1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
155                   cl::desc("Max size of a block which is still considered "
156                            "small enough to thread through"));
157 
158 // Two is chosen to allow one negation and a logical combine.
159 static cl::opt<unsigned>
160     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
161                         cl::init(2),
162                         cl::desc("Maximum cost of combining conditions when "
163                                  "folding branches"));
164 
165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
166 STATISTIC(NumLinearMaps,
167           "Number of switch instructions turned into linear mapping");
168 STATISTIC(NumLookupTables,
169           "Number of switch instructions turned into lookup tables");
170 STATISTIC(
171     NumLookupTablesHoles,
172     "Number of switch instructions turned into lookup tables (holes checked)");
173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
174 STATISTIC(NumFoldValueComparisonIntoPredecessors,
175           "Number of value comparisons folded into predecessor basic blocks");
176 STATISTIC(NumFoldBranchToCommonDest,
177           "Number of branches folded into predecessor basic block");
178 STATISTIC(
179     NumHoistCommonCode,
180     "Number of common instruction 'blocks' hoisted up to the begin block");
181 STATISTIC(NumHoistCommonInstrs,
182           "Number of common instructions hoisted up to the begin block");
183 STATISTIC(NumSinkCommonCode,
184           "Number of common instruction 'blocks' sunk down to the end block");
185 STATISTIC(NumSinkCommonInstrs,
186           "Number of common instructions sunk down to the end block");
187 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
188 STATISTIC(NumInvokes,
189           "Number of invokes with empty resume blocks simplified into calls");
190 
191 namespace {
192 
193 // The first field contains the value that the switch produces when a certain
194 // case group is selected, and the second field is a vector containing the
195 // cases composing the case group.
196 using SwitchCaseResultVectorTy =
197     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
198 
199 // The first field contains the phi node that generates a result of the switch
200 // and the second field contains the value generated for a certain case in the
201 // switch for that PHI.
202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
203 
204 /// ValueEqualityComparisonCase - Represents a case of a switch.
205 struct ValueEqualityComparisonCase {
206   ConstantInt *Value;
207   BasicBlock *Dest;
208 
209   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
210       : Value(Value), Dest(Dest) {}
211 
212   bool operator<(ValueEqualityComparisonCase RHS) const {
213     // Comparing pointers is ok as we only rely on the order for uniquing.
214     return Value < RHS.Value;
215   }
216 
217   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
218 };
219 
220 class SimplifyCFGOpt {
221   const TargetTransformInfo &TTI;
222   DomTreeUpdater *DTU;
223   const DataLayout &DL;
224   ArrayRef<WeakVH> LoopHeaders;
225   const SimplifyCFGOptions &Options;
226   bool Resimplify;
227 
228   Value *isValueEqualityComparison(Instruction *TI);
229   BasicBlock *GetValueEqualityComparisonCases(
230       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
231   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
232                                                      BasicBlock *Pred,
233                                                      IRBuilder<> &Builder);
234   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
235                                                     Instruction *PTI,
236                                                     IRBuilder<> &Builder);
237   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
238                                            IRBuilder<> &Builder);
239 
240   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
241   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
242   bool simplifySingleResume(ResumeInst *RI);
243   bool simplifyCommonResume(ResumeInst *RI);
244   bool simplifyCleanupReturn(CleanupReturnInst *RI);
245   bool simplifyUnreachable(UnreachableInst *UI);
246   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
247   bool simplifyIndirectBr(IndirectBrInst *IBI);
248   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
249   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
250   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
252 
253   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
254                                              IRBuilder<> &Builder);
255 
256   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
257   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
258                               const TargetTransformInfo &TTI);
259   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
260                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
261                                   uint32_t TrueWeight, uint32_t FalseWeight);
262   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
263                                  const DataLayout &DL);
264   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
265   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
266   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
267 
268 public:
269   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
270                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
271                  const SimplifyCFGOptions &Opts)
272       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
273     assert((!DTU || !DTU->hasPostDomTree()) &&
274            "SimplifyCFG is not yet capable of maintaining validity of a "
275            "PostDomTree, so don't ask for it.");
276   }
277 
278   bool simplifyOnce(BasicBlock *BB);
279   bool simplifyOnceImpl(BasicBlock *BB);
280   bool run(BasicBlock *BB);
281 
282   // Helper to set Resimplify and return change indication.
283   bool requestResimplify() {
284     Resimplify = true;
285     return true;
286   }
287 };
288 
289 } // end anonymous namespace
290 
291 /// Return true if it is safe to merge these two
292 /// terminator instructions together.
293 static bool
294 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
295                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
296   if (SI1 == SI2)
297     return false; // Can't merge with self!
298 
299   // It is not safe to merge these two switch instructions if they have a common
300   // successor, and if that successor has a PHI node, and if *that* PHI node has
301   // conflicting incoming values from the two switch blocks.
302   BasicBlock *SI1BB = SI1->getParent();
303   BasicBlock *SI2BB = SI2->getParent();
304 
305   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
306   bool Fail = false;
307   for (BasicBlock *Succ : successors(SI2BB))
308     if (SI1Succs.count(Succ))
309       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
310         PHINode *PN = cast<PHINode>(BBI);
311         if (PN->getIncomingValueForBlock(SI1BB) !=
312             PN->getIncomingValueForBlock(SI2BB)) {
313           if (FailBlocks)
314             FailBlocks->insert(Succ);
315           Fail = true;
316         }
317       }
318 
319   return !Fail;
320 }
321 
322 /// Update PHI nodes in Succ to indicate that there will now be entries in it
323 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
324 /// will be the same as those coming in from ExistPred, an existing predecessor
325 /// of Succ.
326 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
327                                   BasicBlock *ExistPred,
328                                   MemorySSAUpdater *MSSAU = nullptr) {
329   for (PHINode &PN : Succ->phis())
330     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
331   if (MSSAU)
332     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
333       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
334 }
335 
336 /// Compute an abstract "cost" of speculating the given instruction,
337 /// which is assumed to be safe to speculate. TCC_Free means cheap,
338 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
339 /// expensive.
340 static InstructionCost computeSpeculationCost(const User *I,
341                                               const TargetTransformInfo &TTI) {
342   assert(isSafeToSpeculativelyExecute(I) &&
343          "Instruction is not safe to speculatively execute!");
344   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
345 }
346 
347 /// If we have a merge point of an "if condition" as accepted above,
348 /// return true if the specified value dominates the block.  We
349 /// don't handle the true generality of domination here, just a special case
350 /// which works well enough for us.
351 ///
352 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
353 /// see if V (which must be an instruction) and its recursive operands
354 /// that do not dominate BB have a combined cost lower than Budget and
355 /// are non-trapping.  If both are true, the instruction is inserted into the
356 /// set and true is returned.
357 ///
358 /// The cost for most non-trapping instructions is defined as 1 except for
359 /// Select whose cost is 2.
360 ///
361 /// After this function returns, Cost is increased by the cost of
362 /// V plus its non-dominating operands.  If that cost is greater than
363 /// Budget, false is returned and Cost is undefined.
364 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
365                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
366                                 InstructionCost &Cost,
367                                 InstructionCost Budget,
368                                 const TargetTransformInfo &TTI,
369                                 unsigned Depth = 0) {
370   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
371   // so limit the recursion depth.
372   // TODO: While this recursion limit does prevent pathological behavior, it
373   // would be better to track visited instructions to avoid cycles.
374   if (Depth == MaxSpeculationDepth)
375     return false;
376 
377   Instruction *I = dyn_cast<Instruction>(V);
378   if (!I) {
379     // Non-instructions all dominate instructions, but not all constantexprs
380     // can be executed unconditionally.
381     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
382       if (C->canTrap())
383         return false;
384     return true;
385   }
386   BasicBlock *PBB = I->getParent();
387 
388   // We don't want to allow weird loops that might have the "if condition" in
389   // the bottom of this block.
390   if (PBB == BB)
391     return false;
392 
393   // If this instruction is defined in a block that contains an unconditional
394   // branch to BB, then it must be in the 'conditional' part of the "if
395   // statement".  If not, it definitely dominates the region.
396   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
397   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
398     return true;
399 
400   // If we have seen this instruction before, don't count it again.
401   if (AggressiveInsts.count(I))
402     return true;
403 
404   // Okay, it looks like the instruction IS in the "condition".  Check to
405   // see if it's a cheap instruction to unconditionally compute, and if it
406   // only uses stuff defined outside of the condition.  If so, hoist it out.
407   if (!isSafeToSpeculativelyExecute(I))
408     return false;
409 
410   Cost += computeSpeculationCost(I, TTI);
411 
412   // Allow exactly one instruction to be speculated regardless of its cost
413   // (as long as it is safe to do so).
414   // This is intended to flatten the CFG even if the instruction is a division
415   // or other expensive operation. The speculation of an expensive instruction
416   // is expected to be undone in CodeGenPrepare if the speculation has not
417   // enabled further IR optimizations.
418   if (Cost > Budget &&
419       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
420        !Cost.isValid()))
421     return false;
422 
423   // Okay, we can only really hoist these out if their operands do
424   // not take us over the cost threshold.
425   for (Use &Op : I->operands())
426     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
427                              Depth + 1))
428       return false;
429   // Okay, it's safe to do this!  Remember this instruction.
430   AggressiveInsts.insert(I);
431   return true;
432 }
433 
434 /// Extract ConstantInt from value, looking through IntToPtr
435 /// and PointerNullValue. Return NULL if value is not a constant int.
436 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
437   // Normal constant int.
438   ConstantInt *CI = dyn_cast<ConstantInt>(V);
439   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
440     return CI;
441 
442   // This is some kind of pointer constant. Turn it into a pointer-sized
443   // ConstantInt if possible.
444   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
445 
446   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
447   if (isa<ConstantPointerNull>(V))
448     return ConstantInt::get(PtrTy, 0);
449 
450   // IntToPtr const int.
451   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
452     if (CE->getOpcode() == Instruction::IntToPtr)
453       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
454         // The constant is very likely to have the right type already.
455         if (CI->getType() == PtrTy)
456           return CI;
457         else
458           return cast<ConstantInt>(
459               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
460       }
461   return nullptr;
462 }
463 
464 namespace {
465 
466 /// Given a chain of or (||) or and (&&) comparison of a value against a
467 /// constant, this will try to recover the information required for a switch
468 /// structure.
469 /// It will depth-first traverse the chain of comparison, seeking for patterns
470 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
471 /// representing the different cases for the switch.
472 /// Note that if the chain is composed of '||' it will build the set of elements
473 /// that matches the comparisons (i.e. any of this value validate the chain)
474 /// while for a chain of '&&' it will build the set elements that make the test
475 /// fail.
476 struct ConstantComparesGatherer {
477   const DataLayout &DL;
478 
479   /// Value found for the switch comparison
480   Value *CompValue = nullptr;
481 
482   /// Extra clause to be checked before the switch
483   Value *Extra = nullptr;
484 
485   /// Set of integers to match in switch
486   SmallVector<ConstantInt *, 8> Vals;
487 
488   /// Number of comparisons matched in the and/or chain
489   unsigned UsedICmps = 0;
490 
491   /// Construct and compute the result for the comparison instruction Cond
492   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
493     gather(Cond);
494   }
495 
496   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
497   ConstantComparesGatherer &
498   operator=(const ConstantComparesGatherer &) = delete;
499 
500 private:
501   /// Try to set the current value used for the comparison, it succeeds only if
502   /// it wasn't set before or if the new value is the same as the old one
503   bool setValueOnce(Value *NewVal) {
504     if (CompValue && CompValue != NewVal)
505       return false;
506     CompValue = NewVal;
507     return (CompValue != nullptr);
508   }
509 
510   /// Try to match Instruction "I" as a comparison against a constant and
511   /// populates the array Vals with the set of values that match (or do not
512   /// match depending on isEQ).
513   /// Return false on failure. On success, the Value the comparison matched
514   /// against is placed in CompValue.
515   /// If CompValue is already set, the function is expected to fail if a match
516   /// is found but the value compared to is different.
517   bool matchInstruction(Instruction *I, bool isEQ) {
518     // If this is an icmp against a constant, handle this as one of the cases.
519     ICmpInst *ICI;
520     ConstantInt *C;
521     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
522           (C = GetConstantInt(I->getOperand(1), DL)))) {
523       return false;
524     }
525 
526     Value *RHSVal;
527     const APInt *RHSC;
528 
529     // Pattern match a special case
530     // (x & ~2^z) == y --> x == y || x == y|2^z
531     // This undoes a transformation done by instcombine to fuse 2 compares.
532     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
533       // It's a little bit hard to see why the following transformations are
534       // correct. Here is a CVC3 program to verify them for 64-bit values:
535 
536       /*
537          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
538          x    : BITVECTOR(64);
539          y    : BITVECTOR(64);
540          z    : BITVECTOR(64);
541          mask : BITVECTOR(64) = BVSHL(ONE, z);
542          QUERY( (y & ~mask = y) =>
543                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
544          );
545          QUERY( (y |  mask = y) =>
546                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
547          );
548       */
549 
550       // Please note that each pattern must be a dual implication (<--> or
551       // iff). One directional implication can create spurious matches. If the
552       // implication is only one-way, an unsatisfiable condition on the left
553       // side can imply a satisfiable condition on the right side. Dual
554       // implication ensures that satisfiable conditions are transformed to
555       // other satisfiable conditions and unsatisfiable conditions are
556       // transformed to other unsatisfiable conditions.
557 
558       // Here is a concrete example of a unsatisfiable condition on the left
559       // implying a satisfiable condition on the right:
560       //
561       // mask = (1 << z)
562       // (x & ~mask) == y  --> (x == y || x == (y | mask))
563       //
564       // Substituting y = 3, z = 0 yields:
565       // (x & -2) == 3 --> (x == 3 || x == 2)
566 
567       // Pattern match a special case:
568       /*
569         QUERY( (y & ~mask = y) =>
570                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
571         );
572       */
573       if (match(ICI->getOperand(0),
574                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
575         APInt Mask = ~*RHSC;
576         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
577           // If we already have a value for the switch, it has to match!
578           if (!setValueOnce(RHSVal))
579             return false;
580 
581           Vals.push_back(C);
582           Vals.push_back(
583               ConstantInt::get(C->getContext(),
584                                C->getValue() | Mask));
585           UsedICmps++;
586           return true;
587         }
588       }
589 
590       // Pattern match a special case:
591       /*
592         QUERY( (y |  mask = y) =>
593                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
594         );
595       */
596       if (match(ICI->getOperand(0),
597                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
598         APInt Mask = *RHSC;
599         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
600           // If we already have a value for the switch, it has to match!
601           if (!setValueOnce(RHSVal))
602             return false;
603 
604           Vals.push_back(C);
605           Vals.push_back(ConstantInt::get(C->getContext(),
606                                           C->getValue() & ~Mask));
607           UsedICmps++;
608           return true;
609         }
610       }
611 
612       // If we already have a value for the switch, it has to match!
613       if (!setValueOnce(ICI->getOperand(0)))
614         return false;
615 
616       UsedICmps++;
617       Vals.push_back(C);
618       return ICI->getOperand(0);
619     }
620 
621     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
622     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
623         ICI->getPredicate(), C->getValue());
624 
625     // Shift the range if the compare is fed by an add. This is the range
626     // compare idiom as emitted by instcombine.
627     Value *CandidateVal = I->getOperand(0);
628     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
629       Span = Span.subtract(*RHSC);
630       CandidateVal = RHSVal;
631     }
632 
633     // If this is an and/!= check, then we are looking to build the set of
634     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
635     // x != 0 && x != 1.
636     if (!isEQ)
637       Span = Span.inverse();
638 
639     // If there are a ton of values, we don't want to make a ginormous switch.
640     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
641       return false;
642     }
643 
644     // If we already have a value for the switch, it has to match!
645     if (!setValueOnce(CandidateVal))
646       return false;
647 
648     // Add all values from the range to the set
649     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
650       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
651 
652     UsedICmps++;
653     return true;
654   }
655 
656   /// Given a potentially 'or'd or 'and'd together collection of icmp
657   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
658   /// the value being compared, and stick the list constants into the Vals
659   /// vector.
660   /// One "Extra" case is allowed to differ from the other.
661   void gather(Value *V) {
662     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
663 
664     // Keep a stack (SmallVector for efficiency) for depth-first traversal
665     SmallVector<Value *, 8> DFT;
666     SmallPtrSet<Value *, 8> Visited;
667 
668     // Initialize
669     Visited.insert(V);
670     DFT.push_back(V);
671 
672     while (!DFT.empty()) {
673       V = DFT.pop_back_val();
674 
675       if (Instruction *I = dyn_cast<Instruction>(V)) {
676         // If it is a || (or && depending on isEQ), process the operands.
677         Value *Op0, *Op1;
678         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
679                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
680           if (Visited.insert(Op1).second)
681             DFT.push_back(Op1);
682           if (Visited.insert(Op0).second)
683             DFT.push_back(Op0);
684 
685           continue;
686         }
687 
688         // Try to match the current instruction
689         if (matchInstruction(I, isEQ))
690           // Match succeed, continue the loop
691           continue;
692       }
693 
694       // One element of the sequence of || (or &&) could not be match as a
695       // comparison against the same value as the others.
696       // We allow only one "Extra" case to be checked before the switch
697       if (!Extra) {
698         Extra = V;
699         continue;
700       }
701       // Failed to parse a proper sequence, abort now
702       CompValue = nullptr;
703       break;
704     }
705   }
706 };
707 
708 } // end anonymous namespace
709 
710 static void EraseTerminatorAndDCECond(Instruction *TI,
711                                       MemorySSAUpdater *MSSAU = nullptr) {
712   Instruction *Cond = nullptr;
713   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
714     Cond = dyn_cast<Instruction>(SI->getCondition());
715   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
716     if (BI->isConditional())
717       Cond = dyn_cast<Instruction>(BI->getCondition());
718   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
719     Cond = dyn_cast<Instruction>(IBI->getAddress());
720   }
721 
722   TI->eraseFromParent();
723   if (Cond)
724     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
725 }
726 
727 /// Return true if the specified terminator checks
728 /// to see if a value is equal to constant integer value.
729 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
730   Value *CV = nullptr;
731   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
732     // Do not permit merging of large switch instructions into their
733     // predecessors unless there is only one predecessor.
734     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
735       CV = SI->getCondition();
736   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
737     if (BI->isConditional() && BI->getCondition()->hasOneUse())
738       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
739         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
740           CV = ICI->getOperand(0);
741       }
742 
743   // Unwrap any lossless ptrtoint cast.
744   if (CV) {
745     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
746       Value *Ptr = PTII->getPointerOperand();
747       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
748         CV = Ptr;
749     }
750   }
751   return CV;
752 }
753 
754 /// Given a value comparison instruction,
755 /// decode all of the 'cases' that it represents and return the 'default' block.
756 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
757     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
758   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
759     Cases.reserve(SI->getNumCases());
760     for (auto Case : SI->cases())
761       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
762                                                   Case.getCaseSuccessor()));
763     return SI->getDefaultDest();
764   }
765 
766   BranchInst *BI = cast<BranchInst>(TI);
767   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
768   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
769   Cases.push_back(ValueEqualityComparisonCase(
770       GetConstantInt(ICI->getOperand(1), DL), Succ));
771   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
772 }
773 
774 /// Given a vector of bb/value pairs, remove any entries
775 /// in the list that match the specified block.
776 static void
777 EliminateBlockCases(BasicBlock *BB,
778                     std::vector<ValueEqualityComparisonCase> &Cases) {
779   llvm::erase_value(Cases, BB);
780 }
781 
782 /// Return true if there are any keys in C1 that exist in C2 as well.
783 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
784                           std::vector<ValueEqualityComparisonCase> &C2) {
785   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
786 
787   // Make V1 be smaller than V2.
788   if (V1->size() > V2->size())
789     std::swap(V1, V2);
790 
791   if (V1->empty())
792     return false;
793   if (V1->size() == 1) {
794     // Just scan V2.
795     ConstantInt *TheVal = (*V1)[0].Value;
796     for (unsigned i = 0, e = V2->size(); i != e; ++i)
797       if (TheVal == (*V2)[i].Value)
798         return true;
799   }
800 
801   // Otherwise, just sort both lists and compare element by element.
802   array_pod_sort(V1->begin(), V1->end());
803   array_pod_sort(V2->begin(), V2->end());
804   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
805   while (i1 != e1 && i2 != e2) {
806     if ((*V1)[i1].Value == (*V2)[i2].Value)
807       return true;
808     if ((*V1)[i1].Value < (*V2)[i2].Value)
809       ++i1;
810     else
811       ++i2;
812   }
813   return false;
814 }
815 
816 // Set branch weights on SwitchInst. This sets the metadata if there is at
817 // least one non-zero weight.
818 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
819   // Check that there is at least one non-zero weight. Otherwise, pass
820   // nullptr to setMetadata which will erase the existing metadata.
821   MDNode *N = nullptr;
822   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
823     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
824   SI->setMetadata(LLVMContext::MD_prof, N);
825 }
826 
827 // Similar to the above, but for branch and select instructions that take
828 // exactly 2 weights.
829 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
830                              uint32_t FalseWeight) {
831   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
832   // Check that there is at least one non-zero weight. Otherwise, pass
833   // nullptr to setMetadata which will erase the existing metadata.
834   MDNode *N = nullptr;
835   if (TrueWeight || FalseWeight)
836     N = MDBuilder(I->getParent()->getContext())
837             .createBranchWeights(TrueWeight, FalseWeight);
838   I->setMetadata(LLVMContext::MD_prof, N);
839 }
840 
841 /// If TI is known to be a terminator instruction and its block is known to
842 /// only have a single predecessor block, check to see if that predecessor is
843 /// also a value comparison with the same value, and if that comparison
844 /// determines the outcome of this comparison. If so, simplify TI. This does a
845 /// very limited form of jump threading.
846 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
847     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
848   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
849   if (!PredVal)
850     return false; // Not a value comparison in predecessor.
851 
852   Value *ThisVal = isValueEqualityComparison(TI);
853   assert(ThisVal && "This isn't a value comparison!!");
854   if (ThisVal != PredVal)
855     return false; // Different predicates.
856 
857   // TODO: Preserve branch weight metadata, similarly to how
858   // FoldValueComparisonIntoPredecessors preserves it.
859 
860   // Find out information about when control will move from Pred to TI's block.
861   std::vector<ValueEqualityComparisonCase> PredCases;
862   BasicBlock *PredDef =
863       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
864   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
865 
866   // Find information about how control leaves this block.
867   std::vector<ValueEqualityComparisonCase> ThisCases;
868   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
869   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
870 
871   // If TI's block is the default block from Pred's comparison, potentially
872   // simplify TI based on this knowledge.
873   if (PredDef == TI->getParent()) {
874     // If we are here, we know that the value is none of those cases listed in
875     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
876     // can simplify TI.
877     if (!ValuesOverlap(PredCases, ThisCases))
878       return false;
879 
880     if (isa<BranchInst>(TI)) {
881       // Okay, one of the successors of this condbr is dead.  Convert it to a
882       // uncond br.
883       assert(ThisCases.size() == 1 && "Branch can only have one case!");
884       // Insert the new branch.
885       Instruction *NI = Builder.CreateBr(ThisDef);
886       (void)NI;
887 
888       // Remove PHI node entries for the dead edge.
889       ThisCases[0].Dest->removePredecessor(PredDef);
890 
891       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
892                         << "Through successor TI: " << *TI << "Leaving: " << *NI
893                         << "\n");
894 
895       EraseTerminatorAndDCECond(TI);
896 
897       if (DTU)
898         DTU->applyUpdates(
899             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
900 
901       return true;
902     }
903 
904     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
905     // Okay, TI has cases that are statically dead, prune them away.
906     SmallPtrSet<Constant *, 16> DeadCases;
907     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
908       DeadCases.insert(PredCases[i].Value);
909 
910     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
911                       << "Through successor TI: " << *TI);
912 
913     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
914     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
915       --i;
916       auto *Successor = i->getCaseSuccessor();
917       if (DTU)
918         ++NumPerSuccessorCases[Successor];
919       if (DeadCases.count(i->getCaseValue())) {
920         Successor->removePredecessor(PredDef);
921         SI.removeCase(i);
922         if (DTU)
923           --NumPerSuccessorCases[Successor];
924       }
925     }
926 
927     if (DTU) {
928       std::vector<DominatorTree::UpdateType> Updates;
929       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
930         if (I.second == 0)
931           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
932       DTU->applyUpdates(Updates);
933     }
934 
935     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
936     return true;
937   }
938 
939   // Otherwise, TI's block must correspond to some matched value.  Find out
940   // which value (or set of values) this is.
941   ConstantInt *TIV = nullptr;
942   BasicBlock *TIBB = TI->getParent();
943   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
944     if (PredCases[i].Dest == TIBB) {
945       if (TIV)
946         return false; // Cannot handle multiple values coming to this block.
947       TIV = PredCases[i].Value;
948     }
949   assert(TIV && "No edge from pred to succ?");
950 
951   // Okay, we found the one constant that our value can be if we get into TI's
952   // BB.  Find out which successor will unconditionally be branched to.
953   BasicBlock *TheRealDest = nullptr;
954   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
955     if (ThisCases[i].Value == TIV) {
956       TheRealDest = ThisCases[i].Dest;
957       break;
958     }
959 
960   // If not handled by any explicit cases, it is handled by the default case.
961   if (!TheRealDest)
962     TheRealDest = ThisDef;
963 
964   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
965 
966   // Remove PHI node entries for dead edges.
967   BasicBlock *CheckEdge = TheRealDest;
968   for (BasicBlock *Succ : successors(TIBB))
969     if (Succ != CheckEdge) {
970       if (Succ != TheRealDest)
971         RemovedSuccs.insert(Succ);
972       Succ->removePredecessor(TIBB);
973     } else
974       CheckEdge = nullptr;
975 
976   // Insert the new branch.
977   Instruction *NI = Builder.CreateBr(TheRealDest);
978   (void)NI;
979 
980   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
981                     << "Through successor TI: " << *TI << "Leaving: " << *NI
982                     << "\n");
983 
984   EraseTerminatorAndDCECond(TI);
985   if (DTU) {
986     SmallVector<DominatorTree::UpdateType, 2> Updates;
987     Updates.reserve(RemovedSuccs.size());
988     for (auto *RemovedSucc : RemovedSuccs)
989       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
990     DTU->applyUpdates(Updates);
991   }
992   return true;
993 }
994 
995 namespace {
996 
997 /// This class implements a stable ordering of constant
998 /// integers that does not depend on their address.  This is important for
999 /// applications that sort ConstantInt's to ensure uniqueness.
