1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 bool Resimplify; 177 178 Value *isValueEqualityComparison(Instruction *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 199 IRBuilder<> &Builder); 200 201 public: 202 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 203 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 204 const SimplifyCFGOptions &Opts) 205 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 206 207 bool run(BasicBlock *BB); 208 bool simplifyOnce(BasicBlock *BB); 209 210 // Helper to set Resimplify and return change indication. 211 bool requestResimplify() { 212 Resimplify = true; 213 return true; 214 } 215 }; 216 217 } // end anonymous namespace 218 219 /// Return true if it is safe to merge these two 220 /// terminator instructions together. 221 static bool 222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 223 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 224 if (SI1 == SI2) 225 return false; // Can't merge with self! 226 227 // It is not safe to merge these two switch instructions if they have a common 228 // successor, and if that successor has a PHI node, and if *that* PHI node has 229 // conflicting incoming values from the two switch blocks. 230 BasicBlock *SI1BB = SI1->getParent(); 231 BasicBlock *SI2BB = SI2->getParent(); 232 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 bool Fail = false; 235 for (BasicBlock *Succ : successors(SI2BB)) 236 if (SI1Succs.count(Succ)) 237 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 238 PHINode *PN = cast<PHINode>(BBI); 239 if (PN->getIncomingValueForBlock(SI1BB) != 240 PN->getIncomingValueForBlock(SI2BB)) { 241 if (FailBlocks) 242 FailBlocks->insert(Succ); 243 Fail = true; 244 } 245 } 246 247 return !Fail; 248 } 249 250 /// Return true if it is safe and profitable to merge these two terminator 251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 252 /// store all PHI nodes in common successors. 253 static bool 254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 255 Instruction *Cond, 256 SmallVectorImpl<PHINode *> &PhiNodes) { 257 if (SI1 == SI2) 258 return false; // Can't merge with self! 259 assert(SI1->isUnconditional() && SI2->isConditional()); 260 261 // We fold the unconditional branch if we can easily update all PHI nodes in 262 // common successors: 263 // 1> We have a constant incoming value for the conditional branch; 264 // 2> We have "Cond" as the incoming value for the unconditional branch; 265 // 3> SI2->getCondition() and Cond have same operands. 266 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 267 if (!Ci2) 268 return false; 269 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 270 Cond->getOperand(1) == Ci2->getOperand(1)) && 271 !(Cond->getOperand(0) == Ci2->getOperand(1) && 272 Cond->getOperand(1) == Ci2->getOperand(0))) 273 return false; 274 275 BasicBlock *SI1BB = SI1->getParent(); 276 BasicBlock *SI2BB = SI2->getParent(); 277 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 278 for (BasicBlock *Succ : successors(SI2BB)) 279 if (SI1Succs.count(Succ)) 280 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 281 PHINode *PN = cast<PHINode>(BBI); 282 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 283 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 284 return false; 285 PhiNodes.push_back(PN); 286 } 287 return true; 288 } 289 290 /// Update PHI nodes in Succ to indicate that there will now be entries in it 291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 292 /// will be the same as those coming in from ExistPred, an existing predecessor 293 /// of Succ. 294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 295 BasicBlock *ExistPred) { 296 for (PHINode &PN : Succ->phis()) 297 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 298 } 299 300 /// Compute an abstract "cost" of speculating the given instruction, 301 /// which is assumed to be safe to speculate. TCC_Free means cheap, 302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 303 /// expensive. 304 static unsigned ComputeSpeculationCost(const User *I, 305 const TargetTransformInfo &TTI) { 306 assert(isSafeToSpeculativelyExecute(I) && 307 "Instruction is not safe to speculatively execute!"); 308 return TTI.getUserCost(I); 309 } 310 311 /// If we have a merge point of an "if condition" as accepted above, 312 /// return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 330 unsigned &CostRemaining, 331 const TargetTransformInfo &TTI, 332 unsigned Depth = 0) { 333 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 334 // so limit the recursion depth. 335 // TODO: While this recursion limit does prevent pathological behavior, it 336 // would be better to track visited instructions to avoid cycles. 337 if (Depth == MaxSpeculationDepth) 338 return false; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) 354 return false; 355 356 // If this instruction is defined in a block that contains an unconditional 357 // branch to BB, then it must be in the 'conditional' part of the "if 358 // statement". If not, it definitely dominates the region. 359 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 360 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 361 return true; 362 363 // If we have seen this instruction before, don't count it again. 364 if (AggressiveInsts.count(I)) 365 return true; 366 367 // Okay, it looks like the instruction IS in the "condition". Check to 368 // see if it's a cheap instruction to unconditionally compute, and if it 369 // only uses stuff defined outside of the condition. If so, hoist it out. 370 if (!isSafeToSpeculativelyExecute(I)) 371 return false; 372 373 unsigned Cost = ComputeSpeculationCost(I, TTI); 374 375 // Allow exactly one instruction to be speculated regardless of its cost 376 // (as long as it is safe to do so). 377 // This is intended to flatten the CFG even if the instruction is a division 378 // or other expensive operation. The speculation of an expensive instruction 379 // is expected to be undone in CodeGenPrepare if the speculation has not 380 // enabled further IR optimizations. 381 if (Cost > CostRemaining && 382 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 383 return false; 384 385 // Avoid unsigned wrap. 386 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 387 388 // Okay, we can only really hoist these out if their operands do 389 // not take us over the cost threshold. 390 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 391 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 392 Depth + 1)) 393 return false; 394 // Okay, it's safe to do this! Remember this instruction. 395 AggressiveInsts.insert(I); 396 return true; 397 } 398 399 /// Extract ConstantInt from value, looking through IntToPtr 400 /// and PointerNullValue. Return NULL if value is not a constant int. 401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 402 // Normal constant int. 403 ConstantInt *CI = dyn_cast<ConstantInt>(V); 404 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 405 return CI; 406 407 // This is some kind of pointer constant. Turn it into a pointer-sized 408 // ConstantInt if possible. 409 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 410 411 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 412 if (isa<ConstantPointerNull>(V)) 413 return ConstantInt::get(PtrTy, 0); 414 415 // IntToPtr const int. 416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 417 if (CE->getOpcode() == Instruction::IntToPtr) 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 419 // The constant is very likely to have the right type already. 420 if (CI->getType() == PtrTy) 421 return CI; 422 else 423 return cast<ConstantInt>( 424 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 425 } 426 return nullptr; 427 } 428 429 namespace { 430 431 /// Given a chain of or (||) or and (&&) comparison of a value against a 432 /// constant, this will try to recover the information required for a switch 433 /// structure. 434 /// It will depth-first traverse the chain of comparison, seeking for patterns 435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 436 /// representing the different cases for the switch. 437 /// Note that if the chain is composed of '||' it will build the set of elements 438 /// that matches the comparisons (i.e. any of this value validate the chain) 439 /// while for a chain of '&&' it will build the set elements that make the test 440 /// fail. 441 struct ConstantComparesGatherer { 442 const DataLayout &DL; 443 444 /// Value found for the switch comparison 445 Value *CompValue = nullptr; 446 447 /// Extra clause to be checked before the switch 448 Value *Extra = nullptr; 449 450 /// Set of integers to match in switch 451 SmallVector<ConstantInt *, 8> Vals; 452 453 /// Number of comparisons matched in the and/or chain 454 unsigned UsedICmps = 0; 455 456 /// Construct and compute the result for the comparison instruction Cond 457 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 458 gather(Cond); 459 } 460 461 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 462 ConstantComparesGatherer & 463 operator=(const ConstantComparesGatherer &) = delete; 464 465 private: 466 /// Try to set the current value used for the comparison, it succeeds only if 467 /// it wasn't set before or if the new value is the same as the old one 468 bool setValueOnce(Value *NewVal) { 469 if (CompValue && CompValue != NewVal) 470 return false; 471 CompValue = NewVal; 472 return (CompValue != nullptr); 473 } 474 475 /// Try to match Instruction "I" as a comparison against a constant and 476 /// populates the array Vals with the set of values that match (or do not 477 /// match depending on isEQ). 478 /// Return false on failure. On success, the Value the comparison matched 479 /// against is placed in CompValue. 480 /// If CompValue is already set, the function is expected to fail if a match 481 /// is found but the value compared to is different. 482 bool matchInstruction(Instruction *I, bool isEQ) { 483 // If this is an icmp against a constant, handle this as one of the cases. 484 ICmpInst *ICI; 485 ConstantInt *C; 486 if (!((ICI = dyn_cast<ICmpInst>(I)) && 487 (C = GetConstantInt(I->getOperand(1), DL)))) { 488 return false; 489 } 490 491 Value *RHSVal; 492 const APInt *RHSC; 493 494 // Pattern match a special case 495 // (x & ~2^z) == y --> x == y || x == y|2^z 496 // This undoes a transformation done by instcombine to fuse 2 compares. 497 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 498 // It's a little bit hard to see why the following transformations are 499 // correct. Here is a CVC3 program to verify them for 64-bit values: 500 501 /* 502 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 503 x : BITVECTOR(64); 504 y : BITVECTOR(64); 505 z : BITVECTOR(64); 506 mask : BITVECTOR(64) = BVSHL(ONE, z); 507 QUERY( (y & ~mask = y) => 508 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 509 ); 510 QUERY( (y | mask = y) => 511 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 512 ); 513 */ 514 515 // Please note that each pattern must be a dual implication (<--> or 516 // iff). One directional implication can create spurious matches. If the 517 // implication is only one-way, an unsatisfiable condition on the left 518 // side can imply a satisfiable condition on the right side. Dual 519 // implication ensures that satisfiable conditions are transformed to 520 // other satisfiable conditions and unsatisfiable conditions are 521 // transformed to other unsatisfiable conditions. 522 523 // Here is a concrete example of a unsatisfiable condition on the left 524 // implying a satisfiable condition on the right: 525 // 526 // mask = (1 << z) 527 // (x & ~mask) == y --> (x == y || x == (y | mask)) 528 // 529 // Substituting y = 3, z = 0 yields: 530 // (x & -2) == 3 --> (x == 3 || x == 2) 531 532 // Pattern match a special case: 533 /* 534 QUERY( (y & ~mask = y) => 535 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 536 ); 537 */ 538 if (match(ICI->getOperand(0), 539 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 540 APInt Mask = ~*RHSC; 541 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 542 // If we already have a value for the switch, it has to match! 543 if (!setValueOnce(RHSVal)) 544 return false; 545 546 Vals.push_back(C); 547 Vals.push_back( 548 ConstantInt::get(C->getContext(), 549 C->getValue() | Mask)); 550 UsedICmps++; 551 return true; 552 } 553 } 554 555 // Pattern match a special case: 556 /* 557 QUERY( (y | mask = y) => 558 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 559 ); 560 */ 561 if (match(ICI->getOperand(0), 562 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 563 APInt Mask = *RHSC; 564 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 565 // If we already have a value for the switch, it has to match! 566 if (!setValueOnce(RHSVal)) 567 return false; 568 569 Vals.push_back(C); 570 Vals.push_back(ConstantInt::get(C->getContext(), 571 C->getValue() & ~Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(ICI->getOperand(0))) 579 return false; 580 581 UsedICmps++; 582 Vals.push_back(C); 583 return ICI->getOperand(0); 584 } 585 586 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 587 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 588 ICI->getPredicate(), C->getValue()); 589 590 // Shift the range if the compare is fed by an add. This is the range 591 // compare idiom as emitted by instcombine. 592 Value *CandidateVal = I->getOperand(0); 593 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 594 Span = Span.subtract(*RHSC); 595 CandidateVal = RHSVal; 596 } 597 598 // If this is an and/!= check, then we are looking to build the set of 599 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 600 // x != 0 && x != 1. 601 if (!isEQ) 602 Span = Span.inverse(); 603 604 // If there are a ton of values, we don't want to make a ginormous switch. 605 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 606 return false; 607 } 608 609 // If we already have a value for the switch, it has to match! 610 if (!setValueOnce(CandidateVal)) 611 return false; 612 613 // Add all values from the range to the set 614 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 615 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 616 617 UsedICmps++; 618 return true; 619 } 620 621 /// Given a potentially 'or'd or 'and'd together collection of icmp 622 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 623 /// the value being compared, and stick the list constants into the Vals 624 /// vector. 625 /// One "Extra" case is allowed to differ from the other. 626 void gather(Value *V) { 627 Instruction *I = dyn_cast<Instruction>(V); 628 bool isEQ = (I->getOpcode() == Instruction::Or); 629 630 // Keep a stack (SmallVector for efficiency) for depth-first traversal 631 SmallVector<Value *, 8> DFT; 632 SmallPtrSet<Value *, 8> Visited; 633 634 // Initialize 635 Visited.insert(V); 636 DFT.push_back(V); 637 638 while (!DFT.empty()) { 639 V = DFT.pop_back_val(); 640 641 if (Instruction *I = dyn_cast<Instruction>(V)) { 642 // If it is a || (or && depending on isEQ), process the operands. 643 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 644 if (Visited.insert(I->getOperand(1)).second) 645 DFT.push_back(I->getOperand(1)); 646 if (Visited.insert(I->getOperand(0)).second) 647 DFT.push_back(I->getOperand(0)); 648 continue; 649 } 650 651 // Try to match the current instruction 652 if (matchInstruction(I, isEQ)) 653 // Match succeed, continue the loop 654 continue; 655 } 656 657 // One element of the sequence of || (or &&) could not be match as a 658 // comparison against the same value as the others. 659 // We allow only one "Extra" case to be checked before the switch 660 if (!Extra) { 661 Extra = V; 662 continue; 663 } 664 // Failed to parse a proper sequence, abort now 665 CompValue = nullptr; 666 break; 667 } 668 } 669 }; 670 671 } // end anonymous namespace 672 673 static void EraseTerminatorAndDCECond(Instruction *TI) { 674 Instruction *Cond = nullptr; 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cond = dyn_cast<Instruction>(SI->getCondition()); 677 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 678 if (BI->isConditional()) 679 Cond = dyn_cast<Instruction>(BI->getCondition()); 680 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 681 Cond = dyn_cast<Instruction>(IBI->getAddress()); 682 } 683 684 TI->eraseFromParent(); 685 if (Cond) 686 RecursivelyDeleteTriviallyDeadInstructions(Cond); 687 } 688 689 /// Return true if the specified terminator checks 690 /// to see if a value is equal to constant integer value. 691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 692 Value *CV = nullptr; 693 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 694 // Do not permit merging of large switch instructions into their 695 // predecessors unless there is only one predecessor. 696 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 697 CV = SI->getCondition(); 698 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 699 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 701 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 702 CV = ICI->getOperand(0); 703 } 704 705 // Unwrap any lossless ptrtoint cast. 706 if (CV) { 707 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 708 Value *Ptr = PTII->getPointerOperand(); 709 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 710 CV = Ptr; 711 } 712 } 713 return CV; 714 } 715 716 /// Given a value comparison instruction, 717 /// decode all of the 'cases' that it represents and return the 'default' block. 718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 719 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 720 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 721 Cases.reserve(SI->getNumCases()); 722 for (auto Case : SI->cases()) 723 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 724 Case.getCaseSuccessor())); 725 return SI->getDefaultDest(); 726 } 727 728 BranchInst *BI = cast<BranchInst>(TI); 729 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 730 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 731 Cases.push_back(ValueEqualityComparisonCase( 732 GetConstantInt(ICI->getOperand(1), DL), Succ)); 733 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 734 } 735 736 /// Given a vector of bb/value pairs, remove any entries 737 /// in the list that match the specified block. 738 static void 739 EliminateBlockCases(BasicBlock *BB, 740 std::vector<ValueEqualityComparisonCase> &Cases) { 741 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 742 } 743 744 /// Return true if there are any keys in C1 that exist in C2 as well. 745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 746 std::vector<ValueEqualityComparisonCase> &C2) { 747 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 748 749 // Make V1 be smaller than V2. 750 if (V1->size() > V2->size()) 751 std::swap(V1, V2); 752 753 if (V1->empty()) 754 return false; 755 if (V1->size() == 1) { 756 // Just scan V2. 757 ConstantInt *TheVal = (*V1)[0].Value; 758 for (unsigned i = 0, e = V2->size(); i != e; ++i) 759 if (TheVal == (*V2)[i].Value) 760 return true; 761 } 762 763 // Otherwise, just sort both lists and compare element by element. 764 array_pod_sort(V1->begin(), V1->end()); 765 array_pod_sort(V2->begin(), V2->end()); 766 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 767 while (i1 != e1 && i2 != e2) { 768 if ((*V1)[i1].Value == (*V2)[i2].Value) 769 return true; 770 if ((*V1)[i1].Value < (*V2)[i2].Value) 771 ++i1; 772 else 773 ++i2; 774 } 775 return false; 776 } 777 778 // Set branch weights on SwitchInst. This sets the metadata if there is at 779 // least one non-zero weight. 780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 781 // Check that there is at least one non-zero weight. Otherwise, pass 782 // nullptr to setMetadata which will erase the existing metadata. 783 MDNode *N = nullptr; 784 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 785 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 786 SI->setMetadata(LLVMContext::MD_prof, N); 787 } 788 789 // Similar to the above, but for branch and select instructions that take 790 // exactly 2 weights. 791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 792 uint32_t FalseWeight) { 793 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 794 // Check that there is at least one non-zero weight. Otherwise, pass 795 // nullptr to setMetadata which will erase the existing metadata. 796 MDNode *N = nullptr; 797 if (TrueWeight || FalseWeight) 798 N = MDBuilder(I->getParent()->getContext()) 799 .createBranchWeights(TrueWeight, FalseWeight); 800 I->setMetadata(LLVMContext::MD_prof, N); 801 } 802 803 /// If TI is known to be a terminator instruction and its block is known to 804 /// only have a single predecessor block, check to see if that predecessor is 805 /// also a value comparison with the same value, and if that comparison 806 /// determines the outcome of this comparison. If so, simplify TI. This does a 807 /// very limited form of jump threading. 808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 809 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 810 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 811 if (!PredVal) 812 return false; // Not a value comparison in predecessor. 813 814 Value *ThisVal = isValueEqualityComparison(TI); 815 assert(ThisVal && "This isn't a value comparison!!"); 816 if (ThisVal != PredVal) 817 return false; // Different predicates. 818 819 // TODO: Preserve branch weight metadata, similarly to how 820 // FoldValueComparisonIntoPredecessors preserves it. 821 822 // Find out information about when control will move from Pred to TI's block. 823 std::vector<ValueEqualityComparisonCase> PredCases; 824 BasicBlock *PredDef = 825 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 826 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 827 828 // Find information about how control leaves this block. 829 std::vector<ValueEqualityComparisonCase> ThisCases; 830 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 831 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 832 833 // If TI's block is the default block from Pred's comparison, potentially 834 // simplify TI based on this knowledge. 835 if (PredDef == TI->getParent()) { 836 // If we are here, we know that the value is none of those cases listed in 837 // PredCases. If there are any cases in ThisCases that are in PredCases, we 838 // can simplify TI. 839 if (!ValuesOverlap(PredCases, ThisCases)) 840 return false; 841 842 if (isa<BranchInst>(TI)) { 843 // Okay, one of the successors of this condbr is dead. Convert it to a 844 // uncond br. 845 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 846 // Insert the new branch. 847 Instruction *NI = Builder.CreateBr(ThisDef); 848 (void)NI; 849 850 // Remove PHI node entries for the dead edge. 851 ThisCases[0].Dest->removePredecessor(TI->getParent()); 852 853 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 854 << "Through successor TI: " << *TI << "Leaving: " << *NI 855 << "\n"); 856 857 EraseTerminatorAndDCECond(TI); 858 return true; 859 } 860 861 SwitchInst *SI = cast<SwitchInst>(TI); 862 // Okay, TI has cases that are statically dead, prune them away. 863 SmallPtrSet<Constant *, 16> DeadCases; 864 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 865 DeadCases.insert(PredCases[i].Value); 866 867 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 868 << "Through successor TI: " << *TI); 869 870 // Collect branch weights into a vector. 871 SmallVector<uint32_t, 8> Weights; 872 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 873 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 874 if (HasWeight) 875 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 876 ++MD_i) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 878 Weights.push_back(CI->getValue().getZExtValue()); 879 } 880 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 881 --i; 882 if (DeadCases.count(i->getCaseValue())) { 883 if (HasWeight) { 884 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 885 Weights.pop_back(); 886 } 887 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 888 SI->removeCase(i); 889 } 890 } 891 if (HasWeight && Weights.size() >= 2) 892 setBranchWeights(SI, Weights); 893 894 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 895 return true; 896 } 897 898 // Otherwise, TI's block must correspond to some matched value. Find out 899 // which value (or set of values) this is. 900 ConstantInt *TIV = nullptr; 901 BasicBlock *TIBB = TI->getParent(); 902 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 903 if (PredCases[i].Dest == TIBB) { 904 if (TIV) 905 return false; // Cannot handle multiple values coming to this block. 906 TIV = PredCases[i].Value; 907 } 908 assert(TIV && "No edge from pred to succ?"); 909 910 // Okay, we found the one constant that our value can be if we get into TI's 911 // BB. Find out which successor will unconditionally be branched to. 912 BasicBlock *TheRealDest = nullptr; 913 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 914 if (ThisCases[i].Value == TIV) { 915 TheRealDest = ThisCases[i].Dest; 916 break; 917 } 918 919 // If not handled by any explicit cases, it is handled by the default case. 920 if (!TheRealDest) 921 TheRealDest = ThisDef; 922 923 // Remove PHI node entries for dead edges. 924 BasicBlock *CheckEdge = TheRealDest; 925 for (BasicBlock *Succ : successors(TIBB)) 926 if (Succ != CheckEdge) 927 Succ->removePredecessor(TIBB); 928 else 929 CheckEdge = nullptr; 930 931 // Insert the new branch. 932 Instruction *NI = Builder.CreateBr(TheRealDest); 933 (void)NI; 934 935 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 936 << "Through successor TI: " << *TI << "Leaving: " << *NI 937 << "\n"); 938 939 EraseTerminatorAndDCECond(TI); 940 return true; 941 } 942 943 namespace { 944 945 /// This class implements a stable ordering of constant 946 /// integers that does not depend on their address. This is important for 947 /// applications that sort ConstantInt's to ensure uniqueness. 948 struct ConstantIntOrdering { 949 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 950 return LHS->getValue().ult(RHS->getValue()); 951 } 952 }; 953 954 } // end anonymous namespace 955 956 static int ConstantIntSortPredicate(ConstantInt *const *P1, 957 ConstantInt *const *P2) { 958 const ConstantInt *LHS = *P1; 959 const ConstantInt *RHS = *P2; 960 if (LHS == RHS) 961 return 0; 962 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 963 } 964 965 static inline bool HasBranchWeights(const Instruction *I) { 966 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 967 if (ProfMD && ProfMD->getOperand(0)) 968 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 969 return MDS->getString().equals("branch_weights"); 970 971 return false; 972 } 973 974 /// Get Weights of a given terminator, the default weight is at the front 975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 976 /// metadata. 977 static void GetBranchWeights(Instruction *TI, 978 SmallVectorImpl<uint64_t> &Weights) { 979 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 980 assert(MD); 981 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 983 Weights.push_back(CI->getValue().getZExtValue()); 984 } 985 986 // If TI is a conditional eq, the default case is the false case, 987 // and the corresponding branch-weight data is at index 2. We swap the 988 // default weight to be the first entry. 