1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/CFG.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/ConstantRange.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/NoFolder.h" 43 #include "llvm/Support/PatternMatch.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include <algorithm> 47 #include <map> 48 #include <set> 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 static cl::opt<unsigned> 53 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 54 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 55 56 static cl::opt<bool> 57 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 58 cl::desc("Duplicate return instructions into unconditional branches")); 59 60 static cl::opt<bool> 61 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 62 cl::desc("Sink common instructions down to the end block")); 63 64 static cl::opt<bool> 65 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 66 cl::desc("Hoist conditional stores if an unconditional store preceeds")); 67 68 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 69 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 70 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 71 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 72 73 namespace { 74 /// ValueEqualityComparisonCase - Represents a case of a switch. 75 struct ValueEqualityComparisonCase { 76 ConstantInt *Value; 77 BasicBlock *Dest; 78 79 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 80 : Value(Value), Dest(Dest) {} 81 82 bool operator<(ValueEqualityComparisonCase RHS) const { 83 // Comparing pointers is ok as we only rely on the order for uniquing. 84 return Value < RHS.Value; 85 } 86 87 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 88 }; 89 90 class SimplifyCFGOpt { 91 const TargetTransformInfo &TTI; 92 const DataLayout *const TD; 93 Value *isValueEqualityComparison(TerminatorInst *TI); 94 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 95 std::vector<ValueEqualityComparisonCase> &Cases); 96 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 97 BasicBlock *Pred, 98 IRBuilder<> &Builder); 99 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 100 IRBuilder<> &Builder); 101 102 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 103 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 104 bool SimplifyUnreachable(UnreachableInst *UI); 105 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 106 bool SimplifyIndirectBr(IndirectBrInst *IBI); 107 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 108 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 109 110 public: 111 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD) 112 : TTI(TTI), TD(TD) {} 113 bool run(BasicBlock *BB); 114 }; 115 } 116 117 /// SafeToMergeTerminators - Return true if it is safe to merge these two 118 /// terminator instructions together. 119 /// 120 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 121 if (SI1 == SI2) return false; // Can't merge with self! 122 123 // It is not safe to merge these two switch instructions if they have a common 124 // successor, and if that successor has a PHI node, and if *that* PHI node has 125 // conflicting incoming values from the two switch blocks. 126 BasicBlock *SI1BB = SI1->getParent(); 127 BasicBlock *SI2BB = SI2->getParent(); 128 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 129 130 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 131 if (SI1Succs.count(*I)) 132 for (BasicBlock::iterator BBI = (*I)->begin(); 133 isa<PHINode>(BBI); ++BBI) { 134 PHINode *PN = cast<PHINode>(BBI); 135 if (PN->getIncomingValueForBlock(SI1BB) != 136 PN->getIncomingValueForBlock(SI2BB)) 137 return false; 138 } 139 140 return true; 141 } 142 143 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 144 /// to merge these two terminator instructions together, where SI1 is an 145 /// unconditional branch. PhiNodes will store all PHI nodes in common 146 /// successors. 147 /// 148 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 149 BranchInst *SI2, 150 Instruction *Cond, 151 SmallVectorImpl<PHINode*> &PhiNodes) { 152 if (SI1 == SI2) return false; // Can't merge with self! 153 assert(SI1->isUnconditional() && SI2->isConditional()); 154 155 // We fold the unconditional branch if we can easily update all PHI nodes in 156 // common successors: 157 // 1> We have a constant incoming value for the conditional branch; 158 // 2> We have "Cond" as the incoming value for the unconditional branch; 159 // 3> SI2->getCondition() and Cond have same operands. 160 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 161 if (!Ci2) return false; 162 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 163 Cond->getOperand(1) == Ci2->getOperand(1)) && 164 !(Cond->getOperand(0) == Ci2->getOperand(1) && 165 Cond->getOperand(1) == Ci2->getOperand(0))) 166 return false; 167 168 BasicBlock *SI1BB = SI1->getParent(); 169 BasicBlock *SI2BB = SI2->getParent(); 170 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 171 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 172 if (SI1Succs.count(*I)) 173 for (BasicBlock::iterator BBI = (*I)->begin(); 174 isa<PHINode>(BBI); ++BBI) { 175 PHINode *PN = cast<PHINode>(BBI); 176 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 177 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 178 return false; 179 PhiNodes.push_back(PN); 180 } 181 return true; 182 } 183 184 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 185 /// now be entries in it from the 'NewPred' block. The values that will be 186 /// flowing into the PHI nodes will be the same as those coming in from 187 /// ExistPred, an existing predecessor of Succ. 188 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 189 BasicBlock *ExistPred) { 190 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 191 192 PHINode *PN; 193 for (BasicBlock::iterator I = Succ->begin(); 194 (PN = dyn_cast<PHINode>(I)); ++I) 195 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 196 } 197 198 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 199 /// given instruction, which is assumed to be safe to speculate. 1 means 200 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 201 static unsigned ComputeSpeculationCost(const User *I) { 202 assert(isSafeToSpeculativelyExecute(I) && 203 "Instruction is not safe to speculatively execute!"); 204 switch (Operator::getOpcode(I)) { 205 default: 206 // In doubt, be conservative. 207 return UINT_MAX; 208 case Instruction::GetElementPtr: 209 // GEPs are cheap if all indices are constant. 210 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 211 return UINT_MAX; 212 return 1; 213 case Instruction::Load: 214 case Instruction::Add: 215 case Instruction::Sub: 216 case Instruction::And: 217 case Instruction::Or: 218 case Instruction::Xor: 219 case Instruction::Shl: 220 case Instruction::LShr: 221 case Instruction::AShr: 222 case Instruction::ICmp: 223 case Instruction::Trunc: 224 case Instruction::ZExt: 225 case Instruction::SExt: 226 return 1; // These are all cheap. 227 228 case Instruction::Call: 229 case Instruction::Select: 230 return 2; 231 } 232 } 233 234 /// DominatesMergePoint - If we have a merge point of an "if condition" as 235 /// accepted above, return true if the specified value dominates the block. We 236 /// don't handle the true generality of domination here, just a special case 237 /// which works well enough for us. 238 /// 239 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 240 /// see if V (which must be an instruction) and its recursive operands 241 /// that do not dominate BB have a combined cost lower than CostRemaining and 242 /// are non-trapping. If both are true, the instruction is inserted into the 243 /// set and true is returned. 244 /// 245 /// The cost for most non-trapping instructions is defined as 1 except for 246 /// Select whose cost is 2. 247 /// 248 /// After this function returns, CostRemaining is decreased by the cost of 249 /// V plus its non-dominating operands. If that cost is greater than 250 /// CostRemaining, false is returned and CostRemaining is undefined. 251 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 252 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 253 unsigned &CostRemaining) { 254 Instruction *I = dyn_cast<Instruction>(V); 255 if (!I) { 256 // Non-instructions all dominate instructions, but not all constantexprs 257 // can be executed unconditionally. 258 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 259 if (C->canTrap()) 260 return false; 261 return true; 262 } 263 BasicBlock *PBB = I->getParent(); 264 265 // We don't want to allow weird loops that might have the "if condition" in 266 // the bottom of this block. 267 if (PBB == BB) return false; 268 269 // If this instruction is defined in a block that contains an unconditional 270 // branch to BB, then it must be in the 'conditional' part of the "if 271 // statement". If not, it definitely dominates the region. 272 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 273 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 274 return true; 275 276 // If we aren't allowing aggressive promotion anymore, then don't consider 277 // instructions in the 'if region'. 278 if (AggressiveInsts == 0) return false; 279 280 // If we have seen this instruction before, don't count it again. 281 if (AggressiveInsts->count(I)) return true; 282 283 // Okay, it looks like the instruction IS in the "condition". Check to 284 // see if it's a cheap instruction to unconditionally compute, and if it 285 // only uses stuff defined outside of the condition. If so, hoist it out. 286 if (!isSafeToSpeculativelyExecute(I)) 287 return false; 288 289 unsigned Cost = ComputeSpeculationCost(I); 290 291 if (Cost > CostRemaining) 292 return false; 293 294 CostRemaining -= Cost; 295 296 // Okay, we can only really hoist these out if their operands do 297 // not take us over the cost threshold. 298 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 299 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 300 return false; 301 // Okay, it's safe to do this! Remember this instruction. 302 AggressiveInsts->insert(I); 303 return true; 304 } 305 306 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 307 /// and PointerNullValue. Return NULL if value is not a constant int. 308 static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) { 309 // Normal constant int. 310 ConstantInt *CI = dyn_cast<ConstantInt>(V); 311 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 312 return CI; 313 314 // This is some kind of pointer constant. Turn it into a pointer-sized 315 // ConstantInt if possible. 316 IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType())); 317 318 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 319 if (isa<ConstantPointerNull>(V)) 320 return ConstantInt::get(PtrTy, 0); 321 322 // IntToPtr const int. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 324 if (CE->getOpcode() == Instruction::IntToPtr) 325 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 326 // The constant is very likely to have the right type already. 327 if (CI->getType() == PtrTy) 328 return CI; 329 else 330 return cast<ConstantInt> 331 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 332 } 333 return 0; 334 } 335 336 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 337 /// collection of icmp eq/ne instructions that compare a value against a 338 /// constant, return the value being compared, and stick the constant into the 339 /// Values vector. 340 static Value * 341 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 342 const DataLayout *TD, bool isEQ, unsigned &UsedICmps) { 343 Instruction *I = dyn_cast<Instruction>(V); 344 if (I == 0) return 0; 345 346 // If this is an icmp against a constant, handle this as one of the cases. 347 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 348 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 349 Value *RHSVal; 350 ConstantInt *RHSC; 351 352 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 353 // (x & ~2^x) == y --> x == y || x == y|2^x 354 // This undoes a transformation done by instcombine to fuse 2 compares. 355 if (match(ICI->getOperand(0), 356 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 357 APInt Not = ~RHSC->getValue(); 358 if (Not.isPowerOf2()) { 359 Vals.push_back(C); 360 Vals.push_back( 361 ConstantInt::get(C->getContext(), C->getValue() | Not)); 362 UsedICmps++; 363 return RHSVal; 364 } 365 } 366 367 UsedICmps++; 368 Vals.push_back(C); 369 return I->getOperand(0); 370 } 371 372 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 373 // the set. 374 ConstantRange Span = 375 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 376 377 // Shift the range if the compare is fed by an add. This is the range 378 // compare idiom as emitted by instcombine. 379 bool hasAdd = 380 match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC))); 381 if (hasAdd) 382 Span = Span.subtract(RHSC->getValue()); 383 384 // If this is an and/!= check then we want to optimize "x ugt 2" into 385 // x != 0 && x != 1. 386 if (!isEQ) 387 Span = Span.inverse(); 388 389 // If there are a ton of values, we don't want to make a ginormous switch. 390 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 391 return 0; 392 393 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 394 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 395 UsedICmps++; 396 return hasAdd ? RHSVal : I->getOperand(0); 397 } 398 return 0; 399 } 400 401 // Otherwise, we can only handle an | or &, depending on isEQ. 402 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 403 return 0; 404 405 unsigned NumValsBeforeLHS = Vals.size(); 406 unsigned UsedICmpsBeforeLHS = UsedICmps; 407 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 408 isEQ, UsedICmps)) { 409 unsigned NumVals = Vals.size(); 410 unsigned UsedICmpsBeforeRHS = UsedICmps; 411 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 412 isEQ, UsedICmps)) { 413 if (LHS == RHS) 414 return LHS; 415 Vals.resize(NumVals); 416 UsedICmps = UsedICmpsBeforeRHS; 417 } 418 419 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 420 // set it and return success. 421 if (Extra == 0 || Extra == I->getOperand(1)) { 422 Extra = I->getOperand(1); 423 return LHS; 424 } 425 426 Vals.resize(NumValsBeforeLHS); 427 UsedICmps = UsedICmpsBeforeLHS; 428 return 0; 429 } 430 431 // If the LHS can't be folded in, but Extra is available and RHS can, try to 432 // use LHS as Extra. 433 if (Extra == 0 || Extra == I->getOperand(0)) { 434 Value *OldExtra = Extra; 435 Extra = I->getOperand(0); 436 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 437 isEQ, UsedICmps)) 438 return RHS; 439 assert(Vals.size() == NumValsBeforeLHS); 440 Extra = OldExtra; 441 } 442 443 return 0; 444 } 445 446 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 447 Instruction *Cond = 0; 448 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 449 Cond = dyn_cast<Instruction>(SI->getCondition()); 450 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 451 if (BI->isConditional()) 452 Cond = dyn_cast<Instruction>(BI->getCondition()); 453 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 454 Cond = dyn_cast<Instruction>(IBI->getAddress()); 455 } 456 457 TI->eraseFromParent(); 458 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 459 } 460 461 /// isValueEqualityComparison - Return true if the specified terminator checks 462 /// to see if a value is equal to constant integer value. 463 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 464 Value *CV = 0; 465 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 466 // Do not permit merging of large switch instructions into their 467 // predecessors unless there is only one predecessor. 468 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 469 pred_end(SI->getParent())) <= 128) 470 CV = SI->getCondition(); 471 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 472 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 473 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 474 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD)) 475 CV = ICI->getOperand(0); 476 477 // Unwrap any lossless ptrtoint cast. 478 if (TD && CV) { 479 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 480 Value *Ptr = PTII->getPointerOperand(); 481 if (PTII->getType() == TD->getIntPtrType(Ptr->getType())) 482 CV = Ptr; 483 } 484 } 485 return CV; 486 } 487 488 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 489 /// decode all of the 'cases' that it represents and return the 'default' block. 490 BasicBlock *SimplifyCFGOpt:: 491 GetValueEqualityComparisonCases(TerminatorInst *TI, 492 std::vector<ValueEqualityComparisonCase> 493 &Cases) { 494 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 495 Cases.reserve(SI->getNumCases()); 496 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 497 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 498 i.getCaseSuccessor())); 499 return SI->getDefaultDest(); 500 } 501 502 BranchInst *BI = cast<BranchInst>(TI); 503 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 504 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 505 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 506 TD), 507 Succ)); 508 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 509 } 510 511 512 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 513 /// in the list that match the specified block. 514 static void EliminateBlockCases(BasicBlock *BB, 515 std::vector<ValueEqualityComparisonCase> &Cases) { 516 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 517 } 518 519 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 520 /// well. 521 static bool 522 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 523 std::vector<ValueEqualityComparisonCase > &C2) { 524 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 525 526 // Make V1 be smaller than V2. 527 if (V1->size() > V2->size()) 528 std::swap(V1, V2); 529 530 if (V1->size() == 0) return false; 531 if (V1->size() == 1) { 532 // Just scan V2. 533 ConstantInt *TheVal = (*V1)[0].Value; 534 for (unsigned i = 0, e = V2->size(); i != e; ++i) 535 if (TheVal == (*V2)[i].Value) 536 return true; 537 } 538 539 // Otherwise, just sort both lists and compare element by element. 540 array_pod_sort(V1->begin(), V1->end()); 541 array_pod_sort(V2->begin(), V2->end()); 542 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 543 while (i1 != e1 && i2 != e2) { 544 if ((*V1)[i1].Value == (*V2)[i2].Value) 545 return true; 546 if ((*V1)[i1].Value < (*V2)[i2].Value) 547 ++i1; 548 else 549 ++i2; 550 } 551 return false; 552 } 553 554 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 555 /// terminator instruction and its block is known to only have a single 556 /// predecessor block, check to see if that predecessor is also a value 557 /// comparison with the same value, and if that comparison determines the 558 /// outcome of this comparison. If so, simplify TI. This does a very limited 559 /// form of jump threading. 560 bool SimplifyCFGOpt:: 561 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 562 BasicBlock *Pred, 563 IRBuilder<> &Builder) { 564 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 565 if (!PredVal) return false; // Not a value comparison in predecessor. 