1000 struct ConstantIntOrdering {
1001   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1002     return LHS->getValue().ult(RHS->getValue());
1003   }
1004 };
1005 
1006 } // end anonymous namespace
1007 
1008 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1009                                     ConstantInt *const *P2) {
1010   const ConstantInt *LHS = *P1;
1011   const ConstantInt *RHS = *P2;
1012   if (LHS == RHS)
1013     return 0;
1014   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1015 }
1016 
1017 static inline bool HasBranchWeights(const Instruction *I) {
1018   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1019   if (ProfMD && ProfMD->getOperand(0))
1020     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1021       return MDS->getString().equals("branch_weights");
1022 
1023   return false;
1024 }
1025 
1026 /// Get Weights of a given terminator, the default weight is at the front
1027 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1028 /// metadata.
1029 static void GetBranchWeights(Instruction *TI,
1030                              SmallVectorImpl<uint64_t> &Weights) {
1031   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1032   assert(MD);
1033   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1034     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1035     Weights.push_back(CI->getValue().getZExtValue());
1036   }
1037 
1038   // If TI is a conditional eq, the default case is the false case,
1039   // and the corresponding branch-weight data is at index 2. We swap the
1040   // default weight to be the first entry.
1041   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1042     assert(Weights.size() == 2);
1043     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1044     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1045       std::swap(Weights.front(), Weights.back());
1046   }
1047 }
1048 
1049 /// Keep halving the weights until all can fit in uint32_t.
1050 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1051   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1052   if (Max > UINT_MAX) {
1053     unsigned Offset = 32 - countLeadingZeros(Max);
1054     for (uint64_t &I : Weights)
1055       I >>= Offset;
1056   }
1057 }
1058 
1059 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1060     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1061   Instruction *PTI = PredBlock->getTerminator();
1062 
1063   // If we have bonus instructions, clone them into the predecessor block.
1064   // Note that there may be multiple predecessor blocks, so we cannot move
1065   // bonus instructions to a predecessor block.
1066   for (Instruction &BonusInst : *BB) {
1067     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1068       continue;
1069 
1070     Instruction *NewBonusInst = BonusInst.clone();
1071 
1072     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1073       // Unless the instruction has the same !dbg location as the original
1074       // branch, drop it. When we fold the bonus instructions we want to make
1075       // sure we reset their debug locations in order to avoid stepping on
1076       // dead code caused by folding dead branches.
1077       NewBonusInst->setDebugLoc(DebugLoc());
1078     }
1079 
1080     RemapInstruction(NewBonusInst, VMap,
1081                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1082     VMap[&BonusInst] = NewBonusInst;
1083 
1084     // If we moved a load, we cannot any longer claim any knowledge about
1085     // its potential value. The previous information might have been valid
1086     // only given the branch precondition.
1087     // For an analogous reason, we must also drop all the metadata whose
1088     // semantics we don't understand. We *can* preserve !annotation, because
1089     // it is tied to the instruction itself, not the value or position.
1090     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1091 
1092     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1093     NewBonusInst->takeName(&BonusInst);
1094     BonusInst.setName(NewBonusInst->getName() + ".old");
1095 
1096     // Update (liveout) uses of bonus instructions,
1097     // now that the bonus instruction has been cloned into predecessor.
1098     SSAUpdater SSAUpdate;
1099     SSAUpdate.Initialize(BonusInst.getType(),
1100                          (NewBonusInst->getName() + ".merge").str());
1101     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1102     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1103     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1104       auto *UI = cast<Instruction>(U.getUser());
1105       if (UI->getParent() != PredBlock)
1106         SSAUpdate.RewriteUseAfterInsertions(U);
1107       else // Use is in the same block as, and comes before, NewBonusInst.
1108         SSAUpdate.RewriteUse(U);
1109     }
1110   }
1111 }
1112 
1113 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1114     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1115   BasicBlock *BB = TI->getParent();
1116   BasicBlock *Pred = PTI->getParent();
1117 
1118   SmallVector<DominatorTree::UpdateType, 32> Updates;
1119 
1120   // Figure out which 'cases' to copy from SI to PSI.
1121   std::vector<ValueEqualityComparisonCase> BBCases;
1122   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1123 
1124   std::vector<ValueEqualityComparisonCase> PredCases;
1125   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1126 
1127   // Based on whether the default edge from PTI goes to BB or not, fill in
1128   // PredCases and PredDefault with the new switch cases we would like to
1129   // build.
1130   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1131 
1132   // Update the branch weight metadata along the way
1133   SmallVector<uint64_t, 8> Weights;
1134   bool PredHasWeights = HasBranchWeights(PTI);
1135   bool SuccHasWeights = HasBranchWeights(TI);
1136 
1137   if (PredHasWeights) {
1138     GetBranchWeights(PTI, Weights);
1139     // branch-weight metadata is inconsistent here.
1140     if (Weights.size() != 1 + PredCases.size())
1141       PredHasWeights = SuccHasWeights = false;
1142   } else if (SuccHasWeights)
1143     // If there are no predecessor weights but there are successor weights,
1144     // populate Weights with 1, which will later be scaled to the sum of
1145     // successor's weights
1146     Weights.assign(1 + PredCases.size(), 1);
1147 
1148   SmallVector<uint64_t, 8> SuccWeights;
1149   if (SuccHasWeights) {
1150     GetBranchWeights(TI, SuccWeights);
1151     // branch-weight metadata is inconsistent here.
1152     if (SuccWeights.size() != 1 + BBCases.size())
1153       PredHasWeights = SuccHasWeights = false;
1154   } else if (PredHasWeights)
1155     SuccWeights.assign(1 + BBCases.size(), 1);
1156 
1157   if (PredDefault == BB) {
1158     // If this is the default destination from PTI, only the edges in TI
1159     // that don't occur in PTI, or that branch to BB will be activated.
1160     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1161     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1162       if (PredCases[i].Dest != BB)
1163         PTIHandled.insert(PredCases[i].Value);
1164       else {
1165         // The default destination is BB, we don't need explicit targets.
1166         std::swap(PredCases[i], PredCases.back());
1167 
1168         if (PredHasWeights || SuccHasWeights) {
1169           // Increase weight for the default case.
1170           Weights[0] += Weights[i + 1];
1171           std::swap(Weights[i + 1], Weights.back());
1172           Weights.pop_back();
1173         }
1174 
1175         PredCases.pop_back();
1176         --i;
1177         --e;
1178       }
1179 
1180     // Reconstruct the new switch statement we will be building.
1181     if (PredDefault != BBDefault) {
1182       PredDefault->removePredecessor(Pred);
1183       if (DTU && PredDefault != BB)
1184         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1185       PredDefault = BBDefault;
1186       ++NewSuccessors[BBDefault];
1187     }
1188 
1189     unsigned CasesFromPred = Weights.size();
1190     uint64_t ValidTotalSuccWeight = 0;
1191     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1192       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1193         PredCases.push_back(BBCases[i]);
1194         ++NewSuccessors[BBCases[i].Dest];
1195         if (SuccHasWeights || PredHasWeights) {
1196           // The default weight is at index 0, so weight for the ith case
1197           // should be at index i+1. Scale the cases from successor by
1198           // PredDefaultWeight (Weights[0]).
1199           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1200           ValidTotalSuccWeight += SuccWeights[i + 1];
1201         }
1202       }
1203 
1204     if (SuccHasWeights || PredHasWeights) {
1205       ValidTotalSuccWeight += SuccWeights[0];
1206       // Scale the cases from predecessor by ValidTotalSuccWeight.
1207       for (unsigned i = 1; i < CasesFromPred; ++i)
1208         Weights[i] *= ValidTotalSuccWeight;
1209       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1210       Weights[0] *= SuccWeights[0];
1211     }
1212   } else {
1213     // If this is not the default destination from PSI, only the edges
1214     // in SI that occur in PSI with a destination of BB will be
1215     // activated.
1216     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1217     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1218     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1219       if (PredCases[i].Dest == BB) {
1220         PTIHandled.insert(PredCases[i].Value);
1221 
1222         if (PredHasWeights || SuccHasWeights) {
1223           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1224           std::swap(Weights[i + 1], Weights.back());
1225           Weights.pop_back();
1226         }
1227 
1228         std::swap(PredCases[i], PredCases.back());
1229         PredCases.pop_back();
1230         --i;
1231         --e;
1232       }
1233 
1234     // Okay, now we know which constants were sent to BB from the
1235     // predecessor.  Figure out where they will all go now.
1236     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1237       if (PTIHandled.count(BBCases[i].Value)) {
1238         // If this is one we are capable of getting...
1239         if (PredHasWeights || SuccHasWeights)
1240           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1241         PredCases.push_back(BBCases[i]);
1242         ++NewSuccessors[BBCases[i].Dest];
1243         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1244       }
1245 
1246     // If there are any constants vectored to BB that TI doesn't handle,
1247     // they must go to the default destination of TI.
1248     for (ConstantInt *I : PTIHandled) {
1249       if (PredHasWeights || SuccHasWeights)
1250         Weights.push_back(WeightsForHandled[I]);
1251       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1252       ++NewSuccessors[BBDefault];
1253     }
1254   }
1255 
1256   // Okay, at this point, we know which new successor Pred will get.  Make
1257   // sure we update the number of entries in the PHI nodes for these
1258   // successors.
1259   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1260   if (DTU) {
1261     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1262     Updates.reserve(Updates.size() + NewSuccessors.size());
1263   }
1264   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1265        NewSuccessors) {
1266     for (auto I : seq(0, NewSuccessor.second)) {
1267       (void)I;
1268       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1269     }
1270     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1271       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1272   }
1273 
1274   Builder.SetInsertPoint(PTI);
1275   // Convert pointer to int before we switch.
1276   if (CV->getType()->isPointerTy()) {
1277     CV =
1278         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1279   }
1280 
1281   // Now that the successors are updated, create the new Switch instruction.
1282   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1283   NewSI->setDebugLoc(PTI->getDebugLoc());
1284   for (ValueEqualityComparisonCase &V : PredCases)
1285     NewSI->addCase(V.Value, V.Dest);
1286 
1287   if (PredHasWeights || SuccHasWeights) {
1288     // Halve the weights if any of them cannot fit in an uint32_t
1289     FitWeights(Weights);
1290 
1291     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1292 
1293     setBranchWeights(NewSI, MDWeights);
1294   }
1295 
1296   EraseTerminatorAndDCECond(PTI);
1297 
1298   // Okay, last check.  If BB is still a successor of PSI, then we must
1299   // have an infinite loop case.  If so, add an infinitely looping block
1300   // to handle the case to preserve the behavior of the code.
1301   BasicBlock *InfLoopBlock = nullptr;
1302   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1303     if (NewSI->getSuccessor(i) == BB) {
1304       if (!InfLoopBlock) {
1305         // Insert it at the end of the function, because it's either code,
1306         // or it won't matter if it's hot. :)
1307         InfLoopBlock =
1308             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1309         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1310         if (DTU)
1311           Updates.push_back(
1312               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1313       }
1314       NewSI->setSuccessor(i, InfLoopBlock);
1315     }
1316 
1317   if (DTU) {
1318     if (InfLoopBlock)
1319       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1320 
1321     Updates.push_back({DominatorTree::Delete, Pred, BB});
1322 
1323     DTU->applyUpdates(Updates);
1324   }
1325 
1326   ++NumFoldValueComparisonIntoPredecessors;
1327   return true;
1328 }
1329 
1330 /// The specified terminator is a value equality comparison instruction
1331 /// (either a switch or a branch on "X == c").
1332 /// See if any of the predecessors of the terminator block are value comparisons
1333 /// on the same value.  If so, and if safe to do so, fold them together.
1334 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1335                                                          IRBuilder<> &Builder) {
1336   BasicBlock *BB = TI->getParent();
1337   Value *CV = isValueEqualityComparison(TI); // CondVal
1338   assert(CV && "Not a comparison?");
1339 
1340   bool Changed = false;
1341 
1342   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1343   while (!Preds.empty()) {
1344     BasicBlock *Pred = Preds.pop_back_val();
1345     Instruction *PTI = Pred->getTerminator();
1346 
1347     // Don't try to fold into itself.
1348     if (Pred == BB)
1349       continue;
1350 
1351     // See if the predecessor is a comparison with the same value.
1352     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1353     if (PCV != CV)
1354       continue;
1355 
1356     SmallSetVector<BasicBlock *, 4> FailBlocks;
1357     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1358       for (auto *Succ : FailBlocks) {
1359         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1360           return false;
1361       }
1362     }
1363 
1364     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1365     Changed = true;
1366   }
1367   return Changed;
1368 }
1369 
1370 // If we would need to insert a select that uses the value of this invoke
1371 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1372 // can't hoist the invoke, as there is nowhere to put the select in this case.
1373 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1374                                 Instruction *I1, Instruction *I2) {
1375   for (BasicBlock *Succ : successors(BB1)) {
1376     for (const PHINode &PN : Succ->phis()) {
1377       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1378       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1379       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1380         return false;
1381       }
1382     }
1383   }
1384   return true;
1385 }
1386 
1387 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1388 
1389 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1390 /// in the two blocks up into the branch block. The caller of this function
1391 /// guarantees that BI's block dominates BB1 and BB2.
1392 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1393                                            const TargetTransformInfo &TTI) {
1394   // This does very trivial matching, with limited scanning, to find identical
1395   // instructions in the two blocks.  In particular, we don't want to get into
1396   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1397   // such, we currently just scan for obviously identical instructions in an
1398   // identical order.
1399   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1400   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1401 
1402   BasicBlock::iterator BB1_Itr = BB1->begin();
1403   BasicBlock::iterator BB2_Itr = BB2->begin();
1404 
1405   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1406   // Skip debug info if it is not identical.
1407   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1408   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1409   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1410     while (isa<DbgInfoIntrinsic>(I1))
1411       I1 = &*BB1_Itr++;
1412     while (isa<DbgInfoIntrinsic>(I2))
1413       I2 = &*BB2_Itr++;
1414   }
1415   // FIXME: Can we define a safety predicate for CallBr?
1416   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1417       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1418       isa<CallBrInst>(I1))
1419     return false;
1420 
1421   BasicBlock *BIParent = BI->getParent();
1422 
1423   bool Changed = false;
1424 
1425   auto _ = make_scope_exit([&]() {
1426     if (Changed)
1427       ++NumHoistCommonCode;
1428   });
1429 
1430   do {
1431     // If we are hoisting the terminator instruction, don't move one (making a
1432     // broken BB), instead clone it, and remove BI.
1433     if (I1->isTerminator())
1434       goto HoistTerminator;
1435 
1436     // If we're going to hoist a call, make sure that the two instructions we're
1437     // commoning/hoisting are both marked with musttail, or neither of them is
1438     // marked as such. Otherwise, we might end up in a situation where we hoist
1439     // from a block where the terminator is a `ret` to a block where the terminator
1440     // is a `br`, and `musttail` calls expect to be followed by a return.
1441     auto *C1 = dyn_cast<CallInst>(I1);
1442     auto *C2 = dyn_cast<CallInst>(I2);
1443     if (C1 && C2)
1444       if (C1->isMustTailCall() != C2->isMustTailCall())
1445         return Changed;
1446 
1447     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1448       return Changed;
1449 
1450     // If any of the two call sites has nomerge attribute, stop hoisting.
1451     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1452       if (CB1->cannotMerge())
1453         return Changed;
1454     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1455       if (CB2->cannotMerge())
1456         return Changed;
1457 
1458     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1459       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1460       // The debug location is an integral part of a debug info intrinsic
1461       // and can't be separated from it or replaced.  Instead of attempting
1462       // to merge locations, simply hoist both copies of the intrinsic.
1463       BIParent->getInstList().splice(BI->getIterator(),
1464                                      BB1->getInstList(), I1);
1465       BIParent->getInstList().splice(BI->getIterator(),
1466                                      BB2->getInstList(), I2);
1467       Changed = true;
1468     } else {
1469       // For a normal instruction, we just move one to right before the branch,
1470       // then replace all uses of the other with the first.  Finally, we remove
1471       // the now redundant second instruction.
1472       BIParent->getInstList().splice(BI->getIterator(),
1473                                      BB1->getInstList(), I1);
1474       if (!I2->use_empty())
1475         I2->replaceAllUsesWith(I1);
1476       I1->andIRFlags(I2);
1477       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1478                              LLVMContext::MD_range,
1479                              LLVMContext::MD_fpmath,
1480                              LLVMContext::MD_invariant_load,
1481                              LLVMContext::MD_nonnull,
1482                              LLVMContext::MD_invariant_group,
1483                              LLVMContext::MD_align,
1484                              LLVMContext::MD_dereferenceable,
1485                              LLVMContext::MD_dereferenceable_or_null,
1486                              LLVMContext::MD_mem_parallel_loop_access,
1487                              LLVMContext::MD_access_group,
1488                              LLVMContext::MD_preserve_access_index};
1489       combineMetadata(I1, I2, KnownIDs, true);
1490 
1491       // I1 and I2 are being combined into a single instruction.  Its debug
1492       // location is the merged locations of the original instructions.
1493       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1494 
1495       I2->eraseFromParent();
1496       Changed = true;
1497     }
1498     ++NumHoistCommonInstrs;
1499 
1500     I1 = &*BB1_Itr++;
1501     I2 = &*BB2_Itr++;
1502     // Skip debug info if it is not identical.
1503     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1504     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1505     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1506       while (isa<DbgInfoIntrinsic>(I1))
1507         I1 = &*BB1_Itr++;
1508       while (isa<DbgInfoIntrinsic>(I2))
1509         I2 = &*BB2_Itr++;
1510     }
1511   } while (I1->isIdenticalToWhenDefined(I2));
1512 
1513   return true;
1514 
1515 HoistTerminator:
1516   // It may not be possible to hoist an invoke.
1517   // FIXME: Can we define a safety predicate for CallBr?
1518   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1519     return Changed;
1520 
1521   // TODO: callbr hoisting currently disabled pending further study.
1522   if (isa<CallBrInst>(I1))
1523     return Changed;
1524 
1525   for (BasicBlock *Succ : successors(BB1)) {
1526     for (PHINode &PN : Succ->phis()) {
1527       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1528       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1529       if (BB1V == BB2V)
1530         continue;
1531 
1532       // Check for passingValueIsAlwaysUndefined here because we would rather
1533       // eliminate undefined control flow then converting it to a select.
1534       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1535           passingValueIsAlwaysUndefined(BB2V, &PN))
1536         return Changed;
1537 
1538       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1539         return Changed;
1540       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1541         return Changed;
1542     }
1543   }
1544 
1545   // Okay, it is safe to hoist the terminator.
1546   Instruction *NT = I1->clone();
1547   BIParent->getInstList().insert(BI->getIterator(), NT);
1548   if (!NT->getType()->isVoidTy()) {
1549     I1->replaceAllUsesWith(NT);
1550     I2->replaceAllUsesWith(NT);
1551     NT->takeName(I1);
1552   }
1553   Changed = true;
1554   ++NumHoistCommonInstrs;
1555 
1556   // Ensure terminator gets a debug location, even an unknown one, in case
1557   // it involves inlinable calls.
1558   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1559 
1560   // PHIs created below will adopt NT's merged DebugLoc.
1561   IRBuilder<NoFolder> Builder(NT);
1562 
1563   // Hoisting one of the terminators from our successor is a great thing.
1564   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1565   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1566   // nodes, so we insert select instruction to compute the final result.
1567   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1568   for (BasicBlock *Succ : successors(BB1)) {
1569     for (PHINode &PN : Succ->phis()) {
1570       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1571       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1572       if (BB1V == BB2V)
1573         continue;
1574 
1575       // These values do not agree.  Insert a select instruction before NT
1576       // that determines the right value.
1577       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1578       if (!SI) {
1579         // Propagate fast-math-flags from phi node to its replacement select.
1580         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1581         if (isa<FPMathOperator>(PN))
1582           Builder.setFastMathFlags(PN.getFastMathFlags());
1583 
1584         SI = cast<SelectInst>(
1585             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1586                                  BB1V->getName() + "." + BB2V->getName(), BI));
1587       }
1588 
1589       // Make the PHI node use the select for all incoming values for BB1/BB2
1590       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1591         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1592           PN.setIncomingValue(i, SI);
1593     }
1594   }
1595 
1596   SmallVector<DominatorTree::UpdateType, 4> Updates;
1597 
1598   // Update any PHI nodes in our new successors.
1599   for (BasicBlock *Succ : successors(BB1)) {
1600     AddPredecessorToBlock(Succ, BIParent, BB1);
1601     if (DTU)
1602       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1603   }
1604 
1605   if (DTU)
1606     for (BasicBlock *Succ : successors(BI))
1607       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1608 
1609   EraseTerminatorAndDCECond(BI);
1610   if (DTU)
1611     DTU->applyUpdates(Updates);
1612   return Changed;
1613 }
1614 
1615 // Check lifetime markers.
1616 static bool isLifeTimeMarker(const Instruction *I) {
1617   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1618     switch (II->getIntrinsicID()) {
1619     default:
1620       break;
1621     case Intrinsic::lifetime_start:
1622     case Intrinsic::lifetime_end:
1623       return true;
1624     }
1625   }
1626   return false;
1627 }
1628 
1629 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1630 // into variables.
1631 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1632                                                 int OpIdx) {
1633   return !isa<IntrinsicInst>(I);
1634 }
1635 
1636 // All instructions in Insts belong to different blocks that all unconditionally
1637 // branch to a common successor. Analyze each instruction and return true if it
1638 // would be possible to sink them into their successor, creating one common
1639 // instruction instead. For every value that would be required to be provided by
1640 // PHI node (because an operand varies in each input block), add to PHIOperands.
1641 static bool canSinkInstructions(
1642     ArrayRef<Instruction *> Insts,
1643     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1644   // Prune out obviously bad instructions to move. Each instruction must have
1645   // exactly zero or one use, and we check later that use is by a single, common
1646   // PHI instruction in the successor.
1647   bool HasUse = !Insts.front()->user_empty();
1648   for (auto *I : Insts) {
1649     // These instructions may change or break semantics if moved.
1650     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1651         I->getType()->isTokenTy())
1652       return false;
1653 
1654     // Do not try to sink an instruction in an infinite loop - it can cause
1655     // this algorithm to infinite loop.
1656     if (I->getParent()->getSingleSuccessor() == I->getParent())
1657       return false;
1658 
1659     // Conservatively return false if I is an inline-asm instruction. Sinking
1660     // and merging inline-asm instructions can potentially create arguments
1661     // that cannot satisfy the inline-asm constraints.
1662     // If the instruction has nomerge attribute, return false.
1663     if (const auto *C = dyn_cast<CallBase>(I))
1664       if (C->isInlineAsm() || C->cannotMerge())
1665         return false;
1666 
1667     // Each instruction must have zero or one use.
1668     if (HasUse && !I->hasOneUse())
1669       return false;
1670     if (!HasUse && !I->user_empty())
1671       return false;
1672   }
1673 
1674   const Instruction *I0 = Insts.front();
1675   for (auto *I : Insts)
1676     if (!I->isSameOperationAs(I0))
1677       return false;
1678 
1679   // All instructions in Insts are known to be the same opcode. If they have a
1680   // use, check that the only user is a PHI or in the same block as the
1681   // instruction, because if a user is in the same block as an instruction we're
1682   // contemplating sinking, it must already be determined to be sinkable.
1683   if (HasUse) {
1684     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1685     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1686     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1687           auto *U = cast<Instruction>(*I->user_begin());
1688           return (PNUse &&
1689                   PNUse->getParent() == Succ &&
1690                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1691                  U->getParent() == I->getParent();
1692         }))
1693       return false;
1694   }
1695 
1696   // Because SROA can't handle speculating stores of selects, try not to sink
1697   // loads, stores or lifetime markers of allocas when we'd have to create a
1698   // PHI for the address operand. Also, because it is likely that loads or
1699   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1700   // them.
1701   // This can cause code churn which can have unintended consequences down
1702   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1703   // FIXME: This is a workaround for a deficiency in SROA - see
1704   // https://llvm.org/bugs/show_bug.cgi?id=30188
1705   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1706         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1707       }))
1708     return false;
1709   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1710         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1711       }))
1712     return false;
1713   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1714         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1715       }))
1716     return false;
1717 
1718   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1719     Value *Op = I0->getOperand(OI);
1720     if (Op->getType()->isTokenTy())
1721       // Don't touch any operand of token type.
1722       return false;
1723 
1724     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1725       assert(I->getNumOperands() == I0->getNumOperands());
1726       return I->getOperand(OI) == I0->getOperand(OI);
1727     };
1728     if (!all_of(Insts, SameAsI0)) {
1729       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1730           !canReplaceOperandWithVariable(I0, OI))
1731         // We can't create a PHI from this GEP.
1732         return false;
1733       // Don't create indirect calls! The called value is the final operand.
1734       if (isa<CallBase>(I0) && OI == OE - 1) {
1735         // FIXME: if the call was *already* indirect, we should do this.
1736         return false;
1737       }
1738       for (auto *I : Insts)
1739         PHIOperands[I].push_back(I->getOperand(OI));
1740     }
1741   }
1742   return true;
1743 }
1744 
1745 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1746 // instruction of every block in Blocks to their common successor, commoning
1747 // into one instruction.
1748 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1749   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1750 
1751   // canSinkInstructions returning true guarantees that every block has at
1752   // least one non-terminator instruction.
1753   SmallVector<Instruction*,4> Insts;
1754   for (auto *BB : Blocks) {
1755     Instruction *I = BB->getTerminator();
1756     do {
1757       I = I->getPrevNode();
1758     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1759     if (!isa<DbgInfoIntrinsic>(I))
1760       Insts.push_back(I);
1761   }
1762 
1763   // The only checking we need to do now is that all users of all instructions
1764   // are the same PHI node. canSinkInstructions should have checked this but
1765   // it is slightly over-aggressive - it gets confused by commutative
1766   // instructions so double-check it here.
