1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 using namespace PatternMatch;
85 
86 #define DEBUG_TYPE "simplifycfg"
87 
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94     cl::desc(
95         "Control the amount of phi node folding to perform (default = 2)"));
96 
97 static cl::opt<bool> DupRet(
98     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
99     cl::desc("Duplicate return instructions into unconditional branches"));
100 
101 static cl::opt<bool>
102     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
103                cl::desc("Sink common instructions down to the end block"));
104 
105 static cl::opt<bool> HoistCondStores(
106     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores if an unconditional store precedes"));
108 
109 static cl::opt<bool> MergeCondStores(
110     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
111     cl::desc("Hoist conditional stores even if an unconditional store does not "
112              "precede - hoist multiple conditional stores into a single "
113              "predicated store"));
114 
115 static cl::opt<bool> MergeCondStoresAggressively(
116     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
117     cl::desc("When merging conditional stores, do so even if the resultant "
118              "basic blocks are unlikely to be if-converted as a result"));
119 
120 static cl::opt<bool> SpeculateOneExpensiveInst(
121     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
122     cl::desc("Allow exactly one expensive instruction to be speculatively "
123              "executed"));
124 
125 static cl::opt<unsigned> MaxSpeculationDepth(
126     "max-speculation-depth", cl::Hidden, cl::init(10),
127     cl::desc("Limit maximum recursion depth when calculating costs of "
128              "speculatively executed instructions"));
129 
130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
131 STATISTIC(NumLinearMaps,
132           "Number of switch instructions turned into linear mapping");
133 STATISTIC(NumLookupTables,
134           "Number of switch instructions turned into lookup tables");
135 STATISTIC(
136     NumLookupTablesHoles,
137     "Number of switch instructions turned into lookup tables (holes checked)");
138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
139 STATISTIC(NumSinkCommons,
140           "Number of common instructions sunk down to the end block");
141 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
142 
143 namespace {
144 
145 // The first field contains the value that the switch produces when a certain
146 // case group is selected, and the second field is a vector containing the
147 // cases composing the case group.
148 using SwitchCaseResultVectorTy =
149     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
150 
151 // The first field contains the phi node that generates a result of the switch
152 // and the second field contains the value generated for a certain case in the
153 // switch for that PHI.
154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
155 
156 /// ValueEqualityComparisonCase - Represents a case of a switch.
157 struct ValueEqualityComparisonCase {
158   ConstantInt *Value;
159   BasicBlock *Dest;
160 
161   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
162       : Value(Value), Dest(Dest) {}
163 
164   bool operator<(ValueEqualityComparisonCase RHS) const {
165     // Comparing pointers is ok as we only rely on the order for uniquing.
166     return Value < RHS.Value;
167   }
168 
169   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
170 };
171 
172 class SimplifyCFGOpt {
173   const TargetTransformInfo &TTI;
174   const DataLayout &DL;
175   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
176   const SimplifyCFGOptions &Options;
177 
178   Value *isValueEqualityComparison(TerminatorInst *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198 public:
199   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
200                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
201                  const SimplifyCFGOptions &Opts)
202       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
203 
204   bool run(BasicBlock *BB);
205 };
206 
207 } // end anonymous namespace
208 
209 /// Return true if it is safe to merge these two
210 /// terminator instructions together.
211 static bool
212 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
213                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
214   if (SI1 == SI2)
215     return false; // Can't merge with self!
216 
217   // It is not safe to merge these two switch instructions if they have a common
218   // successor, and if that successor has a PHI node, and if *that* PHI node has
219   // conflicting incoming values from the two switch blocks.
220   BasicBlock *SI1BB = SI1->getParent();
221   BasicBlock *SI2BB = SI2->getParent();
222 
223   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
224   bool Fail = false;
225   for (BasicBlock *Succ : successors(SI2BB))
226     if (SI1Succs.count(Succ))
227       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
228         PHINode *PN = cast<PHINode>(BBI);
229         if (PN->getIncomingValueForBlock(SI1BB) !=
230             PN->getIncomingValueForBlock(SI2BB)) {
231           if (FailBlocks)
232             FailBlocks->insert(Succ);
233           Fail = true;
234         }
235       }
236 
237   return !Fail;
238 }
239 
240 /// Return true if it is safe and profitable to merge these two terminator
241 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
242 /// store all PHI nodes in common successors.
243 static bool
244 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
245                                 Instruction *Cond,
246                                 SmallVectorImpl<PHINode *> &PhiNodes) {
247   if (SI1 == SI2)
248     return false; // Can't merge with self!
249   assert(SI1->isUnconditional() && SI2->isConditional());
250 
251   // We fold the unconditional branch if we can easily update all PHI nodes in
252   // common successors:
253   // 1> We have a constant incoming value for the conditional branch;
254   // 2> We have "Cond" as the incoming value for the unconditional branch;
255   // 3> SI2->getCondition() and Cond have same operands.
256   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
257   if (!Ci2)
258     return false;
259   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
260         Cond->getOperand(1) == Ci2->getOperand(1)) &&
261       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
262         Cond->getOperand(1) == Ci2->getOperand(0)))
263     return false;
264 
265   BasicBlock *SI1BB = SI1->getParent();
266   BasicBlock *SI2BB = SI2->getParent();
267   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
268   for (BasicBlock *Succ : successors(SI2BB))
269     if (SI1Succs.count(Succ))
270       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
271         PHINode *PN = cast<PHINode>(BBI);
272         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
273             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
274           return false;
275         PhiNodes.push_back(PN);
276       }
277   return true;
278 }
279 
280 /// Update PHI nodes in Succ to indicate that there will now be entries in it
281 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
282 /// will be the same as those coming in from ExistPred, an existing predecessor
283 /// of Succ.
284 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
285                                   BasicBlock *ExistPred) {
286   if (!isa<PHINode>(Succ->begin()))
287     return; // Quick exit if nothing to do
288 
289   PHINode *PN;
290   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
291     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
292 }
293 
294 /// Compute an abstract "cost" of speculating the given instruction,
295 /// which is assumed to be safe to speculate. TCC_Free means cheap,
296 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
297 /// expensive.
298 static unsigned ComputeSpeculationCost(const User *I,
299                                        const TargetTransformInfo &TTI) {
300   assert(isSafeToSpeculativelyExecute(I) &&
301          "Instruction is not safe to speculatively execute!");
302   return TTI.getUserCost(I);
303 }
304 
305 /// If we have a merge point of an "if condition" as accepted above,
306 /// return true if the specified value dominates the block.  We
307 /// don't handle the true generality of domination here, just a special case
308 /// which works well enough for us.
309 ///
310 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
311 /// see if V (which must be an instruction) and its recursive operands
312 /// that do not dominate BB have a combined cost lower than CostRemaining and
313 /// are non-trapping.  If both are true, the instruction is inserted into the
314 /// set and true is returned.
315 ///
316 /// The cost for most non-trapping instructions is defined as 1 except for
317 /// Select whose cost is 2.
318 ///
319 /// After this function returns, CostRemaining is decreased by the cost of
320 /// V plus its non-dominating operands.  If that cost is greater than
321 /// CostRemaining, false is returned and CostRemaining is undefined.
322 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
324                                 unsigned &CostRemaining,
325                                 const TargetTransformInfo &TTI,
326                                 unsigned Depth = 0) {
327   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
328   // so limit the recursion depth.
329   // TODO: While this recursion limit does prevent pathological behavior, it
330   // would be better to track visited instructions to avoid cycles.
331   if (Depth == MaxSpeculationDepth)
332     return false;
333 
334   Instruction *I = dyn_cast<Instruction>(V);
335   if (!I) {
336     // Non-instructions all dominate instructions, but not all constantexprs
337     // can be executed unconditionally.
338     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
339       if (C->canTrap())
340         return false;
341     return true;
342   }
343   BasicBlock *PBB = I->getParent();
344 
345   // We don't want to allow weird loops that might have the "if condition" in
346   // the bottom of this block.
347   if (PBB == BB)
348     return false;
349 
350   // If this instruction is defined in a block that contains an unconditional
351   // branch to BB, then it must be in the 'conditional' part of the "if
352   // statement".  If not, it definitely dominates the region.
353   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
354   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
355     return true;
356 
357   // If we aren't allowing aggressive promotion anymore, then don't consider
358   // instructions in the 'if region'.
359   if (!AggressiveInsts)
360     return false;
361 
362   // If we have seen this instruction before, don't count it again.
363   if (AggressiveInsts->count(I))
364     return true;
365 
366   // Okay, it looks like the instruction IS in the "condition".  Check to
367   // see if it's a cheap instruction to unconditionally compute, and if it
368   // only uses stuff defined outside of the condition.  If so, hoist it out.
369   if (!isSafeToSpeculativelyExecute(I))
370     return false;
371 
372   unsigned Cost = ComputeSpeculationCost(I, TTI);
373 
374   // Allow exactly one instruction to be speculated regardless of its cost
375   // (as long as it is safe to do so).
376   // This is intended to flatten the CFG even if the instruction is a division
377   // or other expensive operation. The speculation of an expensive instruction
378   // is expected to be undone in CodeGenPrepare if the speculation has not
379   // enabled further IR optimizations.
380   if (Cost > CostRemaining &&
381       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
382     return false;
383 
384   // Avoid unsigned wrap.
385   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
386 
387   // Okay, we can only really hoist these out if their operands do
388   // not take us over the cost threshold.
389   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
390     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
391                              Depth + 1))
392       return false;
393   // Okay, it's safe to do this!  Remember this instruction.
394   AggressiveInsts->insert(I);
395   return true;
396 }
397 
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
401   // Normal constant int.
402   ConstantInt *CI = dyn_cast<ConstantInt>(V);
403   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
404     return CI;
405 
406   // This is some kind of pointer constant. Turn it into a pointer-sized
407   // ConstantInt if possible.
408   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
409 
410   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411   if (isa<ConstantPointerNull>(V))
412     return ConstantInt::get(PtrTy, 0);
413 
414   // IntToPtr const int.
415   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
416     if (CE->getOpcode() == Instruction::IntToPtr)
417       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
418         // The constant is very likely to have the right type already.
419         if (CI->getType() == PtrTy)
420           return CI;
421         else
422           return cast<ConstantInt>(
423               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
424       }
425   return nullptr;
426 }
427 
428 namespace {
429 
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
432 /// structure.
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
439 /// fail.
440 struct ConstantComparesGatherer {
441   const DataLayout &DL;
442 
443   /// Value found for the switch comparison
444   Value *CompValue = nullptr;
445 
446   /// Extra clause to be checked before the switch
447   Value *Extra = nullptr;
448 
449   /// Set of integers to match in switch
450   SmallVector<ConstantInt *, 8> Vals;
451 
452   /// Number of comparisons matched in the and/or chain
453   unsigned UsedICmps = 0;
454 
455   /// Construct and compute the result for the comparison instruction Cond
456   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
457     gather(Cond);
458   }
459 
460   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
461   ConstantComparesGatherer &
462   operator=(const ConstantComparesGatherer &) = delete;
463 
464 private:
465   /// Try to set the current value used for the comparison, it succeeds only if
466   /// it wasn't set before or if the new value is the same as the old one
467   bool setValueOnce(Value *NewVal) {
468     if (CompValue && CompValue != NewVal)
469       return false;
470     CompValue = NewVal;
471     return (CompValue != nullptr);
472   }
473 
474   /// Try to match Instruction "I" as a comparison against a constant and
475   /// populates the array Vals with the set of values that match (or do not
476   /// match depending on isEQ).
477   /// Return false on failure. On success, the Value the comparison matched
478   /// against is placed in CompValue.
479   /// If CompValue is already set, the function is expected to fail if a match
480   /// is found but the value compared to is different.
481   bool matchInstruction(Instruction *I, bool isEQ) {
482     // If this is an icmp against a constant, handle this as one of the cases.
483     ICmpInst *ICI;
484     ConstantInt *C;
485     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
486           (C = GetConstantInt(I->getOperand(1), DL)))) {
487       return false;
488     }
489 
490     Value *RHSVal;
491     const APInt *RHSC;
492 
493     // Pattern match a special case
494     // (x & ~2^z) == y --> x == y || x == y|2^z
495     // This undoes a transformation done by instcombine to fuse 2 compares.
496     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
497       // It's a little bit hard to see why the following transformations are
498       // correct. Here is a CVC3 program to verify them for 64-bit values:
499 
500       /*
501          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
502          x    : BITVECTOR(64);
503          y    : BITVECTOR(64);
504          z    : BITVECTOR(64);
505          mask : BITVECTOR(64) = BVSHL(ONE, z);
506          QUERY( (y & ~mask = y) =>
507                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
508          );
509          QUERY( (y |  mask = y) =>
510                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
511          );
512       */
513 
514       // Please note that each pattern must be a dual implication (<--> or
515       // iff). One directional implication can create spurious matches. If the
516       // implication is only one-way, an unsatisfiable condition on the left
517       // side can imply a satisfiable condition on the right side. Dual
518       // implication ensures that satisfiable conditions are transformed to
519       // other satisfiable conditions and unsatisfiable conditions are
520       // transformed to other unsatisfiable conditions.
521 
522       // Here is a concrete example of a unsatisfiable condition on the left
523       // implying a satisfiable condition on the right:
524       //
525       // mask = (1 << z)
526       // (x & ~mask) == y  --> (x == y || x == (y | mask))
527       //
528       // Substituting y = 3, z = 0 yields:
529       // (x & -2) == 3 --> (x == 3 || x == 2)
530 
531       // Pattern match a special case:
532       /*
533         QUERY( (y & ~mask = y) =>
534                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
535         );
536       */
537       if (match(ICI->getOperand(0),
538                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
539         APInt Mask = ~*RHSC;
540         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
541           // If we already have a value for the switch, it has to match!
542           if (!setValueOnce(RHSVal))
543             return false;
544 
545           Vals.push_back(C);
546           Vals.push_back(
547               ConstantInt::get(C->getContext(),
548                                C->getValue() | Mask));
549           UsedICmps++;
550           return true;
551         }
552       }
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y |  mask = y) =>
557                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = *RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(ConstantInt::get(C->getContext(),
570                                           C->getValue() & ~Mask));
571           UsedICmps++;
572           return true;
573         }
574       }
575 
576       // If we already have a value for the switch, it has to match!
577       if (!setValueOnce(ICI->getOperand(0)))
578         return false;
579 
580       UsedICmps++;
581       Vals.push_back(C);
582       return ICI->getOperand(0);
583     }
584 
585     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
587         ICI->getPredicate(), C->getValue());
588 
589     // Shift the range if the compare is fed by an add. This is the range
590     // compare idiom as emitted by instcombine.
591     Value *CandidateVal = I->getOperand(0);
592     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
593       Span = Span.subtract(*RHSC);
594       CandidateVal = RHSVal;
595     }
596 
597     // If this is an and/!= check, then we are looking to build the set of
598     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
599     // x != 0 && x != 1.
600     if (!isEQ)
601       Span = Span.inverse();
602 
603     // If there are a ton of values, we don't want to make a ginormous switch.
604     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
605       return false;
606     }
607 
608     // If we already have a value for the switch, it has to match!
609     if (!setValueOnce(CandidateVal))
610       return false;
611 
612     // Add all values from the range to the set
613     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
614       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
615 
616     UsedICmps++;
617     return true;
618   }
619 
620   /// Given a potentially 'or'd or 'and'd together collection of icmp
621   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622   /// the value being compared, and stick the list constants into the Vals
623   /// vector.
624   /// One "Extra" case is allowed to differ from the other.
625   void gather(Value *V) {
626     Instruction *I = dyn_cast<Instruction>(V);
627     bool isEQ = (I->getOpcode() == Instruction::Or);
628 
629     // Keep a stack (SmallVector for efficiency) for depth-first traversal
630     SmallVector<Value *, 8> DFT;
631     SmallPtrSet<Value *, 8> Visited;
632 
633     // Initialize
634     Visited.insert(V);
635     DFT.push_back(V);
636 
637     while (!DFT.empty()) {
638       V = DFT.pop_back_val();
639 
640       if (Instruction *I = dyn_cast<Instruction>(V)) {
641         // If it is a || (or && depending on isEQ), process the operands.
642         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
643           if (Visited.insert(I->getOperand(1)).second)
644             DFT.push_back(I->getOperand(1));
645           if (Visited.insert(I->getOperand(0)).second)
646             DFT.push_back(I->getOperand(0));
647           continue;
648         }
649 
650         // Try to match the current instruction
651         if (matchInstruction(I, isEQ))
652           // Match succeed, continue the loop
653           continue;
654       }
655 
656       // One element of the sequence of || (or &&) could not be match as a
657       // comparison against the same value as the others.
658       // We allow only one "Extra" case to be checked before the switch
659       if (!Extra) {
660         Extra = V;
661         continue;
662       }
663       // Failed to parse a proper sequence, abort now
664       CompValue = nullptr;
665       break;
666     }
667   }
668 };
669 
670 } // end anonymous namespace
671 
672 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
673   Instruction *Cond = nullptr;
674   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
675     Cond = dyn_cast<Instruction>(SI->getCondition());
676   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
677     if (BI->isConditional())
678       Cond = dyn_cast<Instruction>(BI->getCondition());
679   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
680     Cond = dyn_cast<Instruction>(IBI->getAddress());
681   }
682 
683   TI->eraseFromParent();
684   if (Cond)
685     RecursivelyDeleteTriviallyDeadInstructions(Cond);
686 }
687 
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
691   Value *CV = nullptr;
692   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
693     // Do not permit merging of large switch instructions into their
694     // predecessors unless there is only one predecessor.
695     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
696                                                pred_end(SI->getParent())) <=
697         128)
698       CV = SI->getCondition();
699   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
700     if (BI->isConditional() && BI->getCondition()->hasOneUse())
701       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
702         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
703           CV = ICI->getOperand(0);
704       }
705 
706   // Unwrap any lossless ptrtoint cast.
707   if (CV) {
708     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
709       Value *Ptr = PTII->getPointerOperand();
710       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
711         CV = Ptr;
712     }
713   }
714   return CV;
715 }
716 
717 /// Given a value comparison instruction,
718 /// decode all of the 'cases' that it represents and return the 'default' block.
719 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
720     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
721   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
722     Cases.reserve(SI->getNumCases());
723     for (auto Case : SI->cases())
724       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
725                                                   Case.getCaseSuccessor()));
726     return SI->getDefaultDest();
727   }
728 
729   BranchInst *BI = cast<BranchInst>(TI);
730   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
731   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
732   Cases.push_back(ValueEqualityComparisonCase(
733       GetConstantInt(ICI->getOperand(1), DL), Succ));
734   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
735 }
736 
737 /// Given a vector of bb/value pairs, remove any entries
738 /// in the list that match the specified block.
739 static void
740 EliminateBlockCases(BasicBlock *BB,
741                     std::vector<ValueEqualityComparisonCase> &Cases) {
742   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
743 }
744 
745 /// Return true if there are any keys in C1 that exist in C2 as well.
746 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
747                           std::vector<ValueEqualityComparisonCase> &C2) {
748   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
749 
750   // Make V1 be smaller than V2.
751   if (V1->size() > V2->size())
752     std::swap(V1, V2);
753 
754   if (V1->empty())
755     return false;
756   if (V1->size() == 1) {
757     // Just scan V2.
758     ConstantInt *TheVal = (*V1)[0].Value;
759     for (unsigned i = 0, e = V2->size(); i != e; ++i)
760       if (TheVal == (*V2)[i].Value)
761         return true;
762   }
763 
764   // Otherwise, just sort both lists and compare element by element.
765   array_pod_sort(V1->begin(), V1->end());
766   array_pod_sort(V2->begin(), V2->end());
767   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
768   while (i1 != e1 && i2 != e2) {
769     if ((*V1)[i1].Value == (*V2)[i2].Value)
770       return true;
771     if ((*V1)[i1].Value < (*V2)[i2].Value)
772       ++i1;
773     else
774       ++i2;
775   }
776   return false;
777 }
778 
779 // Set branch weights on SwitchInst. This sets the metadata if there is at
780 // least one non-zero weight.
781 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
782   // Check that there is at least one non-zero weight. Otherwise, pass
783   // nullptr to setMetadata which will erase the existing metadata.
784   MDNode *N = nullptr;
785   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
786     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
787   SI->setMetadata(LLVMContext::MD_prof, N);
788 }
789 
790 // Similar to the above, but for branch and select instructions that take
791 // exactly 2 weights.
792 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
793                              uint32_t FalseWeight) {
794   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
795   // Check that there is at least one non-zero weight. Otherwise, pass
796   // nullptr to setMetadata which will erase the existing metadata.
797   MDNode *N = nullptr;
798   if (TrueWeight || FalseWeight)
799     N = MDBuilder(I->getParent()->getContext())
800             .createBranchWeights(TrueWeight, FalseWeight);
801   I->setMetadata(LLVMContext::MD_prof, N);
802 }
803 
804 /// If TI is known to be a terminator instruction and its block is known to
805 /// only have a single predecessor block, check to see if that predecessor is
806 /// also a value comparison with the same value, and if that comparison
807 /// determines the outcome of this comparison. If so, simplify TI. This does a
808 /// very limited form of jump threading.
809 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
810     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
811   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
812   if (!PredVal)
813     return false; // Not a value comparison in predecessor.
814 
815   Value *ThisVal = isValueEqualityComparison(TI);
816   assert(ThisVal && "This isn't a value comparison!!");
817   if (ThisVal != PredVal)
818     return false; // Different predicates.
819 
820   // TODO: Preserve branch weight metadata, similarly to how
821   // FoldValueComparisonIntoPredecessors preserves it.
822 
823   // Find out information about when control will move from Pred to TI's block.
824   std::vector<ValueEqualityComparisonCase> PredCases;
825   BasicBlock *PredDef =
826       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
827   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
828 
829   // Find information about how control leaves this block.
830   std::vector<ValueEqualityComparisonCase> ThisCases;
831   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
832   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
833 
834   // If TI's block is the default block from Pred's comparison, potentially
835   // simplify TI based on this knowledge.
836   if (PredDef == TI->getParent()) {
837     // If we are here, we know that the value is none of those cases listed in
838     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
839     // can simplify TI.
840     if (!ValuesOverlap(PredCases, ThisCases))
841       return false;
842 
843     if (isa<BranchInst>(TI)) {
844       // Okay, one of the successors of this condbr is dead.  Convert it to a
845       // uncond br.
846       assert(ThisCases.size() == 1 && "Branch can only have one case!");
847       // Insert the new branch.
848       Instruction *NI = Builder.CreateBr(ThisDef);
849       (void)NI;
850 
851       // Remove PHI node entries for the dead edge.
852       ThisCases[0].Dest->removePredecessor(TI->getParent());
853 
854       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
855                    << "Through successor TI: " << *TI << "Leaving: " << *NI
856                    << "\n");
857 
858       EraseTerminatorInstAndDCECond(TI);
859       return true;
860     }
861 
862     SwitchInst *SI = cast<SwitchInst>(TI);
863     // Okay, TI has cases that are statically dead, prune them away.
864     SmallPtrSet<Constant *, 16> DeadCases;
865     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
866       DeadCases.insert(PredCases[i].Value);
867 
868     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
869                  << "Through successor TI: " << *TI);
870 
871     // Collect branch weights into a vector.
872     SmallVector<uint32_t, 8> Weights;
873     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
874     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
875     if (HasWeight)
876       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
877            ++MD_i) {
878         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
879         Weights.push_back(CI->getValue().getZExtValue());
880       }
881     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
882       --i;
883       if (DeadCases.count(i->getCaseValue())) {
884         if (HasWeight) {
885           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
886           Weights.pop_back();
887         }
888         i->getCaseSuccessor()->removePredecessor(TI->getParent());
889         SI->removeCase(i);
890       }
891     }
892     if (HasWeight && Weights.size() >= 2)
893       setBranchWeights(SI, Weights);
894 
895     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
896     return true;
897   }
898 
899   // Otherwise, TI's block must correspond to some matched value.  Find out
900   // which value (or set of values) this is.
901   ConstantInt *TIV = nullptr;
902   BasicBlock *TIBB = TI->getParent();
903   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904     if (PredCases[i].Dest == TIBB) {
905       if (TIV)
906         return false; // Cannot handle multiple values coming to this block.
