommonDest = nullptr;
5287 
5288   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5289   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5290 
5291   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5292   SmallDenseMap<PHINode *, Type *> ResultTypes;
5293   SmallVector<PHINode *, 4> PHIs;
5294 
5295   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5296     ConstantInt *CaseVal = CI->getCaseValue();
5297     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5298       MinCaseVal = CaseVal;
5299     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5300       MaxCaseVal = CaseVal;
5301 
5302     // Resulting value at phi nodes for this case value.
5303     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5304     ResultsTy Results;
5305     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5306                         Results, DL, TTI))
5307       return false;
5308 
5309     // Append the result from this case to the list for each phi.
5310     for (const auto &I : Results) {
5311       PHINode *PHI = I.first;
5312       Constant *Value = I.second;
5313       if (!ResultLists.count(PHI))
5314         PHIs.push_back(PHI);
5315       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5316     }
5317   }
5318 
5319   // Keep track of the result types.
5320   for (PHINode *PHI : PHIs) {
5321     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5322   }
5323 
5324   uint64_t NumResults = ResultLists[PHIs[0]].size();
5325   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5326   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5327   bool TableHasHoles = (NumResults < TableSize);
5328 
5329   // If the table has holes, we need a constant result for the default case
5330   // or a bitmask that fits in a register.
5331   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5332   bool HasDefaultResults =
5333       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5334                      DefaultResultsList, DL, TTI);
5335 
5336   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5337   if (NeedMask) {
5338     // As an extra penalty for the validity test we require more cases.
5339     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5340       return false;
5341     if (!DL.fitsInLegalInteger(TableSize))
5342       return false;
5343   }
5344 
5345   for (const auto &I : DefaultResultsList) {
5346     PHINode *PHI = I.first;
5347     Constant *Result = I.second;
5348     DefaultResults[PHI] = Result;
5349   }
5350 
5351   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5352     return false;
5353 
5354   // Create the BB that does the lookups.
5355   Module &Mod = *CommonDest->getParent()->getParent();
5356   BasicBlock *LookupBB = BasicBlock::Create(
5357       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5358 
5359   // Compute the table index value.
5360   Builder.SetInsertPoint(SI);
5361   Value *TableIndex;
5362   if (MinCaseVal->isNullValue())
5363     TableIndex = SI->getCondition();
5364   else
5365     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5366                                    "switch.tableidx");
5367 
5368   // Compute the maximum table size representable by the integer type we are
5369   // switching upon.
5370   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5371   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5372   assert(MaxTableSize >= TableSize &&
5373          "It is impossible for a switch to have more entries than the max "
5374          "representable value of its input integer type's size.");
5375 
5376   // If the default destination is unreachable, or if the lookup table covers
5377   // all values of the conditional variable, branch directly to the lookup table
5378   // BB. Otherwise, check that the condition is within the case range.
5379   const bool DefaultIsReachable =
5380       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5381   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5382   BranchInst *RangeCheckBranch = nullptr;
5383 
5384   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5385     Builder.CreateBr(LookupBB);
5386     // Note: We call removeProdecessor later since we need to be able to get the
5387     // PHI value for the default case in case we're using a bit mask.
5388   } else {
5389     Value *Cmp = Builder.CreateICmpULT(
5390         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5391     RangeCheckBranch =
5392         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5393   }
5394 
5395   // Populate the BB that does the lookups.
5396   Builder.SetInsertPoint(LookupBB);
5397 
5398   if (NeedMask) {
5399     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5400     // re-purposed to do the hole check, and we create a new LookupBB.
5401     BasicBlock *MaskBB = LookupBB;
5402     MaskBB->setName("switch.hole_check");
5403     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5404                                   CommonDest->getParent(), CommonDest);
5405 
5406     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5407     // unnecessary illegal types.
5408     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5409     APInt MaskInt(TableSizePowOf2, 0);
5410     APInt One(TableSizePowOf2, 1);
5411     // Build bitmask; fill in a 1 bit for every case.
5412     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5413     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5414       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5415                          .getLimitedValue();
5416       MaskInt |= One << Idx;
5417     }
5418     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5419 
5420     // Get the TableIndex'th bit of the bitmask.
5421     // If this bit is 0 (meaning hole) jump to the default destination,
5422     // else continue with table lookup.