1767   Instruction *I0 = Insts.front();
1768   if (!I0->user_empty()) {
1769     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1770     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1771           auto *U = cast<Instruction>(*I->user_begin());
1772           return U == PNUse;
1773         }))
1774       return false;
1775   }
1776 
1777   // We don't need to do any more checking here; canSinkInstructions should
1778   // have done it all for us.
1779   SmallVector<Value*, 4> NewOperands;
1780   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1781     // This check is different to that in canSinkInstructions. There, we
1782     // cared about the global view once simplifycfg (and instcombine) have
1783     // completed - it takes into account PHIs that become trivially
1784     // simplifiable.  However here we need a more local view; if an operand
1785     // differs we create a PHI and rely on instcombine to clean up the very
1786     // small mess we may make.
1787     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1788       return I->getOperand(O) != I0->getOperand(O);
1789     });
1790     if (!NeedPHI) {
1791       NewOperands.push_back(I0->getOperand(O));
1792       continue;
1793     }
1794 
1795     // Create a new PHI in the successor block and populate it.
1796     auto *Op = I0->getOperand(O);
1797     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1798     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1799                                Op->getName() + ".sink", &BBEnd->front());
1800     for (auto *I : Insts)
1801       PN->addIncoming(I->getOperand(O), I->getParent());
1802     NewOperands.push_back(PN);
1803   }
1804 
1805   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1806   // and move it to the start of the successor block.
1807   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1808     I0->getOperandUse(O).set(NewOperands[O]);
1809   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1810 
1811   // Update metadata and IR flags, and merge debug locations.
1812   for (auto *I : Insts)
1813     if (I != I0) {
1814       // The debug location for the "common" instruction is the merged locations
1815       // of all the commoned instructions.  We start with the original location
1816       // of the "common" instruction and iteratively merge each location in the
1817       // loop below.
1818       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1819       // However, as N-way merge for CallInst is rare, so we use simplified API
1820       // instead of using complex API for N-way merge.
1821       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1822       combineMetadataForCSE(I0, I, true);
1823       I0->andIRFlags(I);
1824     }
1825 
1826   if (!I0->user_empty()) {
1827     // canSinkLastInstruction checked that all instructions were used by
1828     // one and only one PHI node. Find that now, RAUW it to our common
1829     // instruction and nuke it.
1830     auto *PN = cast<PHINode>(*I0->user_begin());
1831     PN->replaceAllUsesWith(I0);
1832     PN->eraseFromParent();
1833   }
1834 
1835   // Finally nuke all instructions apart from the common instruction.
1836   for (auto *I : Insts)
1837     if (I != I0)
1838       I->eraseFromParent();
1839 
1840   return true;
1841 }
1842 
1843 namespace {
1844 
1845   // LockstepReverseIterator - Iterates through instructions
1846   // in a set of blocks in reverse order from the first non-terminator.
1847   // For example (assume all blocks have size n):
1848   //   LockstepReverseIterator I([B1, B2, B3]);
1849   //   *I-- = [B1[n], B2[n], B3[n]];
1850   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1851   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1852   //   ...
1853   class LockstepReverseIterator {
1854     ArrayRef<BasicBlock*> Blocks;
1855     SmallVector<Instruction*,4> Insts;
1856     bool Fail;
1857 
1858   public:
1859     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1860       reset();
1861     }
1862 
1863     void reset() {
1864       Fail = false;
1865       Insts.clear();
1866       for (auto *BB : Blocks) {
1867         Instruction *Inst = BB->getTerminator();
1868         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1869           Inst = Inst->getPrevNode();
1870         if (!Inst) {
1871           // Block wasn't big enough.
1872           Fail = true;
1873           return;
1874         }
1875         Insts.push_back(Inst);
1876       }
1877     }
1878 
1879     bool isValid() const {
1880       return !Fail;
1881     }
1882 
1883     void operator--() {
1884       if (Fail)
1885         return;
1886       for (auto *&Inst : Insts) {
1887         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1888           Inst = Inst->getPrevNode();
1889         // Already at beginning of block.
1890         if (!Inst) {
1891           Fail = true;
1892           return;
1893         }
1894       }
1895     }
1896 
1897     ArrayRef<Instruction*> operator * () const {
1898       return Insts;
1899     }
1900   };
1901 
1902 } // end anonymous namespace
1903 
1904 /// Check whether BB's predecessors end with unconditional branches. If it is
1905 /// true, sink any common code from the predecessors to BB.
1906 /// We also allow one predecessor to end with conditional branch (but no more
1907 /// than one).
1908 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1909                                            DomTreeUpdater *DTU) {
1910   // We support two situations:
1911   //   (1) all incoming arcs are unconditional
1912   //   (2) one incoming arc is conditional
1913   //
1914   // (2) is very common in switch defaults and
1915   // else-if patterns;
1916   //
1917   //   if (a) f(1);
1918   //   else if (b) f(2);
1919   //
1920   // produces:
1921   //
1922   //       [if]
1923   //      /    \
1924   //    [f(1)] [if]
1925   //      |     | \
1926   //      |     |  |
1927   //      |  [f(2)]|
1928   //       \    | /
1929   //        [ end ]
1930   //
1931   // [end] has two unconditional predecessor arcs and one conditional. The
1932   // conditional refers to the implicit empty 'else' arc. This conditional
1933   // arc can also be caused by an empty default block in a switch.
1934   //
1935   // In this case, we attempt to sink code from all *unconditional* arcs.
1936   // If we can sink instructions from these arcs (determined during the scan
1937   // phase below) we insert a common successor for all unconditional arcs and
1938   // connect that to [end], to enable sinking:
1939   //
1940   //       [if]
1941   //      /    \
1942   //    [x(1)] [if]
1943   //      |     | \
1944   //      |     |  \
1945   //      |  [x(2)] |
1946   //       \   /    |
1947   //   [sink.split] |
1948   //         \     /
1949   //         [ end ]
1950   //
1951   SmallVector<BasicBlock*,4> UnconditionalPreds;
1952   Instruction *Cond = nullptr;
1953   for (auto *B : predecessors(BB)) {
1954     auto *T = B->getTerminator();
1955     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1956       UnconditionalPreds.push_back(B);
1957     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1958       Cond = T;
1959     else
1960       return false;
1961   }
1962   if (UnconditionalPreds.size() < 2)
1963     return false;
1964 
1965   // We take a two-step approach to tail sinking. First we scan from the end of
1966   // each block upwards in lockstep. If the n'th instruction from the end of each
1967   // block can be sunk, those instructions are added to ValuesToSink and we
1968   // carry on. If we can sink an instruction but need to PHI-merge some operands
1969   // (because they're not identical in each instruction) we add these to
1970   // PHIOperands.
1971   unsigned ScanIdx = 0;
1972   SmallPtrSet<Value*,4> InstructionsToSink;
1973   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1974   LockstepReverseIterator LRI(UnconditionalPreds);
1975   while (LRI.isValid() &&
1976          canSinkInstructions(*LRI, PHIOperands)) {
1977     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1978                       << "\n");
1979     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1980     ++ScanIdx;
1981     --LRI;
1982   }
1983 
1984   // If no instructions can be sunk, early-return.
1985   if (ScanIdx == 0)
1986     return false;
1987 
1988   bool Changed = false;
1989 
1990   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1991     unsigned NumPHIdValues = 0;
1992     for (auto *I : *LRI)
1993       for (auto *V : PHIOperands[I])
1994         if (InstructionsToSink.count(V) == 0)
1995           ++NumPHIdValues;
1996     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1997     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1998     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1999         NumPHIInsts++;
2000 
2001     return NumPHIInsts <= 1;
2002   };
2003 
2004   if (Cond) {
2005     // Check if we would actually sink anything first! This mutates the CFG and
2006     // adds an extra block. The goal in doing this is to allow instructions that
2007     // couldn't be sunk before to be sunk - obviously, speculatable instructions
2008     // (such as trunc, add) can be sunk and predicated already. So we check that
2009     // we're going to sink at least one non-speculatable instruction.
2010     LRI.reset();
2011     unsigned Idx = 0;
2012     bool Profitable = false;
2013     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
2014       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2015         Profitable = true;
2016         break;
2017       }
2018       --LRI;
2019       ++Idx;
2020     }
2021     if (!Profitable)
2022       return false;
2023 
2024     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2025     // We have a conditional edge and we're going to sink some instructions.
2026     // Insert a new block postdominating all blocks we're going to sink from.
2027     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2028       // Edges couldn't be split.
2029       return false;
2030     Changed = true;
2031   }
2032 
2033   // Now that we've analyzed all potential sinking candidates, perform the
2034   // actual sink. We iteratively sink the last non-terminator of the source
2035   // blocks into their common successor unless doing so would require too
2036   // many PHI instructions to be generated (currently only one PHI is allowed
2037   // per sunk instruction).
2038   //
2039   // We can use InstructionsToSink to discount values needing PHI-merging that will
2040   // actually be sunk in a later iteration. This allows us to be more
2041   // aggressive in what we sink. This does allow a false positive where we
2042   // sink presuming a later value will also be sunk, but stop half way through
2043   // and never actually sink it which means we produce more PHIs than intended.
2044   // This is unlikely in practice though.
2045   unsigned SinkIdx = 0;
2046   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2047     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2048                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2049                       << "\n");
2050 
2051     // Because we've sunk every instruction in turn, the current instruction to
2052     // sink is always at index 0.
2053     LRI.reset();
2054     if (!ProfitableToSinkInstruction(LRI)) {
2055       // Too many PHIs would be created.
2056       LLVM_DEBUG(
2057           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2058       break;
2059     }
2060 
2061     if (!sinkLastInstruction(UnconditionalPreds)) {
2062       LLVM_DEBUG(
2063           dbgs()
2064           << "SINK: stopping here, failed to actually sink instruction!\n");
2065       break;
2066     }
2067 
2068     NumSinkCommonInstrs++;
2069     Changed = true;
2070   }
2071   if (SinkIdx != 0)
2072     ++NumSinkCommonCode;
2073   return Changed;
2074 }
2075 
2076 /// Determine if we can hoist sink a sole store instruction out of a
2077 /// conditional block.
2078 ///
2079 /// We are looking for code like the following:
2080 ///   BrBB:
2081 ///     store i32 %add, i32* %arrayidx2
2082 ///     ... // No other stores or function calls (we could be calling a memory
2083 ///     ... // function).
2084 ///     %cmp = icmp ult %x, %y
2085 ///     br i1 %cmp, label %EndBB, label %ThenBB
2086 ///   ThenBB:
2087 ///     store i32 %add5, i32* %arrayidx2
2088 ///     br label EndBB
2089 ///   EndBB:
2090 ///     ...
2091 ///   We are going to transform this into:
2092 ///   BrBB:
2093 ///     store i32 %add, i32* %arrayidx2
2094 ///     ... //
2095 ///     %cmp = icmp ult %x, %y
2096 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2097 ///     store i32 %add.add5, i32* %arrayidx2
2098 ///     ...
2099 ///
2100 /// \return The pointer to the value of the previous store if the store can be
2101 ///         hoisted into the predecessor block. 0 otherwise.
2102 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2103                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2104   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2105   if (!StoreToHoist)
2106     return nullptr;
2107 
2108   // Volatile or atomic.
2109   if (!StoreToHoist->isSimple())
2110     return nullptr;
2111 
2112   Value *StorePtr = StoreToHoist->getPointerOperand();
2113 
2114   // Look for a store to the same pointer in BrBB.
2115   unsigned MaxNumInstToLookAt = 9;
2116   // Skip pseudo probe intrinsic calls which are not really killing any memory
2117   // accesses.
2118   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2119     if (!MaxNumInstToLookAt)
2120       break;
2121     --MaxNumInstToLookAt;
2122 
2123     // Could be calling an instruction that affects memory like free().
2124     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2125       return nullptr;
2126 
2127     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2128       // Found the previous store make sure it stores to the same location.
2129       if (SI->getPointerOperand() == StorePtr)
2130         // Found the previous store, return its value operand.
2131         return SI->getValueOperand();
2132       return nullptr; // Unknown store.
2133     }
2134   }
2135 
2136   return nullptr;
2137 }
2138 
2139 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2140 /// converted to selects.
2141 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2142                                            BasicBlock *EndBB,
2143                                            unsigned &SpeculatedInstructions,
2144                                            InstructionCost &Cost,
2145                                            const TargetTransformInfo &TTI) {
2146   TargetTransformInfo::TargetCostKind CostKind =
2147     BB->getParent()->hasMinSize()
2148     ? TargetTransformInfo::TCK_CodeSize
2149     : TargetTransformInfo::TCK_SizeAndLatency;
2150 
2151   bool HaveRewritablePHIs = false;
2152   for (PHINode &PN : EndBB->phis()) {
2153     Value *OrigV = PN.getIncomingValueForBlock(BB);
2154     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2155 
2156     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2157     // Skip PHIs which are trivial.
2158     if (ThenV == OrigV)
2159       continue;
2160 
2161     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2162                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2163 
2164     // Don't convert to selects if we could remove undefined behavior instead.
2165     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2166         passingValueIsAlwaysUndefined(ThenV, &PN))
2167       return false;
2168 
2169     HaveRewritablePHIs = true;
2170     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2171     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2172     if (!OrigCE && !ThenCE)
2173       continue; // Known safe and cheap.
2174 
2175     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2176         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2177       return false;
2178     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2179     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2180     InstructionCost MaxCost =
2181         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2182     if (OrigCost + ThenCost > MaxCost)
2183       return false;
2184 
2185     // Account for the cost of an unfolded ConstantExpr which could end up
2186     // getting expanded into Instructions.
2187     // FIXME: This doesn't account for how many operations are combined in the
2188     // constant expression.
2189     ++SpeculatedInstructions;
2190     if (SpeculatedInstructions > 1)
2191       return false;
2192   }
2193 
2194   return HaveRewritablePHIs;
2195 }
2196 
2197 /// Speculate a conditional basic block flattening the CFG.
2198 ///
2199 /// Note that this is a very risky transform currently. Speculating
2200 /// instructions like this is most often not desirable. Instead, there is an MI
2201 /// pass which can do it with full awareness of the resource constraints.
2202 /// However, some cases are "obvious" and we should do directly. An example of
2203 /// this is speculating a single, reasonably cheap instruction.
2204 ///
2205 /// There is only one distinct advantage to flattening the CFG at the IR level:
2206 /// it makes very common but simplistic optimizations such as are common in
2207 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2208 /// modeling their effects with easier to reason about SSA value graphs.
2209 ///
2210 ///
2211 /// An illustration of this transform is turning this IR:
2212 /// \code
2213 ///   BB:
2214 ///     %cmp = icmp ult %x, %y
2215 ///     br i1 %cmp, label %EndBB, label %ThenBB
2216 ///   ThenBB:
2217 ///     %sub = sub %x, %y
2218 ///     br label BB2
2219 ///   EndBB:
2220 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2221 ///     ...
2222 /// \endcode
2223 ///
2224 /// Into this IR:
2225 /// \code
2226 ///   BB:
2227 ///     %cmp = icmp ult %x, %y
2228 ///     %sub = sub %x, %y
2229 ///     %cond = select i1 %cmp, 0, %sub
2230 ///     ...
2231 /// \endcode
2232 ///
2233 /// \returns true if the conditional block is removed.
2234 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2235                                             const TargetTransformInfo &TTI) {
2236   // Be conservative for now. FP select instruction can often be expensive.
2237   Value *BrCond = BI->getCondition();
2238   if (isa<FCmpInst>(BrCond))
2239     return false;
2240 
2241   BasicBlock *BB = BI->getParent();
2242   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2243   InstructionCost Budget =
2244       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2245 
2246   // If ThenBB is actually on the false edge of the conditional branch, remember
2247   // to swap the select operands later.
2248   bool Invert = false;
2249   if (ThenBB != BI->getSuccessor(0)) {
2250     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2251     Invert = true;
2252   }
2253   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2254 
2255   // Keep a count of how many times instructions are used within ThenBB when
2256   // they are candidates for sinking into ThenBB. Specifically:
2257   // - They are defined in BB, and
2258   // - They have no side effects, and
2259   // - All of their uses are in ThenBB.
2260   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2261 
2262   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2263 
2264   unsigned SpeculatedInstructions = 0;
2265   Value *SpeculatedStoreValue = nullptr;
2266   StoreInst *SpeculatedStore = nullptr;
2267   for (BasicBlock::iterator BBI = ThenBB->begin(),
2268                             BBE = std::prev(ThenBB->end());
2269        BBI != BBE; ++BBI) {
2270     Instruction *I = &*BBI;
2271     // Skip debug info.
2272     if (isa<DbgInfoIntrinsic>(I)) {
2273       SpeculatedDbgIntrinsics.push_back(I);
2274       continue;
2275     }
2276 
2277     // Skip pseudo probes. The consequence is we lose track of the branch
2278     // probability for ThenBB, which is fine since the optimization here takes
2279     // place regardless of the branch probability.
2280     if (isa<PseudoProbeInst>(I)) {
2281       continue;
2282     }
2283 
2284     // Only speculatively execute a single instruction (not counting the
2285     // terminator) for now.
2286     ++SpeculatedInstructions;
2287     if (SpeculatedInstructions > 1)
2288       return false;
2289 
2290     // Don't hoist the instruction if it's unsafe or expensive.
2291     if (!isSafeToSpeculativelyExecute(I) &&
2292         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2293                                   I, BB, ThenBB, EndBB))))
2294       return false;
2295     if (!SpeculatedStoreValue &&
2296         computeSpeculationCost(I, TTI) >
2297             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2298       return false;
2299 
2300     // Store the store speculation candidate.
2301     if (SpeculatedStoreValue)
2302       SpeculatedStore = cast<StoreInst>(I);
2303 
2304     // Do not hoist the instruction if any of its operands are defined but not
2305     // used in BB. The transformation will prevent the operand from
2306     // being sunk into the use block.
2307     for (Use &Op : I->operands()) {
2308       Instruction *OpI = dyn_cast<Instruction>(Op);
2309       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2310         continue; // Not a candidate for sinking.
2311 
2312       ++SinkCandidateUseCounts[OpI];
2313     }
2314   }
2315 
2316   // Consider any sink candidates which are only used in ThenBB as costs for
2317   // speculation. Note, while we iterate over a DenseMap here, we are summing
2318   // and so iteration order isn't significant.
2319   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2320            I = SinkCandidateUseCounts.begin(),
2321            E = SinkCandidateUseCounts.end();
2322        I != E; ++I)
2323     if (I->first->hasNUses(I->second)) {
2324       ++SpeculatedInstructions;
2325       if (SpeculatedInstructions > 1)
2326         return false;
2327     }
2328 
2329   // Check that we can insert the selects and that it's not too expensive to do
2330   // so.
2331   bool Convert = SpeculatedStore != nullptr;
2332   InstructionCost Cost = 0;
2333   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2334                                             SpeculatedInstructions,
2335                                             Cost, TTI);
2336   if (!Convert || Cost > Budget)
2337     return false;
2338 
2339   // If we get here, we can hoist the instruction and if-convert.
2340   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2341 
2342   // Insert a select of the value of the speculated store.
2343   if (SpeculatedStoreValue) {
2344     IRBuilder<NoFolder> Builder(BI);
2345     Value *TrueV = SpeculatedStore->getValueOperand();
2346     Value *FalseV = SpeculatedStoreValue;
2347     if (Invert)
2348       std::swap(TrueV, FalseV);
2349     Value *S = Builder.CreateSelect(
2350         BrCond, TrueV, FalseV, "spec.store.select", BI);
2351     SpeculatedStore->setOperand(0, S);
2352     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2353                                          SpeculatedStore->getDebugLoc());
2354   }
2355 
2356   // Metadata can be dependent on the condition we are hoisting above.
2357   // Conservatively strip all metadata on the instruction. Drop the debug loc
2358   // to avoid making it appear as if the condition is a constant, which would
2359   // be misleading while debugging.
2360   for (auto &I : *ThenBB) {
2361     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2362       I.setDebugLoc(DebugLoc());
2363     I.dropUnknownNonDebugMetadata();
2364   }
2365 
2366   // A hoisted conditional probe should be treated as dangling so that it will
2367   // not be over-counted when the samples collected on the non-conditional path
2368   // are counted towards the conditional path. We leave it for the counts
2369   // inference algorithm to figure out a proper count for a danglng probe.
2370   moveAndDanglePseudoProbes(ThenBB, BI);
2371 
2372   // Hoist the instructions.
2373   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2374                            ThenBB->begin(), std::prev(ThenBB->end()));
2375 
2376   // Insert selects and rewrite the PHI operands.
2377   IRBuilder<NoFolder> Builder(BI);
2378   for (PHINode &PN : EndBB->phis()) {
2379     unsigned OrigI = PN.getBasicBlockIndex(BB);
2380     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2381     Value *OrigV = PN.getIncomingValue(OrigI);
2382     Value *ThenV = PN.getIncomingValue(ThenI);
2383 
2384     // Skip PHIs which are trivial.
2385     if (OrigV == ThenV)
2386       continue;
2387 
2388     // Create a select whose true value is the speculatively executed value and
2389     // false value is the pre-existing value. Swap them if the branch
2390     // destinations were inverted.
2391     Value *TrueV = ThenV, *FalseV = OrigV;
2392     if (Invert)
2393       std::swap(TrueV, FalseV);
2394     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2395     PN.setIncomingValue(OrigI, V);
2396     PN.setIncomingValue(ThenI, V);
2397   }
2398 
2399   // Remove speculated dbg intrinsics.
2400   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2401   // dbg value for the different flows and inserting it after the select.
2402   for (Instruction *I : SpeculatedDbgIntrinsics)
2403     I->eraseFromParent();
2404 
2405   ++NumSpeculations;
2406   return true;
2407 }
2408 
2409 /// Return true if we can thread a branch across this block.
2410 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2411   int Size = 0;
2412 
2413   for (Instruction &I : BB->instructionsWithoutDebug()) {
2414     if (Size > MaxSmallBlockSize)
2415       return false; // Don't clone large BB's.
2416 
2417     // Can't fold blocks that contain noduplicate or convergent calls.
2418     if (CallInst *CI = dyn_cast<CallInst>(&I))
2419       if (CI->cannotDuplicate() || CI->isConvergent())
2420         return false;
2421 
2422     // We will delete Phis while threading, so Phis should not be accounted in
2423     // block's size
2424     if (!isa<PHINode>(I))
2425       ++Size;
2426 
2427     // We can only support instructions that do not define values that are
2428     // live outside of the current basic block.
2429     for (User *U : I.users()) {
2430       Instruction *UI = cast<Instruction>(U);
2431       if (UI->getParent() != BB || isa<PHINode>(UI))
2432         return false;
2433     }
2434 
2435     // Looks ok, continue checking.
2436   }
2437 
2438   return true;
2439 }
2440 
2441 /// If we have a conditional branch on a PHI node value that is defined in the
2442 /// same block as the branch and if any PHI entries are constants, thread edges
2443 /// corresponding to that entry to be branches to their ultimate destination.
2444 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2445                                 const DataLayout &DL, AssumptionCache *AC) {
2446   BasicBlock *BB = BI->getParent();
2447   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2448   // NOTE: we currently cannot transform this case if the PHI node is used
2449   // outside of the block.
2450   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2451     return false;
2452 
2453   // Degenerate case of a single entry PHI.
2454   if (PN->getNumIncomingValues() == 1) {
2455     FoldSingleEntryPHINodes(PN->getParent());
2456     return true;
2457   }
2458 
2459   // Now we know that this block has multiple preds and two succs.
2460   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2461     return false;
2462 
2463   // Okay, this is a simple enough basic block.  See if any phi values are
2464   // constants.
2465   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2466     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2467     if (!CB || !CB->getType()->isIntegerTy(1))
2468       continue;
2469 
2470     // Okay, we now know that all edges from PredBB should be revectored to
2471     // branch to RealDest.
2472     BasicBlock *PredBB = PN->getIncomingBlock(i);
2473     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2474 
2475     if (RealDest == BB)
2476       continue; // Skip self loops.
2477     // Skip if the predecessor's terminator is an indirect branch.
2478     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2479       continue;
2480 
2481     SmallVector<DominatorTree::UpdateType, 3> Updates;
2482 
2483     // The dest block might have PHI nodes, other predecessors and other
2484     // difficult cases.  Instead of being smart about this, just insert a new
2485     // block that jumps to the destination block, effectively splitting
2486     // the edge we are about to create.
2487     BasicBlock *EdgeBB =
2488         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2489                            RealDest->getParent(), RealDest);
2490     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2491     if (DTU)
2492       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2493     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2494 
2495     // Update PHI nodes.
2496     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2497 
2498     // BB may have instructions that are being threaded over.  Clone these
2499     // instructions into EdgeBB.  We know that there will be no uses of the
2500     // cloned instructions outside of EdgeBB.
2501     BasicBlock::iterator InsertPt = EdgeBB->begin();
2502     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2503     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2504       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2505         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2506         continue;
2507       }
2508       // Clone the instruction.
2509       Instruction *N = BBI->clone();
2510       if (BBI->hasName())
2511         N->setName(BBI->getName() + ".c");
2512 
2513       // Update operands due to translation.
2514       for (Use &Op : N->operands()) {
2515         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2516         if (PI != TranslateMap.end())
2517           Op = PI->second;
2518       }
2519 
2520       // Check for trivial simplification.
2521       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2522         if (!BBI->use_empty())
2523           TranslateMap[&*BBI] = V;
2524         if (!N->mayHaveSideEffects()) {
2525           N->deleteValue(); // Instruction folded away, don't need actual inst
2526           N = nullptr;
2527         }
2528       } else {
2529         if (!BBI->use_empty())
2530           TranslateMap[&*BBI] = N;
2531       }
2532       if (N) {
2533         // Insert the new instruction into its new home.
2534         EdgeBB->getInstList().insert(InsertPt, N);
2535 
2536         // Register the new instruction with the assumption cache if necessary.
2537         if (auto *Assume = dyn_cast<AssumeInst>(N))
2538           if (AC)
2539             AC->registerAssumption(Assume);
2540       }
2541     }
2542 
2543     // Loop over all of the edges from PredBB to BB, changing them to branch
2544     // to EdgeBB instead.
2545     Instruction *PredBBTI = PredBB->getTerminator();
2546     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2547       if (PredBBTI->getSuccessor(i) == BB) {
2548         BB->removePredecessor(PredBB);
2549         PredBBTI->setSuccessor(i, EdgeBB);
2550       }
2551 
2552     if (DTU) {
2553       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2554       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2555 
2556       DTU->applyUpdates(Updates);
2557     }
2558 
2559     // Recurse, simplifying any other constants.