907       TIV = PredCases[i].Value;
908     }
909   assert(TIV && "No edge from pred to succ?");
910 
911   // Okay, we found the one constant that our value can be if we get into TI's
912   // BB.  Find out which successor will unconditionally be branched to.
913   BasicBlock *TheRealDest = nullptr;
914   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
915     if (ThisCases[i].Value == TIV) {
916       TheRealDest = ThisCases[i].Dest;
917       break;
918     }
919 
920   // If not handled by any explicit cases, it is handled by the default case.
921   if (!TheRealDest)
922     TheRealDest = ThisDef;
923 
924   // Remove PHI node entries for dead edges.
925   BasicBlock *CheckEdge = TheRealDest;
926   for (BasicBlock *Succ : successors(TIBB))
927     if (Succ != CheckEdge)
928       Succ->removePredecessor(TIBB);
929     else
930       CheckEdge = nullptr;
931 
932   // Insert the new branch.
933   Instruction *NI = Builder.CreateBr(TheRealDest);
934   (void)NI;
935 
936   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
937                << "Through successor TI: " << *TI << "Leaving: " << *NI
938                << "\n");
939 
940   EraseTerminatorInstAndDCECond(TI);
941   return true;
942 }
943 
944 namespace {
945 
946 /// This class implements a stable ordering of constant
947 /// integers that does not depend on their address.  This is important for
948 /// applications that sort ConstantInt's to ensure uniqueness.
949 struct ConstantIntOrdering {
950   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
951     return LHS->getValue().ult(RHS->getValue());
952   }
953 };
954 
955 } // end anonymous namespace
956 
957 static int ConstantIntSortPredicate(ConstantInt *const *P1,
958                                     ConstantInt *const *P2) {
959   const ConstantInt *LHS = *P1;
960   const ConstantInt *RHS = *P2;
961   if (LHS == RHS)
962     return 0;
963   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
964 }
965 
966 static inline bool HasBranchWeights(const Instruction *I) {
967   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
968   if (ProfMD && ProfMD->getOperand(0))
969     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
970       return MDS->getString().equals("branch_weights");
971 
972   return false;
973 }
974 
975 /// Get Weights of a given TerminatorInst, the default weight is at the front
976 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
977 /// metadata.
978 static void GetBranchWeights(TerminatorInst *TI,
979                              SmallVectorImpl<uint64_t> &Weights) {
980   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
981   assert(MD);
982   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
983     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
984     Weights.push_back(CI->getValue().getZExtValue());
985   }
986 
987   // If TI is a conditional eq, the default case is the false case,
988   // and the corresponding branch-weight data is at index 2. We swap the
989   // default weight to be the first entry.
990   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
991     assert(Weights.size() == 2);
992     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
993     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
994       std::swap(Weights.front(), Weights.back());
995   }
996 }
997 
998 /// Keep halving the weights until all can fit in uint32_t.
999 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1000   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1001   if (Max > UINT_MAX) {
1002     unsigned Offset = 32 - countLeadingZeros(Max);
1003     for (uint64_t &I : Weights)
1004       I >>= Offset;
1005   }
1006 }
1007 
1008 /// The specified terminator is a value equality comparison instruction
1009 /// (either a switch or a branch on "X == c").
1010 /// See if any of the predecessors of the terminator block are value comparisons
1011 /// on the same value.  If so, and if safe to do so, fold them together.
1012 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
1013                                                          IRBuilder<> &Builder) {
1014   BasicBlock *BB = TI->getParent();
1015   Value *CV = isValueEqualityComparison(TI); // CondVal
1016   assert(CV && "Not a comparison?");
1017   bool Changed = false;
1018 
1019   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1020   while (!Preds.empty()) {
1021     BasicBlock *Pred = Preds.pop_back_val();
1022 
1023     // See if the predecessor is a comparison with the same value.
1024     TerminatorInst *PTI = Pred->getTerminator();
1025     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1026 
1027     if (PCV == CV && TI != PTI) {
1028       SmallSetVector<BasicBlock*, 4> FailBlocks;
1029       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1030         for (auto *Succ : FailBlocks) {
1031           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1032             return false;
1033         }
1034       }
1035 
1036       // Figure out which 'cases' to copy from SI to PSI.
1037       std::vector<ValueEqualityComparisonCase> BBCases;
1038       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1039 
1040       std::vector<ValueEqualityComparisonCase> PredCases;
1041       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1042 
1043       // Based on whether the default edge from PTI goes to BB or not, fill in
1044       // PredCases and PredDefault with the new switch cases we would like to
1045       // build.
1046       SmallVector<BasicBlock *, 8> NewSuccessors;
1047 
1048       // Update the branch weight metadata along the way
1049       SmallVector<uint64_t, 8> Weights;
1050       bool PredHasWeights = HasBranchWeights(PTI);
1051       bool SuccHasWeights = HasBranchWeights(TI);
1052 
1053       if (PredHasWeights) {
1054         GetBranchWeights(PTI, Weights);
1055         // branch-weight metadata is inconsistent here.
1056         if (Weights.size() != 1 + PredCases.size())
1057           PredHasWeights = SuccHasWeights = false;
1058       } else if (SuccHasWeights)
1059         // If there are no predecessor weights but there are successor weights,
1060         // populate Weights with 1, which will later be scaled to the sum of
1061         // successor's weights
1062         Weights.assign(1 + PredCases.size(), 1);
1063 
1064       SmallVector<uint64_t, 8> SuccWeights;
1065       if (SuccHasWeights) {
1066         GetBranchWeights(TI, SuccWeights);
1067         // branch-weight metadata is inconsistent here.
1068         if (SuccWeights.size() != 1 + BBCases.size())
1069           PredHasWeights = SuccHasWeights = false;
1070       } else if (PredHasWeights)
1071         SuccWeights.assign(1 + BBCases.size(), 1);
1072 
1073       if (PredDefault == BB) {
1074         // If this is the default destination from PTI, only the edges in TI
1075         // that don't occur in PTI, or that branch to BB will be activated.
1076         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1077         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1078           if (PredCases[i].Dest != BB)
1079             PTIHandled.insert(PredCases[i].Value);
1080           else {
1081             // The default destination is BB, we don't need explicit targets.
1082             std::swap(PredCases[i], PredCases.back());
1083 
1084             if (PredHasWeights || SuccHasWeights) {
1085               // Increase weight for the default case.
1086               Weights[0] += Weights[i + 1];
1087               std::swap(Weights[i + 1], Weights.back());
1088               Weights.pop_back();
1089             }
1090 
1091             PredCases.pop_back();
1092             --i;
1093             --e;
1094           }
1095 
1096         // Reconstruct the new switch statement we will be building.
1097         if (PredDefault != BBDefault) {
1098           PredDefault->removePredecessor(Pred);
1099           PredDefault = BBDefault;
1100           NewSuccessors.push_back(BBDefault);
1101         }
1102 
1103         unsigned CasesFromPred = Weights.size();
1104         uint64_t ValidTotalSuccWeight = 0;
1105         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1106           if (!PTIHandled.count(BBCases[i].Value) &&
1107               BBCases[i].Dest != BBDefault) {
1108             PredCases.push_back(BBCases[i]);
1109             NewSuccessors.push_back(BBCases[i].Dest);
1110             if (SuccHasWeights || PredHasWeights) {
1111               // The default weight is at index 0, so weight for the ith case
1112               // should be at index i+1. Scale the cases from successor by
1113               // PredDefaultWeight (Weights[0]).
1114               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1115               ValidTotalSuccWeight += SuccWeights[i + 1];
1116             }
1117           }
1118 
1119         if (SuccHasWeights || PredHasWeights) {
1120           ValidTotalSuccWeight += SuccWeights[0];
1121           // Scale the cases from predecessor by ValidTotalSuccWeight.
1122           for (unsigned i = 1; i < CasesFromPred; ++i)
1123             Weights[i] *= ValidTotalSuccWeight;
1124           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1125           Weights[0] *= SuccWeights[0];
1126         }
1127       } else {
1128         // If this is not the default destination from PSI, only the edges
1129         // in SI that occur in PSI with a destination of BB will be
1130         // activated.
1131         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1132         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1133         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1134           if (PredCases[i].Dest == BB) {
1135             PTIHandled.insert(PredCases[i].Value);
1136 
1137             if (PredHasWeights || SuccHasWeights) {
1138               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1139               std::swap(Weights[i + 1], Weights.back());
1140               Weights.pop_back();
1141             }
1142 
1143             std::swap(PredCases[i], PredCases.back());
1144             PredCases.pop_back();
1145             --i;
1146             --e;
1147           }
1148 
1149         // Okay, now we know which constants were sent to BB from the
1150         // predecessor.  Figure out where they will all go now.
1151         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1152           if (PTIHandled.count(BBCases[i].Value)) {
1153             // If this is one we are capable of getting...
1154             if (PredHasWeights || SuccHasWeights)
1155               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1156             PredCases.push_back(BBCases[i]);
1157             NewSuccessors.push_back(BBCases[i].Dest);
1158             PTIHandled.erase(
1159                 BBCases[i].Value); // This constant is taken care of
1160           }
1161 
1162         // If there are any constants vectored to BB that TI doesn't handle,
1163         // they must go to the default destination of TI.
1164         for (ConstantInt *I : PTIHandled) {
1165           if (PredHasWeights || SuccHasWeights)
1166             Weights.push_back(WeightsForHandled[I]);
1167           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1168           NewSuccessors.push_back(BBDefault);
1169         }
1170       }
1171 
1172       // Okay, at this point, we know which new successor Pred will get.  Make
1173       // sure we update the number of entries in the PHI nodes for these
1174       // successors.
1175       for (BasicBlock *NewSuccessor : NewSuccessors)
1176         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1177 
1178       Builder.SetInsertPoint(PTI);
1179       // Convert pointer to int before we switch.
1180       if (CV->getType()->isPointerTy()) {
1181         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1182                                     "magicptr");
1183       }
1184 
1185       // Now that the successors are updated, create the new Switch instruction.
1186       SwitchInst *NewSI =
1187           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1188       NewSI->setDebugLoc(PTI->getDebugLoc());
1189       for (ValueEqualityComparisonCase &V : PredCases)
1190         NewSI->addCase(V.Value, V.Dest);
1191 
1192       if (PredHasWeights || SuccHasWeights) {
1193         // Halve the weights if any of them cannot fit in an uint32_t
1194         FitWeights(Weights);
1195 
1196         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1197 
1198         setBranchWeights(NewSI, MDWeights);
1199       }
1200 
1201       EraseTerminatorInstAndDCECond(PTI);
1202 
1203       // Okay, last check.  If BB is still a successor of PSI, then we must
1204       // have an infinite loop case.  If so, add an infinitely looping block
1205       // to handle the case to preserve the behavior of the code.
1206       BasicBlock *InfLoopBlock = nullptr;
1207       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1208         if (NewSI->getSuccessor(i) == BB) {
1209           if (!InfLoopBlock) {
1210             // Insert it at the end of the function, because it's either code,
1211             // or it won't matter if it's hot. :)
1212             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1213                                               BB->getParent());
1214             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1215           }
1216           NewSI->setSuccessor(i, InfLoopBlock);
1217         }
1218 
1219       Changed = true;
1220     }
1221   }
1222   return Changed;
1223 }
1224 
1225 // If we would need to insert a select that uses the value of this invoke
1226 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1227 // can't hoist the invoke, as there is nowhere to put the select in this case.
1228 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1229                                 Instruction *I1, Instruction *I2) {
1230   for (BasicBlock *Succ : successors(BB1)) {
1231     PHINode *PN;
1232     for (BasicBlock::iterator BBI = Succ->begin();
1233          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1234       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1235       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1236       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1237         return false;
1238       }
1239     }
1240   }
1241   return true;
1242 }
1243 
1244 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1245 
1246 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1247 /// in the two blocks up into the branch block. The caller of this function
1248 /// guarantees that BI's block dominates BB1 and BB2.
1249 static bool HoistThenElseCodeToIf(BranchInst *BI,
1250                                   const TargetTransformInfo &TTI) {
1251   // This does very trivial matching, with limited scanning, to find identical
1252   // instructions in the two blocks.  In particular, we don't want to get into
1253   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1254   // such, we currently just scan for obviously identical instructions in an
1255   // identical order.
1256   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1257   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1258 
1259   BasicBlock::iterator BB1_Itr = BB1->begin();
1260   BasicBlock::iterator BB2_Itr = BB2->begin();
1261 
1262   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1263   // Skip debug info if it is not identical.
1264   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1265   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1266   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1267     while (isa<DbgInfoIntrinsic>(I1))
1268       I1 = &*BB1_Itr++;
1269     while (isa<DbgInfoIntrinsic>(I2))
1270       I2 = &*BB2_Itr++;
1271   }
1272   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1273       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1274     return false;
1275 
1276   BasicBlock *BIParent = BI->getParent();
1277 
1278   bool Changed = false;
1279   do {
1280     // If we are hoisting the terminator instruction, don't move one (making a
1281     // broken BB), instead clone it, and remove BI.
1282     if (isa<TerminatorInst>(I1))
1283       goto HoistTerminator;
1284 
1285     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1286       return Changed;
1287 
1288     // For a normal instruction, we just move one to right before the branch,
1289     // then replace all uses of the other with the first.  Finally, we remove
1290     // the now redundant second instruction.
1291     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1292     if (!I2->use_empty())
1293       I2->replaceAllUsesWith(I1);
1294     I1->andIRFlags(I2);
1295     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1296                            LLVMContext::MD_range,
1297                            LLVMContext::MD_fpmath,
1298                            LLVMContext::MD_invariant_load,
1299                            LLVMContext::MD_nonnull,
1300                            LLVMContext::MD_invariant_group,
1301                            LLVMContext::MD_align,
1302                            LLVMContext::MD_dereferenceable,
1303                            LLVMContext::MD_dereferenceable_or_null,
1304                            LLVMContext::MD_mem_parallel_loop_access};
1305     combineMetadata(I1, I2, KnownIDs);
1306 
1307     // I1 and I2 are being combined into a single instruction.  Its debug
1308     // location is the merged locations of the original instructions.
1309     I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1310 
1311     I2->eraseFromParent();
1312     Changed = true;
1313 
1314     I1 = &*BB1_Itr++;
1315     I2 = &*BB2_Itr++;
1316     // Skip debug info if it is not identical.
1317     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1318     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1319     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1320       while (isa<DbgInfoIntrinsic>(I1))
1321         I1 = &*BB1_Itr++;
1322       while (isa<DbgInfoIntrinsic>(I2))
1323         I2 = &*BB2_Itr++;
1324     }
1325   } while (I1->isIdenticalToWhenDefined(I2));
1326 
1327   return true;
1328 
1329 HoistTerminator:
1330   // It may not be possible to hoist an invoke.
1331   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1332     return Changed;
1333 
1334   for (BasicBlock *Succ : successors(BB1)) {
1335     PHINode *PN;
1336     for (BasicBlock::iterator BBI = Succ->begin();
1337          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1338       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1339       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1340       if (BB1V == BB2V)
1341         continue;
1342 
1343       // Check for passingValueIsAlwaysUndefined here because we would rather
1344       // eliminate undefined control flow then converting it to a select.
1345       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1346           passingValueIsAlwaysUndefined(BB2V, PN))
1347         return Changed;
1348 
1349       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1350         return Changed;
1351       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1352         return Changed;
1353     }
1354   }
1355 
1356   // Okay, it is safe to hoist the terminator.
1357   Instruction *NT = I1->clone();
1358   BIParent->getInstList().insert(BI->getIterator(), NT);
1359   if (!NT->getType()->isVoidTy()) {
1360     I1->replaceAllUsesWith(NT);
1361     I2->replaceAllUsesWith(NT);
1362     NT->takeName(I1);
1363   }
1364 
1365   IRBuilder<NoFolder> Builder(NT);
1366   // Hoisting one of the terminators from our successor is a great thing.
1367   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1368   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1369   // nodes, so we insert select instruction to compute the final result.
1370   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1371   for (BasicBlock *Succ : successors(BB1)) {
1372     PHINode *PN;
1373     for (BasicBlock::iterator BBI = Succ->begin();
1374          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1375       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1376       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1377       if (BB1V == BB2V)
1378         continue;
1379 
1380       // These values do not agree.  Insert a select instruction before NT
1381       // that determines the right value.
1382       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1383       if (!SI)
1384         SI = cast<SelectInst>(
1385             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1386                                  BB1V->getName() + "." + BB2V->getName(), BI));
1387 
1388       // Make the PHI node use the select for all incoming values for BB1/BB2
1389       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1390         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1391           PN->setIncomingValue(i, SI);
1392     }
1393   }
1394 
1395   // Update any PHI nodes in our new successors.
1396   for (BasicBlock *Succ : successors(BB1))
1397     AddPredecessorToBlock(Succ, BIParent, BB1);
1398 
1399   EraseTerminatorInstAndDCECond(BI);
1400   return true;
1401 }
1402 
1403 // All instructions in Insts belong to different blocks that all unconditionally
1404 // branch to a common successor. Analyze each instruction and return true if it
1405 // would be possible to sink them into their successor, creating one common
1406 // instruction instead. For every value that would be required to be provided by
1407 // PHI node (because an operand varies in each input block), add to PHIOperands.
1408 static bool canSinkInstructions(
1409     ArrayRef<Instruction *> Insts,
1410     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1411   // Prune out obviously bad instructions to move. Any non-store instruction
1412   // must have exactly one use, and we check later that use is by a single,
1413   // common PHI instruction in the successor.
1414   for (auto *I : Insts) {
1415     // These instructions may change or break semantics if moved.
1416     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1417         I->getType()->isTokenTy())
1418       return false;
1419 
1420     // Conservatively return false if I is an inline-asm instruction. Sinking
1421     // and merging inline-asm instructions can potentially create arguments
1422     // that cannot satisfy the inline-asm constraints.
1423     if (const auto *C = dyn_cast<CallInst>(I))
1424       if (C->isInlineAsm())
1425         return false;
1426 
1427     // Everything must have only one use too, apart from stores which
1428     // have no uses.
1429     if (!isa<StoreInst>(I) && !I->hasOneUse())
1430       return false;
1431   }
1432 
1433   const Instruction *I0 = Insts.front();
1434   for (auto *I : Insts)
1435     if (!I->isSameOperationAs(I0))
1436       return false;
1437 
1438   // All instructions in Insts are known to be the same opcode. If they aren't
1439   // stores, check the only user of each is a PHI or in the same block as the
1440   // instruction, because if a user is in the same block as an instruction
1441   // we're contemplating sinking, it must already be determined to be sinkable.
1442   if (!isa<StoreInst>(I0)) {
1443     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1444     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1445     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1446           auto *U = cast<Instruction>(*I->user_begin());
1447           return (PNUse &&
1448                   PNUse->getParent() == Succ &&
1449                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1450                  U->getParent() == I->getParent();
1451         }))
1452       return false;
1453   }
1454 
1455   // Because SROA can't handle speculating stores of selects, try not
1456   // to sink loads or stores of allocas when we'd have to create a PHI for
1457   // the address operand. Also, because it is likely that loads or stores
1458   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1459   // This can cause code churn which can have unintended consequences down
1460   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1461   // FIXME: This is a workaround for a deficiency in SROA - see
1462   // https://llvm.org/bugs/show_bug.cgi?id=30188
1463   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1464         return isa<AllocaInst>(I->getOperand(1));
1465       }))
1466     return false;
1467   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1468         return isa<AllocaInst>(I->getOperand(0));
1469       }))
1470     return false;
1471 
1472   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1473     if (I0->getOperand(OI)->getType()->isTokenTy())
1474       // Don't touch any operand of token type.
1475       return false;
1476 
1477     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1478       assert(I->getNumOperands() == I0->getNumOperands());
1479       return I->getOperand(OI) == I0->getOperand(OI);
1480     };
1481     if (!all_of(Insts, SameAsI0)) {
1482       if (!canReplaceOperandWithVariable(I0, OI))
1483         // We can't create a PHI from this GEP.
1484         return false;
1485       // Don't create indirect calls! The called value is the final operand.
1486       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1487         // FIXME: if the call was *already* indirect, we should do this.
1488         return false;
1489       }
1490       for (auto *I : Insts)
1491         PHIOperands[I].push_back(I->getOperand(OI));
1492     }
1493   }
1494   return true;
1495 }
1496 
1497 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1498 // instruction of every block in Blocks to their common successor, commoning
1499 // into one instruction.
1500 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1501   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1502 
1503   // canSinkLastInstruction returning true guarantees that every block has at
1504   // least one non-terminator instruction.
1505   SmallVector<Instruction*,4> Insts;
1506   for (auto *BB : Blocks) {
1507     Instruction *I = BB->getTerminator();
1508     do {
1509       I = I->getPrevNode();
1510     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1511     if (!isa<DbgInfoIntrinsic>(I))
1512       Insts.push_back(I);
1513   }
1514 
1515   // The only checking we need to do now is that all users of all instructions
1516   // are the same PHI node. canSinkLastInstruction should have checked this but
1517   // it is slightly over-aggressive - it gets confused by commutative instructions
1518   // so double-check it here.
1519   Instruction *I0 = Insts.front();
1520   if (!isa<StoreInst>(I0)) {
1521     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1522     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1523           auto *U = cast<Instruction>(*I->user_begin());
1524           return U == PNUse;
1525         }))
1526       return false;
1527   }
1528 
1529   // We don't need to do any more checking here; canSinkLastInstruction should
1530   // have done it all for us.
1531   SmallVector<Value*, 4> NewOperands;
1532   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1533     // This check is different to that in canSinkLastInstruction. There, we
1534     // cared about the global view once simplifycfg (and instcombine) have
1535     // completed - it takes into account PHIs that become trivially
1536     // simplifiable.  However here we need a more local view; if an operand
1537     // differs we create a PHI and rely on instcombine to clean up the very
1538     // small mess we may make.
1539     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1540       return I->getOperand(O) != I0->getOperand(O);
1541     });
1542     if (!NeedPHI) {
1543       NewOperands.push_back(I0->getOperand(O));
1544       continue;
1545     }
1546 
1547     // Create a new PHI in the successor block and populate it.
1548     auto *Op = I0->getOperand(O);
1549     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1550     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1551                                Op->getName() + ".sink", &BBEnd->front());
1552     for (auto *I : Insts)
1553       PN->addIncoming(I->getOperand(O), I->getParent());
1554     NewOperands.push_back(PN);
1555   }
1556 
1557   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1558   // and move it to the start of the successor block.
1559   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1560     I0->getOperandUse(O).set(NewOperands[O]);
1561   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1562 
1563   // Update metadata and IR flags, and merge debug locations.
1564   for (auto *I : Insts)
1565     if (I != I0) {
1566       // The debug location for the "common" instruction is the merged locations
1567       // of all the commoned instructions.  We start with the original location
1568       // of the "common" instruction and iteratively merge each location in the
1569       // loop below.
1570       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1571       // However, as N-way merge for CallInst is rare, so we use simplified API
1572       // instead of using complex API for N-way merge.
1573       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1574       combineMetadataForCSE(I0, I);
1575       I0->andIRFlags(I);
1576     }
1577 
1578   if (!isa<StoreInst>(I0)) {
1579     // canSinkLastInstruction checked that all instructions were used by
1580     // one and only one PHI node. Find that now, RAUW it to our common
1581     // instruction and nuke it.
1582     assert(I0->hasOneUse());
1583     auto *PN = cast<PHINode>(*I0->user_begin());
1584     PN->replaceAllUsesWith(I0);
1585     PN->eraseFromParent();
1586   }
1587 
1588   // Finally nuke all instructions apart from the common instruction.
1589   for (auto *I : Insts)
1590     if (I != I0)
1591       I->eraseFromParent();
1592 
1593   return true;
1594 }
1595 
1596 namespace {
1597 
1598   // LockstepReverseIterator - Iterates through instructions
1599   // in a set of blocks in reverse order from the first non-terminator.
1600   // For example (assume all blocks have size n):
1601   //   LockstepReverseIterator I([B1, B2, B3]);
1602   //   *I-- = [B1[n], B2[n], B3[n]];
1603   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1604   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1605   //   ...