5423     IntegerType *MapTy = TableMask->getType();
5424     Value *MaskIndex =
5425         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5426     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5427     Value *LoBit = Builder.CreateTrunc(
5428         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5429     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5430 
5431     Builder.SetInsertPoint(LookupBB);
5432     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5433   }
5434 
5435   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5436     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5437     // do not delete PHINodes here.
5438     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5439                                             /*DontDeleteUselessPHIs=*/true);
5440   }
5441 
5442   bool ReturnedEarly = false;
5443   for (PHINode *PHI : PHIs) {
5444     const ResultListTy &ResultList = ResultLists[PHI];
5445 
5446     // If using a bitmask, use any value to fill the lookup table holes.
5447     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5448     StringRef FuncName = Fn->getName();
5449     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5450                             FuncName);
5451 
5452     Value *Result = Table.BuildLookup(TableIndex, Builder);
5453 
5454     // If the result is used to return immediately from the function, we want to
5455     // do that right here.
5456     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5457         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5458       Builder.CreateRet(Result);
5459       ReturnedEarly = true;
5460       break;
5461     }
5462 
5463     // Do a small peephole optimization: re-use the switch table compare if
5464     // possible.
5465     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5466       BasicBlock *PhiBlock = PHI->getParent();
5467       // Search for compare instructions which use the phi.
5468       for (auto *User : PHI->users()) {
5469         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5470       }
5471     }
5472 
5473     PHI->addIncoming(Result, LookupBB);
5474   }
5475 
5476   if (!ReturnedEarly)
5477     Builder.CreateBr(CommonDest);
5478 
5479   // Remove the switch.
5480   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5481     BasicBlock *Succ = SI->getSuccessor(i);
5482 
5483     if (Succ == SI->getDefaultDest())
5484       continue;
5485     Succ->removePredecessor(SI->getParent());
5486   }
5487   SI->eraseFromParent();
5488 
5489   ++NumLookupTables;
5490   if (NeedMask)
5491     ++NumLookupTablesHoles;
5492   return true;
5493 }
5494 
5495 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5496   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5497   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5498   uint64_t Range = Diff + 1;
5499   uint64_t NumCases = Values.size();
5500   // 40% is the default density for building a jump table in optsize/minsize mode.
5501   uint64_t MinDensity = 40;
5502 
5503   return NumCases * 100 >= Range * MinDensity;
5504 }
5505 
5506 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5507 /// of cases.
5508 ///
5509 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5510 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5511 ///
5512 /// This converts a sparse switch into a dense switch which allows better
5513 /// lowering and could also allow transforming into a lookup table.
5514 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5515                               const DataLayout &DL,
5516                               const TargetTransformInfo &TTI) {
5517   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5518   if (CondTy->getIntegerBitWidth() > 64 ||
5519       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5520     return false;
5521   // Only bother with this optimization if there are more than 3 switch cases;
5522   // SDAG will only bother creating jump tables for 4 or more cases.
5523   if (SI->getNumCases() < 4)
5524     return false;
5525 
5526   // This transform is agnostic to the signedness of the input or case values. We
5527   // can treat the case values as signed or unsigned. We can optimize more common
5528   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5529   // as signed.
5530   SmallVector<int64_t,4> Values;
5531   for (auto &C : SI->cases())
5532     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5533   llvm::sort(Values);
5534 
5535   // If the switch is already dense, there's nothing useful to do here.
5536   if (isSwitchDense(Values))
5537     return false;
5538 
5539   // First, transform the values such that they start at zero and ascend.
5540   int64_t Base = Values[0];
5541   for (auto &V : Values)
5542     V -= (uint64_t)(Base);
5543 
5544   // Now we have signed numbers that have been shifted so that, given enough
5545   // precision, there are no negative values. Since the rest of the transform
5546   // is bitwise only, we switch now to an unsigned representation.
5547   uint64_t GCD = 0;
5548   for (auto &V : Values)
5549     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5550 
5551   // This transform can be done speculatively because it is so cheap - it results
5552   // in a single rotate operation being inserted. This can only happen if the
5553   // factor extracted is a power of 2.
5554   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5555   // inverse of GCD and then perform this transform.
5556   // FIXME: It's possible that optimizing a switch on powers of two might also
5557   // be beneficial - flag values are often powers of two and we could use a CLZ
5558   // as the key function.
5559   if (GCD <= 1 || !isPowerOf2_64(GCD))
5560     // No common divisor found or too expensive to compute key function.