2560     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2561   }
2562 
2563   return false;
2564 }
2565 
2566 /// Given a BB that starts with the specified two-entry PHI node,
2567 /// see if we can eliminate it.
2568 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2569                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2570   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2571   // statement", which has a very simple dominance structure.  Basically, we
2572   // are trying to find the condition that is being branched on, which
2573   // subsequently causes this merge to happen.  We really want control
2574   // dependence information for this check, but simplifycfg can't keep it up
2575   // to date, and this catches most of the cases we care about anyway.
2576   BasicBlock *BB = PN->getParent();
2577 
2578   BasicBlock *IfTrue, *IfFalse;
2579   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2580   if (!IfCond ||
2581       // Don't bother if the branch will be constant folded trivially.
2582       isa<ConstantInt>(IfCond))
2583     return false;
2584 
2585   // Okay, we found that we can merge this two-entry phi node into a select.
2586   // Doing so would require us to fold *all* two entry phi nodes in this block.
2587   // At some point this becomes non-profitable (particularly if the target
2588   // doesn't support cmov's).  Only do this transformation if there are two or
2589   // fewer PHI nodes in this block.
2590   unsigned NumPhis = 0;
2591   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2592     if (NumPhis > 2)
2593       return false;
2594 
2595   // Loop over the PHI's seeing if we can promote them all to select
2596   // instructions.  While we are at it, keep track of the instructions
2597   // that need to be moved to the dominating block.
2598   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2599   InstructionCost Cost = 0;
2600   InstructionCost Budget =
2601       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2602 
2603   bool Changed = false;
2604   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2605     PHINode *PN = cast<PHINode>(II++);
2606     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2607       PN->replaceAllUsesWith(V);
2608       PN->eraseFromParent();
2609       Changed = true;
2610       continue;
2611     }
2612 
2613     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2614                              Cost, Budget, TTI) ||
2615         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2616                              Cost, Budget, TTI))
2617       return Changed;
2618   }
2619 
2620   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2621   // we ran out of PHIs then we simplified them all.
2622   PN = dyn_cast<PHINode>(BB->begin());
2623   if (!PN)
2624     return true;
2625 
2626   // Return true if at least one of these is a 'not', and another is either
2627   // a 'not' too, or a constant.
2628   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2629     if (!match(V0, m_Not(m_Value())))
2630       std::swap(V0, V1);
2631     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2632     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2633   };
2634 
2635   // Don't fold i1 branches on PHIs which contain binary operators or
2636   // select form of or/ands, unless one of the incoming values is an 'not' and
2637   // another one is freely invertible.
2638   // These can often be turned into switches and other things.
2639   auto IsBinOpOrAnd = [](Value *V) {
2640     return match(
2641         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2642   };
2643   if (PN->getType()->isIntegerTy(1) &&
2644       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2645        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2646       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2647                                  PN->getIncomingValue(1)))
2648     return Changed;
2649 
2650   // If all PHI nodes are promotable, check to make sure that all instructions
2651   // in the predecessor blocks can be promoted as well. If not, we won't be able
2652   // to get rid of the control flow, so it's not worth promoting to select
2653   // instructions.
2654   BasicBlock *DomBlock = nullptr;
2655   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2656   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2657   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2658     IfBlock1 = nullptr;
2659   } else {
2660     DomBlock = *pred_begin(IfBlock1);
2661     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2662       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2663           !isa<PseudoProbeInst>(I)) {
2664         // This is not an aggressive instruction that we can promote.
2665         // Because of this, we won't be able to get rid of the control flow, so
2666         // the xform is not worth it.
2667         return Changed;
2668       }
2669   }
2670 
2671   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2672     IfBlock2 = nullptr;
2673   } else {
2674     DomBlock = *pred_begin(IfBlock2);
2675     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2676       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2677           !isa<PseudoProbeInst>(I)) {
2678         // This is not an aggressive instruction that we can promote.
2679         // Because of this, we won't be able to get rid of the control flow, so
2680         // the xform is not worth it.
2681         return Changed;
2682       }
2683   }
2684   assert(DomBlock && "Failed to find root DomBlock");
2685 
2686   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2687                     << "  T: " << IfTrue->getName()
2688                     << "  F: " << IfFalse->getName() << "\n");
2689 
2690   // If we can still promote the PHI nodes after this gauntlet of tests,
2691   // do all of the PHI's now.
2692   Instruction *InsertPt = DomBlock->getTerminator();
2693   IRBuilder<NoFolder> Builder(InsertPt);
2694 
2695   // Move all 'aggressive' instructions, which are defined in the
2696   // conditional parts of the if's up to the dominating block.
2697   if (IfBlock1)
2698     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2699   if (IfBlock2)
2700     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2701 
2702   // Propagate fast-math-flags from phi nodes to replacement selects.
2703   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2704   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2705     if (isa<FPMathOperator>(PN))
2706       Builder.setFastMathFlags(PN->getFastMathFlags());
2707 
2708     // Change the PHI node into a select instruction.
2709     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2710     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2711 
2712     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2713     PN->replaceAllUsesWith(Sel);
2714     Sel->takeName(PN);
2715     PN->eraseFromParent();
2716   }
2717 
2718   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2719   // has been flattened.  Change DomBlock to jump directly to our new block to
2720   // avoid other simplifycfg's kicking in on the diamond.
2721   Instruction *OldTI = DomBlock->getTerminator();
2722   Builder.SetInsertPoint(OldTI);
2723   Builder.CreateBr(BB);
2724 
2725   SmallVector<DominatorTree::UpdateType, 3> Updates;
2726   if (DTU) {
2727     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2728     for (auto *Successor : successors(DomBlock))
2729       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2730   }
2731 
2732   OldTI->eraseFromParent();
2733   if (DTU)
2734     DTU->applyUpdates(Updates);
2735 
2736   return true;
2737 }
2738 
2739 /// If we found a conditional branch that goes to two returning blocks,
2740 /// try to merge them together into one return,
2741 /// introducing a select if the return values disagree.
2742 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2743                                                     IRBuilder<> &Builder) {
2744   auto *BB = BI->getParent();
2745   assert(BI->isConditional() && "Must be a conditional branch");
2746   BasicBlock *TrueSucc = BI->getSuccessor(0);
2747   BasicBlock *FalseSucc = BI->getSuccessor(1);
2748   // NOTE: destinations may match, this could be degenerate uncond branch.
2749   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2750   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2751 
2752   // Check to ensure both blocks are empty (just a return) or optionally empty
2753   // with PHI nodes.  If there are other instructions, merging would cause extra
2754   // computation on one path or the other.
2755   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2756     return false;
2757   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2758     return false;
2759 
2760   Builder.SetInsertPoint(BI);
2761   // Okay, we found a branch that is going to two return nodes.  If
2762   // there is no return value for this function, just change the
2763   // branch into a return.
2764   if (FalseRet->getNumOperands() == 0) {
2765     TrueSucc->removePredecessor(BB);
2766     FalseSucc->removePredecessor(BB);
2767     Builder.CreateRetVoid();
2768     EraseTerminatorAndDCECond(BI);
2769     if (DTU) {
2770       SmallVector<DominatorTree::UpdateType, 2> Updates;
2771       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2772       if (TrueSucc != FalseSucc)
2773         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2774       DTU->applyUpdates(Updates);
2775     }
2776     return true;
2777   }
2778 
2779   // Otherwise, figure out what the true and false return values are
2780   // so we can insert a new select instruction.
2781   Value *TrueValue = TrueRet->getReturnValue();
2782   Value *FalseValue = FalseRet->getReturnValue();
2783 
2784   // Unwrap any PHI nodes in the return blocks.
2785   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2786     if (TVPN->getParent() == TrueSucc)
2787       TrueValue = TVPN->getIncomingValueForBlock(BB);
2788   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2789     if (FVPN->getParent() == FalseSucc)
2790       FalseValue = FVPN->getIncomingValueForBlock(BB);
2791 
2792   // In order for this transformation to be safe, we must be able to
2793   // unconditionally execute both operands to the return.  This is
2794   // normally the case, but we could have a potentially-trapping
2795   // constant expression that prevents this transformation from being
2796   // safe.
2797   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2798     if (TCV->canTrap())
2799       return false;
2800   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2801     if (FCV->canTrap())
2802       return false;
2803 
2804   // Okay, we collected all the mapped values and checked them for sanity, and
2805   // defined to really do this transformation.  First, update the CFG.
2806   TrueSucc->removePredecessor(BB);
2807   FalseSucc->removePredecessor(BB);
2808 
2809   // Insert select instructions where needed.
2810   Value *BrCond = BI->getCondition();
2811   if (TrueValue) {
2812     // Insert a select if the results differ.
2813     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2814     } else if (isa<UndefValue>(TrueValue)) {
2815       TrueValue = FalseValue;
2816     } else {
2817       TrueValue =
2818           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2819     }
2820   }
2821 
2822   Value *RI =
2823       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2824 
2825   (void)RI;
2826 
2827   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2828                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2829                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2830 
2831   EraseTerminatorAndDCECond(BI);
2832   if (DTU) {
2833     SmallVector<DominatorTree::UpdateType, 2> Updates;
2834     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2835     if (TrueSucc != FalseSucc)
2836       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2837     DTU->applyUpdates(Updates);
2838   }
2839 
2840   return true;
2841 }
2842 
2843 /// Return true if either PBI or BI has branch weight available, and store
2844 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2845 /// not have branch weight, use 1:1 as its weight.
2846 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2847                                    uint64_t &PredTrueWeight,
2848                                    uint64_t &PredFalseWeight,
2849                                    uint64_t &SuccTrueWeight,
2850                                    uint64_t &SuccFalseWeight) {
2851   bool PredHasWeights =
2852       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2853   bool SuccHasWeights =
2854       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2855   if (PredHasWeights || SuccHasWeights) {
2856     if (!PredHasWeights)
2857       PredTrueWeight = PredFalseWeight = 1;
2858     if (!SuccHasWeights)
2859       SuccTrueWeight = SuccFalseWeight = 1;
2860     return true;
2861   } else {
2862     return false;
2863   }
2864 }
2865 
2866 /// Determine if the two branches share a common destination and deduce a glue
2867 /// that joins the branches' conditions to arrive at the common destination if
2868 /// that would be profitable.
2869 static Optional<std::pair<Instruction::BinaryOps, bool>>
2870 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
2871                                           const TargetTransformInfo *TTI) {
2872   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2873          "Both blocks must end with a conditional branches.");
2874   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2875          "PredBB must be a predecessor of BB.");
2876 
2877   // We have the potential to fold the conditions together, but if the
2878   // predecessor branch is predictable, we may not want to merge them.
2879   uint64_t PTWeight, PFWeight;
2880   BranchProbability PBITrueProb, Likely;
2881   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
2882       (PTWeight + PFWeight) != 0) {
2883     PBITrueProb =
2884         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
2885     Likely = TTI->getPredictableBranchThreshold();
2886   }
2887 
2888   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2889     // Speculate the 2nd condition unless the 1st is probably true.
2890     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2891       return {{Instruction::Or, false}};
2892   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2893     // Speculate the 2nd condition unless the 1st is probably false.
2894     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2895       return {{Instruction::And, false}};
2896   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2897     // Speculate the 2nd condition unless the 1st is probably true.
2898     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
2899       return {{Instruction::And, true}};
2900   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2901     // Speculate the 2nd condition unless the 1st is probably false.
2902     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
2903       return {{Instruction::Or, true}};
2904   }
2905   return None;
2906 }
2907 
2908 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2909                                              DomTreeUpdater *DTU,
2910                                              MemorySSAUpdater *MSSAU,
2911                                              const TargetTransformInfo *TTI) {
2912   BasicBlock *BB = BI->getParent();
2913   BasicBlock *PredBlock = PBI->getParent();
2914 
2915   // Determine if the two branches share a common destination.
2916   Instruction::BinaryOps Opc;
2917   bool InvertPredCond;
2918   std::tie(Opc, InvertPredCond) =
2919       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
2920 
2921   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2922 
2923   IRBuilder<> Builder(PBI);
2924   // The builder is used to create instructions to eliminate the branch in BB.
2925   // If BB's terminator has !annotation metadata, add it to the new
2926   // instructions.
2927   Builder.CollectMetadataToCopy(BB->getTerminator(),
2928                                 {LLVMContext::MD_annotation});
2929 
2930   // If we need to invert the condition in the pred block to match, do so now.
2931   if (InvertPredCond) {
2932     Value *NewCond = PBI->getCondition();
2933     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2934       CmpInst *CI = cast<CmpInst>(NewCond);
2935       CI->setPredicate(CI->getInversePredicate());
2936     } else {
2937       NewCond =
2938           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2939     }
2940 
2941     PBI->setCondition(NewCond);
2942     PBI->swapSuccessors();
2943   }
2944 
2945   BasicBlock *UniqueSucc =
2946       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2947 
2948   // Before cloning instructions, notify the successor basic block that it
2949   // is about to have a new predecessor. This will update PHI nodes,
2950   // which will allow us to update live-out uses of bonus instructions.
2951   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2952 
2953   // Try to update branch weights.
2954   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2955   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2956                              SuccTrueWeight, SuccFalseWeight)) {
2957     SmallVector<uint64_t, 8> NewWeights;
2958 
2959     if (PBI->getSuccessor(0) == BB) {
2960       // PBI: br i1 %x, BB, FalseDest
2961       // BI:  br i1 %y, UniqueSucc, FalseDest
2962       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2963       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2964       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2965       //               TrueWeight for PBI * FalseWeight for BI.
2966       // We assume that total weights of a BranchInst can fit into 32 bits.
2967       // Therefore, we will not have overflow using 64-bit arithmetic.
2968       NewWeights.push_back(PredFalseWeight *
2969                                (SuccFalseWeight + SuccTrueWeight) +
2970                            PredTrueWeight * SuccFalseWeight);
2971     } else {
2972       // PBI: br i1 %x, TrueDest, BB
2973       // BI:  br i1 %y, TrueDest, UniqueSucc
2974       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2975       //              FalseWeight for PBI * TrueWeight for BI.
2976       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2977                            PredFalseWeight * SuccTrueWeight);
2978       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2979       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2980     }
2981 
2982     // Halve the weights if any of them cannot fit in an uint32_t
2983     FitWeights(NewWeights);
2984 
2985     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
2986     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2987 
2988     // TODO: If BB is reachable from all paths through PredBlock, then we
2989     // could replace PBI's branch probabilities with BI's.
2990   } else
2991     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2992 
2993   // Now, update the CFG.
2994   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
2995 
2996   if (DTU)
2997     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
2998                        {DominatorTree::Delete, PredBlock, BB}});
2999 
3000   // If BI was a loop latch, it may have had associated loop metadata.
3001   // We need to copy it to the new latch, that is, PBI.
3002   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3003     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3004 
3005   ValueToValueMapTy VMap; // maps original values to cloned values
3006   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3007 
3008   // Now that the Cond was cloned into the predecessor basic block,
3009   // or/and the two conditions together.
3010   Value *NewCond = nullptr;
3011   Value *BICond = VMap[BI->getCondition()];
3012 
3013   if (impliesPoison(BICond, PBI->getCondition()))
3014     NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond");
3015   else
3016     NewCond =
3017         Opc == Instruction::And
3018             ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond")
3019             : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond");
3020   PBI->setCondition(NewCond);
3021 
3022   // Copy any debug value intrinsics into the end of PredBlock.
3023   for (Instruction &I : *BB) {
3024     if (isa<DbgInfoIntrinsic>(I)) {
3025       Instruction *NewI = I.clone();
3026       RemapInstruction(NewI, VMap,
3027                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3028       NewI->insertBefore(PBI);
3029     }
3030   }
3031 
3032   ++NumFoldBranchToCommonDest;
3033   return true;
3034 }
3035 
3036 /// If this basic block is simple enough, and if a predecessor branches to us
3037 /// and one of our successors, fold the block into the predecessor and use
3038 /// logical operations to pick the right destination.
3039 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3040                                   MemorySSAUpdater *MSSAU,
3041                                   const TargetTransformInfo *TTI,
3042                                   unsigned BonusInstThreshold) {
3043   // If this block ends with an unconditional branch,
3044   // let SpeculativelyExecuteBB() deal with it.
3045   if (!BI->isConditional())
3046     return false;
3047 
3048   BasicBlock *BB = BI->getParent();
3049 
3050   bool Changed = false;
3051 
3052   TargetTransformInfo::TargetCostKind CostKind =
3053     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3054                                   : TargetTransformInfo::TCK_SizeAndLatency;
3055 
3056   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3057 
3058   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3059       Cond->getParent() != BB || !Cond->hasOneUse())
3060     return Changed;
3061 
3062   // Cond is known to be a compare or binary operator.  Check to make sure that
3063   // neither operand is a potentially-trapping constant expression.
3064   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3065     if (CE->canTrap())
3066       return Changed;
3067   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3068     if (CE->canTrap())
3069       return Changed;
3070 
3071   // Finally, don't infinitely unroll conditional loops.
3072   if (is_contained(successors(BB), BB))
3073     return Changed;
3074 
3075   // With which predecessors will we want to deal with?
3076   SmallVector<BasicBlock *, 8> Preds;
3077   for (BasicBlock *PredBlock : predecessors(BB)) {
3078     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3079 
3080     // Check that we have two conditional branches.  If there is a PHI node in
3081     // the common successor, verify that the same value flows in from both
3082     // blocks.
3083     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3084       continue;
3085 
3086     // Determine if the two branches share a common destination.
3087     Instruction::BinaryOps Opc;
3088     bool InvertPredCond;
3089     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3090       std::tie(Opc, InvertPredCond) = *Recipe;
3091     else
3092       continue;
3093 
3094     // Check the cost of inserting the necessary logic before performing the
3095     // transformation.
3096     if (TTI) {
3097       Type *Ty = BI->getCondition()->getType();
3098       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3099       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3100           !isa<CmpInst>(PBI->getCondition())))
3101         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3102 
3103       if (Cost > BranchFoldThreshold)
3104         continue;
3105     }
3106 
3107     // Ok, we do want to deal with this predecessor. Record it.
3108     Preds.emplace_back(PredBlock);
3109   }
3110 
3111   // If there aren't any predecessors into which we can fold,
3112   // don't bother checking the cost.
3113   if (Preds.empty())
3114     return Changed;
3115 
3116   // Only allow this transformation if computing the condition doesn't involve
3117   // too many instructions and these involved instructions can be executed
3118   // unconditionally. We denote all involved instructions except the condition
3119   // as "bonus instructions", and only allow this transformation when the
3120   // number of the bonus instructions we'll need to create when cloning into
3121   // each predecessor does not exceed a certain threshold.
3122   unsigned NumBonusInsts = 0;
3123   const unsigned PredCount = Preds.size();
3124   for (Instruction &I : *BB) {
3125     // Don't check the branch condition comparison itself.
3126     if (&I == Cond)
3127       continue;
3128     // Ignore dbg intrinsics, and the terminator.
3129     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3130       continue;
3131     // I must be safe to execute unconditionally.
3132     if (!isSafeToSpeculativelyExecute(&I))
3133       return Changed;
3134 
3135     // Account for the cost of duplicating this instruction into each
3136     // predecessor.
3137     NumBonusInsts += PredCount;
3138     // Early exits once we reach the limit.
3139     if (NumBonusInsts > BonusInstThreshold)
3140       return Changed;
3141   }
3142 
3143   // Ok, we have the budget. Perform the transformation.
3144   for (BasicBlock *PredBlock : Preds) {
3145     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3146     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3147   }
3148   return Changed;
3149 }
3150 
3151 // If there is only one store in BB1 and BB2, return it, otherwise return
3152 // nullptr.
3153 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3154   StoreInst *S = nullptr;
3155   for (auto *BB : {BB1, BB2}) {
3156     if (!BB)
3157       continue;
3158     for (auto &I : *BB)
3159       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3160         if (S)
3161           // Multiple stores seen.
3162           return nullptr;
3163         else
3164           S = SI;
3165       }
3166   }
3167   return S;
3168 }
3169 
3170 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3171                                               Value *AlternativeV = nullptr) {
3172   // PHI is going to be a PHI node that allows the value V that is defined in
3173   // BB to be referenced in BB's only successor.
3174   //
3175   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3176   // doesn't matter to us what the other operand is (it'll never get used). We
3177   // could just create a new PHI with an undef incoming value, but that could
3178   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3179   // other PHI. So here we directly look for some PHI in BB's successor with V
3180   // as an incoming operand. If we find one, we use it, else we create a new
3181   // one.
3182   //
3183   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3184   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3185   // where OtherBB is the single other predecessor of BB's only successor.
3186   PHINode *PHI = nullptr;
3187   BasicBlock *Succ = BB->getSingleSuccessor();
3188 
3189   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3190     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3191       PHI = cast<PHINode>(I);
3192       if (!AlternativeV)
3193         break;
3194 
3195       assert(Succ->hasNPredecessors(2));
3196       auto PredI = pred_begin(Succ);
3197       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3198       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3199         break;
3200       PHI = nullptr;
3201     }
3202   if (PHI)
3203     return PHI;
3204 
3205   // If V is not an instruction defined in BB, just return it.
3206   if (!AlternativeV &&
3207       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3208     return V;
3209 
3210   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3211   PHI->addIncoming(V, BB);
3212   for (BasicBlock *PredBB : predecessors(Succ))
3213     if (PredBB != BB)
3214       PHI->addIncoming(
3215           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3216   return PHI;
3217 }
3218 
3219 static bool mergeConditionalStoreToAddress(
3220     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3221     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3222     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3223   // For every pointer, there must be exactly two stores, one coming from
3224   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3225   // store (to any address) in PTB,PFB or QTB,QFB.
3226   // FIXME: We could relax this restriction with a bit more work and performance
3227   // testing.
3228   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3229   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3230   if (!PStore || !QStore)
3231     return false;
3232 
3233   // Now check the stores are compatible.
3234   if (!QStore->isUnordered() || !PStore->isUnordered())
3235     return false;
3236 
3237   // Check that sinking the store won't cause program behavior changes. Sinking
3238   // the store out of the Q blocks won't change any behavior as we're sinking
3239   // from a block to its unconditional successor. But we're moving a store from
3240   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3241   // So we need to check that there are no aliasing loads or stores in
3242   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3243   // operations between PStore and the end of its parent block.
3244   //
3245   // The ideal way to do this is to query AliasAnalysis, but we don't
3246   // preserve AA currently so that is dangerous. Be super safe and just
3247   // check there are no other memory operations at all.
3248   for (auto &I : *QFB->getSinglePredecessor())
3249     if (I.mayReadOrWriteMemory())
3250       return false;
3251   for (auto &I : *QFB)
3252     if (&I != QStore && I.mayReadOrWriteMemory())
3253       return false;
3254   if (QTB)
3255     for (auto &I : *QTB)
3256       if (&I != QStore && I.mayReadOrWriteMemory())
3257         return false;
3258   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3259        I != E; ++I)
3260     if (&*I != PStore && I->mayReadOrWriteMemory())
3261       return false;
3262 
3263   // If we're not in aggressive mode, we only optimize if we have some
3264   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3265   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3266     if (!BB)
3267       return true;
3268     // Heuristic: if the block can be if-converted/phi-folded and the
3269     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3270     // thread this store.
3271     InstructionCost Cost = 0;
3272     InstructionCost Budget =
3273         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3274     for (auto &I : BB->instructionsWithoutDebug()) {
3275       // Consider terminator instruction to be free.
3276       if (I.isTerminator())
3277         continue;
3278       // If this is one the stores that we want to speculate out of this BB,
3279       // then don't count it's cost, consider it to be free.
3280       if (auto *S = dyn_cast<StoreInst>(&I))
3281         if (llvm::find(FreeStores, S))
3282           continue;
3283       // Else, we have a white-list of instructions that we are ak speculating.
3284       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3285         return false; // Not in white-list - not worthwhile folding.
3286       // And finally, if this is a non-free instruction that we are okay
3287       // speculating, ensure that we consider the speculation budget.
3288       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3289       if (Cost > Budget)
3290         return false; // Eagerly refuse to fold as soon as we're out of budget.
3291     }
3292     assert(Cost <= Budget &&
3293            "When we run out of budget we will eagerly return from within the "
3294            "per-instruction loop.");
3295     return true;
3296   };
3297 
3298   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3299   if (!MergeCondStoresAggressively &&
3300       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3301        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3302     return false;
3303 
3304   // If PostBB has more than two predecessors, we need to split it so we can
3305   // sink the store.
3306   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3307     // We know that QFB's only successor is PostBB. And QFB has a single
3308     // predecessor. If QTB exists, then its only successor is also PostBB.
3309     // If QTB does not exist, then QFB's only predecessor has a conditional
3310     // branch to QFB and PostBB.
3311     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3312     BasicBlock *NewBB =
3313         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3314     if (!NewBB)
3315       return false;
3316     PostBB = NewBB;
3317   }
3318 
3319   // OK, we're going to sink the stores to PostBB. The store has to be
3320   // conditional though, so first create the predicate.
3321   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3322                      ->getCondition();
3323   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3324                      ->getCondition();
3325 
3326   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3327                                                 PStore->getParent());
3328   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3329                                                 QStore->getParent(), PPHI);
3330 
3331   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3332 
3333   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3334   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3335 
3336   if (InvertPCond)
3337     PPred = QB.CreateNot(PPred);
3338   if (InvertQCond)
3339     QPred = QB.CreateNot(QPred);
3340   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3341 
3342   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3343                                       /*Unreachable=*/false,
3344                                       /*BranchWeights=*/nullptr, DTU);
3345   QB.SetInsertPoint(T);
3346   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3347   AAMDNodes AAMD;
3348   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3349   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3350   SI->setAAMetadata(AAMD);
3351   // Choose the minimum alignment. If we could prove both stores execute, we
3352   // could use biggest one.  In this case, though, we only know that one of the
3353   // stores executes.  And we don't know it's safe to take the alignment from a
3354   // store that doesn't execute.