1606   class LockstepReverseIterator {
1607     ArrayRef<BasicBlock*> Blocks;
1608     SmallVector<Instruction*,4> Insts;
1609     bool Fail;
1610 
1611   public:
1612     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1613       reset();
1614     }
1615 
1616     void reset() {
1617       Fail = false;
1618       Insts.clear();
1619       for (auto *BB : Blocks) {
1620         Instruction *Inst = BB->getTerminator();
1621         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1622           Inst = Inst->getPrevNode();
1623         if (!Inst) {
1624           // Block wasn't big enough.
1625           Fail = true;
1626           return;
1627         }
1628         Insts.push_back(Inst);
1629       }
1630     }
1631 
1632     bool isValid() const {
1633       return !Fail;
1634     }
1635 
1636     void operator--() {
1637       if (Fail)
1638         return;
1639       for (auto *&Inst : Insts) {
1640         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1641           Inst = Inst->getPrevNode();
1642         // Already at beginning of block.
1643         if (!Inst) {
1644           Fail = true;
1645           return;
1646         }
1647       }
1648     }
1649 
1650     ArrayRef<Instruction*> operator * () const {
1651       return Insts;
1652     }
1653   };
1654 
1655 } // end anonymous namespace
1656 
1657 /// Given an unconditional branch that goes to BBEnd,
1658 /// check whether BBEnd has only two predecessors and the other predecessor
1659 /// ends with an unconditional branch. If it is true, sink any common code
1660 /// in the two predecessors to BBEnd.
1661 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1662   assert(BI1->isUnconditional());
1663   BasicBlock *BBEnd = BI1->getSuccessor(0);
1664 
1665   // We support two situations:
1666   //   (1) all incoming arcs are unconditional
1667   //   (2) one incoming arc is conditional
1668   //
1669   // (2) is very common in switch defaults and
1670   // else-if patterns;
1671   //
1672   //   if (a) f(1);
1673   //   else if (b) f(2);
1674   //
1675   // produces:
1676   //
1677   //       [if]
1678   //      /    \
1679   //    [f(1)] [if]
1680   //      |     | \
1681   //      |     |  |
1682   //      |  [f(2)]|
1683   //       \    | /
1684   //        [ end ]
1685   //
1686   // [end] has two unconditional predecessor arcs and one conditional. The
1687   // conditional refers to the implicit empty 'else' arc. This conditional
1688   // arc can also be caused by an empty default block in a switch.
1689   //
1690   // In this case, we attempt to sink code from all *unconditional* arcs.
1691   // If we can sink instructions from these arcs (determined during the scan
1692   // phase below) we insert a common successor for all unconditional arcs and
1693   // connect that to [end], to enable sinking:
1694   //
1695   //       [if]
1696   //      /    \
1697   //    [x(1)] [if]
1698   //      |     | \
1699   //      |     |  \
1700   //      |  [x(2)] |
1701   //       \   /    |
1702   //   [sink.split] |
1703   //         \     /
1704   //         [ end ]
1705   //
1706   SmallVector<BasicBlock*,4> UnconditionalPreds;
1707   Instruction *Cond = nullptr;
1708   for (auto *B : predecessors(BBEnd)) {
1709     auto *T = B->getTerminator();
1710     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1711       UnconditionalPreds.push_back(B);
1712     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1713       Cond = T;
1714     else
1715       return false;
1716   }
1717   if (UnconditionalPreds.size() < 2)
1718     return false;
1719 
1720   bool Changed = false;
1721   // We take a two-step approach to tail sinking. First we scan from the end of
1722   // each block upwards in lockstep. If the n'th instruction from the end of each
1723   // block can be sunk, those instructions are added to ValuesToSink and we
1724   // carry on. If we can sink an instruction but need to PHI-merge some operands
1725   // (because they're not identical in each instruction) we add these to
1726   // PHIOperands.
1727   unsigned ScanIdx = 0;
1728   SmallPtrSet<Value*,4> InstructionsToSink;
1729   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1730   LockstepReverseIterator LRI(UnconditionalPreds);
1731   while (LRI.isValid() &&
1732          canSinkInstructions(*LRI, PHIOperands)) {
1733     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1734     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1735     ++ScanIdx;
1736     --LRI;
1737   }
1738 
1739   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1740     unsigned NumPHIdValues = 0;
1741     for (auto *I : *LRI)
1742       for (auto *V : PHIOperands[I])
1743         if (InstructionsToSink.count(V) == 0)
1744           ++NumPHIdValues;
1745     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1746     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1747     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1748         NumPHIInsts++;
1749 
1750     return NumPHIInsts <= 1;
1751   };
1752 
1753   if (ScanIdx > 0 && Cond) {
1754     // Check if we would actually sink anything first! This mutates the CFG and
1755     // adds an extra block. The goal in doing this is to allow instructions that
1756     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1757     // (such as trunc, add) can be sunk and predicated already. So we check that
1758     // we're going to sink at least one non-speculatable instruction.
1759     LRI.reset();
1760     unsigned Idx = 0;
1761     bool Profitable = false;
1762     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1763       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1764         Profitable = true;
1765         break;
1766       }
1767       --LRI;
1768       ++Idx;
1769     }
1770     if (!Profitable)
1771       return false;
1772 
1773     DEBUG(dbgs() << "SINK: Splitting edge\n");
1774     // We have a conditional edge and we're going to sink some instructions.
1775     // Insert a new block postdominating all blocks we're going to sink from.
1776     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1777                                 ".sink.split"))
1778       // Edges couldn't be split.
1779       return false;
1780     Changed = true;
1781   }
1782 
1783   // Now that we've analyzed all potential sinking candidates, perform the
1784   // actual sink. We iteratively sink the last non-terminator of the source
1785   // blocks into their common successor unless doing so would require too
1786   // many PHI instructions to be generated (currently only one PHI is allowed
1787   // per sunk instruction).
1788   //
1789   // We can use InstructionsToSink to discount values needing PHI-merging that will
1790   // actually be sunk in a later iteration. This allows us to be more
1791   // aggressive in what we sink. This does allow a false positive where we
1792   // sink presuming a later value will also be sunk, but stop half way through
1793   // and never actually sink it which means we produce more PHIs than intended.
1794   // This is unlikely in practice though.
1795   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1796     DEBUG(dbgs() << "SINK: Sink: "
1797                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1798                  << "\n");
1799 
1800     // Because we've sunk every instruction in turn, the current instruction to
1801     // sink is always at index 0.
1802     LRI.reset();
1803     if (!ProfitableToSinkInstruction(LRI)) {
1804       // Too many PHIs would be created.
1805       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1806       break;
1807     }
1808 
1809     if (!sinkLastInstruction(UnconditionalPreds))
1810       return Changed;
1811     NumSinkCommons++;
1812     Changed = true;
1813   }
1814   return Changed;
1815 }
1816 
1817 /// \brief Determine if we can hoist sink a sole store instruction out of a
1818 /// conditional block.
1819 ///
1820 /// We are looking for code like the following:
1821 ///   BrBB:
1822 ///     store i32 %add, i32* %arrayidx2
1823 ///     ... // No other stores or function calls (we could be calling a memory
1824 ///     ... // function).
1825 ///     %cmp = icmp ult %x, %y
1826 ///     br i1 %cmp, label %EndBB, label %ThenBB
1827 ///   ThenBB:
1828 ///     store i32 %add5, i32* %arrayidx2
1829 ///     br label EndBB
1830 ///   EndBB:
1831 ///     ...
1832 ///   We are going to transform this into:
1833 ///   BrBB:
1834 ///     store i32 %add, i32* %arrayidx2
1835 ///     ... //
1836 ///     %cmp = icmp ult %x, %y
1837 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1838 ///     store i32 %add.add5, i32* %arrayidx2
1839 ///     ...
1840 ///
1841 /// \return The pointer to the value of the previous store if the store can be
1842 ///         hoisted into the predecessor block. 0 otherwise.
1843 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1844                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1845   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1846   if (!StoreToHoist)
1847     return nullptr;
1848 
1849   // Volatile or atomic.
1850   if (!StoreToHoist->isSimple())
1851     return nullptr;
1852 
1853   Value *StorePtr = StoreToHoist->getPointerOperand();
1854 
1855   // Look for a store to the same pointer in BrBB.
1856   unsigned MaxNumInstToLookAt = 9;
1857   for (Instruction &CurI : reverse(*BrBB)) {
1858     if (!MaxNumInstToLookAt)
1859       break;
1860     // Skip debug info.
1861     if (isa<DbgInfoIntrinsic>(CurI))
1862       continue;
1863     --MaxNumInstToLookAt;
1864 
1865     // Could be calling an instruction that affects memory like free().
1866     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1867       return nullptr;
1868 
1869     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1870       // Found the previous store make sure it stores to the same location.
1871       if (SI->getPointerOperand() == StorePtr)
1872         // Found the previous store, return its value operand.
1873         return SI->getValueOperand();
1874       return nullptr; // Unknown store.
1875     }
1876   }
1877 
1878   return nullptr;
1879 }
1880 
1881 /// \brief Speculate a conditional basic block flattening the CFG.
1882 ///
1883 /// Note that this is a very risky transform currently. Speculating
1884 /// instructions like this is most often not desirable. Instead, there is an MI
1885 /// pass which can do it with full awareness of the resource constraints.
1886 /// However, some cases are "obvious" and we should do directly. An example of
1887 /// this is speculating a single, reasonably cheap instruction.
1888 ///
1889 /// There is only one distinct advantage to flattening the CFG at the IR level:
1890 /// it makes very common but simplistic optimizations such as are common in
1891 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1892 /// modeling their effects with easier to reason about SSA value graphs.
1893 ///
1894 ///
1895 /// An illustration of this transform is turning this IR:
1896 /// \code
1897 ///   BB:
1898 ///     %cmp = icmp ult %x, %y
1899 ///     br i1 %cmp, label %EndBB, label %ThenBB
1900 ///   ThenBB:
1901 ///     %sub = sub %x, %y
1902 ///     br label BB2
1903 ///   EndBB:
1904 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1905 ///     ...
1906 /// \endcode
1907 ///
1908 /// Into this IR:
1909 /// \code
1910 ///   BB:
1911 ///     %cmp = icmp ult %x, %y
1912 ///     %sub = sub %x, %y
1913 ///     %cond = select i1 %cmp, 0, %sub
1914 ///     ...
1915 /// \endcode
1916 ///
1917 /// \returns true if the conditional block is removed.
1918 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1919                                    const TargetTransformInfo &TTI) {
1920   // Be conservative for now. FP select instruction can often be expensive.
1921   Value *BrCond = BI->getCondition();
1922   if (isa<FCmpInst>(BrCond))
1923     return false;
1924 
1925   BasicBlock *BB = BI->getParent();
1926   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1927 
1928   // If ThenBB is actually on the false edge of the conditional branch, remember
1929   // to swap the select operands later.
1930   bool Invert = false;
1931   if (ThenBB != BI->getSuccessor(0)) {
1932     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1933     Invert = true;
1934   }
1935   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1936 
1937   // Keep a count of how many times instructions are used within CondBB when
1938   // they are candidates for sinking into CondBB. Specifically:
1939   // - They are defined in BB, and
1940   // - They have no side effects, and
1941   // - All of their uses are in CondBB.
1942   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1943 
1944   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1945 
1946   unsigned SpeculationCost = 0;
1947   Value *SpeculatedStoreValue = nullptr;
1948   StoreInst *SpeculatedStore = nullptr;
1949   for (BasicBlock::iterator BBI = ThenBB->begin(),
1950                             BBE = std::prev(ThenBB->end());
1951        BBI != BBE; ++BBI) {
1952     Instruction *I = &*BBI;
1953     // Skip debug info.
1954     if (isa<DbgInfoIntrinsic>(I)) {
1955       SpeculatedDbgIntrinsics.push_back(I);
1956       continue;
1957     }
1958 
1959     // Only speculatively execute a single instruction (not counting the
1960     // terminator) for now.
1961     ++SpeculationCost;
1962     if (SpeculationCost > 1)
1963       return false;
1964 
1965     // Don't hoist the instruction if it's unsafe or expensive.
1966     if (!isSafeToSpeculativelyExecute(I) &&
1967         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1968                                   I, BB, ThenBB, EndBB))))
1969       return false;
1970     if (!SpeculatedStoreValue &&
1971         ComputeSpeculationCost(I, TTI) >
1972             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1973       return false;
1974 
1975     // Store the store speculation candidate.
1976     if (SpeculatedStoreValue)
1977       SpeculatedStore = cast<StoreInst>(I);
1978 
1979     // Do not hoist the instruction if any of its operands are defined but not
1980     // used in BB. The transformation will prevent the operand from
1981     // being sunk into the use block.
1982     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1983       Instruction *OpI = dyn_cast<Instruction>(*i);
1984       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1985         continue; // Not a candidate for sinking.
1986 
1987       ++SinkCandidateUseCounts[OpI];
1988     }
1989   }
1990 
1991   // Consider any sink candidates which are only used in CondBB as costs for
1992   // speculation. Note, while we iterate over a DenseMap here, we are summing
1993   // and so iteration order isn't significant.
1994   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1995            I = SinkCandidateUseCounts.begin(),
1996            E = SinkCandidateUseCounts.end();
1997        I != E; ++I)
1998     if (I->first->getNumUses() == I->second) {
1999       ++SpeculationCost;
2000       if (SpeculationCost > 1)
2001         return false;
2002     }
2003 
2004   // Check that the PHI nodes can be converted to selects.
2005   bool HaveRewritablePHIs = false;
2006   for (BasicBlock::iterator I = EndBB->begin();
2007        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2008     Value *OrigV = PN->getIncomingValueForBlock(BB);
2009     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2010 
2011     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2012     // Skip PHIs which are trivial.
2013     if (ThenV == OrigV)
2014       continue;
2015 
2016     // Don't convert to selects if we could remove undefined behavior instead.
2017     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2018         passingValueIsAlwaysUndefined(ThenV, PN))
2019       return false;
2020 
2021     HaveRewritablePHIs = true;
2022     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2023     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2024     if (!OrigCE && !ThenCE)
2025       continue; // Known safe and cheap.
2026 
2027     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2028         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2029       return false;
2030     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2031     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2032     unsigned MaxCost =
2033         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2034     if (OrigCost + ThenCost > MaxCost)
2035       return false;
2036 
2037     // Account for the cost of an unfolded ConstantExpr which could end up
2038     // getting expanded into Instructions.
2039     // FIXME: This doesn't account for how many operations are combined in the
2040     // constant expression.
2041     ++SpeculationCost;
2042     if (SpeculationCost > 1)
2043       return false;
2044   }
2045 
2046   // If there are no PHIs to process, bail early. This helps ensure idempotence
2047   // as well.
2048   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2049     return false;
2050 
2051   // If we get here, we can hoist the instruction and if-convert.
2052   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2053 
2054   // Insert a select of the value of the speculated store.
2055   if (SpeculatedStoreValue) {
2056     IRBuilder<NoFolder> Builder(BI);
2057     Value *TrueV = SpeculatedStore->getValueOperand();
2058     Value *FalseV = SpeculatedStoreValue;
2059     if (Invert)
2060       std::swap(TrueV, FalseV);
2061     Value *S = Builder.CreateSelect(
2062         BrCond, TrueV, FalseV, "spec.store.select", BI);
2063     SpeculatedStore->setOperand(0, S);
2064     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2065                                          SpeculatedStore->getDebugLoc());
2066   }
2067 
2068   // Metadata can be dependent on the condition we are hoisting above.
2069   // Conservatively strip all metadata on the instruction.
2070   for (auto &I : *ThenBB)
2071     I.dropUnknownNonDebugMetadata();
2072 
2073   // Hoist the instructions.
2074   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2075                            ThenBB->begin(), std::prev(ThenBB->end()));
2076 
2077   // Insert selects and rewrite the PHI operands.
2078   IRBuilder<NoFolder> Builder(BI);
2079   for (BasicBlock::iterator I = EndBB->begin();
2080        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2081     unsigned OrigI = PN->getBasicBlockIndex(BB);
2082     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2083     Value *OrigV = PN->getIncomingValue(OrigI);
2084     Value *ThenV = PN->getIncomingValue(ThenI);
2085 
2086     // Skip PHIs which are trivial.
2087     if (OrigV == ThenV)
2088       continue;
2089 
2090     // Create a select whose true value is the speculatively executed value and
2091     // false value is the preexisting value. Swap them if the branch
2092     // destinations were inverted.
2093     Value *TrueV = ThenV, *FalseV = OrigV;
2094     if (Invert)
2095       std::swap(TrueV, FalseV);
2096     Value *V = Builder.CreateSelect(
2097         BrCond, TrueV, FalseV, "spec.select", BI);
2098     PN->setIncomingValue(OrigI, V);
2099     PN->setIncomingValue(ThenI, V);
2100   }
2101 
2102   // Remove speculated dbg intrinsics.
2103   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2104   // dbg value for the different flows and inserting it after the select.
2105   for (Instruction *I : SpeculatedDbgIntrinsics)
2106     I->eraseFromParent();
2107 
2108   ++NumSpeculations;
2109   return true;
2110 }
2111 
2112 /// Return true if we can thread a branch across this block.
2113 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2114   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2115   unsigned Size = 0;
2116 
2117   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2118     if (isa<DbgInfoIntrinsic>(BBI))
2119       continue;
2120     if (Size > 10)
2121       return false; // Don't clone large BB's.
2122     ++Size;
2123 
2124     // We can only support instructions that do not define values that are
2125     // live outside of the current basic block.
2126     for (User *U : BBI->users()) {
2127       Instruction *UI = cast<Instruction>(U);
2128       if (UI->getParent() != BB || isa<PHINode>(UI))
2129         return false;
2130     }
2131 
2132     // Looks ok, continue checking.
2133   }
2134 
2135   return true;
2136 }
2137 
2138 /// If we have a conditional branch on a PHI node value that is defined in the
2139 /// same block as the branch and if any PHI entries are constants, thread edges
2140 /// corresponding to that entry to be branches to their ultimate destination.
2141 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2142                                 AssumptionCache *AC) {
2143   BasicBlock *BB = BI->getParent();
2144   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2145   // NOTE: we currently cannot transform this case if the PHI node is used
2146   // outside of the block.
2147   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2148     return false;
2149 
2150   // Degenerate case of a single entry PHI.
2151   if (PN->getNumIncomingValues() == 1) {
2152     FoldSingleEntryPHINodes(PN->getParent());
2153     return true;
2154   }
2155 
2156   // Now we know that this block has multiple preds and two succs.
2157   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2158     return false;
2159 
2160   // Can't fold blocks that contain noduplicate or convergent calls.
2161   if (any_of(*BB, [](const Instruction &I) {
2162         const CallInst *CI = dyn_cast<CallInst>(&I);
2163         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2164       }))
2165     return false;
2166 
2167   // Okay, this is a simple enough basic block.  See if any phi values are
2168   // constants.
2169   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2170     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2171     if (!CB || !CB->getType()->isIntegerTy(1))
2172       continue;
2173 
2174     // Okay, we now know that all edges from PredBB should be revectored to
2175     // branch to RealDest.
2176     BasicBlock *PredBB = PN->getIncomingBlock(i);
2177     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2178 
2179     if (RealDest == BB)
2180       continue; // Skip self loops.
2181     // Skip if the predecessor's terminator is an indirect branch.
2182     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2183       continue;
2184 
2185     // The dest block might have PHI nodes, other predecessors and other
2186     // difficult cases.  Instead of being smart about this, just insert a new
2187     // block that jumps to the destination block, effectively splitting
2188     // the edge we are about to create.
2189     BasicBlock *EdgeBB =
2190         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2191                            RealDest->getParent(), RealDest);
2192     BranchInst::Create(RealDest, EdgeBB);
2193 
2194     // Update PHI nodes.
2195     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2196 
2197     // BB may have instructions that are being threaded over.  Clone these
2198     // instructions into EdgeBB.  We know that there will be no uses of the
2199     // cloned instructions outside of EdgeBB.
2200     BasicBlock::iterator InsertPt = EdgeBB->begin();
2201     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2202     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2203       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2204         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2205         continue;
2206       }
2207       // Clone the instruction.
2208       Instruction *N = BBI->clone();
2209       if (BBI->hasName())
2210         N->setName(BBI->getName() + ".c");
2211 
2212       // Update operands due to translation.
2213       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2214         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2215         if (PI != TranslateMap.end())
2216           *i = PI->second;
2217       }
2218 
2219       // Check for trivial simplification.
2220       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2221         if (!BBI->use_empty())
2222           TranslateMap[&*BBI] = V;
2223         if (!N->mayHaveSideEffects()) {
2224           N->deleteValue(); // Instruction folded away, don't need actual inst
2225           N = nullptr;
2226         }
2227       } else {
2228         if (!BBI->use_empty())
2229           TranslateMap[&*BBI] = N;
2230       }
2231       // Insert the new instruction into its new home.
2232       if (N)
2233         EdgeBB->getInstList().insert(InsertPt, N);
2234 
2235       // Register the new instruction with the assumption cache if necessary.
2236       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2237         if (II->getIntrinsicID() == Intrinsic::assume)
2238           AC->registerAssumption(II);
2239     }
2240 
2241     // Loop over all of the edges from PredBB to BB, changing them to branch
2242     // to EdgeBB instead.
2243     TerminatorInst *PredBBTI = PredBB->getTerminator();
2244     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2245       if (PredBBTI->getSuccessor(i) == BB) {
2246         BB->removePredecessor(PredBB);
2247         PredBBTI->setSuccessor(i, EdgeBB);
2248       }
2249 
2250     // Recurse, simplifying any other constants.
2251     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2252   }
2253 
2254   return false;
2255 }
2256 
2257 /// Given a BB that starts with the specified two-entry PHI node,
2258 /// see if we can eliminate it.
2259 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2260                                 const DataLayout &DL) {
2261   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2262   // statement", which has a very simple dominance structure.  Basically, we
2263   // are trying to find the condition that is being branched on, which
2264   // subsequently causes this merge to happen.  We really want control
2265   // dependence information for this check, but simplifycfg can't keep it up
2266   // to date, and this catches most of the cases we care about anyway.
2267   BasicBlock *BB = PN->getParent();
2268   BasicBlock *IfTrue, *IfFalse;
2269   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2270   if (!IfCond ||
2271       // Don't bother if the branch will be constant folded trivially.
2272       isa<ConstantInt>(IfCond))
2273     return false;
2274 
2275   // Okay, we found that we can merge this two-entry phi node into a select.
2276   // Doing so would require us to fold *all* two entry phi nodes in this block.
2277   // At some point this becomes non-profitable (particularly if the target
2278   // doesn't support cmov's).  Only do this transformation if there are two or
2279   // fewer PHI nodes in this block.
2280   unsigned NumPhis = 0;
2281   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2282     if (NumPhis > 2)
2283       return false;
2284 
2285   // Loop over the PHI's seeing if we can promote them all to select
2286   // instructions.  While we are at it, keep track of the instructions
2287   // that need to be moved to the dominating block.
2288   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2289   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2290            MaxCostVal1 = PHINodeFoldingThreshold;
2291   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2292   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2293 
2294   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2295     PHINode *PN = cast<PHINode>(II++);
2296     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2297       PN->replaceAllUsesWith(V);
2298       PN->eraseFromParent();
2299       continue;
2300     }
2301 
2302     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2303                              MaxCostVal0, TTI) ||
2304         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2305                              MaxCostVal1, TTI))
2306       return false;
2307   }
2308 
2309   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2310   // we ran out of PHIs then we simplified them all.
2311   PN = dyn_cast<PHINode>(BB->begin());
2312   if (!PN)
2313     return true;
2314 
2315   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2316   // often be turned into switches and other things.
2317   if (PN->getType()->isIntegerTy(1) &&
2318       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2319        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2320        isa<BinaryOperator>(IfCond)))
2321     return false;
2322 
2323   // If all PHI nodes are promotable, check to make sure that all instructions
2324   // in the predecessor blocks can be promoted as well. If not, we won't be able
2325   // to get rid of the control flow, so it's not worth promoting to select
2326   // instructions.
2327   BasicBlock *DomBlock = nullptr;
2328   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2329   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2330   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2331     IfBlock1 = nullptr;
2332   } else {
2333     DomBlock = *pred_begin(IfBlock1);
2334     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2335          ++I)
2336       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2337         // This is not an aggressive instruction that we can promote.