5561     return false;
5562 
5563   unsigned Shift = Log2_64(GCD);
5564   for (auto &V : Values)
5565     V = (int64_t)((uint64_t)V >> Shift);
5566 
5567   if (!isSwitchDense(Values))
5568     // Transform didn't create a dense switch.
5569     return false;
5570 
5571   // The obvious transform is to shift the switch condition right and emit a
5572   // check that the condition actually cleanly divided by GCD, i.e.
5573   //   C & (1 << Shift - 1) == 0
5574   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5575   //
5576   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5577   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5578   // are nonzero then the switch condition will be very large and will hit the
5579   // default case.
5580 
5581   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5582   Builder.SetInsertPoint(SI);
5583   auto *ShiftC = ConstantInt::get(Ty, Shift);
5584   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5585   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5586   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5587   auto *Rot = Builder.CreateOr(LShr, Shl);
5588   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5589 
5590   for (auto Case : SI->cases()) {
5591     auto *Orig = Case.getCaseValue();
5592     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5593     Case.setValue(
5594         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5595   }
5596   return true;
5597 }
5598 
5599 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5600   BasicBlock *BB = SI->getParent();
5601 
5602   if (isValueEqualityComparison(SI)) {
5603     // If we only have one predecessor, and if it is a branch on this value,
5604     // see if that predecessor totally determines the outcome of this switch.
5605     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5606       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5607         return requestResimplify();
5608 
5609     Value *Cond = SI->getCondition();
5610     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5611       if (SimplifySwitchOnSelect(SI, Select))
5612         return requestResimplify();
5613 
5614     // If the block only contains the switch, see if we can fold the block
5615     // away into any preds.
5616     if (SI == &*BB->instructionsWithoutDebug().begin())
5617       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5618         return requestResimplify();
5619   }
5620 
5621   // Try to transform the switch into an icmp and a branch.
5622   if (TurnSwitchRangeIntoICmp(SI, Builder))
5623     return requestResimplify();
5624 
5625   // Remove unreachable cases.
5626   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5627     return requestResimplify();
5628 
5629   if (switchToSelect(SI, Builder, DL, TTI))
5630     return requestResimplify();
5631 
5632   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5633     return requestResimplify();
5634 
5635   // The conversion from switch to lookup tables results in difficult-to-analyze
5636   // code and makes pruning branches much harder. This is a problem if the
5637   // switch expression itself can still be restricted as a result of inlining or
5638   // CVP. Therefore, only apply this transformation during late stages of the
5639   // optimisation pipeline.
5640   if (Options.ConvertSwitchToLookupTable &&
5641       SwitchToLookupTable(SI, Builder, DL, TTI))
5642     return requestResimplify();
5643 
5644   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5645     return requestResimplify();
5646 
5647   return false;
5648 }
5649 
5650 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5651   BasicBlock *BB = IBI->getParent();
5652   bool Changed = false;
5653 
5654   // Eliminate redundant destinations.
5655   SmallPtrSet<Value *, 8> Succs;
5656   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5657     BasicBlock *Dest = IBI->getDestination(i);
5658     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5659       Dest->removePredecessor(BB);
5660       IBI->removeDestination(i);
5661       --i;
5662       --e;
5663       Changed = true;
5664     }
5665   }
5666 
5667   if (IBI->getNumDestinations() == 0) {
5668     // If the indirectbr has no successors, change it to unreachable.
5669     new UnreachableInst(IBI->getContext(), IBI);
5670     EraseTerminatorAndDCECond(IBI);
5671     return true;
5672   }
5673 
5674   if (IBI->getNumDestinations() == 1) {
5675     // If the indirectbr has one successor, change it to a direct branch.
5676     BranchInst::Create(IBI->getDestination(0), IBI);
5677     EraseTerminatorAndDCECond(IBI);
5678     return true;
5679   }
5680 
5681   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5682     if (SimplifyIndirectBrOnSelect(IBI, SI))
5683       return requestResimplify();
5684   }
5685   return Changed;
5686 }
5687 
5688 /// Given an block with only a single landing pad and a unconditional branch
5689 /// try to find another basic block which this one can be merged with.  This
5690 /// handles cases where we have multiple invokes with unique landing pads, but
5691 /// a shared handler.