989 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 990 assert(Weights.size() == 2); 991 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 992 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 993 std::swap(Weights.front(), Weights.back()); 994 } 995 } 996 997 /// Keep halving the weights until all can fit in uint32_t. 998 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 999 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1000 if (Max > UINT_MAX) { 1001 unsigned Offset = 32 - countLeadingZeros(Max); 1002 for (uint64_t &I : Weights) 1003 I >>= Offset; 1004 } 1005 } 1006 1007 /// The specified terminator is a value equality comparison instruction 1008 /// (either a switch or a branch on "X == c"). 1009 /// See if any of the predecessors of the terminator block are value comparisons 1010 /// on the same value. If so, and if safe to do so, fold them together. 1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1012 IRBuilder<> &Builder) { 1013 BasicBlock *BB = TI->getParent(); 1014 Value *CV = isValueEqualityComparison(TI); // CondVal 1015 assert(CV && "Not a comparison?"); 1016 bool Changed = false; 1017 1018 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1019 while (!Preds.empty()) { 1020 BasicBlock *Pred = Preds.pop_back_val(); 1021 1022 // See if the predecessor is a comparison with the same value. 1023 Instruction *PTI = Pred->getTerminator(); 1024 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1025 1026 if (PCV == CV && TI != PTI) { 1027 SmallSetVector<BasicBlock*, 4> FailBlocks; 1028 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1029 for (auto *Succ : FailBlocks) { 1030 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1031 return false; 1032 } 1033 } 1034 1035 // Figure out which 'cases' to copy from SI to PSI. 1036 std::vector<ValueEqualityComparisonCase> BBCases; 1037 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1038 1039 std::vector<ValueEqualityComparisonCase> PredCases; 1040 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1041 1042 // Based on whether the default edge from PTI goes to BB or not, fill in 1043 // PredCases and PredDefault with the new switch cases we would like to 1044 // build. 1045 SmallVector<BasicBlock *, 8> NewSuccessors; 1046 1047 // Update the branch weight metadata along the way 1048 SmallVector<uint64_t, 8> Weights; 1049 bool PredHasWeights = HasBranchWeights(PTI); 1050 bool SuccHasWeights = HasBranchWeights(TI); 1051 1052 if (PredHasWeights) { 1053 GetBranchWeights(PTI, Weights); 1054 // branch-weight metadata is inconsistent here. 1055 if (Weights.size() != 1 + PredCases.size()) 1056 PredHasWeights = SuccHasWeights = false; 1057 } else if (SuccHasWeights) 1058 // If there are no predecessor weights but there are successor weights, 1059 // populate Weights with 1, which will later be scaled to the sum of 1060 // successor's weights 1061 Weights.assign(1 + PredCases.size(), 1); 1062 1063 SmallVector<uint64_t, 8> SuccWeights; 1064 if (SuccHasWeights) { 1065 GetBranchWeights(TI, SuccWeights); 1066 // branch-weight metadata is inconsistent here. 1067 if (SuccWeights.size() != 1 + BBCases.size()) 1068 PredHasWeights = SuccHasWeights = false; 1069 } else if (PredHasWeights) 1070 SuccWeights.assign(1 + BBCases.size(), 1); 1071 1072 if (PredDefault == BB) { 1073 // If this is the default destination from PTI, only the edges in TI 1074 // that don't occur in PTI, or that branch to BB will be activated. 1075 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1076 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1077 if (PredCases[i].Dest != BB) 1078 PTIHandled.insert(PredCases[i].Value); 1079 else { 1080 // The default destination is BB, we don't need explicit targets. 1081 std::swap(PredCases[i], PredCases.back()); 1082 1083 if (PredHasWeights || SuccHasWeights) { 1084 // Increase weight for the default case. 1085 Weights[0] += Weights[i + 1]; 1086 std::swap(Weights[i + 1], Weights.back()); 1087 Weights.pop_back(); 1088 } 1089 1090 PredCases.pop_back(); 1091 --i; 1092 --e; 1093 } 1094 1095 // Reconstruct the new switch statement we will be building. 1096 if (PredDefault != BBDefault) { 1097 PredDefault->removePredecessor(Pred); 1098 PredDefault = BBDefault; 1099 NewSuccessors.push_back(BBDefault); 1100 } 1101 1102 unsigned CasesFromPred = Weights.size(); 1103 uint64_t ValidTotalSuccWeight = 0; 1104 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1105 if (!PTIHandled.count(BBCases[i].Value) && 1106 BBCases[i].Dest != BBDefault) { 1107 PredCases.push_back(BBCases[i]); 1108 NewSuccessors.push_back(BBCases[i].Dest); 1109 if (SuccHasWeights || PredHasWeights) { 1110 // The default weight is at index 0, so weight for the ith case 1111 // should be at index i+1. Scale the cases from successor by 1112 // PredDefaultWeight (Weights[0]). 1113 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1114 ValidTotalSuccWeight += SuccWeights[i + 1]; 1115 } 1116 } 1117 1118 if (SuccHasWeights || PredHasWeights) { 1119 ValidTotalSuccWeight += SuccWeights[0]; 1120 // Scale the cases from predecessor by ValidTotalSuccWeight. 1121 for (unsigned i = 1; i < CasesFromPred; ++i) 1122 Weights[i] *= ValidTotalSuccWeight; 1123 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1124 Weights[0] *= SuccWeights[0]; 1125 } 1126 } else { 1127 // If this is not the default destination from PSI, only the edges 1128 // in SI that occur in PSI with a destination of BB will be 1129 // activated. 1130 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1131 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1132 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1133 if (PredCases[i].Dest == BB) { 1134 PTIHandled.insert(PredCases[i].Value); 1135 1136 if (PredHasWeights || SuccHasWeights) { 1137 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1138 std::swap(Weights[i + 1], Weights.back()); 1139 Weights.pop_back(); 1140 } 1141 1142 std::swap(PredCases[i], PredCases.back()); 1143 PredCases.pop_back(); 1144 --i; 1145 --e; 1146 } 1147 1148 // Okay, now we know which constants were sent to BB from the 1149 // predecessor. Figure out where they will all go now. 1150 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1151 if (PTIHandled.count(BBCases[i].Value)) { 1152 // If this is one we are capable of getting... 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1155 PredCases.push_back(BBCases[i]); 1156 NewSuccessors.push_back(BBCases[i].Dest); 1157 PTIHandled.erase( 1158 BBCases[i].Value); // This constant is taken care of 1159 } 1160 1161 // If there are any constants vectored to BB that TI doesn't handle, 1162 // they must go to the default destination of TI. 1163 for (ConstantInt *I : PTIHandled) { 1164 if (PredHasWeights || SuccHasWeights) 1165 Weights.push_back(WeightsForHandled[I]); 1166 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1167 NewSuccessors.push_back(BBDefault); 1168 } 1169 } 1170 1171 // Okay, at this point, we know which new successor Pred will get. Make 1172 // sure we update the number of entries in the PHI nodes for these 1173 // successors. 1174 for (BasicBlock *NewSuccessor : NewSuccessors) 1175 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1176 1177 Builder.SetInsertPoint(PTI); 1178 // Convert pointer to int before we switch. 1179 if (CV->getType()->isPointerTy()) { 1180 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1181 "magicptr"); 1182 } 1183 1184 // Now that the successors are updated, create the new Switch instruction. 1185 SwitchInst *NewSI = 1186 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1187 NewSI->setDebugLoc(PTI->getDebugLoc()); 1188 for (ValueEqualityComparisonCase &V : PredCases) 1189 NewSI->addCase(V.Value, V.Dest); 1190 1191 if (PredHasWeights || SuccHasWeights) { 1192 // Halve the weights if any of them cannot fit in an uint32_t 1193 FitWeights(Weights); 1194 1195 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1196 1197 setBranchWeights(NewSI, MDWeights); 1198 } 1199 1200 EraseTerminatorAndDCECond(PTI); 1201 1202 // Okay, last check. If BB is still a successor of PSI, then we must 1203 // have an infinite loop case. If so, add an infinitely looping block 1204 // to handle the case to preserve the behavior of the code. 1205 BasicBlock *InfLoopBlock = nullptr; 1206 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1207 if (NewSI->getSuccessor(i) == BB) { 1208 if (!InfLoopBlock) { 1209 // Insert it at the end of the function, because it's either code, 1210 // or it won't matter if it's hot. :) 1211 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1212 BB->getParent()); 1213 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1214 } 1215 NewSI->setSuccessor(i, InfLoopBlock); 1216 } 1217 1218 Changed = true; 1219 } 1220 } 1221 return Changed; 1222 } 1223 1224 // If we would need to insert a select that uses the value of this invoke 1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1226 // can't hoist the invoke, as there is nowhere to put the select in this case. 1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1228 Instruction *I1, Instruction *I2) { 1229 for (BasicBlock *Succ : successors(BB1)) { 1230 for (const PHINode &PN : Succ->phis()) { 1231 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1232 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1233 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1234 return false; 1235 } 1236 } 1237 } 1238 return true; 1239 } 1240 1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1242 1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1244 /// in the two blocks up into the branch block. The caller of this function 1245 /// guarantees that BI's block dominates BB1 and BB2. 1246 static bool HoistThenElseCodeToIf(BranchInst *BI, 1247 const TargetTransformInfo &TTI) { 1248 // This does very trivial matching, with limited scanning, to find identical 1249 // instructions in the two blocks. In particular, we don't want to get into 1250 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1251 // such, we currently just scan for obviously identical instructions in an 1252 // identical order. 1253 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1254 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1255 1256 BasicBlock::iterator BB1_Itr = BB1->begin(); 1257 BasicBlock::iterator BB2_Itr = BB2->begin(); 1258 1259 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1260 // Skip debug info if it is not identical. 1261 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1262 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1263 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1264 while (isa<DbgInfoIntrinsic>(I1)) 1265 I1 = &*BB1_Itr++; 1266 while (isa<DbgInfoIntrinsic>(I2)) 1267 I2 = &*BB2_Itr++; 1268 } 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1271 return false; 1272 1273 BasicBlock *BIParent = BI->getParent(); 1274 1275 bool Changed = false; 1276 do { 1277 // If we are hoisting the terminator instruction, don't move one (making a 1278 // broken BB), instead clone it, and remove BI. 1279 if (I1->isTerminator()) 1280 goto HoistTerminator; 1281 1282 // If we're going to hoist a call, make sure that the two instructions we're 1283 // commoning/hoisting are both marked with musttail, or neither of them is 1284 // marked as such. Otherwise, we might end up in a situation where we hoist 1285 // from a block where the terminator is a `ret` to a block where the terminator 1286 // is a `br`, and `musttail` calls expect to be followed by a return. 1287 auto *C1 = dyn_cast<CallInst>(I1); 1288 auto *C2 = dyn_cast<CallInst>(I2); 1289 if (C1 && C2) 1290 if (C1->isMustTailCall() != C2->isMustTailCall()) 1291 return Changed; 1292 1293 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1294 return Changed; 1295 1296 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1297 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1298 // The debug location is an integral part of a debug info intrinsic 1299 // and can't be separated from it or replaced. Instead of attempting 1300 // to merge locations, simply hoist both copies of the intrinsic. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 BIParent->getInstList().splice(BI->getIterator(), 1304 BB2->getInstList(), I2); 1305 Changed = true; 1306 } else { 1307 // For a normal instruction, we just move one to right before the branch, 1308 // then replace all uses of the other with the first. Finally, we remove 1309 // the now redundant second instruction. 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB1->getInstList(), I1); 1312 if (!I2->use_empty()) 1313 I2->replaceAllUsesWith(I1); 1314 I1->andIRFlags(I2); 1315 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1316 LLVMContext::MD_range, 1317 LLVMContext::MD_fpmath, 1318 LLVMContext::MD_invariant_load, 1319 LLVMContext::MD_nonnull, 1320 LLVMContext::MD_invariant_group, 1321 LLVMContext::MD_align, 1322 LLVMContext::MD_dereferenceable, 1323 LLVMContext::MD_dereferenceable_or_null, 1324 LLVMContext::MD_mem_parallel_loop_access, 1325 LLVMContext::MD_access_group}; 1326 combineMetadata(I1, I2, KnownIDs, true); 1327 1328 // I1 and I2 are being combined into a single instruction. Its debug 1329 // location is the merged locations of the original instructions. 1330 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1331 1332 I2->eraseFromParent(); 1333 Changed = true; 1334 } 1335 1336 I1 = &*BB1_Itr++; 1337 I2 = &*BB2_Itr++; 1338 // Skip debug info if it is not identical. 1339 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1340 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1341 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1342 while (isa<DbgInfoIntrinsic>(I1)) 1343 I1 = &*BB1_Itr++; 1344 while (isa<DbgInfoIntrinsic>(I2)) 1345 I2 = &*BB2_Itr++; 1346 } 1347 } while (I1->isIdenticalToWhenDefined(I2)); 1348 1349 return true; 1350 1351 HoistTerminator: 1352 // It may not be possible to hoist an invoke. 1353 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1354 return Changed; 1355 1356 for (BasicBlock *Succ : successors(BB1)) { 1357 for (PHINode &PN : Succ->phis()) { 1358 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1359 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1360 if (BB1V == BB2V) 1361 continue; 1362 1363 // Check for passingValueIsAlwaysUndefined here because we would rather 1364 // eliminate undefined control flow then converting it to a select. 1365 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1366 passingValueIsAlwaysUndefined(BB2V, &PN)) 1367 return Changed; 1368 1369 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1370 return Changed; 1371 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1372 return Changed; 1373 } 1374 } 1375 1376 // As the parent basic block terminator is a branch instruction which is 1377 // removed at the end of the current transformation, use its previous 1378 // non-debug instruction, as the reference insertion point, which will 1379 // provide the debug location for generated select instructions. For BBs 1380 // with only debug instructions, use an empty debug location. 1381 Instruction *InsertPt = 1382 BIParent->getTerminator()->getPrevNonDebugInstruction(); 1383 1384 // Okay, it is safe to hoist the terminator. 1385 Instruction *NT = I1->clone(); 1386 BIParent->getInstList().insert(BI->getIterator(), NT); 1387 if (!NT->getType()->isVoidTy()) { 1388 I1->replaceAllUsesWith(NT); 1389 I2->replaceAllUsesWith(NT); 1390 NT->takeName(I1); 1391 } 1392 1393 // Ensure terminator gets a debug location, even an unknown one, in case 1394 // it involves inlinable calls. 1395 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1396 1397 IRBuilder<NoFolder> Builder(NT); 1398 // If an earlier instruction in this BB had a location, adopt it, otherwise 1399 // clear debug locations. 1400 Builder.SetCurrentDebugLocation(InsertPt ? InsertPt->getDebugLoc() 1401 : DebugLoc()); 1402 1403 // Hoisting one of the terminators from our successor is a great thing. 1404 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1405 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1406 // nodes, so we insert select instruction to compute the final result. 1407 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1408 for (BasicBlock *Succ : successors(BB1)) { 1409 for (PHINode &PN : Succ->phis()) { 1410 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1411 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1412 if (BB1V == BB2V) 1413 continue; 1414 1415 // These values do not agree. Insert a select instruction before NT 1416 // that determines the right value. 1417 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1418 if (!SI) 1419 SI = cast<SelectInst>( 1420 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1421 BB1V->getName() + "." + BB2V->getName(), BI)); 1422 1423 // Make the PHI node use the select for all incoming values for BB1/BB2 1424 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1425 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1426 PN.setIncomingValue(i, SI); 1427 } 1428 } 1429 1430 // Update any PHI nodes in our new successors. 1431 for (BasicBlock *Succ : successors(BB1)) 1432 AddPredecessorToBlock(Succ, BIParent, BB1); 1433 1434 EraseTerminatorAndDCECond(BI); 1435 return true; 1436 } 1437 1438 // All instructions in Insts belong to different blocks that all unconditionally 1439 // branch to a common successor. Analyze each instruction and return true if it 1440 // would be possible to sink them into their successor, creating one common 1441 // instruction instead. For every value that would be required to be provided by 1442 // PHI node (because an operand varies in each input block), add to PHIOperands. 1443 static bool canSinkInstructions( 1444 ArrayRef<Instruction *> Insts, 1445 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1446 // Prune out obviously bad instructions to move. Any non-store instruction 1447 // must have exactly one use, and we check later that use is by a single, 1448 // common PHI instruction in the successor. 1449 for (auto *I : Insts) { 1450 // These instructions may change or break semantics if moved. 1451 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1452 I->getType()->isTokenTy()) 1453 return false; 1454 1455 // Conservatively return false if I is an inline-asm instruction. Sinking 1456 // and merging inline-asm instructions can potentially create arguments 1457 // that cannot satisfy the inline-asm constraints. 1458 if (const auto *C = dyn_cast<CallInst>(I)) 1459 if (C->isInlineAsm()) 1460 return false; 1461 1462 // Everything must have only one use too, apart from stores which 1463 // have no uses. 1464 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1465 return false; 1466 } 1467 1468 const Instruction *I0 = Insts.front(); 1469 for (auto *I : Insts) 1470 if (!I->isSameOperationAs(I0)) 1471 return false; 1472 1473 // All instructions in Insts are known to be the same opcode. If they aren't 1474 // stores, check the only user of each is a PHI or in the same block as the 1475 // instruction, because if a user is in the same block as an instruction 1476 // we're contemplating sinking, it must already be determined to be sinkable. 1477 if (!isa<StoreInst>(I0)) { 1478 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1479 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1480 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1481 auto *U = cast<Instruction>(*I->user_begin()); 1482 return (PNUse && 1483 PNUse->getParent() == Succ && 1484 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1485 U->getParent() == I->getParent(); 1486 })) 1487 return false; 1488 } 1489 1490 // Because SROA can't handle speculating stores of selects, try not 1491 // to sink loads or stores of allocas when we'd have to create a PHI for 1492 // the address operand. Also, because it is likely that loads or stores 1493 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1494 // This can cause code churn which can have unintended consequences down 1495 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1496 // FIXME: This is a workaround for a deficiency in SROA - see 1497 // https://llvm.org/bugs/show_bug.cgi?id=30188 1498 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1499 return isa<AllocaInst>(I->getOperand(1)); 1500 })) 1501 return false; 1502 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1503 return isa<AllocaInst>(I->getOperand(0)); 1504 })) 1505 return false; 1506 1507 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1508 if (I0->getOperand(OI)->getType()->isTokenTy()) 1509 // Don't touch any operand of token type. 1510 return false; 1511 1512 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1513 assert(I->getNumOperands() == I0->getNumOperands()); 1514 return I->getOperand(OI) == I0->getOperand(OI); 1515 }; 1516 if (!all_of(Insts, SameAsI0)) { 1517 if (!canReplaceOperandWithVariable(I0, OI)) 1518 // We can't create a PHI from this GEP. 1519 return false; 1520 // Don't create indirect calls! The called value is the final operand. 1521 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1522 // FIXME: if the call was *already* indirect, we should do this. 1523 return false; 1524 } 1525 for (auto *I : Insts) 1526 PHIOperands[I].push_back(I->getOperand(OI)); 1527 } 1528 } 1529 return true; 1530 } 1531 1532 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1533 // instruction of every block in Blocks to their common successor, commoning 1534 // into one instruction. 1535 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1536 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1537 1538 // canSinkLastInstruction returning true guarantees that every block has at 1539 // least one non-terminator instruction. 1540 SmallVector<Instruction*,4> Insts; 1541 for (auto *BB : Blocks) { 1542 Instruction *I = BB->getTerminator(); 1543 do { 1544 I = I->getPrevNode(); 1545 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1546 if (!isa<DbgInfoIntrinsic>(I)) 1547 Insts.push_back(I); 1548 } 1549 1550 // The only checking we need to do now is that all users of all instructions 1551 // are the same PHI node. canSinkLastInstruction should have checked this but 1552 // it is slightly over-aggressive - it gets confused by commutative instructions 1553 // so double-check it here. 1554 Instruction *I0 = Insts.front(); 1555 if (!isa<StoreInst>(I0)) { 1556 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1557 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1558 auto *U = cast<Instruction>(*I->user_begin()); 1559 return U == PNUse; 1560 })) 1561 return false; 1562 } 1563 1564 // We don't need to do any more checking here; canSinkLastInstruction should 1565 // have done it all for us. 1566 SmallVector<Value*, 4> NewOperands; 1567 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1568 // This check is different to that in canSinkLastInstruction. There, we 1569 // cared about the global view once simplifycfg (and instcombine) have 1570 // completed - it takes into account PHIs that become trivially 1571 // simplifiable. However here we need a more local view; if an operand 1572 // differs we create a PHI and rely on instcombine to clean up the very 1573 // small mess we may make. 1574 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1575 return I->getOperand(O) != I0->getOperand(O); 1576 }); 1577 if (!NeedPHI) { 1578 NewOperands.push_back(I0->getOperand(O)); 1579 continue; 1580 } 1581 1582 // Create a new PHI in the successor block and populate it. 1583 auto *Op = I0->getOperand(O); 1584 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1585 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1586 Op->getName() + ".sink", &BBEnd->front()); 1587 for (auto *I : Insts) 1588 PN->addIncoming(I->getOperand(O), I->getParent()); 1589 NewOperands.push_back(PN); 1590 } 1591 1592 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1593 // and move it to the start of the successor block. 1594 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1595 I0->getOperandUse(O).set(NewOperands[O]); 1596 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1597 1598 // Update metadata and IR flags, and merge debug locations. 1599 for (auto *I : Insts) 1600 if (I != I0) { 1601 // The debug location for the "common" instruction is the merged locations 1602 // of all the commoned instructions. We start with the original location 1603 // of the "common" instruction and iteratively merge each location in the 1604 // loop below. 1605 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1606 // However, as N-way merge for CallInst is rare, so we use simplified API 1607 // instead of using complex API for N-way merge. 1608 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1609 combineMetadataForCSE(I0, I, true); 1610 I0->andIRFlags(I); 1611 } 1612 1613 if (!isa<StoreInst>(I0)) { 1614 // canSinkLastInstruction checked that all instructions were used by 1615 // one and only one PHI node. Find that now, RAUW it to our common 1616 // instruction and nuke it. 1617 assert(I0->hasOneUse()); 1618 auto *PN = cast<PHINode>(*I0->user_begin()); 1619 PN->replaceAllUsesWith(I0); 1620 PN->eraseFromParent(); 1621 } 1622 1623 // Finally nuke all instructions apart from the common instruction. 1624 for (auto *I : Insts) 1625 if (I != I0) 1626 I->eraseFromParent(); 1627 1628 return true; 1629 } 1630 1631 namespace { 1632 1633 // LockstepReverseIterator - Iterates through instructions 1634 // in a set of blocks in reverse order from the first non-terminator. 1635 // For example (assume all blocks have size n): 1636 // LockstepReverseIterator I([B1, B2, B3]); 1637 // *I-- = [B1[n], B2[n], B3[n]]; 1638 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1639 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1640 // ... 1641 class LockstepReverseIterator { 1642 ArrayRef<BasicBlock*> Blocks; 1643 SmallVector<Instruction*,4> Insts; 1644 bool Fail; 1645 1646 public: 1647 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1648 reset(); 1649 } 1650 1651 void reset() { 1652 Fail = false; 1653 Insts.clear(); 1654 for (auto *BB : Blocks) { 1655 Instruction *Inst = BB->getTerminator(); 1656 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1657 Inst = Inst->getPrevNode(); 1658 if (!Inst) { 1659 // Block wasn't big enough. 1660 Fail = true; 1661 return; 1662 } 1663 Insts.push_back(Inst); 1664 } 1665 } 1666 1667 bool isValid() const { 1668 return !Fail; 1669 } 1670 1671 void operator--() { 1672 if (Fail) 1673 return; 1674 for (auto *&Inst : Insts) { 1675 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1676 Inst = Inst->getPrevNode(); 1677 // Already at beginning of block. 1678 if (!Inst) { 1679 Fail = true; 1680 return; 1681 } 1682 } 1683 } 1684 1685 ArrayRef<Instruction*> operator * () const { 1686 return Insts; 1687 } 1688 }; 1689 1690 } // end anonymous namespace 1691 1692 /// Check whether BB's predecessors end with unconditional branches. If it is 1693 /// true, sink any common code from the predecessors to BB. 1694 /// We also allow one predecessor to end with conditional branch (but no more 1695 /// than one). 1696 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1697 // We support two situations: 1698 // (1) all incoming arcs are unconditional 1699 // (2) one incoming arc is conditional 1700 // 1701 // (2) is very common in switch defaults and 1702 // else-if patterns; 1703 // 1704 // if (a) f(1); 1705 // else if (b) f(2); 1706 // 1707 // produces: 1708 // 1709 // [if] 1710 // / \ 1711 // [f(1)] [if] 1712 // | | \ 1713 // | | | 1714 // | [f(2)]| 1715 // \ | / 1716 // [ end ] 1717 // 1718 // [end] has two unconditional predecessor arcs and one conditional. The 1719 // conditional refers to the implicit empty 'else' arc. This conditional 1720 // arc can also be caused by an empty default block in a switch. 