2338         // Because of this, we won't be able to get rid of the control flow, so
2339         // the xform is not worth it.
2340         return false;
2341       }
2342   }
2343 
2344   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2345     IfBlock2 = nullptr;
2346   } else {
2347     DomBlock = *pred_begin(IfBlock2);
2348     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2349          ++I)
2350       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2351         // This is not an aggressive instruction that we can promote.
2352         // Because of this, we won't be able to get rid of the control flow, so
2353         // the xform is not worth it.
2354         return false;
2355       }
2356   }
2357 
2358   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2359                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2360 
2361   // If we can still promote the PHI nodes after this gauntlet of tests,
2362   // do all of the PHI's now.
2363   Instruction *InsertPt = DomBlock->getTerminator();
2364   IRBuilder<NoFolder> Builder(InsertPt);
2365 
2366   // Move all 'aggressive' instructions, which are defined in the
2367   // conditional parts of the if's up to the dominating block.
2368   if (IfBlock1) {
2369     for (auto &I : *IfBlock1)
2370       I.dropUnknownNonDebugMetadata();
2371     DomBlock->getInstList().splice(InsertPt->getIterator(),
2372                                    IfBlock1->getInstList(), IfBlock1->begin(),
2373                                    IfBlock1->getTerminator()->getIterator());
2374   }
2375   if (IfBlock2) {
2376     for (auto &I : *IfBlock2)
2377       I.dropUnknownNonDebugMetadata();
2378     DomBlock->getInstList().splice(InsertPt->getIterator(),
2379                                    IfBlock2->getInstList(), IfBlock2->begin(),
2380                                    IfBlock2->getTerminator()->getIterator());
2381   }
2382 
2383   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2384     // Change the PHI node into a select instruction.
2385     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2386     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2387 
2388     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2389     PN->replaceAllUsesWith(Sel);
2390     Sel->takeName(PN);
2391     PN->eraseFromParent();
2392   }
2393 
2394   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2395   // has been flattened.  Change DomBlock to jump directly to our new block to
2396   // avoid other simplifycfg's kicking in on the diamond.
2397   TerminatorInst *OldTI = DomBlock->getTerminator();
2398   Builder.SetInsertPoint(OldTI);
2399   Builder.CreateBr(BB);
2400   OldTI->eraseFromParent();
2401   return true;
2402 }
2403 
2404 /// If we found a conditional branch that goes to two returning blocks,
2405 /// try to merge them together into one return,
2406 /// introducing a select if the return values disagree.
2407 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2408                                            IRBuilder<> &Builder) {
2409   assert(BI->isConditional() && "Must be a conditional branch");
2410   BasicBlock *TrueSucc = BI->getSuccessor(0);
2411   BasicBlock *FalseSucc = BI->getSuccessor(1);
2412   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2413   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2414 
2415   // Check to ensure both blocks are empty (just a return) or optionally empty
2416   // with PHI nodes.  If there are other instructions, merging would cause extra
2417   // computation on one path or the other.
2418   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2419     return false;
2420   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2421     return false;
2422 
2423   Builder.SetInsertPoint(BI);
2424   // Okay, we found a branch that is going to two return nodes.  If
2425   // there is no return value for this function, just change the
2426   // branch into a return.
2427   if (FalseRet->getNumOperands() == 0) {
2428     TrueSucc->removePredecessor(BI->getParent());
2429     FalseSucc->removePredecessor(BI->getParent());
2430     Builder.CreateRetVoid();
2431     EraseTerminatorInstAndDCECond(BI);
2432     return true;
2433   }
2434 
2435   // Otherwise, figure out what the true and false return values are
2436   // so we can insert a new select instruction.
2437   Value *TrueValue = TrueRet->getReturnValue();
2438   Value *FalseValue = FalseRet->getReturnValue();
2439 
2440   // Unwrap any PHI nodes in the return blocks.
2441   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2442     if (TVPN->getParent() == TrueSucc)
2443       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2444   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2445     if (FVPN->getParent() == FalseSucc)
2446       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2447 
2448   // In order for this transformation to be safe, we must be able to
2449   // unconditionally execute both operands to the return.  This is
2450   // normally the case, but we could have a potentially-trapping
2451   // constant expression that prevents this transformation from being
2452   // safe.
2453   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2454     if (TCV->canTrap())
2455       return false;
2456   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2457     if (FCV->canTrap())
2458       return false;
2459 
2460   // Okay, we collected all the mapped values and checked them for sanity, and
2461   // defined to really do this transformation.  First, update the CFG.
2462   TrueSucc->removePredecessor(BI->getParent());
2463   FalseSucc->removePredecessor(BI->getParent());
2464 
2465   // Insert select instructions where needed.
2466   Value *BrCond = BI->getCondition();
2467   if (TrueValue) {
2468     // Insert a select if the results differ.
2469     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2470     } else if (isa<UndefValue>(TrueValue)) {
2471       TrueValue = FalseValue;
2472     } else {
2473       TrueValue =
2474           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2475     }
2476   }
2477 
2478   Value *RI =
2479       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2480 
2481   (void)RI;
2482 
2483   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2484                << "\n  " << *BI << "NewRet = " << *RI
2485                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2486 
2487   EraseTerminatorInstAndDCECond(BI);
2488 
2489   return true;
2490 }
2491 
2492 /// Return true if the given instruction is available
2493 /// in its predecessor block. If yes, the instruction will be removed.
2494 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2495   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2496     return false;
2497   for (Instruction &I : *PB) {
2498     Instruction *PBI = &I;
2499     // Check whether Inst and PBI generate the same value.
2500     if (Inst->isIdenticalTo(PBI)) {
2501       Inst->replaceAllUsesWith(PBI);
2502       Inst->eraseFromParent();
2503       return true;
2504     }
2505   }
2506   return false;
2507 }
2508 
2509 /// Return true if either PBI or BI has branch weight available, and store
2510 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2511 /// not have branch weight, use 1:1 as its weight.
2512 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2513                                    uint64_t &PredTrueWeight,
2514                                    uint64_t &PredFalseWeight,
2515                                    uint64_t &SuccTrueWeight,
2516                                    uint64_t &SuccFalseWeight) {
2517   bool PredHasWeights =
2518       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2519   bool SuccHasWeights =
2520       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2521   if (PredHasWeights || SuccHasWeights) {
2522     if (!PredHasWeights)
2523       PredTrueWeight = PredFalseWeight = 1;
2524     if (!SuccHasWeights)
2525       SuccTrueWeight = SuccFalseWeight = 1;
2526     return true;
2527   } else {
2528     return false;
2529   }
2530 }
2531 
2532 /// If this basic block is simple enough, and if a predecessor branches to us
2533 /// and one of our successors, fold the block into the predecessor and use
2534 /// logical operations to pick the right destination.
2535 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2536   BasicBlock *BB = BI->getParent();
2537 
2538   Instruction *Cond = nullptr;
2539   if (BI->isConditional())
2540     Cond = dyn_cast<Instruction>(BI->getCondition());
2541   else {
2542     // For unconditional branch, check for a simple CFG pattern, where
2543     // BB has a single predecessor and BB's successor is also its predecessor's
2544     // successor. If such pattern exists, check for CSE between BB and its
2545     // predecessor.
2546     if (BasicBlock *PB = BB->getSinglePredecessor())
2547       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2548         if (PBI->isConditional() &&
2549             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2550              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2551           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2552             Instruction *Curr = &*I++;
2553             if (isa<CmpInst>(Curr)) {
2554               Cond = Curr;
2555               break;
2556             }
2557             // Quit if we can't remove this instruction.
2558             if (!checkCSEInPredecessor(Curr, PB))
2559               return false;
2560           }
2561         }
2562 
2563     if (!Cond)
2564       return false;
2565   }
2566 
2567   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2568       Cond->getParent() != BB || !Cond->hasOneUse())
2569     return false;
2570 
2571   // Make sure the instruction after the condition is the cond branch.
2572   BasicBlock::iterator CondIt = ++Cond->getIterator();
2573 
2574   // Ignore dbg intrinsics.
2575   while (isa<DbgInfoIntrinsic>(CondIt))
2576     ++CondIt;
2577 
2578   if (&*CondIt != BI)
2579     return false;
2580 
2581   // Only allow this transformation if computing the condition doesn't involve
2582   // too many instructions and these involved instructions can be executed
2583   // unconditionally. We denote all involved instructions except the condition
2584   // as "bonus instructions", and only allow this transformation when the
2585   // number of the bonus instructions does not exceed a certain threshold.
2586   unsigned NumBonusInsts = 0;
2587   for (auto I = BB->begin(); Cond != &*I; ++I) {
2588     // Ignore dbg intrinsics.
2589     if (isa<DbgInfoIntrinsic>(I))
2590       continue;
2591     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2592       return false;
2593     // I has only one use and can be executed unconditionally.
2594     Instruction *User = dyn_cast<Instruction>(I->user_back());
2595     if (User == nullptr || User->getParent() != BB)
2596       return false;
2597     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2598     // to use any other instruction, User must be an instruction between next(I)
2599     // and Cond.
2600     ++NumBonusInsts;
2601     // Early exits once we reach the limit.
2602     if (NumBonusInsts > BonusInstThreshold)
2603       return false;
2604   }
2605 
2606   // Cond is known to be a compare or binary operator.  Check to make sure that
2607   // neither operand is a potentially-trapping constant expression.
2608   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2609     if (CE->canTrap())
2610       return false;
2611   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2612     if (CE->canTrap())
2613       return false;
2614 
2615   // Finally, don't infinitely unroll conditional loops.
2616   BasicBlock *TrueDest = BI->getSuccessor(0);
2617   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2618   if (TrueDest == BB || FalseDest == BB)
2619     return false;
2620 
2621   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2622     BasicBlock *PredBlock = *PI;
2623     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2624 
2625     // Check that we have two conditional branches.  If there is a PHI node in
2626     // the common successor, verify that the same value flows in from both
2627     // blocks.
2628     SmallVector<PHINode *, 4> PHIs;
2629     if (!PBI || PBI->isUnconditional() ||
2630         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2631         (!BI->isConditional() &&
2632          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2633       continue;
2634 
2635     // Determine if the two branches share a common destination.
2636     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2637     bool InvertPredCond = false;
2638 
2639     if (BI->isConditional()) {
2640       if (PBI->getSuccessor(0) == TrueDest) {
2641         Opc = Instruction::Or;
2642       } else if (PBI->getSuccessor(1) == FalseDest) {
2643         Opc = Instruction::And;
2644       } else if (PBI->getSuccessor(0) == FalseDest) {
2645         Opc = Instruction::And;
2646         InvertPredCond = true;
2647       } else if (PBI->getSuccessor(1) == TrueDest) {
2648         Opc = Instruction::Or;
2649         InvertPredCond = true;
2650       } else {
2651         continue;
2652       }
2653     } else {
2654       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2655         continue;
2656     }
2657 
2658     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2659     IRBuilder<> Builder(PBI);
2660 
2661     // If we need to invert the condition in the pred block to match, do so now.
2662     if (InvertPredCond) {
2663       Value *NewCond = PBI->getCondition();
2664 
2665       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2666         CmpInst *CI = cast<CmpInst>(NewCond);
2667         CI->setPredicate(CI->getInversePredicate());
2668       } else {
2669         NewCond =
2670             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2671       }
2672 
2673       PBI->setCondition(NewCond);
2674       PBI->swapSuccessors();
2675     }
2676 
2677     // If we have bonus instructions, clone them into the predecessor block.
2678     // Note that there may be multiple predecessor blocks, so we cannot move
2679     // bonus instructions to a predecessor block.
2680     ValueToValueMapTy VMap; // maps original values to cloned values
2681     // We already make sure Cond is the last instruction before BI. Therefore,
2682     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2683     // instructions.
2684     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2685       if (isa<DbgInfoIntrinsic>(BonusInst))
2686         continue;
2687       Instruction *NewBonusInst = BonusInst->clone();
2688       RemapInstruction(NewBonusInst, VMap,
2689                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2690       VMap[&*BonusInst] = NewBonusInst;
2691 
2692       // If we moved a load, we cannot any longer claim any knowledge about
2693       // its potential value. The previous information might have been valid
2694       // only given the branch precondition.
2695       // For an analogous reason, we must also drop all the metadata whose
2696       // semantics we don't understand.
2697       NewBonusInst->dropUnknownNonDebugMetadata();
2698 
2699       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2700       NewBonusInst->takeName(&*BonusInst);
2701       BonusInst->setName(BonusInst->getName() + ".old");
2702     }
2703 
2704     // Clone Cond into the predecessor basic block, and or/and the
2705     // two conditions together.
2706     Instruction *New = Cond->clone();
2707     RemapInstruction(New, VMap,
2708                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2709     PredBlock->getInstList().insert(PBI->getIterator(), New);
2710     New->takeName(Cond);
2711     Cond->setName(New->getName() + ".old");
2712 
2713     if (BI->isConditional()) {
2714       Instruction *NewCond = cast<Instruction>(
2715           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2716       PBI->setCondition(NewCond);
2717 
2718       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2719       bool HasWeights =
2720           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2721                                  SuccTrueWeight, SuccFalseWeight);
2722       SmallVector<uint64_t, 8> NewWeights;
2723 
2724       if (PBI->getSuccessor(0) == BB) {
2725         if (HasWeights) {
2726           // PBI: br i1 %x, BB, FalseDest
2727           // BI:  br i1 %y, TrueDest, FalseDest
2728           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2729           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2730           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2731           //               TrueWeight for PBI * FalseWeight for BI.
2732           // We assume that total weights of a BranchInst can fit into 32 bits.
2733           // Therefore, we will not have overflow using 64-bit arithmetic.
2734           NewWeights.push_back(PredFalseWeight *
2735                                    (SuccFalseWeight + SuccTrueWeight) +
2736                                PredTrueWeight * SuccFalseWeight);
2737         }
2738         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2739         PBI->setSuccessor(0, TrueDest);
2740       }
2741       if (PBI->getSuccessor(1) == BB) {
2742         if (HasWeights) {
2743           // PBI: br i1 %x, TrueDest, BB
2744           // BI:  br i1 %y, TrueDest, FalseDest
2745           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2746           //              FalseWeight for PBI * TrueWeight for BI.
2747           NewWeights.push_back(PredTrueWeight *
2748                                    (SuccFalseWeight + SuccTrueWeight) +
2749                                PredFalseWeight * SuccTrueWeight);
2750           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2751           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2752         }
2753         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2754         PBI->setSuccessor(1, FalseDest);
2755       }
2756       if (NewWeights.size() == 2) {
2757         // Halve the weights if any of them cannot fit in an uint32_t
2758         FitWeights(NewWeights);
2759 
2760         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2761                                            NewWeights.end());
2762         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2763       } else
2764         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2765     } else {
2766       // Update PHI nodes in the common successors.
2767       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2768         ConstantInt *PBI_C = cast<ConstantInt>(
2769             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2770         assert(PBI_C->getType()->isIntegerTy(1));
2771         Instruction *MergedCond = nullptr;
2772         if (PBI->getSuccessor(0) == TrueDest) {
2773           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2774           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2775           //       is false: !PBI_Cond and BI_Value
2776           Instruction *NotCond = cast<Instruction>(
2777               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2778           MergedCond = cast<Instruction>(
2779               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2780           if (PBI_C->isOne())
2781             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2782                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2783         } else {
2784           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2785           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2786           //       is false: PBI_Cond and BI_Value
2787           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2788               Instruction::And, PBI->getCondition(), New, "and.cond"));
2789           if (PBI_C->isOne()) {
2790             Instruction *NotCond = cast<Instruction>(
2791                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2792             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2793                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2794           }
2795         }
2796         // Update PHI Node.
2797         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2798                                   MergedCond);
2799       }
2800       // Change PBI from Conditional to Unconditional.
2801       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2802       EraseTerminatorInstAndDCECond(PBI);
2803       PBI = New_PBI;
2804     }
2805 
2806     // If BI was a loop latch, it may have had associated loop metadata.
2807     // We need to copy it to the new latch, that is, PBI.
2808     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2809       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2810 
2811     // TODO: If BB is reachable from all paths through PredBlock, then we
2812     // could replace PBI's branch probabilities with BI's.
2813 
2814     // Copy any debug value intrinsics into the end of PredBlock.
2815     for (Instruction &I : *BB)
2816       if (isa<DbgInfoIntrinsic>(I))
2817         I.clone()->insertBefore(PBI);
2818 
2819     return true;
2820   }
2821   return false;
2822 }
2823 
2824 // If there is only one store in BB1 and BB2, return it, otherwise return
2825 // nullptr.
2826 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2827   StoreInst *S = nullptr;
2828   for (auto *BB : {BB1, BB2}) {
2829     if (!BB)
2830       continue;
2831     for (auto &I : *BB)
2832       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2833         if (S)
2834           // Multiple stores seen.
2835           return nullptr;
2836         else
2837           S = SI;
2838       }
2839   }
2840   return S;
2841 }
2842 
2843 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2844                                               Value *AlternativeV = nullptr) {
2845   // PHI is going to be a PHI node that allows the value V that is defined in
2846   // BB to be referenced in BB's only successor.
2847   //
2848   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2849   // doesn't matter to us what the other operand is (it'll never get used). We
2850   // could just create a new PHI with an undef incoming value, but that could
2851   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2852   // other PHI. So here we directly look for some PHI in BB's successor with V
2853   // as an incoming operand. If we find one, we use it, else we create a new
2854   // one.
2855   //
2856   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2857   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2858   // where OtherBB is the single other predecessor of BB's only successor.
2859   PHINode *PHI = nullptr;
2860   BasicBlock *Succ = BB->getSingleSuccessor();
2861 
2862   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2863     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2864       PHI = cast<PHINode>(I);
2865       if (!AlternativeV)
2866         break;
2867 
2868       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2869       auto PredI = pred_begin(Succ);
2870       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2871       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2872         break;
2873       PHI = nullptr;
2874     }
2875   if (PHI)
2876     return PHI;
2877 
2878   // If V is not an instruction defined in BB, just return it.
2879   if (!AlternativeV &&
2880       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2881     return V;
2882 
2883   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2884   PHI->addIncoming(V, BB);
2885   for (BasicBlock *PredBB : predecessors(Succ))
2886     if (PredBB != BB)
2887       PHI->addIncoming(
2888           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2889   return PHI;
2890 }
2891 
2892 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2893                                            BasicBlock *QTB, BasicBlock *QFB,
2894                                            BasicBlock *PostBB, Value *Address,
2895                                            bool InvertPCond, bool InvertQCond,
2896                                            const DataLayout &DL) {
2897   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2898     return Operator::getOpcode(&I) == Instruction::BitCast &&
2899            I.getType()->isPointerTy();
2900   };
2901 
2902   // If we're not in aggressive mode, we only optimize if we have some
2903   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2904   auto IsWorthwhile = [&](BasicBlock *BB) {
2905     if (!BB)
2906       return true;
2907     // Heuristic: if the block can be if-converted/phi-folded and the
2908     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2909     // thread this store.
2910     unsigned N = 0;
2911     for (auto &I : *BB) {
2912       // Cheap instructions viable for folding.
2913       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2914           isa<StoreInst>(I))
2915         ++N;
2916       // Free instructions.
2917       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2918                IsaBitcastOfPointerType(I))
2919         continue;
2920       else
2921         return false;
2922     }
2923     // The store we want to merge is counted in N, so add 1 to make sure
2924     // we're counting the instructions that would be left.
2925     return N <= (PHINodeFoldingThreshold + 1);
2926   };
2927 
2928   if (!MergeCondStoresAggressively &&
2929       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2930        !IsWorthwhile(QFB)))
2931     return false;
2932 
2933   // For every pointer, there must be exactly two stores, one coming from
2934   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2935   // store (to any address) in PTB,PFB or QTB,QFB.
2936   // FIXME: We could relax this restriction with a bit more work and performance
2937   // testing.
2938   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2939   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2940   if (!PStore || !QStore)
2941     return false;
2942 
2943   // Now check the stores are compatible.
2944   if (!QStore->isUnordered() || !PStore->isUnordered())
2945     return false;
2946 
2947   // Check that sinking the store won't cause program behavior changes. Sinking
2948   // the store out of the Q blocks won't change any behavior as we're sinking
2949   // from a block to its unconditional successor. But we're moving a store from
2950   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2951   // So we need to check that there are no aliasing loads or stores in
2952   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2953   // operations between PStore and the end of its parent block.
2954   //
2955   // The ideal way to do this is to query AliasAnalysis, but we don't
2956   // preserve AA currently so that is dangerous. Be super safe and just
2957   // check there are no other memory operations at all.
2958   for (auto &I : *QFB->getSinglePredecessor())
2959     if (I.mayReadOrWriteMemory())
2960       return false;
2961   for (auto &I : *QFB)
2962     if (&I != QStore && I.mayReadOrWriteMemory())
2963       return false;
2964   if (QTB)
2965     for (auto &I : *QTB)
2966       if (&I != QStore && I.mayReadOrWriteMemory())
2967         return false;
2968   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2969        I != E; ++I)
2970     if (&*I != PStore && I->mayReadOrWriteMemory())
2971       return false;
2972 
2973   // OK, we're going to sink the stores to PostBB. The store has to be
2974   // conditional though, so first create the predicate.
2975   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2976                      ->getCondition();
2977   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2978                      ->getCondition();
2979 
2980   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2981                                                 PStore->getParent());
2982   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2983                                                 QStore->getParent(), PPHI);
2984 
2985   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2986 
2987   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2988   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2989 
2990   if (InvertPCond)
2991     PPred = QB.CreateNot(PPred);
2992   if (InvertQCond)
2993     QPred = QB.CreateNot(QPred);
2994   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2995 
2996   auto *T =
2997       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2998   QB.SetInsertPoint(T);
2999   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3000   AAMDNodes AAMD;
3001   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3002   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3003   SI->setAAMetadata(AAMD);
3004   unsigned PAlignment = PStore->getAlignment();
3005   unsigned QAlignment = QStore->getAlignment();
3006   unsigned TypeAlignment =
3007       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3008   unsigned MinAlignment;
3009   unsigned MaxAlignment;
3010   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3011   // Choose the minimum alignment. If we could prove both stores execute, we
3012   // could use biggest one.  In this case, though, we only know that one of the
3013   // stores executes.  And we don't know it's safe to take the alignment from a
3014   // store that doesn't execute.
3015   if (MinAlignment != 0) {
3016     // Choose the minimum of all non-zero alignments.
3017     SI->setAlignment(MinAlignment);
3018   } else if (MaxAlignment != 0) {
3019     // Choose the minimal alignment between the non-zero alignment and the ABI
3020     // default alignment for the type of the stored value.
3021     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3022   } else {
3023     // If both alignments are zero, use ABI default alignment for the type of
3024     // the stored value.
3025     SI->setAlignment(TypeAlignment);
3026   }
3027 
3028   QStore->eraseFromParent();
3029   PStore->eraseFromParent();
3030 
3031   return true;
3032 }
3033 
3034 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3035                                    const DataLayout &DL) {
3036   // The intention here is to find diamonds or triangles (see below) where each
3037   // conditional block contains a store to the same address. Both of these
3038   // stores are conditional, so they can't be unconditionally sunk. But it may
3039   // be profitable to speculatively sink the stores into one merged store at the
3040   // end, and predicate the merged store on the union of the two conditions of
3041   // PBI and QBI.
3042   //
3043   // This can reduce the number of stores executed if both of the conditions are
3044   // true, and can allow the blocks to become small enough to be if-converted.
3045   // This optimization will also chain, so that ladders of test-and-set
3046   // sequences can be if-converted away.
3047   //
3048   // We only deal with simple diamonds or triangles:
3049   //
3050   //     PBI       or      PBI        or a combination of the two
3051   //    /   \               | \
3052   //   PTB  PFB             |  PFB
3053   //    \   /               | /
3054   //     QBI                QBI
3055   //    /  \                | \
3056   //   QTB  QFB             |  QFB
3057   //    \  /                | /
3058   //    PostBB            PostBB
3059   //
3060   // We model triangles as a type of diamond with a nullptr "true" block.
3061   // Triangles are canonicalized so that the fallthrough edge is represented by
3062   // a true condition, as in the diagram above.