5692 ///
5693 /// We specifically choose to not worry about merging non-empty blocks
5694 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5695 /// practice, the optimizer produces empty landing pad blocks quite frequently
5696 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5697 /// sinking in this file)
5698 ///
5699 /// This is primarily a code size optimization.  We need to avoid performing
5700 /// any transform which might inhibit optimization (such as our ability to
5701 /// specialize a particular handler via tail commoning).  We do this by not
5702 /// merging any blocks which require us to introduce a phi.  Since the same
5703 /// values are flowing through both blocks, we don't lose any ability to
5704 /// specialize.  If anything, we make such specialization more likely.
5705 ///
5706 /// TODO - This transformation could remove entries from a phi in the target
5707 /// block when the inputs in the phi are the same for the two blocks being
5708 /// merged.  In some cases, this could result in removal of the PHI entirely.
5709 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5710                                  BasicBlock *BB) {
5711   auto Succ = BB->getUniqueSuccessor();
5712   assert(Succ);
5713   // If there's a phi in the successor block, we'd likely have to introduce
5714   // a phi into the merged landing pad block.
5715   if (isa<PHINode>(*Succ->begin()))
5716     return false;
5717 
5718   for (BasicBlock *OtherPred : predecessors(Succ)) {
5719     if (BB == OtherPred)
5720       continue;
5721     BasicBlock::iterator I = OtherPred->begin();
5722     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5723     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5724       continue;
5725     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5726       ;
5727     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5728     if (!BI2 || !BI2->isIdenticalTo(BI))
5729       continue;
5730 
5731     // We've found an identical block.  Update our predecessors to take that
5732     // path instead and make ourselves dead.
5733     SmallPtrSet<BasicBlock *, 16> Preds;
5734     Preds.insert(pred_begin(BB), pred_end(BB));
5735     for (BasicBlock *Pred : Preds) {
5736       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5737       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5738              "unexpected successor");
5739       II->setUnwindDest(OtherPred);
5740     }
5741 
5742     // The debug info in OtherPred doesn't cover the merged control flow that
5743     // used to go through BB.  We need to delete it or update it.
5744     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5745       Instruction &Inst = *I;
5746       I++;
5747       if (isa<DbgInfoIntrinsic>(Inst))
5748         Inst.eraseFromParent();
5749     }
5750 
5751     SmallPtrSet<BasicBlock *, 16> Succs;
5752     Succs.insert(succ_begin(BB), succ_end(BB));
5753     for (BasicBlock *Succ : Succs) {
5754       Succ->removePredecessor(BB);
5755     }
5756 
5757     IRBuilder<> Builder(BI);
5758     Builder.CreateUnreachable();
5759     BI->eraseFromParent();
5760     return true;
5761   }
5762   return false;
5763 }
5764 
5765 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5766                                           IRBuilder<> &Builder) {
5767   BasicBlock *BB = BI->getParent();
5768   BasicBlock *Succ = BI->getSuccessor(0);
5769 
5770   // If the Terminator is the only non-phi instruction, simplify the block.
5771   // If LoopHeader is provided, check if the block or its successor is a loop
5772   // header. (This is for early invocations before loop simplify and
5773   // vectorization to keep canonical loop forms for nested loops. These blocks
5774   // can be eliminated when the pass is invoked later in the back-end.)
5775   // Note that if BB has only one predecessor then we do not introduce new
5776   // backedge, so we can eliminate BB.
5777   bool NeedCanonicalLoop =
5778       Options.NeedCanonicalLoop &&
5779       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5780        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5781   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5782   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5783       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5784     return true;
5785 
5786   // If the only instruction in the block is a seteq/setne comparison against a
5787   // constant, try to simplify the block.
5788   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5789     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5790       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5791         ;
5792       if (I->isTerminator() &&
5793           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5794         return true;
5795     }
5796 
5797   // See if we can merge an empty landing pad block with another which is
5798   // equivalent.
5799   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5800     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5801       ;
5802     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5803       return true;
5804   }
5805 
5806   // If this basic block is ONLY a compare and a branch, and if a predecessor
5807   // branches to us and our successor, fold the comparison into the
5808   // predecessor and use logical operations to update the incoming value
5809   // for PHI nodes in common successor.