3355   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3356 
3357   QStore->eraseFromParent();
3358   PStore->eraseFromParent();
3359 
3360   return true;
3361 }
3362 
3363 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3364                                    DomTreeUpdater *DTU, const DataLayout &DL,
3365                                    const TargetTransformInfo &TTI) {
3366   // The intention here is to find diamonds or triangles (see below) where each
3367   // conditional block contains a store to the same address. Both of these
3368   // stores are conditional, so they can't be unconditionally sunk. But it may
3369   // be profitable to speculatively sink the stores into one merged store at the
3370   // end, and predicate the merged store on the union of the two conditions of
3371   // PBI and QBI.
3372   //
3373   // This can reduce the number of stores executed if both of the conditions are
3374   // true, and can allow the blocks to become small enough to be if-converted.
3375   // This optimization will also chain, so that ladders of test-and-set
3376   // sequences can be if-converted away.
3377   //
3378   // We only deal with simple diamonds or triangles:
3379   //
3380   //     PBI       or      PBI        or a combination of the two
3381   //    /   \               | \
3382   //   PTB  PFB             |  PFB
3383   //    \   /               | /
3384   //     QBI                QBI
3385   //    /  \                | \
3386   //   QTB  QFB             |  QFB
3387   //    \  /                | /
3388   //    PostBB            PostBB
3389   //
3390   // We model triangles as a type of diamond with a nullptr "true" block.
3391   // Triangles are canonicalized so that the fallthrough edge is represented by
3392   // a true condition, as in the diagram above.
3393   BasicBlock *PTB = PBI->getSuccessor(0);
3394   BasicBlock *PFB = PBI->getSuccessor(1);
3395   BasicBlock *QTB = QBI->getSuccessor(0);
3396   BasicBlock *QFB = QBI->getSuccessor(1);
3397   BasicBlock *PostBB = QFB->getSingleSuccessor();
3398 
3399   // Make sure we have a good guess for PostBB. If QTB's only successor is
3400   // QFB, then QFB is a better PostBB.
3401   if (QTB->getSingleSuccessor() == QFB)
3402     PostBB = QFB;
3403 
3404   // If we couldn't find a good PostBB, stop.
3405   if (!PostBB)
3406     return false;
3407 
3408   bool InvertPCond = false, InvertQCond = false;
3409   // Canonicalize fallthroughs to the true branches.
3410   if (PFB == QBI->getParent()) {
3411     std::swap(PFB, PTB);
3412     InvertPCond = true;
3413   }
3414   if (QFB == PostBB) {
3415     std::swap(QFB, QTB);
3416     InvertQCond = true;
3417   }
3418 
3419   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3420   // and QFB may not. Model fallthroughs as a nullptr block.
3421   if (PTB == QBI->getParent())
3422     PTB = nullptr;
3423   if (QTB == PostBB)
3424     QTB = nullptr;
3425 
3426   // Legality bailouts. We must have at least the non-fallthrough blocks and
3427   // the post-dominating block, and the non-fallthroughs must only have one
3428   // predecessor.
3429   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3430     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3431   };
3432   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3433       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3434     return false;
3435   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3436       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3437     return false;
3438   if (!QBI->getParent()->hasNUses(2))
3439     return false;
3440 
3441   // OK, this is a sequence of two diamonds or triangles.
3442   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3443   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3444   for (auto *BB : {PTB, PFB}) {
3445     if (!BB)
3446       continue;
3447     for (auto &I : *BB)
3448       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3449         PStoreAddresses.insert(SI->getPointerOperand());
3450   }
3451   for (auto *BB : {QTB, QFB}) {
3452     if (!BB)
3453       continue;
3454     for (auto &I : *BB)
3455       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3456         QStoreAddresses.insert(SI->getPointerOperand());
3457   }
3458 
3459   set_intersect(PStoreAddresses, QStoreAddresses);
3460   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3461   // clear what it contains.
3462   auto &CommonAddresses = PStoreAddresses;
3463 
3464   bool Changed = false;
3465   for (auto *Address : CommonAddresses)
3466     Changed |=
3467         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3468                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3469   return Changed;
3470 }
3471 
3472 /// If the previous block ended with a widenable branch, determine if reusing
3473 /// the target block is profitable and legal.  This will have the effect of
3474 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3475 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3476                                            DomTreeUpdater *DTU) {
3477   // TODO: This can be generalized in two important ways:
3478   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3479   //    values from the PBI edge.
3480   // 2) We can sink side effecting instructions into BI's fallthrough
3481   //    successor provided they doesn't contribute to computation of
3482   //    BI's condition.
3483   Value *CondWB, *WC;
3484   BasicBlock *IfTrueBB, *IfFalseBB;
3485   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3486       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3487     return false;
3488   if (!IfFalseBB->phis().empty())
3489     return false; // TODO
3490   // Use lambda to lazily compute expensive condition after cheap ones.
3491   auto NoSideEffects = [](BasicBlock &BB) {
3492     return !llvm::any_of(BB, [](const Instruction &I) {
3493         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3494       });
3495   };
3496   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3497       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3498       NoSideEffects(*BI->getParent())) {
3499     auto *OldSuccessor = BI->getSuccessor(1);
3500     OldSuccessor->removePredecessor(BI->getParent());
3501     BI->setSuccessor(1, IfFalseBB);
3502     if (DTU)
3503       DTU->applyUpdates(
3504           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3505            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3506     return true;
3507   }
3508   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3509       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3510       NoSideEffects(*BI->getParent())) {
3511     auto *OldSuccessor = BI->getSuccessor(0);
3512     OldSuccessor->removePredecessor(BI->getParent());
3513     BI->setSuccessor(0, IfFalseBB);
3514     if (DTU)
3515       DTU->applyUpdates(
3516           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3517            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3518     return true;
3519   }
3520   return false;
3521 }
3522 
3523 /// If we have a conditional branch as a predecessor of another block,
3524 /// this function tries to simplify it.  We know
3525 /// that PBI and BI are both conditional branches, and BI is in one of the
3526 /// successor blocks of PBI - PBI branches to BI.
3527 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3528                                            DomTreeUpdater *DTU,
3529                                            const DataLayout &DL,
3530                                            const TargetTransformInfo &TTI) {
3531   assert(PBI->isConditional() && BI->isConditional());
3532   BasicBlock *BB = BI->getParent();
3533 
3534   // If this block ends with a branch instruction, and if there is a
3535   // predecessor that ends on a branch of the same condition, make
3536   // this conditional branch redundant.
3537   if (PBI->getCondition() == BI->getCondition() &&
3538       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3539     // Okay, the outcome of this conditional branch is statically
3540     // knowable.  If this block had a single pred, handle specially.
3541     if (BB->getSinglePredecessor()) {
3542       // Turn this into a branch on constant.
3543       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3544       BI->setCondition(
3545           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3546       return true; // Nuke the branch on constant.
3547     }
3548 
3549     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3550     // in the constant and simplify the block result.  Subsequent passes of
3551     // simplifycfg will thread the block.
3552     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3553       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3554       PHINode *NewPN = PHINode::Create(
3555           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3556           BI->getCondition()->getName() + ".pr", &BB->front());
3557       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3558       // predecessor, compute the PHI'd conditional value for all of the preds.
3559       // Any predecessor where the condition is not computable we keep symbolic.
3560       for (pred_iterator PI = PB; PI != PE; ++PI) {
3561         BasicBlock *P = *PI;
3562         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3563             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3564             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3565           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3566           NewPN->addIncoming(
3567               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3568               P);
3569         } else {
3570           NewPN->addIncoming(BI->getCondition(), P);
3571         }
3572       }
3573 
3574       BI->setCondition(NewPN);
3575       return true;
3576     }
3577   }
3578 
3579   // If the previous block ended with a widenable branch, determine if reusing
3580   // the target block is profitable and legal.  This will have the effect of
3581   // "widening" PBI, but doesn't require us to reason about hosting safety.
3582   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3583     return true;
3584 
3585   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3586     if (CE->canTrap())
3587       return false;
3588 
3589   // If both branches are conditional and both contain stores to the same
3590   // address, remove the stores from the conditionals and create a conditional
3591   // merged store at the end.
3592   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3593     return true;
3594 
3595   // If this is a conditional branch in an empty block, and if any
3596   // predecessors are a conditional branch to one of our destinations,
3597   // fold the conditions into logical ops and one cond br.
3598 
3599   // Ignore dbg intrinsics.
3600   if (&*BB->instructionsWithoutDebug().begin() != BI)
3601     return false;
3602 
3603   int PBIOp, BIOp;
3604   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3605     PBIOp = 0;
3606     BIOp = 0;
3607   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3608     PBIOp = 0;
3609     BIOp = 1;
3610   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3611     PBIOp = 1;
3612     BIOp = 0;
3613   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3614     PBIOp = 1;
3615     BIOp = 1;
3616   } else {
3617     return false;
3618   }
3619 
3620   // Check to make sure that the other destination of this branch
3621   // isn't BB itself.  If so, this is an infinite loop that will
3622   // keep getting unwound.
3623   if (PBI->getSuccessor(PBIOp) == BB)
3624     return false;
3625 
3626   // Do not perform this transformation if it would require
3627   // insertion of a large number of select instructions. For targets
3628   // without predication/cmovs, this is a big pessimization.
3629 
3630   // Also do not perform this transformation if any phi node in the common
3631   // destination block can trap when reached by BB or PBB (PR17073). In that
3632   // case, it would be unsafe to hoist the operation into a select instruction.
3633 
3634   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3635   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3636   unsigned NumPhis = 0;
3637   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3638        ++II, ++NumPhis) {
3639     if (NumPhis > 2) // Disable this xform.
3640       return false;
3641 
3642     PHINode *PN = cast<PHINode>(II);
3643     Value *BIV = PN->getIncomingValueForBlock(BB);
3644     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3645       if (CE->canTrap())
3646         return false;
3647 
3648     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3649     Value *PBIV = PN->getIncomingValue(PBBIdx);
3650     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3651       if (CE->canTrap())
3652         return false;
3653   }
3654 
3655   // Finally, if everything is ok, fold the branches to logical ops.
3656   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3657 
3658   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3659                     << "AND: " << *BI->getParent());
3660 
3661   SmallVector<DominatorTree::UpdateType, 5> Updates;
3662 
3663   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3664   // branch in it, where one edge (OtherDest) goes back to itself but the other
3665   // exits.  We don't *know* that the program avoids the infinite loop
3666   // (even though that seems likely).  If we do this xform naively, we'll end up
3667   // recursively unpeeling the loop.  Since we know that (after the xform is
3668   // done) that the block *is* infinite if reached, we just make it an obviously
3669   // infinite loop with no cond branch.
3670   if (OtherDest == BB) {
3671     // Insert it at the end of the function, because it's either code,
3672     // or it won't matter if it's hot. :)
3673     BasicBlock *InfLoopBlock =
3674         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3675     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3676     if (DTU)
3677       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3678     OtherDest = InfLoopBlock;
3679   }
3680 
3681   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3682 
3683   // BI may have other predecessors.  Because of this, we leave
3684   // it alone, but modify PBI.
3685 
3686   // Make sure we get to CommonDest on True&True directions.
3687   Value *PBICond = PBI->getCondition();
3688   IRBuilder<NoFolder> Builder(PBI);
3689   if (PBIOp)
3690     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3691 
3692   Value *BICond = BI->getCondition();
3693   if (BIOp)
3694     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3695 
3696   // Merge the conditions.
3697   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3698 
3699   // Modify PBI to branch on the new condition to the new dests.
3700   PBI->setCondition(Cond);
3701   PBI->setSuccessor(0, CommonDest);
3702   PBI->setSuccessor(1, OtherDest);
3703 
3704   if (DTU) {
3705     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3706     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3707 
3708     DTU->applyUpdates(Updates);
3709   }
3710 
3711   // Update branch weight for PBI.
3712   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3713   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3714   bool HasWeights =
3715       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3716                              SuccTrueWeight, SuccFalseWeight);
3717   if (HasWeights) {
3718     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3719     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3720     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3721     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3722     // The weight to CommonDest should be PredCommon * SuccTotal +
3723     //                                    PredOther * SuccCommon.
3724     // The weight to OtherDest should be PredOther * SuccOther.
3725     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3726                                   PredOther * SuccCommon,
3727                               PredOther * SuccOther};
3728     // Halve the weights if any of them cannot fit in an uint32_t
3729     FitWeights(NewWeights);
3730 
3731     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3732   }
3733 
3734   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3735   // block that are identical to the entries for BI's block.
3736   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3737 
3738   // We know that the CommonDest already had an edge from PBI to
3739   // it.  If it has PHIs though, the PHIs may have different
3740   // entries for BB and PBI's BB.  If so, insert a select to make
3741   // them agree.
3742   for (PHINode &PN : CommonDest->phis()) {
3743     Value *BIV = PN.getIncomingValueForBlock(BB);
3744     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3745     Value *PBIV = PN.getIncomingValue(PBBIdx);
3746     if (BIV != PBIV) {
3747       // Insert a select in PBI to pick the right value.
3748       SelectInst *NV = cast<SelectInst>(
3749           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3750       PN.setIncomingValue(PBBIdx, NV);
3751       // Although the select has the same condition as PBI, the original branch
3752       // weights for PBI do not apply to the new select because the select's
3753       // 'logical' edges are incoming edges of the phi that is eliminated, not
3754       // the outgoing edges of PBI.
3755       if (HasWeights) {
3756         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3757         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3758         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3759         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3760         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3761         // The weight to PredOtherDest should be PredOther * SuccCommon.
3762         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3763                                   PredOther * SuccCommon};
3764 
3765         FitWeights(NewWeights);
3766 
3767         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3768       }
3769     }
3770   }
3771 
3772   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3773   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3774 
3775   // This basic block is probably dead.  We know it has at least
3776   // one fewer predecessor.
3777   return true;
3778 }
3779 
3780 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3781 // true or to FalseBB if Cond is false.
3782 // Takes care of updating the successors and removing the old terminator.
3783 // Also makes sure not to introduce new successors by assuming that edges to
3784 // non-successor TrueBBs and FalseBBs aren't reachable.
3785 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3786                                                 Value *Cond, BasicBlock *TrueBB,
3787                                                 BasicBlock *FalseBB,
3788                                                 uint32_t TrueWeight,
3789                                                 uint32_t FalseWeight) {
3790   auto *BB = OldTerm->getParent();
3791   // Remove any superfluous successor edges from the CFG.
3792   // First, figure out which successors to preserve.
3793   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3794   // successor.
3795   BasicBlock *KeepEdge1 = TrueBB;
3796   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3797 
3798   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3799 
3800   // Then remove the rest.
3801   for (BasicBlock *Succ : successors(OldTerm)) {
3802     // Make sure only to keep exactly one copy of each edge.
3803     if (Succ == KeepEdge1)
3804       KeepEdge1 = nullptr;
3805     else if (Succ == KeepEdge2)
3806       KeepEdge2 = nullptr;
3807     else {
3808       Succ->removePredecessor(BB,
3809                               /*KeepOneInputPHIs=*/true);
3810 
3811       if (Succ != TrueBB && Succ != FalseBB)
3812         RemovedSuccessors.insert(Succ);
3813     }
3814   }
3815 
3816   IRBuilder<> Builder(OldTerm);
3817   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3818 
3819   // Insert an appropriate new terminator.
3820   if (!KeepEdge1 && !KeepEdge2) {
3821     if (TrueBB == FalseBB) {
3822       // We were only looking for one successor, and it was present.
3823       // Create an unconditional branch to it.
3824       Builder.CreateBr(TrueBB);
3825     } else {
3826       // We found both of the successors we were looking for.
3827       // Create a conditional branch sharing the condition of the select.
3828       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3829       if (TrueWeight != FalseWeight)
3830         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3831     }
3832   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3833     // Neither of the selected blocks were successors, so this
3834     // terminator must be unreachable.
3835     new UnreachableInst(OldTerm->getContext(), OldTerm);
3836   } else {
3837     // One of the selected values was a successor, but the other wasn't.
3838     // Insert an unconditional branch to the one that was found;
3839     // the edge to the one that wasn't must be unreachable.
3840     if (!KeepEdge1) {
3841       // Only TrueBB was found.
3842       Builder.CreateBr(TrueBB);
3843     } else {
3844       // Only FalseBB was found.
3845       Builder.CreateBr(FalseBB);
3846     }
3847   }
3848 
3849   EraseTerminatorAndDCECond(OldTerm);
3850 
3851   if (DTU) {
3852     SmallVector<DominatorTree::UpdateType, 2> Updates;
3853     Updates.reserve(RemovedSuccessors.size());
3854     for (auto *RemovedSuccessor : RemovedSuccessors)
3855       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3856     DTU->applyUpdates(Updates);
3857   }
3858 
3859   return true;
3860 }
3861 
3862 // Replaces
3863 //   (switch (select cond, X, Y)) on constant X, Y
3864 // with a branch - conditional if X and Y lead to distinct BBs,
3865 // unconditional otherwise.
3866 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3867                                             SelectInst *Select) {
3868   // Check for constant integer values in the select.
3869   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3870   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3871   if (!TrueVal || !FalseVal)
3872     return false;
3873 
3874   // Find the relevant condition and destinations.
3875   Value *Condition = Select->getCondition();
3876   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3877   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3878 
3879   // Get weight for TrueBB and FalseBB.
3880   uint32_t TrueWeight = 0, FalseWeight = 0;
3881   SmallVector<uint64_t, 8> Weights;
3882   bool HasWeights = HasBranchWeights(SI);
3883   if (HasWeights) {
3884     GetBranchWeights(SI, Weights);
3885     if (Weights.size() == 1 + SI->getNumCases()) {
3886       TrueWeight =
3887           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3888       FalseWeight =
3889           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3890     }
3891   }
3892 
3893   // Perform the actual simplification.
3894   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3895                                     FalseWeight);
3896 }
3897 
3898 // Replaces
3899 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3900 //                             blockaddress(@fn, BlockB)))
3901 // with
3902 //   (br cond, BlockA, BlockB).
3903 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3904                                                 SelectInst *SI) {
3905   // Check that both operands of the select are block addresses.
3906   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3907   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3908   if (!TBA || !FBA)
3909     return false;
3910 
3911   // Extract the actual blocks.
3912   BasicBlock *TrueBB = TBA->getBasicBlock();
3913   BasicBlock *FalseBB = FBA->getBasicBlock();
3914 
3915   // Perform the actual simplification.
3916   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3917                                     0);
3918 }
3919 
3920 /// This is called when we find an icmp instruction
3921 /// (a seteq/setne with a constant) as the only instruction in a
3922 /// block that ends with an uncond branch.  We are looking for a very specific
3923 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3924 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3925 /// default value goes to an uncond block with a seteq in it, we get something
3926 /// like:
3927 ///
3928 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3929 /// DEFAULT:
3930 ///   %tmp = icmp eq i8 %A, 92
3931 ///   br label %end
3932 /// end:
3933 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3934 ///
3935 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3936 /// the PHI, merging the third icmp into the switch.
3937 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3938     ICmpInst *ICI, IRBuilder<> &Builder) {
3939   BasicBlock *BB = ICI->getParent();
3940 
3941   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3942   // complex.
3943   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3944     return false;
3945 
3946   Value *V = ICI->getOperand(0);
3947   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3948 
3949   // The pattern we're looking for is where our only predecessor is a switch on
3950   // 'V' and this block is the default case for the switch.  In this case we can
3951   // fold the compared value into the switch to simplify things.
3952   BasicBlock *Pred = BB->getSinglePredecessor();
3953   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3954     return false;
3955 
3956   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3957   if (SI->getCondition() != V)
3958     return false;
3959 
3960   // If BB is reachable on a non-default case, then we simply know the value of
3961   // V in this block.  Substitute it and constant fold the icmp instruction
3962   // away.
3963   if (SI->getDefaultDest() != BB) {
3964     ConstantInt *VVal = SI->findCaseDest(BB);
3965     assert(VVal && "Should have a unique destination value");
3966     ICI->setOperand(0, VVal);
3967 
3968     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3969       ICI->replaceAllUsesWith(V);
3970       ICI->eraseFromParent();
3971     }
3972     // BB is now empty, so it is likely to simplify away.
3973     return requestResimplify();
3974   }
3975 
3976   // Ok, the block is reachable from the default dest.  If the constant we're
3977   // comparing exists in one of the other edges, then we can constant fold ICI
3978   // and zap it.
3979   if (SI->findCaseValue(Cst) != SI->case_default()) {
3980     Value *V;
3981     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3982       V = ConstantInt::getFalse(BB->getContext());
3983     else
3984       V = ConstantInt::getTrue(BB->getContext());
3985 
3986     ICI->replaceAllUsesWith(V);
3987     ICI->eraseFromParent();
3988     // BB is now empty, so it is likely to simplify away.
3989     return requestResimplify();
3990   }
3991 
3992   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3993   // the block.
3994   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3995   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3996   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3997       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3998     return false;
3999 
4000   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4001   // true in the PHI.
4002   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4003   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4004 
4005   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4006     std::swap(DefaultCst, NewCst);
4007 
4008   // Replace ICI (which is used by the PHI for the default value) with true or
4009   // false depending on if it is EQ or NE.
4010   ICI->replaceAllUsesWith(DefaultCst);
4011   ICI->eraseFromParent();
4012 
4013   SmallVector<DominatorTree::UpdateType, 2> Updates;
4014 
4015   // Okay, the switch goes to this block on a default value.  Add an edge from
4016   // the switch to the merge point on the compared value.
4017   BasicBlock *NewBB =
4018       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4019   {
4020     SwitchInstProfUpdateWrapper SIW(*SI);
4021     auto W0 = SIW.getSuccessorWeight(0);
4022     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4023     if (W0) {
4024       NewW = ((uint64_t(*W0) + 1) >> 1);
4025       SIW.setSuccessorWeight(0, *NewW);
4026     }
4027     SIW.addCase(Cst, NewBB, NewW);
4028     if (DTU)
4029       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4030   }
4031 
4032   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4033   Builder.SetInsertPoint(NewBB);
4034   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4035   Builder.CreateBr(SuccBlock);
4036   PHIUse->addIncoming(NewCst, NewBB);
4037   if (DTU) {
4038     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4039     DTU->applyUpdates(Updates);
4040   }
4041   return true;
4042 }
4043 
4044 /// The specified branch is a conditional branch.
4045 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4046 /// fold it into a switch instruction if so.
4047 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4048                                                IRBuilder<> &Builder,
4049                                                const DataLayout &DL) {
4050   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4051   if (!Cond)
4052     return false;
4053 
4054   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4055   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4056   // 'setne's and'ed together, collect them.
4057 
4058   // Try to gather values from a chain of and/or to be turned into a switch
4059   ConstantComparesGatherer ConstantCompare(Cond, DL);
4060   // Unpack the result
4061   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4062   Value *CompVal = ConstantCompare.CompValue;
4063   unsigned UsedICmps = ConstantCompare.UsedICmps;
4064   Value *ExtraCase = ConstantCompare.Extra;
4065 
4066   // If we didn't have a multiply compared value, fail.
4067   if (!CompVal)
4068     return false;
4069 
4070   // Avoid turning single icmps into a switch.
4071   if (UsedICmps <= 1)
4072     return false;
4073 
4074   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4075 
4076   // There might be duplicate constants in the list, which the switch
4077   // instruction can't handle, remove them now.
4078   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4079   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4080 
4081   // If Extra was used, we require at least two switch values to do the
4082   // transformation.  A switch with one value is just a conditional branch.
4083   if (ExtraCase && Values.size() < 2)
4084     return false;
4085 
4086   // TODO: Preserve branch weight metadata, similarly to how
4087   // FoldValueComparisonIntoPredecessors preserves it.
4088 
4089   // Figure out which block is which destination.
4090   BasicBlock *DefaultBB = BI->getSuccessor(1);
4091   BasicBlock *EdgeBB = BI->getSuccessor(0);
4092   if (!TrueWhenEqual)
4093     std::swap(DefaultBB, EdgeBB);
4094 
4095   BasicBlock *BB = BI->getParent();
4096 
4097   // MSAN does not like undefs as branch condition which can be introduced
4098   // with "explicit branch".
4099   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4100     return false;
4101 
4102   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4103                     << " cases into SWITCH.  BB is:\n"
4104                     << *BB);
4105 
4106   SmallVector<DominatorTree::UpdateType, 2> Updates;
4107 
4108   // If there are any extra values that couldn't be folded into the switch
4109   // then we evaluate them with an explicit branch first. Split the block
4110   // right before the condbr to handle it.
4111   if (ExtraCase) {
4112     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4113                                    /*MSSAU=*/nullptr, "switch.early.test");
4114 
4115     // Remove the uncond branch added to the old block.
4116     Instruction *OldTI = BB->getTerminator();
4117     Builder.SetInsertPoint(OldTI);
4118 
4119     if (TrueWhenEqual)
4120       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4121     else
4122       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4123 
4124     OldTI->eraseFromParent();
4125 
4126     if (DTU)
4127       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4128 
4129     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4130     // for the edge we just added.
4131     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4132 
4133     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4134                       << "\nEXTRABB = " << *BB);
4135     BB = NewBB;
4136   }
4137 
4138   Builder.SetInsertPoint(BI);
4139   // Convert pointer to int before we switch.
4140   if (CompVal->getType()->isPointerTy()) {
4141     CompVal = Builder.CreatePtrToInt(
4142         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4143   }
4144 
4145   // Create the new switch instruction now.
4146   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4147 
4148   // Add all of the 'cases' to the switch instruction.
4149   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4150     New->addCase(Values[i], EdgeBB);
4151 
4152   // We added edges from PI to the EdgeBB.  As such, if there were any
4153   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4154   // the number of edges added.
4155   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4156     PHINode *PN = cast<PHINode>(BBI);
4157     Value *InVal = PN->getIncomingValueForBlock(BB);
4158     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4159       PN->addIncoming(InVal, BB);
4160   }
4161 
4162   // Erase the old branch instruction.
4163   EraseTerminatorAndDCECond(BI);
4164   if (DTU)
4165     DTU->applyUpdates(Updates);
4166 
4167   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4168   return true;
4169 }
4170 
4171 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4172   if (isa<PHINode>(RI->getValue()))
4173     return simplifyCommonResume(RI);
4174   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4175            RI->getValue() == RI->getParent()->getFirstNonPHI())
4176     // The resume must unwind the exception that caused control to branch here.