1721 // 1722 // In this case, we attempt to sink code from all *unconditional* arcs. 1723 // If we can sink instructions from these arcs (determined during the scan 1724 // phase below) we insert a common successor for all unconditional arcs and 1725 // connect that to [end], to enable sinking: 1726 // 1727 // [if] 1728 // / \ 1729 // [x(1)] [if] 1730 // | | \ 1731 // | | \ 1732 // | [x(2)] | 1733 // \ / | 1734 // [sink.split] | 1735 // \ / 1736 // [ end ] 1737 // 1738 SmallVector<BasicBlock*,4> UnconditionalPreds; 1739 Instruction *Cond = nullptr; 1740 for (auto *B : predecessors(BB)) { 1741 auto *T = B->getTerminator(); 1742 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1743 UnconditionalPreds.push_back(B); 1744 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1745 Cond = T; 1746 else 1747 return false; 1748 } 1749 if (UnconditionalPreds.size() < 2) 1750 return false; 1751 1752 bool Changed = false; 1753 // We take a two-step approach to tail sinking. First we scan from the end of 1754 // each block upwards in lockstep. If the n'th instruction from the end of each 1755 // block can be sunk, those instructions are added to ValuesToSink and we 1756 // carry on. If we can sink an instruction but need to PHI-merge some operands 1757 // (because they're not identical in each instruction) we add these to 1758 // PHIOperands. 1759 unsigned ScanIdx = 0; 1760 SmallPtrSet<Value*,4> InstructionsToSink; 1761 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1762 LockstepReverseIterator LRI(UnconditionalPreds); 1763 while (LRI.isValid() && 1764 canSinkInstructions(*LRI, PHIOperands)) { 1765 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1766 << "\n"); 1767 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1768 ++ScanIdx; 1769 --LRI; 1770 } 1771 1772 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1773 unsigned NumPHIdValues = 0; 1774 for (auto *I : *LRI) 1775 for (auto *V : PHIOperands[I]) 1776 if (InstructionsToSink.count(V) == 0) 1777 ++NumPHIdValues; 1778 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1779 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1780 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1781 NumPHIInsts++; 1782 1783 return NumPHIInsts <= 1; 1784 }; 1785 1786 if (ScanIdx > 0 && Cond) { 1787 // Check if we would actually sink anything first! This mutates the CFG and 1788 // adds an extra block. The goal in doing this is to allow instructions that 1789 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1790 // (such as trunc, add) can be sunk and predicated already. So we check that 1791 // we're going to sink at least one non-speculatable instruction. 1792 LRI.reset(); 1793 unsigned Idx = 0; 1794 bool Profitable = false; 1795 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1796 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1797 Profitable = true; 1798 break; 1799 } 1800 --LRI; 1801 ++Idx; 1802 } 1803 if (!Profitable) 1804 return false; 1805 1806 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1807 // We have a conditional edge and we're going to sink some instructions. 1808 // Insert a new block postdominating all blocks we're going to sink from. 1809 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1810 // Edges couldn't be split. 1811 return false; 1812 Changed = true; 1813 } 1814 1815 // Now that we've analyzed all potential sinking candidates, perform the 1816 // actual sink. We iteratively sink the last non-terminator of the source 1817 // blocks into their common successor unless doing so would require too 1818 // many PHI instructions to be generated (currently only one PHI is allowed 1819 // per sunk instruction). 1820 // 1821 // We can use InstructionsToSink to discount values needing PHI-merging that will 1822 // actually be sunk in a later iteration. This allows us to be more 1823 // aggressive in what we sink. This does allow a false positive where we 1824 // sink presuming a later value will also be sunk, but stop half way through 1825 // and never actually sink it which means we produce more PHIs than intended. 1826 // This is unlikely in practice though. 1827 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1828 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1829 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1830 << "\n"); 1831 1832 // Because we've sunk every instruction in turn, the current instruction to 1833 // sink is always at index 0. 1834 LRI.reset(); 1835 if (!ProfitableToSinkInstruction(LRI)) { 1836 // Too many PHIs would be created. 1837 LLVM_DEBUG( 1838 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1839 break; 1840 } 1841 1842 if (!sinkLastInstruction(UnconditionalPreds)) 1843 return Changed; 1844 NumSinkCommons++; 1845 Changed = true; 1846 } 1847 return Changed; 1848 } 1849 1850 /// Determine if we can hoist sink a sole store instruction out of a 1851 /// conditional block. 1852 /// 1853 /// We are looking for code like the following: 1854 /// BrBB: 1855 /// store i32 %add, i32* %arrayidx2 1856 /// ... // No other stores or function calls (we could be calling a memory 1857 /// ... // function). 1858 /// %cmp = icmp ult %x, %y 1859 /// br i1 %cmp, label %EndBB, label %ThenBB 1860 /// ThenBB: 1861 /// store i32 %add5, i32* %arrayidx2 1862 /// br label EndBB 1863 /// EndBB: 1864 /// ... 1865 /// We are going to transform this into: 1866 /// BrBB: 1867 /// store i32 %add, i32* %arrayidx2 1868 /// ... // 1869 /// %cmp = icmp ult %x, %y 1870 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1871 /// store i32 %add.add5, i32* %arrayidx2 1872 /// ... 1873 /// 1874 /// \return The pointer to the value of the previous store if the store can be 1875 /// hoisted into the predecessor block. 0 otherwise. 1876 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1877 BasicBlock *StoreBB, BasicBlock *EndBB) { 1878 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1879 if (!StoreToHoist) 1880 return nullptr; 1881 1882 // Volatile or atomic. 1883 if (!StoreToHoist->isSimple()) 1884 return nullptr; 1885 1886 Value *StorePtr = StoreToHoist->getPointerOperand(); 1887 1888 // Look for a store to the same pointer in BrBB. 1889 unsigned MaxNumInstToLookAt = 9; 1890 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1891 if (!MaxNumInstToLookAt) 1892 break; 1893 --MaxNumInstToLookAt; 1894 1895 // Could be calling an instruction that affects memory like free(). 1896 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1897 return nullptr; 1898 1899 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1900 // Found the previous store make sure it stores to the same location. 1901 if (SI->getPointerOperand() == StorePtr) 1902 // Found the previous store, return its value operand. 1903 return SI->getValueOperand(); 1904 return nullptr; // Unknown store. 1905 } 1906 } 1907 1908 return nullptr; 1909 } 1910 1911 /// Speculate a conditional basic block flattening the CFG. 1912 /// 1913 /// Note that this is a very risky transform currently. Speculating 1914 /// instructions like this is most often not desirable. Instead, there is an MI 1915 /// pass which can do it with full awareness of the resource constraints. 1916 /// However, some cases are "obvious" and we should do directly. An example of 1917 /// this is speculating a single, reasonably cheap instruction. 1918 /// 1919 /// There is only one distinct advantage to flattening the CFG at the IR level: 1920 /// it makes very common but simplistic optimizations such as are common in 1921 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1922 /// modeling their effects with easier to reason about SSA value graphs. 1923 /// 1924 /// 1925 /// An illustration of this transform is turning this IR: 1926 /// \code 1927 /// BB: 1928 /// %cmp = icmp ult %x, %y 1929 /// br i1 %cmp, label %EndBB, label %ThenBB 1930 /// ThenBB: 1931 /// %sub = sub %x, %y 1932 /// br label BB2 1933 /// EndBB: 1934 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1935 /// ... 1936 /// \endcode 1937 /// 1938 /// Into this IR: 1939 /// \code 1940 /// BB: 1941 /// %cmp = icmp ult %x, %y 1942 /// %sub = sub %x, %y 1943 /// %cond = select i1 %cmp, 0, %sub 1944 /// ... 1945 /// \endcode 1946 /// 1947 /// \returns true if the conditional block is removed. 1948 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1949 const TargetTransformInfo &TTI) { 1950 // Be conservative for now. FP select instruction can often be expensive. 1951 Value *BrCond = BI->getCondition(); 1952 if (isa<FCmpInst>(BrCond)) 1953 return false; 1954 1955 BasicBlock *BB = BI->getParent(); 1956 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1957 1958 // If ThenBB is actually on the false edge of the conditional branch, remember 1959 // to swap the select operands later. 1960 bool Invert = false; 1961 if (ThenBB != BI->getSuccessor(0)) { 1962 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1963 Invert = true; 1964 } 1965 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1966 1967 // Keep a count of how many times instructions are used within ThenBB when 1968 // they are candidates for sinking into ThenBB. Specifically: 1969 // - They are defined in BB, and 1970 // - They have no side effects, and 1971 // - All of their uses are in ThenBB. 1972 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1973 1974 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1975 1976 unsigned SpeculationCost = 0; 1977 Value *SpeculatedStoreValue = nullptr; 1978 StoreInst *SpeculatedStore = nullptr; 1979 for (BasicBlock::iterator BBI = ThenBB->begin(), 1980 BBE = std::prev(ThenBB->end()); 1981 BBI != BBE; ++BBI) { 1982 Instruction *I = &*BBI; 1983 // Skip debug info. 1984 if (isa<DbgInfoIntrinsic>(I)) { 1985 SpeculatedDbgIntrinsics.push_back(I); 1986 continue; 1987 } 1988 1989 // Only speculatively execute a single instruction (not counting the 1990 // terminator) for now. 1991 ++SpeculationCost; 1992 if (SpeculationCost > 1) 1993 return false; 1994 1995 // Don't hoist the instruction if it's unsafe or expensive. 1996 if (!isSafeToSpeculativelyExecute(I) && 1997 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1998 I, BB, ThenBB, EndBB)))) 1999 return false; 2000 if (!SpeculatedStoreValue && 2001 ComputeSpeculationCost(I, TTI) > 2002 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2003 return false; 2004 2005 // Store the store speculation candidate. 2006 if (SpeculatedStoreValue) 2007 SpeculatedStore = cast<StoreInst>(I); 2008 2009 // Do not hoist the instruction if any of its operands are defined but not 2010 // used in BB. The transformation will prevent the operand from 2011 // being sunk into the use block. 2012 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2013 Instruction *OpI = dyn_cast<Instruction>(*i); 2014 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2015 continue; // Not a candidate for sinking. 2016 2017 ++SinkCandidateUseCounts[OpI]; 2018 } 2019 } 2020 2021 // Consider any sink candidates which are only used in ThenBB as costs for 2022 // speculation. Note, while we iterate over a DenseMap here, we are summing 2023 // and so iteration order isn't significant. 2024 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2025 I = SinkCandidateUseCounts.begin(), 2026 E = SinkCandidateUseCounts.end(); 2027 I != E; ++I) 2028 if (I->first->hasNUses(I->second)) { 2029 ++SpeculationCost; 2030 if (SpeculationCost > 1) 2031 return false; 2032 } 2033 2034 // Check that the PHI nodes can be converted to selects. 2035 bool HaveRewritablePHIs = false; 2036 for (PHINode &PN : EndBB->phis()) { 2037 Value *OrigV = PN.getIncomingValueForBlock(BB); 2038 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2039 2040 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2041 // Skip PHIs which are trivial. 2042 if (ThenV == OrigV) 2043 continue; 2044 2045 // Don't convert to selects if we could remove undefined behavior instead. 2046 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2047 passingValueIsAlwaysUndefined(ThenV, &PN)) 2048 return false; 2049 2050 HaveRewritablePHIs = true; 2051 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2052 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2053 if (!OrigCE && !ThenCE) 2054 continue; // Known safe and cheap. 2055 2056 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2057 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2058 return false; 2059 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2060 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2061 unsigned MaxCost = 2062 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2063 if (OrigCost + ThenCost > MaxCost) 2064 return false; 2065 2066 // Account for the cost of an unfolded ConstantExpr which could end up 2067 // getting expanded into Instructions. 2068 // FIXME: This doesn't account for how many operations are combined in the 2069 // constant expression. 2070 ++SpeculationCost; 2071 if (SpeculationCost > 1) 2072 return false; 2073 } 2074 2075 // If there are no PHIs to process, bail early. This helps ensure idempotence 2076 // as well. 2077 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2078 return false; 2079 2080 // If we get here, we can hoist the instruction and if-convert. 2081 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2082 2083 // Insert a select of the value of the speculated store. 2084 if (SpeculatedStoreValue) { 2085 IRBuilder<NoFolder> Builder(BI); 2086 Value *TrueV = SpeculatedStore->getValueOperand(); 2087 Value *FalseV = SpeculatedStoreValue; 2088 if (Invert) 2089 std::swap(TrueV, FalseV); 2090 Value *S = Builder.CreateSelect( 2091 BrCond, TrueV, FalseV, "spec.store.select", BI); 2092 SpeculatedStore->setOperand(0, S); 2093 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2094 SpeculatedStore->getDebugLoc()); 2095 } 2096 2097 // Metadata can be dependent on the condition we are hoisting above. 2098 // Conservatively strip all metadata on the instruction. 2099 for (auto &I : *ThenBB) 2100 I.dropUnknownNonDebugMetadata(); 2101 2102 // Hoist the instructions. 2103 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2104 ThenBB->begin(), std::prev(ThenBB->end())); 2105 2106 // Insert selects and rewrite the PHI operands. 2107 IRBuilder<NoFolder> Builder(BI); 2108 for (PHINode &PN : EndBB->phis()) { 2109 unsigned OrigI = PN.getBasicBlockIndex(BB); 2110 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2111 Value *OrigV = PN.getIncomingValue(OrigI); 2112 Value *ThenV = PN.getIncomingValue(ThenI); 2113 2114 // Skip PHIs which are trivial. 2115 if (OrigV == ThenV) 2116 continue; 2117 2118 // Create a select whose true value is the speculatively executed value and 2119 // false value is the preexisting value. Swap them if the branch 2120 // destinations were inverted. 2121 Value *TrueV = ThenV, *FalseV = OrigV; 2122 if (Invert) 2123 std::swap(TrueV, FalseV); 2124 Value *V = Builder.CreateSelect( 2125 BrCond, TrueV, FalseV, "spec.select", BI); 2126 PN.setIncomingValue(OrigI, V); 2127 PN.setIncomingValue(ThenI, V); 2128 } 2129 2130 // Remove speculated dbg intrinsics. 2131 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2132 // dbg value for the different flows and inserting it after the select. 2133 for (Instruction *I : SpeculatedDbgIntrinsics) 2134 I->eraseFromParent(); 2135 2136 ++NumSpeculations; 2137 return true; 2138 } 2139 2140 /// Return true if we can thread a branch across this block. 2141 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2142 unsigned Size = 0; 2143 2144 for (Instruction &I : BB->instructionsWithoutDebug()) { 2145 if (Size > 10) 2146 return false; // Don't clone large BB's. 2147 ++Size; 2148 2149 // We can only support instructions that do not define values that are 2150 // live outside of the current basic block. 2151 for (User *U : I.users()) { 2152 Instruction *UI = cast<Instruction>(U); 2153 if (UI->getParent() != BB || isa<PHINode>(UI)) 2154 return false; 2155 } 2156 2157 // Looks ok, continue checking. 2158 } 2159 2160 return true; 2161 } 2162 2163 /// If we have a conditional branch on a PHI node value that is defined in the 2164 /// same block as the branch and if any PHI entries are constants, thread edges 2165 /// corresponding to that entry to be branches to their ultimate destination. 2166 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2167 AssumptionCache *AC) { 2168 BasicBlock *BB = BI->getParent(); 2169 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2170 // NOTE: we currently cannot transform this case if the PHI node is used 2171 // outside of the block. 2172 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2173 return false; 2174 2175 // Degenerate case of a single entry PHI. 2176 if (PN->getNumIncomingValues() == 1) { 2177 FoldSingleEntryPHINodes(PN->getParent()); 2178 return true; 2179 } 2180 2181 // Now we know that this block has multiple preds and two succs. 2182 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2183 return false; 2184 2185 // Can't fold blocks that contain noduplicate or convergent calls. 2186 if (any_of(*BB, [](const Instruction &I) { 2187 const CallInst *CI = dyn_cast<CallInst>(&I); 2188 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2189 })) 2190 return false; 2191 2192 // Okay, this is a simple enough basic block. See if any phi values are 2193 // constants. 2194 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2195 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2196 if (!CB || !CB->getType()->isIntegerTy(1)) 2197 continue; 2198 2199 // Okay, we now know that all edges from PredBB should be revectored to 2200 // branch to RealDest. 2201 BasicBlock *PredBB = PN->getIncomingBlock(i); 2202 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2203 2204 if (RealDest == BB) 2205 continue; // Skip self loops. 2206 // Skip if the predecessor's terminator is an indirect branch. 2207 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2208 continue; 2209 2210 // The dest block might have PHI nodes, other predecessors and other 2211 // difficult cases. Instead of being smart about this, just insert a new 2212 // block that jumps to the destination block, effectively splitting 2213 // the edge we are about to create. 2214 BasicBlock *EdgeBB = 2215 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2216 RealDest->getParent(), RealDest); 2217 BranchInst::Create(RealDest, EdgeBB); 2218 2219 // Update PHI nodes. 2220 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2221 2222 // BB may have instructions that are being threaded over. Clone these 2223 // instructions into EdgeBB. We know that there will be no uses of the 2224 // cloned instructions outside of EdgeBB. 2225 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2226 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2227 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2228 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2229 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2230 continue; 2231 } 2232 // Clone the instruction. 2233 Instruction *N = BBI->clone(); 2234 if (BBI->hasName()) 2235 N->setName(BBI->getName() + ".c"); 2236 2237 // Update operands due to translation. 2238 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2239 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2240 if (PI != TranslateMap.end()) 2241 *i = PI->second; 2242 } 2243 2244 // Check for trivial simplification. 2245 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2246 if (!BBI->use_empty()) 2247 TranslateMap[&*BBI] = V; 2248 if (!N->mayHaveSideEffects()) { 2249 N->deleteValue(); // Instruction folded away, don't need actual inst 2250 N = nullptr; 2251 } 2252 } else { 2253 if (!BBI->use_empty()) 2254 TranslateMap[&*BBI] = N; 2255 } 2256 // Insert the new instruction into its new home. 2257 if (N) 2258 EdgeBB->getInstList().insert(InsertPt, N); 2259 2260 // Register the new instruction with the assumption cache if necessary. 2261 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2262 if (II->getIntrinsicID() == Intrinsic::assume) 2263 AC->registerAssumption(II); 2264 } 2265 2266 // Loop over all of the edges from PredBB to BB, changing them to branch 2267 // to EdgeBB instead. 2268 Instruction *PredBBTI = PredBB->getTerminator(); 2269 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2270 if (PredBBTI->getSuccessor(i) == BB) { 2271 BB->removePredecessor(PredBB); 2272 PredBBTI->setSuccessor(i, EdgeBB); 2273 } 2274 2275 // Recurse, simplifying any other constants. 2276 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2277 } 2278 2279 return false; 2280 } 2281 2282 /// Given a BB that starts with the specified two-entry PHI node, 2283 /// see if we can eliminate it. 2284 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2285 const DataLayout &DL) { 2286 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2287 // statement", which has a very simple dominance structure. Basically, we 2288 // are trying to find the condition that is being branched on, which 2289 // subsequently causes this merge to happen. We really want control 2290 // dependence information for this check, but simplifycfg can't keep it up 2291 // to date, and this catches most of the cases we care about anyway. 2292 BasicBlock *BB = PN->getParent(); 2293 const Function *Fn = BB->getParent(); 2294 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2295 return false; 2296 2297 BasicBlock *IfTrue, *IfFalse; 2298 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2299 if (!IfCond || 2300 // Don't bother if the branch will be constant folded trivially. 2301 isa<ConstantInt>(IfCond)) 2302 return false; 2303 2304 // Okay, we found that we can merge this two-entry phi node into a select. 2305 // Doing so would require us to fold *all* two entry phi nodes in this block. 2306 // At some point this becomes non-profitable (particularly if the target 2307 // doesn't support cmov's). Only do this transformation if there are two or 2308 // fewer PHI nodes in this block. 2309 unsigned NumPhis = 0; 2310 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2311 if (NumPhis > 2) 2312 return false; 2313 2314 // Loop over the PHI's seeing if we can promote them all to select 2315 // instructions. While we are at it, keep track of the instructions 2316 // that need to be moved to the dominating block. 2317 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2318 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2319 MaxCostVal1 = PHINodeFoldingThreshold; 2320 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2321 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2322 2323 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2324 PHINode *PN = cast<PHINode>(II++); 2325 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2326 PN->replaceAllUsesWith(V); 2327 PN->eraseFromParent(); 2328 continue; 2329 } 2330 2331 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2332 MaxCostVal0, TTI) || 2333 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2334 MaxCostVal1, TTI)) 2335 return false; 2336 } 2337 2338 // If we folded the first phi, PN dangles at this point. Refresh it. If 2339 // we ran out of PHIs then we simplified them all. 2340 PN = dyn_cast<PHINode>(BB->begin()); 2341 if (!PN) 2342 return true; 2343 2344 // Don't fold i1 branches on PHIs which contain binary operators. These can 2345 // often be turned into switches and other things. 2346 if (PN->getType()->isIntegerTy(1) && 2347 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2348 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2349 isa<BinaryOperator>(IfCond))) 2350 return false; 2351 2352 // If all PHI nodes are promotable, check to make sure that all instructions 2353 // in the predecessor blocks can be promoted as well. If not, we won't be able 2354 // to get rid of the control flow, so it's not worth promoting to select 2355 // instructions. 2356 BasicBlock *DomBlock = nullptr; 2357 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2358 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2359 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2360 IfBlock1 = nullptr; 2361 } else { 2362 DomBlock = *pred_begin(IfBlock1); 2363 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2364 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2365 // This is not an aggressive instruction that we can promote. 2366 // Because of this, we won't be able to get rid of the control flow, so 2367 // the xform is not worth it. 2368 return false; 2369 } 2370 } 2371 2372 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2373 IfBlock2 = nullptr; 2374 } else { 2375 DomBlock = *pred_begin(IfBlock2); 2376 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2377 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2378 // This is not an aggressive instruction that we can promote. 2379 // Because of this, we won't be able to get rid of the control flow, so 2380 // the xform is not worth it. 2381 return false; 2382 } 2383 } 2384 2385 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2386 << " T: " << IfTrue->getName() 2387 << " F: " << IfFalse->getName() << "\n"); 2388 2389 // If we can still promote the PHI nodes after this gauntlet of tests, 2390 // do all of the PHI's now. 2391 Instruction *InsertPt = DomBlock->getTerminator(); 2392 IRBuilder<NoFolder> Builder(InsertPt); 2393 2394 // Move all 'aggressive' instructions, which are defined in the 2395 // conditional parts of the if's up to the dominating block. 2396 if (IfBlock1) 2397 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2398 if (IfBlock2) 2399 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2400 2401 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2402 // Change the PHI node into a select instruction. 2403 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2404 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2405 2406 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2407 PN->replaceAllUsesWith(Sel); 2408 Sel->takeName(PN); 2409 PN->eraseFromParent(); 2410 } 2411 2412 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2413 // has been flattened. Change DomBlock to jump directly to our new block to 2414 // avoid other simplifycfg's kicking in on the diamond. 2415 Instruction *OldTI = DomBlock->getTerminator(); 2416 Builder.SetInsertPoint(OldTI); 2417 Builder.CreateBr(BB); 2418 OldTI->eraseFromParent(); 2419 return true; 2420 } 2421 2422 /// If we found a conditional branch that goes to two returning blocks, 2423 /// try to merge them together into one return, 2424 /// introducing a select if the return values disagree. 2425 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2426 IRBuilder<> &Builder) { 2427 assert(BI->isConditional() && "Must be a conditional branch"); 2428 BasicBlock *TrueSucc = BI->getSuccessor(0); 2429 BasicBlock *FalseSucc = BI->getSuccessor(1); 2430 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2431 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2432 2433 // Check to ensure both blocks are empty (just a return) or optionally empty 2434 // with PHI nodes. If there are other instructions, merging would cause extra 2435 // computation on one path or the other. 2436 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2437 return false; 2438 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2439 return false; 2440 2441 Builder.SetInsertPoint(BI); 2442 // Okay, we found a branch that is going to two return nodes. If 2443 // there is no return value for this function, just change the 2444 // branch into a return. 