5810   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5811     return requestResimplify();
5812   return false;
5813 }
5814 
5815 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5816   BasicBlock *PredPred = nullptr;
5817   for (auto *P : predecessors(BB)) {
5818     BasicBlock *PPred = P->getSinglePredecessor();
5819     if (!PPred || (PredPred && PredPred != PPred))
5820       return nullptr;
5821     PredPred = PPred;
5822   }
5823   return PredPred;
5824 }
5825 
5826 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5827   BasicBlock *BB = BI->getParent();
5828   const Function *Fn = BB->getParent();
5829   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5830     return false;
5831 
5832   // Conditional branch
5833   if (isValueEqualityComparison(BI)) {
5834     // If we only have one predecessor, and if it is a branch on this value,
5835     // see if that predecessor totally determines the outcome of this
5836     // switch.
5837     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5838       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5839         return requestResimplify();
5840 
5841     // This block must be empty, except for the setcond inst, if it exists.
5842     // Ignore dbg intrinsics.
5843     auto I = BB->instructionsWithoutDebug().begin();
5844     if (&*I == BI) {
5845       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5846         return requestResimplify();
5847     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5848       ++I;
5849       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5850         return requestResimplify();
5851     }
5852   }
5853 
5854   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5855   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5856     return true;
5857 
5858   // If this basic block has dominating predecessor blocks and the dominating
5859   // blocks' conditions imply BI's condition, we know the direction of BI.
5860   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5861   if (Imp) {
5862     // Turn this into a branch on constant.
5863     auto *OldCond = BI->getCondition();
5864     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5865                              : ConstantInt::getFalse(BB->getContext());
5866     BI->setCondition(TorF);
5867     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5868     return requestResimplify();
5869   }
5870 
5871   // If this basic block is ONLY a compare and a branch, and if a predecessor
5872   // branches to us and one of our successors, fold the comparison into the
5873   // predecessor and use logical operations to pick the right destination.
5874   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5875     return requestResimplify();
5876 
5877   // We have a conditional branch to two blocks that are only reachable
5878   // from BI.  We know that the condbr dominates the two blocks, so see if
5879   // there is any identical code in the "then" and "else" blocks.  If so, we
5880   // can hoist it up to the branching block.
5881   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5882     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5883       if (HoistThenElseCodeToIf(BI, TTI))
5884         return requestResimplify();
5885     } else {
5886       // If Successor #1 has multiple preds, we may be able to conditionally
5887       // execute Successor #0 if it branches to Successor #1.
5888       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5889       if (Succ0TI->getNumSuccessors() == 1 &&
5890           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5891         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5892           return requestResimplify();
5893     }
5894   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5895     // If Successor #0 has multiple preds, we may be able to conditionally
5896     // execute Successor #1 if it branches to Successor #0.
5897     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5898     if (Succ1TI->getNumSuccessors() == 1 &&
5899         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5900       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5901         return requestResimplify();
5902   }
5903 
5904   // If this is a branch on a phi node in the current block, thread control
5905   // through this block if any PHI node entries are constants.
5906   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5907     if (PN->getParent() == BI->getParent())
5908       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5909         return requestResimplify();
5910 
5911   // Scan predecessor blocks for conditional branches.
5912   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5913     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5914       if (PBI != BI && PBI->isConditional())
5915         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5916           return requestResimplify();
5917 
5918   // Look for diamond patterns.
5919   if (MergeCondStores)
5920     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5921       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5922         if (PBI != BI && PBI->isConditional())
5923           if (mergeConditionalStores(PBI, BI, DL))
5924             return requestResimplify();
5925 
5926   return false;
5927 }
5928 
5929 /// Check if passing a value to an instruction will cause undefined behavior.
5930 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5931   Constant *C = dyn_cast<Constant>(V);
5932   if (!C)
5933     return false;
5934 
5935   if (I->use_empty())
5936     return false;
5937 
5938   if (C->isNullValue() || isa<UndefValue>(C)) {
5939     // Only look at the first use, avoid hurting compile time with long uselists
5940     User *Use = *I->user_begin();
5941 
5942     // Now make sure that there are no instructions in between that can alter
5943     // control flow (eg. calls)
5944     for (BasicBlock::iterator
5945              i = ++BasicBlock::iterator(I),
5946              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5947          i != UI; ++i)
5948       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5949         return false;
5950 
5951     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5952     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5953       if (GEP->getPointerOperand() == I)
5954         return passingValueIsAlwaysUndefined(V, GEP);
5955 
5956     // Look through bitcasts.
5957     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5958       return passingValueIsAlwaysUndefined(V, BC);
5959 
5960     // Load from null is undefined.