4177     return simplifySingleResume(RI);
4178 
4179   return false;
4180 }
4181 
4182 // Check if cleanup block is empty
4183 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4184   for (Instruction &I : R) {
4185     auto *II = dyn_cast<IntrinsicInst>(&I);
4186     if (!II)
4187       return false;
4188 
4189     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4190     switch (IntrinsicID) {
4191     case Intrinsic::dbg_declare:
4192     case Intrinsic::dbg_value:
4193     case Intrinsic::dbg_label:
4194     case Intrinsic::lifetime_end:
4195       break;
4196     default:
4197       return false;
4198     }
4199   }
4200   return true;
4201 }
4202 
4203 // Simplify resume that is shared by several landing pads (phi of landing pad).
4204 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4205   BasicBlock *BB = RI->getParent();
4206 
4207   // Check that there are no other instructions except for debug and lifetime
4208   // intrinsics between the phi's and resume instruction.
4209   if (!isCleanupBlockEmpty(
4210           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4211     return false;
4212 
4213   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4214   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4215 
4216   // Check incoming blocks to see if any of them are trivial.
4217   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4218        Idx++) {
4219     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4220     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4221 
4222     // If the block has other successors, we can not delete it because
4223     // it has other dependents.
4224     if (IncomingBB->getUniqueSuccessor() != BB)
4225       continue;
4226 
4227     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4228     // Not the landing pad that caused the control to branch here.
4229     if (IncomingValue != LandingPad)
4230       continue;
4231 
4232     if (isCleanupBlockEmpty(
4233             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4234       TrivialUnwindBlocks.insert(IncomingBB);
4235   }
4236 
4237   // If no trivial unwind blocks, don't do any simplifications.
4238   if (TrivialUnwindBlocks.empty())
4239     return false;
4240 
4241   // Turn all invokes that unwind here into calls.
4242   for (auto *TrivialBB : TrivialUnwindBlocks) {
4243     // Blocks that will be simplified should be removed from the phi node.
4244     // Note there could be multiple edges to the resume block, and we need
4245     // to remove them all.
4246     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4247       BB->removePredecessor(TrivialBB, true);
4248 
4249     for (BasicBlock *Pred :
4250          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4251       removeUnwindEdge(Pred, DTU);
4252       ++NumInvokes;
4253     }
4254 
4255     // In each SimplifyCFG run, only the current processed block can be erased.
4256     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4257     // of erasing TrivialBB, we only remove the branch to the common resume
4258     // block so that we can later erase the resume block since it has no
4259     // predecessors.
4260     TrivialBB->getTerminator()->eraseFromParent();
4261     new UnreachableInst(RI->getContext(), TrivialBB);
4262     if (DTU)
4263       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4264   }
4265 
4266   // Delete the resume block if all its predecessors have been removed.
4267   if (pred_empty(BB)) {
4268     if (DTU)
4269       DTU->deleteBB(BB);
4270     else
4271       BB->eraseFromParent();
4272   }
4273 
4274   return !TrivialUnwindBlocks.empty();
4275 }
4276 
4277 // Simplify resume that is only used by a single (non-phi) landing pad.
4278 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4279   BasicBlock *BB = RI->getParent();
4280   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4281   assert(RI->getValue() == LPInst &&
4282          "Resume must unwind the exception that caused control to here");
4283 
4284   // Check that there are no other instructions except for debug intrinsics.
4285   if (!isCleanupBlockEmpty(
4286           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4287     return false;
4288 
4289   // Turn all invokes that unwind here into calls and delete the basic block.
4290   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4291     removeUnwindEdge(Pred, DTU);
4292     ++NumInvokes;
4293   }
4294 
4295   // The landingpad is now unreachable.  Zap it.
4296   if (DTU)
4297     DTU->deleteBB(BB);
4298   else
4299     BB->eraseFromParent();
4300   return true;
4301 }
4302 
4303 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4304   // If this is a trivial cleanup pad that executes no instructions, it can be
4305   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4306   // that is an EH pad will be updated to continue to the caller and any
4307   // predecessor that terminates with an invoke instruction will have its invoke
4308   // instruction converted to a call instruction.  If the cleanup pad being
4309   // simplified does not continue to the caller, each predecessor will be
4310   // updated to continue to the unwind destination of the cleanup pad being
4311   // simplified.
4312   BasicBlock *BB = RI->getParent();
4313   CleanupPadInst *CPInst = RI->getCleanupPad();
4314   if (CPInst->getParent() != BB)
4315     // This isn't an empty cleanup.
4316     return false;
4317 
4318   // We cannot kill the pad if it has multiple uses.  This typically arises
4319   // from unreachable basic blocks.
4320   if (!CPInst->hasOneUse())
4321     return false;
4322 
4323   // Check that there are no other instructions except for benign intrinsics.
4324   if (!isCleanupBlockEmpty(
4325           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4326     return false;
4327 
4328   // If the cleanup return we are simplifying unwinds to the caller, this will
4329   // set UnwindDest to nullptr.
4330   BasicBlock *UnwindDest = RI->getUnwindDest();
4331   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4332 
4333   // We're about to remove BB from the control flow.  Before we do, sink any
4334   // PHINodes into the unwind destination.  Doing this before changing the
4335   // control flow avoids some potentially slow checks, since we can currently
4336   // be certain that UnwindDest and BB have no common predecessors (since they
4337   // are both EH pads).
4338   if (UnwindDest) {
4339     // First, go through the PHI nodes in UnwindDest and update any nodes that
4340     // reference the block we are removing
4341     for (BasicBlock::iterator I = UnwindDest->begin(),
4342                               IE = DestEHPad->getIterator();
4343          I != IE; ++I) {
4344       PHINode *DestPN = cast<PHINode>(I);
4345 
4346       int Idx = DestPN->getBasicBlockIndex(BB);
4347       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4348       assert(Idx != -1);
4349       // This PHI node has an incoming value that corresponds to a control
4350       // path through the cleanup pad we are removing.  If the incoming
4351       // value is in the cleanup pad, it must be a PHINode (because we
4352       // verified above that the block is otherwise empty).  Otherwise, the
4353       // value is either a constant or a value that dominates the cleanup
4354       // pad being removed.
4355       //
4356       // Because BB and UnwindDest are both EH pads, all of their
4357       // predecessors must unwind to these blocks, and since no instruction
4358       // can have multiple unwind destinations, there will be no overlap in
4359       // incoming blocks between SrcPN and DestPN.
4360       Value *SrcVal = DestPN->getIncomingValue(Idx);
4361       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4362 
4363       // Remove the entry for the block we are deleting.
4364       DestPN->removeIncomingValue(Idx, false);
4365 
4366       if (SrcPN && SrcPN->getParent() == BB) {
4367         // If the incoming value was a PHI node in the cleanup pad we are
4368         // removing, we need to merge that PHI node's incoming values into
4369         // DestPN.
4370         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4371              SrcIdx != SrcE; ++SrcIdx) {
4372           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4373                               SrcPN->getIncomingBlock(SrcIdx));
4374         }
4375       } else {
4376         // Otherwise, the incoming value came from above BB and
4377         // so we can just reuse it.  We must associate all of BB's
4378         // predecessors with this value.
4379         for (auto *pred : predecessors(BB)) {
4380           DestPN->addIncoming(SrcVal, pred);
4381         }
4382       }
4383     }
4384 
4385     // Sink any remaining PHI nodes directly into UnwindDest.
4386     Instruction *InsertPt = DestEHPad;
4387     for (BasicBlock::iterator I = BB->begin(),
4388                               IE = BB->getFirstNonPHI()->getIterator();
4389          I != IE;) {
4390       // The iterator must be incremented here because the instructions are
4391       // being moved to another block.
4392       PHINode *PN = cast<PHINode>(I++);
4393       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4394         // If the PHI node has no uses or all of its uses are in this basic
4395         // block (meaning they are debug or lifetime intrinsics), just leave
4396         // it.  It will be erased when we erase BB below.
4397         continue;
4398 
4399       // Otherwise, sink this PHI node into UnwindDest.
4400       // Any predecessors to UnwindDest which are not already represented
4401       // must be back edges which inherit the value from the path through
4402       // BB.  In this case, the PHI value must reference itself.
4403       for (auto *pred : predecessors(UnwindDest))
4404         if (pred != BB)
4405           PN->addIncoming(PN, pred);
4406       PN->moveBefore(InsertPt);
4407     }
4408   }
4409 
4410   std::vector<DominatorTree::UpdateType> Updates;
4411 
4412   // We use make_early_inc_range here because we may remove some predecessors.
4413   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4414     if (UnwindDest == nullptr) {
4415       if (DTU) {
4416         DTU->applyUpdates(Updates);
4417         Updates.clear();
4418       }
4419       removeUnwindEdge(PredBB, DTU);
4420       ++NumInvokes;
4421     } else {
4422       Instruction *TI = PredBB->getTerminator();
4423       TI->replaceUsesOfWith(BB, UnwindDest);
4424       if (DTU) {
4425         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4426         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4427       }
4428     }
4429   }
4430 
4431   if (DTU) {
4432     DTU->applyUpdates(Updates);
4433     DTU->deleteBB(BB);
4434   } else
4435     // The cleanup pad is now unreachable.  Zap it.
4436     BB->eraseFromParent();
4437 
4438   return true;
4439 }
4440 
4441 // Try to merge two cleanuppads together.
4442 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4443   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4444   // with.
4445   BasicBlock *UnwindDest = RI->getUnwindDest();
4446   if (!UnwindDest)
4447     return false;
4448 
4449   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4450   // be safe to merge without code duplication.
4451   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4452     return false;
4453 
4454   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4455   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4456   if (!SuccessorCleanupPad)
4457     return false;
4458 
4459   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4460   // Replace any uses of the successor cleanupad with the predecessor pad
4461   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4462   // funclet bundle operands.
4463   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4464   // Remove the old cleanuppad.
4465   SuccessorCleanupPad->eraseFromParent();
4466   // Now, we simply replace the cleanupret with a branch to the unwind
4467   // destination.
4468   BranchInst::Create(UnwindDest, RI->getParent());
4469   RI->eraseFromParent();
4470 
4471   return true;
4472 }
4473 
4474 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4475   // It is possible to transiantly have an undef cleanuppad operand because we
4476   // have deleted some, but not all, dead blocks.
4477   // Eventually, this block will be deleted.
4478   if (isa<UndefValue>(RI->getOperand(0)))
4479     return false;
4480 
4481   if (mergeCleanupPad(RI))
4482     return true;
4483 
4484   if (removeEmptyCleanup(RI, DTU))
4485     return true;
4486 
4487   return false;
4488 }
4489 
4490 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4491   BasicBlock *BB = RI->getParent();
4492   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4493     return false;
4494 
4495   // Find predecessors that end with branches.
4496   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4497   SmallVector<BranchInst *, 8> CondBranchPreds;
4498   for (BasicBlock *P : predecessors(BB)) {
4499     Instruction *PTI = P->getTerminator();
4500     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4501       if (BI->isUnconditional())
4502         UncondBranchPreds.push_back(P);
4503       else
4504         CondBranchPreds.push_back(BI);
4505     }
4506   }
4507 
4508   // If we found some, do the transformation!
4509   if (!UncondBranchPreds.empty() && DupRet) {
4510     while (!UncondBranchPreds.empty()) {
4511       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4512       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4513                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4514       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4515     }
4516 
4517     // If we eliminated all predecessors of the block, delete the block now.
4518     if (pred_empty(BB)) {
4519       // We know there are no successors, so just nuke the block.
4520       if (DTU)
4521         DTU->deleteBB(BB);
4522       else
4523         BB->eraseFromParent();
4524     }
4525 
4526     return true;
4527   }
4528 
4529   // Check out all of the conditional branches going to this return
4530   // instruction.  If any of them just select between returns, change the
4531   // branch itself into a select/return pair.
4532   while (!CondBranchPreds.empty()) {
4533     BranchInst *BI = CondBranchPreds.pop_back_val();
4534 
4535     // Check to see if the non-BB successor is also a return block.
4536     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4537         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4538         SimplifyCondBranchToTwoReturns(BI, Builder))
4539       return true;
4540   }
4541   return false;
4542 }
4543 
4544 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4545   BasicBlock *BB = UI->getParent();
4546 
4547   bool Changed = false;
4548 
4549   // If there are any instructions immediately before the unreachable that can
4550   // be removed, do so.
4551   while (UI->getIterator() != BB->begin()) {
4552     BasicBlock::iterator BBI = UI->getIterator();
4553     --BBI;
4554     // Do not delete instructions that can have side effects which might cause
4555     // the unreachable to not be reachable; specifically, calls and volatile
4556     // operations may have this effect.
4557     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4558       break;
4559 
4560     if (BBI->mayHaveSideEffects()) {
4561       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4562         if (SI->isVolatile())
4563           break;
4564       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4565         if (LI->isVolatile())
4566           break;
4567       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4568         if (RMWI->isVolatile())
4569           break;
4570       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4571         if (CXI->isVolatile())
4572           break;
4573       } else if (isa<CatchPadInst>(BBI)) {
4574         // A catchpad may invoke exception object constructors and such, which
4575         // in some languages can be arbitrary code, so be conservative by
4576         // default.
4577         // For CoreCLR, it just involves a type test, so can be removed.
4578         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4579             EHPersonality::CoreCLR)
4580           break;
4581       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4582                  !isa<LandingPadInst>(BBI)) {
4583         break;
4584       }
4585       // Note that deleting LandingPad's here is in fact okay, although it
4586       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4587       // all the predecessors of this block will be the unwind edges of Invokes,
4588       // and we can therefore guarantee this block will be erased.
4589     }
4590 
4591     // Delete this instruction (any uses are guaranteed to be dead)
4592     if (!BBI->use_empty())
4593       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4594     BBI->eraseFromParent();
4595     Changed = true;
4596   }
4597 
4598   // If the unreachable instruction is the first in the block, take a gander
4599   // at all of the predecessors of this instruction, and simplify them.
4600   if (&BB->front() != UI)
4601     return Changed;
4602 
4603   std::vector<DominatorTree::UpdateType> Updates;
4604 
4605   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4606   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4607     auto *Predecessor = Preds[i];
4608     Instruction *TI = Predecessor->getTerminator();
4609     IRBuilder<> Builder(TI);
4610     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4611       // We could either have a proper unconditional branch,
4612       // or a degenerate conditional branch with matching destinations.
4613       if (all_of(BI->successors(),
4614                  [BB](auto *Successor) { return Successor == BB; })) {
4615         new UnreachableInst(TI->getContext(), TI);
4616         TI->eraseFromParent();
4617         Changed = true;
4618       } else {
4619         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4620         Value* Cond = BI->getCondition();
4621         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4622                "The destinations are guaranteed to be different here.");
4623         if (BI->getSuccessor(0) == BB) {
4624           Builder.CreateAssumption(Builder.CreateNot(Cond));
4625           Builder.CreateBr(BI->getSuccessor(1));
4626         } else {
4627           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4628           Builder.CreateAssumption(Cond);
4629           Builder.CreateBr(BI->getSuccessor(0));
4630         }
4631         EraseTerminatorAndDCECond(BI);
4632         Changed = true;
4633       }
4634       if (DTU)
4635         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4636     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4637       SwitchInstProfUpdateWrapper SU(*SI);
4638       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4639         if (i->getCaseSuccessor() != BB) {
4640           ++i;
4641           continue;
4642         }
4643         BB->removePredecessor(SU->getParent());
4644         i = SU.removeCase(i);
4645         e = SU->case_end();
4646         Changed = true;
4647       }
4648       // Note that the default destination can't be removed!
4649       if (DTU && SI->getDefaultDest() != BB)
4650         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4651     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4652       if (II->getUnwindDest() == BB) {
4653         if (DTU) {
4654           DTU->applyUpdates(Updates);
4655           Updates.clear();
4656         }
4657         removeUnwindEdge(TI->getParent(), DTU);
4658         Changed = true;
4659       }
4660     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4661       if (CSI->getUnwindDest() == BB) {
4662         if (DTU) {
4663           DTU->applyUpdates(Updates);
4664           Updates.clear();
4665         }
4666         removeUnwindEdge(TI->getParent(), DTU);
4667         Changed = true;
4668         continue;
4669       }
4670 
4671       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4672                                              E = CSI->handler_end();
4673            I != E; ++I) {
4674         if (*I == BB) {
4675           CSI->removeHandler(I);
4676           --I;
4677           --E;
4678           Changed = true;
4679         }
4680       }
4681       if (DTU)
4682         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4683       if (CSI->getNumHandlers() == 0) {
4684         if (CSI->hasUnwindDest()) {
4685           // Redirect all predecessors of the block containing CatchSwitchInst
4686           // to instead branch to the CatchSwitchInst's unwind destination.
4687           if (DTU) {
4688             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4689               Updates.push_back({DominatorTree::Insert,
4690                                  PredecessorOfPredecessor,
4691                                  CSI->getUnwindDest()});
4692               Updates.push_back({DominatorTree::Delete,
4693                                  PredecessorOfPredecessor, Predecessor});
4694             }
4695           }
4696           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4697         } else {
4698           // Rewrite all preds to unwind to caller (or from invoke to call).
4699           if (DTU) {
4700             DTU->applyUpdates(Updates);
4701             Updates.clear();
4702           }
4703           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4704           for (BasicBlock *EHPred : EHPreds)
4705             removeUnwindEdge(EHPred, DTU);
4706         }
4707         // The catchswitch is no longer reachable.
4708         new UnreachableInst(CSI->getContext(), CSI);
4709         CSI->eraseFromParent();
4710         Changed = true;
4711       }
4712     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4713       (void)CRI;
4714       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4715              "Expected to always have an unwind to BB.");
4716       if (DTU)
4717         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4718       new UnreachableInst(TI->getContext(), TI);
4719       TI->eraseFromParent();
4720       Changed = true;
4721     }
4722   }
4723 
4724   if (DTU)
4725     DTU->applyUpdates(Updates);
4726 
4727   // If this block is now dead, remove it.
4728   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4729     // We know there are no successors, so just nuke the block.
4730     if (DTU)
4731       DTU->deleteBB(BB);
4732     else
4733       BB->eraseFromParent();
4734     return true;
4735   }
4736 
4737   return Changed;
4738 }
4739 
4740 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4741   assert(Cases.size() >= 1);
4742 
4743   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4744   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4745     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4746       return false;
4747   }
4748   return true;
4749 }
4750 
4751 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4752                                            DomTreeUpdater *DTU) {
4753   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4754   auto *BB = Switch->getParent();
4755   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4756       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4757   auto *OrigDefaultBlock = Switch->getDefaultDest();
4758   Switch->setDefaultDest(&*NewDefaultBlock);
4759   if (DTU)
4760     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4761                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4762   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4763   SmallVector<DominatorTree::UpdateType, 2> Updates;
4764   if (DTU)
4765     for (auto *Successor : successors(NewDefaultBlock))
4766       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4767   auto *NewTerminator = NewDefaultBlock->getTerminator();
4768   new UnreachableInst(Switch->getContext(), NewTerminator);
4769   EraseTerminatorAndDCECond(NewTerminator);
4770   if (DTU)
4771     DTU->applyUpdates(Updates);
4772 }
4773 
4774 /// Turn a switch with two reachable destinations into an integer range
4775 /// comparison and branch.
4776 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4777                                              IRBuilder<> &Builder) {
4778   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4779 
4780   bool HasDefault =
4781       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4782 
4783   auto *BB = SI->getParent();
4784 
4785   // Partition the cases into two sets with different destinations.
4786   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4787   BasicBlock *DestB = nullptr;
4788   SmallVector<ConstantInt *, 16> CasesA;
4789   SmallVector<ConstantInt *, 16> CasesB;
4790 
4791   for (auto Case : SI->cases()) {
4792     BasicBlock *Dest = Case.getCaseSuccessor();
4793     if (!DestA)
4794       DestA = Dest;
4795     if (Dest == DestA) {
4796       CasesA.push_back(Case.getCaseValue());
4797       continue;
4798     }
4799     if (!DestB)
4800       DestB = Dest;
4801     if (Dest == DestB) {
4802       CasesB.push_back(Case.getCaseValue());
4803       continue;
4804     }
4805     return false; // More than two destinations.
4806   }
4807 
4808   assert(DestA && DestB &&
4809          "Single-destination switch should have been folded.");
4810   assert(DestA != DestB);
4811   assert(DestB != SI->getDefaultDest());
4812   assert(!CasesB.empty() && "There must be non-default cases.");
4813   assert(!CasesA.empty() || HasDefault);
4814 
4815   // Figure out if one of the sets of cases form a contiguous range.
4816   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4817   BasicBlock *ContiguousDest = nullptr;
4818   BasicBlock *OtherDest = nullptr;
4819   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4820     ContiguousCases = &CasesA;
4821     ContiguousDest = DestA;
4822     OtherDest = DestB;
4823   } else if (CasesAreContiguous(CasesB)) {
4824     ContiguousCases = &CasesB;
4825     ContiguousDest = DestB;
4826     OtherDest = DestA;
4827   } else
4828     return false;
4829 
4830   // Start building the compare and branch.
4831 
4832   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4833   Constant *NumCases =
4834       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4835 
4836   Value *Sub = SI->getCondition();
4837   if (!Offset->isNullValue())
4838     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4839 
4840   Value *Cmp;
4841   // If NumCases overflowed, then all possible values jump to the successor.
4842   if (NumCases->isNullValue() && !ContiguousCases->empty())
4843     Cmp = ConstantInt::getTrue(SI->getContext());
4844   else
4845     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4846   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4847 
4848   // Update weight for the newly-created conditional branch.
4849   if (HasBranchWeights(SI)) {
4850     SmallVector<uint64_t, 8> Weights;
4851     GetBranchWeights(SI, Weights);
4852     if (Weights.size() == 1 + SI->getNumCases()) {
4853       uint64_t TrueWeight = 0;
4854       uint64_t FalseWeight = 0;
4855       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4856         if (SI->getSuccessor(I) == ContiguousDest)
4857           TrueWeight += Weights[I];
4858         else
4859           FalseWeight += Weights[I];
4860       }
4861       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4862         TrueWeight /= 2;
4863         FalseWeight /= 2;
4864       }
4865       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4866     }
4867   }
4868 
4869   // Prune obsolete incoming values off the successors' PHI nodes.
4870   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4871     unsigned PreviousEdges = ContiguousCases->size();
4872     if (ContiguousDest == SI->getDefaultDest())
4873       ++PreviousEdges;
4874     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4875       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4876   }
4877   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4878     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4879     if (OtherDest == SI->getDefaultDest())
4880       ++PreviousEdges;
4881     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4882       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4883   }
4884 
4885   // Clean up the default block - it may have phis or other instructions before
4886   // the unreachable terminator.
4887   if (!HasDefault)
4888     createUnreachableSwitchDefault(SI, DTU);
4889 
4890   auto *UnreachableDefault = SI->getDefaultDest();
4891 
4892   // Drop the switch.
4893   SI->eraseFromParent();
4894 
4895   if (!HasDefault && DTU)
4896     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4897 
4898   return true;
4899 }
4900 
4901 /// Compute masked bits for the condition of a switch
4902 /// and use it to remove dead cases.
4903 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4904                                      AssumptionCache *AC,
4905                                      const DataLayout &DL) {
4906   Value *Cond = SI->getCondition();
4907   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4908   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4909 
4910   // We can also eliminate cases by determining that their values are outside of
4911   // the limited range of the condition based on how many significant (non-sign)
4912   // bits are in the condition value.
4913   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4914   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4915 
4916   // Gather dead cases.
4917   SmallVector<ConstantInt *, 8> DeadCases;
4918   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
4919   for (auto &Case : SI->cases()) {
4920     auto *Successor = Case.getCaseSuccessor();
4921     if (DTU)
4922       ++NumPerSuccessorCases[Successor];
4923     const APInt &CaseVal = Case.getCaseValue()->getValue();
4924     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4925         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4926       DeadCases.push_back(Case.getCaseValue());
4927       if (DTU)
4928         --NumPerSuccessorCases[Successor];
4929       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4930                         << " is dead.\n");
4931     }
4932   }
4933 
4934   // If we can prove that the cases must cover all possible values, the
4935   // default destination becomes dead and we can remove it.  If we know some
4936   // of the bits in the value, we can use that to more precisely compute the
4937   // number of possible unique case values.
4938   bool HasDefault =
4939       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4940   const unsigned NumUnknownBits =
4941       Bits - (Known.Zero | Known.One).countPopulation();
4942   assert(NumUnknownBits <= Bits);
4943   if (HasDefault && DeadCases.empty() &&
4944       NumUnknownBits < 64 /* avoid overflow */ &&
4945       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4946     createUnreachableSwitchDefault(SI, DTU);
4947     return true;
4948   }
4949 
4950   if (DeadCases.empty())
4951     return false;
4952 
4953   SwitchInstProfUpdateWrapper SIW(*SI);
4954   for (ConstantInt *DeadCase : DeadCases) {
4955     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4956     assert(CaseI != SI->case_default() &&
4957            "Case was not found. Probably mistake in DeadCases forming.");
4958     // Prune unused values from PHI nodes.
4959     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4960     SIW.removeCase(CaseI);
4961   }
4962 
4963   if (DTU) {
4964     std::vector<DominatorTree::UpdateType> Updates;
4965     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4966       if (I.second == 0)
4967         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4968     DTU->applyUpdates(Updates);
4969   }
4970 
4971   return true;
4972 }
4973 
4974 /// If BB would be eligible for simplification by
4975 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4976 /// by an unconditional branch), look at the phi node for BB in the successor
4977 /// block and see if the incoming value is equal to CaseValue. If so, return
4978 /// the phi node, and set PhiIndex to BB's index in the phi node.
4979 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4980                                               BasicBlock *BB, int *PhiIndex) {
4981   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4982     return nullptr; // BB must be empty to be a candidate for simplification.
4983   if (!BB->getSinglePredecessor())
4984     return nullptr; // BB must be dominated by the switch.
4985 
4986   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4987   if (!Branch || !Branch->isUnconditional())
4988     return nullptr; // Terminator must be unconditional branch.
4989 
4990   BasicBlock *Succ = Branch->getSuccessor(0);
4991 
4992   for (PHINode &PHI : Succ->phis()) {
4993     int Idx = PHI.getBasicBlockIndex(BB);
4994     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4995 
4996     Value *InValue = PHI.getIncomingValue(Idx);
4997     if (InValue != CaseValue)
4998       continue;
4999 
5000     *PhiIndex = Idx;
5001     return &PHI;
5002   }
5003 
5004   return nullptr;
5005 }
5006 
5007 /// Try to forward the condition of a switch instruction to a phi node
5008 /// dominated by the switch, if that would mean that some of the destination
5009 /// blocks of the switch can be folded away. Return true if a change is made.