2445 if (FalseRet->getNumOperands() == 0) { 2446 TrueSucc->removePredecessor(BI->getParent()); 2447 FalseSucc->removePredecessor(BI->getParent()); 2448 Builder.CreateRetVoid(); 2449 EraseTerminatorAndDCECond(BI); 2450 return true; 2451 } 2452 2453 // Otherwise, figure out what the true and false return values are 2454 // so we can insert a new select instruction. 2455 Value *TrueValue = TrueRet->getReturnValue(); 2456 Value *FalseValue = FalseRet->getReturnValue(); 2457 2458 // Unwrap any PHI nodes in the return blocks. 2459 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2460 if (TVPN->getParent() == TrueSucc) 2461 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2462 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2463 if (FVPN->getParent() == FalseSucc) 2464 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2465 2466 // In order for this transformation to be safe, we must be able to 2467 // unconditionally execute both operands to the return. This is 2468 // normally the case, but we could have a potentially-trapping 2469 // constant expression that prevents this transformation from being 2470 // safe. 2471 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2472 if (TCV->canTrap()) 2473 return false; 2474 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2475 if (FCV->canTrap()) 2476 return false; 2477 2478 // Okay, we collected all the mapped values and checked them for sanity, and 2479 // defined to really do this transformation. First, update the CFG. 2480 TrueSucc->removePredecessor(BI->getParent()); 2481 FalseSucc->removePredecessor(BI->getParent()); 2482 2483 // Insert select instructions where needed. 2484 Value *BrCond = BI->getCondition(); 2485 if (TrueValue) { 2486 // Insert a select if the results differ. 2487 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2488 } else if (isa<UndefValue>(TrueValue)) { 2489 TrueValue = FalseValue; 2490 } else { 2491 TrueValue = 2492 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2493 } 2494 } 2495 2496 Value *RI = 2497 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2498 2499 (void)RI; 2500 2501 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2502 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2503 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2504 2505 EraseTerminatorAndDCECond(BI); 2506 2507 return true; 2508 } 2509 2510 /// Return true if the given instruction is available 2511 /// in its predecessor block. If yes, the instruction will be removed. 2512 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2513 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2514 return false; 2515 for (Instruction &I : *PB) { 2516 Instruction *PBI = &I; 2517 // Check whether Inst and PBI generate the same value. 2518 if (Inst->isIdenticalTo(PBI)) { 2519 Inst->replaceAllUsesWith(PBI); 2520 Inst->eraseFromParent(); 2521 return true; 2522 } 2523 } 2524 return false; 2525 } 2526 2527 /// Return true if either PBI or BI has branch weight available, and store 2528 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2529 /// not have branch weight, use 1:1 as its weight. 2530 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2531 uint64_t &PredTrueWeight, 2532 uint64_t &PredFalseWeight, 2533 uint64_t &SuccTrueWeight, 2534 uint64_t &SuccFalseWeight) { 2535 bool PredHasWeights = 2536 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2537 bool SuccHasWeights = 2538 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2539 if (PredHasWeights || SuccHasWeights) { 2540 if (!PredHasWeights) 2541 PredTrueWeight = PredFalseWeight = 1; 2542 if (!SuccHasWeights) 2543 SuccTrueWeight = SuccFalseWeight = 1; 2544 return true; 2545 } else { 2546 return false; 2547 } 2548 } 2549 2550 /// If this basic block is simple enough, and if a predecessor branches to us 2551 /// and one of our successors, fold the block into the predecessor and use 2552 /// logical operations to pick the right destination. 2553 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2554 BasicBlock *BB = BI->getParent(); 2555 2556 const unsigned PredCount = pred_size(BB); 2557 2558 Instruction *Cond = nullptr; 2559 if (BI->isConditional()) 2560 Cond = dyn_cast<Instruction>(BI->getCondition()); 2561 else { 2562 // For unconditional branch, check for a simple CFG pattern, where 2563 // BB has a single predecessor and BB's successor is also its predecessor's 2564 // successor. If such pattern exists, check for CSE between BB and its 2565 // predecessor. 2566 if (BasicBlock *PB = BB->getSinglePredecessor()) 2567 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2568 if (PBI->isConditional() && 2569 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2570 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2571 for (auto I = BB->instructionsWithoutDebug().begin(), 2572 E = BB->instructionsWithoutDebug().end(); 2573 I != E;) { 2574 Instruction *Curr = &*I++; 2575 if (isa<CmpInst>(Curr)) { 2576 Cond = Curr; 2577 break; 2578 } 2579 // Quit if we can't remove this instruction. 2580 if (!tryCSEWithPredecessor(Curr, PB)) 2581 return false; 2582 } 2583 } 2584 2585 if (!Cond) 2586 return false; 2587 } 2588 2589 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2590 Cond->getParent() != BB || !Cond->hasOneUse()) 2591 return false; 2592 2593 // Make sure the instruction after the condition is the cond branch. 2594 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2595 2596 // Ignore dbg intrinsics. 2597 while (isa<DbgInfoIntrinsic>(CondIt)) 2598 ++CondIt; 2599 2600 if (&*CondIt != BI) 2601 return false; 2602 2603 // Only allow this transformation if computing the condition doesn't involve 2604 // too many instructions and these involved instructions can be executed 2605 // unconditionally. We denote all involved instructions except the condition 2606 // as "bonus instructions", and only allow this transformation when the 2607 // number of the bonus instructions we'll need to create when cloning into 2608 // each predecessor does not exceed a certain threshold. 2609 unsigned NumBonusInsts = 0; 2610 for (auto I = BB->begin(); Cond != &*I; ++I) { 2611 // Ignore dbg intrinsics. 2612 if (isa<DbgInfoIntrinsic>(I)) 2613 continue; 2614 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2615 return false; 2616 // I has only one use and can be executed unconditionally. 2617 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2618 if (User == nullptr || User->getParent() != BB) 2619 return false; 2620 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2621 // to use any other instruction, User must be an instruction between next(I) 2622 // and Cond. 2623 2624 // Account for the cost of duplicating this instruction into each 2625 // predecessor. 2626 NumBonusInsts += PredCount; 2627 // Early exits once we reach the limit. 2628 if (NumBonusInsts > BonusInstThreshold) 2629 return false; 2630 } 2631 2632 // Cond is known to be a compare or binary operator. Check to make sure that 2633 // neither operand is a potentially-trapping constant expression. 2634 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2635 if (CE->canTrap()) 2636 return false; 2637 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2638 if (CE->canTrap()) 2639 return false; 2640 2641 // Finally, don't infinitely unroll conditional loops. 2642 BasicBlock *TrueDest = BI->getSuccessor(0); 2643 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2644 if (TrueDest == BB || FalseDest == BB) 2645 return false; 2646 2647 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2648 BasicBlock *PredBlock = *PI; 2649 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2650 2651 // Check that we have two conditional branches. If there is a PHI node in 2652 // the common successor, verify that the same value flows in from both 2653 // blocks. 2654 SmallVector<PHINode *, 4> PHIs; 2655 if (!PBI || PBI->isUnconditional() || 2656 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2657 (!BI->isConditional() && 2658 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2659 continue; 2660 2661 // Determine if the two branches share a common destination. 2662 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2663 bool InvertPredCond = false; 2664 2665 if (BI->isConditional()) { 2666 if (PBI->getSuccessor(0) == TrueDest) { 2667 Opc = Instruction::Or; 2668 } else if (PBI->getSuccessor(1) == FalseDest) { 2669 Opc = Instruction::And; 2670 } else if (PBI->getSuccessor(0) == FalseDest) { 2671 Opc = Instruction::And; 2672 InvertPredCond = true; 2673 } else if (PBI->getSuccessor(1) == TrueDest) { 2674 Opc = Instruction::Or; 2675 InvertPredCond = true; 2676 } else { 2677 continue; 2678 } 2679 } else { 2680 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2681 continue; 2682 } 2683 2684 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2685 IRBuilder<> Builder(PBI); 2686 2687 // If we need to invert the condition in the pred block to match, do so now. 2688 if (InvertPredCond) { 2689 Value *NewCond = PBI->getCondition(); 2690 2691 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2692 CmpInst *CI = cast<CmpInst>(NewCond); 2693 CI->setPredicate(CI->getInversePredicate()); 2694 } else { 2695 NewCond = 2696 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2697 } 2698 2699 PBI->setCondition(NewCond); 2700 PBI->swapSuccessors(); 2701 } 2702 2703 // If we have bonus instructions, clone them into the predecessor block. 2704 // Note that there may be multiple predecessor blocks, so we cannot move 2705 // bonus instructions to a predecessor block. 2706 ValueToValueMapTy VMap; // maps original values to cloned values 2707 // We already make sure Cond is the last instruction before BI. Therefore, 2708 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2709 // instructions. 2710 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2711 if (isa<DbgInfoIntrinsic>(BonusInst)) 2712 continue; 2713 Instruction *NewBonusInst = BonusInst->clone(); 2714 RemapInstruction(NewBonusInst, VMap, 2715 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2716 VMap[&*BonusInst] = NewBonusInst; 2717 2718 // If we moved a load, we cannot any longer claim any knowledge about 2719 // its potential value. The previous information might have been valid 2720 // only given the branch precondition. 2721 // For an analogous reason, we must also drop all the metadata whose 2722 // semantics we don't understand. 2723 NewBonusInst->dropUnknownNonDebugMetadata(); 2724 2725 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2726 NewBonusInst->takeName(&*BonusInst); 2727 BonusInst->setName(BonusInst->getName() + ".old"); 2728 } 2729 2730 // Clone Cond into the predecessor basic block, and or/and the 2731 // two conditions together. 2732 Instruction *CondInPred = Cond->clone(); 2733 RemapInstruction(CondInPred, VMap, 2734 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2735 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2736 CondInPred->takeName(Cond); 2737 Cond->setName(CondInPred->getName() + ".old"); 2738 2739 if (BI->isConditional()) { 2740 Instruction *NewCond = cast<Instruction>( 2741 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2742 PBI->setCondition(NewCond); 2743 2744 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2745 bool HasWeights = 2746 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2747 SuccTrueWeight, SuccFalseWeight); 2748 SmallVector<uint64_t, 8> NewWeights; 2749 2750 if (PBI->getSuccessor(0) == BB) { 2751 if (HasWeights) { 2752 // PBI: br i1 %x, BB, FalseDest 2753 // BI: br i1 %y, TrueDest, FalseDest 2754 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2755 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2756 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2757 // TrueWeight for PBI * FalseWeight for BI. 2758 // We assume that total weights of a BranchInst can fit into 32 bits. 2759 // Therefore, we will not have overflow using 64-bit arithmetic. 2760 NewWeights.push_back(PredFalseWeight * 2761 (SuccFalseWeight + SuccTrueWeight) + 2762 PredTrueWeight * SuccFalseWeight); 2763 } 2764 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2765 PBI->setSuccessor(0, TrueDest); 2766 } 2767 if (PBI->getSuccessor(1) == BB) { 2768 if (HasWeights) { 2769 // PBI: br i1 %x, TrueDest, BB 2770 // BI: br i1 %y, TrueDest, FalseDest 2771 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2772 // FalseWeight for PBI * TrueWeight for BI. 2773 NewWeights.push_back(PredTrueWeight * 2774 (SuccFalseWeight + SuccTrueWeight) + 2775 PredFalseWeight * SuccTrueWeight); 2776 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2777 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2778 } 2779 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2780 PBI->setSuccessor(1, FalseDest); 2781 } 2782 if (NewWeights.size() == 2) { 2783 // Halve the weights if any of them cannot fit in an uint32_t 2784 FitWeights(NewWeights); 2785 2786 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2787 NewWeights.end()); 2788 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2789 } else 2790 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2791 } else { 2792 // Update PHI nodes in the common successors. 2793 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2794 ConstantInt *PBI_C = cast<ConstantInt>( 2795 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2796 assert(PBI_C->getType()->isIntegerTy(1)); 2797 Instruction *MergedCond = nullptr; 2798 if (PBI->getSuccessor(0) == TrueDest) { 2799 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2800 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2801 // is false: !PBI_Cond and BI_Value 2802 Instruction *NotCond = cast<Instruction>( 2803 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2804 MergedCond = cast<Instruction>( 2805 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2806 "and.cond")); 2807 if (PBI_C->isOne()) 2808 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2809 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2810 } else { 2811 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2812 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2813 // is false: PBI_Cond and BI_Value 2814 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2815 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2816 if (PBI_C->isOne()) { 2817 Instruction *NotCond = cast<Instruction>( 2818 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2819 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2820 Instruction::Or, NotCond, MergedCond, "or.cond")); 2821 } 2822 } 2823 // Update PHI Node. 2824 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2825 MergedCond); 2826 } 2827 // Change PBI from Conditional to Unconditional. 2828 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2829 EraseTerminatorAndDCECond(PBI); 2830 PBI = New_PBI; 2831 } 2832 2833 // If BI was a loop latch, it may have had associated loop metadata. 2834 // We need to copy it to the new latch, that is, PBI. 2835 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2836 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2837 2838 // TODO: If BB is reachable from all paths through PredBlock, then we 2839 // could replace PBI's branch probabilities with BI's. 2840 2841 // Copy any debug value intrinsics into the end of PredBlock. 2842 for (Instruction &I : *BB) 2843 if (isa<DbgInfoIntrinsic>(I)) 2844 I.clone()->insertBefore(PBI); 2845 2846 return true; 2847 } 2848 return false; 2849 } 2850 2851 // If there is only one store in BB1 and BB2, return it, otherwise return 2852 // nullptr. 2853 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2854 StoreInst *S = nullptr; 2855 for (auto *BB : {BB1, BB2}) { 2856 if (!BB) 2857 continue; 2858 for (auto &I : *BB) 2859 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2860 if (S) 2861 // Multiple stores seen. 2862 return nullptr; 2863 else 2864 S = SI; 2865 } 2866 } 2867 return S; 2868 } 2869 2870 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2871 Value *AlternativeV = nullptr) { 2872 // PHI is going to be a PHI node that allows the value V that is defined in 2873 // BB to be referenced in BB's only successor. 2874 // 2875 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2876 // doesn't matter to us what the other operand is (it'll never get used). We 2877 // could just create a new PHI with an undef incoming value, but that could 2878 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2879 // other PHI. So here we directly look for some PHI in BB's successor with V 2880 // as an incoming operand. If we find one, we use it, else we create a new 2881 // one. 2882 // 2883 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2884 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2885 // where OtherBB is the single other predecessor of BB's only successor. 2886 PHINode *PHI = nullptr; 2887 BasicBlock *Succ = BB->getSingleSuccessor(); 2888 2889 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2890 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2891 PHI = cast<PHINode>(I); 2892 if (!AlternativeV) 2893 break; 2894 2895 assert(Succ->hasNPredecessors(2)); 2896 auto PredI = pred_begin(Succ); 2897 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2898 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2899 break; 2900 PHI = nullptr; 2901 } 2902 if (PHI) 2903 return PHI; 2904 2905 // If V is not an instruction defined in BB, just return it. 2906 if (!AlternativeV && 2907 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2908 return V; 2909 2910 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2911 PHI->addIncoming(V, BB); 2912 for (BasicBlock *PredBB : predecessors(Succ)) 2913 if (PredBB != BB) 2914 PHI->addIncoming( 2915 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2916 return PHI; 2917 } 2918 2919 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2920 BasicBlock *QTB, BasicBlock *QFB, 2921 BasicBlock *PostBB, Value *Address, 2922 bool InvertPCond, bool InvertQCond, 2923 const DataLayout &DL) { 2924 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2925 return Operator::getOpcode(&I) == Instruction::BitCast && 2926 I.getType()->isPointerTy(); 2927 }; 2928 2929 // If we're not in aggressive mode, we only optimize if we have some 2930 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2931 auto IsWorthwhile = [&](BasicBlock *BB) { 2932 if (!BB) 2933 return true; 2934 // Heuristic: if the block can be if-converted/phi-folded and the 2935 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2936 // thread this store. 2937 unsigned N = 0; 2938 for (auto &I : BB->instructionsWithoutDebug()) { 2939 // Cheap instructions viable for folding. 2940 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2941 isa<StoreInst>(I)) 2942 ++N; 2943 // Free instructions. 2944 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2945 continue; 2946 else 2947 return false; 2948 } 2949 // The store we want to merge is counted in N, so add 1 to make sure 2950 // we're counting the instructions that would be left. 2951 return N <= (PHINodeFoldingThreshold + 1); 2952 }; 2953 2954 if (!MergeCondStoresAggressively && 2955 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2956 !IsWorthwhile(QFB))) 2957 return false; 2958 2959 // For every pointer, there must be exactly two stores, one coming from 2960 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2961 // store (to any address) in PTB,PFB or QTB,QFB. 2962 // FIXME: We could relax this restriction with a bit more work and performance 2963 // testing. 2964 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2965 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2966 if (!PStore || !QStore) 2967 return false; 2968 2969 // Now check the stores are compatible. 2970 if (!QStore->isUnordered() || !PStore->isUnordered()) 2971 return false; 2972 2973 // Check that sinking the store won't cause program behavior changes. Sinking 2974 // the store out of the Q blocks won't change any behavior as we're sinking 2975 // from a block to its unconditional successor. But we're moving a store from 2976 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2977 // So we need to check that there are no aliasing loads or stores in 2978 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2979 // operations between PStore and the end of its parent block. 2980 // 2981 // The ideal way to do this is to query AliasAnalysis, but we don't 2982 // preserve AA currently so that is dangerous. Be super safe and just 2983 // check there are no other memory operations at all. 2984 for (auto &I : *QFB->getSinglePredecessor()) 2985 if (I.mayReadOrWriteMemory()) 2986 return false; 2987 for (auto &I : *QFB) 2988 if (&I != QStore && I.mayReadOrWriteMemory()) 2989 return false; 2990 if (QTB) 2991 for (auto &I : *QTB) 2992 if (&I != QStore && I.mayReadOrWriteMemory()) 2993 return false; 2994 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2995 I != E; ++I) 2996 if (&*I != PStore && I->mayReadOrWriteMemory()) 2997 return false; 2998 2999 // If PostBB has more than two predecessors, we need to split it so we can 3000 // sink the store. 3001 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3002 // We know that QFB's only successor is PostBB. And QFB has a single 3003 // predecessor. If QTB exists, then its only successor is also PostBB. 3004 // If QTB does not exist, then QFB's only predecessor has a conditional 3005 // branch to QFB and PostBB. 3006 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3007 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3008 "condstore.split"); 3009 if (!NewBB) 3010 return false; 3011 PostBB = NewBB; 3012 } 3013 3014 // OK, we're going to sink the stores to PostBB. The store has to be 3015 // conditional though, so first create the predicate. 3016 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3017 ->getCondition(); 3018 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3019 ->getCondition(); 3020 3021 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3022 PStore->getParent()); 3023 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3024 QStore->getParent(), PPHI); 3025 3026 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3027 3028 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3029 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3030 3031 if (InvertPCond) 3032 PPred = QB.CreateNot(PPred); 3033 if (InvertQCond) 3034 QPred = QB.CreateNot(QPred); 3035 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3036 3037 auto *T = 3038 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3039 QB.SetInsertPoint(T); 3040 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3041 AAMDNodes AAMD; 3042 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3043 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3044 SI->setAAMetadata(AAMD); 3045 unsigned PAlignment = PStore->getAlignment(); 3046 unsigned QAlignment = QStore->getAlignment(); 3047 unsigned TypeAlignment = 3048 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3049 unsigned MinAlignment; 3050 unsigned MaxAlignment; 3051 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3052 // Choose the minimum alignment. If we could prove both stores execute, we 3053 // could use biggest one. In this case, though, we only know that one of the 3054 // stores executes. And we don't know it's safe to take the alignment from a 3055 // store that doesn't execute. 3056 if (MinAlignment != 0) { 3057 // Choose the minimum of all non-zero alignments. 3058 SI->setAlignment(MinAlignment); 3059 } else if (MaxAlignment != 0) { 3060 // Choose the minimal alignment between the non-zero alignment and the ABI 3061 // default alignment for the type of the stored value. 3062 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3063 } else { 3064 // If both alignments are zero, use ABI default alignment for the type of 3065 // the stored value. 3066 SI->setAlignment(TypeAlignment); 3067 } 3068 3069 QStore->eraseFromParent(); 3070 PStore->eraseFromParent(); 3071 3072 return true; 3073 } 3074 3075 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3076 const DataLayout &DL) { 3077 // The intention here is to find diamonds or triangles (see below) where each 3078 // conditional block contains a store to the same address. Both of these 3079 // stores are conditional, so they can't be unconditionally sunk. But it may 3080 // be profitable to speculatively sink the stores into one merged store at the 3081 // end, and predicate the merged store on the union of the two conditions of 3082 // PBI and QBI. 3083 // 3084 // This can reduce the number of stores executed if both of the conditions are 3085 // true, and can allow the blocks to become small enough to be if-converted. 3086 // This optimization will also chain, so that ladders of test-and-set 3087 // sequences can be if-converted away. 3088 // 3089 // We only deal with simple diamonds or triangles: 3090 // 3091 // PBI or PBI or a combination of the two 3092 // / \ | \ 3093 // PTB PFB | PFB 3094 // \ / | / 3095 // QBI QBI 3096 // / \ | \ 3097 // QTB QFB | QFB 3098 // \ / | / 3099 // PostBB PostBB 3100 // 3101 // We model triangles as a type of diamond with a nullptr "true" block. 3102 // Triangles are canonicalized so that the fallthrough edge is represented by 3103 // a true condition, as in the diagram above. 3104 BasicBlock *PTB = PBI->getSuccessor(0); 3105 BasicBlock *PFB = PBI->getSuccessor(1); 3106 BasicBlock *QTB = QBI->getSuccessor(0); 3107 BasicBlock *QFB = QBI->getSuccessor(1); 3108 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3109 3110 // Make sure we have a good guess for PostBB. If QTB's only successor is 3111 // QFB, then QFB is a better PostBB. 3112 if (QTB->getSingleSuccessor() == QFB) 3113 PostBB = QFB; 3114 3115 // If we couldn't find a good PostBB, stop. 3116 if (!PostBB) 3117 return false; 3118 3119 bool InvertPCond = false, InvertQCond = false; 3120 // Canonicalize fallthroughs to the true branches. 3121 if (PFB == QBI->getParent()) { 3122 std::swap(PFB, PTB); 3123 InvertPCond = true; 3124 } 3125 if (QFB == PostBB) { 3126 std::swap(QFB, QTB); 3127 InvertQCond = true; 3128 } 3129 3130 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3131 // and QFB may not. Model fallthroughs as a nullptr block. 3132 if (PTB == QBI->getParent()) 3133 PTB = nullptr; 3134 if (QTB == PostBB) 3135 QTB = nullptr; 3136 3137 // Legality bailouts. We must have at least the non-fallthrough blocks and 3138 // the post-dominating block, and the non-fallthroughs must only have one 3139 // predecessor. 3140 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3141 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3142 }; 3143 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3144 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3145 return false; 3146 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3147 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3148 return false; 3149 if (!QBI->getParent()->hasNUses(2)) 3150 return false; 3151 3152 // OK, this is a sequence of two diamonds or triangles. 3153 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3154 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3155 for (auto *BB : {PTB, PFB}) { 3156 if (!BB) 3157 continue; 3158 for (auto &I : *BB) 3159 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3160 PStoreAddresses.insert(SI->getPointerOperand()); 3161 } 3162 for (auto *BB : {QTB, QFB}) { 3163 if (!BB) 3164 continue; 3165 for (auto &I : *BB) 3166 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3167 QStoreAddresses.insert(SI->getPointerOperand()); 3168 } 3169 3170 set_intersect(PStoreAddresses, QStoreAddresses); 3171 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3172 // clear what it contains. 