566 567 Value *ThisVal = isValueEqualityComparison(TI); 568 assert(ThisVal && "This isn't a value comparison!!"); 569 if (ThisVal != PredVal) return false; // Different predicates. 570 571 // TODO: Preserve branch weight metadata, similarly to how 572 // FoldValueComparisonIntoPredecessors preserves it. 573 574 // Find out information about when control will move from Pred to TI's block. 575 std::vector<ValueEqualityComparisonCase> PredCases; 576 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 577 PredCases); 578 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 579 580 // Find information about how control leaves this block. 581 std::vector<ValueEqualityComparisonCase> ThisCases; 582 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 583 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 584 585 // If TI's block is the default block from Pred's comparison, potentially 586 // simplify TI based on this knowledge. 587 if (PredDef == TI->getParent()) { 588 // If we are here, we know that the value is none of those cases listed in 589 // PredCases. If there are any cases in ThisCases that are in PredCases, we 590 // can simplify TI. 591 if (!ValuesOverlap(PredCases, ThisCases)) 592 return false; 593 594 if (isa<BranchInst>(TI)) { 595 // Okay, one of the successors of this condbr is dead. Convert it to a 596 // uncond br. 597 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 598 // Insert the new branch. 599 Instruction *NI = Builder.CreateBr(ThisDef); 600 (void) NI; 601 602 // Remove PHI node entries for the dead edge. 603 ThisCases[0].Dest->removePredecessor(TI->getParent()); 604 605 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 606 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 607 608 EraseTerminatorInstAndDCECond(TI); 609 return true; 610 } 611 612 SwitchInst *SI = cast<SwitchInst>(TI); 613 // Okay, TI has cases that are statically dead, prune them away. 614 SmallPtrSet<Constant*, 16> DeadCases; 615 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 616 DeadCases.insert(PredCases[i].Value); 617 618 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 619 << "Through successor TI: " << *TI); 620 621 // Collect branch weights into a vector. 622 SmallVector<uint32_t, 8> Weights; 623 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 624 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 625 if (HasWeight) 626 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 627 ++MD_i) { 628 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 629 assert(CI); 630 Weights.push_back(CI->getValue().getZExtValue()); 631 } 632 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 633 --i; 634 if (DeadCases.count(i.getCaseValue())) { 635 if (HasWeight) { 636 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 637 Weights.pop_back(); 638 } 639 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 640 SI->removeCase(i); 641 } 642 } 643 if (HasWeight && Weights.size() >= 2) 644 SI->setMetadata(LLVMContext::MD_prof, 645 MDBuilder(SI->getParent()->getContext()). 646 createBranchWeights(Weights)); 647 648 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 649 return true; 650 } 651 652 // Otherwise, TI's block must correspond to some matched value. Find out 653 // which value (or set of values) this is. 654 ConstantInt *TIV = 0; 655 BasicBlock *TIBB = TI->getParent(); 656 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 657 if (PredCases[i].Dest == TIBB) { 658 if (TIV != 0) 659 return false; // Cannot handle multiple values coming to this block. 660 TIV = PredCases[i].Value; 661 } 662 assert(TIV && "No edge from pred to succ?"); 663 664 // Okay, we found the one constant that our value can be if we get into TI's 665 // BB. Find out which successor will unconditionally be branched to. 666 BasicBlock *TheRealDest = 0; 667 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 668 if (ThisCases[i].Value == TIV) { 669 TheRealDest = ThisCases[i].Dest; 670 break; 671 } 672 673 // If not handled by any explicit cases, it is handled by the default case. 674 if (TheRealDest == 0) TheRealDest = ThisDef; 675 676 // Remove PHI node entries for dead edges. 677 BasicBlock *CheckEdge = TheRealDest; 678 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 679 if (*SI != CheckEdge) 680 (*SI)->removePredecessor(TIBB); 681 else 682 CheckEdge = 0; 683 684 // Insert the new branch. 685 Instruction *NI = Builder.CreateBr(TheRealDest); 686 (void) NI; 687 688 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 689 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 690 691 EraseTerminatorInstAndDCECond(TI); 692 return true; 693 } 694 695 namespace { 696 /// ConstantIntOrdering - This class implements a stable ordering of constant 697 /// integers that does not depend on their address. This is important for 698 /// applications that sort ConstantInt's to ensure uniqueness. 699 struct ConstantIntOrdering { 700 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 701 return LHS->getValue().ult(RHS->getValue()); 702 } 703 }; 704 } 705 706 static int ConstantIntSortPredicate(ConstantInt *const *P1, 707 ConstantInt *const *P2) { 708 const ConstantInt *LHS = *P1; 709 const ConstantInt *RHS = *P2; 710 if (LHS->getValue().ult(RHS->getValue())) 711 return 1; 712 if (LHS->getValue() == RHS->getValue()) 713 return 0; 714 return -1; 715 } 716 717 static inline bool HasBranchWeights(const Instruction* I) { 718 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 719 if (ProfMD && ProfMD->getOperand(0)) 720 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 721 return MDS->getString().equals("branch_weights"); 722 723 return false; 724 } 725 726 /// Get Weights of a given TerminatorInst, the default weight is at the front 727 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 728 /// metadata. 729 static void GetBranchWeights(TerminatorInst *TI, 730 SmallVectorImpl<uint64_t> &Weights) { 731 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 732 assert(MD); 733 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 734 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 735 assert(CI); 736 Weights.push_back(CI->getValue().getZExtValue()); 737 } 738 739 // If TI is a conditional eq, the default case is the false case, 740 // and the corresponding branch-weight data is at index 2. We swap the 741 // default weight to be the first entry. 742 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 743 assert(Weights.size() == 2); 744 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 745 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 746 std::swap(Weights.front(), Weights.back()); 747 } 748 } 749 750 /// Sees if any of the weights are too big for a uint32_t, and halves all the 751 /// weights if any are. 752 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 753 bool Halve = false; 754 for (unsigned i = 0; i < Weights.size(); ++i) 755 if (Weights[i] > UINT_MAX) { 756 Halve = true; 757 break; 758 } 759 760 if (! Halve) 761 return; 762 763 for (unsigned i = 0; i < Weights.size(); ++i) 764 Weights[i] /= 2; 765 } 766 767 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 768 /// equality comparison instruction (either a switch or a branch on "X == c"). 769 /// See if any of the predecessors of the terminator block are value comparisons 770 /// on the same value. If so, and if safe to do so, fold them together. 771 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 772 IRBuilder<> &Builder) { 773 BasicBlock *BB = TI->getParent(); 774 Value *CV = isValueEqualityComparison(TI); // CondVal 775 assert(CV && "Not a comparison?"); 776 bool Changed = false; 777 778 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 779 while (!Preds.empty()) { 780 BasicBlock *Pred = Preds.pop_back_val(); 781 782 // See if the predecessor is a comparison with the same value. 783 TerminatorInst *PTI = Pred->getTerminator(); 784 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 785 786 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 787 // Figure out which 'cases' to copy from SI to PSI. 788 std::vector<ValueEqualityComparisonCase> BBCases; 789 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 790 791 std::vector<ValueEqualityComparisonCase> PredCases; 792 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 793 794 // Based on whether the default edge from PTI goes to BB or not, fill in 795 // PredCases and PredDefault with the new switch cases we would like to 796 // build. 797 SmallVector<BasicBlock*, 8> NewSuccessors; 798 799 // Update the branch weight metadata along the way 800 SmallVector<uint64_t, 8> Weights; 801 bool PredHasWeights = HasBranchWeights(PTI); 802 bool SuccHasWeights = HasBranchWeights(TI); 803 804 if (PredHasWeights) { 805 GetBranchWeights(PTI, Weights); 806 // branch-weight metadata is inconsistent here. 807 if (Weights.size() != 1 + PredCases.size()) 808 PredHasWeights = SuccHasWeights = false; 809 } else if (SuccHasWeights) 810 // If there are no predecessor weights but there are successor weights, 811 // populate Weights with 1, which will later be scaled to the sum of 812 // successor's weights 813 Weights.assign(1 + PredCases.size(), 1); 814 815 SmallVector<uint64_t, 8> SuccWeights; 816 if (SuccHasWeights) { 817 GetBranchWeights(TI, SuccWeights); 818 // branch-weight metadata is inconsistent here. 819 if (SuccWeights.size() != 1 + BBCases.size()) 820 PredHasWeights = SuccHasWeights = false; 821 } else if (PredHasWeights) 822 SuccWeights.assign(1 + BBCases.size(), 1); 823 824 if (PredDefault == BB) { 825 // If this is the default destination from PTI, only the edges in TI 826 // that don't occur in PTI, or that branch to BB will be activated. 827 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 828 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 829 if (PredCases[i].Dest != BB) 830 PTIHandled.insert(PredCases[i].Value); 831 else { 832 // The default destination is BB, we don't need explicit targets. 833 std::swap(PredCases[i], PredCases.back()); 834 835 if (PredHasWeights || SuccHasWeights) { 836 // Increase weight for the default case. 837 Weights[0] += Weights[i+1]; 838 std::swap(Weights[i+1], Weights.back()); 839 Weights.pop_back(); 840 } 841 842 PredCases.pop_back(); 843 --i; --e; 844 } 845 846 // Reconstruct the new switch statement we will be building. 847 if (PredDefault != BBDefault) { 848 PredDefault->removePredecessor(Pred); 849 PredDefault = BBDefault; 850 NewSuccessors.push_back(BBDefault); 851 } 852 853 unsigned CasesFromPred = Weights.size(); 854 uint64_t ValidTotalSuccWeight = 0; 855 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 856 if (!PTIHandled.count(BBCases[i].Value) && 857 BBCases[i].Dest != BBDefault) { 858 PredCases.push_back(BBCases[i]); 859 NewSuccessors.push_back(BBCases[i].Dest); 860 if (SuccHasWeights || PredHasWeights) { 861 // The default weight is at index 0, so weight for the ith case 862 // should be at index i+1. Scale the cases from successor by 863 // PredDefaultWeight (Weights[0]). 864 Weights.push_back(Weights[0] * SuccWeights[i+1]); 865 ValidTotalSuccWeight += SuccWeights[i+1]; 866 } 867 } 868 869 if (SuccHasWeights || PredHasWeights) { 870 ValidTotalSuccWeight += SuccWeights[0]; 871 // Scale the cases from predecessor by ValidTotalSuccWeight. 872 for (unsigned i = 1; i < CasesFromPred; ++i) 873 Weights[i] *= ValidTotalSuccWeight; 874 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 875 Weights[0] *= SuccWeights[0]; 876 } 877 } else { 878 // If this is not the default destination from PSI, only the edges 879 // in SI that occur in PSI with a destination of BB will be 880 // activated. 881 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 882 std::map<ConstantInt*, uint64_t> WeightsForHandled; 883 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 884 if (PredCases[i].Dest == BB) { 885 PTIHandled.insert(PredCases[i].Value); 886 887 if (PredHasWeights || SuccHasWeights) { 888 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 889 std::swap(Weights[i+1], Weights.back()); 890 Weights.pop_back(); 891 } 892 893 std::swap(PredCases[i], PredCases.back()); 894 PredCases.pop_back(); 895 --i; --e; 896 } 897 898 // Okay, now we know which constants were sent to BB from the 899 // predecessor. Figure out where they will all go now. 900 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 901 if (PTIHandled.count(BBCases[i].Value)) { 902 // If this is one we are capable of getting... 903 if (PredHasWeights || SuccHasWeights) 904 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 905 PredCases.push_back(BBCases[i]); 906 NewSuccessors.push_back(BBCases[i].Dest); 907 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 908 } 909 910 // If there are any constants vectored to BB that TI doesn't handle, 911 // they must go to the default destination of TI. 912 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 913 PTIHandled.begin(), 914 E = PTIHandled.end(); I != E; ++I) { 915 if (PredHasWeights || SuccHasWeights) 916 Weights.push_back(WeightsForHandled[*I]); 917 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 918 NewSuccessors.push_back(BBDefault); 919 } 920 } 921 922 // Okay, at this point, we know which new successor Pred will get. Make 923 // sure we update the number of entries in the PHI nodes for these 924 // successors. 925 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 926 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 927 928 Builder.SetInsertPoint(PTI); 929 // Convert pointer to int before we switch. 930 if (CV->getType()->isPointerTy()) { 931 assert(TD && "Cannot switch on pointer without DataLayout"); 932 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()), 933 "magicptr"); 934 } 935 936 // Now that the successors are updated, create the new Switch instruction. 937 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 938 PredCases.size()); 939 NewSI->setDebugLoc(PTI->getDebugLoc()); 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 942 943 if (PredHasWeights || SuccHasWeights) { 944 // Halve the weights if any of them cannot fit in an uint32_t 945 FitWeights(Weights); 946 947 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 948 949 NewSI->setMetadata(LLVMContext::MD_prof, 950 MDBuilder(BB->getContext()). 951 createBranchWeights(MDWeights)); 952 } 953 954 EraseTerminatorInstAndDCECond(PTI); 955 956 // Okay, last check. If BB is still a successor of PSI, then we must 957 // have an infinite loop case. If so, add an infinitely looping block 958 // to handle the case to preserve the behavior of the code. 959 BasicBlock *InfLoopBlock = 0; 960 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 961 if (NewSI->getSuccessor(i) == BB) { 962 if (InfLoopBlock == 0) { 963 // Insert it at the end of the function, because it's either code, 964 // or it won't matter if it's hot. :) 965 InfLoopBlock = BasicBlock::Create(BB->getContext(), 966 "infloop", BB->getParent()); 967 BranchInst::Create(InfLoopBlock, InfLoopBlock); 968 } 969 NewSI->setSuccessor(i, InfLoopBlock); 970 } 971 972 Changed = true; 973 } 974 } 975 return Changed; 976 } 977 978 // isSafeToHoistInvoke - If we would need to insert a select that uses the 979 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 980 // would need to do this), we can't hoist the invoke, as there is nowhere 981 // to put the select in this case. 982 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 983 Instruction *I1, Instruction *I2) { 984 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 985 PHINode *PN; 986 for (BasicBlock::iterator BBI = SI->begin(); 987 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 988 Value *BB1V = PN->getIncomingValueForBlock(BB1); 989 Value *BB2V = PN->getIncomingValueForBlock(BB2); 990 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 991 return false; 992 } 993 } 994 } 995 return true; 996 } 997 998 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 999 /// BB2, hoist any common code in the two blocks up into the branch block. The 1000 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1001 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1002 // This does very trivial matching, with limited scanning, to find identical 1003 // instructions in the two blocks. In particular, we don't want to get into 1004 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1005 // such, we currently just scan for obviously identical instructions in an 1006 // identical order. 1007 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1008 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1009 1010 BasicBlock::iterator BB1_Itr = BB1->begin(); 1011 BasicBlock::iterator BB2_Itr = BB2->begin(); 1012 1013 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1014 // Skip debug info if it is not identical. 1015 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1016 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1017 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1018 while (isa<DbgInfoIntrinsic>(I1)) 1019 I1 = BB1_Itr++; 1020 while (isa<DbgInfoIntrinsic>(I2)) 1021 I2 = BB2_Itr++; 1022 } 1023 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1024 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1025 return false; 1026 1027 BasicBlock *BIParent = BI->getParent(); 1028 1029 bool Changed = false; 1030 do { 1031 // If we are hoisting the terminator instruction, don't move one (making a 1032 // broken BB), instead clone it, and remove BI. 1033 if (isa<TerminatorInst>(I1)) 1034 goto HoistTerminator; 1035 1036 // For a normal instruction, we just move one to right before the branch, 1037 // then replace all uses of the other with the first. Finally, we remove 1038 // the now redundant second instruction. 1039 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1040 if (!I2->use_empty()) 1041 I2->replaceAllUsesWith(I1); 1042 I1->intersectOptionalDataWith(I2); 1043 I2->eraseFromParent(); 1044 Changed = true; 1045 1046 I1 = BB1_Itr++; 1047 I2 = BB2_Itr++; 1048 // Skip debug info if it is not identical. 1049 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1050 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1051 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1052 while (isa<DbgInfoIntrinsic>(I1)) 1053 I1 = BB1_Itr++; 1054 while (isa<DbgInfoIntrinsic>(I2)) 1055 I2 = BB2_Itr++; 1056 } 1057 } while (I1->isIdenticalToWhenDefined(I2)); 1058 1059 return true; 1060 1061 HoistTerminator: 1062 // It may not be possible to hoist an invoke. 1063 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1064 return Changed; 1065 1066 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1067 PHINode *PN; 1068 for (BasicBlock::iterator BBI = SI->begin(); 1069 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1070 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1071 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1072 if (BB1V == BB2V) 1073 continue; 1074 1075 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1076 return Changed; 1077 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1078 return Changed; 1079 } 1080 } 1081 1082 // Okay, it is safe to hoist the terminator. 1083 Instruction *NT = I1->clone(); 1084 BIParent->getInstList().insert(BI, NT); 1085 if (!NT->getType()->isVoidTy()) { 1086 I1->replaceAllUsesWith(NT); 1087 I2->replaceAllUsesWith(NT); 1088 NT->takeName(I1); 1089 } 1090 1091 IRBuilder<true, NoFolder> Builder(NT); 1092 // Hoisting one of the terminators from our successor is a great thing. 