3063   BasicBlock *PTB = PBI->getSuccessor(0);
3064   BasicBlock *PFB = PBI->getSuccessor(1);
3065   BasicBlock *QTB = QBI->getSuccessor(0);
3066   BasicBlock *QFB = QBI->getSuccessor(1);
3067   BasicBlock *PostBB = QFB->getSingleSuccessor();
3068 
3069   // Make sure we have a good guess for PostBB. If QTB's only successor is
3070   // QFB, then QFB is a better PostBB.
3071   if (QTB->getSingleSuccessor() == QFB)
3072     PostBB = QFB;
3073 
3074   // If we couldn't find a good PostBB, stop.
3075   if (!PostBB)
3076     return false;
3077 
3078   bool InvertPCond = false, InvertQCond = false;
3079   // Canonicalize fallthroughs to the true branches.
3080   if (PFB == QBI->getParent()) {
3081     std::swap(PFB, PTB);
3082     InvertPCond = true;
3083   }
3084   if (QFB == PostBB) {
3085     std::swap(QFB, QTB);
3086     InvertQCond = true;
3087   }
3088 
3089   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3090   // and QFB may not. Model fallthroughs as a nullptr block.
3091   if (PTB == QBI->getParent())
3092     PTB = nullptr;
3093   if (QTB == PostBB)
3094     QTB = nullptr;
3095 
3096   // Legality bailouts. We must have at least the non-fallthrough blocks and
3097   // the post-dominating block, and the non-fallthroughs must only have one
3098   // predecessor.
3099   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3100     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3101   };
3102   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3103       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3104     return false;
3105   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3106       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3107     return false;
3108   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3109     return false;
3110 
3111   // OK, this is a sequence of two diamonds or triangles.
3112   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3113   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3114   for (auto *BB : {PTB, PFB}) {
3115     if (!BB)
3116       continue;
3117     for (auto &I : *BB)
3118       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3119         PStoreAddresses.insert(SI->getPointerOperand());
3120   }
3121   for (auto *BB : {QTB, QFB}) {
3122     if (!BB)
3123       continue;
3124     for (auto &I : *BB)
3125       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3126         QStoreAddresses.insert(SI->getPointerOperand());
3127   }
3128 
3129   set_intersect(PStoreAddresses, QStoreAddresses);
3130   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3131   // clear what it contains.
3132   auto &CommonAddresses = PStoreAddresses;
3133 
3134   bool Changed = false;
3135   for (auto *Address : CommonAddresses)
3136     Changed |= mergeConditionalStoreToAddress(
3137         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3138   return Changed;
3139 }
3140 
3141 /// If we have a conditional branch as a predecessor of another block,
3142 /// this function tries to simplify it.  We know
3143 /// that PBI and BI are both conditional branches, and BI is in one of the
3144 /// successor blocks of PBI - PBI branches to BI.
3145 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3146                                            const DataLayout &DL) {
3147   assert(PBI->isConditional() && BI->isConditional());
3148   BasicBlock *BB = BI->getParent();
3149 
3150   // If this block ends with a branch instruction, and if there is a
3151   // predecessor that ends on a branch of the same condition, make
3152   // this conditional branch redundant.
3153   if (PBI->getCondition() == BI->getCondition() &&
3154       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3155     // Okay, the outcome of this conditional branch is statically
3156     // knowable.  If this block had a single pred, handle specially.
3157     if (BB->getSinglePredecessor()) {
3158       // Turn this into a branch on constant.
3159       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3160       BI->setCondition(
3161           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3162       return true; // Nuke the branch on constant.
3163     }
3164 
3165     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3166     // in the constant and simplify the block result.  Subsequent passes of
3167     // simplifycfg will thread the block.
3168     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3169       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3170       PHINode *NewPN = PHINode::Create(
3171           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3172           BI->getCondition()->getName() + ".pr", &BB->front());
3173       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3174       // predecessor, compute the PHI'd conditional value for all of the preds.
3175       // Any predecessor where the condition is not computable we keep symbolic.
3176       for (pred_iterator PI = PB; PI != PE; ++PI) {
3177         BasicBlock *P = *PI;
3178         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3179             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3180             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3181           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3182           NewPN->addIncoming(
3183               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3184               P);
3185         } else {
3186           NewPN->addIncoming(BI->getCondition(), P);
3187         }
3188       }
3189 
3190       BI->setCondition(NewPN);
3191       return true;
3192     }
3193   }
3194 
3195   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3196     if (CE->canTrap())
3197       return false;
3198 
3199   // If both branches are conditional and both contain stores to the same
3200   // address, remove the stores from the conditionals and create a conditional
3201   // merged store at the end.
3202   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3203     return true;
3204 
3205   // If this is a conditional branch in an empty block, and if any
3206   // predecessors are a conditional branch to one of our destinations,
3207   // fold the conditions into logical ops and one cond br.
3208   BasicBlock::iterator BBI = BB->begin();
3209   // Ignore dbg intrinsics.
3210   while (isa<DbgInfoIntrinsic>(BBI))
3211     ++BBI;
3212   if (&*BBI != BI)
3213     return false;
3214 
3215   int PBIOp, BIOp;
3216   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3217     PBIOp = 0;
3218     BIOp = 0;
3219   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3220     PBIOp = 0;
3221     BIOp = 1;
3222   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3223     PBIOp = 1;
3224     BIOp = 0;
3225   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3226     PBIOp = 1;
3227     BIOp = 1;
3228   } else {
3229     return false;
3230   }
3231 
3232   // Check to make sure that the other destination of this branch
3233   // isn't BB itself.  If so, this is an infinite loop that will
3234   // keep getting unwound.
3235   if (PBI->getSuccessor(PBIOp) == BB)
3236     return false;
3237 
3238   // Do not perform this transformation if it would require
3239   // insertion of a large number of select instructions. For targets
3240   // without predication/cmovs, this is a big pessimization.
3241 
3242   // Also do not perform this transformation if any phi node in the common
3243   // destination block can trap when reached by BB or PBB (PR17073). In that
3244   // case, it would be unsafe to hoist the operation into a select instruction.
3245 
3246   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3247   unsigned NumPhis = 0;
3248   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3249        ++II, ++NumPhis) {
3250     if (NumPhis > 2) // Disable this xform.
3251       return false;
3252 
3253     PHINode *PN = cast<PHINode>(II);
3254     Value *BIV = PN->getIncomingValueForBlock(BB);
3255     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3256       if (CE->canTrap())
3257         return false;
3258 
3259     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3260     Value *PBIV = PN->getIncomingValue(PBBIdx);
3261     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3262       if (CE->canTrap())
3263         return false;
3264   }
3265 
3266   // Finally, if everything is ok, fold the branches to logical ops.
3267   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3268 
3269   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3270                << "AND: " << *BI->getParent());
3271 
3272   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3273   // branch in it, where one edge (OtherDest) goes back to itself but the other
3274   // exits.  We don't *know* that the program avoids the infinite loop
3275   // (even though that seems likely).  If we do this xform naively, we'll end up
3276   // recursively unpeeling the loop.  Since we know that (after the xform is
3277   // done) that the block *is* infinite if reached, we just make it an obviously
3278   // infinite loop with no cond branch.
3279   if (OtherDest == BB) {
3280     // Insert it at the end of the function, because it's either code,
3281     // or it won't matter if it's hot. :)
3282     BasicBlock *InfLoopBlock =
3283         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3284     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3285     OtherDest = InfLoopBlock;
3286   }
3287 
3288   DEBUG(dbgs() << *PBI->getParent()->getParent());
3289 
3290   // BI may have other predecessors.  Because of this, we leave
3291   // it alone, but modify PBI.
3292 
3293   // Make sure we get to CommonDest on True&True directions.
3294   Value *PBICond = PBI->getCondition();
3295   IRBuilder<NoFolder> Builder(PBI);
3296   if (PBIOp)
3297     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3298 
3299   Value *BICond = BI->getCondition();
3300   if (BIOp)
3301     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3302 
3303   // Merge the conditions.
3304   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3305 
3306   // Modify PBI to branch on the new condition to the new dests.
3307   PBI->setCondition(Cond);
3308   PBI->setSuccessor(0, CommonDest);
3309   PBI->setSuccessor(1, OtherDest);
3310 
3311   // Update branch weight for PBI.
3312   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3313   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3314   bool HasWeights =
3315       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3316                              SuccTrueWeight, SuccFalseWeight);
3317   if (HasWeights) {
3318     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3319     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3320     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3321     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3322     // The weight to CommonDest should be PredCommon * SuccTotal +
3323     //                                    PredOther * SuccCommon.
3324     // The weight to OtherDest should be PredOther * SuccOther.
3325     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3326                                   PredOther * SuccCommon,
3327                               PredOther * SuccOther};
3328     // Halve the weights if any of them cannot fit in an uint32_t
3329     FitWeights(NewWeights);
3330 
3331     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3332   }
3333 
3334   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3335   // block that are identical to the entries for BI's block.
3336   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3337 
3338   // We know that the CommonDest already had an edge from PBI to
3339   // it.  If it has PHIs though, the PHIs may have different
3340   // entries for BB and PBI's BB.  If so, insert a select to make
3341   // them agree.
3342   PHINode *PN;
3343   for (BasicBlock::iterator II = CommonDest->begin();
3344        (PN = dyn_cast<PHINode>(II)); ++II) {
3345     Value *BIV = PN->getIncomingValueForBlock(BB);
3346     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3347     Value *PBIV = PN->getIncomingValue(PBBIdx);
3348     if (BIV != PBIV) {
3349       // Insert a select in PBI to pick the right value.
3350       SelectInst *NV = cast<SelectInst>(
3351           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3352       PN->setIncomingValue(PBBIdx, NV);
3353       // Although the select has the same condition as PBI, the original branch
3354       // weights for PBI do not apply to the new select because the select's
3355       // 'logical' edges are incoming edges of the phi that is eliminated, not
3356       // the outgoing edges of PBI.
3357       if (HasWeights) {
3358         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3359         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3360         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3361         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3362         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3363         // The weight to PredOtherDest should be PredOther * SuccCommon.
3364         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3365                                   PredOther * SuccCommon};
3366 
3367         FitWeights(NewWeights);
3368 
3369         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3370       }
3371     }
3372   }
3373 
3374   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3375   DEBUG(dbgs() << *PBI->getParent()->getParent());
3376 
3377   // This basic block is probably dead.  We know it has at least
3378   // one fewer predecessor.
3379   return true;
3380 }
3381 
3382 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3383 // true or to FalseBB if Cond is false.
3384 // Takes care of updating the successors and removing the old terminator.
3385 // Also makes sure not to introduce new successors by assuming that edges to
3386 // non-successor TrueBBs and FalseBBs aren't reachable.
3387 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3388                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3389                                        uint32_t TrueWeight,
3390                                        uint32_t FalseWeight) {
3391   // Remove any superfluous successor edges from the CFG.
3392   // First, figure out which successors to preserve.
3393   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3394   // successor.
3395   BasicBlock *KeepEdge1 = TrueBB;
3396   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3397 
3398   // Then remove the rest.
3399   for (BasicBlock *Succ : OldTerm->successors()) {
3400     // Make sure only to keep exactly one copy of each edge.
3401     if (Succ == KeepEdge1)
3402       KeepEdge1 = nullptr;
3403     else if (Succ == KeepEdge2)
3404       KeepEdge2 = nullptr;
3405     else
3406       Succ->removePredecessor(OldTerm->getParent(),
3407                               /*DontDeleteUselessPHIs=*/true);
3408   }
3409 
3410   IRBuilder<> Builder(OldTerm);
3411   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3412 
3413   // Insert an appropriate new terminator.
3414   if (!KeepEdge1 && !KeepEdge2) {
3415     if (TrueBB == FalseBB)
3416       // We were only looking for one successor, and it was present.
3417       // Create an unconditional branch to it.
3418       Builder.CreateBr(TrueBB);
3419     else {
3420       // We found both of the successors we were looking for.
3421       // Create a conditional branch sharing the condition of the select.
3422       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3423       if (TrueWeight != FalseWeight)
3424         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3425     }
3426   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3427     // Neither of the selected blocks were successors, so this
3428     // terminator must be unreachable.
3429     new UnreachableInst(OldTerm->getContext(), OldTerm);
3430   } else {
3431     // One of the selected values was a successor, but the other wasn't.
3432     // Insert an unconditional branch to the one that was found;
3433     // the edge to the one that wasn't must be unreachable.
3434     if (!KeepEdge1)
3435       // Only TrueBB was found.
3436       Builder.CreateBr(TrueBB);
3437     else
3438       // Only FalseBB was found.
3439       Builder.CreateBr(FalseBB);
3440   }
3441 
3442   EraseTerminatorInstAndDCECond(OldTerm);
3443   return true;
3444 }
3445 
3446 // Replaces
3447 //   (switch (select cond, X, Y)) on constant X, Y
3448 // with a branch - conditional if X and Y lead to distinct BBs,
3449 // unconditional otherwise.
3450 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3451   // Check for constant integer values in the select.
3452   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3453   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3454   if (!TrueVal || !FalseVal)
3455     return false;
3456 
3457   // Find the relevant condition and destinations.
3458   Value *Condition = Select->getCondition();
3459   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3460   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3461 
3462   // Get weight for TrueBB and FalseBB.
3463   uint32_t TrueWeight = 0, FalseWeight = 0;
3464   SmallVector<uint64_t, 8> Weights;
3465   bool HasWeights = HasBranchWeights(SI);
3466   if (HasWeights) {
3467     GetBranchWeights(SI, Weights);
3468     if (Weights.size() == 1 + SI->getNumCases()) {
3469       TrueWeight =
3470           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3471       FalseWeight =
3472           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3473     }
3474   }
3475 
3476   // Perform the actual simplification.
3477   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3478                                     FalseWeight);
3479 }
3480 
3481 // Replaces
3482 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3483 //                             blockaddress(@fn, BlockB)))
3484 // with
3485 //   (br cond, BlockA, BlockB).
3486 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3487   // Check that both operands of the select are block addresses.
3488   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3489   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3490   if (!TBA || !FBA)
3491     return false;
3492 
3493   // Extract the actual blocks.
3494   BasicBlock *TrueBB = TBA->getBasicBlock();
3495   BasicBlock *FalseBB = FBA->getBasicBlock();
3496 
3497   // Perform the actual simplification.
3498   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3499                                     0);
3500 }
3501 
3502 /// This is called when we find an icmp instruction
3503 /// (a seteq/setne with a constant) as the only instruction in a
3504 /// block that ends with an uncond branch.  We are looking for a very specific
3505 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3506 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3507 /// default value goes to an uncond block with a seteq in it, we get something
3508 /// like:
3509 ///
3510 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3511 /// DEFAULT:
3512 ///   %tmp = icmp eq i8 %A, 92
3513 ///   br label %end
3514 /// end:
3515 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3516 ///
3517 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3518 /// the PHI, merging the third icmp into the switch.
3519 static bool tryToSimplifyUncondBranchWithICmpInIt(
3520     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3521     const TargetTransformInfo &TTI, const SimplifyCFGOptions &Options) {
3522   BasicBlock *BB = ICI->getParent();
3523 
3524   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3525   // complex.
3526   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3527     return false;
3528 
3529   Value *V = ICI->getOperand(0);
3530   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3531 
3532   // The pattern we're looking for is where our only predecessor is a switch on
3533   // 'V' and this block is the default case for the switch.  In this case we can
3534   // fold the compared value into the switch to simplify things.
3535   BasicBlock *Pred = BB->getSinglePredecessor();
3536   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3537     return false;
3538 
3539   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3540   if (SI->getCondition() != V)
3541     return false;
3542 
3543   // If BB is reachable on a non-default case, then we simply know the value of
3544   // V in this block.  Substitute it and constant fold the icmp instruction
3545   // away.
3546   if (SI->getDefaultDest() != BB) {
3547     ConstantInt *VVal = SI->findCaseDest(BB);
3548     assert(VVal && "Should have a unique destination value");
3549     ICI->setOperand(0, VVal);
3550 
3551     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3552       ICI->replaceAllUsesWith(V);
3553       ICI->eraseFromParent();
3554     }
3555     // BB is now empty, so it is likely to simplify away.
3556     return simplifyCFG(BB, TTI, Options) | true;
3557   }
3558 
3559   // Ok, the block is reachable from the default dest.  If the constant we're
3560   // comparing exists in one of the other edges, then we can constant fold ICI
3561   // and zap it.
3562   if (SI->findCaseValue(Cst) != SI->case_default()) {
3563     Value *V;
3564     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3565       V = ConstantInt::getFalse(BB->getContext());
3566     else
3567       V = ConstantInt::getTrue(BB->getContext());
3568 
3569     ICI->replaceAllUsesWith(V);
3570     ICI->eraseFromParent();
3571     // BB is now empty, so it is likely to simplify away.
3572     return simplifyCFG(BB, TTI, Options) | true;
3573   }
3574 
3575   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3576   // the block.
3577   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3578   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3579   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3580       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3581     return false;
3582 
3583   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3584   // true in the PHI.
3585   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3586   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3587 
3588   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3589     std::swap(DefaultCst, NewCst);
3590 
3591   // Replace ICI (which is used by the PHI for the default value) with true or
3592   // false depending on if it is EQ or NE.
3593   ICI->replaceAllUsesWith(DefaultCst);
3594   ICI->eraseFromParent();
3595 
3596   // Okay, the switch goes to this block on a default value.  Add an edge from
3597   // the switch to the merge point on the compared value.
3598   BasicBlock *NewBB =
3599       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3600   SmallVector<uint64_t, 8> Weights;
3601   bool HasWeights = HasBranchWeights(SI);
3602   if (HasWeights) {
3603     GetBranchWeights(SI, Weights);
3604     if (Weights.size() == 1 + SI->getNumCases()) {
3605       // Split weight for default case to case for "Cst".
3606       Weights[0] = (Weights[0] + 1) >> 1;
3607       Weights.push_back(Weights[0]);
3608 
3609       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3610       setBranchWeights(SI, MDWeights);
3611     }
3612   }
3613   SI->addCase(Cst, NewBB);
3614 
3615   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3616   Builder.SetInsertPoint(NewBB);
3617   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3618   Builder.CreateBr(SuccBlock);
3619   PHIUse->addIncoming(NewCst, NewBB);
3620   return true;
3621 }
3622 
3623 /// The specified branch is a conditional branch.
3624 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3625 /// fold it into a switch instruction if so.
3626 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3627                                       const DataLayout &DL) {
3628   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3629   if (!Cond)
3630     return false;
3631 
3632   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3633   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3634   // 'setne's and'ed together, collect them.
3635 
3636   // Try to gather values from a chain of and/or to be turned into a switch
3637   ConstantComparesGatherer ConstantCompare(Cond, DL);
3638   // Unpack the result
3639   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3640   Value *CompVal = ConstantCompare.CompValue;
3641   unsigned UsedICmps = ConstantCompare.UsedICmps;
3642   Value *ExtraCase = ConstantCompare.Extra;
3643 
3644   // If we didn't have a multiply compared value, fail.
3645   if (!CompVal)
3646     return false;
3647 
3648   // Avoid turning single icmps into a switch.
3649   if (UsedICmps <= 1)
3650     return false;
3651 
3652   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3653 
3654   // There might be duplicate constants in the list, which the switch
3655   // instruction can't handle, remove them now.
3656   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3657   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3658 
3659   // If Extra was used, we require at least two switch values to do the
3660   // transformation.  A switch with one value is just a conditional branch.
3661   if (ExtraCase && Values.size() < 2)
3662     return false;
3663 
3664   // TODO: Preserve branch weight metadata, similarly to how
3665   // FoldValueComparisonIntoPredecessors preserves it.
3666 
3667   // Figure out which block is which destination.
3668   BasicBlock *DefaultBB = BI->getSuccessor(1);
3669   BasicBlock *EdgeBB = BI->getSuccessor(0);
3670   if (!TrueWhenEqual)
3671     std::swap(DefaultBB, EdgeBB);
3672 
3673   BasicBlock *BB = BI->getParent();
3674 
3675   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3676                << " cases into SWITCH.  BB is:\n"
3677                << *BB);
3678 
3679   // If there are any extra values that couldn't be folded into the switch
3680   // then we evaluate them with an explicit branch first.  Split the block
3681   // right before the condbr to handle it.
3682   if (ExtraCase) {
3683     BasicBlock *NewBB =
3684         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3685     // Remove the uncond branch added to the old block.
3686     TerminatorInst *OldTI = BB->getTerminator();
3687     Builder.SetInsertPoint(OldTI);
3688 
3689     if (TrueWhenEqual)
3690       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3691     else
3692       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3693 
3694     OldTI->eraseFromParent();
3695 
3696     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3697     // for the edge we just added.
3698     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3699 
3700     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3701                  << "\nEXTRABB = " << *BB);
3702     BB = NewBB;
3703   }
3704 
3705   Builder.SetInsertPoint(BI);
3706   // Convert pointer to int before we switch.
3707   if (CompVal->getType()->isPointerTy()) {
3708     CompVal = Builder.CreatePtrToInt(
3709         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3710   }
3711 
3712   // Create the new switch instruction now.
3713   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3714 
3715   // Add all of the 'cases' to the switch instruction.
3716   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3717     New->addCase(Values[i], EdgeBB);
3718 
3719   // We added edges from PI to the EdgeBB.  As such, if there were any
3720   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3721   // the number of edges added.
3722   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3723     PHINode *PN = cast<PHINode>(BBI);
3724     Value *InVal = PN->getIncomingValueForBlock(BB);
3725     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3726       PN->addIncoming(InVal, BB);
3727   }
3728 
3729   // Erase the old branch instruction.
3730   EraseTerminatorInstAndDCECond(BI);
3731 
3732   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3733   return true;
3734 }
3735 
3736 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3737   if (isa<PHINode>(RI->getValue()))
3738     return SimplifyCommonResume(RI);
3739   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3740            RI->getValue() == RI->getParent()->getFirstNonPHI())
3741     // The resume must unwind the exception that caused control to branch here.
3742     return SimplifySingleResume(RI);
3743 
3744   return false;
3745 }
3746 
3747 // Simplify resume that is shared by several landing pads (phi of landing pad).
3748 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3749   BasicBlock *BB = RI->getParent();
3750 
3751   // Check that there are no other instructions except for debug intrinsics
3752   // between the phi of landing pads (RI->getValue()) and resume instruction.
3753   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3754                        E = RI->getIterator();
3755   while (++I != E)
3756     if (!isa<DbgInfoIntrinsic>(I))
3757       return false;
3758 
3759   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3760   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3761 
3762   // Check incoming blocks to see if any of them are trivial.
3763   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3764        Idx++) {
3765     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3766     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3767 
3768     // If the block has other successors, we can not delete it because
3769     // it has other dependents.
3770     if (IncomingBB->getUniqueSuccessor() != BB)
3771       continue;
3772 
3773     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3774     // Not the landing pad that caused the control to branch here.
3775     if (IncomingValue != LandingPad)
3776       continue;
3777 
3778     bool isTrivial = true;
3779 
3780     I = IncomingBB->getFirstNonPHI()->getIterator();
3781     E = IncomingBB->getTerminator()->getIterator();
3782     while (++I != E)
3783       if (!isa<DbgInfoIntrinsic>(I)) {
3784         isTrivial = false;
3785         break;
3786       }
3787 
3788     if (isTrivial)
3789       TrivialUnwindBlocks.insert(IncomingBB);
3790   }
3791 
3792   // If no trivial unwind blocks, don't do any simplifications.
3793   if (TrivialUnwindBlocks.empty())
3794     return false;
3795 
3796   // Turn all invokes that unwind here into calls.
3797   for (auto *TrivialBB : TrivialUnwindBlocks) {
3798     // Blocks that will be simplified should be removed from the phi node.
3799     // Note there could be multiple edges to the resume block, and we need
3800     // to remove them all.
3801     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3802       BB->removePredecessor(TrivialBB, true);
3803 
3804     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3805          PI != PE;) {
3806       BasicBlock *Pred = *PI++;
3807       removeUnwindEdge(Pred);
3808     }
3809 
3810     // In each SimplifyCFG run, only the current processed block can be erased.
3811     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3812     // of erasing TrivialBB, we only remove the branch to the common resume
3813     // block so that we can later erase the resume block since it has no
3814     // predecessors.