3173 auto &CommonAddresses = PStoreAddresses; 3174 3175 bool Changed = false; 3176 for (auto *Address : CommonAddresses) 3177 Changed |= mergeConditionalStoreToAddress( 3178 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3179 return Changed; 3180 } 3181 3182 /// If we have a conditional branch as a predecessor of another block, 3183 /// this function tries to simplify it. We know 3184 /// that PBI and BI are both conditional branches, and BI is in one of the 3185 /// successor blocks of PBI - PBI branches to BI. 3186 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3187 const DataLayout &DL) { 3188 assert(PBI->isConditional() && BI->isConditional()); 3189 BasicBlock *BB = BI->getParent(); 3190 3191 // If this block ends with a branch instruction, and if there is a 3192 // predecessor that ends on a branch of the same condition, make 3193 // this conditional branch redundant. 3194 if (PBI->getCondition() == BI->getCondition() && 3195 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3196 // Okay, the outcome of this conditional branch is statically 3197 // knowable. If this block had a single pred, handle specially. 3198 if (BB->getSinglePredecessor()) { 3199 // Turn this into a branch on constant. 3200 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3201 BI->setCondition( 3202 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3203 return true; // Nuke the branch on constant. 3204 } 3205 3206 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3207 // in the constant and simplify the block result. Subsequent passes of 3208 // simplifycfg will thread the block. 3209 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3210 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3211 PHINode *NewPN = PHINode::Create( 3212 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3213 BI->getCondition()->getName() + ".pr", &BB->front()); 3214 // Okay, we're going to insert the PHI node. Since PBI is not the only 3215 // predecessor, compute the PHI'd conditional value for all of the preds. 3216 // Any predecessor where the condition is not computable we keep symbolic. 3217 for (pred_iterator PI = PB; PI != PE; ++PI) { 3218 BasicBlock *P = *PI; 3219 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3220 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3221 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3222 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3223 NewPN->addIncoming( 3224 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3225 P); 3226 } else { 3227 NewPN->addIncoming(BI->getCondition(), P); 3228 } 3229 } 3230 3231 BI->setCondition(NewPN); 3232 return true; 3233 } 3234 } 3235 3236 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3237 if (CE->canTrap()) 3238 return false; 3239 3240 // If both branches are conditional and both contain stores to the same 3241 // address, remove the stores from the conditionals and create a conditional 3242 // merged store at the end. 3243 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3244 return true; 3245 3246 // If this is a conditional branch in an empty block, and if any 3247 // predecessors are a conditional branch to one of our destinations, 3248 // fold the conditions into logical ops and one cond br. 3249 3250 // Ignore dbg intrinsics. 3251 if (&*BB->instructionsWithoutDebug().begin() != BI) 3252 return false; 3253 3254 int PBIOp, BIOp; 3255 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3256 PBIOp = 0; 3257 BIOp = 0; 3258 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3259 PBIOp = 0; 3260 BIOp = 1; 3261 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3262 PBIOp = 1; 3263 BIOp = 0; 3264 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3265 PBIOp = 1; 3266 BIOp = 1; 3267 } else { 3268 return false; 3269 } 3270 3271 // Check to make sure that the other destination of this branch 3272 // isn't BB itself. If so, this is an infinite loop that will 3273 // keep getting unwound. 3274 if (PBI->getSuccessor(PBIOp) == BB) 3275 return false; 3276 3277 // Do not perform this transformation if it would require 3278 // insertion of a large number of select instructions. For targets 3279 // without predication/cmovs, this is a big pessimization. 3280 3281 // Also do not perform this transformation if any phi node in the common 3282 // destination block can trap when reached by BB or PBB (PR17073). In that 3283 // case, it would be unsafe to hoist the operation into a select instruction. 3284 3285 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3286 unsigned NumPhis = 0; 3287 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3288 ++II, ++NumPhis) { 3289 if (NumPhis > 2) // Disable this xform. 3290 return false; 3291 3292 PHINode *PN = cast<PHINode>(II); 3293 Value *BIV = PN->getIncomingValueForBlock(BB); 3294 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3295 if (CE->canTrap()) 3296 return false; 3297 3298 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3299 Value *PBIV = PN->getIncomingValue(PBBIdx); 3300 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3301 if (CE->canTrap()) 3302 return false; 3303 } 3304 3305 // Finally, if everything is ok, fold the branches to logical ops. 3306 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3307 3308 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3309 << "AND: " << *BI->getParent()); 3310 3311 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3312 // branch in it, where one edge (OtherDest) goes back to itself but the other 3313 // exits. We don't *know* that the program avoids the infinite loop 3314 // (even though that seems likely). If we do this xform naively, we'll end up 3315 // recursively unpeeling the loop. Since we know that (after the xform is 3316 // done) that the block *is* infinite if reached, we just make it an obviously 3317 // infinite loop with no cond branch. 3318 if (OtherDest == BB) { 3319 // Insert it at the end of the function, because it's either code, 3320 // or it won't matter if it's hot. :) 3321 BasicBlock *InfLoopBlock = 3322 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3323 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3324 OtherDest = InfLoopBlock; 3325 } 3326 3327 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3328 3329 // BI may have other predecessors. Because of this, we leave 3330 // it alone, but modify PBI. 3331 3332 // Make sure we get to CommonDest on True&True directions. 3333 Value *PBICond = PBI->getCondition(); 3334 IRBuilder<NoFolder> Builder(PBI); 3335 if (PBIOp) 3336 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3337 3338 Value *BICond = BI->getCondition(); 3339 if (BIOp) 3340 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3341 3342 // Merge the conditions. 3343 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3344 3345 // Modify PBI to branch on the new condition to the new dests. 3346 PBI->setCondition(Cond); 3347 PBI->setSuccessor(0, CommonDest); 3348 PBI->setSuccessor(1, OtherDest); 3349 3350 // Update branch weight for PBI. 3351 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3352 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3353 bool HasWeights = 3354 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3355 SuccTrueWeight, SuccFalseWeight); 3356 if (HasWeights) { 3357 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3358 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3359 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3360 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3361 // The weight to CommonDest should be PredCommon * SuccTotal + 3362 // PredOther * SuccCommon. 3363 // The weight to OtherDest should be PredOther * SuccOther. 3364 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3365 PredOther * SuccCommon, 3366 PredOther * SuccOther}; 3367 // Halve the weights if any of them cannot fit in an uint32_t 3368 FitWeights(NewWeights); 3369 3370 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3371 } 3372 3373 // OtherDest may have phi nodes. If so, add an entry from PBI's 3374 // block that are identical to the entries for BI's block. 3375 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3376 3377 // We know that the CommonDest already had an edge from PBI to 3378 // it. If it has PHIs though, the PHIs may have different 3379 // entries for BB and PBI's BB. If so, insert a select to make 3380 // them agree. 3381 for (PHINode &PN : CommonDest->phis()) { 3382 Value *BIV = PN.getIncomingValueForBlock(BB); 3383 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3384 Value *PBIV = PN.getIncomingValue(PBBIdx); 3385 if (BIV != PBIV) { 3386 // Insert a select in PBI to pick the right value. 3387 SelectInst *NV = cast<SelectInst>( 3388 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3389 PN.setIncomingValue(PBBIdx, NV); 3390 // Although the select has the same condition as PBI, the original branch 3391 // weights for PBI do not apply to the new select because the select's 3392 // 'logical' edges are incoming edges of the phi that is eliminated, not 3393 // the outgoing edges of PBI. 3394 if (HasWeights) { 3395 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3396 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3397 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3398 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3399 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3400 // The weight to PredOtherDest should be PredOther * SuccCommon. 3401 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3402 PredOther * SuccCommon}; 3403 3404 FitWeights(NewWeights); 3405 3406 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3407 } 3408 } 3409 } 3410 3411 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3412 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3413 3414 // This basic block is probably dead. We know it has at least 3415 // one fewer predecessor. 3416 return true; 3417 } 3418 3419 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3420 // true or to FalseBB if Cond is false. 3421 // Takes care of updating the successors and removing the old terminator. 3422 // Also makes sure not to introduce new successors by assuming that edges to 3423 // non-successor TrueBBs and FalseBBs aren't reachable. 3424 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3425 BasicBlock *TrueBB, BasicBlock *FalseBB, 3426 uint32_t TrueWeight, 3427 uint32_t FalseWeight) { 3428 // Remove any superfluous successor edges from the CFG. 3429 // First, figure out which successors to preserve. 3430 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3431 // successor. 3432 BasicBlock *KeepEdge1 = TrueBB; 3433 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3434 3435 // Then remove the rest. 3436 for (BasicBlock *Succ : successors(OldTerm)) { 3437 // Make sure only to keep exactly one copy of each edge. 3438 if (Succ == KeepEdge1) 3439 KeepEdge1 = nullptr; 3440 else if (Succ == KeepEdge2) 3441 KeepEdge2 = nullptr; 3442 else 3443 Succ->removePredecessor(OldTerm->getParent(), 3444 /*DontDeleteUselessPHIs=*/true); 3445 } 3446 3447 IRBuilder<> Builder(OldTerm); 3448 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3449 3450 // Insert an appropriate new terminator. 3451 if (!KeepEdge1 && !KeepEdge2) { 3452 if (TrueBB == FalseBB) 3453 // We were only looking for one successor, and it was present. 3454 // Create an unconditional branch to it. 3455 Builder.CreateBr(TrueBB); 3456 else { 3457 // We found both of the successors we were looking for. 3458 // Create a conditional branch sharing the condition of the select. 3459 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3460 if (TrueWeight != FalseWeight) 3461 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3462 } 3463 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3464 // Neither of the selected blocks were successors, so this 3465 // terminator must be unreachable. 3466 new UnreachableInst(OldTerm->getContext(), OldTerm); 3467 } else { 3468 // One of the selected values was a successor, but the other wasn't. 3469 // Insert an unconditional branch to the one that was found; 3470 // the edge to the one that wasn't must be unreachable. 3471 if (!KeepEdge1) 3472 // Only TrueBB was found. 3473 Builder.CreateBr(TrueBB); 3474 else 3475 // Only FalseBB was found. 3476 Builder.CreateBr(FalseBB); 3477 } 3478 3479 EraseTerminatorAndDCECond(OldTerm); 3480 return true; 3481 } 3482 3483 // Replaces 3484 // (switch (select cond, X, Y)) on constant X, Y 3485 // with a branch - conditional if X and Y lead to distinct BBs, 3486 // unconditional otherwise. 3487 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3488 // Check for constant integer values in the select. 3489 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3490 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3491 if (!TrueVal || !FalseVal) 3492 return false; 3493 3494 // Find the relevant condition and destinations. 3495 Value *Condition = Select->getCondition(); 3496 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3497 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3498 3499 // Get weight for TrueBB and FalseBB. 3500 uint32_t TrueWeight = 0, FalseWeight = 0; 3501 SmallVector<uint64_t, 8> Weights; 3502 bool HasWeights = HasBranchWeights(SI); 3503 if (HasWeights) { 3504 GetBranchWeights(SI, Weights); 3505 if (Weights.size() == 1 + SI->getNumCases()) { 3506 TrueWeight = 3507 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3508 FalseWeight = 3509 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3510 } 3511 } 3512 3513 // Perform the actual simplification. 3514 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3515 FalseWeight); 3516 } 3517 3518 // Replaces 3519 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3520 // blockaddress(@fn, BlockB))) 3521 // with 3522 // (br cond, BlockA, BlockB). 3523 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3524 // Check that both operands of the select are block addresses. 3525 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3526 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3527 if (!TBA || !FBA) 3528 return false; 3529 3530 // Extract the actual blocks. 3531 BasicBlock *TrueBB = TBA->getBasicBlock(); 3532 BasicBlock *FalseBB = FBA->getBasicBlock(); 3533 3534 // Perform the actual simplification. 3535 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3536 0); 3537 } 3538 3539 /// This is called when we find an icmp instruction 3540 /// (a seteq/setne with a constant) as the only instruction in a 3541 /// block that ends with an uncond branch. We are looking for a very specific 3542 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3543 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3544 /// default value goes to an uncond block with a seteq in it, we get something 3545 /// like: 3546 /// 3547 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3548 /// DEFAULT: 3549 /// %tmp = icmp eq i8 %A, 92 3550 /// br label %end 3551 /// end: 3552 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3553 /// 3554 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3555 /// the PHI, merging the third icmp into the switch. 3556 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3557 ICmpInst *ICI, IRBuilder<> &Builder) { 3558 BasicBlock *BB = ICI->getParent(); 3559 3560 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3561 // complex. 3562 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3563 return false; 3564 3565 Value *V = ICI->getOperand(0); 3566 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3567 3568 // The pattern we're looking for is where our only predecessor is a switch on 3569 // 'V' and this block is the default case for the switch. In this case we can 3570 // fold the compared value into the switch to simplify things. 3571 BasicBlock *Pred = BB->getSinglePredecessor(); 3572 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3573 return false; 3574 3575 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3576 if (SI->getCondition() != V) 3577 return false; 3578 3579 // If BB is reachable on a non-default case, then we simply know the value of 3580 // V in this block. Substitute it and constant fold the icmp instruction 3581 // away. 3582 if (SI->getDefaultDest() != BB) { 3583 ConstantInt *VVal = SI->findCaseDest(BB); 3584 assert(VVal && "Should have a unique destination value"); 3585 ICI->setOperand(0, VVal); 3586 3587 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3588 ICI->replaceAllUsesWith(V); 3589 ICI->eraseFromParent(); 3590 } 3591 // BB is now empty, so it is likely to simplify away. 3592 return requestResimplify(); 3593 } 3594 3595 // Ok, the block is reachable from the default dest. If the constant we're 3596 // comparing exists in one of the other edges, then we can constant fold ICI 3597 // and zap it. 3598 if (SI->findCaseValue(Cst) != SI->case_default()) { 3599 Value *V; 3600 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3601 V = ConstantInt::getFalse(BB->getContext()); 3602 else 3603 V = ConstantInt::getTrue(BB->getContext()); 3604 3605 ICI->replaceAllUsesWith(V); 3606 ICI->eraseFromParent(); 3607 // BB is now empty, so it is likely to simplify away. 3608 return requestResimplify(); 3609 } 3610 3611 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3612 // the block. 3613 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3614 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3615 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3616 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3617 return false; 3618 3619 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3620 // true in the PHI. 3621 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3622 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3623 3624 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3625 std::swap(DefaultCst, NewCst); 3626 3627 // Replace ICI (which is used by the PHI for the default value) with true or 3628 // false depending on if it is EQ or NE. 3629 ICI->replaceAllUsesWith(DefaultCst); 3630 ICI->eraseFromParent(); 3631 3632 // Okay, the switch goes to this block on a default value. Add an edge from 3633 // the switch to the merge point on the compared value. 3634 BasicBlock *NewBB = 3635 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3636 SmallVector<uint64_t, 8> Weights; 3637 bool HasWeights = HasBranchWeights(SI); 3638 if (HasWeights) { 3639 GetBranchWeights(SI, Weights); 3640 if (Weights.size() == 1 + SI->getNumCases()) { 3641 // Split weight for default case to case for "Cst". 3642 Weights[0] = (Weights[0] + 1) >> 1; 3643 Weights.push_back(Weights[0]); 3644 3645 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3646 setBranchWeights(SI, MDWeights); 3647 } 3648 } 3649 SI->addCase(Cst, NewBB); 3650 3651 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3652 Builder.SetInsertPoint(NewBB); 3653 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3654 Builder.CreateBr(SuccBlock); 3655 PHIUse->addIncoming(NewCst, NewBB); 3656 return true; 3657 } 3658 3659 /// The specified branch is a conditional branch. 3660 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3661 /// fold it into a switch instruction if so. 3662 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3663 const DataLayout &DL) { 3664 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3665 if (!Cond) 3666 return false; 3667 3668 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3669 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3670 // 'setne's and'ed together, collect them. 3671 3672 // Try to gather values from a chain of and/or to be turned into a switch 3673 ConstantComparesGatherer ConstantCompare(Cond, DL); 3674 // Unpack the result 3675 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3676 Value *CompVal = ConstantCompare.CompValue; 3677 unsigned UsedICmps = ConstantCompare.UsedICmps; 3678 Value *ExtraCase = ConstantCompare.Extra; 3679 3680 // If we didn't have a multiply compared value, fail. 3681 if (!CompVal) 3682 return false; 3683 3684 // Avoid turning single icmps into a switch. 3685 if (UsedICmps <= 1) 3686 return false; 3687 3688 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3689 3690 // There might be duplicate constants in the list, which the switch 3691 // instruction can't handle, remove them now. 3692 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3693 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3694 3695 // If Extra was used, we require at least two switch values to do the 3696 // transformation. A switch with one value is just a conditional branch. 3697 if (ExtraCase && Values.size() < 2) 3698 return false; 3699 3700 // TODO: Preserve branch weight metadata, similarly to how 3701 // FoldValueComparisonIntoPredecessors preserves it. 3702 3703 // Figure out which block is which destination. 3704 BasicBlock *DefaultBB = BI->getSuccessor(1); 3705 BasicBlock *EdgeBB = BI->getSuccessor(0); 3706 if (!TrueWhenEqual) 3707 std::swap(DefaultBB, EdgeBB); 3708 3709 BasicBlock *BB = BI->getParent(); 3710 3711 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3712 << " cases into SWITCH. BB is:\n" 3713 << *BB); 3714 3715 // If there are any extra values that couldn't be folded into the switch 3716 // then we evaluate them with an explicit branch first. Split the block 3717 // right before the condbr to handle it. 3718 if (ExtraCase) { 3719 BasicBlock *NewBB = 3720 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3721 // Remove the uncond branch added to the old block. 3722 Instruction *OldTI = BB->getTerminator(); 3723 Builder.SetInsertPoint(OldTI); 3724 3725 if (TrueWhenEqual) 3726 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3727 else 3728 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3729 3730 OldTI->eraseFromParent(); 3731 3732 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3733 // for the edge we just added. 3734 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3735 3736 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3737 << "\nEXTRABB = " << *BB); 3738 BB = NewBB; 3739 } 3740 3741 Builder.SetInsertPoint(BI); 3742 // Convert pointer to int before we switch. 3743 if (CompVal->getType()->isPointerTy()) { 3744 CompVal = Builder.CreatePtrToInt( 3745 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3746 } 3747 3748 // Create the new switch instruction now. 3749 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3750 3751 // Add all of the 'cases' to the switch instruction. 3752 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3753 New->addCase(Values[i], EdgeBB); 3754 3755 // We added edges from PI to the EdgeBB. As such, if there were any 3756 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3757 // the number of edges added. 3758 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3759 PHINode *PN = cast<PHINode>(BBI); 3760 Value *InVal = PN->getIncomingValueForBlock(BB); 3761 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3762 PN->addIncoming(InVal, BB); 3763 } 3764 3765 // Erase the old branch instruction. 3766 EraseTerminatorAndDCECond(BI); 3767 3768 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3769 return true; 3770 } 3771 3772 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3773 if (isa<PHINode>(RI->getValue())) 3774 return SimplifyCommonResume(RI); 3775 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3776 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3777 // The resume must unwind the exception that caused control to branch here. 3778 return SimplifySingleResume(RI); 3779 3780 return false; 3781 } 3782 3783 // Simplify resume that is shared by several landing pads (phi of landing pad). 3784 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3785 BasicBlock *BB = RI->getParent(); 3786 3787 // Check that there are no other instructions except for debug intrinsics 3788 // between the phi of landing pads (RI->getValue()) and resume instruction. 3789 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3790 E = RI->getIterator(); 3791 while (++I != E) 3792 if (!isa<DbgInfoIntrinsic>(I)) 3793 return false; 3794 3795 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3796 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3797 3798 // Check incoming blocks to see if any of them are trivial. 3799 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3800 Idx++) { 3801 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3802 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3803 3804 // If the block has other successors, we can not delete it because 3805 // it has other dependents. 3806 if (IncomingBB->getUniqueSuccessor() != BB) 3807 continue; 3808 3809 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3810 // Not the landing pad that caused the control to branch here. 3811 if (IncomingValue != LandingPad) 3812 continue; 3813 3814 bool isTrivial = true; 3815 3816 I = IncomingBB->getFirstNonPHI()->getIterator(); 3817 E = IncomingBB->getTerminator()->getIterator(); 3818 while (++I != E) 3819 if (!isa<DbgInfoIntrinsic>(I)) { 3820 isTrivial = false; 3821 break; 3822 } 3823 3824 if (isTrivial) 3825 TrivialUnwindBlocks.insert(IncomingBB); 3826 } 3827 3828 // If no trivial unwind blocks, don't do any simplifications. 3829 if (TrivialUnwindBlocks.empty()) 3830 return false; 3831 3832 // Turn all invokes that unwind here into calls. 3833 for (auto *TrivialBB : TrivialUnwindBlocks) { 3834 // Blocks that will be simplified should be removed from the phi node. 3835 // Note there could be multiple edges to the resume block, and we need 3836 // to remove them all. 3837 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3838 BB->removePredecessor(TrivialBB, true); 3839 3840 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3841 PI != PE;) { 3842 BasicBlock *Pred = *PI++; 3843 removeUnwindEdge(Pred); 3844 } 3845 3846 // In each SimplifyCFG run, only the current processed block can be erased. 3847 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3848 // of erasing TrivialBB, we only remove the branch to the common resume 3849 // block so that we can later erase the resume block since it has no 3850 // predecessors. 3851 TrivialBB->getTerminator()->eraseFromParent(); 3852 new UnreachableInst(RI->getContext(), TrivialBB); 3853 } 3854 3855 // Delete the resume block if all its predecessors have been removed. 3856 if (pred_empty(BB)) 3857 BB->eraseFromParent(); 3858 3859 return !TrivialUnwindBlocks.empty(); 3860 } 3861 3862 // Simplify resume that is only used by a single (non-phi) landing pad. 3863 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3864 BasicBlock *BB = RI->getParent(); 3865 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3866 assert(RI->getValue() == LPInst && 3867 "Resume must unwind the exception that caused control to here"); 3868 3869 // Check that there are no other instructions except for debug intrinsics. 3870 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3871 while (++I != E) 3872 if (!isa<DbgInfoIntrinsic>(I)) 3873 return false; 3874 3875 // Turn all invokes that unwind here into calls and delete the basic block. 