1093 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1094 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1095 // nodes, so we insert select instruction to compute the final result. 1096 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1097 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1098 PHINode *PN; 1099 for (BasicBlock::iterator BBI = SI->begin(); 1100 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1101 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1102 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1103 if (BB1V == BB2V) continue; 1104 1105 // These values do not agree. Insert a select instruction before NT 1106 // that determines the right value. 1107 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1108 if (SI == 0) 1109 SI = cast<SelectInst> 1110 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1111 BB1V->getName()+"."+BB2V->getName())); 1112 1113 // Make the PHI node use the select for all incoming values for BB1/BB2 1114 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1115 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1116 PN->setIncomingValue(i, SI); 1117 } 1118 } 1119 1120 // Update any PHI nodes in our new successors. 1121 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1122 AddPredecessorToBlock(*SI, BIParent, BB1); 1123 1124 EraseTerminatorInstAndDCECond(BI); 1125 return true; 1126 } 1127 1128 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1129 /// check whether BBEnd has only two predecessors and the other predecessor 1130 /// ends with an unconditional branch. If it is true, sink any common code 1131 /// in the two predecessors to BBEnd. 1132 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1133 assert(BI1->isUnconditional()); 1134 BasicBlock *BB1 = BI1->getParent(); 1135 BasicBlock *BBEnd = BI1->getSuccessor(0); 1136 1137 // Check that BBEnd has two predecessors and the other predecessor ends with 1138 // an unconditional branch. 1139 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1140 BasicBlock *Pred0 = *PI++; 1141 if (PI == PE) // Only one predecessor. 1142 return false; 1143 BasicBlock *Pred1 = *PI++; 1144 if (PI != PE) // More than two predecessors. 1145 return false; 1146 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1147 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1148 if (!BI2 || !BI2->isUnconditional()) 1149 return false; 1150 1151 // Gather the PHI nodes in BBEnd. 1152 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1153 Instruction *FirstNonPhiInBBEnd = 0; 1154 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1155 I != E; ++I) { 1156 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1157 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1158 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1159 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1160 } else { 1161 FirstNonPhiInBBEnd = &*I; 1162 break; 1163 } 1164 } 1165 if (!FirstNonPhiInBBEnd) 1166 return false; 1167 1168 1169 // This does very trivial matching, with limited scanning, to find identical 1170 // instructions in the two blocks. We scan backward for obviously identical 1171 // instructions in an identical order. 1172 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1173 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1174 RE2 = BB2->getInstList().rend(); 1175 // Skip debug info. 1176 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1177 if (RI1 == RE1) 1178 return false; 1179 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1180 if (RI2 == RE2) 1181 return false; 1182 // Skip the unconditional branches. 1183 ++RI1; 1184 ++RI2; 1185 1186 bool Changed = false; 1187 while (RI1 != RE1 && RI2 != RE2) { 1188 // Skip debug info. 1189 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1190 if (RI1 == RE1) 1191 return Changed; 1192 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1193 if (RI2 == RE2) 1194 return Changed; 1195 1196 Instruction *I1 = &*RI1, *I2 = &*RI2; 1197 // I1 and I2 should have a single use in the same PHI node, and they 1198 // perform the same operation. 1199 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1200 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1201 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1202 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1203 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1204 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1205 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1206 !I1->hasOneUse() || !I2->hasOneUse() || 1207 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1208 MapValueFromBB1ToBB2[I1].first != I2) 1209 return Changed; 1210 1211 // Check whether we should swap the operands of ICmpInst. 1212 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1213 bool SwapOpnds = false; 1214 if (ICmp1 && ICmp2 && 1215 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1216 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1217 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1218 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1219 ICmp2->swapOperands(); 1220 SwapOpnds = true; 1221 } 1222 if (!I1->isSameOperationAs(I2)) { 1223 if (SwapOpnds) 1224 ICmp2->swapOperands(); 1225 return Changed; 1226 } 1227 1228 // The operands should be either the same or they need to be generated 1229 // with a PHI node after sinking. We only handle the case where there is 1230 // a single pair of different operands. 1231 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1232 unsigned Op1Idx = 0; 1233 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1234 if (I1->getOperand(I) == I2->getOperand(I)) 1235 continue; 1236 // Early exit if we have more-than one pair of different operands or 1237 // the different operand is already in MapValueFromBB1ToBB2. 1238 // Early exit if we need a PHI node to replace a constant. 1239 if (DifferentOp1 || 1240 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1241 MapValueFromBB1ToBB2.end() || 1242 isa<Constant>(I1->getOperand(I)) || 1243 isa<Constant>(I2->getOperand(I))) { 1244 // If we can't sink the instructions, undo the swapping. 1245 if (SwapOpnds) 1246 ICmp2->swapOperands(); 1247 return Changed; 1248 } 1249 DifferentOp1 = I1->getOperand(I); 1250 Op1Idx = I; 1251 DifferentOp2 = I2->getOperand(I); 1252 } 1253 1254 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1255 // remove (I1, I2) from MapValueFromBB1ToBB2. 1256 if (DifferentOp1) { 1257 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1258 DifferentOp1->getName() + ".sink", 1259 BBEnd->begin()); 1260 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1261 // I1 should use NewPN instead of DifferentOp1. 1262 I1->setOperand(Op1Idx, NewPN); 1263 NewPN->addIncoming(DifferentOp1, BB1); 1264 NewPN->addIncoming(DifferentOp2, BB2); 1265 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1266 } 1267 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1268 MapValueFromBB1ToBB2.erase(I1); 1269 1270 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1271 DEBUG(dbgs() << " " << *I2 << "\n";); 1272 // We need to update RE1 and RE2 if we are going to sink the first 1273 // instruction in the basic block down. 1274 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1275 // Sink the instruction. 1276 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1277 if (!OldPN->use_empty()) 1278 OldPN->replaceAllUsesWith(I1); 1279 OldPN->eraseFromParent(); 1280 1281 if (!I2->use_empty()) 1282 I2->replaceAllUsesWith(I1); 1283 I1->intersectOptionalDataWith(I2); 1284 I2->eraseFromParent(); 1285 1286 if (UpdateRE1) 1287 RE1 = BB1->getInstList().rend(); 1288 if (UpdateRE2) 1289 RE2 = BB2->getInstList().rend(); 1290 FirstNonPhiInBBEnd = I1; 1291 NumSinkCommons++; 1292 Changed = true; 1293 } 1294 return Changed; 1295 } 1296 1297 /// \brief Determine if we can hoist sink a sole store instruction out of a 1298 /// conditional block. 1299 /// 1300 /// We are looking for code like the following: 1301 /// BrBB: 1302 /// store i32 %add, i32* %arrayidx2 1303 /// ... // No other stores or function calls (we could be calling a memory 1304 /// ... // function). 1305 /// %cmp = icmp ult %x, %y 1306 /// br i1 %cmp, label %EndBB, label %ThenBB 1307 /// ThenBB: 1308 /// store i32 %add5, i32* %arrayidx2 1309 /// br label EndBB 1310 /// EndBB: 1311 /// ... 1312 /// We are going to transform this into: 1313 /// BrBB: 1314 /// store i32 %add, i32* %arrayidx2 1315 /// ... // 1316 /// %cmp = icmp ult %x, %y 1317 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1318 /// store i32 %add.add5, i32* %arrayidx2 1319 /// ... 1320 /// 1321 /// \return The pointer to the value of the previous store if the store can be 1322 /// hoisted into the predecessor block. 0 otherwise. 1323 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1324 BasicBlock *StoreBB, BasicBlock *EndBB) { 1325 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1326 if (!StoreToHoist) 1327 return 0; 1328 1329 // Volatile or atomic. 1330 if (!StoreToHoist->isSimple()) 1331 return 0; 1332 1333 Value *StorePtr = StoreToHoist->getPointerOperand(); 1334 1335 // Look for a store to the same pointer in BrBB. 1336 unsigned MaxNumInstToLookAt = 10; 1337 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1338 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1339 Instruction *CurI = &*RI; 1340 1341 // Could be calling an instruction that effects memory like free(). 1342 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1343 return 0; 1344 1345 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1346 // Found the previous store make sure it stores to the same location. 1347 if (SI && SI->getPointerOperand() == StorePtr) 1348 // Found the previous store, return its value operand. 1349 return SI->getValueOperand(); 1350 else if (SI) 1351 return 0; // Unknown store. 1352 } 1353 1354 return 0; 1355 } 1356 1357 /// \brief Speculate a conditional basic block flattening the CFG. 1358 /// 1359 /// Note that this is a very risky transform currently. Speculating 1360 /// instructions like this is most often not desirable. Instead, there is an MI 1361 /// pass which can do it with full awareness of the resource constraints. 1362 /// However, some cases are "obvious" and we should do directly. An example of 1363 /// this is speculating a single, reasonably cheap instruction. 1364 /// 1365 /// There is only one distinct advantage to flattening the CFG at the IR level: 1366 /// it makes very common but simplistic optimizations such as are common in 1367 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1368 /// modeling their effects with easier to reason about SSA value graphs. 1369 /// 1370 /// 1371 /// An illustration of this transform is turning this IR: 1372 /// \code 1373 /// BB: 1374 /// %cmp = icmp ult %x, %y 1375 /// br i1 %cmp, label %EndBB, label %ThenBB 1376 /// ThenBB: 1377 /// %sub = sub %x, %y 1378 /// br label BB2 1379 /// EndBB: 1380 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1381 /// ... 1382 /// \endcode 1383 /// 1384 /// Into this IR: 1385 /// \code 1386 /// BB: 1387 /// %cmp = icmp ult %x, %y 1388 /// %sub = sub %x, %y 1389 /// %cond = select i1 %cmp, 0, %sub 1390 /// ... 1391 /// \endcode 1392 /// 1393 /// \returns true if the conditional block is removed. 1394 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) { 1395 // Be conservative for now. FP select instruction can often be expensive. 1396 Value *BrCond = BI->getCondition(); 1397 if (isa<FCmpInst>(BrCond)) 1398 return false; 1399 1400 BasicBlock *BB = BI->getParent(); 1401 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1402 1403 // If ThenBB is actually on the false edge of the conditional branch, remember 1404 // to swap the select operands later. 1405 bool Invert = false; 1406 if (ThenBB != BI->getSuccessor(0)) { 1407 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1408 Invert = true; 1409 } 1410 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1411 1412 // Keep a count of how many times instructions are used within CondBB when 1413 // they are candidates for sinking into CondBB. Specifically: 1414 // - They are defined in BB, and 1415 // - They have no side effects, and 1416 // - All of their uses are in CondBB. 1417 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1418 1419 unsigned SpeculationCost = 0; 1420 Value *SpeculatedStoreValue = 0; 1421 StoreInst *SpeculatedStore = 0; 1422 for (BasicBlock::iterator BBI = ThenBB->begin(), 1423 BBE = llvm::prior(ThenBB->end()); 1424 BBI != BBE; ++BBI) { 1425 Instruction *I = BBI; 1426 // Skip debug info. 1427 if (isa<DbgInfoIntrinsic>(I)) 1428 continue; 1429 1430 // Only speculatively execution a single instruction (not counting the 1431 // terminator) for now. 1432 ++SpeculationCost; 1433 if (SpeculationCost > 1) 1434 return false; 1435 1436 // Don't hoist the instruction if it's unsafe or expensive. 1437 if (!isSafeToSpeculativelyExecute(I) && 1438 !(HoistCondStores && 1439 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1440 EndBB)))) 1441 return false; 1442 if (!SpeculatedStoreValue && 1443 ComputeSpeculationCost(I) > PHINodeFoldingThreshold) 1444 return false; 1445 1446 // Store the store speculation candidate. 1447 if (SpeculatedStoreValue) 1448 SpeculatedStore = cast<StoreInst>(I); 1449 1450 // Do not hoist the instruction if any of its operands are defined but not 1451 // used in BB. The transformation will prevent the operand from 1452 // being sunk into the use block. 1453 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1454 i != e; ++i) { 1455 Instruction *OpI = dyn_cast<Instruction>(*i); 1456 if (!OpI || OpI->getParent() != BB || 1457 OpI->mayHaveSideEffects()) 1458 continue; // Not a candidate for sinking. 1459 1460 ++SinkCandidateUseCounts[OpI]; 1461 } 1462 } 1463 1464 // Consider any sink candidates which are only used in CondBB as costs for 1465 // speculation. Note, while we iterate over a DenseMap here, we are summing 1466 // and so iteration order isn't significant. 1467 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1468 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1469 I != E; ++I) 1470 if (I->first->getNumUses() == I->second) { 1471 ++SpeculationCost; 1472 if (SpeculationCost > 1) 1473 return false; 1474 } 1475 1476 // Check that the PHI nodes can be converted to selects. 1477 bool HaveRewritablePHIs = false; 1478 for (BasicBlock::iterator I = EndBB->begin(); 1479 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1480 Value *OrigV = PN->getIncomingValueForBlock(BB); 1481 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1482 1483 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1484 // Skip PHIs which are trivial. 1485 if (ThenV == OrigV) 1486 continue; 1487 1488 HaveRewritablePHIs = true; 1489 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1490 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1491 if (!OrigCE && !ThenCE) 1492 continue; // Known safe and cheap. 1493 1494 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1495 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1496 return false; 1497 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0; 1498 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0; 1499 if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold) 1500 return false; 1501 1502 // Account for the cost of an unfolded ConstantExpr which could end up 1503 // getting expanded into Instructions. 1504 // FIXME: This doesn't account for how many operations are combined in the 1505 // constant expression. 1506 ++SpeculationCost; 1507 if (SpeculationCost > 1) 1508 return false; 1509 } 1510 1511 // If there are no PHIs to process, bail early. This helps ensure idempotence 1512 // as well. 1513 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1514 return false; 1515 1516 // If we get here, we can hoist the instruction and if-convert. 1517 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1518 1519 // Insert a select of the value of the speculated store. 1520 if (SpeculatedStoreValue) { 1521 IRBuilder<true, NoFolder> Builder(BI); 1522 Value *TrueV = SpeculatedStore->getValueOperand(); 1523 Value *FalseV = SpeculatedStoreValue; 1524 if (Invert) 1525 std::swap(TrueV, FalseV); 1526 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1527 "." + FalseV->getName()); 1528 SpeculatedStore->setOperand(0, S); 1529 } 1530 1531 // Hoist the instructions. 1532 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1533 llvm::prior(ThenBB->end())); 1534 1535 // Insert selects and rewrite the PHI operands. 1536 IRBuilder<true, NoFolder> Builder(BI); 1537 for (BasicBlock::iterator I = EndBB->begin(); 1538 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1539 unsigned OrigI = PN->getBasicBlockIndex(BB); 1540 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1541 Value *OrigV = PN->getIncomingValue(OrigI); 1542 Value *ThenV = PN->getIncomingValue(ThenI); 1543 1544 // Skip PHIs which are trivial. 1545 if (OrigV == ThenV) 1546 continue; 1547 1548 // Create a select whose true value is the speculatively executed value and 1549 // false value is the preexisting value. Swap them if the branch 1550 // destinations were inverted. 1551 Value *TrueV = ThenV, *FalseV = OrigV; 1552 if (Invert) 1553 std::swap(TrueV, FalseV); 1554 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1555 TrueV->getName() + "." + FalseV->getName()); 1556 PN->setIncomingValue(OrigI, V); 1557 PN->setIncomingValue(ThenI, V); 1558 } 1559 1560 ++NumSpeculations; 1561 return true; 1562 } 1563 1564 /// \returns True if this block contains a CallInst with the NoDuplicate 1565 /// attribute. 1566 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1567 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1568 const CallInst *CI = dyn_cast<CallInst>(I); 1569 if (!CI) 1570 continue; 1571 if (CI->cannotDuplicate()) 1572 return true; 1573 } 1574 return false; 1575 } 1576 1577 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1578 /// across this block. 1579 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1580 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1581 unsigned Size = 0; 1582 1583 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1584 if (isa<DbgInfoIntrinsic>(BBI)) 1585 continue; 1586 if (Size > 10) return false; // Don't clone large BB's. 1587 ++Size; 1588 1589 // We can only support instructions that do not define values that are 1590 // live outside of the current basic block. 1591 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1592 UI != E; ++UI) { 1593 Instruction *U = cast<Instruction>(*UI); 1594 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1595 } 1596 1597 // Looks ok, continue checking. 1598 } 1599 1600 return true; 1601 } 1602 1603 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1604 /// that is defined in the same block as the branch and if any PHI entries are 1605 /// constants, thread edges corresponding to that entry to be branches to their 1606 /// ultimate destination. 1607 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) { 1608 BasicBlock *BB = BI->getParent(); 1609 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1610 // NOTE: we currently cannot transform this case if the PHI node is used 1611 // outside of the block. 