5010 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5011   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5012 
5013   ForwardingNodesMap ForwardingNodes;
5014   BasicBlock *SwitchBlock = SI->getParent();
5015   bool Changed = false;
5016   for (auto &Case : SI->cases()) {
5017     ConstantInt *CaseValue = Case.getCaseValue();
5018     BasicBlock *CaseDest = Case.getCaseSuccessor();
5019 
5020     // Replace phi operands in successor blocks that are using the constant case
5021     // value rather than the switch condition variable:
5022     //   switchbb:
5023     //   switch i32 %x, label %default [
5024     //     i32 17, label %succ
5025     //   ...
5026     //   succ:
5027     //     %r = phi i32 ... [ 17, %switchbb ] ...
5028     // -->
5029     //     %r = phi i32 ... [ %x, %switchbb ] ...
5030 
5031     for (PHINode &Phi : CaseDest->phis()) {
5032       // This only works if there is exactly 1 incoming edge from the switch to
5033       // a phi. If there is >1, that means multiple cases of the switch map to 1
5034       // value in the phi, and that phi value is not the switch condition. Thus,
5035       // this transform would not make sense (the phi would be invalid because
5036       // a phi can't have different incoming values from the same block).
5037       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5038       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5039           count(Phi.blocks(), SwitchBlock) == 1) {
5040         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5041         Changed = true;
5042       }
5043     }
5044 
5045     // Collect phi nodes that are indirectly using this switch's case constants.
5046     int PhiIdx;
5047     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5048       ForwardingNodes[Phi].push_back(PhiIdx);
5049   }
5050 
5051   for (auto &ForwardingNode : ForwardingNodes) {
5052     PHINode *Phi = ForwardingNode.first;
5053     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5054     if (Indexes.size() < 2)
5055       continue;
5056 
5057     for (int Index : Indexes)
5058       Phi->setIncomingValue(Index, SI->getCondition());
5059     Changed = true;
5060   }
5061 
5062   return Changed;
5063 }
5064 
5065 /// Return true if the backend will be able to handle
5066 /// initializing an array of constants like C.
5067 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5068   if (C->isThreadDependent())
5069     return false;
5070   if (C->isDLLImportDependent())
5071     return false;
5072 
5073   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5074       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5075       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5076     return false;
5077 
5078   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5079     if (!CE->isGEPWithNoNotionalOverIndexing())
5080       return false;
5081     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5082       return false;
5083   }
5084 
5085   if (!TTI.shouldBuildLookupTablesForConstant(C))
5086     return false;
5087 
5088   return true;
5089 }
5090 
5091 /// If V is a Constant, return it. Otherwise, try to look up
5092 /// its constant value in ConstantPool, returning 0 if it's not there.
5093 static Constant *
5094 LookupConstant(Value *V,
5095                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5096   if (Constant *C = dyn_cast<Constant>(V))
5097     return C;
5098   return ConstantPool.lookup(V);
5099 }
5100 
5101 /// Try to fold instruction I into a constant. This works for
5102 /// simple instructions such as binary operations where both operands are
5103 /// constant or can be replaced by constants from the ConstantPool. Returns the
5104 /// resulting constant on success, 0 otherwise.
5105 static Constant *
5106 ConstantFold(Instruction *I, const DataLayout &DL,
5107              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5108   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5109     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5110     if (!A)
5111       return nullptr;
5112     if (A->isAllOnesValue())
5113       return LookupConstant(Select->getTrueValue(), ConstantPool);
5114     if (A->isNullValue())
5115       return LookupConstant(Select->getFalseValue(), ConstantPool);
5116     return nullptr;
5117   }
5118 
5119   SmallVector<Constant *, 4> COps;
5120   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5121     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5122       COps.push_back(A);
5123     else
5124       return nullptr;
5125   }
5126 
5127   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5128     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5129                                            COps[1], DL);
5130   }
5131 
5132   return ConstantFoldInstOperands(I, COps, DL);
5133 }
5134 
5135 /// Try to determine the resulting constant values in phi nodes
5136 /// at the common destination basic block, *CommonDest, for one of the case
5137 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5138 /// case), of a switch instruction SI.
5139 static bool
5140 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5141                BasicBlock **CommonDest,
5142                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5143                const DataLayout &DL, const TargetTransformInfo &TTI) {
5144   // The block from which we enter the common destination.
5145   BasicBlock *Pred = SI->getParent();
5146 
5147   // If CaseDest is empty except for some side-effect free instructions through
5148   // which we can constant-propagate the CaseVal, continue to its successor.
5149   SmallDenseMap<Value *, Constant *> ConstantPool;
5150   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5151   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5152     if (I.isTerminator()) {
5153       // If the terminator is a simple branch, continue to the next block.
5154       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5155         return false;
5156       Pred = CaseDest;
5157       CaseDest = I.getSuccessor(0);
5158     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5159       // Instruction is side-effect free and constant.
5160 
5161       // If the instruction has uses outside this block or a phi node slot for
5162       // the block, it is not safe to bypass the instruction since it would then
5163       // no longer dominate all its uses.
5164       for (auto &Use : I.uses()) {
5165         User *User = Use.getUser();
5166         if (Instruction *I = dyn_cast<Instruction>(User))
5167           if (I->getParent() == CaseDest)
5168             continue;
5169         if (PHINode *Phi = dyn_cast<PHINode>(User))
5170           if (Phi->getIncomingBlock(Use) == CaseDest)
5171             continue;
5172         return false;
5173       }
5174 
5175       ConstantPool.insert(std::make_pair(&I, C));
5176     } else {
5177       break;
5178     }
5179   }
5180 
5181   // If we did not have a CommonDest before, use the current one.
5182   if (!*CommonDest)
5183     *CommonDest = CaseDest;
5184   // If the destination isn't the common one, abort.
5185   if (CaseDest != *CommonDest)
5186     return false;
5187 
5188   // Get the values for this case from phi nodes in the destination block.
5189   for (PHINode &PHI : (*CommonDest)->phis()) {
5190     int Idx = PHI.getBasicBlockIndex(Pred);
5191     if (Idx == -1)
5192       continue;
5193 
5194     Constant *ConstVal =
5195         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5196     if (!ConstVal)
5197       return false;
5198 
5199     // Be conservative about which kinds of constants we support.
5200     if (!ValidLookupTableConstant(ConstVal, TTI))
5201       return false;
5202 
5203     Res.push_back(std::make_pair(&PHI, ConstVal));
5204   }
5205 
5206   return Res.size() > 0;
5207 }
5208 
5209 // Helper function used to add CaseVal to the list of cases that generate
5210 // Result. Returns the updated number of cases that generate this result.
5211 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5212                                  SwitchCaseResultVectorTy &UniqueResults,
5213                                  Constant *Result) {
5214   for (auto &I : UniqueResults) {
5215     if (I.first == Result) {
5216       I.second.push_back(CaseVal);
5217       return I.second.size();
5218     }
5219   }
5220   UniqueResults.push_back(
5221       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5222   return 1;
5223 }
5224 
5225 // Helper function that initializes a map containing
5226 // results for the PHI node of the common destination block for a switch
5227 // instruction. Returns false if multiple PHI nodes have been found or if
5228 // there is not a common destination block for the switch.
5229 static bool
5230 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5231                       SwitchCaseResultVectorTy &UniqueResults,
5232                       Constant *&DefaultResult, const DataLayout &DL,
5233                       const TargetTransformInfo &TTI,
5234                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5235   for (auto &I : SI->cases()) {
5236     ConstantInt *CaseVal = I.getCaseValue();
5237 
5238     // Resulting value at phi nodes for this case value.
5239     SwitchCaseResultsTy Results;
5240     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5241                         DL, TTI))
5242       return false;
5243 
5244     // Only one value per case is permitted.
5245     if (Results.size() > 1)
5246       return false;
5247 
5248     // Add the case->result mapping to UniqueResults.
5249     const uintptr_t NumCasesForResult =
5250         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5251 
5252     // Early out if there are too many cases for this result.
5253     if (NumCasesForResult > MaxCasesPerResult)
5254       return false;
5255 
5256     // Early out if there are too many unique results.
5257     if (UniqueResults.size() > MaxUniqueResults)
5258       return false;
5259 
5260     // Check the PHI consistency.
5261     if (!PHI)
5262       PHI = Results[0].first;
5263     else if (PHI != Results[0].first)
5264       return false;
5265   }
5266   // Find the default result value.
5267   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5268   BasicBlock *DefaultDest = SI->getDefaultDest();
5269   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5270                  DL, TTI);
5271   // If the default value is not found abort unless the default destination
5272   // is unreachable.
5273   DefaultResult =
5274       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5275   if ((!DefaultResult &&
5276        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5277     return false;
5278 
5279   return true;
5280 }
5281 
5282 // Helper function that checks if it is possible to transform a switch with only
5283 // two cases (or two cases + default) that produces a result into a select.
5284 // Example:
5285 // switch (a) {
5286 //   case 10:                %0 = icmp eq i32 %a, 10
5287 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5288 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5289 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5290 //   default:
5291 //     return 4;
5292 // }
5293 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5294                                    Constant *DefaultResult, Value *Condition,
5295                                    IRBuilder<> &Builder) {
5296   // If we are selecting between only two cases transform into a simple
5297   // select or a two-way select if default is possible.
5298   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5299       ResultVector[1].second.size() == 1) {
5300     ConstantInt *const FirstCase = ResultVector[0].second[0];
5301     ConstantInt *const SecondCase = ResultVector[1].second[0];
5302 
5303     bool DefaultCanTrigger = DefaultResult;
5304     Value *SelectValue = ResultVector[1].first;
5305     if (DefaultCanTrigger) {
5306       Value *const ValueCompare =
5307           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5308       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5309                                          DefaultResult, "switch.select");
5310     }
5311     Value *const ValueCompare =
5312         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5313     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5314                                 SelectValue, "switch.select");
5315   }
5316 
5317   // Handle the degenerate case where two cases have the same value.
5318   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5319       DefaultResult) {
5320     Value *Cmp1 = Builder.CreateICmpEQ(
5321         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5322     Value *Cmp2 = Builder.CreateICmpEQ(
5323         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5324     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5325     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5326   }
5327 
5328   return nullptr;
5329 }
5330 
5331 // Helper function to cleanup a switch instruction that has been converted into
5332 // a select, fixing up PHI nodes and basic blocks.
5333 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5334                                               Value *SelectValue,
5335                                               IRBuilder<> &Builder,
5336                                               DomTreeUpdater *DTU) {
5337   std::vector<DominatorTree::UpdateType> Updates;
5338 
5339   BasicBlock *SelectBB = SI->getParent();
5340   BasicBlock *DestBB = PHI->getParent();
5341 
5342   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5343     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5344   Builder.CreateBr(DestBB);
5345 
5346   // Remove the switch.
5347 
5348   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5349     PHI->removeIncomingValue(SelectBB);
5350   PHI->addIncoming(SelectValue, SelectBB);
5351 
5352   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5353   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5354     BasicBlock *Succ = SI->getSuccessor(i);
5355 
5356     if (Succ == DestBB)
5357       continue;
5358     Succ->removePredecessor(SelectBB);
5359     if (DTU && RemovedSuccessors.insert(Succ).second)
5360       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5361   }
5362   SI->eraseFromParent();
5363   if (DTU)
5364     DTU->applyUpdates(Updates);
5365 }
5366 
5367 /// If the switch is only used to initialize one or more
5368 /// phi nodes in a common successor block with only two different
5369 /// constant values, replace the switch with select.
5370 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5371                            DomTreeUpdater *DTU, const DataLayout &DL,
5372                            const TargetTransformInfo &TTI) {
5373   Value *const Cond = SI->getCondition();
5374   PHINode *PHI = nullptr;
5375   BasicBlock *CommonDest = nullptr;
5376   Constant *DefaultResult;
5377   SwitchCaseResultVectorTy UniqueResults;
5378   // Collect all the cases that will deliver the same value from the switch.
5379   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5380                              DL, TTI, /*MaxUniqueResults*/2,
5381                              /*MaxCasesPerResult*/2))
5382     return false;
5383   assert(PHI != nullptr && "PHI for value select not found");
5384 
5385   Builder.SetInsertPoint(SI);
5386   Value *SelectValue =
5387       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5388   if (SelectValue) {
5389     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5390     return true;
5391   }
5392   // The switch couldn't be converted into a select.
5393   return false;
5394 }
5395 
5396 namespace {
5397 
5398 /// This class represents a lookup table that can be used to replace a switch.
5399 class SwitchLookupTable {
5400 public:
5401   /// Create a lookup table to use as a switch replacement with the contents
5402   /// of Values, using DefaultValue to fill any holes in the table.
5403   SwitchLookupTable(
5404       Module &M, uint64_t TableSize, ConstantInt *Offset,
5405       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5406       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5407 
5408   /// Build instructions with Builder to retrieve the value at
5409   /// the position given by Index in the lookup table.
5410   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5411 
5412   /// Return true if a table with TableSize elements of
5413   /// type ElementType would fit in a target-legal register.
5414   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5415                                  Type *ElementType);
5416 
5417 private:
5418   // Depending on the contents of the table, it can be represented in
5419   // different ways.
5420   enum {
5421     // For tables where each element contains the same value, we just have to
5422     // store that single value and return it for each lookup.
5423     SingleValueKind,
5424 
5425     // For tables where there is a linear relationship between table index
5426     // and values. We calculate the result with a simple multiplication
5427     // and addition instead of a table lookup.
5428     LinearMapKind,
5429 
5430     // For small tables with integer elements, we can pack them into a bitmap
5431     // that fits into a target-legal register. Values are retrieved by
5432     // shift and mask operations.
5433     BitMapKind,
5434 
5435     // The table is stored as an array of values. Values are retrieved by load
5436     // instructions from the table.
5437     ArrayKind
5438   } Kind;
5439 
5440   // For SingleValueKind, this is the single value.
5441   Constant *SingleValue = nullptr;
5442 
5443   // For BitMapKind, this is the bitmap.
5444   ConstantInt *BitMap = nullptr;
5445   IntegerType *BitMapElementTy = nullptr;
5446 
5447   // For LinearMapKind, these are the constants used to derive the value.
5448   ConstantInt *LinearOffset = nullptr;
5449   ConstantInt *LinearMultiplier = nullptr;
5450 
5451   // For ArrayKind, this is the array.
5452   GlobalVariable *Array = nullptr;
5453 };
5454 
5455 } // end anonymous namespace
5456 
5457 SwitchLookupTable::SwitchLookupTable(
5458     Module &M, uint64_t TableSize, ConstantInt *Offset,
5459     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5460     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5461   assert(Values.size() && "Can't build lookup table without values!");
5462   assert(TableSize >= Values.size() && "Can't fit values in table!");
5463 
5464   // If all values in the table are equal, this is that value.
5465   SingleValue = Values.begin()->second;
5466 
5467   Type *ValueType = Values.begin()->second->getType();
5468 
5469   // Build up the table contents.
5470   SmallVector<Constant *, 64> TableContents(TableSize);
5471   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5472     ConstantInt *CaseVal = Values[I].first;
5473     Constant *CaseRes = Values[I].second;
5474     assert(CaseRes->getType() == ValueType);
5475 
5476     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5477     TableContents[Idx] = CaseRes;
5478 
5479     if (CaseRes != SingleValue)
5480       SingleValue = nullptr;
5481   }
5482 
5483   // Fill in any holes in the table with the default result.
5484   if (Values.size() < TableSize) {
5485     assert(DefaultValue &&
5486            "Need a default value to fill the lookup table holes.");
5487     assert(DefaultValue->getType() == ValueType);
5488     for (uint64_t I = 0; I < TableSize; ++I) {
5489       if (!TableContents[I])
5490         TableContents[I] = DefaultValue;
5491     }
5492 
5493     if (DefaultValue != SingleValue)
5494       SingleValue = nullptr;
5495   }
5496 
5497   // If each element in the table contains the same value, we only need to store
5498   // that single value.
5499   if (SingleValue) {
5500     Kind = SingleValueKind;
5501     return;
5502   }
5503 
5504   // Check if we can derive the value with a linear transformation from the
5505   // table index.
5506   if (isa<IntegerType>(ValueType)) {
5507     bool LinearMappingPossible = true;
5508     APInt PrevVal;
5509     APInt DistToPrev;
5510     assert(TableSize >= 2 && "Should be a SingleValue table.");
5511     // Check if there is the same distance between two consecutive values.
5512     for (uint64_t I = 0; I < TableSize; ++I) {
5513       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5514       if (!ConstVal) {
5515         // This is an undef. We could deal with it, but undefs in lookup tables
5516         // are very seldom. It's probably not worth the additional complexity.
5517         LinearMappingPossible = false;
5518         break;
5519       }
5520       const APInt &Val = ConstVal->getValue();
5521       if (I != 0) {
5522         APInt Dist = Val - PrevVal;
5523         if (I == 1) {
5524           DistToPrev = Dist;
5525         } else if (Dist != DistToPrev) {
5526           LinearMappingPossible = false;
5527           break;
5528         }
5529       }
5530       PrevVal = Val;
5531     }
5532     if (LinearMappingPossible) {
5533       LinearOffset = cast<ConstantInt>(TableContents[0]);
5534       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5535       Kind = LinearMapKind;
5536       ++NumLinearMaps;
5537       return;
5538     }
5539   }
5540 
5541   // If the type is integer and the table fits in a register, build a bitmap.
5542   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5543     IntegerType *IT = cast<IntegerType>(ValueType);
5544     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5545     for (uint64_t I = TableSize; I > 0; --I) {
5546       TableInt <<= IT->getBitWidth();
5547       // Insert values into the bitmap. Undef values are set to zero.
5548       if (!isa<UndefValue>(TableContents[I - 1])) {
5549         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5550         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5551       }
5552     }
5553     BitMap = ConstantInt::get(M.getContext(), TableInt);
5554     BitMapElementTy = IT;
5555     Kind = BitMapKind;
5556     ++NumBitMaps;
5557     return;
5558   }
5559 
5560   // Store the table in an array.
5561   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5562   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5563 
5564   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5565                              GlobalVariable::PrivateLinkage, Initializer,
5566                              "switch.table." + FuncName);
5567   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5568   // Set the alignment to that of an array items. We will be only loading one
5569   // value out of it.
5570   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5571   Kind = ArrayKind;
5572 }
5573 
5574 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5575   switch (Kind) {
5576   case SingleValueKind:
5577     return SingleValue;
5578   case LinearMapKind: {
5579     // Derive the result value from the input value.
5580     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5581                                           false, "switch.idx.cast");
5582     if (!LinearMultiplier->isOne())
5583       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5584     if (!LinearOffset->isZero())
5585       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5586     return Result;
5587   }
5588   case BitMapKind: {
5589     // Type of the bitmap (e.g. i59).
5590     IntegerType *MapTy = BitMap->getType();
5591 
5592     // Cast Index to the same type as the bitmap.
5593     // Note: The Index is <= the number of elements in the table, so
5594     // truncating it to the width of the bitmask is safe.
5595     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5596 
5597     // Multiply the shift amount by the element width.
5598     ShiftAmt = Builder.CreateMul(
5599         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5600         "switch.shiftamt");
5601 
5602     // Shift down.
5603     Value *DownShifted =
5604         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5605     // Mask off.
5606     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5607   }
5608   case ArrayKind: {
5609     // Make sure the table index will not overflow when treated as signed.
5610     IntegerType *IT = cast<IntegerType>(Index->getType());
5611     uint64_t TableSize =
5612         Array->getInitializer()->getType()->getArrayNumElements();
5613     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5614       Index = Builder.CreateZExt(
5615           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5616           "switch.tableidx.zext");
5617 
5618     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5619     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5620                                            GEPIndices, "switch.gep");
5621     return Builder.CreateLoad(
5622         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5623         "switch.load");
5624   }
5625   }
5626   llvm_unreachable("Unknown lookup table kind!");
5627 }
5628 
5629 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5630                                            uint64_t TableSize,
5631                                            Type *ElementType) {
5632   auto *IT = dyn_cast<IntegerType>(ElementType);
5633   if (!IT)
5634     return false;
5635   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5636   // are <= 15, we could try to narrow the type.
5637 
5638   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5639   if (TableSize >= UINT_MAX / IT->getBitWidth())
5640     return false;
5641   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5642 }
5643 
5644 /// Determine whether a lookup table should be built for this switch, based on
5645 /// the number of cases, size of the table, and the types of the results.
5646 static bool
5647 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5648                        const TargetTransformInfo &TTI, const DataLayout &DL,
5649                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5650   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5651     return false; // TableSize overflowed, or mul below might overflow.
5652 
5653   bool AllTablesFitInRegister = true;
5654   bool HasIllegalType = false;
5655   for (const auto &I : ResultTypes) {
5656     Type *Ty = I.second;
5657 
5658     // Saturate this flag to true.
5659     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5660 
5661     // Saturate this flag to false.
5662     AllTablesFitInRegister =
5663         AllTablesFitInRegister &&
5664         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5665 
5666     // If both flags saturate, we're done. NOTE: This *only* works with
5667     // saturating flags, and all flags have to saturate first due to the
5668     // non-deterministic behavior of iterating over a dense map.
5669     if (HasIllegalType && !AllTablesFitInRegister)
5670       break;
5671   }
5672 
5673   // If each table would fit in a register, we should build it anyway.
5674   if (AllTablesFitInRegister)
5675     return true;
5676 
5677   // Don't build a table that doesn't fit in-register if it has illegal types.
5678   if (HasIllegalType)
5679     return false;
5680 
5681   // The table density should be at least 40%. This is the same criterion as for
5682   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5683   // FIXME: Find the best cut-off.
5684   return SI->getNumCases() * 10 >= TableSize * 4;
5685 }
5686 
5687 /// Try to reuse the switch table index compare. Following pattern:
5688 /// \code
5689 ///     if (idx < tablesize)
5690 ///        r = table[idx]; // table does not contain default_value
5691 ///     else
5692 ///        r = default_value;
5693 ///     if (r != default_value)
5694 ///        ...
5695 /// \endcode
5696 /// Is optimized to:
5697 /// \code
5698 ///     cond = idx < tablesize;
5699 ///     if (cond)
5700 ///        r = table[idx];
5701 ///     else
5702 ///        r = default_value;
5703 ///     if (cond)
5704 ///        ...
5705 /// \endcode
5706 /// Jump threading will then eliminate the second if(cond).
5707 static void reuseTableCompare(
5708     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5709     Constant *DefaultValue,
5710     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5711   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5712   if (!CmpInst)
5713     return;
5714 
5715   // We require that the compare is in the same block as the phi so that jump
5716   // threading can do its work afterwards.
5717   if (CmpInst->getParent() != PhiBlock)
5718     return;
5719 
5720   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5721   if (!CmpOp1)
5722     return;
5723 
5724   Value *RangeCmp = RangeCheckBranch->getCondition();
5725   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5726   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5727 
5728   // Check if the compare with the default value is constant true or false.
5729   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5730                                                  DefaultValue, CmpOp1, true);
5731   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5732     return;
5733 
5734   // Check if the compare with the case values is distinct from the default
5735   // compare result.
5736   for (auto ValuePair : Values) {
5737     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5738                                                 ValuePair.second, CmpOp1, true);
5739     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5740       return;
5741     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5742            "Expect true or false as compare result.");
5743   }
5744 
5745   // Check if the branch instruction dominates the phi node. It's a simple
5746   // dominance check, but sufficient for our needs.
5747   // Although this check is invariant in the calling loops, it's better to do it
5748   // at this late stage. Practically we do it at most once for a switch.
5749   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5750   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5751     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5752       return;
5753   }
5754 
5755   if (DefaultConst == FalseConst) {
5756     // The compare yields the same result. We can replace it.
5757     CmpInst->replaceAllUsesWith(RangeCmp);
5758     ++NumTableCmpReuses;
5759   } else {
5760     // The compare yields the same result, just inverted. We can replace it.
5761     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5762         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5763         RangeCheckBranch);
5764     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5765     ++NumTableCmpReuses;
5766   }
5767 }
5768 
5769 /// If the switch is only used to initialize one or more phi nodes in a common
5770 /// successor block with different constant values, replace the switch with
5771 /// lookup tables.
5772 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5773                                 DomTreeUpdater *DTU, const DataLayout &DL,
5774                                 const TargetTransformInfo &TTI) {
5775   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5776 
5777   BasicBlock *BB = SI->getParent();
5778   Function *Fn = BB->getParent();
5779   // Only build lookup table when we have a target that supports it or the
5780   // attribute is not set.
5781   if (!TTI.shouldBuildLookupTables() ||
5782       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5783     return false;
5784 
5785   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5786   // split off a dense part and build a lookup table for that.
5787 
5788   // FIXME: This creates arrays of GEPs to constant strings, which means each
5789   // GEP needs a runtime relocation in PIC code. We should just build one big
5790   // string and lookup indices into that.
5791 
5792   // Ignore switches with less than three cases. Lookup tables will not make
5793   // them faster, so we don't analyze them.
5794   if (SI->getNumCases() < 3)
5795     return false;
5796 
5797   // Figure out the corresponding result for each case value and phi node in the
5798   // common destination, as well as the min and max case values.
5799   assert(!SI->cases().empty());
5800   SwitchInst::CaseIt CI = SI->case_begin();
5801   ConstantInt *MinCaseVal = CI->getCaseValue();
5802   ConstantInt *MaxCaseVal = CI->getCaseValue();
5803 
5804   BasicBlock *CommonDest = nullptr;
5805 
5806   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5807   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5808 
5809   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5810   SmallDenseMap<PHINode *, Type *> ResultTypes;
5811   SmallVector<PHINode *, 4> PHIs;
5812 
5813   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5814     ConstantInt *CaseVal = CI->getCaseValue();
5815     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5816       MinCaseVal = CaseVal;
5817     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5818       MaxCaseVal = CaseVal;
5819 
5820     // Resulting value at phi nodes for this case value.
5821     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5822     ResultsTy Results;
5823     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5824                         Results, DL, TTI))
5825       return false;
5826 
5827     // Append the result from this case to the list for each phi.