3876 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3877 BasicBlock *Pred = *PI++; 3878 removeUnwindEdge(Pred); 3879 } 3880 3881 // The landingpad is now unreachable. Zap it. 3882 if (LoopHeaders) 3883 LoopHeaders->erase(BB); 3884 BB->eraseFromParent(); 3885 return true; 3886 } 3887 3888 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3889 // If this is a trivial cleanup pad that executes no instructions, it can be 3890 // eliminated. If the cleanup pad continues to the caller, any predecessor 3891 // that is an EH pad will be updated to continue to the caller and any 3892 // predecessor that terminates with an invoke instruction will have its invoke 3893 // instruction converted to a call instruction. If the cleanup pad being 3894 // simplified does not continue to the caller, each predecessor will be 3895 // updated to continue to the unwind destination of the cleanup pad being 3896 // simplified. 3897 BasicBlock *BB = RI->getParent(); 3898 CleanupPadInst *CPInst = RI->getCleanupPad(); 3899 if (CPInst->getParent() != BB) 3900 // This isn't an empty cleanup. 3901 return false; 3902 3903 // We cannot kill the pad if it has multiple uses. This typically arises 3904 // from unreachable basic blocks. 3905 if (!CPInst->hasOneUse()) 3906 return false; 3907 3908 // Check that there are no other instructions except for benign intrinsics. 3909 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3910 while (++I != E) { 3911 auto *II = dyn_cast<IntrinsicInst>(I); 3912 if (!II) 3913 return false; 3914 3915 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3916 switch (IntrinsicID) { 3917 case Intrinsic::dbg_declare: 3918 case Intrinsic::dbg_value: 3919 case Intrinsic::dbg_label: 3920 case Intrinsic::lifetime_end: 3921 break; 3922 default: 3923 return false; 3924 } 3925 } 3926 3927 // If the cleanup return we are simplifying unwinds to the caller, this will 3928 // set UnwindDest to nullptr. 3929 BasicBlock *UnwindDest = RI->getUnwindDest(); 3930 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3931 3932 // We're about to remove BB from the control flow. Before we do, sink any 3933 // PHINodes into the unwind destination. Doing this before changing the 3934 // control flow avoids some potentially slow checks, since we can currently 3935 // be certain that UnwindDest and BB have no common predecessors (since they 3936 // are both EH pads). 3937 if (UnwindDest) { 3938 // First, go through the PHI nodes in UnwindDest and update any nodes that 3939 // reference the block we are removing 3940 for (BasicBlock::iterator I = UnwindDest->begin(), 3941 IE = DestEHPad->getIterator(); 3942 I != IE; ++I) { 3943 PHINode *DestPN = cast<PHINode>(I); 3944 3945 int Idx = DestPN->getBasicBlockIndex(BB); 3946 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3947 assert(Idx != -1); 3948 // This PHI node has an incoming value that corresponds to a control 3949 // path through the cleanup pad we are removing. If the incoming 3950 // value is in the cleanup pad, it must be a PHINode (because we 3951 // verified above that the block is otherwise empty). Otherwise, the 3952 // value is either a constant or a value that dominates the cleanup 3953 // pad being removed. 3954 // 3955 // Because BB and UnwindDest are both EH pads, all of their 3956 // predecessors must unwind to these blocks, and since no instruction 3957 // can have multiple unwind destinations, there will be no overlap in 3958 // incoming blocks between SrcPN and DestPN. 3959 Value *SrcVal = DestPN->getIncomingValue(Idx); 3960 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3961 3962 // Remove the entry for the block we are deleting. 3963 DestPN->removeIncomingValue(Idx, false); 3964 3965 if (SrcPN && SrcPN->getParent() == BB) { 3966 // If the incoming value was a PHI node in the cleanup pad we are 3967 // removing, we need to merge that PHI node's incoming values into 3968 // DestPN. 3969 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3970 SrcIdx != SrcE; ++SrcIdx) { 3971 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3972 SrcPN->getIncomingBlock(SrcIdx)); 3973 } 3974 } else { 3975 // Otherwise, the incoming value came from above BB and 3976 // so we can just reuse it. We must associate all of BB's 3977 // predecessors with this value. 3978 for (auto *pred : predecessors(BB)) { 3979 DestPN->addIncoming(SrcVal, pred); 3980 } 3981 } 3982 } 3983 3984 // Sink any remaining PHI nodes directly into UnwindDest. 3985 Instruction *InsertPt = DestEHPad; 3986 for (BasicBlock::iterator I = BB->begin(), 3987 IE = BB->getFirstNonPHI()->getIterator(); 3988 I != IE;) { 3989 // The iterator must be incremented here because the instructions are 3990 // being moved to another block. 3991 PHINode *PN = cast<PHINode>(I++); 3992 if (PN->use_empty()) 3993 // If the PHI node has no uses, just leave it. It will be erased 3994 // when we erase BB below. 3995 continue; 3996 3997 // Otherwise, sink this PHI node into UnwindDest. 3998 // Any predecessors to UnwindDest which are not already represented 3999 // must be back edges which inherit the value from the path through 4000 // BB. In this case, the PHI value must reference itself. 4001 for (auto *pred : predecessors(UnwindDest)) 4002 if (pred != BB) 4003 PN->addIncoming(PN, pred); 4004 PN->moveBefore(InsertPt); 4005 } 4006 } 4007 4008 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4009 // The iterator must be updated here because we are removing this pred. 4010 BasicBlock *PredBB = *PI++; 4011 if (UnwindDest == nullptr) { 4012 removeUnwindEdge(PredBB); 4013 } else { 4014 Instruction *TI = PredBB->getTerminator(); 4015 TI->replaceUsesOfWith(BB, UnwindDest); 4016 } 4017 } 4018 4019 // The cleanup pad is now unreachable. Zap it. 4020 BB->eraseFromParent(); 4021 return true; 4022 } 4023 4024 // Try to merge two cleanuppads together. 4025 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4026 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4027 // with. 4028 BasicBlock *UnwindDest = RI->getUnwindDest(); 4029 if (!UnwindDest) 4030 return false; 4031 4032 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4033 // be safe to merge without code duplication. 4034 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4035 return false; 4036 4037 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4038 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4039 if (!SuccessorCleanupPad) 4040 return false; 4041 4042 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4043 // Replace any uses of the successor cleanupad with the predecessor pad 4044 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4045 // funclet bundle operands. 4046 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4047 // Remove the old cleanuppad. 4048 SuccessorCleanupPad->eraseFromParent(); 4049 // Now, we simply replace the cleanupret with a branch to the unwind 4050 // destination. 4051 BranchInst::Create(UnwindDest, RI->getParent()); 4052 RI->eraseFromParent(); 4053 4054 return true; 4055 } 4056 4057 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4058 // It is possible to transiantly have an undef cleanuppad operand because we 4059 // have deleted some, but not all, dead blocks. 4060 // Eventually, this block will be deleted. 4061 if (isa<UndefValue>(RI->getOperand(0))) 4062 return false; 4063 4064 if (mergeCleanupPad(RI)) 4065 return true; 4066 4067 if (removeEmptyCleanup(RI)) 4068 return true; 4069 4070 return false; 4071 } 4072 4073 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4074 BasicBlock *BB = RI->getParent(); 4075 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4076 return false; 4077 4078 // Find predecessors that end with branches. 4079 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4080 SmallVector<BranchInst *, 8> CondBranchPreds; 4081 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4082 BasicBlock *P = *PI; 4083 Instruction *PTI = P->getTerminator(); 4084 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4085 if (BI->isUnconditional()) 4086 UncondBranchPreds.push_back(P); 4087 else 4088 CondBranchPreds.push_back(BI); 4089 } 4090 } 4091 4092 // If we found some, do the transformation! 4093 if (!UncondBranchPreds.empty() && DupRet) { 4094 while (!UncondBranchPreds.empty()) { 4095 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4096 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4097 << "INTO UNCOND BRANCH PRED: " << *Pred); 4098 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4099 } 4100 4101 // If we eliminated all predecessors of the block, delete the block now. 4102 if (pred_empty(BB)) { 4103 // We know there are no successors, so just nuke the block. 4104 if (LoopHeaders) 4105 LoopHeaders->erase(BB); 4106 BB->eraseFromParent(); 4107 } 4108 4109 return true; 4110 } 4111 4112 // Check out all of the conditional branches going to this return 4113 // instruction. If any of them just select between returns, change the 4114 // branch itself into a select/return pair. 4115 while (!CondBranchPreds.empty()) { 4116 BranchInst *BI = CondBranchPreds.pop_back_val(); 4117 4118 // Check to see if the non-BB successor is also a return block. 4119 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4120 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4121 SimplifyCondBranchToTwoReturns(BI, Builder)) 4122 return true; 4123 } 4124 return false; 4125 } 4126 4127 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4128 BasicBlock *BB = UI->getParent(); 4129 4130 bool Changed = false; 4131 4132 // If there are any instructions immediately before the unreachable that can 4133 // be removed, do so. 4134 while (UI->getIterator() != BB->begin()) { 4135 BasicBlock::iterator BBI = UI->getIterator(); 4136 --BBI; 4137 // Do not delete instructions that can have side effects which might cause 4138 // the unreachable to not be reachable; specifically, calls and volatile 4139 // operations may have this effect. 4140 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4141 break; 4142 4143 if (BBI->mayHaveSideEffects()) { 4144 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4145 if (SI->isVolatile()) 4146 break; 4147 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4148 if (LI->isVolatile()) 4149 break; 4150 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4151 if (RMWI->isVolatile()) 4152 break; 4153 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4154 if (CXI->isVolatile()) 4155 break; 4156 } else if (isa<CatchPadInst>(BBI)) { 4157 // A catchpad may invoke exception object constructors and such, which 4158 // in some languages can be arbitrary code, so be conservative by 4159 // default. 4160 // For CoreCLR, it just involves a type test, so can be removed. 4161 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4162 EHPersonality::CoreCLR) 4163 break; 4164 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4165 !isa<LandingPadInst>(BBI)) { 4166 break; 4167 } 4168 // Note that deleting LandingPad's here is in fact okay, although it 4169 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4170 // all the predecessors of this block will be the unwind edges of Invokes, 4171 // and we can therefore guarantee this block will be erased. 4172 } 4173 4174 // Delete this instruction (any uses are guaranteed to be dead) 4175 if (!BBI->use_empty()) 4176 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4177 BBI->eraseFromParent(); 4178 Changed = true; 4179 } 4180 4181 // If the unreachable instruction is the first in the block, take a gander 4182 // at all of the predecessors of this instruction, and simplify them. 4183 if (&BB->front() != UI) 4184 return Changed; 4185 4186 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4187 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4188 Instruction *TI = Preds[i]->getTerminator(); 4189 IRBuilder<> Builder(TI); 4190 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4191 if (BI->isUnconditional()) { 4192 if (BI->getSuccessor(0) == BB) { 4193 new UnreachableInst(TI->getContext(), TI); 4194 TI->eraseFromParent(); 4195 Changed = true; 4196 } 4197 } else { 4198 if (BI->getSuccessor(0) == BB) { 4199 Builder.CreateBr(BI->getSuccessor(1)); 4200 EraseTerminatorAndDCECond(BI); 4201 } else if (BI->getSuccessor(1) == BB) { 4202 Builder.CreateBr(BI->getSuccessor(0)); 4203 EraseTerminatorAndDCECond(BI); 4204 Changed = true; 4205 } 4206 } 4207 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4208 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4209 if (i->getCaseSuccessor() != BB) { 4210 ++i; 4211 continue; 4212 } 4213 BB->removePredecessor(SI->getParent()); 4214 i = SI->removeCase(i); 4215 e = SI->case_end(); 4216 Changed = true; 4217 } 4218 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4219 if (II->getUnwindDest() == BB) { 4220 removeUnwindEdge(TI->getParent()); 4221 Changed = true; 4222 } 4223 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4224 if (CSI->getUnwindDest() == BB) { 4225 removeUnwindEdge(TI->getParent()); 4226 Changed = true; 4227 continue; 4228 } 4229 4230 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4231 E = CSI->handler_end(); 4232 I != E; ++I) { 4233 if (*I == BB) { 4234 CSI->removeHandler(I); 4235 --I; 4236 --E; 4237 Changed = true; 4238 } 4239 } 4240 if (CSI->getNumHandlers() == 0) { 4241 BasicBlock *CatchSwitchBB = CSI->getParent(); 4242 if (CSI->hasUnwindDest()) { 4243 // Redirect preds to the unwind dest 4244 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4245 } else { 4246 // Rewrite all preds to unwind to caller (or from invoke to call). 4247 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4248 for (BasicBlock *EHPred : EHPreds) 4249 removeUnwindEdge(EHPred); 4250 } 4251 // The catchswitch is no longer reachable. 4252 new UnreachableInst(CSI->getContext(), CSI); 4253 CSI->eraseFromParent(); 4254 Changed = true; 4255 } 4256 } else if (isa<CleanupReturnInst>(TI)) { 4257 new UnreachableInst(TI->getContext(), TI); 4258 TI->eraseFromParent(); 4259 Changed = true; 4260 } 4261 } 4262 4263 // If this block is now dead, remove it. 4264 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4265 // We know there are no successors, so just nuke the block. 4266 if (LoopHeaders) 4267 LoopHeaders->erase(BB); 4268 BB->eraseFromParent(); 4269 return true; 4270 } 4271 4272 return Changed; 4273 } 4274 4275 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4276 assert(Cases.size() >= 1); 4277 4278 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4279 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4280 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4281 return false; 4282 } 4283 return true; 4284 } 4285 4286 /// Turn a switch with two reachable destinations into an integer range 4287 /// comparison and branch. 4288 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4289 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4290 4291 bool HasDefault = 4292 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4293 4294 // Partition the cases into two sets with different destinations. 4295 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4296 BasicBlock *DestB = nullptr; 4297 SmallVector<ConstantInt *, 16> CasesA; 4298 SmallVector<ConstantInt *, 16> CasesB; 4299 4300 for (auto Case : SI->cases()) { 4301 BasicBlock *Dest = Case.getCaseSuccessor(); 4302 if (!DestA) 4303 DestA = Dest; 4304 if (Dest == DestA) { 4305 CasesA.push_back(Case.getCaseValue()); 4306 continue; 4307 } 4308 if (!DestB) 4309 DestB = Dest; 4310 if (Dest == DestB) { 4311 CasesB.push_back(Case.getCaseValue()); 4312 continue; 4313 } 4314 return false; // More than two destinations. 4315 } 4316 4317 assert(DestA && DestB && 4318 "Single-destination switch should have been folded."); 4319 assert(DestA != DestB); 4320 assert(DestB != SI->getDefaultDest()); 4321 assert(!CasesB.empty() && "There must be non-default cases."); 4322 assert(!CasesA.empty() || HasDefault); 4323 4324 // Figure out if one of the sets of cases form a contiguous range. 4325 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4326 BasicBlock *ContiguousDest = nullptr; 4327 BasicBlock *OtherDest = nullptr; 4328 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4329 ContiguousCases = &CasesA; 4330 ContiguousDest = DestA; 4331 OtherDest = DestB; 4332 } else if (CasesAreContiguous(CasesB)) { 4333 ContiguousCases = &CasesB; 4334 ContiguousDest = DestB; 4335 OtherDest = DestA; 4336 } else 4337 return false; 4338 4339 // Start building the compare and branch. 4340 4341 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4342 Constant *NumCases = 4343 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4344 4345 Value *Sub = SI->getCondition(); 4346 if (!Offset->isNullValue()) 4347 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4348 4349 Value *Cmp; 4350 // If NumCases overflowed, then all possible values jump to the successor. 4351 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4352 Cmp = ConstantInt::getTrue(SI->getContext()); 4353 else 4354 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4355 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4356 4357 // Update weight for the newly-created conditional branch. 4358 if (HasBranchWeights(SI)) { 4359 SmallVector<uint64_t, 8> Weights; 4360 GetBranchWeights(SI, Weights); 4361 if (Weights.size() == 1 + SI->getNumCases()) { 4362 uint64_t TrueWeight = 0; 4363 uint64_t FalseWeight = 0; 4364 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4365 if (SI->getSuccessor(I) == ContiguousDest) 4366 TrueWeight += Weights[I]; 4367 else 4368 FalseWeight += Weights[I]; 4369 } 4370 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4371 TrueWeight /= 2; 4372 FalseWeight /= 2; 4373 } 4374 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4375 } 4376 } 4377 4378 // Prune obsolete incoming values off the successors' PHI nodes. 4379 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4380 unsigned PreviousEdges = ContiguousCases->size(); 4381 if (ContiguousDest == SI->getDefaultDest()) 4382 ++PreviousEdges; 4383 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4384 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4385 } 4386 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4387 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4388 if (OtherDest == SI->getDefaultDest()) 4389 ++PreviousEdges; 4390 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4391 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4392 } 4393 4394 // Drop the switch. 4395 SI->eraseFromParent(); 4396 4397 return true; 4398 } 4399 4400 /// Compute masked bits for the condition of a switch 4401 /// and use it to remove dead cases. 4402 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4403 const DataLayout &DL) { 4404 Value *Cond = SI->getCondition(); 4405 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4406 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4407 4408 // We can also eliminate cases by determining that their values are outside of 4409 // the limited range of the condition based on how many significant (non-sign) 4410 // bits are in the condition value. 4411 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4412 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4413 4414 // Gather dead cases. 4415 SmallVector<ConstantInt *, 8> DeadCases; 4416 for (auto &Case : SI->cases()) { 4417 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4418 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4419 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4420 DeadCases.push_back(Case.getCaseValue()); 4421 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4422 << " is dead.\n"); 4423 } 4424 } 4425 4426 // If we can prove that the cases must cover all possible values, the 4427 // default destination becomes dead and we can remove it. If we know some 4428 // of the bits in the value, we can use that to more precisely compute the 4429 // number of possible unique case values. 4430 bool HasDefault = 4431 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4432 const unsigned NumUnknownBits = 4433 Bits - (Known.Zero | Known.One).countPopulation(); 4434 assert(NumUnknownBits <= Bits); 4435 if (HasDefault && DeadCases.empty() && 4436 NumUnknownBits < 64 /* avoid overflow */ && 4437 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4438 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4439 BasicBlock *NewDefault = 4440 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4441 SI->setDefaultDest(&*NewDefault); 4442 SplitBlock(&*NewDefault, &NewDefault->front()); 4443 auto *OldTI = NewDefault->getTerminator(); 4444 new UnreachableInst(SI->getContext(), OldTI); 4445 EraseTerminatorAndDCECond(OldTI); 4446 return true; 4447 } 4448 4449 SmallVector<uint64_t, 8> Weights; 4450 bool HasWeight = HasBranchWeights(SI); 4451 if (HasWeight) { 4452 GetBranchWeights(SI, Weights); 4453 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4454 } 4455 4456 // Remove dead cases from the switch. 4457 for (ConstantInt *DeadCase : DeadCases) { 4458 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4459 assert(CaseI != SI->case_default() && 4460 "Case was not found. Probably mistake in DeadCases forming."); 4461 if (HasWeight) { 4462 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4463 Weights.pop_back(); 4464 } 4465 4466 // Prune unused values from PHI nodes. 4467 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4468 SI->removeCase(CaseI); 4469 } 4470 if (HasWeight && Weights.size() >= 2) { 4471 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4472 setBranchWeights(SI, MDWeights); 4473 } 4474 4475 return !DeadCases.empty(); 4476 } 4477 4478 /// If BB would be eligible for simplification by 4479 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4480 /// by an unconditional branch), look at the phi node for BB in the successor 4481 /// block and see if the incoming value is equal to CaseValue. If so, return 4482 /// the phi node, and set PhiIndex to BB's index in the phi node. 4483 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4484 BasicBlock *BB, int *PhiIndex) { 4485 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4486 return nullptr; // BB must be empty to be a candidate for simplification. 4487 if (!BB->getSinglePredecessor()) 4488 return nullptr; // BB must be dominated by the switch. 4489 4490 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4491 if (!Branch || !Branch->isUnconditional()) 4492 return nullptr; // Terminator must be unconditional branch. 4493 4494 BasicBlock *Succ = Branch->getSuccessor(0); 4495 4496 for (PHINode &PHI : Succ->phis()) { 4497 int Idx = PHI.getBasicBlockIndex(BB); 4498 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4499 4500 Value *InValue = PHI.getIncomingValue(Idx); 4501 if (InValue != CaseValue) 4502 continue; 4503 4504 *PhiIndex = Idx; 4505 return &PHI; 4506 } 4507 4508 return nullptr; 4509 } 4510 4511 /// Try to forward the condition of a switch instruction to a phi node 4512 /// dominated by the switch, if that would mean that some of the destination 4513 /// blocks of the switch can be folded away. Return true if a change is made. 4514 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4515 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4516 4517 ForwardingNodesMap ForwardingNodes; 4518 BasicBlock *SwitchBlock = SI->getParent(); 4519 bool Changed = false; 4520 for (auto &Case : SI->cases()) { 4521 ConstantInt *CaseValue = Case.getCaseValue(); 4522 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4523 4524 // Replace phi operands in successor blocks that are using the constant case 4525 // value rather than the switch condition variable: 4526 // switchbb: 4527 // switch i32 %x, label %default [ 4528 // i32 17, label %succ 4529 // ... 4530 // succ: 4531 // %r = phi i32 ... [ 17, %switchbb ] ... 4532 // --> 4533 // %r = phi i32 ... [ %x, %switchbb ] ... 4534 4535 for (PHINode &Phi : CaseDest->phis()) { 4536 // This only works if there is exactly 1 incoming edge from the switch to 4537 // a phi. If there is >1, that means multiple cases of the switch map to 1 4538 // value in the phi, and that phi value is not the switch condition. Thus, 4539 // this transform would not make sense (the phi would be invalid because 4540 // a phi can't have different incoming values from the same block). 4541 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4542 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4543 count(Phi.blocks(), SwitchBlock) == 1) { 4544 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4545 Changed = true; 4546 } 4547 } 4548 4549 // Collect phi nodes that are indirectly using this switch's case constants. 4550 int PhiIdx; 4551 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4552 ForwardingNodes[Phi].push_back(PhiIdx); 4553 } 4554 4555 for (auto &ForwardingNode : ForwardingNodes) { 4556 PHINode *Phi = ForwardingNode.first; 4557 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4558 if (Indexes.size() < 2) 4559 continue; 4560 4561 for (int Index : Indexes) 4562 Phi->setIncomingValue(Index, SI->getCondition()); 4563 Changed = true; 4564 } 4565 4566 return Changed; 4567 } 4568 4569 /// Return true if the backend will be able to handle 4570 /// initializing an array of constants like C. 4571 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4572 if (C->isThreadDependent()) 4573 return false; 4574 if (C->isDLLImportDependent()) 4575 return false; 4576 4577 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4578 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4579 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4580 return false; 4581 4582 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4583 if (!CE->isGEPWithNoNotionalOverIndexing()) 4584 return false; 4585 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4586 return false; 4587 } 4588 4589 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4590 return false; 4591 4592 return true; 4593 } 4594 4595 /// If V is a Constant, return it. Otherwise, try to look up 4596 /// its constant value in ConstantPool, returning 0 if it's not there. 4597 static Constant * 4598 LookupConstant(Value *V, 4599 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4600 if (Constant *C = dyn_cast<Constant>(V)) 4601 return C; 4602 return ConstantPool.lookup(V); 4603 } 4604 4605 /// Try to fold instruction I into a constant. This works for 4606 /// simple instructions such as binary operations where both operands are 4607 /// constant or can be replaced by constants from the ConstantPool. Returns the 4608 /// resulting constant on success, 0 otherwise. 4609 static Constant * 4610 ConstantFold(Instruction *I, const DataLayout &DL, 4611 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4612 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4613 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4614 if (!A) 4615 return nullptr; 4616 if (A->isAllOnesValue()) 4617 return LookupConstant(Select->getTrueValue(), ConstantPool); 4618 if (A->isNullValue()) 4619 return LookupConstant(Select->getFalseValue(), ConstantPool); 4620 return nullptr; 4621 } 4622 4623 SmallVector<Constant *, 4> COps; 4624 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4625 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4626 COps.push_back(A); 4627 else 4628 return nullptr; 4629 } 4630 4631 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4632 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4633 COps[1], DL); 4634 } 4635 4636 return ConstantFoldInstOperands(I, COps, DL); 4637 } 4638 4639 /// Try to determine the resulting constant values in phi nodes 4640 /// at the common destination basic block, *CommonDest, for one of the case 4641 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4642 /// case), of a switch instruction SI. 4643 static bool 4644 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4645 BasicBlock **CommonDest, 4646 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4647 const DataLayout &DL, const TargetTransformInfo &TTI) { 4648 // The block from which we enter the common destination. 