1612 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1613 return false; 1614 1615 // Degenerate case of a single entry PHI. 1616 if (PN->getNumIncomingValues() == 1) { 1617 FoldSingleEntryPHINodes(PN->getParent()); 1618 return true; 1619 } 1620 1621 // Now we know that this block has multiple preds and two succs. 1622 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1623 1624 if (HasNoDuplicateCall(BB)) return false; 1625 1626 // Okay, this is a simple enough basic block. See if any phi values are 1627 // constants. 1628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1629 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1630 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1631 1632 // Okay, we now know that all edges from PredBB should be revectored to 1633 // branch to RealDest. 1634 BasicBlock *PredBB = PN->getIncomingBlock(i); 1635 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1636 1637 if (RealDest == BB) continue; // Skip self loops. 1638 // Skip if the predecessor's terminator is an indirect branch. 1639 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1640 1641 // The dest block might have PHI nodes, other predecessors and other 1642 // difficult cases. Instead of being smart about this, just insert a new 1643 // block that jumps to the destination block, effectively splitting 1644 // the edge we are about to create. 1645 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1646 RealDest->getName()+".critedge", 1647 RealDest->getParent(), RealDest); 1648 BranchInst::Create(RealDest, EdgeBB); 1649 1650 // Update PHI nodes. 1651 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1652 1653 // BB may have instructions that are being threaded over. Clone these 1654 // instructions into EdgeBB. We know that there will be no uses of the 1655 // cloned instructions outside of EdgeBB. 1656 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1657 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1658 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1659 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1660 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1661 continue; 1662 } 1663 // Clone the instruction. 1664 Instruction *N = BBI->clone(); 1665 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1666 1667 // Update operands due to translation. 1668 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1669 i != e; ++i) { 1670 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1671 if (PI != TranslateMap.end()) 1672 *i = PI->second; 1673 } 1674 1675 // Check for trivial simplification. 1676 if (Value *V = SimplifyInstruction(N, TD)) { 1677 TranslateMap[BBI] = V; 1678 delete N; // Instruction folded away, don't need actual inst 1679 } else { 1680 // Insert the new instruction into its new home. 1681 EdgeBB->getInstList().insert(InsertPt, N); 1682 if (!BBI->use_empty()) 1683 TranslateMap[BBI] = N; 1684 } 1685 } 1686 1687 // Loop over all of the edges from PredBB to BB, changing them to branch 1688 // to EdgeBB instead. 1689 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1690 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1691 if (PredBBTI->getSuccessor(i) == BB) { 1692 BB->removePredecessor(PredBB); 1693 PredBBTI->setSuccessor(i, EdgeBB); 1694 } 1695 1696 // Recurse, simplifying any other constants. 1697 return FoldCondBranchOnPHI(BI, TD) | true; 1698 } 1699 1700 return false; 1701 } 1702 1703 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1704 /// PHI node, see if we can eliminate it. 1705 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) { 1706 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1707 // statement", which has a very simple dominance structure. Basically, we 1708 // are trying to find the condition that is being branched on, which 1709 // subsequently causes this merge to happen. We really want control 1710 // dependence information for this check, but simplifycfg can't keep it up 1711 // to date, and this catches most of the cases we care about anyway. 1712 BasicBlock *BB = PN->getParent(); 1713 BasicBlock *IfTrue, *IfFalse; 1714 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1715 if (!IfCond || 1716 // Don't bother if the branch will be constant folded trivially. 1717 isa<ConstantInt>(IfCond)) 1718 return false; 1719 1720 // Okay, we found that we can merge this two-entry phi node into a select. 1721 // Doing so would require us to fold *all* two entry phi nodes in this block. 1722 // At some point this becomes non-profitable (particularly if the target 1723 // doesn't support cmov's). Only do this transformation if there are two or 1724 // fewer PHI nodes in this block. 1725 unsigned NumPhis = 0; 1726 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1727 if (NumPhis > 2) 1728 return false; 1729 1730 // Loop over the PHI's seeing if we can promote them all to select 1731 // instructions. While we are at it, keep track of the instructions 1732 // that need to be moved to the dominating block. 1733 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1734 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1735 MaxCostVal1 = PHINodeFoldingThreshold; 1736 1737 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1738 PHINode *PN = cast<PHINode>(II++); 1739 if (Value *V = SimplifyInstruction(PN, TD)) { 1740 PN->replaceAllUsesWith(V); 1741 PN->eraseFromParent(); 1742 continue; 1743 } 1744 1745 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1746 MaxCostVal0) || 1747 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1748 MaxCostVal1)) 1749 return false; 1750 } 1751 1752 // If we folded the first phi, PN dangles at this point. Refresh it. If 1753 // we ran out of PHIs then we simplified them all. 1754 PN = dyn_cast<PHINode>(BB->begin()); 1755 if (PN == 0) return true; 1756 1757 // Don't fold i1 branches on PHIs which contain binary operators. These can 1758 // often be turned into switches and other things. 1759 if (PN->getType()->isIntegerTy(1) && 1760 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1761 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1762 isa<BinaryOperator>(IfCond))) 1763 return false; 1764 1765 // If we all PHI nodes are promotable, check to make sure that all 1766 // instructions in the predecessor blocks can be promoted as well. If 1767 // not, we won't be able to get rid of the control flow, so it's not 1768 // worth promoting to select instructions. 1769 BasicBlock *DomBlock = 0; 1770 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1771 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1772 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1773 IfBlock1 = 0; 1774 } else { 1775 DomBlock = *pred_begin(IfBlock1); 1776 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1777 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1778 // This is not an aggressive instruction that we can promote. 1779 // Because of this, we won't be able to get rid of the control 1780 // flow, so the xform is not worth it. 1781 return false; 1782 } 1783 } 1784 1785 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1786 IfBlock2 = 0; 1787 } else { 1788 DomBlock = *pred_begin(IfBlock2); 1789 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1790 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1791 // This is not an aggressive instruction that we can promote. 1792 // Because of this, we won't be able to get rid of the control 1793 // flow, so the xform is not worth it. 1794 return false; 1795 } 1796 } 1797 1798 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1799 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1800 1801 // If we can still promote the PHI nodes after this gauntlet of tests, 1802 // do all of the PHI's now. 1803 Instruction *InsertPt = DomBlock->getTerminator(); 1804 IRBuilder<true, NoFolder> Builder(InsertPt); 1805 1806 // Move all 'aggressive' instructions, which are defined in the 1807 // conditional parts of the if's up to the dominating block. 1808 if (IfBlock1) 1809 DomBlock->getInstList().splice(InsertPt, 1810 IfBlock1->getInstList(), IfBlock1->begin(), 1811 IfBlock1->getTerminator()); 1812 if (IfBlock2) 1813 DomBlock->getInstList().splice(InsertPt, 1814 IfBlock2->getInstList(), IfBlock2->begin(), 1815 IfBlock2->getTerminator()); 1816 1817 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1818 // Change the PHI node into a select instruction. 1819 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1820 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1821 1822 SelectInst *NV = 1823 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1824 PN->replaceAllUsesWith(NV); 1825 NV->takeName(PN); 1826 PN->eraseFromParent(); 1827 } 1828 1829 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1830 // has been flattened. Change DomBlock to jump directly to our new block to 1831 // avoid other simplifycfg's kicking in on the diamond. 1832 TerminatorInst *OldTI = DomBlock->getTerminator(); 1833 Builder.SetInsertPoint(OldTI); 1834 Builder.CreateBr(BB); 1835 OldTI->eraseFromParent(); 1836 return true; 1837 } 1838 1839 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1840 /// to two returning blocks, try to merge them together into one return, 1841 /// introducing a select if the return values disagree. 1842 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1843 IRBuilder<> &Builder) { 1844 assert(BI->isConditional() && "Must be a conditional branch"); 1845 BasicBlock *TrueSucc = BI->getSuccessor(0); 1846 BasicBlock *FalseSucc = BI->getSuccessor(1); 1847 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1848 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1849 1850 // Check to ensure both blocks are empty (just a return) or optionally empty 1851 // with PHI nodes. If there are other instructions, merging would cause extra 1852 // computation on one path or the other. 1853 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1854 return false; 1855 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1856 return false; 1857 1858 Builder.SetInsertPoint(BI); 1859 // Okay, we found a branch that is going to two return nodes. If 1860 // there is no return value for this function, just change the 1861 // branch into a return. 1862 if (FalseRet->getNumOperands() == 0) { 1863 TrueSucc->removePredecessor(BI->getParent()); 1864 FalseSucc->removePredecessor(BI->getParent()); 1865 Builder.CreateRetVoid(); 1866 EraseTerminatorInstAndDCECond(BI); 1867 return true; 1868 } 1869 1870 // Otherwise, figure out what the true and false return values are 1871 // so we can insert a new select instruction. 1872 Value *TrueValue = TrueRet->getReturnValue(); 1873 Value *FalseValue = FalseRet->getReturnValue(); 1874 1875 // Unwrap any PHI nodes in the return blocks. 1876 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1877 if (TVPN->getParent() == TrueSucc) 1878 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1879 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1880 if (FVPN->getParent() == FalseSucc) 1881 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1882 1883 // In order for this transformation to be safe, we must be able to 1884 // unconditionally execute both operands to the return. This is 1885 // normally the case, but we could have a potentially-trapping 1886 // constant expression that prevents this transformation from being 1887 // safe. 1888 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1889 if (TCV->canTrap()) 1890 return false; 1891 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1892 if (FCV->canTrap()) 1893 return false; 1894 1895 // Okay, we collected all the mapped values and checked them for sanity, and 1896 // defined to really do this transformation. First, update the CFG. 1897 TrueSucc->removePredecessor(BI->getParent()); 1898 FalseSucc->removePredecessor(BI->getParent()); 1899 1900 // Insert select instructions where needed. 1901 Value *BrCond = BI->getCondition(); 1902 if (TrueValue) { 1903 // Insert a select if the results differ. 1904 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1905 } else if (isa<UndefValue>(TrueValue)) { 1906 TrueValue = FalseValue; 1907 } else { 1908 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1909 FalseValue, "retval"); 1910 } 1911 } 1912 1913 Value *RI = !TrueValue ? 1914 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1915 1916 (void) RI; 1917 1918 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1919 << "\n " << *BI << "NewRet = " << *RI 1920 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1921 1922 EraseTerminatorInstAndDCECond(BI); 1923 1924 return true; 1925 } 1926 1927 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1928 /// probabilities of the branch taking each edge. Fills in the two APInt 1929 /// parameters and return true, or returns false if no or invalid metadata was 1930 /// found. 1931 static bool ExtractBranchMetadata(BranchInst *BI, 1932 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1933 assert(BI->isConditional() && 1934 "Looking for probabilities on unconditional branch?"); 1935 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1936 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1937 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1938 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1939 if (!CITrue || !CIFalse) return false; 1940 ProbTrue = CITrue->getValue().getZExtValue(); 1941 ProbFalse = CIFalse->getValue().getZExtValue(); 1942 return true; 1943 } 1944 1945 /// checkCSEInPredecessor - Return true if the given instruction is available 1946 /// in its predecessor block. If yes, the instruction will be removed. 1947 /// 1948 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1949 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1950 return false; 1951 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1952 Instruction *PBI = &*I; 1953 // Check whether Inst and PBI generate the same value. 1954 if (Inst->isIdenticalTo(PBI)) { 1955 Inst->replaceAllUsesWith(PBI); 1956 Inst->eraseFromParent(); 1957 return true; 1958 } 1959 } 1960 return false; 1961 } 1962 1963 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1964 /// predecessor branches to us and one of our successors, fold the block into 1965 /// the predecessor and use logical operations to pick the right destination. 1966 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1967 BasicBlock *BB = BI->getParent(); 1968 1969 Instruction *Cond = 0; 1970 if (BI->isConditional()) 1971 Cond = dyn_cast<Instruction>(BI->getCondition()); 1972 else { 1973 // For unconditional branch, check for a simple CFG pattern, where 1974 // BB has a single predecessor and BB's successor is also its predecessor's 1975 // successor. If such pattern exisits, check for CSE between BB and its 1976 // predecessor. 1977 if (BasicBlock *PB = BB->getSinglePredecessor()) 1978 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1979 if (PBI->isConditional() && 1980 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1981 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1982 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1983 I != E; ) { 1984 Instruction *Curr = I++; 1985 if (isa<CmpInst>(Curr)) { 1986 Cond = Curr; 1987 break; 1988 } 1989 // Quit if we can't remove this instruction. 1990 if (!checkCSEInPredecessor(Curr, PB)) 1991 return false; 1992 } 1993 } 1994 1995 if (Cond == 0) 1996 return false; 1997 } 1998 1999 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2000 Cond->getParent() != BB || !Cond->hasOneUse()) 2001 return false; 2002 2003 // Only allow this if the condition is a simple instruction that can be 2004 // executed unconditionally. It must be in the same block as the branch, and 2005 // must be at the front of the block. 2006 BasicBlock::iterator FrontIt = BB->front(); 2007 2008 // Ignore dbg intrinsics. 2009 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2010 2011 // Allow a single instruction to be hoisted in addition to the compare 2012 // that feeds the branch. We later ensure that any values that _it_ uses 2013 // were also live in the predecessor, so that we don't unnecessarily create 2014 // register pressure or inhibit out-of-order execution. 2015 Instruction *BonusInst = 0; 2016 if (&*FrontIt != Cond && 2017 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 2018 isSafeToSpeculativelyExecute(FrontIt)) { 2019 BonusInst = &*FrontIt; 2020 ++FrontIt; 2021 2022 // Ignore dbg intrinsics. 2023 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 2024 } 2025 2026 // Only a single bonus inst is allowed. 2027 if (&*FrontIt != Cond) 2028 return false; 2029 2030 // Make sure the instruction after the condition is the cond branch. 2031 BasicBlock::iterator CondIt = Cond; ++CondIt; 2032 2033 // Ingore dbg intrinsics. 2034 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2035 2036 if (&*CondIt != BI) 2037 return false; 2038 2039 // Cond is known to be a compare or binary operator. Check to make sure that 2040 // neither operand is a potentially-trapping constant expression. 2041 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2042 if (CE->canTrap()) 2043 return false; 2044 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2045 if (CE->canTrap()) 2046 return false; 2047 2048 // Finally, don't infinitely unroll conditional loops. 2049 BasicBlock *TrueDest = BI->getSuccessor(0); 2050 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 2051 if (TrueDest == BB || FalseDest == BB) 2052 return false; 2053 2054 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2055 BasicBlock *PredBlock = *PI; 2056 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2057 2058 // Check that we have two conditional branches. If there is a PHI node in 2059 // the common successor, verify that the same value flows in from both 2060 // blocks. 2061 SmallVector<PHINode*, 4> PHIs; 2062 if (PBI == 0 || PBI->isUnconditional() || 2063 (BI->isConditional() && 2064 !SafeToMergeTerminators(BI, PBI)) || 2065 (!BI->isConditional() && 2066 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2067 continue; 2068 2069 // Determine if the two branches share a common destination. 2070 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2071 bool InvertPredCond = false; 2072 2073 if (BI->isConditional()) { 2074 if (PBI->getSuccessor(0) == TrueDest) 2075 Opc = Instruction::Or; 2076 else if (PBI->getSuccessor(1) == FalseDest) 2077 Opc = Instruction::And; 2078 else if (PBI->getSuccessor(0) == FalseDest) 2079 Opc = Instruction::And, InvertPredCond = true; 2080 else if (PBI->getSuccessor(1) == TrueDest) 2081 Opc = Instruction::Or, InvertPredCond = true; 2082 else 2083 continue; 2084 } else { 2085 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2086 continue; 2087 } 2088 2089 // Ensure that any values used in the bonus instruction are also used 2090 // by the terminator of the predecessor. This means that those values 2091 // must already have been resolved, so we won't be inhibiting the 2092 // out-of-order core by speculating them earlier. 