3815     TrivialBB->getTerminator()->eraseFromParent();
3816     new UnreachableInst(RI->getContext(), TrivialBB);
3817   }
3818 
3819   // Delete the resume block if all its predecessors have been removed.
3820   if (pred_empty(BB))
3821     BB->eraseFromParent();
3822 
3823   return !TrivialUnwindBlocks.empty();
3824 }
3825 
3826 // Simplify resume that is only used by a single (non-phi) landing pad.
3827 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3828   BasicBlock *BB = RI->getParent();
3829   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3830   assert(RI->getValue() == LPInst &&
3831          "Resume must unwind the exception that caused control to here");
3832 
3833   // Check that there are no other instructions except for debug intrinsics.
3834   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3835   while (++I != E)
3836     if (!isa<DbgInfoIntrinsic>(I))
3837       return false;
3838 
3839   // Turn all invokes that unwind here into calls and delete the basic block.
3840   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3841     BasicBlock *Pred = *PI++;
3842     removeUnwindEdge(Pred);
3843   }
3844 
3845   // The landingpad is now unreachable.  Zap it.
3846   BB->eraseFromParent();
3847   if (LoopHeaders)
3848     LoopHeaders->erase(BB);
3849   return true;
3850 }
3851 
3852 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3853   // If this is a trivial cleanup pad that executes no instructions, it can be
3854   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3855   // that is an EH pad will be updated to continue to the caller and any
3856   // predecessor that terminates with an invoke instruction will have its invoke
3857   // instruction converted to a call instruction.  If the cleanup pad being
3858   // simplified does not continue to the caller, each predecessor will be
3859   // updated to continue to the unwind destination of the cleanup pad being
3860   // simplified.
3861   BasicBlock *BB = RI->getParent();
3862   CleanupPadInst *CPInst = RI->getCleanupPad();
3863   if (CPInst->getParent() != BB)
3864     // This isn't an empty cleanup.
3865     return false;
3866 
3867   // We cannot kill the pad if it has multiple uses.  This typically arises
3868   // from unreachable basic blocks.
3869   if (!CPInst->hasOneUse())
3870     return false;
3871 
3872   // Check that there are no other instructions except for benign intrinsics.
3873   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3874   while (++I != E) {
3875     auto *II = dyn_cast<IntrinsicInst>(I);
3876     if (!II)
3877       return false;
3878 
3879     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3880     switch (IntrinsicID) {
3881     case Intrinsic::dbg_declare:
3882     case Intrinsic::dbg_value:
3883     case Intrinsic::lifetime_end:
3884       break;
3885     default:
3886       return false;
3887     }
3888   }
3889 
3890   // If the cleanup return we are simplifying unwinds to the caller, this will
3891   // set UnwindDest to nullptr.
3892   BasicBlock *UnwindDest = RI->getUnwindDest();
3893   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3894 
3895   // We're about to remove BB from the control flow.  Before we do, sink any
3896   // PHINodes into the unwind destination.  Doing this before changing the
3897   // control flow avoids some potentially slow checks, since we can currently
3898   // be certain that UnwindDest and BB have no common predecessors (since they
3899   // are both EH pads).
3900   if (UnwindDest) {
3901     // First, go through the PHI nodes in UnwindDest and update any nodes that
3902     // reference the block we are removing
3903     for (BasicBlock::iterator I = UnwindDest->begin(),
3904                               IE = DestEHPad->getIterator();
3905          I != IE; ++I) {
3906       PHINode *DestPN = cast<PHINode>(I);
3907 
3908       int Idx = DestPN->getBasicBlockIndex(BB);
3909       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3910       assert(Idx != -1);
3911       // This PHI node has an incoming value that corresponds to a control
3912       // path through the cleanup pad we are removing.  If the incoming
3913       // value is in the cleanup pad, it must be a PHINode (because we
3914       // verified above that the block is otherwise empty).  Otherwise, the
3915       // value is either a constant or a value that dominates the cleanup
3916       // pad being removed.
3917       //
3918       // Because BB and UnwindDest are both EH pads, all of their
3919       // predecessors must unwind to these blocks, and since no instruction
3920       // can have multiple unwind destinations, there will be no overlap in
3921       // incoming blocks between SrcPN and DestPN.
3922       Value *SrcVal = DestPN->getIncomingValue(Idx);
3923       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3924 
3925       // Remove the entry for the block we are deleting.
3926       DestPN->removeIncomingValue(Idx, false);
3927 
3928       if (SrcPN && SrcPN->getParent() == BB) {
3929         // If the incoming value was a PHI node in the cleanup pad we are
3930         // removing, we need to merge that PHI node's incoming values into
3931         // DestPN.
3932         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3933              SrcIdx != SrcE; ++SrcIdx) {
3934           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3935                               SrcPN->getIncomingBlock(SrcIdx));
3936         }
3937       } else {
3938         // Otherwise, the incoming value came from above BB and
3939         // so we can just reuse it.  We must associate all of BB's
3940         // predecessors with this value.
3941         for (auto *pred : predecessors(BB)) {
3942           DestPN->addIncoming(SrcVal, pred);
3943         }
3944       }
3945     }
3946 
3947     // Sink any remaining PHI nodes directly into UnwindDest.
3948     Instruction *InsertPt = DestEHPad;
3949     for (BasicBlock::iterator I = BB->begin(),
3950                               IE = BB->getFirstNonPHI()->getIterator();
3951          I != IE;) {
3952       // The iterator must be incremented here because the instructions are
3953       // being moved to another block.
3954       PHINode *PN = cast<PHINode>(I++);
3955       if (PN->use_empty())
3956         // If the PHI node has no uses, just leave it.  It will be erased
3957         // when we erase BB below.
3958         continue;
3959 
3960       // Otherwise, sink this PHI node into UnwindDest.
3961       // Any predecessors to UnwindDest which are not already represented
3962       // must be back edges which inherit the value from the path through
3963       // BB.  In this case, the PHI value must reference itself.
3964       for (auto *pred : predecessors(UnwindDest))
3965         if (pred != BB)
3966           PN->addIncoming(PN, pred);
3967       PN->moveBefore(InsertPt);
3968     }
3969   }
3970 
3971   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3972     // The iterator must be updated here because we are removing this pred.
3973     BasicBlock *PredBB = *PI++;
3974     if (UnwindDest == nullptr) {
3975       removeUnwindEdge(PredBB);
3976     } else {
3977       TerminatorInst *TI = PredBB->getTerminator();
3978       TI->replaceUsesOfWith(BB, UnwindDest);
3979     }
3980   }
3981 
3982   // The cleanup pad is now unreachable.  Zap it.
3983   BB->eraseFromParent();
3984   return true;
3985 }
3986 
3987 // Try to merge two cleanuppads together.
3988 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3989   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3990   // with.
3991   BasicBlock *UnwindDest = RI->getUnwindDest();
3992   if (!UnwindDest)
3993     return false;
3994 
3995   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3996   // be safe to merge without code duplication.
3997   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3998     return false;
3999 
4000   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4001   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4002   if (!SuccessorCleanupPad)
4003     return false;
4004 
4005   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4006   // Replace any uses of the successor cleanupad with the predecessor pad
4007   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4008   // funclet bundle operands.
4009   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4010   // Remove the old cleanuppad.
4011   SuccessorCleanupPad->eraseFromParent();
4012   // Now, we simply replace the cleanupret with a branch to the unwind
4013   // destination.
4014   BranchInst::Create(UnwindDest, RI->getParent());
4015   RI->eraseFromParent();
4016 
4017   return true;
4018 }
4019 
4020 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4021   // It is possible to transiantly have an undef cleanuppad operand because we
4022   // have deleted some, but not all, dead blocks.
4023   // Eventually, this block will be deleted.
4024   if (isa<UndefValue>(RI->getOperand(0)))
4025     return false;
4026 
4027   if (mergeCleanupPad(RI))
4028     return true;
4029 
4030   if (removeEmptyCleanup(RI))
4031     return true;
4032 
4033   return false;
4034 }
4035 
4036 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4037   BasicBlock *BB = RI->getParent();
4038   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4039     return false;
4040 
4041   // Find predecessors that end with branches.
4042   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4043   SmallVector<BranchInst *, 8> CondBranchPreds;
4044   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4045     BasicBlock *P = *PI;
4046     TerminatorInst *PTI = P->getTerminator();
4047     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4048       if (BI->isUnconditional())
4049         UncondBranchPreds.push_back(P);
4050       else
4051         CondBranchPreds.push_back(BI);
4052     }
4053   }
4054 
4055   // If we found some, do the transformation!
4056   if (!UncondBranchPreds.empty() && DupRet) {
4057     while (!UncondBranchPreds.empty()) {
4058       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4059       DEBUG(dbgs() << "FOLDING: " << *BB
4060                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4061       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4062     }
4063 
4064     // If we eliminated all predecessors of the block, delete the block now.
4065     if (pred_empty(BB)) {
4066       // We know there are no successors, so just nuke the block.
4067       BB->eraseFromParent();
4068       if (LoopHeaders)
4069         LoopHeaders->erase(BB);
4070     }
4071 
4072     return true;
4073   }
4074 
4075   // Check out all of the conditional branches going to this return
4076   // instruction.  If any of them just select between returns, change the
4077   // branch itself into a select/return pair.
4078   while (!CondBranchPreds.empty()) {
4079     BranchInst *BI = CondBranchPreds.pop_back_val();
4080 
4081     // Check to see if the non-BB successor is also a return block.
4082     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4083         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4084         SimplifyCondBranchToTwoReturns(BI, Builder))
4085       return true;
4086   }
4087   return false;
4088 }
4089 
4090 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4091   BasicBlock *BB = UI->getParent();
4092 
4093   bool Changed = false;
4094 
4095   // If there are any instructions immediately before the unreachable that can
4096   // be removed, do so.
4097   while (UI->getIterator() != BB->begin()) {
4098     BasicBlock::iterator BBI = UI->getIterator();
4099     --BBI;
4100     // Do not delete instructions that can have side effects which might cause
4101     // the unreachable to not be reachable; specifically, calls and volatile
4102     // operations may have this effect.
4103     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4104       break;
4105 
4106     if (BBI->mayHaveSideEffects()) {
4107       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4108         if (SI->isVolatile())
4109           break;
4110       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4111         if (LI->isVolatile())
4112           break;
4113       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4114         if (RMWI->isVolatile())
4115           break;
4116       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4117         if (CXI->isVolatile())
4118           break;
4119       } else if (isa<CatchPadInst>(BBI)) {
4120         // A catchpad may invoke exception object constructors and such, which
4121         // in some languages can be arbitrary code, so be conservative by
4122         // default.
4123         // For CoreCLR, it just involves a type test, so can be removed.
4124         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4125             EHPersonality::CoreCLR)
4126           break;
4127       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4128                  !isa<LandingPadInst>(BBI)) {
4129         break;
4130       }
4131       // Note that deleting LandingPad's here is in fact okay, although it
4132       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4133       // all the predecessors of this block will be the unwind edges of Invokes,
4134       // and we can therefore guarantee this block will be erased.
4135     }
4136 
4137     // Delete this instruction (any uses are guaranteed to be dead)
4138     if (!BBI->use_empty())
4139       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4140     BBI->eraseFromParent();
4141     Changed = true;
4142   }
4143 
4144   // If the unreachable instruction is the first in the block, take a gander
4145   // at all of the predecessors of this instruction, and simplify them.
4146   if (&BB->front() != UI)
4147     return Changed;
4148 
4149   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4150   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4151     TerminatorInst *TI = Preds[i]->getTerminator();
4152     IRBuilder<> Builder(TI);
4153     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4154       if (BI->isUnconditional()) {
4155         if (BI->getSuccessor(0) == BB) {
4156           new UnreachableInst(TI->getContext(), TI);
4157           TI->eraseFromParent();
4158           Changed = true;
4159         }
4160       } else {
4161         if (BI->getSuccessor(0) == BB) {
4162           Builder.CreateBr(BI->getSuccessor(1));
4163           EraseTerminatorInstAndDCECond(BI);
4164         } else if (BI->getSuccessor(1) == BB) {
4165           Builder.CreateBr(BI->getSuccessor(0));
4166           EraseTerminatorInstAndDCECond(BI);
4167           Changed = true;
4168         }
4169       }
4170     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4171       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4172         if (i->getCaseSuccessor() != BB) {
4173           ++i;
4174           continue;
4175         }
4176         BB->removePredecessor(SI->getParent());
4177         i = SI->removeCase(i);
4178         e = SI->case_end();
4179         Changed = true;
4180       }
4181     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4182       if (II->getUnwindDest() == BB) {
4183         removeUnwindEdge(TI->getParent());
4184         Changed = true;
4185       }
4186     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4187       if (CSI->getUnwindDest() == BB) {
4188         removeUnwindEdge(TI->getParent());
4189         Changed = true;
4190         continue;
4191       }
4192 
4193       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4194                                              E = CSI->handler_end();
4195            I != E; ++I) {
4196         if (*I == BB) {
4197           CSI->removeHandler(I);
4198           --I;
4199           --E;
4200           Changed = true;
4201         }
4202       }
4203       if (CSI->getNumHandlers() == 0) {
4204         BasicBlock *CatchSwitchBB = CSI->getParent();
4205         if (CSI->hasUnwindDest()) {
4206           // Redirect preds to the unwind dest
4207           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4208         } else {
4209           // Rewrite all preds to unwind to caller (or from invoke to call).
4210           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4211           for (BasicBlock *EHPred : EHPreds)
4212             removeUnwindEdge(EHPred);
4213         }
4214         // The catchswitch is no longer reachable.
4215         new UnreachableInst(CSI->getContext(), CSI);
4216         CSI->eraseFromParent();
4217         Changed = true;
4218       }
4219     } else if (isa<CleanupReturnInst>(TI)) {
4220       new UnreachableInst(TI->getContext(), TI);
4221       TI->eraseFromParent();
4222       Changed = true;
4223     }
4224   }
4225 
4226   // If this block is now dead, remove it.
4227   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4228     // We know there are no successors, so just nuke the block.
4229     BB->eraseFromParent();
4230     if (LoopHeaders)
4231       LoopHeaders->erase(BB);
4232     return true;
4233   }
4234 
4235   return Changed;
4236 }
4237 
4238 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4239   assert(Cases.size() >= 1);
4240 
4241   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4242   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4243     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4244       return false;
4245   }
4246   return true;
4247 }
4248 
4249 /// Turn a switch with two reachable destinations into an integer range
4250 /// comparison and branch.
4251 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4252   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4253 
4254   bool HasDefault =
4255       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4256 
4257   // Partition the cases into two sets with different destinations.
4258   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4259   BasicBlock *DestB = nullptr;
4260   SmallVector<ConstantInt *, 16> CasesA;
4261   SmallVector<ConstantInt *, 16> CasesB;
4262 
4263   for (auto Case : SI->cases()) {
4264     BasicBlock *Dest = Case.getCaseSuccessor();
4265     if (!DestA)
4266       DestA = Dest;
4267     if (Dest == DestA) {
4268       CasesA.push_back(Case.getCaseValue());
4269       continue;
4270     }
4271     if (!DestB)
4272       DestB = Dest;
4273     if (Dest == DestB) {
4274       CasesB.push_back(Case.getCaseValue());
4275       continue;
4276     }
4277     return false; // More than two destinations.
4278   }
4279 
4280   assert(DestA && DestB &&
4281          "Single-destination switch should have been folded.");
4282   assert(DestA != DestB);
4283   assert(DestB != SI->getDefaultDest());
4284   assert(!CasesB.empty() && "There must be non-default cases.");
4285   assert(!CasesA.empty() || HasDefault);
4286 
4287   // Figure out if one of the sets of cases form a contiguous range.
4288   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4289   BasicBlock *ContiguousDest = nullptr;
4290   BasicBlock *OtherDest = nullptr;
4291   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4292     ContiguousCases = &CasesA;
4293     ContiguousDest = DestA;
4294     OtherDest = DestB;
4295   } else if (CasesAreContiguous(CasesB)) {
4296     ContiguousCases = &CasesB;
4297     ContiguousDest = DestB;
4298     OtherDest = DestA;
4299   } else
4300     return false;
4301 
4302   // Start building the compare and branch.
4303 
4304   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4305   Constant *NumCases =
4306       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4307 
4308   Value *Sub = SI->getCondition();
4309   if (!Offset->isNullValue())
4310     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4311 
4312   Value *Cmp;
4313   // If NumCases overflowed, then all possible values jump to the successor.
4314   if (NumCases->isNullValue() && !ContiguousCases->empty())
4315     Cmp = ConstantInt::getTrue(SI->getContext());
4316   else
4317     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4318   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4319 
4320   // Update weight for the newly-created conditional branch.
4321   if (HasBranchWeights(SI)) {
4322     SmallVector<uint64_t, 8> Weights;
4323     GetBranchWeights(SI, Weights);
4324     if (Weights.size() == 1 + SI->getNumCases()) {
4325       uint64_t TrueWeight = 0;
4326       uint64_t FalseWeight = 0;
4327       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4328         if (SI->getSuccessor(I) == ContiguousDest)
4329           TrueWeight += Weights[I];
4330         else
4331           FalseWeight += Weights[I];
4332       }
4333       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4334         TrueWeight /= 2;
4335         FalseWeight /= 2;
4336       }
4337       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4338     }
4339   }
4340 
4341   // Prune obsolete incoming values off the successors' PHI nodes.
4342   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4343     unsigned PreviousEdges = ContiguousCases->size();
4344     if (ContiguousDest == SI->getDefaultDest())
4345       ++PreviousEdges;
4346     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4347       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4348   }
4349   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4350     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4351     if (OtherDest == SI->getDefaultDest())
4352       ++PreviousEdges;
4353     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4354       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4355   }
4356 
4357   // Drop the switch.
4358   SI->eraseFromParent();
4359 
4360   return true;
4361 }
4362 
4363 /// Compute masked bits for the condition of a switch
4364 /// and use it to remove dead cases.
4365 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4366                                      const DataLayout &DL) {
4367   Value *Cond = SI->getCondition();
4368   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4369   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4370 
4371   // We can also eliminate cases by determining that their values are outside of
4372   // the limited range of the condition based on how many significant (non-sign)
4373   // bits are in the condition value.
4374   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4375   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4376 
4377   // Gather dead cases.
4378   SmallVector<ConstantInt *, 8> DeadCases;
4379   for (auto &Case : SI->cases()) {
4380     const APInt &CaseVal = Case.getCaseValue()->getValue();
4381     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4382         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4383       DeadCases.push_back(Case.getCaseValue());
4384       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4385     }
4386   }
4387 
4388   // If we can prove that the cases must cover all possible values, the
4389   // default destination becomes dead and we can remove it.  If we know some
4390   // of the bits in the value, we can use that to more precisely compute the
4391   // number of possible unique case values.
4392   bool HasDefault =
4393       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4394   const unsigned NumUnknownBits =
4395       Bits - (Known.Zero | Known.One).countPopulation();
4396   assert(NumUnknownBits <= Bits);
4397   if (HasDefault && DeadCases.empty() &&
4398       NumUnknownBits < 64 /* avoid overflow */ &&
4399       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4400     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4401     BasicBlock *NewDefault =
4402         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4403     SI->setDefaultDest(&*NewDefault);
4404     SplitBlock(&*NewDefault, &NewDefault->front());
4405     auto *OldTI = NewDefault->getTerminator();
4406     new UnreachableInst(SI->getContext(), OldTI);
4407     EraseTerminatorInstAndDCECond(OldTI);
4408     return true;
4409   }
4410 
4411   SmallVector<uint64_t, 8> Weights;
4412   bool HasWeight = HasBranchWeights(SI);
4413   if (HasWeight) {
4414     GetBranchWeights(SI, Weights);
4415     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4416   }
4417 
4418   // Remove dead cases from the switch.
4419   for (ConstantInt *DeadCase : DeadCases) {
4420     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4421     assert(CaseI != SI->case_default() &&
4422            "Case was not found. Probably mistake in DeadCases forming.");
4423     if (HasWeight) {
4424       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4425       Weights.pop_back();
4426     }
4427 
4428     // Prune unused values from PHI nodes.
4429     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4430     SI->removeCase(CaseI);
4431   }
4432   if (HasWeight && Weights.size() >= 2) {
4433     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4434     setBranchWeights(SI, MDWeights);
4435   }
4436 
4437   return !DeadCases.empty();
4438 }
4439 
4440 /// If BB would be eligible for simplification by
4441 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4442 /// by an unconditional branch), look at the phi node for BB in the successor
4443 /// block and see if the incoming value is equal to CaseValue. If so, return
4444 /// the phi node, and set PhiIndex to BB's index in the phi node.
4445 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4446                                               BasicBlock *BB, int *PhiIndex) {
4447   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4448     return nullptr; // BB must be empty to be a candidate for simplification.
4449   if (!BB->getSinglePredecessor())
4450     return nullptr; // BB must be dominated by the switch.
4451 
4452   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4453   if (!Branch || !Branch->isUnconditional())
4454     return nullptr; // Terminator must be unconditional branch.
4455 
4456   BasicBlock *Succ = Branch->getSuccessor(0);
4457 
4458   BasicBlock::iterator I = Succ->begin();
4459   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4460     int Idx = PHI->getBasicBlockIndex(BB);
4461     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4462 
4463     Value *InValue = PHI->getIncomingValue(Idx);
4464     if (InValue != CaseValue)
4465       continue;
4466 
4467     *PhiIndex = Idx;
4468     return PHI;
4469   }
4470 
4471   return nullptr;
4472 }
4473 
4474 /// Try to forward the condition of a switch instruction to a phi node
4475 /// dominated by the switch, if that would mean that some of the destination
4476 /// blocks of the switch can be folded away. Return true if a change is made.
4477 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4478   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4479 
4480   ForwardingNodesMap ForwardingNodes;
4481   BasicBlock *SwitchBlock = SI->getParent();
4482   bool Changed = false;
4483   for (auto &Case : SI->cases()) {
4484     ConstantInt *CaseValue = Case.getCaseValue();
4485     BasicBlock *CaseDest = Case.getCaseSuccessor();
4486 
4487     // Replace phi operands in successor blocks that are using the constant case
4488     // value rather than the switch condition variable:
4489     //   switchbb:
4490     //   switch i32 %x, label %default [
4491     //     i32 17, label %succ
4492     //   ...
4493     //   succ:
4494     //     %r = phi i32 ... [ 17, %switchbb ] ...
4495     // -->
4496     //     %r = phi i32 ... [ %x, %switchbb ] ...
4497 
4498     for (Instruction &InstInCaseDest : *CaseDest) {
4499       auto *Phi = dyn_cast<PHINode>(&InstInCaseDest);
4500       if (!Phi) break;
4501 
4502       // This only works if there is exactly 1 incoming edge from the switch to
4503       // a phi. If there is >1, that means multiple cases of the switch map to 1
4504       // value in the phi, and that phi value is not the switch condition. Thus,
4505       // this transform would not make sense (the phi would be invalid because
4506       // a phi can't have different incoming values from the same block).
4507       int SwitchBBIdx = Phi->getBasicBlockIndex(SwitchBlock);
4508       if (Phi->getIncomingValue(SwitchBBIdx) == CaseValue &&
4509           count(Phi->blocks(), SwitchBlock) == 1) {
4510         Phi->setIncomingValue(SwitchBBIdx, SI->getCondition());
4511         Changed = true;
4512       }
4513     }
4514 
4515     // Collect phi nodes that are indirectly using this switch's case constants.
4516     int PhiIdx;
4517     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4518       ForwardingNodes[Phi].push_back(PhiIdx);
4519   }
4520 
4521   for (auto &ForwardingNode : ForwardingNodes) {
4522     PHINode *Phi = ForwardingNode.first;
4523     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4524     if (Indexes.size() < 2)
4525       continue;
4526 
4527     for (int Index : Indexes)
4528       Phi->setIncomingValue(Index, SI->getCondition());
4529     Changed = true;
4530   }
4531 
4532   return Changed;
4533 }
4534 
4535 /// Return true if the backend will be able to handle
4536 /// initializing an array of constants like C.