4649 BasicBlock *Pred = SI->getParent(); 4650 4651 // If CaseDest is empty except for some side-effect free instructions through 4652 // which we can constant-propagate the CaseVal, continue to its successor. 4653 SmallDenseMap<Value *, Constant *> ConstantPool; 4654 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4655 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4656 if (I.isTerminator()) { 4657 // If the terminator is a simple branch, continue to the next block. 4658 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4659 return false; 4660 Pred = CaseDest; 4661 CaseDest = I.getSuccessor(0); 4662 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4663 // Instruction is side-effect free and constant. 4664 4665 // If the instruction has uses outside this block or a phi node slot for 4666 // the block, it is not safe to bypass the instruction since it would then 4667 // no longer dominate all its uses. 4668 for (auto &Use : I.uses()) { 4669 User *User = Use.getUser(); 4670 if (Instruction *I = dyn_cast<Instruction>(User)) 4671 if (I->getParent() == CaseDest) 4672 continue; 4673 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4674 if (Phi->getIncomingBlock(Use) == CaseDest) 4675 continue; 4676 return false; 4677 } 4678 4679 ConstantPool.insert(std::make_pair(&I, C)); 4680 } else { 4681 break; 4682 } 4683 } 4684 4685 // If we did not have a CommonDest before, use the current one. 4686 if (!*CommonDest) 4687 *CommonDest = CaseDest; 4688 // If the destination isn't the common one, abort. 4689 if (CaseDest != *CommonDest) 4690 return false; 4691 4692 // Get the values for this case from phi nodes in the destination block. 4693 for (PHINode &PHI : (*CommonDest)->phis()) { 4694 int Idx = PHI.getBasicBlockIndex(Pred); 4695 if (Idx == -1) 4696 continue; 4697 4698 Constant *ConstVal = 4699 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4700 if (!ConstVal) 4701 return false; 4702 4703 // Be conservative about which kinds of constants we support. 4704 if (!ValidLookupTableConstant(ConstVal, TTI)) 4705 return false; 4706 4707 Res.push_back(std::make_pair(&PHI, ConstVal)); 4708 } 4709 4710 return Res.size() > 0; 4711 } 4712 4713 // Helper function used to add CaseVal to the list of cases that generate 4714 // Result. Returns the updated number of cases that generate this result. 4715 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4716 SwitchCaseResultVectorTy &UniqueResults, 4717 Constant *Result) { 4718 for (auto &I : UniqueResults) { 4719 if (I.first == Result) { 4720 I.second.push_back(CaseVal); 4721 return I.second.size(); 4722 } 4723 } 4724 UniqueResults.push_back( 4725 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4726 return 1; 4727 } 4728 4729 // Helper function that initializes a map containing 4730 // results for the PHI node of the common destination block for a switch 4731 // instruction. Returns false if multiple PHI nodes have been found or if 4732 // there is not a common destination block for the switch. 4733 static bool 4734 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4735 SwitchCaseResultVectorTy &UniqueResults, 4736 Constant *&DefaultResult, const DataLayout &DL, 4737 const TargetTransformInfo &TTI, 4738 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4739 for (auto &I : SI->cases()) { 4740 ConstantInt *CaseVal = I.getCaseValue(); 4741 4742 // Resulting value at phi nodes for this case value. 4743 SwitchCaseResultsTy Results; 4744 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4745 DL, TTI)) 4746 return false; 4747 4748 // Only one value per case is permitted. 4749 if (Results.size() > 1) 4750 return false; 4751 4752 // Add the case->result mapping to UniqueResults. 4753 const uintptr_t NumCasesForResult = 4754 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4755 4756 // Early out if there are too many cases for this result. 4757 if (NumCasesForResult > MaxCasesPerResult) 4758 return false; 4759 4760 // Early out if there are too many unique results. 4761 if (UniqueResults.size() > MaxUniqueResults) 4762 return false; 4763 4764 // Check the PHI consistency. 4765 if (!PHI) 4766 PHI = Results[0].first; 4767 else if (PHI != Results[0].first) 4768 return false; 4769 } 4770 // Find the default result value. 4771 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4772 BasicBlock *DefaultDest = SI->getDefaultDest(); 4773 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4774 DL, TTI); 4775 // If the default value is not found abort unless the default destination 4776 // is unreachable. 4777 DefaultResult = 4778 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4779 if ((!DefaultResult && 4780 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4781 return false; 4782 4783 return true; 4784 } 4785 4786 // Helper function that checks if it is possible to transform a switch with only 4787 // two cases (or two cases + default) that produces a result into a select. 4788 // Example: 4789 // switch (a) { 4790 // case 10: %0 = icmp eq i32 %a, 10 4791 // return 10; %1 = select i1 %0, i32 10, i32 4 4792 // case 20: ----> %2 = icmp eq i32 %a, 20 4793 // return 2; %3 = select i1 %2, i32 2, i32 %1 4794 // default: 4795 // return 4; 4796 // } 4797 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4798 Constant *DefaultResult, Value *Condition, 4799 IRBuilder<> &Builder) { 4800 assert(ResultVector.size() == 2 && 4801 "We should have exactly two unique results at this point"); 4802 // If we are selecting between only two cases transform into a simple 4803 // select or a two-way select if default is possible. 4804 if (ResultVector[0].second.size() == 1 && 4805 ResultVector[1].second.size() == 1) { 4806 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4807 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4808 4809 bool DefaultCanTrigger = DefaultResult; 4810 Value *SelectValue = ResultVector[1].first; 4811 if (DefaultCanTrigger) { 4812 Value *const ValueCompare = 4813 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4814 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4815 DefaultResult, "switch.select"); 4816 } 4817 Value *const ValueCompare = 4818 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4819 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4820 SelectValue, "switch.select"); 4821 } 4822 4823 return nullptr; 4824 } 4825 4826 // Helper function to cleanup a switch instruction that has been converted into 4827 // a select, fixing up PHI nodes and basic blocks. 4828 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4829 Value *SelectValue, 4830 IRBuilder<> &Builder) { 4831 BasicBlock *SelectBB = SI->getParent(); 4832 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4833 PHI->removeIncomingValue(SelectBB); 4834 PHI->addIncoming(SelectValue, SelectBB); 4835 4836 Builder.CreateBr(PHI->getParent()); 4837 4838 // Remove the switch. 4839 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4840 BasicBlock *Succ = SI->getSuccessor(i); 4841 4842 if (Succ == PHI->getParent()) 4843 continue; 4844 Succ->removePredecessor(SelectBB); 4845 } 4846 SI->eraseFromParent(); 4847 } 4848 4849 /// If the switch is only used to initialize one or more 4850 /// phi nodes in a common successor block with only two different 4851 /// constant values, replace the switch with select. 4852 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4853 const DataLayout &DL, 4854 const TargetTransformInfo &TTI) { 4855 Value *const Cond = SI->getCondition(); 4856 PHINode *PHI = nullptr; 4857 BasicBlock *CommonDest = nullptr; 4858 Constant *DefaultResult; 4859 SwitchCaseResultVectorTy UniqueResults; 4860 // Collect all the cases that will deliver the same value from the switch. 4861 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4862 DL, TTI, 2, 1)) 4863 return false; 4864 // Selects choose between maximum two values. 4865 if (UniqueResults.size() != 2) 4866 return false; 4867 assert(PHI != nullptr && "PHI for value select not found"); 4868 4869 Builder.SetInsertPoint(SI); 4870 Value *SelectValue = 4871 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4872 if (SelectValue) { 4873 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4874 return true; 4875 } 4876 // The switch couldn't be converted into a select. 4877 return false; 4878 } 4879 4880 namespace { 4881 4882 /// This class represents a lookup table that can be used to replace a switch. 4883 class SwitchLookupTable { 4884 public: 4885 /// Create a lookup table to use as a switch replacement with the contents 4886 /// of Values, using DefaultValue to fill any holes in the table. 4887 SwitchLookupTable( 4888 Module &M, uint64_t TableSize, ConstantInt *Offset, 4889 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4890 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4891 4892 /// Build instructions with Builder to retrieve the value at 4893 /// the position given by Index in the lookup table. 4894 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4895 4896 /// Return true if a table with TableSize elements of 4897 /// type ElementType would fit in a target-legal register. 4898 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4899 Type *ElementType); 4900 4901 private: 4902 // Depending on the contents of the table, it can be represented in 4903 // different ways. 4904 enum { 4905 // For tables where each element contains the same value, we just have to 4906 // store that single value and return it for each lookup. 4907 SingleValueKind, 4908 4909 // For tables where there is a linear relationship between table index 4910 // and values. We calculate the result with a simple multiplication 4911 // and addition instead of a table lookup. 4912 LinearMapKind, 4913 4914 // For small tables with integer elements, we can pack them into a bitmap 4915 // that fits into a target-legal register. Values are retrieved by 4916 // shift and mask operations. 4917 BitMapKind, 4918 4919 // The table is stored as an array of values. Values are retrieved by load 4920 // instructions from the table. 4921 ArrayKind 4922 } Kind; 4923 4924 // For SingleValueKind, this is the single value. 4925 Constant *SingleValue = nullptr; 4926 4927 // For BitMapKind, this is the bitmap. 4928 ConstantInt *BitMap = nullptr; 4929 IntegerType *BitMapElementTy = nullptr; 4930 4931 // For LinearMapKind, these are the constants used to derive the value. 4932 ConstantInt *LinearOffset = nullptr; 4933 ConstantInt *LinearMultiplier = nullptr; 4934 4935 // For ArrayKind, this is the array. 4936 GlobalVariable *Array = nullptr; 4937 }; 4938 4939 } // end anonymous namespace 4940 4941 SwitchLookupTable::SwitchLookupTable( 4942 Module &M, uint64_t TableSize, ConstantInt *Offset, 4943 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4944 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4945 assert(Values.size() && "Can't build lookup table without values!"); 4946 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4947 4948 // If all values in the table are equal, this is that value. 4949 SingleValue = Values.begin()->second; 4950 4951 Type *ValueType = Values.begin()->second->getType(); 4952 4953 // Build up the table contents. 4954 SmallVector<Constant *, 64> TableContents(TableSize); 4955 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4956 ConstantInt *CaseVal = Values[I].first; 4957 Constant *CaseRes = Values[I].second; 4958 assert(CaseRes->getType() == ValueType); 4959 4960 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4961 TableContents[Idx] = CaseRes; 4962 4963 if (CaseRes != SingleValue) 4964 SingleValue = nullptr; 4965 } 4966 4967 // Fill in any holes in the table with the default result. 4968 if (Values.size() < TableSize) { 4969 assert(DefaultValue && 4970 "Need a default value to fill the lookup table holes."); 4971 assert(DefaultValue->getType() == ValueType); 4972 for (uint64_t I = 0; I < TableSize; ++I) { 4973 if (!TableContents[I]) 4974 TableContents[I] = DefaultValue; 4975 } 4976 4977 if (DefaultValue != SingleValue) 4978 SingleValue = nullptr; 4979 } 4980 4981 // If each element in the table contains the same value, we only need to store 4982 // that single value. 4983 if (SingleValue) { 4984 Kind = SingleValueKind; 4985 return; 4986 } 4987 4988 // Check if we can derive the value with a linear transformation from the 4989 // table index. 4990 if (isa<IntegerType>(ValueType)) { 4991 bool LinearMappingPossible = true; 4992 APInt PrevVal; 4993 APInt DistToPrev; 4994 assert(TableSize >= 2 && "Should be a SingleValue table."); 4995 // Check if there is the same distance between two consecutive values. 4996 for (uint64_t I = 0; I < TableSize; ++I) { 4997 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4998 if (!ConstVal) { 4999 // This is an undef. We could deal with it, but undefs in lookup tables 5000 // are very seldom. It's probably not worth the additional complexity. 5001 LinearMappingPossible = false; 5002 break; 5003 } 5004 const APInt &Val = ConstVal->getValue(); 5005 if (I != 0) { 5006 APInt Dist = Val - PrevVal; 5007 if (I == 1) { 5008 DistToPrev = Dist; 5009 } else if (Dist != DistToPrev) { 5010 LinearMappingPossible = false; 5011 break; 5012 } 5013 } 5014 PrevVal = Val; 5015 } 5016 if (LinearMappingPossible) { 5017 LinearOffset = cast<ConstantInt>(TableContents[0]); 5018 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5019 Kind = LinearMapKind; 5020 ++NumLinearMaps; 5021 return; 5022 } 5023 } 5024 5025 // If the type is integer and the table fits in a register, build a bitmap. 5026 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5027 IntegerType *IT = cast<IntegerType>(ValueType); 5028 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5029 for (uint64_t I = TableSize; I > 0; --I) { 5030 TableInt <<= IT->getBitWidth(); 5031 // Insert values into the bitmap. Undef values are set to zero. 5032 if (!isa<UndefValue>(TableContents[I - 1])) { 5033 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5034 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5035 } 5036 } 5037 BitMap = ConstantInt::get(M.getContext(), TableInt); 5038 BitMapElementTy = IT; 5039 Kind = BitMapKind; 5040 ++NumBitMaps; 5041 return; 5042 } 5043 5044 // Store the table in an array. 5045 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5046 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5047 5048 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5049 GlobalVariable::PrivateLinkage, Initializer, 5050 "switch.table." + FuncName); 5051 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5052 // Set the alignment to that of an array items. We will be only loading one 5053 // value out of it. 5054 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5055 Kind = ArrayKind; 5056 } 5057 5058 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5059 switch (Kind) { 5060 case SingleValueKind: 5061 return SingleValue; 5062 case LinearMapKind: { 5063 // Derive the result value from the input value. 5064 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5065 false, "switch.idx.cast"); 5066 if (!LinearMultiplier->isOne()) 5067 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5068 if (!LinearOffset->isZero()) 5069 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5070 return Result; 5071 } 5072 case BitMapKind: { 5073 // Type of the bitmap (e.g. i59). 5074 IntegerType *MapTy = BitMap->getType(); 5075 5076 // Cast Index to the same type as the bitmap. 5077 // Note: The Index is <= the number of elements in the table, so 5078 // truncating it to the width of the bitmask is safe. 5079 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5080 5081 // Multiply the shift amount by the element width. 5082 ShiftAmt = Builder.CreateMul( 5083 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5084 "switch.shiftamt"); 5085 5086 // Shift down. 5087 Value *DownShifted = 5088 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5089 // Mask off. 5090 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5091 } 5092 case ArrayKind: { 5093 // Make sure the table index will not overflow when treated as signed. 5094 IntegerType *IT = cast<IntegerType>(Index->getType()); 5095 uint64_t TableSize = 5096 Array->getInitializer()->getType()->getArrayNumElements(); 5097 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5098 Index = Builder.CreateZExt( 5099 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5100 "switch.tableidx.zext"); 5101 5102 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5103 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5104 GEPIndices, "switch.gep"); 5105 return Builder.CreateLoad(GEP, "switch.load"); 5106 } 5107 } 5108 llvm_unreachable("Unknown lookup table kind!"); 5109 } 5110 5111 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5112 uint64_t TableSize, 5113 Type *ElementType) { 5114 auto *IT = dyn_cast<IntegerType>(ElementType); 5115 if (!IT) 5116 return false; 5117 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5118 // are <= 15, we could try to narrow the type. 5119 5120 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5121 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5122 return false; 5123 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5124 } 5125 5126 /// Determine whether a lookup table should be built for this switch, based on 5127 /// the number of cases, size of the table, and the types of the results. 5128 static bool 5129 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5130 const TargetTransformInfo &TTI, const DataLayout &DL, 5131 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5132 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5133 return false; // TableSize overflowed, or mul below might overflow. 5134 5135 bool AllTablesFitInRegister = true; 5136 bool HasIllegalType = false; 5137 for (const auto &I : ResultTypes) { 5138 Type *Ty = I.second; 5139 5140 // Saturate this flag to true. 5141 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5142 5143 // Saturate this flag to false. 5144 AllTablesFitInRegister = 5145 AllTablesFitInRegister && 5146 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5147 5148 // If both flags saturate, we're done. NOTE: This *only* works with 5149 // saturating flags, and all flags have to saturate first due to the 5150 // non-deterministic behavior of iterating over a dense map. 5151 if (HasIllegalType && !AllTablesFitInRegister) 5152 break; 5153 } 5154 5155 // If each table would fit in a register, we should build it anyway. 5156 if (AllTablesFitInRegister) 5157 return true; 5158 5159 // Don't build a table that doesn't fit in-register if it has illegal types. 5160 if (HasIllegalType) 5161 return false; 5162 5163 // The table density should be at least 40%. This is the same criterion as for 5164 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5165 // FIXME: Find the best cut-off. 5166 return SI->getNumCases() * 10 >= TableSize * 4; 5167 } 5168 5169 /// Try to reuse the switch table index compare. Following pattern: 5170 /// \code 5171 /// if (idx < tablesize) 5172 /// r = table[idx]; // table does not contain default_value 5173 /// else 5174 /// r = default_value; 5175 /// if (r != default_value) 5176 /// ... 5177 /// \endcode 5178 /// Is optimized to: 5179 /// \code 5180 /// cond = idx < tablesize; 5181 /// if (cond) 5182 /// r = table[idx]; 5183 /// else 5184 /// r = default_value; 5185 /// if (cond) 5186 /// ... 5187 /// \endcode 5188 /// Jump threading will then eliminate the second if(cond). 5189 static void reuseTableCompare( 5190 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5191 Constant *DefaultValue, 5192 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5193 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5194 if (!CmpInst) 5195 return; 5196 5197 // We require that the compare is in the same block as the phi so that jump 5198 // threading can do its work afterwards. 5199 if (CmpInst->getParent() != PhiBlock) 5200 return; 5201 5202 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5203 if (!CmpOp1) 5204 return; 5205 5206 Value *RangeCmp = RangeCheckBranch->getCondition(); 5207 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5208 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5209 5210 // Check if the compare with the default value is constant true or false. 5211 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5212 DefaultValue, CmpOp1, true); 5213 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5214 return; 5215 5216 // Check if the compare with the case values is distinct from the default 5217 // compare result. 5218 for (auto ValuePair : Values) { 5219 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5220 ValuePair.second, CmpOp1, true); 5221 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5222 return; 5223 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5224 "Expect true or false as compare result."); 5225 } 5226 5227 // Check if the branch instruction dominates the phi node. It's a simple 5228 // dominance check, but sufficient for our needs. 5229 // Although this check is invariant in the calling loops, it's better to do it 5230 // at this late stage. Practically we do it at most once for a switch. 5231 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5232 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5233 BasicBlock *Pred = *PI; 5234 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5235 return; 5236 } 5237 5238 if (DefaultConst == FalseConst) { 5239 // The compare yields the same result. We can replace it. 5240 CmpInst->replaceAllUsesWith(RangeCmp); 5241 ++NumTableCmpReuses; 5242 } else { 5243 // The compare yields the same result, just inverted. We can replace it. 5244 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5245 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5246 RangeCheckBranch); 5247 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5248 ++NumTableCmpReuses; 5249 } 5250 } 5251 5252 /// If the switch is only used to initialize one or more phi nodes in a common 5253 /// successor block with different constant values, replace the switch with 5254 /// lookup tables. 5255 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5256 const DataLayout &DL, 5257 const TargetTransformInfo &TTI) { 5258 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5259 5260 Function *Fn = SI->getParent()->getParent(); 5261 // Only build lookup table when we have a target that supports it or the 5262 // attribute is not set. 5263 if (!TTI.shouldBuildLookupTables() || 5264 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5265 return false; 5266 5267 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5268 // split off a dense part and build a lookup table for that. 5269 5270 // FIXME: This creates arrays of GEPs to constant strings, which means each 5271 // GEP needs a runtime relocation in PIC code. We should just build one big 5272 // string and lookup indices into that. 5273 5274 // Ignore switches with less than three cases. Lookup tables will not make 5275 // them faster, so we don't analyze them. 5276 if (SI->getNumCases() < 3) 5277 return false; 5278 5279 // Figure out the corresponding result for each case value and phi node in the 5280 // common destination, as well as the min and max case values. 5281 assert(!empty(SI->cases())); 5282 SwitchInst::CaseIt CI = SI->case_begin(); 5283 ConstantInt *MinCaseVal = CI->getCaseValue(); 5284 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5285 5286 BasicBlock *CommonDest = nullptr; 5287 5288 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5289 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5290 5291 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5292 SmallDenseMap<PHINode *, Type *> ResultTypes; 5293 SmallVector<PHINode *, 4> PHIs; 5294 5295 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5296 ConstantInt *CaseVal = CI->getCaseValue(); 5297 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5298 MinCaseVal = CaseVal; 5299 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5300 MaxCaseVal = CaseVal; 5301 5302 // Resulting value at phi nodes for this case value. 5303 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5304 ResultsTy Results; 5305 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5306 Results, DL, TTI)) 5307 return false; 5308 5309 // Append the result from this case to the list for each phi. 5310 for (const auto &I : Results) { 5311 PHINode *PHI = I.first; 5312 Constant *Value = I.second; 5313 if (!ResultLists.count(PHI)) 5314 PHIs.push_back(PHI); 5315 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5316 } 5317 } 5318 5319 // Keep track of the result types. 5320 for (PHINode *PHI : PHIs) { 5321 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5322 } 5323 5324 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5325 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5326 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5327 bool TableHasHoles = (NumResults < TableSize); 5328 5329 // If the table has holes, we need a constant result for the default case 5330 // or a bitmask that fits in a register. 5331 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5332 bool HasDefaultResults = 5333 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5334 DefaultResultsList, DL, TTI); 5335 5336 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5337 if (NeedMask) { 5338 // As an extra penalty for the validity test we require more cases. 5339 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5340 return false; 5341 if (!DL.fitsInLegalInteger(TableSize)) 5342 return false; 5343 } 5344 5345 for (const auto &I : DefaultResultsList) { 5346 PHINode *PHI = I.first; 5347 Constant *Result = I.second; 5348 DefaultResults[PHI] = Result; 5349 } 5350 5351 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5352 return false; 5353 5354 // Create the BB that does the lookups. 5355 Module &Mod = *CommonDest->getParent()->getParent(); 5356 BasicBlock *LookupBB = BasicBlock::Create( 5357 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5358 5359 // Compute the table index value. 5360 Builder.SetInsertPoint(SI); 5361 Value *TableIndex; 5362 if (MinCaseVal->isNullValue()) 5363 TableIndex = SI->getCondition(); 5364 else 5365 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5366 "switch.tableidx"); 5367 5368 // Compute the maximum table size representable by the integer type we are 5369 // switching upon. 5370 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5371 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5372 assert(MaxTableSize >= TableSize && 5373 "It is impossible for a switch to have more entries than the max " 5374 "representable value of its input integer type's size."); 5375 5376 // If the default destination is unreachable, or if the lookup table covers 5377 // all values of the conditional variable, branch directly to the lookup table 5378 // BB. Otherwise, check that the condition is within the case range. 5379 const bool DefaultIsReachable = 5380 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5381 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5382 BranchInst *RangeCheckBranch = nullptr; 5383 5384 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5385 Builder.CreateBr(LookupBB); 5386 // Note: We call removeProdecessor later since we need to be able to get the 5387 // PHI value for the default case in case we're using a bit mask. 5388 } else { 5389 Value *Cmp = Builder.CreateICmpULT( 5390 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5391 RangeCheckBranch = 5392 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5393 } 5394 5395 // Populate the BB that does the lookups. 