2093 if (BonusInst) { 2094 // Collect the values used by the bonus inst 2095 SmallPtrSet<Value*, 4> UsedValues; 2096 for (Instruction::op_iterator OI = BonusInst->op_begin(), 2097 OE = BonusInst->op_end(); OI != OE; ++OI) { 2098 Value *V = *OI; 2099 if (!isa<Constant>(V)) 2100 UsedValues.insert(V); 2101 } 2102 2103 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2104 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2105 2106 // Walk up to four levels back up the use-def chain of the predecessor's 2107 // terminator to see if all those values were used. The choice of four 2108 // levels is arbitrary, to provide a compile-time-cost bound. 2109 while (!Worklist.empty()) { 2110 std::pair<Value*, unsigned> Pair = Worklist.back(); 2111 Worklist.pop_back(); 2112 2113 if (Pair.second >= 4) continue; 2114 UsedValues.erase(Pair.first); 2115 if (UsedValues.empty()) break; 2116 2117 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2118 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2119 OI != OE; ++OI) 2120 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2121 } 2122 } 2123 2124 if (!UsedValues.empty()) return false; 2125 } 2126 2127 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2128 IRBuilder<> Builder(PBI); 2129 2130 // If we need to invert the condition in the pred block to match, do so now. 2131 if (InvertPredCond) { 2132 Value *NewCond = PBI->getCondition(); 2133 2134 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2135 CmpInst *CI = cast<CmpInst>(NewCond); 2136 CI->setPredicate(CI->getInversePredicate()); 2137 } else { 2138 NewCond = Builder.CreateNot(NewCond, 2139 PBI->getCondition()->getName()+".not"); 2140 } 2141 2142 PBI->setCondition(NewCond); 2143 PBI->swapSuccessors(); 2144 } 2145 2146 // If we have a bonus inst, clone it into the predecessor block. 2147 Instruction *NewBonus = 0; 2148 if (BonusInst) { 2149 NewBonus = BonusInst->clone(); 2150 PredBlock->getInstList().insert(PBI, NewBonus); 2151 NewBonus->takeName(BonusInst); 2152 BonusInst->setName(BonusInst->getName()+".old"); 2153 } 2154 2155 // Clone Cond into the predecessor basic block, and or/and the 2156 // two conditions together. 2157 Instruction *New = Cond->clone(); 2158 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2159 PredBlock->getInstList().insert(PBI, New); 2160 New->takeName(Cond); 2161 Cond->setName(New->getName()+".old"); 2162 2163 if (BI->isConditional()) { 2164 Instruction *NewCond = 2165 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2166 New, "or.cond")); 2167 PBI->setCondition(NewCond); 2168 2169 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2170 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2171 PredFalseWeight); 2172 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2173 SuccFalseWeight); 2174 SmallVector<uint64_t, 8> NewWeights; 2175 2176 if (PBI->getSuccessor(0) == BB) { 2177 if (PredHasWeights && SuccHasWeights) { 2178 // PBI: br i1 %x, BB, FalseDest 2179 // BI: br i1 %y, TrueDest, FalseDest 2180 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2181 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2182 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2183 // TrueWeight for PBI * FalseWeight for BI. 2184 // We assume that total weights of a BranchInst can fit into 32 bits. 2185 // Therefore, we will not have overflow using 64-bit arithmetic. 2186 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2187 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2188 } 2189 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2190 PBI->setSuccessor(0, TrueDest); 2191 } 2192 if (PBI->getSuccessor(1) == BB) { 2193 if (PredHasWeights && SuccHasWeights) { 2194 // PBI: br i1 %x, TrueDest, BB 2195 // BI: br i1 %y, TrueDest, FalseDest 2196 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2197 // FalseWeight for PBI * TrueWeight for BI. 2198 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2199 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2200 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2201 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2202 } 2203 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2204 PBI->setSuccessor(1, FalseDest); 2205 } 2206 if (NewWeights.size() == 2) { 2207 // Halve the weights if any of them cannot fit in an uint32_t 2208 FitWeights(NewWeights); 2209 2210 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2211 PBI->setMetadata(LLVMContext::MD_prof, 2212 MDBuilder(BI->getContext()). 2213 createBranchWeights(MDWeights)); 2214 } else 2215 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2216 } else { 2217 // Update PHI nodes in the common successors. 2218 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2219 ConstantInt *PBI_C = cast<ConstantInt>( 2220 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2221 assert(PBI_C->getType()->isIntegerTy(1)); 2222 Instruction *MergedCond = 0; 2223 if (PBI->getSuccessor(0) == TrueDest) { 2224 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2225 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2226 // is false: !PBI_Cond and BI_Value 2227 Instruction *NotCond = 2228 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2229 "not.cond")); 2230 MergedCond = 2231 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2232 NotCond, New, 2233 "and.cond")); 2234 if (PBI_C->isOne()) 2235 MergedCond = 2236 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2237 PBI->getCondition(), MergedCond, 2238 "or.cond")); 2239 } else { 2240 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2241 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2242 // is false: PBI_Cond and BI_Value 2243 MergedCond = 2244 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2245 PBI->getCondition(), New, 2246 "and.cond")); 2247 if (PBI_C->isOne()) { 2248 Instruction *NotCond = 2249 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2250 "not.cond")); 2251 MergedCond = 2252 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2253 NotCond, MergedCond, 2254 "or.cond")); 2255 } 2256 } 2257 // Update PHI Node. 2258 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2259 MergedCond); 2260 } 2261 // Change PBI from Conditional to Unconditional. 2262 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2263 EraseTerminatorInstAndDCECond(PBI); 2264 PBI = New_PBI; 2265 } 2266 2267 // TODO: If BB is reachable from all paths through PredBlock, then we 2268 // could replace PBI's branch probabilities with BI's. 2269 2270 // Copy any debug value intrinsics into the end of PredBlock. 2271 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2272 if (isa<DbgInfoIntrinsic>(*I)) 2273 I->clone()->insertBefore(PBI); 2274 2275 return true; 2276 } 2277 return false; 2278 } 2279 2280 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2281 /// predecessor of another block, this function tries to simplify it. We know 2282 /// that PBI and BI are both conditional branches, and BI is in one of the 2283 /// successor blocks of PBI - PBI branches to BI. 2284 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2285 assert(PBI->isConditional() && BI->isConditional()); 2286 BasicBlock *BB = BI->getParent(); 2287 2288 // If this block ends with a branch instruction, and if there is a 2289 // predecessor that ends on a branch of the same condition, make 2290 // this conditional branch redundant. 2291 if (PBI->getCondition() == BI->getCondition() && 2292 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2293 // Okay, the outcome of this conditional branch is statically 2294 // knowable. If this block had a single pred, handle specially. 2295 if (BB->getSinglePredecessor()) { 2296 // Turn this into a branch on constant. 2297 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2298 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2299 CondIsTrue)); 2300 return true; // Nuke the branch on constant. 2301 } 2302 2303 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2304 // in the constant and simplify the block result. Subsequent passes of 2305 // simplifycfg will thread the block. 2306 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2307 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2308 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2309 std::distance(PB, PE), 2310 BI->getCondition()->getName() + ".pr", 2311 BB->begin()); 2312 // Okay, we're going to insert the PHI node. Since PBI is not the only 2313 // predecessor, compute the PHI'd conditional value for all of the preds. 2314 // Any predecessor where the condition is not computable we keep symbolic. 2315 for (pred_iterator PI = PB; PI != PE; ++PI) { 2316 BasicBlock *P = *PI; 2317 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2318 PBI != BI && PBI->isConditional() && 2319 PBI->getCondition() == BI->getCondition() && 2320 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2321 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2322 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2323 CondIsTrue), P); 2324 } else { 2325 NewPN->addIncoming(BI->getCondition(), P); 2326 } 2327 } 2328 2329 BI->setCondition(NewPN); 2330 return true; 2331 } 2332 } 2333 2334 // If this is a conditional branch in an empty block, and if any 2335 // predecessors is a conditional branch to one of our destinations, 2336 // fold the conditions into logical ops and one cond br. 2337 BasicBlock::iterator BBI = BB->begin(); 2338 // Ignore dbg intrinsics. 2339 while (isa<DbgInfoIntrinsic>(BBI)) 2340 ++BBI; 2341 if (&*BBI != BI) 2342 return false; 2343 2344 2345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2346 if (CE->canTrap()) 2347 return false; 2348 2349 int PBIOp, BIOp; 2350 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2351 PBIOp = BIOp = 0; 2352 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2353 PBIOp = 0, BIOp = 1; 2354 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2355 PBIOp = 1, BIOp = 0; 2356 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2357 PBIOp = BIOp = 1; 2358 else 2359 return false; 2360 2361 // Check to make sure that the other destination of this branch 2362 // isn't BB itself. If so, this is an infinite loop that will 2363 // keep getting unwound. 2364 if (PBI->getSuccessor(PBIOp) == BB) 2365 return false; 2366 2367 // Do not perform this transformation if it would require 2368 // insertion of a large number of select instructions. For targets 2369 // without predication/cmovs, this is a big pessimization. 2370 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2371 2372 unsigned NumPhis = 0; 2373 for (BasicBlock::iterator II = CommonDest->begin(); 2374 isa<PHINode>(II); ++II, ++NumPhis) 2375 if (NumPhis > 2) // Disable this xform. 2376 return false; 2377 2378 // Finally, if everything is ok, fold the branches to logical ops. 2379 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2380 2381 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2382 << "AND: " << *BI->getParent()); 2383 2384 2385 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2386 // branch in it, where one edge (OtherDest) goes back to itself but the other 2387 // exits. We don't *know* that the program avoids the infinite loop 2388 // (even though that seems likely). If we do this xform naively, we'll end up 2389 // recursively unpeeling the loop. Since we know that (after the xform is 2390 // done) that the block *is* infinite if reached, we just make it an obviously 2391 // infinite loop with no cond branch. 2392 if (OtherDest == BB) { 2393 // Insert it at the end of the function, because it's either code, 2394 // or it won't matter if it's hot. :) 2395 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2396 "infloop", BB->getParent()); 2397 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2398 OtherDest = InfLoopBlock; 2399 } 2400 2401 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2402 2403 // BI may have other predecessors. Because of this, we leave 2404 // it alone, but modify PBI. 2405 2406 // Make sure we get to CommonDest on True&True directions. 2407 Value *PBICond = PBI->getCondition(); 2408 IRBuilder<true, NoFolder> Builder(PBI); 2409 if (PBIOp) 2410 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2411 2412 Value *BICond = BI->getCondition(); 2413 if (BIOp) 2414 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2415 2416 // Merge the conditions. 2417 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2418 2419 // Modify PBI to branch on the new condition to the new dests. 2420 PBI->setCondition(Cond); 2421 PBI->setSuccessor(0, CommonDest); 2422 PBI->setSuccessor(1, OtherDest); 2423 2424 // Update branch weight for PBI. 2425 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2426 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2427 PredFalseWeight); 2428 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2429 SuccFalseWeight); 2430 if (PredHasWeights && SuccHasWeights) { 2431 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2432 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2433 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2434 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2435 // The weight to CommonDest should be PredCommon * SuccTotal + 2436 // PredOther * SuccCommon. 2437 // The weight to OtherDest should be PredOther * SuccOther. 2438 SmallVector<uint64_t, 2> NewWeights; 2439 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2440 PredOther * SuccCommon); 2441 NewWeights.push_back(PredOther * SuccOther); 2442 // Halve the weights if any of them cannot fit in an uint32_t 2443 FitWeights(NewWeights); 2444 2445 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2446 PBI->setMetadata(LLVMContext::MD_prof, 2447 MDBuilder(BI->getContext()). 2448 createBranchWeights(MDWeights)); 2449 } 2450 2451 // OtherDest may have phi nodes. If so, add an entry from PBI's 2452 // block that are identical to the entries for BI's block. 2453 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2454 2455 // We know that the CommonDest already had an edge from PBI to 2456 // it. If it has PHIs though, the PHIs may have different 2457 // entries for BB and PBI's BB. If so, insert a select to make 2458 // them agree. 2459 PHINode *PN; 2460 for (BasicBlock::iterator II = CommonDest->begin(); 2461 (PN = dyn_cast<PHINode>(II)); ++II) { 2462 Value *BIV = PN->getIncomingValueForBlock(BB); 2463 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2464 Value *PBIV = PN->getIncomingValue(PBBIdx); 2465 if (BIV != PBIV) { 2466 // Insert a select in PBI to pick the right value. 2467 Value *NV = cast<SelectInst> 2468 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2469 PN->setIncomingValue(PBBIdx, NV); 2470 } 2471 } 2472 2473 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2474 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2475 2476 // This basic block is probably dead. We know it has at least 2477 // one fewer predecessor. 2478 return true; 2479 } 2480 2481 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2482 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2483 // Takes care of updating the successors and removing the old terminator. 2484 // Also makes sure not to introduce new successors by assuming that edges to 2485 // non-successor TrueBBs and FalseBBs aren't reachable. 2486 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2487 BasicBlock *TrueBB, BasicBlock *FalseBB, 2488 uint32_t TrueWeight, 2489 uint32_t FalseWeight){ 2490 // Remove any superfluous successor edges from the CFG. 2491 // First, figure out which successors to preserve. 2492 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2493 // successor. 2494 BasicBlock *KeepEdge1 = TrueBB; 2495 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2496 2497 // Then remove the rest. 2498 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2499 BasicBlock *Succ = OldTerm->getSuccessor(I); 2500 // Make sure only to keep exactly one copy of each edge. 2501 if (Succ == KeepEdge1) 2502 KeepEdge1 = 0; 2503 else if (Succ == KeepEdge2) 2504 KeepEdge2 = 0; 2505 else 2506 Succ->removePredecessor(OldTerm->getParent()); 2507 } 2508 2509 IRBuilder<> Builder(OldTerm); 2510 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2511 2512 // Insert an appropriate new terminator. 2513 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2514 if (TrueBB == FalseBB) 2515 // We were only looking for one successor, and it was present. 2516 // Create an unconditional branch to it. 2517 Builder.CreateBr(TrueBB); 2518 else { 2519 // We found both of the successors we were looking for. 2520 // Create a conditional branch sharing the condition of the select. 2521 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2522 if (TrueWeight != FalseWeight) 2523 NewBI->setMetadata(LLVMContext::MD_prof, 2524 MDBuilder(OldTerm->getContext()). 2525 createBranchWeights(TrueWeight, FalseWeight)); 2526 } 2527 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2528 // Neither of the selected blocks were successors, so this 2529 // terminator must be unreachable. 2530 new UnreachableInst(OldTerm->getContext(), OldTerm); 2531 } else { 2532 // One of the selected values was a successor, but the other wasn't. 2533 // Insert an unconditional branch to the one that was found; 2534 // the edge to the one that wasn't must be unreachable. 2535 if (KeepEdge1 == 0) 2536 // Only TrueBB was found. 2537 Builder.CreateBr(TrueBB); 2538 else 2539 // Only FalseBB was found. 2540 Builder.CreateBr(FalseBB); 2541 } 2542 2543 EraseTerminatorInstAndDCECond(OldTerm); 2544 return true; 2545 } 2546 2547 // SimplifySwitchOnSelect - Replaces 2548 // (switch (select cond, X, Y)) on constant X, Y 2549 // with a branch - conditional if X and Y lead to distinct BBs, 2550 // unconditional otherwise. 2551 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2552 // Check for constant integer values in the select. 2553 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2554 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2555 if (!TrueVal || !FalseVal) 2556 return false; 2557 2558 // Find the relevant condition and destinations. 2559 Value *Condition = Select->getCondition(); 2560 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2561 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2562 2563 // Get weight for TrueBB and FalseBB. 2564 uint32_t TrueWeight = 0, FalseWeight = 0; 2565 SmallVector<uint64_t, 8> Weights; 2566 bool HasWeights = HasBranchWeights(SI); 2567 if (HasWeights) { 2568 GetBranchWeights(SI, Weights); 2569 if (Weights.size() == 1 + SI->getNumCases()) { 2570 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2571 getSuccessorIndex()]; 2572 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2573 getSuccessorIndex()]; 2574 } 2575 } 2576 2577 // Perform the actual simplification. 2578 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2579 TrueWeight, FalseWeight); 2580 } 2581 2582 // SimplifyIndirectBrOnSelect - Replaces 2583 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2584 // blockaddress(@fn, BlockB))) 2585 // with 2586 // (br cond, BlockA, BlockB). 2587 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2588 // Check that both operands of the select are block addresses. 2589 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2590 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2591 if (!TBA || !FBA) 2592 return false; 2593 2594 // Extract the actual blocks. 2595 BasicBlock *TrueBB = TBA->getBasicBlock(); 2596 BasicBlock *FalseBB = FBA->getBasicBlock(); 2597 2598 // Perform the actual simplification. 