5828     for (const auto &I : Results) {
5829       PHINode *PHI = I.first;
5830       Constant *Value = I.second;
5831       if (!ResultLists.count(PHI))
5832         PHIs.push_back(PHI);
5833       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5834     }
5835   }
5836 
5837   // Keep track of the result types.
5838   for (PHINode *PHI : PHIs) {
5839     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5840   }
5841 
5842   uint64_t NumResults = ResultLists[PHIs[0]].size();
5843   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5844   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5845   bool TableHasHoles = (NumResults < TableSize);
5846 
5847   // If the table has holes, we need a constant result for the default case
5848   // or a bitmask that fits in a register.
5849   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5850   bool HasDefaultResults =
5851       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5852                      DefaultResultsList, DL, TTI);
5853 
5854   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5855   if (NeedMask) {
5856     // As an extra penalty for the validity test we require more cases.
5857     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5858       return false;
5859     if (!DL.fitsInLegalInteger(TableSize))
5860       return false;
5861   }
5862 
5863   for (const auto &I : DefaultResultsList) {
5864     PHINode *PHI = I.first;
5865     Constant *Result = I.second;
5866     DefaultResults[PHI] = Result;
5867   }
5868 
5869   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5870     return false;
5871 
5872   std::vector<DominatorTree::UpdateType> Updates;
5873 
5874   // Create the BB that does the lookups.
5875   Module &Mod = *CommonDest->getParent()->getParent();
5876   BasicBlock *LookupBB = BasicBlock::Create(
5877       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5878 
5879   // Compute the table index value.
5880   Builder.SetInsertPoint(SI);
5881   Value *TableIndex;
5882   if (MinCaseVal->isNullValue())
5883     TableIndex = SI->getCondition();
5884   else
5885     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5886                                    "switch.tableidx");
5887 
5888   // Compute the maximum table size representable by the integer type we are
5889   // switching upon.
5890   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5891   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5892   assert(MaxTableSize >= TableSize &&
5893          "It is impossible for a switch to have more entries than the max "
5894          "representable value of its input integer type's size.");
5895 
5896   // If the default destination is unreachable, or if the lookup table covers
5897   // all values of the conditional variable, branch directly to the lookup table
5898   // BB. Otherwise, check that the condition is within the case range.
5899   const bool DefaultIsReachable =
5900       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5901   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5902   BranchInst *RangeCheckBranch = nullptr;
5903 
5904   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5905     Builder.CreateBr(LookupBB);
5906     if (DTU)
5907       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5908     // Note: We call removeProdecessor later since we need to be able to get the
5909     // PHI value for the default case in case we're using a bit mask.
5910   } else {
5911     Value *Cmp = Builder.CreateICmpULT(
5912         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5913     RangeCheckBranch =
5914         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5915     if (DTU)
5916       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5917   }
5918 
5919   // Populate the BB that does the lookups.
5920   Builder.SetInsertPoint(LookupBB);
5921 
5922   if (NeedMask) {
5923     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5924     // re-purposed to do the hole check, and we create a new LookupBB.
5925     BasicBlock *MaskBB = LookupBB;
5926     MaskBB->setName("switch.hole_check");
5927     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5928                                   CommonDest->getParent(), CommonDest);
5929 
5930     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5931     // unnecessary illegal types.
5932     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5933     APInt MaskInt(TableSizePowOf2, 0);
5934     APInt One(TableSizePowOf2, 1);
5935     // Build bitmask; fill in a 1 bit for every case.
5936     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5937     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5938       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5939                          .getLimitedValue();
5940       MaskInt |= One << Idx;
5941     }
5942     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5943 
5944     // Get the TableIndex'th bit of the bitmask.
5945     // If this bit is 0 (meaning hole) jump to the default destination,
5946     // else continue with table lookup.
5947     IntegerType *MapTy = TableMask->getType();
5948     Value *MaskIndex =
5949         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5950     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5951     Value *LoBit = Builder.CreateTrunc(
5952         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5953     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5954     if (DTU) {
5955       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5956       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5957     }
5958     Builder.SetInsertPoint(LookupBB);
5959     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5960   }
5961 
5962   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5963     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5964     // do not delete PHINodes here.
5965     SI->getDefaultDest()->removePredecessor(BB,
5966                                             /*KeepOneInputPHIs=*/true);
5967     if (DTU)
5968       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5969   }
5970 
5971   bool ReturnedEarly = false;
5972   for (PHINode *PHI : PHIs) {
5973     const ResultListTy &ResultList = ResultLists[PHI];
5974 
5975     // If using a bitmask, use any value to fill the lookup table holes.
5976     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5977     StringRef FuncName = Fn->getName();
5978     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5979                             FuncName);
5980 
5981     Value *Result = Table.BuildLookup(TableIndex, Builder);
5982 
5983     // If the result is used to return immediately from the function, we want to
5984     // do that right here.
5985     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5986         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5987       Builder.CreateRet(Result);
5988       ReturnedEarly = true;
5989       break;
5990     }
5991 
5992     // Do a small peephole optimization: re-use the switch table compare if
5993     // possible.
5994     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5995       BasicBlock *PhiBlock = PHI->getParent();
5996       // Search for compare instructions which use the phi.
5997       for (auto *User : PHI->users()) {
5998         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5999       }
6000     }
6001 
6002     PHI->addIncoming(Result, LookupBB);
6003   }
6004 
6005   if (!ReturnedEarly) {
6006     Builder.CreateBr(CommonDest);
6007     if (DTU)
6008       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6009   }
6010 
6011   // Remove the switch.
6012   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6013   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6014     BasicBlock *Succ = SI->getSuccessor(i);
6015 
6016     if (Succ == SI->getDefaultDest())
6017       continue;
6018     Succ->removePredecessor(BB);
6019     RemovedSuccessors.insert(Succ);
6020   }
6021   SI->eraseFromParent();
6022 
6023   if (DTU) {
6024     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6025       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6026     DTU->applyUpdates(Updates);
6027   }
6028 
6029   ++NumLookupTables;
6030   if (NeedMask)
6031     ++NumLookupTablesHoles;
6032   return true;
6033 }
6034 
6035 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6036   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6037   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6038   uint64_t Range = Diff + 1;
6039   uint64_t NumCases = Values.size();
6040   // 40% is the default density for building a jump table in optsize/minsize mode.
6041   uint64_t MinDensity = 40;
6042 
6043   return NumCases * 100 >= Range * MinDensity;
6044 }
6045 
6046 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6047 /// of cases.
6048 ///
6049 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6050 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6051 ///
6052 /// This converts a sparse switch into a dense switch which allows better
6053 /// lowering and could also allow transforming into a lookup table.
6054 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6055                               const DataLayout &DL,
6056                               const TargetTransformInfo &TTI) {
6057   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6058   if (CondTy->getIntegerBitWidth() > 64 ||
6059       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6060     return false;
6061   // Only bother with this optimization if there are more than 3 switch cases;
6062   // SDAG will only bother creating jump tables for 4 or more cases.
6063   if (SI->getNumCases() < 4)
6064     return false;
6065 
6066   // This transform is agnostic to the signedness of the input or case values. We
6067   // can treat the case values as signed or unsigned. We can optimize more common
6068   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6069   // as signed.
6070   SmallVector<int64_t,4> Values;
6071   for (auto &C : SI->cases())
6072     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6073   llvm::sort(Values);
6074 
6075   // If the switch is already dense, there's nothing useful to do here.
6076   if (isSwitchDense(Values))
6077     return false;
6078 
6079   // First, transform the values such that they start at zero and ascend.
6080   int64_t Base = Values[0];
6081   for (auto &V : Values)
6082     V -= (uint64_t)(Base);
6083 
6084   // Now we have signed numbers that have been shifted so that, given enough
6085   // precision, there are no negative values. Since the rest of the transform
6086   // is bitwise only, we switch now to an unsigned representation.
6087 
6088   // This transform can be done speculatively because it is so cheap - it
6089   // results in a single rotate operation being inserted.
6090   // FIXME: It's possible that optimizing a switch on powers of two might also
6091   // be beneficial - flag values are often powers of two and we could use a CLZ
6092   // as the key function.
6093 
6094   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6095   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6096   // less than 64.
6097   unsigned Shift = 64;
6098   for (auto &V : Values)
6099     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6100   assert(Shift < 64);
6101   if (Shift > 0)
6102     for (auto &V : Values)
6103       V = (int64_t)((uint64_t)V >> Shift);
6104 
6105   if (!isSwitchDense(Values))
6106     // Transform didn't create a dense switch.
6107     return false;
6108 
6109   // The obvious transform is to shift the switch condition right and emit a
6110   // check that the condition actually cleanly divided by GCD, i.e.
6111   //   C & (1 << Shift - 1) == 0
6112   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6113   //
6114   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6115   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6116   // are nonzero then the switch condition will be very large and will hit the
6117   // default case.
6118 
6119   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6120   Builder.SetInsertPoint(SI);
6121   auto *ShiftC = ConstantInt::get(Ty, Shift);
6122   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6123   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6124   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6125   auto *Rot = Builder.CreateOr(LShr, Shl);
6126   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6127 
6128   for (auto Case : SI->cases()) {
6129     auto *Orig = Case.getCaseValue();
6130     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6131     Case.setValue(
6132         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6133   }
6134   return true;
6135 }
6136 
6137 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6138   BasicBlock *BB = SI->getParent();
6139 
6140   if (isValueEqualityComparison(SI)) {
6141     // If we only have one predecessor, and if it is a branch on this value,
6142     // see if that predecessor totally determines the outcome of this switch.
6143     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6144       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6145         return requestResimplify();
6146 
6147     Value *Cond = SI->getCondition();
6148     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6149       if (SimplifySwitchOnSelect(SI, Select))
6150         return requestResimplify();
6151 
6152     // If the block only contains the switch, see if we can fold the block
6153     // away into any preds.
6154     if (SI == &*BB->instructionsWithoutDebug().begin())
6155       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6156         return requestResimplify();
6157   }
6158 
6159   // Try to transform the switch into an icmp and a branch.
6160   if (TurnSwitchRangeIntoICmp(SI, Builder))
6161     return requestResimplify();
6162 
6163   // Remove unreachable cases.
6164   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6165     return requestResimplify();
6166 
6167   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6168     return requestResimplify();
6169 
6170   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6171     return requestResimplify();
6172 
6173   // The conversion from switch to lookup tables results in difficult-to-analyze
6174   // code and makes pruning branches much harder. This is a problem if the
6175   // switch expression itself can still be restricted as a result of inlining or
6176   // CVP. Therefore, only apply this transformation during late stages of the
6177   // optimisation pipeline.
6178   if (Options.ConvertSwitchToLookupTable &&
6179       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6180     return requestResimplify();
6181 
6182   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6183     return requestResimplify();
6184 
6185   return false;
6186 }
6187 
6188 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6189   BasicBlock *BB = IBI->getParent();
6190   bool Changed = false;
6191 
6192   // Eliminate redundant destinations.
6193   SmallPtrSet<Value *, 8> Succs;
6194   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6195   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6196     BasicBlock *Dest = IBI->getDestination(i);
6197     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6198       if (!Dest->hasAddressTaken())
6199         RemovedSuccs.insert(Dest);
6200       Dest->removePredecessor(BB);
6201       IBI->removeDestination(i);
6202       --i;
6203       --e;
6204       Changed = true;
6205     }
6206   }
6207 
6208   if (DTU) {
6209     std::vector<DominatorTree::UpdateType> Updates;
6210     Updates.reserve(RemovedSuccs.size());
6211     for (auto *RemovedSucc : RemovedSuccs)
6212       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6213     DTU->applyUpdates(Updates);
6214   }
6215 
6216   if (IBI->getNumDestinations() == 0) {
6217     // If the indirectbr has no successors, change it to unreachable.
6218     new UnreachableInst(IBI->getContext(), IBI);
6219     EraseTerminatorAndDCECond(IBI);
6220     return true;
6221   }
6222 
6223   if (IBI->getNumDestinations() == 1) {
6224     // If the indirectbr has one successor, change it to a direct branch.
6225     BranchInst::Create(IBI->getDestination(0), IBI);
6226     EraseTerminatorAndDCECond(IBI);
6227     return true;
6228   }
6229 
6230   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6231     if (SimplifyIndirectBrOnSelect(IBI, SI))
6232       return requestResimplify();
6233   }
6234   return Changed;
6235 }
6236 
6237 /// Given an block with only a single landing pad and a unconditional branch
6238 /// try to find another basic block which this one can be merged with.  This
6239 /// handles cases where we have multiple invokes with unique landing pads, but
6240 /// a shared handler.
6241 ///
6242 /// We specifically choose to not worry about merging non-empty blocks
6243 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6244 /// practice, the optimizer produces empty landing pad blocks quite frequently
6245 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6246 /// sinking in this file)
6247 ///
6248 /// This is primarily a code size optimization.  We need to avoid performing
6249 /// any transform which might inhibit optimization (such as our ability to
6250 /// specialize a particular handler via tail commoning).  We do this by not
6251 /// merging any blocks which require us to introduce a phi.  Since the same
6252 /// values are flowing through both blocks, we don't lose any ability to
6253 /// specialize.  If anything, we make such specialization more likely.
6254 ///
6255 /// TODO - This transformation could remove entries from a phi in the target
6256 /// block when the inputs in the phi are the same for the two blocks being
6257 /// merged.  In some cases, this could result in removal of the PHI entirely.
6258 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6259                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6260   auto Succ = BB->getUniqueSuccessor();
6261   assert(Succ);
6262   // If there's a phi in the successor block, we'd likely have to introduce
6263   // a phi into the merged landing pad block.
6264   if (isa<PHINode>(*Succ->begin()))
6265     return false;
6266 
6267   for (BasicBlock *OtherPred : predecessors(Succ)) {
6268     if (BB == OtherPred)
6269       continue;
6270     BasicBlock::iterator I = OtherPred->begin();
6271     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6272     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6273       continue;
6274     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6275       ;
6276     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6277     if (!BI2 || !BI2->isIdenticalTo(BI))
6278       continue;
6279 
6280     std::vector<DominatorTree::UpdateType> Updates;
6281 
6282     // We've found an identical block.  Update our predecessors to take that
6283     // path instead and make ourselves dead.
6284     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6285     for (BasicBlock *Pred : Preds) {
6286       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6287       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6288              "unexpected successor");
6289       II->setUnwindDest(OtherPred);
6290       if (DTU) {
6291         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6292         Updates.push_back({DominatorTree::Delete, Pred, BB});
6293       }
6294     }
6295 
6296     // The debug info in OtherPred doesn't cover the merged control flow that
6297     // used to go through BB.  We need to delete it or update it.
6298     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6299       Instruction &Inst = *I;
6300       I++;
6301       if (isa<DbgInfoIntrinsic>(Inst))
6302         Inst.eraseFromParent();
6303     }
6304 
6305     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6306     for (BasicBlock *Succ : Succs) {
6307       Succ->removePredecessor(BB);
6308       if (DTU)
6309         Updates.push_back({DominatorTree::Delete, BB, Succ});
6310     }
6311 
6312     IRBuilder<> Builder(BI);
6313     Builder.CreateUnreachable();
6314     BI->eraseFromParent();
6315     if (DTU)
6316       DTU->applyUpdates(Updates);
6317     return true;
6318   }
6319   return false;
6320 }
6321 
6322 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6323   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6324                                    : simplifyCondBranch(Branch, Builder);
6325 }
6326 
6327 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6328                                           IRBuilder<> &Builder) {
6329   BasicBlock *BB = BI->getParent();
6330   BasicBlock *Succ = BI->getSuccessor(0);
6331 
6332   // If the Terminator is the only non-phi instruction, simplify the block.
6333   // If LoopHeader is provided, check if the block or its successor is a loop
6334   // header. (This is for early invocations before loop simplify and
6335   // vectorization to keep canonical loop forms for nested loops. These blocks
6336   // can be eliminated when the pass is invoked later in the back-end.)
6337   // Note that if BB has only one predecessor then we do not introduce new
6338   // backedge, so we can eliminate BB.
6339   bool NeedCanonicalLoop =
6340       Options.NeedCanonicalLoop &&
6341       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6342        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6343   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6344   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6345       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6346     return true;
6347 
6348   // If the only instruction in the block is a seteq/setne comparison against a
6349   // constant, try to simplify the block.
6350   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6351     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6352       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6353         ;
6354       if (I->isTerminator() &&
6355           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6356         return true;
6357     }
6358 
6359   // See if we can merge an empty landing pad block with another which is
6360   // equivalent.
6361   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6362     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6363       ;
6364     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6365       return true;
6366   }
6367 
6368   // If this basic block is ONLY a compare and a branch, and if a predecessor
6369   // branches to us and our successor, fold the comparison into the
6370   // predecessor and use logical operations to update the incoming value
6371   // for PHI nodes in common successor.
6372   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6373                              Options.BonusInstThreshold))
6374     return requestResimplify();
6375   return false;
6376 }
6377 
6378 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6379   BasicBlock *PredPred = nullptr;
6380   for (auto *P : predecessors(BB)) {
6381     BasicBlock *PPred = P->getSinglePredecessor();
6382     if (!PPred || (PredPred && PredPred != PPred))
6383       return nullptr;
6384     PredPred = PPred;
6385   }
6386   return PredPred;
6387 }
6388 
6389 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6390   BasicBlock *BB = BI->getParent();
6391   if (!Options.SimplifyCondBranch)
6392     return false;
6393 
6394   // Conditional branch
6395   if (isValueEqualityComparison(BI)) {
6396     // If we only have one predecessor, and if it is a branch on this value,
6397     // see if that predecessor totally determines the outcome of this
6398     // switch.
6399     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6400       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6401         return requestResimplify();
6402 
6403     // This block must be empty, except for the setcond inst, if it exists.
6404     // Ignore dbg and pseudo intrinsics.
6405     auto I = BB->instructionsWithoutDebug(true).begin();
6406     if (&*I == BI) {
6407       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6408         return requestResimplify();
6409     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6410       ++I;
6411       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6412         return requestResimplify();
6413     }
6414   }
6415 
6416   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6417   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6418     return true;
6419 
6420   // If this basic block has dominating predecessor blocks and the dominating
6421   // blocks' conditions imply BI's condition, we know the direction of BI.
6422   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6423   if (Imp) {
6424     // Turn this into a branch on constant.
6425     auto *OldCond = BI->getCondition();
6426     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6427                              : ConstantInt::getFalse(BB->getContext());
6428     BI->setCondition(TorF);
6429     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6430     return requestResimplify();
6431   }
6432 
6433   // If this basic block is ONLY a compare and a branch, and if a predecessor
6434   // branches to us and one of our successors, fold the comparison into the
6435   // predecessor and use logical operations to pick the right destination.
6436   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6437                              Options.BonusInstThreshold))
6438     return requestResimplify();
6439 
6440   // We have a conditional branch to two blocks that are only reachable
6441   // from BI.  We know that the condbr dominates the two blocks, so see if
6442   // there is any identical code in the "then" and "else" blocks.  If so, we
6443   // can hoist it up to the branching block.
6444   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6445     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6446       if (HoistCommon && Options.HoistCommonInsts)
6447         if (HoistThenElseCodeToIf(BI, TTI))
6448           return requestResimplify();
6449     } else {
6450       // If Successor #1 has multiple preds, we may be able to conditionally
6451       // execute Successor #0 if it branches to Successor #1.
6452       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6453       if (Succ0TI->getNumSuccessors() == 1 &&
6454           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6455         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6456           return requestResimplify();
6457     }
6458   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6459     // If Successor #0 has multiple preds, we may be able to conditionally
6460     // execute Successor #1 if it branches to Successor #0.
6461     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6462     if (Succ1TI->getNumSuccessors() == 1 &&
6463         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6464       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6465         return requestResimplify();
6466   }
6467 
6468   // If this is a branch on a phi node in the current block, thread control
6469   // through this block if any PHI node entries are constants.
6470   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6471     if (PN->getParent() == BI->getParent())
6472       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6473         return requestResimplify();
6474 
6475   // Scan predecessor blocks for conditional branches.
6476   for (BasicBlock *Pred : predecessors(BB))
6477     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6478       if (PBI != BI && PBI->isConditional())
6479         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6480           return requestResimplify();
6481 
6482   // Look for diamond patterns.
6483   if (MergeCondStores)
6484     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6485       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6486         if (PBI != BI && PBI->isConditional())
6487           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6488             return requestResimplify();
6489 
6490   return false;
6491 }
6492 
6493 /// Check if passing a value to an instruction will cause undefined behavior.
6494 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6495   Constant *C = dyn_cast<Constant>(V);
6496   if (!C)
6497     return false;
6498 
6499   if (I->use_empty())
6500     return false;
6501 
6502   if (C->isNullValue() || isa<UndefValue>(C)) {
6503     // Only look at the first use, avoid hurting compile time with long uselists
6504     User *Use = *I->user_begin();
6505 
6506     // Now make sure that there are no instructions in between that can alter
6507     // control flow (eg. calls)
6508     for (BasicBlock::iterator
6509              i = ++BasicBlock::iterator(I),
6510              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6511          i != UI; ++i)
6512       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6513         return false;
6514 
6515     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6516     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6517       if (GEP->getPointerOperand() == I) {
6518         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6519           PtrValueMayBeModified = true;
6520         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6521       }
6522 
6523     // Look through bitcasts.
6524     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6525       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6526 
6527     // Load from null is undefined.
6528     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6529       if (!LI->isVolatile())
6530         return !NullPointerIsDefined(LI->getFunction(),
6531                                      LI->getPointerAddressSpace());
6532 
6533     // Store to null is undefined.
6534     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6535       if (!SI->isVolatile())
6536         return (!NullPointerIsDefined(SI->getFunction(),
6537                                       SI->getPointerAddressSpace())) &&
6538                SI->getPointerOperand() == I;
6539 
6540     if (auto *CB = dyn_cast<CallBase>(Use)) {
6541       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6542         return false;
6543       // A call to null is undefined.
6544       if (CB->getCalledOperand() == I)
6545         return true;
6546 
6547       if (C->isNullValue()) {
6548         for (const llvm::Use &Arg : CB->args())
6549           if (Arg == I) {
6550             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6551             if (CB->isPassingUndefUB(ArgIdx) &&
6552                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6553               // Passing null to a nonnnull+noundef argument is undefined.
6554               return !PtrValueMayBeModified;
6555             }
6556           }
6557       } else if (isa<UndefValue>(C)) {
6558         // Passing undef to a noundef argument is undefined.
6559         for (const llvm::Use &Arg : CB->args())
6560           if (Arg == I) {
6561             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6562             if (CB->isPassingUndefUB(ArgIdx)) {
6563               // Passing undef to a noundef argument is undefined.
6564               return true;
6565             }
6566           }
6567       }
6568     }
6569   }
6570   return false;
6571 }
6572 
6573 /// If BB has an incoming value that will always trigger undefined behavior
6574 /// (eg. null pointer dereference), remove the branch leading here.
6575 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6576                                               DomTreeUpdater *DTU) {
6577   for (PHINode &PHI : BB->phis())
6578     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6579       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6580         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6581         Instruction *T = Predecessor->getTerminator();
6582         IRBuilder<> Builder(T);
6583         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6584           BB->removePredecessor(Predecessor);
6585           // Turn uncoditional branches into unreachables and remove the dead
6586           // destination from conditional branches.
6587           if (BI->isUnconditional())
6588             Builder.CreateUnreachable();
6589           else
6590             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6591                                                        : BI->getSuccessor(0));
6592           BI->eraseFromParent();
6593           if (DTU)
6594             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6595           return true;
6596         }
6597         // TODO: SwitchInst.
6598       }
6599 
6600   return false;
6601 }
6602 
6603 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6604   bool Changed = false;
6605 
6606   assert(BB && BB->getParent() && "Block not embedded in function!");
6607   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6608 
6609   // Remove basic blocks that have no predecessors (except the entry block)...
6610   // or that just have themself as a predecessor.  These are unreachable.
6611   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6612       BB->getSinglePredecessor() == BB) {
6613     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6614     DeleteDeadBlock(BB, DTU);
6615     return true;
6616   }
6617 
6618   // Check to see if we can constant propagate this terminator instruction
6619   // away...
6620   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6621                                     /*TLI=*/nullptr, DTU);
6622 
6623   // Check for and eliminate duplicate PHI nodes in this block.
6624   Changed |= EliminateDuplicatePHINodes(BB);
6625 
6626   // Check for and remove branches that will always cause undefined behavior.
6627   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6628 
6629   // Merge basic blocks into their predecessor if there is only one distinct
6630   // pred, and if there is only one distinct successor of the predecessor, and
6631   // if there are no PHI nodes.
6632   if (MergeBlockIntoPredecessor(BB, DTU))
6633     return true;
6634 
6635   if (SinkCommon && Options.SinkCommonInsts)
6636     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6637 
6638   IRBuilder<> Builder(BB);
6639 
6640   if (Options.FoldTwoEntryPHINode) {
6641     // If there is a trivial two-entry PHI node in this basic block, and we can
6642     // eliminate it, do so now.
6643     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6644       if (PN->getNumIncomingValues() == 2)
6645         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6646   }
6647 
6648   Instruction *Terminator = BB->getTerminator();
6649   Builder.SetInsertPoint(Terminator);
6650   switch (Terminator->getOpcode()) {
6651   case Instruction::Br:
6652     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6653     break;
6654   case Instruction::Ret:
6655     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6656     break;
6657   case Instruction::Resume:
6658     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6659     break;
6660   case Instruction::CleanupRet:
6661     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6662     break;
6663   case Instruction::Switch:
6664     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6665     break;
6666   case Instruction::Unreachable:
6667     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6668     break;
6669   case Instruction::IndirectBr:
6670     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6671     break;
6672   }
6673 
6674   return Changed;
6675 }
6676 
6677 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6678   bool Changed = simplifyOnceImpl(BB);
6679 
6680   return Changed;
6681 }
6682 
6683 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6684   bool Changed = false;
6685 
6686   // Repeated simplify BB as long as resimplification is requested.
6687   do {
6688     Resimplify = false;
6689 
6690     // Perform one round of simplifcation. Resimplify flag will be set if
6691     // another iteration is requested.
6692     Changed |= simplifyOnce(BB);
6693   } while (Resimplify);
6694 
6695   return Changed;
6696 }
6697 
6698 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6699                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6700                        ArrayRef<WeakVH> LoopHeaders) {
6701   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6702                         Options)
6703       .run(BB);
6704 }
6705