5396 Builder.SetInsertPoint(LookupBB); 5397 5398 if (NeedMask) { 5399 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5400 // re-purposed to do the hole check, and we create a new LookupBB. 5401 BasicBlock *MaskBB = LookupBB; 5402 MaskBB->setName("switch.hole_check"); 5403 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5404 CommonDest->getParent(), CommonDest); 5405 5406 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5407 // unnecessary illegal types. 5408 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5409 APInt MaskInt(TableSizePowOf2, 0); 5410 APInt One(TableSizePowOf2, 1); 5411 // Build bitmask; fill in a 1 bit for every case. 5412 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5413 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5414 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5415 .getLimitedValue(); 5416 MaskInt |= One << Idx; 5417 } 5418 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5419 5420 // Get the TableIndex'th bit of the bitmask. 5421 // If this bit is 0 (meaning hole) jump to the default destination, 5422 // else continue with table lookup. 5423 IntegerType *MapTy = TableMask->getType(); 5424 Value *MaskIndex = 5425 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5426 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5427 Value *LoBit = Builder.CreateTrunc( 5428 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5429 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5430 5431 Builder.SetInsertPoint(LookupBB); 5432 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5433 } 5434 5435 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5436 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5437 // do not delete PHINodes here. 5438 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5439 /*DontDeleteUselessPHIs=*/true); 5440 } 5441 5442 bool ReturnedEarly = false; 5443 for (PHINode *PHI : PHIs) { 5444 const ResultListTy &ResultList = ResultLists[PHI]; 5445 5446 // If using a bitmask, use any value to fill the lookup table holes. 5447 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5448 StringRef FuncName = Fn->getName(); 5449 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5450 FuncName); 5451 5452 Value *Result = Table.BuildLookup(TableIndex, Builder); 5453 5454 // If the result is used to return immediately from the function, we want to 5455 // do that right here. 5456 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5457 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5458 Builder.CreateRet(Result); 5459 ReturnedEarly = true; 5460 break; 5461 } 5462 5463 // Do a small peephole optimization: re-use the switch table compare if 5464 // possible. 5465 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5466 BasicBlock *PhiBlock = PHI->getParent(); 5467 // Search for compare instructions which use the phi. 5468 for (auto *User : PHI->users()) { 5469 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5470 } 5471 } 5472 5473 PHI->addIncoming(Result, LookupBB); 5474 } 5475 5476 if (!ReturnedEarly) 5477 Builder.CreateBr(CommonDest); 5478 5479 // Remove the switch. 5480 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5481 BasicBlock *Succ = SI->getSuccessor(i); 5482 5483 if (Succ == SI->getDefaultDest()) 5484 continue; 5485 Succ->removePredecessor(SI->getParent()); 5486 } 5487 SI->eraseFromParent(); 5488 5489 ++NumLookupTables; 5490 if (NeedMask) 5491 ++NumLookupTablesHoles; 5492 return true; 5493 } 5494 5495 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5496 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5497 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5498 uint64_t Range = Diff + 1; 5499 uint64_t NumCases = Values.size(); 5500 // 40% is the default density for building a jump table in optsize/minsize mode. 5501 uint64_t MinDensity = 40; 5502 5503 return NumCases * 100 >= Range * MinDensity; 5504 } 5505 5506 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5507 /// of cases. 5508 /// 5509 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5510 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5511 /// 5512 /// This converts a sparse switch into a dense switch which allows better 5513 /// lowering and could also allow transforming into a lookup table. 5514 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5515 const DataLayout &DL, 5516 const TargetTransformInfo &TTI) { 5517 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5518 if (CondTy->getIntegerBitWidth() > 64 || 5519 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5520 return false; 5521 // Only bother with this optimization if there are more than 3 switch cases; 5522 // SDAG will only bother creating jump tables for 4 or more cases. 5523 if (SI->getNumCases() < 4) 5524 return false; 5525 5526 // This transform is agnostic to the signedness of the input or case values. We 5527 // can treat the case values as signed or unsigned. We can optimize more common 5528 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5529 // as signed. 5530 SmallVector<int64_t,4> Values; 5531 for (auto &C : SI->cases()) 5532 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5533 llvm::sort(Values); 5534 5535 // If the switch is already dense, there's nothing useful to do here. 5536 if (isSwitchDense(Values)) 5537 return false; 5538 5539 // First, transform the values such that they start at zero and ascend. 5540 int64_t Base = Values[0]; 5541 for (auto &V : Values) 5542 V -= (uint64_t)(Base); 5543 5544 // Now we have signed numbers that have been shifted so that, given enough 5545 // precision, there are no negative values. Since the rest of the transform 5546 // is bitwise only, we switch now to an unsigned representation. 5547 uint64_t GCD = 0; 5548 for (auto &V : Values) 5549 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5550 5551 // This transform can be done speculatively because it is so cheap - it results 5552 // in a single rotate operation being inserted. This can only happen if the 5553 // factor extracted is a power of 2. 5554 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5555 // inverse of GCD and then perform this transform. 5556 // FIXME: It's possible that optimizing a switch on powers of two might also 5557 // be beneficial - flag values are often powers of two and we could use a CLZ 5558 // as the key function. 5559 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5560 // No common divisor found or too expensive to compute key function. 5561 return false; 5562 5563 unsigned Shift = Log2_64(GCD); 5564 for (auto &V : Values) 5565 V = (int64_t)((uint64_t)V >> Shift); 5566 5567 if (!isSwitchDense(Values)) 5568 // Transform didn't create a dense switch. 5569 return false; 5570 5571 // The obvious transform is to shift the switch condition right and emit a 5572 // check that the condition actually cleanly divided by GCD, i.e. 5573 // C & (1 << Shift - 1) == 0 5574 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5575 // 5576 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5577 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5578 // are nonzero then the switch condition will be very large and will hit the 5579 // default case. 5580 5581 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5582 Builder.SetInsertPoint(SI); 5583 auto *ShiftC = ConstantInt::get(Ty, Shift); 5584 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5585 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5586 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5587 auto *Rot = Builder.CreateOr(LShr, Shl); 5588 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5589 5590 for (auto Case : SI->cases()) { 5591 auto *Orig = Case.getCaseValue(); 5592 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5593 Case.setValue( 5594 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5595 } 5596 return true; 5597 } 5598 5599 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5600 BasicBlock *BB = SI->getParent(); 5601 5602 if (isValueEqualityComparison(SI)) { 5603 // If we only have one predecessor, and if it is a branch on this value, 5604 // see if that predecessor totally determines the outcome of this switch. 5605 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5606 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5607 return requestResimplify(); 5608 5609 Value *Cond = SI->getCondition(); 5610 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5611 if (SimplifySwitchOnSelect(SI, Select)) 5612 return requestResimplify(); 5613 5614 // If the block only contains the switch, see if we can fold the block 5615 // away into any preds. 5616 if (SI == &*BB->instructionsWithoutDebug().begin()) 5617 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5618 return requestResimplify(); 5619 } 5620 5621 // Try to transform the switch into an icmp and a branch. 5622 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5623 return requestResimplify(); 5624 5625 // Remove unreachable cases. 5626 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5627 return requestResimplify(); 5628 5629 if (switchToSelect(SI, Builder, DL, TTI)) 5630 return requestResimplify(); 5631 5632 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5633 return requestResimplify(); 5634 5635 // The conversion from switch to lookup tables results in difficult-to-analyze 5636 // code and makes pruning branches much harder. This is a problem if the 5637 // switch expression itself can still be restricted as a result of inlining or 5638 // CVP. Therefore, only apply this transformation during late stages of the 5639 // optimisation pipeline. 5640 if (Options.ConvertSwitchToLookupTable && 5641 SwitchToLookupTable(SI, Builder, DL, TTI)) 5642 return requestResimplify(); 5643 5644 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5645 return requestResimplify(); 5646 5647 return false; 5648 } 5649 5650 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5651 BasicBlock *BB = IBI->getParent(); 5652 bool Changed = false; 5653 5654 // Eliminate redundant destinations. 5655 SmallPtrSet<Value *, 8> Succs; 5656 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5657 BasicBlock *Dest = IBI->getDestination(i); 5658 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5659 Dest->removePredecessor(BB); 5660 IBI->removeDestination(i); 5661 --i; 5662 --e; 5663 Changed = true; 5664 } 5665 } 5666 5667 if (IBI->getNumDestinations() == 0) { 5668 // If the indirectbr has no successors, change it to unreachable. 5669 new UnreachableInst(IBI->getContext(), IBI); 5670 EraseTerminatorAndDCECond(IBI); 5671 return true; 5672 } 5673 5674 if (IBI->getNumDestinations() == 1) { 5675 // If the indirectbr has one successor, change it to a direct branch. 5676 BranchInst::Create(IBI->getDestination(0), IBI); 5677 EraseTerminatorAndDCECond(IBI); 5678 return true; 5679 } 5680 5681 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5682 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5683 return requestResimplify(); 5684 } 5685 return Changed; 5686 } 5687 5688 /// Given an block with only a single landing pad and a unconditional branch 5689 /// try to find another basic block which this one can be merged with. This 5690 /// handles cases where we have multiple invokes with unique landing pads, but 5691 /// a shared handler. 5692 /// 5693 /// We specifically choose to not worry about merging non-empty blocks 5694 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5695 /// practice, the optimizer produces empty landing pad blocks quite frequently 5696 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5697 /// sinking in this file) 5698 /// 5699 /// This is primarily a code size optimization. We need to avoid performing 5700 /// any transform which might inhibit optimization (such as our ability to 5701 /// specialize a particular handler via tail commoning). We do this by not 5702 /// merging any blocks which require us to introduce a phi. Since the same 5703 /// values are flowing through both blocks, we don't lose any ability to 5704 /// specialize. If anything, we make such specialization more likely. 5705 /// 5706 /// TODO - This transformation could remove entries from a phi in the target 5707 /// block when the inputs in the phi are the same for the two blocks being 5708 /// merged. In some cases, this could result in removal of the PHI entirely. 5709 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5710 BasicBlock *BB) { 5711 auto Succ = BB->getUniqueSuccessor(); 5712 assert(Succ); 5713 // If there's a phi in the successor block, we'd likely have to introduce 5714 // a phi into the merged landing pad block. 5715 if (isa<PHINode>(*Succ->begin())) 5716 return false; 5717 5718 for (BasicBlock *OtherPred : predecessors(Succ)) { 5719 if (BB == OtherPred) 5720 continue; 5721 BasicBlock::iterator I = OtherPred->begin(); 5722 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5723 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5724 continue; 5725 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5726 ; 5727 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5728 if (!BI2 || !BI2->isIdenticalTo(BI)) 5729 continue; 5730 5731 // We've found an identical block. Update our predecessors to take that 5732 // path instead and make ourselves dead. 5733 SmallPtrSet<BasicBlock *, 16> Preds; 5734 Preds.insert(pred_begin(BB), pred_end(BB)); 5735 for (BasicBlock *Pred : Preds) { 5736 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5737 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5738 "unexpected successor"); 5739 II->setUnwindDest(OtherPred); 5740 } 5741 5742 // The debug info in OtherPred doesn't cover the merged control flow that 5743 // used to go through BB. We need to delete it or update it. 5744 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5745 Instruction &Inst = *I; 5746 I++; 5747 if (isa<DbgInfoIntrinsic>(Inst)) 5748 Inst.eraseFromParent(); 5749 } 5750 5751 SmallPtrSet<BasicBlock *, 16> Succs; 5752 Succs.insert(succ_begin(BB), succ_end(BB)); 5753 for (BasicBlock *Succ : Succs) { 5754 Succ->removePredecessor(BB); 5755 } 5756 5757 IRBuilder<> Builder(BI); 5758 Builder.CreateUnreachable(); 5759 BI->eraseFromParent(); 5760 return true; 5761 } 5762 return false; 5763 } 5764 5765 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5766 IRBuilder<> &Builder) { 5767 BasicBlock *BB = BI->getParent(); 5768 BasicBlock *Succ = BI->getSuccessor(0); 5769 5770 // If the Terminator is the only non-phi instruction, simplify the block. 5771 // If LoopHeader is provided, check if the block or its successor is a loop 5772 // header. (This is for early invocations before loop simplify and 5773 // vectorization to keep canonical loop forms for nested loops. These blocks 5774 // can be eliminated when the pass is invoked later in the back-end.) 5775 // Note that if BB has only one predecessor then we do not introduce new 5776 // backedge, so we can eliminate BB. 5777 bool NeedCanonicalLoop = 5778 Options.NeedCanonicalLoop && 5779 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5780 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5781 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5782 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5783 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5784 return true; 5785 5786 // If the only instruction in the block is a seteq/setne comparison against a 5787 // constant, try to simplify the block. 5788 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5789 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5790 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5791 ; 5792 if (I->isTerminator() && 5793 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5794 return true; 5795 } 5796 5797 // See if we can merge an empty landing pad block with another which is 5798 // equivalent. 5799 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5800 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5801 ; 5802 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5803 return true; 5804 } 5805 5806 // If this basic block is ONLY a compare and a branch, and if a predecessor 5807 // branches to us and our successor, fold the comparison into the 5808 // predecessor and use logical operations to update the incoming value 5809 // for PHI nodes in common successor. 5810 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5811 return requestResimplify(); 5812 return false; 5813 } 5814 5815 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5816 BasicBlock *PredPred = nullptr; 5817 for (auto *P : predecessors(BB)) { 5818 BasicBlock *PPred = P->getSinglePredecessor(); 5819 if (!PPred || (PredPred && PredPred != PPred)) 5820 return nullptr; 5821 PredPred = PPred; 5822 } 5823 return PredPred; 5824 } 5825 5826 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5827 BasicBlock *BB = BI->getParent(); 5828 const Function *Fn = BB->getParent(); 5829 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5830 return false; 5831 5832 // Conditional branch 5833 if (isValueEqualityComparison(BI)) { 5834 // If we only have one predecessor, and if it is a branch on this value, 5835 // see if that predecessor totally determines the outcome of this 5836 // switch. 5837 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5838 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5839 return requestResimplify(); 5840 5841 // This block must be empty, except for the setcond inst, if it exists. 5842 // Ignore dbg intrinsics. 5843 auto I = BB->instructionsWithoutDebug().begin(); 5844 if (&*I == BI) { 5845 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5846 return requestResimplify(); 5847 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5848 ++I; 5849 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5850 return requestResimplify(); 5851 } 5852 } 5853 5854 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5855 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5856 return true; 5857 5858 // If this basic block has dominating predecessor blocks and the dominating 5859 // blocks' conditions imply BI's condition, we know the direction of BI. 5860 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5861 if (Imp) { 5862 // Turn this into a branch on constant. 5863 auto *OldCond = BI->getCondition(); 5864 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5865 : ConstantInt::getFalse(BB->getContext()); 5866 BI->setCondition(TorF); 5867 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5868 return requestResimplify(); 5869 } 5870 5871 // If this basic block is ONLY a compare and a branch, and if a predecessor 5872 // branches to us and one of our successors, fold the comparison into the 5873 // predecessor and use logical operations to pick the right destination. 5874 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5875 return requestResimplify(); 5876 5877 // We have a conditional branch to two blocks that are only reachable 5878 // from BI. We know that the condbr dominates the two blocks, so see if 5879 // there is any identical code in the "then" and "else" blocks. If so, we 5880 // can hoist it up to the branching block. 5881 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5882 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5883 if (HoistThenElseCodeToIf(BI, TTI)) 5884 return requestResimplify(); 5885 } else { 5886 // If Successor #1 has multiple preds, we may be able to conditionally 5887 // execute Successor #0 if it branches to Successor #1. 5888 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5889 if (Succ0TI->getNumSuccessors() == 1 && 5890 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5891 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5892 return requestResimplify(); 5893 } 5894 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5895 // If Successor #0 has multiple preds, we may be able to conditionally 5896 // execute Successor #1 if it branches to Successor #0. 5897 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5898 if (Succ1TI->getNumSuccessors() == 1 && 5899 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5900 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5901 return requestResimplify(); 5902 } 5903 5904 // If this is a branch on a phi node in the current block, thread control 5905 // through this block if any PHI node entries are constants. 5906 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5907 if (PN->getParent() == BI->getParent()) 5908 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5909 return requestResimplify(); 5910 5911 // Scan predecessor blocks for conditional branches. 5912 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5913 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5914 if (PBI != BI && PBI->isConditional()) 5915 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5916 return requestResimplify(); 5917 5918 // Look for diamond patterns. 5919 if (MergeCondStores) 5920 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5921 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5922 if (PBI != BI && PBI->isConditional()) 5923 if (mergeConditionalStores(PBI, BI, DL)) 5924 return requestResimplify(); 5925 5926 return false; 5927 } 5928 5929 /// Check if passing a value to an instruction will cause undefined behavior. 5930 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5931 Constant *C = dyn_cast<Constant>(V); 5932 if (!C) 5933 return false; 5934 5935 if (I->use_empty()) 5936 return false; 5937 5938 if (C->isNullValue() || isa<UndefValue>(C)) { 5939 // Only look at the first use, avoid hurting compile time with long uselists 5940 User *Use = *I->user_begin(); 5941 5942 // Now make sure that there are no instructions in between that can alter 5943 // control flow (eg. calls) 5944 for (BasicBlock::iterator 5945 i = ++BasicBlock::iterator(I), 5946 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5947 i != UI; ++i) 5948 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5949 return false; 5950 5951 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5952 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5953 if (GEP->getPointerOperand() == I) 5954 return passingValueIsAlwaysUndefined(V, GEP); 5955 5956 // Look through bitcasts. 5957 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5958 return passingValueIsAlwaysUndefined(V, BC); 5959 5960 // Load from null is undefined. 5961 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5962 if (!LI->isVolatile()) 5963 return !NullPointerIsDefined(LI->getFunction(), 5964 LI->getPointerAddressSpace()); 5965 5966 // Store to null is undefined. 5967 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5968 if (!SI->isVolatile()) 5969 return (!NullPointerIsDefined(SI->getFunction(), 5970 SI->getPointerAddressSpace())) && 5971 SI->getPointerOperand() == I; 5972 5973 // A call to null is undefined. 5974 if (auto CS = CallSite(Use)) 5975 return !NullPointerIsDefined(CS->getFunction()) && 5976 CS.getCalledValue() == I; 5977 } 5978 return false; 5979 } 5980 5981 /// If BB has an incoming value that will always trigger undefined behavior 5982 /// (eg. null pointer dereference), remove the branch leading here. 5983 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5984 for (PHINode &PHI : BB->phis()) 5985 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5986 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5987 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5988 IRBuilder<> Builder(T); 5989 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5990 BB->removePredecessor(PHI.getIncomingBlock(i)); 5991 // Turn uncoditional branches into unreachables and remove the dead 5992 // destination from conditional branches. 5993 if (BI->isUnconditional()) 5994 Builder.CreateUnreachable(); 5995 else 5996 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5997 : BI->getSuccessor(0)); 5998 BI->eraseFromParent(); 5999 return true; 6000 } 6001 // TODO: SwitchInst. 6002 } 6003 6004 return false; 6005 } 6006 6007 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6008 bool Changed = false; 6009 6010 assert(BB && BB->getParent() && "Block not embedded in function!"); 6011 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6012 6013 // Remove basic blocks that have no predecessors (except the entry block)... 6014 // or that just have themself as a predecessor. These are unreachable. 6015 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6016 BB->getSinglePredecessor() == BB) { 6017 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6018 DeleteDeadBlock(BB); 6019 return true; 6020 } 6021 6022 // Check to see if we can constant propagate this terminator instruction 6023 // away... 6024 Changed |= ConstantFoldTerminator(BB, true); 6025 6026 // Check for and eliminate duplicate PHI nodes in this block. 6027 Changed |= EliminateDuplicatePHINodes(BB); 6028 6029 // Check for and remove branches that will always cause undefined behavior. 6030 Changed |= removeUndefIntroducingPredecessor(BB); 6031 6032 // Merge basic blocks into their predecessor if there is only one distinct 6033 // pred, and if there is only one distinct successor of the predecessor, and 6034 // if there are no PHI nodes. 6035 if (MergeBlockIntoPredecessor(BB)) 6036 return true; 6037 6038 if (SinkCommon && Options.SinkCommonInsts) 6039 Changed |= SinkCommonCodeFromPredecessors(BB); 6040 6041 IRBuilder<> Builder(BB); 6042 6043 // If there is a trivial two-entry PHI node in this basic block, and we can 6044 // eliminate it, do so now. 6045 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6046 if (PN->getNumIncomingValues() == 2) 6047 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6048 6049 Builder.SetInsertPoint(BB->getTerminator()); 6050 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6051 if (BI->isUnconditional()) { 6052 if (SimplifyUncondBranch(BI, Builder)) 6053 return true; 6054 } else { 6055 if (SimplifyCondBranch(BI, Builder)) 6056 return true; 6057 } 6058 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6059 if (SimplifyReturn(RI, Builder)) 6060 return true; 6061 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6062 if (SimplifyResume(RI, Builder)) 6063 return true; 6064 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6065 if (SimplifyCleanupReturn(RI)) 6066 return true; 6067 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6068 if (SimplifySwitch(SI, Builder)) 6069 return true; 6070 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6071 if (SimplifyUnreachable(UI)) 6072 return true; 6073 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6074 if (SimplifyIndirectBr(IBI)) 6075 return true; 6076 } 6077 6078 return Changed; 6079 } 6080 6081 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6082 bool Changed = false; 6083 6084 // Repeated simplify BB as long as resimplification is requested. 6085 do { 6086 Resimplify = false; 6087 6088 // Perform one round of simplifcation. Resimplify flag will be set if 6089 // another iteration is requested. 6090 Changed |= simplifyOnce(BB); 6091 } while (Resimplify); 6092 6093 return Changed; 6094 } 6095 6096 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6097 const SimplifyCFGOptions &Options, 6098 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6099 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6100 Options) 6101 .run(BB); 6102 } 6103