2599 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2600 0, 0); 2601 } 2602 2603 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2604 /// instruction (a seteq/setne with a constant) as the only instruction in a 2605 /// block that ends with an uncond branch. We are looking for a very specific 2606 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2607 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2608 /// default value goes to an uncond block with a seteq in it, we get something 2609 /// like: 2610 /// 2611 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2612 /// DEFAULT: 2613 /// %tmp = icmp eq i8 %A, 92 2614 /// br label %end 2615 /// end: 2616 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2617 /// 2618 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2619 /// the PHI, merging the third icmp into the switch. 2620 static bool TryToSimplifyUncondBranchWithICmpInIt( 2621 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2622 const DataLayout *TD) { 2623 BasicBlock *BB = ICI->getParent(); 2624 2625 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2626 // complex. 2627 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2628 2629 Value *V = ICI->getOperand(0); 2630 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2631 2632 // The pattern we're looking for is where our only predecessor is a switch on 2633 // 'V' and this block is the default case for the switch. In this case we can 2634 // fold the compared value into the switch to simplify things. 2635 BasicBlock *Pred = BB->getSinglePredecessor(); 2636 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2637 2638 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2639 if (SI->getCondition() != V) 2640 return false; 2641 2642 // If BB is reachable on a non-default case, then we simply know the value of 2643 // V in this block. Substitute it and constant fold the icmp instruction 2644 // away. 2645 if (SI->getDefaultDest() != BB) { 2646 ConstantInt *VVal = SI->findCaseDest(BB); 2647 assert(VVal && "Should have a unique destination value"); 2648 ICI->setOperand(0, VVal); 2649 2650 if (Value *V = SimplifyInstruction(ICI, TD)) { 2651 ICI->replaceAllUsesWith(V); 2652 ICI->eraseFromParent(); 2653 } 2654 // BB is now empty, so it is likely to simplify away. 2655 return SimplifyCFG(BB, TTI, TD) | true; 2656 } 2657 2658 // Ok, the block is reachable from the default dest. If the constant we're 2659 // comparing exists in one of the other edges, then we can constant fold ICI 2660 // and zap it. 2661 if (SI->findCaseValue(Cst) != SI->case_default()) { 2662 Value *V; 2663 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2664 V = ConstantInt::getFalse(BB->getContext()); 2665 else 2666 V = ConstantInt::getTrue(BB->getContext()); 2667 2668 ICI->replaceAllUsesWith(V); 2669 ICI->eraseFromParent(); 2670 // BB is now empty, so it is likely to simplify away. 2671 return SimplifyCFG(BB, TTI, TD) | true; 2672 } 2673 2674 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2675 // the block. 2676 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2677 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2678 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2679 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2680 return false; 2681 2682 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2683 // true in the PHI. 2684 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2685 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2686 2687 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2688 std::swap(DefaultCst, NewCst); 2689 2690 // Replace ICI (which is used by the PHI for the default value) with true or 2691 // false depending on if it is EQ or NE. 2692 ICI->replaceAllUsesWith(DefaultCst); 2693 ICI->eraseFromParent(); 2694 2695 // Okay, the switch goes to this block on a default value. Add an edge from 2696 // the switch to the merge point on the compared value. 2697 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2698 BB->getParent(), BB); 2699 SmallVector<uint64_t, 8> Weights; 2700 bool HasWeights = HasBranchWeights(SI); 2701 if (HasWeights) { 2702 GetBranchWeights(SI, Weights); 2703 if (Weights.size() == 1 + SI->getNumCases()) { 2704 // Split weight for default case to case for "Cst". 2705 Weights[0] = (Weights[0]+1) >> 1; 2706 Weights.push_back(Weights[0]); 2707 2708 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2709 SI->setMetadata(LLVMContext::MD_prof, 2710 MDBuilder(SI->getContext()). 2711 createBranchWeights(MDWeights)); 2712 } 2713 } 2714 SI->addCase(Cst, NewBB); 2715 2716 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2717 Builder.SetInsertPoint(NewBB); 2718 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2719 Builder.CreateBr(SuccBlock); 2720 PHIUse->addIncoming(NewCst, NewBB); 2721 return true; 2722 } 2723 2724 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2725 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2726 /// fold it into a switch instruction if so. 2727 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, 2728 IRBuilder<> &Builder) { 2729 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2730 if (Cond == 0) return false; 2731 2732 2733 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2734 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2735 // 'setne's and'ed together, collect them. 2736 Value *CompVal = 0; 2737 std::vector<ConstantInt*> Values; 2738 bool TrueWhenEqual = true; 2739 Value *ExtraCase = 0; 2740 unsigned UsedICmps = 0; 2741 2742 if (Cond->getOpcode() == Instruction::Or) { 2743 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2744 UsedICmps); 2745 } else if (Cond->getOpcode() == Instruction::And) { 2746 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2747 UsedICmps); 2748 TrueWhenEqual = false; 2749 } 2750 2751 // If we didn't have a multiply compared value, fail. 2752 if (CompVal == 0) return false; 2753 2754 // Avoid turning single icmps into a switch. 2755 if (UsedICmps <= 1) 2756 return false; 2757 2758 // There might be duplicate constants in the list, which the switch 2759 // instruction can't handle, remove them now. 2760 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2761 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2762 2763 // If Extra was used, we require at least two switch values to do the 2764 // transformation. A switch with one value is just an cond branch. 2765 if (ExtraCase && Values.size() < 2) return false; 2766 2767 // TODO: Preserve branch weight metadata, similarly to how 2768 // FoldValueComparisonIntoPredecessors preserves it. 2769 2770 // Figure out which block is which destination. 2771 BasicBlock *DefaultBB = BI->getSuccessor(1); 2772 BasicBlock *EdgeBB = BI->getSuccessor(0); 2773 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2774 2775 BasicBlock *BB = BI->getParent(); 2776 2777 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2778 << " cases into SWITCH. BB is:\n" << *BB); 2779 2780 // If there are any extra values that couldn't be folded into the switch 2781 // then we evaluate them with an explicit branch first. Split the block 2782 // right before the condbr to handle it. 2783 if (ExtraCase) { 2784 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2785 // Remove the uncond branch added to the old block. 2786 TerminatorInst *OldTI = BB->getTerminator(); 2787 Builder.SetInsertPoint(OldTI); 2788 2789 if (TrueWhenEqual) 2790 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2791 else 2792 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2793 2794 OldTI->eraseFromParent(); 2795 2796 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2797 // for the edge we just added. 2798 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2799 2800 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2801 << "\nEXTRABB = " << *BB); 2802 BB = NewBB; 2803 } 2804 2805 Builder.SetInsertPoint(BI); 2806 // Convert pointer to int before we switch. 2807 if (CompVal->getType()->isPointerTy()) { 2808 assert(TD && "Cannot switch on pointer without DataLayout"); 2809 CompVal = Builder.CreatePtrToInt(CompVal, 2810 TD->getIntPtrType(CompVal->getType()), 2811 "magicptr"); 2812 } 2813 2814 // Create the new switch instruction now. 2815 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2816 2817 // Add all of the 'cases' to the switch instruction. 2818 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2819 New->addCase(Values[i], EdgeBB); 2820 2821 // We added edges from PI to the EdgeBB. As such, if there were any 2822 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2823 // the number of edges added. 2824 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2825 isa<PHINode>(BBI); ++BBI) { 2826 PHINode *PN = cast<PHINode>(BBI); 2827 Value *InVal = PN->getIncomingValueForBlock(BB); 2828 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2829 PN->addIncoming(InVal, BB); 2830 } 2831 2832 // Erase the old branch instruction. 2833 EraseTerminatorInstAndDCECond(BI); 2834 2835 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2836 return true; 2837 } 2838 2839 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2840 // If this is a trivial landing pad that just continues unwinding the caught 2841 // exception then zap the landing pad, turning its invokes into calls. 2842 BasicBlock *BB = RI->getParent(); 2843 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2844 if (RI->getValue() != LPInst) 2845 // Not a landing pad, or the resume is not unwinding the exception that 2846 // caused control to branch here. 2847 return false; 2848 2849 // Check that there are no other instructions except for debug intrinsics. 2850 BasicBlock::iterator I = LPInst, E = RI; 2851 while (++I != E) 2852 if (!isa<DbgInfoIntrinsic>(I)) 2853 return false; 2854 2855 // Turn all invokes that unwind here into calls and delete the basic block. 2856 bool InvokeRequiresTableEntry = false; 2857 bool Changed = false; 2858 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2859 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2860 2861 if (II->hasFnAttr(Attribute::UWTable)) { 2862 // Don't remove an `invoke' instruction if the ABI requires an entry into 2863 // the table. 2864 InvokeRequiresTableEntry = true; 2865 continue; 2866 } 2867 2868 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2869 2870 // Insert a call instruction before the invoke. 2871 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2872 Call->takeName(II); 2873 Call->setCallingConv(II->getCallingConv()); 2874 Call->setAttributes(II->getAttributes()); 2875 Call->setDebugLoc(II->getDebugLoc()); 2876 2877 // Anything that used the value produced by the invoke instruction now uses 2878 // the value produced by the call instruction. Note that we do this even 2879 // for void functions and calls with no uses so that the callgraph edge is 2880 // updated. 2881 II->replaceAllUsesWith(Call); 2882 BB->removePredecessor(II->getParent()); 2883 2884 // Insert a branch to the normal destination right before the invoke. 2885 BranchInst::Create(II->getNormalDest(), II); 2886 2887 // Finally, delete the invoke instruction! 2888 II->eraseFromParent(); 2889 Changed = true; 2890 } 2891 2892 if (!InvokeRequiresTableEntry) 2893 // The landingpad is now unreachable. Zap it. 2894 BB->eraseFromParent(); 2895 2896 return Changed; 2897 } 2898 2899 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2900 BasicBlock *BB = RI->getParent(); 2901 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2902 2903 // Find predecessors that end with branches. 2904 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2905 SmallVector<BranchInst*, 8> CondBranchPreds; 2906 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2907 BasicBlock *P = *PI; 2908 TerminatorInst *PTI = P->getTerminator(); 2909 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2910 if (BI->isUnconditional()) 2911 UncondBranchPreds.push_back(P); 2912 else 2913 CondBranchPreds.push_back(BI); 2914 } 2915 } 2916 2917 // If we found some, do the transformation! 2918 if (!UncondBranchPreds.empty() && DupRet) { 2919 while (!UncondBranchPreds.empty()) { 2920 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2921 DEBUG(dbgs() << "FOLDING: " << *BB 2922 << "INTO UNCOND BRANCH PRED: " << *Pred); 2923 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2924 } 2925 2926 // If we eliminated all predecessors of the block, delete the block now. 2927 if (pred_begin(BB) == pred_end(BB)) 2928 // We know there are no successors, so just nuke the block. 2929 BB->eraseFromParent(); 2930 2931 return true; 2932 } 2933 2934 // Check out all of the conditional branches going to this return 2935 // instruction. If any of them just select between returns, change the 2936 // branch itself into a select/return pair. 2937 while (!CondBranchPreds.empty()) { 2938 BranchInst *BI = CondBranchPreds.pop_back_val(); 2939 2940 // Check to see if the non-BB successor is also a return block. 2941 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2942 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2943 SimplifyCondBranchToTwoReturns(BI, Builder)) 2944 return true; 2945 } 2946 return false; 2947 } 2948 2949 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2950 BasicBlock *BB = UI->getParent(); 2951 2952 bool Changed = false; 2953 2954 // If there are any instructions immediately before the unreachable that can 2955 // be removed, do so. 2956 while (UI != BB->begin()) { 2957 BasicBlock::iterator BBI = UI; 2958 --BBI; 2959 // Do not delete instructions that can have side effects which might cause 2960 // the unreachable to not be reachable; specifically, calls and volatile 2961 // operations may have this effect. 2962 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2963 2964 if (BBI->mayHaveSideEffects()) { 2965 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2966 if (SI->isVolatile()) 2967 break; 2968 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2969 if (LI->isVolatile()) 2970 break; 2971 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2972 if (RMWI->isVolatile()) 2973 break; 2974 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2975 if (CXI->isVolatile()) 2976 break; 2977 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2978 !isa<LandingPadInst>(BBI)) { 2979 break; 2980 } 2981 // Note that deleting LandingPad's here is in fact okay, although it 2982 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2983 // all the predecessors of this block will be the unwind edges of Invokes, 2984 // and we can therefore guarantee this block will be erased. 2985 } 2986 2987 // Delete this instruction (any uses are guaranteed to be dead) 2988 if (!BBI->use_empty()) 2989 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2990 BBI->eraseFromParent(); 2991 Changed = true; 2992 } 2993 2994 // If the unreachable instruction is the first in the block, take a gander 2995 // at all of the predecessors of this instruction, and simplify them. 2996 if (&BB->front() != UI) return Changed; 2997 2998 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2999 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3000 TerminatorInst *TI = Preds[i]->getTerminator(); 3001 IRBuilder<> Builder(TI); 3002 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3003 if (BI->isUnconditional()) { 3004 if (BI->getSuccessor(0) == BB) { 3005 new UnreachableInst(TI->getContext(), TI); 3006 TI->eraseFromParent(); 3007 Changed = true; 3008 } 3009 } else { 3010 if (BI->getSuccessor(0) == BB) { 3011 Builder.CreateBr(BI->getSuccessor(1)); 3012 EraseTerminatorInstAndDCECond(BI); 3013 } else if (BI->getSuccessor(1) == BB) { 3014 Builder.CreateBr(BI->getSuccessor(0)); 3015 EraseTerminatorInstAndDCECond(BI); 3016 Changed = true; 3017 } 3018 } 3019 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3020 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3021 i != e; ++i) 3022 if (i.getCaseSuccessor() == BB) { 3023 BB->removePredecessor(SI->getParent()); 3024 SI->removeCase(i); 3025 --i; --e; 3026 Changed = true; 3027 } 3028 // If the default value is unreachable, figure out the most popular 3029 // destination and make it the default. 3030 if (SI->getDefaultDest() == BB) { 3031 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 3032 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3033 i != e; ++i) { 3034 std::pair<unsigned, unsigned> &entry = 3035 Popularity[i.getCaseSuccessor()]; 3036 if (entry.first == 0) { 3037 entry.first = 1; 3038 entry.second = i.getCaseIndex(); 3039 } else { 3040 entry.first++; 3041 } 3042 } 3043 3044 // Find the most popular block. 3045 unsigned MaxPop = 0; 3046 unsigned MaxIndex = 0; 3047 BasicBlock *MaxBlock = 0; 3048 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 3049 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 3050 if (I->second.first > MaxPop || 3051 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 3052 MaxPop = I->second.first; 3053 MaxIndex = I->second.second; 3054 MaxBlock = I->first; 3055 } 3056 } 3057 if (MaxBlock) { 3058 // Make this the new default, allowing us to delete any explicit 3059 // edges to it. 3060 SI->setDefaultDest(MaxBlock); 3061 Changed = true; 3062 3063 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 3064 // it. 3065 if (isa<PHINode>(MaxBlock->begin())) 3066 for (unsigned i = 0; i != MaxPop-1; ++i) 3067 MaxBlock->removePredecessor(SI->getParent()); 3068 3069 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3070 i != e; ++i) 3071 if (i.getCaseSuccessor() == MaxBlock) { 3072 SI->removeCase(i); 3073 --i; --e; 3074 } 3075 } 3076 } 3077 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3078 if (II->getUnwindDest() == BB) { 3079 // Convert the invoke to a call instruction. This would be a good 3080 // place to note that the call does not throw though. 3081 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3082 II->removeFromParent(); // Take out of symbol table 3083 3084 // Insert the call now... 3085 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3086 Builder.SetInsertPoint(BI); 3087 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3088 Args, II->getName()); 3089 CI->setCallingConv(II->getCallingConv()); 3090 CI->setAttributes(II->getAttributes()); 3091 // If the invoke produced a value, the call does now instead. 3092 II->replaceAllUsesWith(CI); 3093 delete II; 3094 Changed = true; 3095 } 3096 } 3097 } 3098 3099 // If this block is now dead, remove it. 3100 if (pred_begin(BB) == pred_end(BB) && 3101 BB != &BB->getParent()->getEntryBlock()) { 3102 // We know there are no successors, so just nuke the block. 3103 BB->eraseFromParent(); 3104 return true; 3105 } 3106 3107 return Changed; 3108 } 3109 3110 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 3111 /// integer range comparison into a sub, an icmp and a branch. 3112 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3113 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3114 3115 // Make sure all cases point to the same destination and gather the values. 3116 SmallVector<ConstantInt *, 16> Cases; 3117 SwitchInst::CaseIt I = SI->case_begin(); 3118 Cases.push_back(I.getCaseValue()); 3119 SwitchInst::CaseIt PrevI = I++; 3120 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3121 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3122 return false; 3123 Cases.push_back(I.getCaseValue()); 3124 } 3125 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3126 3127 // Sort the case values, then check if they form a range we can transform. 