4537 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4538   if (C->isThreadDependent())
4539     return false;
4540   if (C->isDLLImportDependent())
4541     return false;
4542 
4543   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4544       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4545       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4546     return false;
4547 
4548   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4549     if (!CE->isGEPWithNoNotionalOverIndexing())
4550       return false;
4551     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4552       return false;
4553   }
4554 
4555   if (!TTI.shouldBuildLookupTablesForConstant(C))
4556     return false;
4557 
4558   return true;
4559 }
4560 
4561 /// If V is a Constant, return it. Otherwise, try to look up
4562 /// its constant value in ConstantPool, returning 0 if it's not there.
4563 static Constant *
4564 LookupConstant(Value *V,
4565                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4566   if (Constant *C = dyn_cast<Constant>(V))
4567     return C;
4568   return ConstantPool.lookup(V);
4569 }
4570 
4571 /// Try to fold instruction I into a constant. This works for
4572 /// simple instructions such as binary operations where both operands are
4573 /// constant or can be replaced by constants from the ConstantPool. Returns the
4574 /// resulting constant on success, 0 otherwise.
4575 static Constant *
4576 ConstantFold(Instruction *I, const DataLayout &DL,
4577              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4578   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4579     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4580     if (!A)
4581       return nullptr;
4582     if (A->isAllOnesValue())
4583       return LookupConstant(Select->getTrueValue(), ConstantPool);
4584     if (A->isNullValue())
4585       return LookupConstant(Select->getFalseValue(), ConstantPool);
4586     return nullptr;
4587   }
4588 
4589   SmallVector<Constant *, 4> COps;
4590   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4591     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4592       COps.push_back(A);
4593     else
4594       return nullptr;
4595   }
4596 
4597   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4598     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4599                                            COps[1], DL);
4600   }
4601 
4602   return ConstantFoldInstOperands(I, COps, DL);
4603 }
4604 
4605 /// Try to determine the resulting constant values in phi nodes
4606 /// at the common destination basic block, *CommonDest, for one of the case
4607 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4608 /// case), of a switch instruction SI.
4609 static bool
4610 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4611                BasicBlock **CommonDest,
4612                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4613                const DataLayout &DL, const TargetTransformInfo &TTI) {
4614   // The block from which we enter the common destination.
4615   BasicBlock *Pred = SI->getParent();
4616 
4617   // If CaseDest is empty except for some side-effect free instructions through
4618   // which we can constant-propagate the CaseVal, continue to its successor.
4619   SmallDenseMap<Value *, Constant *> ConstantPool;
4620   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4621   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4622        ++I) {
4623     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4624       // If the terminator is a simple branch, continue to the next block.
4625       if (T->getNumSuccessors() != 1 || T->isExceptional())
4626         return false;
4627       Pred = CaseDest;
4628       CaseDest = T->getSuccessor(0);
4629     } else if (isa<DbgInfoIntrinsic>(I)) {
4630       // Skip debug intrinsic.
4631       continue;
4632     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4633       // Instruction is side-effect free and constant.
4634 
4635       // If the instruction has uses outside this block or a phi node slot for
4636       // the block, it is not safe to bypass the instruction since it would then
4637       // no longer dominate all its uses.
4638       for (auto &Use : I->uses()) {
4639         User *User = Use.getUser();
4640         if (Instruction *I = dyn_cast<Instruction>(User))
4641           if (I->getParent() == CaseDest)
4642             continue;
4643         if (PHINode *Phi = dyn_cast<PHINode>(User))
4644           if (Phi->getIncomingBlock(Use) == CaseDest)
4645             continue;
4646         return false;
4647       }
4648 
4649       ConstantPool.insert(std::make_pair(&*I, C));
4650     } else {
4651       break;
4652     }
4653   }
4654 
4655   // If we did not have a CommonDest before, use the current one.
4656   if (!*CommonDest)
4657     *CommonDest = CaseDest;
4658   // If the destination isn't the common one, abort.
4659   if (CaseDest != *CommonDest)
4660     return false;
4661 
4662   // Get the values for this case from phi nodes in the destination block.
4663   BasicBlock::iterator I = (*CommonDest)->begin();
4664   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4665     int Idx = PHI->getBasicBlockIndex(Pred);
4666     if (Idx == -1)
4667       continue;
4668 
4669     Constant *ConstVal =
4670         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4671     if (!ConstVal)
4672       return false;
4673 
4674     // Be conservative about which kinds of constants we support.
4675     if (!ValidLookupTableConstant(ConstVal, TTI))
4676       return false;
4677 
4678     Res.push_back(std::make_pair(PHI, ConstVal));
4679   }
4680 
4681   return Res.size() > 0;
4682 }
4683 
4684 // Helper function used to add CaseVal to the list of cases that generate
4685 // Result.
4686 static void MapCaseToResult(ConstantInt *CaseVal,
4687                             SwitchCaseResultVectorTy &UniqueResults,
4688                             Constant *Result) {
4689   for (auto &I : UniqueResults) {
4690     if (I.first == Result) {
4691       I.second.push_back(CaseVal);
4692       return;
4693     }
4694   }
4695   UniqueResults.push_back(
4696       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4697 }
4698 
4699 // Helper function that initializes a map containing
4700 // results for the PHI node of the common destination block for a switch
4701 // instruction. Returns false if multiple PHI nodes have been found or if
4702 // there is not a common destination block for the switch.
4703 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4704                                   BasicBlock *&CommonDest,
4705                                   SwitchCaseResultVectorTy &UniqueResults,
4706                                   Constant *&DefaultResult,
4707                                   const DataLayout &DL,
4708                                   const TargetTransformInfo &TTI) {
4709   for (auto &I : SI->cases()) {
4710     ConstantInt *CaseVal = I.getCaseValue();
4711 
4712     // Resulting value at phi nodes for this case value.
4713     SwitchCaseResultsTy Results;
4714     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4715                         DL, TTI))
4716       return false;
4717 
4718     // Only one value per case is permitted
4719     if (Results.size() > 1)
4720       return false;
4721     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4722 
4723     // Check the PHI consistency.
4724     if (!PHI)
4725       PHI = Results[0].first;
4726     else if (PHI != Results[0].first)
4727       return false;
4728   }
4729   // Find the default result value.
4730   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4731   BasicBlock *DefaultDest = SI->getDefaultDest();
4732   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4733                  DL, TTI);
4734   // If the default value is not found abort unless the default destination
4735   // is unreachable.
4736   DefaultResult =
4737       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4738   if ((!DefaultResult &&
4739        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4740     return false;
4741 
4742   return true;
4743 }
4744 
4745 // Helper function that checks if it is possible to transform a switch with only
4746 // two cases (or two cases + default) that produces a result into a select.
4747 // Example:
4748 // switch (a) {
4749 //   case 10:                %0 = icmp eq i32 %a, 10
4750 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4751 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4752 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4753 //   default:
4754 //     return 4;
4755 // }
4756 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4757                                    Constant *DefaultResult, Value *Condition,
4758                                    IRBuilder<> &Builder) {
4759   assert(ResultVector.size() == 2 &&
4760          "We should have exactly two unique results at this point");
4761   // If we are selecting between only two cases transform into a simple
4762   // select or a two-way select if default is possible.
4763   if (ResultVector[0].second.size() == 1 &&
4764       ResultVector[1].second.size() == 1) {
4765     ConstantInt *const FirstCase = ResultVector[0].second[0];
4766     ConstantInt *const SecondCase = ResultVector[1].second[0];
4767 
4768     bool DefaultCanTrigger = DefaultResult;
4769     Value *SelectValue = ResultVector[1].first;
4770     if (DefaultCanTrigger) {
4771       Value *const ValueCompare =
4772           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4773       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4774                                          DefaultResult, "switch.select");
4775     }
4776     Value *const ValueCompare =
4777         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4778     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4779                                 SelectValue, "switch.select");
4780   }
4781 
4782   return nullptr;
4783 }
4784 
4785 // Helper function to cleanup a switch instruction that has been converted into
4786 // a select, fixing up PHI nodes and basic blocks.
4787 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4788                                               Value *SelectValue,
4789                                               IRBuilder<> &Builder) {
4790   BasicBlock *SelectBB = SI->getParent();
4791   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4792     PHI->removeIncomingValue(SelectBB);
4793   PHI->addIncoming(SelectValue, SelectBB);
4794 
4795   Builder.CreateBr(PHI->getParent());
4796 
4797   // Remove the switch.
4798   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4799     BasicBlock *Succ = SI->getSuccessor(i);
4800 
4801     if (Succ == PHI->getParent())
4802       continue;
4803     Succ->removePredecessor(SelectBB);
4804   }
4805   SI->eraseFromParent();
4806 }
4807 
4808 /// If the switch is only used to initialize one or more
4809 /// phi nodes in a common successor block with only two different
4810 /// constant values, replace the switch with select.
4811 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4812                            const DataLayout &DL,
4813                            const TargetTransformInfo &TTI) {
4814   Value *const Cond = SI->getCondition();
4815   PHINode *PHI = nullptr;
4816   BasicBlock *CommonDest = nullptr;
4817   Constant *DefaultResult;
4818   SwitchCaseResultVectorTy UniqueResults;
4819   // Collect all the cases that will deliver the same value from the switch.
4820   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4821                              DL, TTI))
4822     return false;
4823   // Selects choose between maximum two values.
4824   if (UniqueResults.size() != 2)
4825     return false;
4826   assert(PHI != nullptr && "PHI for value select not found");
4827 
4828   Builder.SetInsertPoint(SI);
4829   Value *SelectValue =
4830       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4831   if (SelectValue) {
4832     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4833     return true;
4834   }
4835   // The switch couldn't be converted into a select.
4836   return false;
4837 }
4838 
4839 namespace {
4840 
4841 /// This class represents a lookup table that can be used to replace a switch.
4842 class SwitchLookupTable {
4843 public:
4844   /// Create a lookup table to use as a switch replacement with the contents
4845   /// of Values, using DefaultValue to fill any holes in the table.
4846   SwitchLookupTable(
4847       Module &M, uint64_t TableSize, ConstantInt *Offset,
4848       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4849       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4850 
4851   /// Build instructions with Builder to retrieve the value at
4852   /// the position given by Index in the lookup table.
4853   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4854 
4855   /// Return true if a table with TableSize elements of
4856   /// type ElementType would fit in a target-legal register.
4857   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4858                                  Type *ElementType);
4859 
4860 private:
4861   // Depending on the contents of the table, it can be represented in
4862   // different ways.
4863   enum {
4864     // For tables where each element contains the same value, we just have to
4865     // store that single value and return it for each lookup.
4866     SingleValueKind,
4867 
4868     // For tables where there is a linear relationship between table index
4869     // and values. We calculate the result with a simple multiplication
4870     // and addition instead of a table lookup.
4871     LinearMapKind,
4872 
4873     // For small tables with integer elements, we can pack them into a bitmap
4874     // that fits into a target-legal register. Values are retrieved by
4875     // shift and mask operations.
4876     BitMapKind,
4877 
4878     // The table is stored as an array of values. Values are retrieved by load
4879     // instructions from the table.
4880     ArrayKind
4881   } Kind;
4882 
4883   // For SingleValueKind, this is the single value.
4884   Constant *SingleValue = nullptr;
4885 
4886   // For BitMapKind, this is the bitmap.
4887   ConstantInt *BitMap = nullptr;
4888   IntegerType *BitMapElementTy = nullptr;
4889 
4890   // For LinearMapKind, these are the constants used to derive the value.
4891   ConstantInt *LinearOffset = nullptr;
4892   ConstantInt *LinearMultiplier = nullptr;
4893 
4894   // For ArrayKind, this is the array.
4895   GlobalVariable *Array = nullptr;
4896 };
4897 
4898 } // end anonymous namespace
4899 
4900 SwitchLookupTable::SwitchLookupTable(
4901     Module &M, uint64_t TableSize, ConstantInt *Offset,
4902     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4903     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4904   assert(Values.size() && "Can't build lookup table without values!");
4905   assert(TableSize >= Values.size() && "Can't fit values in table!");
4906 
4907   // If all values in the table are equal, this is that value.
4908   SingleValue = Values.begin()->second;
4909 
4910   Type *ValueType = Values.begin()->second->getType();
4911 
4912   // Build up the table contents.
4913   SmallVector<Constant *, 64> TableContents(TableSize);
4914   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4915     ConstantInt *CaseVal = Values[I].first;
4916     Constant *CaseRes = Values[I].second;
4917     assert(CaseRes->getType() == ValueType);
4918 
4919     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4920     TableContents[Idx] = CaseRes;
4921 
4922     if (CaseRes != SingleValue)
4923       SingleValue = nullptr;
4924   }
4925 
4926   // Fill in any holes in the table with the default result.
4927   if (Values.size() < TableSize) {
4928     assert(DefaultValue &&
4929            "Need a default value to fill the lookup table holes.");
4930     assert(DefaultValue->getType() == ValueType);
4931     for (uint64_t I = 0; I < TableSize; ++I) {
4932       if (!TableContents[I])
4933         TableContents[I] = DefaultValue;
4934     }
4935 
4936     if (DefaultValue != SingleValue)
4937       SingleValue = nullptr;
4938   }
4939 
4940   // If each element in the table contains the same value, we only need to store
4941   // that single value.
4942   if (SingleValue) {
4943     Kind = SingleValueKind;
4944     return;
4945   }
4946 
4947   // Check if we can derive the value with a linear transformation from the
4948   // table index.
4949   if (isa<IntegerType>(ValueType)) {
4950     bool LinearMappingPossible = true;
4951     APInt PrevVal;
4952     APInt DistToPrev;
4953     assert(TableSize >= 2 && "Should be a SingleValue table.");
4954     // Check if there is the same distance between two consecutive values.
4955     for (uint64_t I = 0; I < TableSize; ++I) {
4956       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4957       if (!ConstVal) {
4958         // This is an undef. We could deal with it, but undefs in lookup tables
4959         // are very seldom. It's probably not worth the additional complexity.
4960         LinearMappingPossible = false;
4961         break;
4962       }
4963       const APInt &Val = ConstVal->getValue();
4964       if (I != 0) {
4965         APInt Dist = Val - PrevVal;
4966         if (I == 1) {
4967           DistToPrev = Dist;
4968         } else if (Dist != DistToPrev) {
4969           LinearMappingPossible = false;
4970           break;
4971         }
4972       }
4973       PrevVal = Val;
4974     }
4975     if (LinearMappingPossible) {
4976       LinearOffset = cast<ConstantInt>(TableContents[0]);
4977       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4978       Kind = LinearMapKind;
4979       ++NumLinearMaps;
4980       return;
4981     }
4982   }
4983 
4984   // If the type is integer and the table fits in a register, build a bitmap.
4985   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4986     IntegerType *IT = cast<IntegerType>(ValueType);
4987     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4988     for (uint64_t I = TableSize; I > 0; --I) {
4989       TableInt <<= IT->getBitWidth();
4990       // Insert values into the bitmap. Undef values are set to zero.
4991       if (!isa<UndefValue>(TableContents[I - 1])) {
4992         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4993         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4994       }
4995     }
4996     BitMap = ConstantInt::get(M.getContext(), TableInt);
4997     BitMapElementTy = IT;
4998     Kind = BitMapKind;
4999     ++NumBitMaps;
5000     return;
5001   }
5002 
5003   // Store the table in an array.
5004   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5005   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5006 
5007   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5008                              GlobalVariable::PrivateLinkage, Initializer,
5009                              "switch.table." + FuncName);
5010   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5011   Kind = ArrayKind;
5012 }
5013 
5014 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5015   switch (Kind) {
5016   case SingleValueKind:
5017     return SingleValue;
5018   case LinearMapKind: {
5019     // Derive the result value from the input value.
5020     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5021                                           false, "switch.idx.cast");
5022     if (!LinearMultiplier->isOne())
5023       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5024     if (!LinearOffset->isZero())
5025       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5026     return Result;
5027   }
5028   case BitMapKind: {
5029     // Type of the bitmap (e.g. i59).
5030     IntegerType *MapTy = BitMap->getType();
5031 
5032     // Cast Index to the same type as the bitmap.
5033     // Note: The Index is <= the number of elements in the table, so
5034     // truncating it to the width of the bitmask is safe.
5035     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5036 
5037     // Multiply the shift amount by the element width.
5038     ShiftAmt = Builder.CreateMul(
5039         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5040         "switch.shiftamt");
5041 
5042     // Shift down.
5043     Value *DownShifted =
5044         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5045     // Mask off.
5046     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5047   }
5048   case ArrayKind: {
5049     // Make sure the table index will not overflow when treated as signed.
5050     IntegerType *IT = cast<IntegerType>(Index->getType());
5051     uint64_t TableSize =
5052         Array->getInitializer()->getType()->getArrayNumElements();
5053     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5054       Index = Builder.CreateZExt(
5055           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5056           "switch.tableidx.zext");
5057 
5058     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5059     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5060                                            GEPIndices, "switch.gep");
5061     return Builder.CreateLoad(GEP, "switch.load");
5062   }
5063   }
5064   llvm_unreachable("Unknown lookup table kind!");
5065 }
5066 
5067 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5068                                            uint64_t TableSize,
5069                                            Type *ElementType) {
5070   auto *IT = dyn_cast<IntegerType>(ElementType);
5071   if (!IT)
5072     return false;
5073   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5074   // are <= 15, we could try to narrow the type.
5075 
5076   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5077   if (TableSize >= UINT_MAX / IT->getBitWidth())
5078     return false;
5079   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5080 }
5081 
5082 /// Determine whether a lookup table should be built for this switch, based on
5083 /// the number of cases, size of the table, and the types of the results.
5084 static bool
5085 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5086                        const TargetTransformInfo &TTI, const DataLayout &DL,
5087                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5088   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5089     return false; // TableSize overflowed, or mul below might overflow.
5090 
5091   bool AllTablesFitInRegister = true;
5092   bool HasIllegalType = false;
5093   for (const auto &I : ResultTypes) {
5094     Type *Ty = I.second;
5095 
5096     // Saturate this flag to true.
5097     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5098 
5099     // Saturate this flag to false.
5100     AllTablesFitInRegister =
5101         AllTablesFitInRegister &&
5102         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5103 
5104     // If both flags saturate, we're done. NOTE: This *only* works with
5105     // saturating flags, and all flags have to saturate first due to the
5106     // non-deterministic behavior of iterating over a dense map.
5107     if (HasIllegalType && !AllTablesFitInRegister)
5108       break;
5109   }
5110 
5111   // If each table would fit in a register, we should build it anyway.
5112   if (AllTablesFitInRegister)
5113     return true;
5114 
5115   // Don't build a table that doesn't fit in-register if it has illegal types.
5116   if (HasIllegalType)
5117     return false;
5118 
5119   // The table density should be at least 40%. This is the same criterion as for
5120   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5121   // FIXME: Find the best cut-off.
5122   return SI->getNumCases() * 10 >= TableSize * 4;
5123 }
5124 
5125 /// Try to reuse the switch table index compare. Following pattern:
5126 /// \code
5127 ///     if (idx < tablesize)
5128 ///        r = table[idx]; // table does not contain default_value
5129 ///     else
5130 ///        r = default_value;
5131 ///     if (r != default_value)
5132 ///        ...
5133 /// \endcode
5134 /// Is optimized to:
5135 /// \code
5136 ///     cond = idx < tablesize;
5137 ///     if (cond)
5138 ///        r = table[idx];
5139 ///     else
5140 ///        r = default_value;
5141 ///     if (cond)
5142 ///        ...
5143 /// \endcode
5144 /// Jump threading will then eliminate the second if(cond).
5145 static void reuseTableCompare(
5146     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5147     Constant *DefaultValue,
5148     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5149   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5150   if (!CmpInst)
5151     return;
5152 
5153   // We require that the compare is in the same block as the phi so that jump
5154   // threading can do its work afterwards.
5155   if (CmpInst->getParent() != PhiBlock)
5156     return;
5157 
5158   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5159   if (!CmpOp1)
5160     return;
5161 
5162   Value *RangeCmp = RangeCheckBranch->getCondition();
5163   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5164   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5165 
5166   // Check if the compare with the default value is constant true or false.
5167   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5168                                                  DefaultValue, CmpOp1, true);
5169   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5170     return;
5171 
5172   // Check if the compare with the case values is distinct from the default
5173   // compare result.
5174   for (auto ValuePair : Values) {
5175     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5176                                                 ValuePair.second, CmpOp1, true);
5177     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5178       return;
5179     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5180            "Expect true or false as compare result.");
5181   }
5182 
5183   // Check if the branch instruction dominates the phi node. It's a simple
5184   // dominance check, but sufficient for our needs.
5185   // Although this check is invariant in the calling loops, it's better to do it
5186   // at this late stage. Practically we do it at most once for a switch.
5187   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5188   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5189     BasicBlock *Pred = *PI;
5190     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5191       return;
5192   }
5193 
5194   if (DefaultConst == FalseConst) {
5195     // The compare yields the same result. We can replace it.
5196     CmpInst->replaceAllUsesWith(RangeCmp);
5197     ++NumTableCmpReuses;
5198   } else {
5199     // The compare yields the same result, just inverted. We can replace it.
5200     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5201         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5202         RangeCheckBranch);
5203     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5204     ++NumTableCmpReuses;
5205   }
5206 }
5207 
5208 /// If the switch is only used to initialize one or more phi nodes in a common
5209 /// successor block with different constant values, replace the switch with
5210 /// lookup tables.
5211 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5212                                 const DataLayout &DL,
5213                                 const TargetTransformInfo &TTI) {
5214   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5215 
5216   Function *Fn = SI->getParent()->getParent();
5217   // Only build lookup table when we have a target that supports it or the
5218   // attribute is not set.
5219   if (!TTI.shouldBuildLookupTables() ||
5220       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5221     return false;
5222 
5223   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5224   // split off a dense part and build a lookup table for that.
5225 
5226   // FIXME: This creates arrays of GEPs to constant strings, which means each
5227   // GEP needs a runtime relocation in PIC code. We should just build one big
5228   // string and lookup indices into that.
5229 
5230   // Ignore switches with less than three cases. Lookup tables will not make
5231   // them faster, so we don't analyze them.
5232   if (SI->getNumCases() < 3)
5233     return false;
5234 
5235   // Figure out the corresponding result for each case value and phi node in the
5236   // common destination, as well as the min and max case values.
5237   assert(SI->case_begin() != SI->case_end());
5238   SwitchInst::CaseIt CI = SI->case_begin();
5239   ConstantInt *MinCaseVal = CI->getCaseValue();
5240   ConstantInt *MaxCaseVal = CI->getCaseValue();
5241 
5242   BasicBlock *CommonDest = nullptr;
5243 
5244   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5245   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5246 
5247   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5248   SmallDenseMap<PHINode *, Type *> ResultTypes;
5249   SmallVector<PHINode *, 4> PHIs;
5250 
5251   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5252     ConstantInt *CaseVal = CI->getCaseValue();
5253     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5254       MinCaseVal = CaseVal;
5255     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5256       MaxCaseVal = CaseVal;
5257 
5258     // Resulting value at phi nodes for this case value.
5259     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5260     ResultsTy Results;
5261     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5262                         Results, DL, TTI))
5263       return false;
5264 
5265     // Append the result from this case to the list for each phi.
5266     for (const auto &I : Results) {
5267       PHINode *PHI = I.first;
5268       Constant *Value = I.second;
5269       if (!ResultLists.count(PHI))
5270         PHIs.push_back(PHI);
5271       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5272     }
5273   }
5274 
5275   // Keep track of the result types.
5276   for (PHINode *PHI : PHIs) {
5277     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5278   }
5279 
5280   uint64_t NumResults = ResultLists[PHIs[0]].size();
5281   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5282   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5283   bool TableHasHoles = (NumResults < TableSize);
5284 
5285   // If the table has holes, we need a constant result for the default case
5286   // or a bitmask that fits in a register.
5287   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5288   bool HasDefaultResults =
5289       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5290                      DefaultResultsList, DL, TTI);
5291 
5292   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5293   if (NeedMask) {
5294     // As an extra penalty for the validity test we require more cases.
5295     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5296       return false;
5297     if (!DL.fitsInLegalInteger(TableSize))
5298       return false;
5299   }
5300 
5301   for (const auto &I : DefaultResultsList) {
5302     PHINode *PHI = I.first;
5303     Constant *Result = I.second;
5304     DefaultResults[PHI] = Result;
5305   }
5306 
5307   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5308     return false;
5309 
5310   // Create the BB that does the lookups.