5961     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5962       if (!LI->isVolatile())
5963         return !NullPointerIsDefined(LI->getFunction(),
5964                                      LI->getPointerAddressSpace());
5965 
5966     // Store to null is undefined.
5967     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5968       if (!SI->isVolatile())
5969         return (!NullPointerIsDefined(SI->getFunction(),
5970                                       SI->getPointerAddressSpace())) &&
5971                SI->getPointerOperand() == I;
5972 
5973     // A call to null is undefined.
5974     if (auto CS = CallSite(Use))
5975       return !NullPointerIsDefined(CS->getFunction()) &&
5976              CS.getCalledValue() == I;
5977   }
5978   return false;
5979 }
5980 
5981 /// If BB has an incoming value that will always trigger undefined behavior
5982 /// (eg. null pointer dereference), remove the branch leading here.
5983 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5984   for (PHINode &PHI : BB->phis())
5985     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5986       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5987         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5988         IRBuilder<> Builder(T);
5989         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5990           BB->removePredecessor(PHI.getIncomingBlock(i));
5991           // Turn uncoditional branches into unreachables and remove the dead
5992           // destination from conditional branches.
5993           if (BI->isUnconditional())
5994             Builder.CreateUnreachable();
5995           else
5996             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5997                                                        : BI->getSuccessor(0));
5998           BI->eraseFromParent();
5999           return true;
6000         }
6001         // TODO: SwitchInst.
6002       }
6003 
6004   return false;
6005 }
6006 
6007 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6008   bool Changed = false;
6009 
6010   assert(BB && BB->getParent() && "Block not embedded in function!");
6011   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6012 
6013   // Remove basic blocks that have no predecessors (except the entry block)...
6014   // or that just have themself as a predecessor.  These are unreachable.
6015   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6016       BB->getSinglePredecessor() == BB) {
6017     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6018     DeleteDeadBlock(BB);
6019     return true;
6020   }
6021 
6022   // Check to see if we can constant propagate this terminator instruction
6023   // away...
6024   Changed |= ConstantFoldTerminator(BB, true);
6025 
6026   // Check for and eliminate duplicate PHI nodes in this block.
6027   Changed |= EliminateDuplicatePHINodes(BB);
6028 
6029   // Check for and remove branches that will always cause undefined behavior.
6030   Changed |= removeUndefIntroducingPredecessor(BB);
6031 
6032   // Merge basic blocks into their predecessor if there is only one distinct
6033   // pred, and if there is only one distinct successor of the predecessor, and
6034   // if there are no PHI nodes.
6035   if (MergeBlockIntoPredecessor(BB))
6036     return true;
6037 
6038   if (SinkCommon && Options.SinkCommonInsts)
6039     Changed |= SinkCommonCodeFromPredecessors(BB);
6040 
6041   IRBuilder<> Builder(BB);
6042 
6043   // If there is a trivial two-entry PHI node in this basic block, and we can
6044   // eliminate it, do so now.
6045   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6046     if (PN->getNumIncomingValues() == 2)
6047       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6048 
6049   Builder.SetInsertPoint(BB->getTerminator());
6050   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6051     if (BI->isUnconditional()) {
6052       if (SimplifyUncondBranch(BI, Builder))
6053         return true;
6054     } else {
6055       if (SimplifyCondBranch(BI, Builder))
6056         return true;
6057     }
6058   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6059     if (SimplifyReturn(RI, Builder))
6060       return true;
6061   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6062     if (SimplifyResume(RI, Builder))
6063       return true;
6064   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6065     if (SimplifyCleanupReturn(RI))
6066       return true;
6067   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6068     if (SimplifySwitch(SI, Builder))
6069       return true;
6070   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6071     if (SimplifyUnreachable(UI))
6072       return true;
6073   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6074     if (SimplifyIndirectBr(IBI))
6075       return true;
6076   }
6077 
6078   return Changed;
6079 }
6080 
6081 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6082   bool Changed = false;
6083 
6084   // Repeated simplify BB as long as resimplification is requested.
6085   do {
6086     Resimplify = false;
6087 
6088     // Perform one round of simplifcation. Resimplify flag will be set if
6089     // another iteration is requested.
6090     Changed |= simplifyOnce(BB);
6091   } while (Resimplify);
6092 
6093   return Changed;
6094 }
6095 
6096 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6097                        const SimplifyCFGOptions &Options,
6098                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6099   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6100                         Options)
6101       .run(BB);
6102 }
6103