3128 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3129 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3130 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3131 return false; 3132 } 3133 3134 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3135 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3136 3137 Value *Sub = SI->getCondition(); 3138 if (!Offset->isNullValue()) 3139 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3140 Value *Cmp; 3141 // If NumCases overflowed, then all possible values jump to the successor. 3142 if (NumCases->isNullValue() && SI->getNumCases() != 0) 3143 Cmp = ConstantInt::getTrue(SI->getContext()); 3144 else 3145 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3146 BranchInst *NewBI = Builder.CreateCondBr( 3147 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3148 3149 // Update weight for the newly-created conditional branch. 3150 SmallVector<uint64_t, 8> Weights; 3151 bool HasWeights = HasBranchWeights(SI); 3152 if (HasWeights) { 3153 GetBranchWeights(SI, Weights); 3154 if (Weights.size() == 1 + SI->getNumCases()) { 3155 // Combine all weights for the cases to be the true weight of NewBI. 3156 // We assume that the sum of all weights for a Terminator can fit into 32 3157 // bits. 3158 uint32_t NewTrueWeight = 0; 3159 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3160 NewTrueWeight += (uint32_t)Weights[I]; 3161 NewBI->setMetadata(LLVMContext::MD_prof, 3162 MDBuilder(SI->getContext()). 3163 createBranchWeights(NewTrueWeight, 3164 (uint32_t)Weights[0])); 3165 } 3166 } 3167 3168 // Prune obsolete incoming values off the successor's PHI nodes. 3169 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3170 isa<PHINode>(BBI); ++BBI) { 3171 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3172 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3173 } 3174 SI->eraseFromParent(); 3175 3176 return true; 3177 } 3178 3179 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3180 /// and use it to remove dead cases. 3181 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3182 Value *Cond = SI->getCondition(); 3183 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3184 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3185 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3186 3187 // Gather dead cases. 3188 SmallVector<ConstantInt*, 8> DeadCases; 3189 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3190 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3191 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3192 DeadCases.push_back(I.getCaseValue()); 3193 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3194 << I.getCaseValue() << "' is dead.\n"); 3195 } 3196 } 3197 3198 SmallVector<uint64_t, 8> Weights; 3199 bool HasWeight = HasBranchWeights(SI); 3200 if (HasWeight) { 3201 GetBranchWeights(SI, Weights); 3202 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3203 } 3204 3205 // Remove dead cases from the switch. 3206 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3207 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3208 assert(Case != SI->case_default() && 3209 "Case was not found. Probably mistake in DeadCases forming."); 3210 if (HasWeight) { 3211 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3212 Weights.pop_back(); 3213 } 3214 3215 // Prune unused values from PHI nodes. 3216 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3217 SI->removeCase(Case); 3218 } 3219 if (HasWeight) { 3220 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3221 SI->setMetadata(LLVMContext::MD_prof, 3222 MDBuilder(SI->getParent()->getContext()). 3223 createBranchWeights(MDWeights)); 3224 } 3225 3226 return !DeadCases.empty(); 3227 } 3228 3229 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3230 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3231 /// by an unconditional branch), look at the phi node for BB in the successor 3232 /// block and see if the incoming value is equal to CaseValue. If so, return 3233 /// the phi node, and set PhiIndex to BB's index in the phi node. 3234 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3235 BasicBlock *BB, 3236 int *PhiIndex) { 3237 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3238 return NULL; // BB must be empty to be a candidate for simplification. 3239 if (!BB->getSinglePredecessor()) 3240 return NULL; // BB must be dominated by the switch. 3241 3242 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3243 if (!Branch || !Branch->isUnconditional()) 3244 return NULL; // Terminator must be unconditional branch. 3245 3246 BasicBlock *Succ = Branch->getSuccessor(0); 3247 3248 BasicBlock::iterator I = Succ->begin(); 3249 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3250 int Idx = PHI->getBasicBlockIndex(BB); 3251 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3252 3253 Value *InValue = PHI->getIncomingValue(Idx); 3254 if (InValue != CaseValue) continue; 3255 3256 *PhiIndex = Idx; 3257 return PHI; 3258 } 3259 3260 return NULL; 3261 } 3262 3263 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3264 /// instruction to a phi node dominated by the switch, if that would mean that 3265 /// some of the destination blocks of the switch can be folded away. 3266 /// Returns true if a change is made. 3267 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3268 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3269 ForwardingNodesMap ForwardingNodes; 3270 3271 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3272 ConstantInt *CaseValue = I.getCaseValue(); 3273 BasicBlock *CaseDest = I.getCaseSuccessor(); 3274 3275 int PhiIndex; 3276 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3277 &PhiIndex); 3278 if (!PHI) continue; 3279 3280 ForwardingNodes[PHI].push_back(PhiIndex); 3281 } 3282 3283 bool Changed = false; 3284 3285 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3286 E = ForwardingNodes.end(); I != E; ++I) { 3287 PHINode *Phi = I->first; 3288 SmallVectorImpl<int> &Indexes = I->second; 3289 3290 if (Indexes.size() < 2) continue; 3291 3292 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3293 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3294 Changed = true; 3295 } 3296 3297 return Changed; 3298 } 3299 3300 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3301 /// initializing an array of constants like C. 3302 static bool ValidLookupTableConstant(Constant *C) { 3303 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3304 return CE->isGEPWithNoNotionalOverIndexing(); 3305 3306 return isa<ConstantFP>(C) || 3307 isa<ConstantInt>(C) || 3308 isa<ConstantPointerNull>(C) || 3309 isa<GlobalValue>(C) || 3310 isa<UndefValue>(C); 3311 } 3312 3313 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3314 /// its constant value in ConstantPool, returning 0 if it's not there. 3315 static Constant *LookupConstant(Value *V, 3316 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3317 if (Constant *C = dyn_cast<Constant>(V)) 3318 return C; 3319 return ConstantPool.lookup(V); 3320 } 3321 3322 /// ConstantFold - Try to fold instruction I into a constant. This works for 3323 /// simple instructions such as binary operations where both operands are 3324 /// constant or can be replaced by constants from the ConstantPool. Returns the 3325 /// resulting constant on success, 0 otherwise. 3326 static Constant *ConstantFold(Instruction *I, 3327 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3328 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3329 Constant *A = LookupConstant(BO->getOperand(0), ConstantPool); 3330 if (!A) 3331 return 0; 3332 Constant *B = LookupConstant(BO->getOperand(1), ConstantPool); 3333 if (!B) 3334 return 0; 3335 return ConstantExpr::get(BO->getOpcode(), A, B); 3336 } 3337 3338 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3339 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3340 if (!A) 3341 return 0; 3342 Constant *B = LookupConstant(I->getOperand(1), ConstantPool); 3343 if (!B) 3344 return 0; 3345 return ConstantExpr::getCompare(Cmp->getPredicate(), A, B); 3346 } 3347 3348 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3349 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3350 if (!A) 3351 return 0; 3352 if (A->isAllOnesValue()) 3353 return LookupConstant(Select->getTrueValue(), ConstantPool); 3354 if (A->isNullValue()) 3355 return LookupConstant(Select->getFalseValue(), ConstantPool); 3356 return 0; 3357 } 3358 3359 if (CastInst *Cast = dyn_cast<CastInst>(I)) { 3360 Constant *A = LookupConstant(I->getOperand(0), ConstantPool); 3361 if (!A) 3362 return 0; 3363 return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy()); 3364 } 3365 3366 return 0; 3367 } 3368 3369 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3370 /// at the common destination basic block, *CommonDest, for one of the case 3371 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3372 /// case), of a switch instruction SI. 3373 static bool 3374 GetCaseResults(SwitchInst *SI, 3375 ConstantInt *CaseVal, 3376 BasicBlock *CaseDest, 3377 BasicBlock **CommonDest, 3378 SmallVectorImpl<std::pair<PHINode*,Constant*> > &Res) { 3379 // The block from which we enter the common destination. 3380 BasicBlock *Pred = SI->getParent(); 3381 3382 // If CaseDest is empty except for some side-effect free instructions through 3383 // which we can constant-propagate the CaseVal, continue to its successor. 3384 SmallDenseMap<Value*, Constant*> ConstantPool; 3385 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3386 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3387 ++I) { 3388 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3389 // If the terminator is a simple branch, continue to the next block. 3390 if (T->getNumSuccessors() != 1) 3391 return false; 3392 Pred = CaseDest; 3393 CaseDest = T->getSuccessor(0); 3394 } else if (isa<DbgInfoIntrinsic>(I)) { 3395 // Skip debug intrinsic. 3396 continue; 3397 } else if (Constant *C = ConstantFold(I, ConstantPool)) { 3398 // Instruction is side-effect free and constant. 3399 ConstantPool.insert(std::make_pair(I, C)); 3400 } else { 3401 break; 3402 } 3403 } 3404 3405 // If we did not have a CommonDest before, use the current one. 3406 if (!*CommonDest) 3407 *CommonDest = CaseDest; 3408 // If the destination isn't the common one, abort. 3409 if (CaseDest != *CommonDest) 3410 return false; 3411 3412 // Get the values for this case from phi nodes in the destination block. 3413 BasicBlock::iterator I = (*CommonDest)->begin(); 3414 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3415 int Idx = PHI->getBasicBlockIndex(Pred); 3416 if (Idx == -1) 3417 continue; 3418 3419 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3420 ConstantPool); 3421 if (!ConstVal) 3422 return false; 3423 3424 // Note: If the constant comes from constant-propagating the case value 3425 // through the CaseDest basic block, it will be safe to remove the 3426 // instructions in that block. They cannot be used (except in the phi nodes 3427 // we visit) outside CaseDest, because that block does not dominate its 3428 // successor. If it did, we would not be in this phi node. 3429 3430 // Be conservative about which kinds of constants we support. 3431 if (!ValidLookupTableConstant(ConstVal)) 3432 return false; 3433 3434 Res.push_back(std::make_pair(PHI, ConstVal)); 3435 } 3436 3437 return true; 3438 } 3439 3440 namespace { 3441 /// SwitchLookupTable - This class represents a lookup table that can be used 3442 /// to replace a switch. 3443 class SwitchLookupTable { 3444 public: 3445 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3446 /// with the contents of Values, using DefaultValue to fill any holes in the 3447 /// table. 3448 SwitchLookupTable(Module &M, 3449 uint64_t TableSize, 3450 ConstantInt *Offset, 3451 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3452 Constant *DefaultValue, 3453 const DataLayout *TD); 3454 3455 /// BuildLookup - Build instructions with Builder to retrieve the value at 3456 /// the position given by Index in the lookup table. 3457 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3458 3459 /// WouldFitInRegister - Return true if a table with TableSize elements of 3460 /// type ElementType would fit in a target-legal register. 3461 static bool WouldFitInRegister(const DataLayout *TD, 3462 uint64_t TableSize, 3463 const Type *ElementType); 3464 3465 private: 3466 // Depending on the contents of the table, it can be represented in 3467 // different ways. 3468 enum { 3469 // For tables where each element contains the same value, we just have to 3470 // store that single value and return it for each lookup. 3471 SingleValueKind, 3472 3473 // For small tables with integer elements, we can pack them into a bitmap 3474 // that fits into a target-legal register. Values are retrieved by 3475 // shift and mask operations. 3476 BitMapKind, 3477 3478 // The table is stored as an array of values. Values are retrieved by load 3479 // instructions from the table. 3480 ArrayKind 3481 } Kind; 3482 3483 // For SingleValueKind, this is the single value. 3484 Constant *SingleValue; 3485 3486 // For BitMapKind, this is the bitmap. 3487 ConstantInt *BitMap; 3488 IntegerType *BitMapElementTy; 3489 3490 // For ArrayKind, this is the array. 3491 GlobalVariable *Array; 3492 }; 3493 } 3494 3495 SwitchLookupTable::SwitchLookupTable(Module &M, 3496 uint64_t TableSize, 3497 ConstantInt *Offset, 3498 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3499 Constant *DefaultValue, 3500 const DataLayout *TD) 3501 : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) { 3502 assert(Values.size() && "Can't build lookup table without values!"); 3503 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3504 3505 // If all values in the table are equal, this is that value. 3506 SingleValue = Values.begin()->second; 3507 3508 // Build up the table contents. 3509 SmallVector<Constant*, 64> TableContents(TableSize); 3510 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3511 ConstantInt *CaseVal = Values[I].first; 3512 Constant *CaseRes = Values[I].second; 3513 assert(CaseRes->getType() == DefaultValue->getType()); 3514 3515 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3516 .getLimitedValue(); 3517 TableContents[Idx] = CaseRes; 3518 3519 if (CaseRes != SingleValue) 3520 SingleValue = 0; 3521 } 3522 3523 // Fill in any holes in the table with the default result. 3524 if (Values.size() < TableSize) { 3525 for (uint64_t I = 0; I < TableSize; ++I) { 3526 if (!TableContents[I]) 3527 TableContents[I] = DefaultValue; 3528 } 3529 3530 if (DefaultValue != SingleValue) 3531 SingleValue = 0; 3532 } 3533 3534 // If each element in the table contains the same value, we only need to store 3535 // that single value. 3536 if (SingleValue) { 3537 Kind = SingleValueKind; 3538 return; 3539 } 3540 3541 // If the type is integer and the table fits in a register, build a bitmap. 3542 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3543 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3544 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3545 for (uint64_t I = TableSize; I > 0; --I) { 3546 TableInt <<= IT->getBitWidth(); 3547 // Insert values into the bitmap. Undef values are set to zero. 3548 if (!isa<UndefValue>(TableContents[I - 1])) { 3549 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3550 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3551 } 3552 } 3553 BitMap = ConstantInt::get(M.getContext(), TableInt); 3554 BitMapElementTy = IT; 3555 Kind = BitMapKind; 3556 ++NumBitMaps; 3557 return; 3558 } 3559 3560 // Store the table in an array. 3561 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3562 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3563 3564 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3565 GlobalVariable::PrivateLinkage, 3566 Initializer, 3567 "switch.table"); 3568 Array->setUnnamedAddr(true); 3569 Kind = ArrayKind; 3570 } 3571 3572 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3573 switch (Kind) { 3574 case SingleValueKind: 3575 return SingleValue; 3576 case BitMapKind: { 3577 // Type of the bitmap (e.g. i59). 3578 IntegerType *MapTy = BitMap->getType(); 3579 3580 // Cast Index to the same type as the bitmap. 3581 // Note: The Index is <= the number of elements in the table, so 3582 // truncating it to the width of the bitmask is safe. 3583 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3584 3585 // Multiply the shift amount by the element width. 3586 ShiftAmt = Builder.CreateMul(ShiftAmt, 3587 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3588 "switch.shiftamt"); 3589 3590 // Shift down. 3591 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3592 "switch.downshift"); 3593 // Mask off. 3594 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3595 "switch.masked"); 3596 } 3597 case ArrayKind: { 3598 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3599 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3600 "switch.gep"); 3601 return Builder.CreateLoad(GEP, "switch.load"); 3602 } 3603 } 3604 llvm_unreachable("Unknown lookup table kind!"); 3605 } 3606 3607 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD, 3608 uint64_t TableSize, 3609 const Type *ElementType) { 3610 if (!TD) 3611 return false; 3612 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3613 if (!IT) 3614 return false; 3615 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3616 // are <= 15, we could try to narrow the type. 3617 3618 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3619 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3620 return false; 3621 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3622 } 3623 3624 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3625 /// for this switch, based on the number of cases, size of the table and the 3626 /// types of the results. 3627 static bool ShouldBuildLookupTable(SwitchInst *SI, 3628 uint64_t TableSize, 3629 const TargetTransformInfo &TTI, 3630 const DataLayout *TD, 3631 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3632 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3633 return false; // TableSize overflowed, or mul below might overflow. 3634 3635 bool AllTablesFitInRegister = true; 3636 bool HasIllegalType = false; 3637 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3638 E = ResultTypes.end(); I != E; ++I) { 3639 Type *Ty = I->second; 3640 3641 // Saturate this flag to true. 3642 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3643 3644 // Saturate this flag to false. 3645 AllTablesFitInRegister = AllTablesFitInRegister && 3646 SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty); 3647 3648 // If both flags saturate, we're done. NOTE: This *only* works with 3649 // saturating flags, and all flags have to saturate first due to the 3650 // non-deterministic behavior of iterating over a dense map. 3651 if (HasIllegalType && !AllTablesFitInRegister) 3652 break; 3653 } 3654 3655 // If each table would fit in a register, we should build it anyway. 3656 if (AllTablesFitInRegister) 3657 return true; 3658 3659 // Don't build a table that doesn't fit in-register if it has illegal types. 