5311   Module &Mod = *CommonDest->getParent()->getParent();
5312   BasicBlock *LookupBB = BasicBlock::Create(
5313       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5314 
5315   // Compute the table index value.
5316   Builder.SetInsertPoint(SI);
5317   Value *TableIndex;
5318   if (MinCaseVal->isNullValue())
5319     TableIndex = SI->getCondition();
5320   else
5321     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5322                                    "switch.tableidx");
5323 
5324   // Compute the maximum table size representable by the integer type we are
5325   // switching upon.
5326   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5327   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5328   assert(MaxTableSize >= TableSize &&
5329          "It is impossible for a switch to have more entries than the max "
5330          "representable value of its input integer type's size.");
5331 
5332   // If the default destination is unreachable, or if the lookup table covers
5333   // all values of the conditional variable, branch directly to the lookup table
5334   // BB. Otherwise, check that the condition is within the case range.
5335   const bool DefaultIsReachable =
5336       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5337   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5338   BranchInst *RangeCheckBranch = nullptr;
5339 
5340   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5341     Builder.CreateBr(LookupBB);
5342     // Note: We call removeProdecessor later since we need to be able to get the
5343     // PHI value for the default case in case we're using a bit mask.
5344   } else {
5345     Value *Cmp = Builder.CreateICmpULT(
5346         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5347     RangeCheckBranch =
5348         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5349   }
5350 
5351   // Populate the BB that does the lookups.
5352   Builder.SetInsertPoint(LookupBB);
5353 
5354   if (NeedMask) {
5355     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5356     // re-purposed to do the hole check, and we create a new LookupBB.
5357     BasicBlock *MaskBB = LookupBB;
5358     MaskBB->setName("switch.hole_check");
5359     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5360                                   CommonDest->getParent(), CommonDest);
5361 
5362     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5363     // unnecessary illegal types.
5364     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5365     APInt MaskInt(TableSizePowOf2, 0);
5366     APInt One(TableSizePowOf2, 1);
5367     // Build bitmask; fill in a 1 bit for every case.
5368     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5369     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5370       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5371                          .getLimitedValue();
5372       MaskInt |= One << Idx;
5373     }
5374     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5375 
5376     // Get the TableIndex'th bit of the bitmask.
5377     // If this bit is 0 (meaning hole) jump to the default destination,
5378     // else continue with table lookup.
5379     IntegerType *MapTy = TableMask->getType();
5380     Value *MaskIndex =
5381         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5382     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5383     Value *LoBit = Builder.CreateTrunc(
5384         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5385     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5386 
5387     Builder.SetInsertPoint(LookupBB);
5388     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5389   }
5390 
5391   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5392     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5393     // do not delete PHINodes here.
5394     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5395                                             /*DontDeleteUselessPHIs=*/true);
5396   }
5397 
5398   bool ReturnedEarly = false;
5399   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5400     PHINode *PHI = PHIs[I];
5401     const ResultListTy &ResultList = ResultLists[PHI];
5402 
5403     // If using a bitmask, use any value to fill the lookup table holes.
5404     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5405     StringRef FuncName = Fn->getName();
5406     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5407                             FuncName);
5408 
5409     Value *Result = Table.BuildLookup(TableIndex, Builder);
5410 
5411     // If the result is used to return immediately from the function, we want to
5412     // do that right here.
5413     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5414         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5415       Builder.CreateRet(Result);
5416       ReturnedEarly = true;
5417       break;
5418     }
5419 
5420     // Do a small peephole optimization: re-use the switch table compare if
5421     // possible.
5422     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5423       BasicBlock *PhiBlock = PHI->getParent();
5424       // Search for compare instructions which use the phi.
5425       for (auto *User : PHI->users()) {
5426         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5427       }
5428     }
5429 
5430     PHI->addIncoming(Result, LookupBB);
5431   }
5432 
5433   if (!ReturnedEarly)
5434     Builder.CreateBr(CommonDest);
5435 
5436   // Remove the switch.
5437   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5438     BasicBlock *Succ = SI->getSuccessor(i);
5439 
5440     if (Succ == SI->getDefaultDest())
5441       continue;
5442     Succ->removePredecessor(SI->getParent());
5443   }
5444   SI->eraseFromParent();
5445 
5446   ++NumLookupTables;
5447   if (NeedMask)
5448     ++NumLookupTablesHoles;
5449   return true;
5450 }
5451 
5452 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5453   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5454   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5455   uint64_t Range = Diff + 1;
5456   uint64_t NumCases = Values.size();
5457   // 40% is the default density for building a jump table in optsize/minsize mode.
5458   uint64_t MinDensity = 40;
5459 
5460   return NumCases * 100 >= Range * MinDensity;
5461 }
5462 
5463 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5464 /// of cases.
5465 ///
5466 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5467 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5468 ///
5469 /// This converts a sparse switch into a dense switch which allows better
5470 /// lowering and could also allow transforming into a lookup table.
5471 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5472                               const DataLayout &DL,
5473                               const TargetTransformInfo &TTI) {
5474   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5475   if (CondTy->getIntegerBitWidth() > 64 ||
5476       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5477     return false;
5478   // Only bother with this optimization if there are more than 3 switch cases;
5479   // SDAG will only bother creating jump tables for 4 or more cases.
5480   if (SI->getNumCases() < 4)
5481     return false;
5482 
5483   // This transform is agnostic to the signedness of the input or case values. We
5484   // can treat the case values as signed or unsigned. We can optimize more common
5485   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5486   // as signed.
5487   SmallVector<int64_t,4> Values;
5488   for (auto &C : SI->cases())
5489     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5490   std::sort(Values.begin(), Values.end());
5491 
5492   // If the switch is already dense, there's nothing useful to do here.
5493   if (isSwitchDense(Values))
5494     return false;
5495 
5496   // First, transform the values such that they start at zero and ascend.
5497   int64_t Base = Values[0];
5498   for (auto &V : Values)
5499     V -= (uint64_t)(Base);
5500 
5501   // Now we have signed numbers that have been shifted so that, given enough
5502   // precision, there are no negative values. Since the rest of the transform
5503   // is bitwise only, we switch now to an unsigned representation.
5504   uint64_t GCD = 0;
5505   for (auto &V : Values)
5506     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5507 
5508   // This transform can be done speculatively because it is so cheap - it results
5509   // in a single rotate operation being inserted. This can only happen if the
5510   // factor extracted is a power of 2.
5511   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5512   // inverse of GCD and then perform this transform.
5513   // FIXME: It's possible that optimizing a switch on powers of two might also
5514   // be beneficial - flag values are often powers of two and we could use a CLZ
5515   // as the key function.
5516   if (GCD <= 1 || !isPowerOf2_64(GCD))
5517     // No common divisor found or too expensive to compute key function.
5518     return false;
5519 
5520   unsigned Shift = Log2_64(GCD);
5521   for (auto &V : Values)
5522     V = (int64_t)((uint64_t)V >> Shift);
5523 
5524   if (!isSwitchDense(Values))
5525     // Transform didn't create a dense switch.
5526     return false;
5527 
5528   // The obvious transform is to shift the switch condition right and emit a
5529   // check that the condition actually cleanly divided by GCD, i.e.
5530   //   C & (1 << Shift - 1) == 0
5531   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5532   //
5533   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5534   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5535   // are nonzero then the switch condition will be very large and will hit the
5536   // default case.
5537 
5538   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5539   Builder.SetInsertPoint(SI);
5540   auto *ShiftC = ConstantInt::get(Ty, Shift);
5541   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5542   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5543   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5544   auto *Rot = Builder.CreateOr(LShr, Shl);
5545   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5546 
5547   for (auto Case : SI->cases()) {
5548     auto *Orig = Case.getCaseValue();
5549     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5550     Case.setValue(
5551         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5552   }
5553   return true;
5554 }
5555 
5556 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5557   BasicBlock *BB = SI->getParent();
5558 
5559   if (isValueEqualityComparison(SI)) {
5560     // If we only have one predecessor, and if it is a branch on this value,
5561     // see if that predecessor totally determines the outcome of this switch.
5562     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5563       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5564         return simplifyCFG(BB, TTI, Options) | true;
5565 
5566     Value *Cond = SI->getCondition();
5567     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5568       if (SimplifySwitchOnSelect(SI, Select))
5569         return simplifyCFG(BB, TTI, Options) | true;
5570 
5571     // If the block only contains the switch, see if we can fold the block
5572     // away into any preds.
5573     BasicBlock::iterator BBI = BB->begin();
5574     // Ignore dbg intrinsics.
5575     while (isa<DbgInfoIntrinsic>(BBI))
5576       ++BBI;
5577     if (SI == &*BBI)
5578       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5579         return simplifyCFG(BB, TTI, Options) | true;
5580   }
5581 
5582   // Try to transform the switch into an icmp and a branch.
5583   if (TurnSwitchRangeIntoICmp(SI, Builder))
5584     return simplifyCFG(BB, TTI, Options) | true;
5585 
5586   // Remove unreachable cases.
5587   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5588     return simplifyCFG(BB, TTI, Options) | true;
5589 
5590   if (switchToSelect(SI, Builder, DL, TTI))
5591     return simplifyCFG(BB, TTI, Options) | true;
5592 
5593   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5594     return simplifyCFG(BB, TTI, Options) | true;
5595 
5596   // The conversion from switch to lookup tables results in difficult-to-analyze
5597   // code and makes pruning branches much harder. This is a problem if the
5598   // switch expression itself can still be restricted as a result of inlining or
5599   // CVP. Therefore, only apply this transformation during late stages of the
5600   // optimisation pipeline.
5601   if (Options.ConvertSwitchToLookupTable &&
5602       SwitchToLookupTable(SI, Builder, DL, TTI))
5603     return simplifyCFG(BB, TTI, Options) | true;
5604 
5605   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5606     return simplifyCFG(BB, TTI, Options) | true;
5607 
5608   return false;
5609 }
5610 
5611 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5612   BasicBlock *BB = IBI->getParent();
5613   bool Changed = false;
5614 
5615   // Eliminate redundant destinations.
5616   SmallPtrSet<Value *, 8> Succs;
5617   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5618     BasicBlock *Dest = IBI->getDestination(i);
5619     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5620       Dest->removePredecessor(BB);
5621       IBI->removeDestination(i);
5622       --i;
5623       --e;
5624       Changed = true;
5625     }
5626   }
5627 
5628   if (IBI->getNumDestinations() == 0) {
5629     // If the indirectbr has no successors, change it to unreachable.
5630     new UnreachableInst(IBI->getContext(), IBI);
5631     EraseTerminatorInstAndDCECond(IBI);
5632     return true;
5633   }
5634 
5635   if (IBI->getNumDestinations() == 1) {
5636     // If the indirectbr has one successor, change it to a direct branch.
5637     BranchInst::Create(IBI->getDestination(0), IBI);
5638     EraseTerminatorInstAndDCECond(IBI);
5639     return true;
5640   }
5641 
5642   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5643     if (SimplifyIndirectBrOnSelect(IBI, SI))
5644       return simplifyCFG(BB, TTI, Options) | true;
5645   }
5646   return Changed;
5647 }
5648 
5649 /// Given an block with only a single landing pad and a unconditional branch
5650 /// try to find another basic block which this one can be merged with.  This
5651 /// handles cases where we have multiple invokes with unique landing pads, but
5652 /// a shared handler.
5653 ///
5654 /// We specifically choose to not worry about merging non-empty blocks
5655 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5656 /// practice, the optimizer produces empty landing pad blocks quite frequently
5657 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5658 /// sinking in this file)
5659 ///
5660 /// This is primarily a code size optimization.  We need to avoid performing
5661 /// any transform which might inhibit optimization (such as our ability to
5662 /// specialize a particular handler via tail commoning).  We do this by not
5663 /// merging any blocks which require us to introduce a phi.  Since the same
5664 /// values are flowing through both blocks, we don't loose any ability to
5665 /// specialize.  If anything, we make such specialization more likely.
5666 ///
5667 /// TODO - This transformation could remove entries from a phi in the target
5668 /// block when the inputs in the phi are the same for the two blocks being
5669 /// merged.  In some cases, this could result in removal of the PHI entirely.
5670 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5671                                  BasicBlock *BB) {
5672   auto Succ = BB->getUniqueSuccessor();
5673   assert(Succ);
5674   // If there's a phi in the successor block, we'd likely have to introduce
5675   // a phi into the merged landing pad block.
5676   if (isa<PHINode>(*Succ->begin()))
5677     return false;
5678 
5679   for (BasicBlock *OtherPred : predecessors(Succ)) {
5680     if (BB == OtherPred)
5681       continue;
5682     BasicBlock::iterator I = OtherPred->begin();
5683     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5684     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5685       continue;
5686     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5687       ;
5688     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5689     if (!BI2 || !BI2->isIdenticalTo(BI))
5690       continue;
5691 
5692     // We've found an identical block.  Update our predecessors to take that
5693     // path instead and make ourselves dead.
5694     SmallSet<BasicBlock *, 16> Preds;
5695     Preds.insert(pred_begin(BB), pred_end(BB));
5696     for (BasicBlock *Pred : Preds) {
5697       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5698       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5699              "unexpected successor");
5700       II->setUnwindDest(OtherPred);
5701     }
5702 
5703     // The debug info in OtherPred doesn't cover the merged control flow that
5704     // used to go through BB.  We need to delete it or update it.
5705     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5706       Instruction &Inst = *I;
5707       I++;
5708       if (isa<DbgInfoIntrinsic>(Inst))
5709         Inst.eraseFromParent();
5710     }
5711 
5712     SmallSet<BasicBlock *, 16> Succs;
5713     Succs.insert(succ_begin(BB), succ_end(BB));
5714     for (BasicBlock *Succ : Succs) {
5715       Succ->removePredecessor(BB);
5716     }
5717 
5718     IRBuilder<> Builder(BI);
5719     Builder.CreateUnreachable();
5720     BI->eraseFromParent();
5721     return true;
5722   }
5723   return false;
5724 }
5725 
5726 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5727                                           IRBuilder<> &Builder) {
5728   BasicBlock *BB = BI->getParent();
5729   BasicBlock *Succ = BI->getSuccessor(0);
5730 
5731   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5732     return true;
5733 
5734   // If the Terminator is the only non-phi instruction, simplify the block.
5735   // If LoopHeader is provided, check if the block or its successor is a loop
5736   // header. (This is for early invocations before loop simplify and
5737   // vectorization to keep canonical loop forms for nested loops. These blocks
5738   // can be eliminated when the pass is invoked later in the back-end.)
5739   bool NeedCanonicalLoop =
5740       Options.NeedCanonicalLoop &&
5741       (LoopHeaders && (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5742   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5743   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5744       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5745     return true;
5746 
5747   // If the only instruction in the block is a seteq/setne comparison against a
5748   // constant, try to simplify the block.
5749   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5750     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5751       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5752         ;
5753       if (I->isTerminator() &&
5754           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, Options))
5755         return true;
5756     }
5757 
5758   // See if we can merge an empty landing pad block with another which is
5759   // equivalent.
5760   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5761     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5762       ;
5763     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5764       return true;
5765   }
5766 
5767   // If this basic block is ONLY a compare and a branch, and if a predecessor
5768   // branches to us and our successor, fold the comparison into the
5769   // predecessor and use logical operations to update the incoming value
5770   // for PHI nodes in common successor.
5771   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5772     return simplifyCFG(BB, TTI, Options) | true;
5773   return false;
5774 }
5775 
5776 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5777   BasicBlock *PredPred = nullptr;
5778   for (auto *P : predecessors(BB)) {
5779     BasicBlock *PPred = P->getSinglePredecessor();
5780     if (!PPred || (PredPred && PredPred != PPred))
5781       return nullptr;
5782     PredPred = PPred;
5783   }
5784   return PredPred;
5785 }
5786 
5787 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5788   BasicBlock *BB = BI->getParent();
5789 
5790   // Conditional branch
5791   if (isValueEqualityComparison(BI)) {
5792     // If we only have one predecessor, and if it is a branch on this value,
5793     // see if that predecessor totally determines the outcome of this
5794     // switch.
5795     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5796       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5797         return simplifyCFG(BB, TTI, Options) | true;
5798 
5799     // This block must be empty, except for the setcond inst, if it exists.
5800     // Ignore dbg intrinsics.
5801     BasicBlock::iterator I = BB->begin();
5802     // Ignore dbg intrinsics.
5803     while (isa<DbgInfoIntrinsic>(I))
5804       ++I;
5805     if (&*I == BI) {
5806       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5807         return simplifyCFG(BB, TTI, Options) | true;
5808     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5809       ++I;
5810       // Ignore dbg intrinsics.
5811       while (isa<DbgInfoIntrinsic>(I))
5812         ++I;
5813       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5814         return simplifyCFG(BB, TTI, Options) | true;
5815     }
5816   }
5817 
5818   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5819   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5820     return true;
5821 
5822   // If this basic block has a single dominating predecessor block and the
5823   // dominating block's condition implies BI's condition, we know the direction
5824   // of the BI branch.
5825   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5826     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5827     if (PBI && PBI->isConditional() &&
5828         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5829       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5830       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5831       Optional<bool> Implication = isImpliedCondition(
5832           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5833       if (Implication) {
5834         // Turn this into a branch on constant.
5835         auto *OldCond = BI->getCondition();
5836         ConstantInt *CI = *Implication
5837                               ? ConstantInt::getTrue(BB->getContext())
5838                               : ConstantInt::getFalse(BB->getContext());
5839         BI->setCondition(CI);
5840         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5841         return simplifyCFG(BB, TTI, Options) | true;
5842       }
5843     }
5844   }
5845 
5846   // If this basic block is ONLY a compare and a branch, and if a predecessor
5847   // branches to us and one of our successors, fold the comparison into the
5848   // predecessor and use logical operations to pick the right destination.
5849   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5850     return simplifyCFG(BB, TTI, Options) | true;
5851 
5852   // We have a conditional branch to two blocks that are only reachable
5853   // from BI.  We know that the condbr dominates the two blocks, so see if
5854   // there is any identical code in the "then" and "else" blocks.  If so, we
5855   // can hoist it up to the branching block.
5856   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5857     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5858       if (HoistThenElseCodeToIf(BI, TTI))
5859         return simplifyCFG(BB, TTI, Options) | true;
5860     } else {
5861       // If Successor #1 has multiple preds, we may be able to conditionally
5862       // execute Successor #0 if it branches to Successor #1.
5863       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5864       if (Succ0TI->getNumSuccessors() == 1 &&
5865           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5866         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5867           return simplifyCFG(BB, TTI, Options) | true;
5868     }
5869   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5870     // If Successor #0 has multiple preds, we may be able to conditionally
5871     // execute Successor #1 if it branches to Successor #0.
5872     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5873     if (Succ1TI->getNumSuccessors() == 1 &&
5874         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5875       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5876         return simplifyCFG(BB, TTI, Options) | true;
5877   }
5878 
5879   // If this is a branch on a phi node in the current block, thread control
5880   // through this block if any PHI node entries are constants.
5881   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5882     if (PN->getParent() == BI->getParent())
5883       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5884         return simplifyCFG(BB, TTI, Options) | true;
5885 
5886   // Scan predecessor blocks for conditional branches.
5887   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5888     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5889       if (PBI != BI && PBI->isConditional())
5890         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5891           return simplifyCFG(BB, TTI, Options) | true;
5892 
5893   // Look for diamond patterns.
5894   if (MergeCondStores)
5895     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5896       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5897         if (PBI != BI && PBI->isConditional())
5898           if (mergeConditionalStores(PBI, BI, DL))
5899             return simplifyCFG(BB, TTI, Options) | true;
5900 
5901   return false;
5902 }
5903 
5904 /// Check if passing a value to an instruction will cause undefined behavior.
5905 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5906   Constant *C = dyn_cast<Constant>(V);
5907   if (!C)
5908     return false;
5909 
5910   if (I->use_empty())
5911     return false;
5912 
5913   if (C->isNullValue() || isa<UndefValue>(C)) {
5914     // Only look at the first use, avoid hurting compile time with long uselists
5915     User *Use = *I->user_begin();
5916 
5917     // Now make sure that there are no instructions in between that can alter
5918     // control flow (eg. calls)
5919     for (BasicBlock::iterator
5920              i = ++BasicBlock::iterator(I),
5921              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5922          i != UI; ++i)
5923       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5924         return false;
5925 
5926     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5927     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5928       if (GEP->getPointerOperand() == I)
5929         return passingValueIsAlwaysUndefined(V, GEP);
5930 
5931     // Look through bitcasts.
5932     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5933       return passingValueIsAlwaysUndefined(V, BC);
5934 
5935     // Load from null is undefined.
5936     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5937       if (!LI->isVolatile())
5938         return LI->getPointerAddressSpace() == 0;
5939 
5940     // Store to null is undefined.
5941     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5942       if (!SI->isVolatile())
5943         return SI->getPointerAddressSpace() == 0 &&
5944                SI->getPointerOperand() == I;
5945 
5946     // A call to null is undefined.
5947     if (auto CS = CallSite(Use))
5948       return CS.getCalledValue() == I;
5949   }
5950   return false;
5951 }
5952 
5953 /// If BB has an incoming value that will always trigger undefined behavior
5954 /// (eg. null pointer dereference), remove the branch leading here.
5955 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5956   for (BasicBlock::iterator i = BB->begin();
5957        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5958     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5959       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5960         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5961         IRBuilder<> Builder(T);
5962         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5963           BB->removePredecessor(PHI->getIncomingBlock(i));
5964           // Turn uncoditional branches into unreachables and remove the dead
5965           // destination from conditional branches.
5966           if (BI->isUnconditional())
5967             Builder.CreateUnreachable();
5968           else
5969             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5970                                                        : BI->getSuccessor(0));
5971           BI->eraseFromParent();
5972           return true;
5973         }
5974         // TODO: SwitchInst.
5975       }
5976 
5977   return false;
5978 }
5979 
5980 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5981   bool Changed = false;
5982 
5983   assert(BB && BB->getParent() && "Block not embedded in function!");
5984   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5985 
5986   // Remove basic blocks that have no predecessors (except the entry block)...
5987   // or that just have themself as a predecessor.  These are unreachable.
5988   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5989       BB->getSinglePredecessor() == BB) {
5990     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5991     DeleteDeadBlock(BB);
5992     return true;
5993   }
5994 
5995   // Check to see if we can constant propagate this terminator instruction
5996   // away...
5997   Changed |= ConstantFoldTerminator(BB, true);
5998 
5999   // Check for and eliminate duplicate PHI nodes in this block.
6000   Changed |= EliminateDuplicatePHINodes(BB);
6001 
6002   // Check for and remove branches that will always cause undefined behavior.
6003   Changed |= removeUndefIntroducingPredecessor(BB);
6004 
6005   // Merge basic blocks into their predecessor if there is only one distinct
6006   // pred, and if there is only one distinct successor of the predecessor, and
6007   // if there are no PHI nodes.
6008   if (MergeBlockIntoPredecessor(BB))
6009     return true;
6010 
6011   IRBuilder<> Builder(BB);
6012 
6013   // If there is a trivial two-entry PHI node in this basic block, and we can
6014   // eliminate it, do so now.
6015   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6016     if (PN->getNumIncomingValues() == 2)
6017       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6018 
6019   Builder.SetInsertPoint(BB->getTerminator());
6020   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6021     if (BI->isUnconditional()) {
6022       if (SimplifyUncondBranch(BI, Builder))
6023         return true;
6024     } else {
6025       if (SimplifyCondBranch(BI, Builder))
6026         return true;
6027     }
6028   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6029     if (SimplifyReturn(RI, Builder))
6030       return true;
6031   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6032     if (SimplifyResume(RI, Builder))
6033       return true;
6034   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6035     if (SimplifyCleanupReturn(RI))
6036       return true;
6037   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6038     if (SimplifySwitch(SI, Builder))
6039       return true;
6040   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6041     if (SimplifyUnreachable(UI))
6042       return true;
6043   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6044     if (SimplifyIndirectBr(IBI))
6045       return true;
6046   }
6047 
6048   return Changed;
6049 }
6050 
6051 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6052                        const SimplifyCFGOptions &Options,
6053                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6054   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6055                         Options)
6056       .run(BB);
6057 }
6058