3660 if (HasIllegalType) 3661 return false; 3662 3663 // The table density should be at least 40%. This is the same criterion as for 3664 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3665 // FIXME: Find the best cut-off. 3666 return SI->getNumCases() * 10 >= TableSize * 4; 3667 } 3668 3669 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3670 /// phi nodes in a common successor block with different constant values, 3671 /// replace the switch with lookup tables. 3672 static bool SwitchToLookupTable(SwitchInst *SI, 3673 IRBuilder<> &Builder, 3674 const TargetTransformInfo &TTI, 3675 const DataLayout* TD) { 3676 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3677 3678 // Only build lookup table when we have a target that supports it. 3679 if (!TTI.shouldBuildLookupTables()) 3680 return false; 3681 3682 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3683 // split off a dense part and build a lookup table for that. 3684 3685 // FIXME: This creates arrays of GEPs to constant strings, which means each 3686 // GEP needs a runtime relocation in PIC code. We should just build one big 3687 // string and lookup indices into that. 3688 3689 // Ignore the switch if the number of cases is too small. 3690 // This is similar to the check when building jump tables in 3691 // SelectionDAGBuilder::handleJTSwitchCase. 3692 // FIXME: Determine the best cut-off. 3693 if (SI->getNumCases() < 4) 3694 return false; 3695 3696 // Figure out the corresponding result for each case value and phi node in the 3697 // common destination, as well as the the min and max case values. 3698 assert(SI->case_begin() != SI->case_end()); 3699 SwitchInst::CaseIt CI = SI->case_begin(); 3700 ConstantInt *MinCaseVal = CI.getCaseValue(); 3701 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3702 3703 BasicBlock *CommonDest = 0; 3704 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3705 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3706 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3707 SmallDenseMap<PHINode*, Type*> ResultTypes; 3708 SmallVector<PHINode*, 4> PHIs; 3709 3710 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3711 ConstantInt *CaseVal = CI.getCaseValue(); 3712 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3713 MinCaseVal = CaseVal; 3714 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3715 MaxCaseVal = CaseVal; 3716 3717 // Resulting value at phi nodes for this case value. 3718 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3719 ResultsTy Results; 3720 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 3721 Results)) 3722 return false; 3723 3724 // Append the result from this case to the list for each phi. 3725 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3726 if (!ResultLists.count(I->first)) 3727 PHIs.push_back(I->first); 3728 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3729 } 3730 } 3731 3732 // Get the resulting values for the default case. 3733 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3734 if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest, 3735 DefaultResultsList)) 3736 return false; 3737 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3738 PHINode *PHI = DefaultResultsList[I].first; 3739 Constant *Result = DefaultResultsList[I].second; 3740 DefaultResults[PHI] = Result; 3741 ResultTypes[PHI] = Result->getType(); 3742 } 3743 3744 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3745 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3746 if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes)) 3747 return false; 3748 3749 // Create the BB that does the lookups. 3750 Module &Mod = *CommonDest->getParent()->getParent(); 3751 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3752 "switch.lookup", 3753 CommonDest->getParent(), 3754 CommonDest); 3755 3756 // Compute the table index value. 3757 Builder.SetInsertPoint(SI); 3758 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3759 "switch.tableidx"); 3760 3761 // Compute the maximum table size representable by the integer type we are 3762 // switching upon. 3763 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 3764 uint64_t MaxTableSize = CaseSize > 63? UINT64_MAX : 1ULL << CaseSize; 3765 assert(MaxTableSize >= TableSize && 3766 "It is impossible for a switch to have more entries than the max " 3767 "representable value of its input integer type's size."); 3768 3769 // If we have a fully covered lookup table, unconditionally branch to the 3770 // lookup table BB. Otherwise, check if the condition value is within the case 3771 // range. If it is so, branch to the new BB. Otherwise branch to SI's default 3772 // destination. 3773 const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize; 3774 if (GeneratingCoveredLookupTable) { 3775 Builder.CreateBr(LookupBB); 3776 SI->getDefaultDest()->removePredecessor(SI->getParent()); 3777 } else { 3778 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3779 MinCaseVal->getType(), TableSize)); 3780 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3781 } 3782 3783 // Populate the BB that does the lookups. 3784 Builder.SetInsertPoint(LookupBB); 3785 bool ReturnedEarly = false; 3786 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3787 PHINode *PHI = PHIs[I]; 3788 3789 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3790 DefaultResults[PHI], TD); 3791 3792 Value *Result = Table.BuildLookup(TableIndex, Builder); 3793 3794 // If the result is used to return immediately from the function, we want to 3795 // do that right here. 3796 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3797 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3798 Builder.CreateRet(Result); 3799 ReturnedEarly = true; 3800 break; 3801 } 3802 3803 PHI->addIncoming(Result, LookupBB); 3804 } 3805 3806 if (!ReturnedEarly) 3807 Builder.CreateBr(CommonDest); 3808 3809 // Remove the switch. 3810 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3811 BasicBlock *Succ = SI->getSuccessor(i); 3812 3813 if (Succ == SI->getDefaultDest()) 3814 continue; 3815 Succ->removePredecessor(SI->getParent()); 3816 } 3817 SI->eraseFromParent(); 3818 3819 ++NumLookupTables; 3820 return true; 3821 } 3822 3823 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3824 BasicBlock *BB = SI->getParent(); 3825 3826 if (isValueEqualityComparison(SI)) { 3827 // If we only have one predecessor, and if it is a branch on this value, 3828 // see if that predecessor totally determines the outcome of this switch. 3829 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3830 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3831 return SimplifyCFG(BB, TTI, TD) | true; 3832 3833 Value *Cond = SI->getCondition(); 3834 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3835 if (SimplifySwitchOnSelect(SI, Select)) 3836 return SimplifyCFG(BB, TTI, TD) | true; 3837 3838 // If the block only contains the switch, see if we can fold the block 3839 // away into any preds. 3840 BasicBlock::iterator BBI = BB->begin(); 3841 // Ignore dbg intrinsics. 3842 while (isa<DbgInfoIntrinsic>(BBI)) 3843 ++BBI; 3844 if (SI == &*BBI) 3845 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3846 return SimplifyCFG(BB, TTI, TD) | true; 3847 } 3848 3849 // Try to transform the switch into an icmp and a branch. 3850 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3851 return SimplifyCFG(BB, TTI, TD) | true; 3852 3853 // Remove unreachable cases. 3854 if (EliminateDeadSwitchCases(SI)) 3855 return SimplifyCFG(BB, TTI, TD) | true; 3856 3857 if (ForwardSwitchConditionToPHI(SI)) 3858 return SimplifyCFG(BB, TTI, TD) | true; 3859 3860 if (SwitchToLookupTable(SI, Builder, TTI, TD)) 3861 return SimplifyCFG(BB, TTI, TD) | true; 3862 3863 return false; 3864 } 3865 3866 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3867 BasicBlock *BB = IBI->getParent(); 3868 bool Changed = false; 3869 3870 // Eliminate redundant destinations. 3871 SmallPtrSet<Value *, 8> Succs; 3872 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3873 BasicBlock *Dest = IBI->getDestination(i); 3874 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3875 Dest->removePredecessor(BB); 3876 IBI->removeDestination(i); 3877 --i; --e; 3878 Changed = true; 3879 } 3880 } 3881 3882 if (IBI->getNumDestinations() == 0) { 3883 // If the indirectbr has no successors, change it to unreachable. 3884 new UnreachableInst(IBI->getContext(), IBI); 3885 EraseTerminatorInstAndDCECond(IBI); 3886 return true; 3887 } 3888 3889 if (IBI->getNumDestinations() == 1) { 3890 // If the indirectbr has one successor, change it to a direct branch. 3891 BranchInst::Create(IBI->getDestination(0), IBI); 3892 EraseTerminatorInstAndDCECond(IBI); 3893 return true; 3894 } 3895 3896 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3897 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3898 return SimplifyCFG(BB, TTI, TD) | true; 3899 } 3900 return Changed; 3901 } 3902 3903 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3904 BasicBlock *BB = BI->getParent(); 3905 3906 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3907 return true; 3908 3909 // If the Terminator is the only non-phi instruction, simplify the block. 3910 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3911 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3912 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3913 return true; 3914 3915 // If the only instruction in the block is a seteq/setne comparison 3916 // against a constant, try to simplify the block. 3917 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3918 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3919 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3920 ; 3921 if (I->isTerminator() && 3922 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD)) 3923 return true; 3924 } 3925 3926 // If this basic block is ONLY a compare and a branch, and if a predecessor 3927 // branches to us and our successor, fold the comparison into the 3928 // predecessor and use logical operations to update the incoming value 3929 // for PHI nodes in common successor. 3930 if (FoldBranchToCommonDest(BI)) 3931 return SimplifyCFG(BB, TTI, TD) | true; 3932 return false; 3933 } 3934 3935 3936 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3937 BasicBlock *BB = BI->getParent(); 3938 3939 // Conditional branch 3940 if (isValueEqualityComparison(BI)) { 3941 // If we only have one predecessor, and if it is a branch on this value, 3942 // see if that predecessor totally determines the outcome of this 3943 // switch. 3944 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3945 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3946 return SimplifyCFG(BB, TTI, TD) | true; 3947 3948 // This block must be empty, except for the setcond inst, if it exists. 3949 // Ignore dbg intrinsics. 3950 BasicBlock::iterator I = BB->begin(); 3951 // Ignore dbg intrinsics. 3952 while (isa<DbgInfoIntrinsic>(I)) 3953 ++I; 3954 if (&*I == BI) { 3955 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3956 return SimplifyCFG(BB, TTI, TD) | true; 3957 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3958 ++I; 3959 // Ignore dbg intrinsics. 3960 while (isa<DbgInfoIntrinsic>(I)) 3961 ++I; 3962 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3963 return SimplifyCFG(BB, TTI, TD) | true; 3964 } 3965 } 3966 3967 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3968 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3969 return true; 3970 3971 // If this basic block is ONLY a compare and a branch, and if a predecessor 3972 // branches to us and one of our successors, fold the comparison into the 3973 // predecessor and use logical operations to pick the right destination. 3974 if (FoldBranchToCommonDest(BI)) 3975 return SimplifyCFG(BB, TTI, TD) | true; 3976 3977 // We have a conditional branch to two blocks that are only reachable 3978 // from BI. We know that the condbr dominates the two blocks, so see if 3979 // there is any identical code in the "then" and "else" blocks. If so, we 3980 // can hoist it up to the branching block. 3981 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3982 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3983 if (HoistThenElseCodeToIf(BI)) 3984 return SimplifyCFG(BB, TTI, TD) | true; 3985 } else { 3986 // If Successor #1 has multiple preds, we may be able to conditionally 3987 // execute Successor #0 if it branches to successor #1. 3988 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 3989 if (Succ0TI->getNumSuccessors() == 1 && 3990 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 3991 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 3992 return SimplifyCFG(BB, TTI, TD) | true; 3993 } 3994 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3995 // If Successor #0 has multiple preds, we may be able to conditionally 3996 // execute Successor #1 if it branches to successor #0. 3997 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 3998 if (Succ1TI->getNumSuccessors() == 1 && 3999 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4000 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 4001 return SimplifyCFG(BB, TTI, TD) | true; 4002 } 4003 4004 // If this is a branch on a phi node in the current block, thread control 4005 // through this block if any PHI node entries are constants. 4006 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4007 if (PN->getParent() == BI->getParent()) 4008 if (FoldCondBranchOnPHI(BI, TD)) 4009 return SimplifyCFG(BB, TTI, TD) | true; 4010 4011 // Scan predecessor blocks for conditional branches. 4012 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4013 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4014 if (PBI != BI && PBI->isConditional()) 4015 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4016 return SimplifyCFG(BB, TTI, TD) | true; 4017 4018 return false; 4019 } 4020 4021 /// Check if passing a value to an instruction will cause undefined behavior. 4022 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4023 Constant *C = dyn_cast<Constant>(V); 4024 if (!C) 4025 return false; 4026 4027 if (I->use_empty()) 4028 return false; 4029 4030 if (C->isNullValue()) { 4031 // Only look at the first use, avoid hurting compile time with long uselists 4032 User *Use = *I->use_begin(); 4033 4034 // Now make sure that there are no instructions in between that can alter 4035 // control flow (eg. calls) 4036 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4037 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4038 return false; 4039 4040 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4041 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4042 if (GEP->getPointerOperand() == I) 4043 return passingValueIsAlwaysUndefined(V, GEP); 4044 4045 // Look through bitcasts. 4046 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4047 return passingValueIsAlwaysUndefined(V, BC); 4048 4049 // Load from null is undefined. 4050 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4051 if (!LI->isVolatile()) 4052 return LI->getPointerAddressSpace() == 0; 4053 4054 // Store to null is undefined. 4055 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4056 if (!SI->isVolatile()) 4057 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4058 } 4059 return false; 4060 } 4061 4062 /// If BB has an incoming value that will always trigger undefined behavior 4063 /// (eg. null pointer dereference), remove the branch leading here. 4064 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4065 for (BasicBlock::iterator i = BB->begin(); 4066 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4067 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4068 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4069 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4070 IRBuilder<> Builder(T); 4071 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4072 BB->removePredecessor(PHI->getIncomingBlock(i)); 4073 // Turn uncoditional branches into unreachables and remove the dead 4074 // destination from conditional branches. 4075 if (BI->isUnconditional()) 4076 Builder.CreateUnreachable(); 4077 else 4078 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4079 BI->getSuccessor(0)); 4080 BI->eraseFromParent(); 4081 return true; 4082 } 4083 // TODO: SwitchInst. 4084 } 4085 4086 return false; 4087 } 4088 4089 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4090 bool Changed = false; 4091 4092 assert(BB && BB->getParent() && "Block not embedded in function!"); 4093 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4094 4095 // Remove basic blocks that have no predecessors (except the entry block)... 4096 // or that just have themself as a predecessor. These are unreachable. 4097 if ((pred_begin(BB) == pred_end(BB) && 4098 BB != &BB->getParent()->getEntryBlock()) || 4099 BB->getSinglePredecessor() == BB) { 4100 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4101 DeleteDeadBlock(BB); 4102 return true; 4103 } 4104 4105 // Check to see if we can constant propagate this terminator instruction 4106 // away... 4107 Changed |= ConstantFoldTerminator(BB, true); 4108 4109 // Check for and eliminate duplicate PHI nodes in this block. 4110 Changed |= EliminateDuplicatePHINodes(BB); 4111 4112 // Check for and remove branches that will always cause undefined behavior. 4113 Changed |= removeUndefIntroducingPredecessor(BB); 4114 4115 // Merge basic blocks into their predecessor if there is only one distinct 4116 // pred, and if there is only one distinct successor of the predecessor, and 4117 // if there are no PHI nodes. 4118 // 4119 if (MergeBlockIntoPredecessor(BB)) 4120 return true; 4121 4122 IRBuilder<> Builder(BB); 4123 4124 // If there is a trivial two-entry PHI node in this basic block, and we can 4125 // eliminate it, do so now. 4126 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4127 if (PN->getNumIncomingValues() == 2) 4128 Changed |= FoldTwoEntryPHINode(PN, TD); 4129 4130 Builder.SetInsertPoint(BB->getTerminator()); 4131 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4132 if (BI->isUnconditional()) { 4133 if (SimplifyUncondBranch(BI, Builder)) return true; 4134 } else { 4135 if (SimplifyCondBranch(BI, Builder)) return true; 4136 } 4137 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4138 if (SimplifyReturn(RI, Builder)) return true; 4139 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4140 if (SimplifyResume(RI, Builder)) return true; 4141 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4142 if (SimplifySwitch(SI, Builder)) return true; 4143 } else if (UnreachableInst *UI = 4144 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4145 if (SimplifyUnreachable(UI)) return true; 4146 } else if (IndirectBrInst *IBI = 4147 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4148 if (SimplifyIndirectBr(IBI)) return true; 4149 } 4150 4151 return Changed; 4152 } 4153 4154 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4155 /// example, it adjusts branches to branches to eliminate the extra hop, it 4156 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4157 /// of the CFG. It returns true if a modification was made. 4158 /// 4159 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4160 const DataLayout *TD) { 4161 return SimplifyCFGOpt(TTI, TD).run(BB); 4162 } 4163