1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/DebugInfo.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 using namespace PatternMatch;
81 
82 #define DEBUG_TYPE "simplifycfg"
83 
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92 
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96 
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100 
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104 
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110 
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115 
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120 
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125 
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138 
139 namespace {
140 
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150 
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155 
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158 
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163 
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166 
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   unsigned BonusInstThreshold;
171   AssumptionCache *AC;
172   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
173   Value *isValueEqualityComparison(TerminatorInst *TI);
174   BasicBlock *GetValueEqualityComparisonCases(
175       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
176   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
177                                                      BasicBlock *Pred,
178                                                      IRBuilder<> &Builder);
179   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
180                                            IRBuilder<> &Builder);
181 
182   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
183   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
184   bool SimplifySingleResume(ResumeInst *RI);
185   bool SimplifyCommonResume(ResumeInst *RI);
186   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
187   bool SimplifyUnreachable(UnreachableInst *UI);
188   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
189   bool SimplifyIndirectBr(IndirectBrInst *IBI);
190   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
191   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
192 
193 public:
194   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
195                  unsigned BonusInstThreshold, AssumptionCache *AC,
196                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
197       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
198         LoopHeaders(LoopHeaders) {}
199 
200   bool run(BasicBlock *BB);
201 };
202 
203 } // end anonymous namespace
204 
205 /// Return true if it is safe to merge these two
206 /// terminator instructions together.
207 static bool
208 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
209                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
210   if (SI1 == SI2)
211     return false; // Can't merge with self!
212 
213   // It is not safe to merge these two switch instructions if they have a common
214   // successor, and if that successor has a PHI node, and if *that* PHI node has
215   // conflicting incoming values from the two switch blocks.
216   BasicBlock *SI1BB = SI1->getParent();
217   BasicBlock *SI2BB = SI2->getParent();
218 
219   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
220   bool Fail = false;
221   for (BasicBlock *Succ : successors(SI2BB))
222     if (SI1Succs.count(Succ))
223       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
224         PHINode *PN = cast<PHINode>(BBI);
225         if (PN->getIncomingValueForBlock(SI1BB) !=
226             PN->getIncomingValueForBlock(SI2BB)) {
227           if (FailBlocks)
228             FailBlocks->insert(Succ);
229           Fail = true;
230         }
231       }
232 
233   return !Fail;
234 }
235 
236 /// Return true if it is safe and profitable to merge these two terminator
237 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
238 /// store all PHI nodes in common successors.
239 static bool
240 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
241                                 Instruction *Cond,
242                                 SmallVectorImpl<PHINode *> &PhiNodes) {
243   if (SI1 == SI2)
244     return false; // Can't merge with self!
245   assert(SI1->isUnconditional() && SI2->isConditional());
246 
247   // We fold the unconditional branch if we can easily update all PHI nodes in
248   // common successors:
249   // 1> We have a constant incoming value for the conditional branch;
250   // 2> We have "Cond" as the incoming value for the unconditional branch;
251   // 3> SI2->getCondition() and Cond have same operands.
252   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
253   if (!Ci2)
254     return false;
255   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
256         Cond->getOperand(1) == Ci2->getOperand(1)) &&
257       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
258         Cond->getOperand(1) == Ci2->getOperand(0)))
259     return false;
260 
261   BasicBlock *SI1BB = SI1->getParent();
262   BasicBlock *SI2BB = SI2->getParent();
263   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
264   for (BasicBlock *Succ : successors(SI2BB))
265     if (SI1Succs.count(Succ))
266       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
267         PHINode *PN = cast<PHINode>(BBI);
268         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
269             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
270           return false;
271         PhiNodes.push_back(PN);
272       }
273   return true;
274 }
275 
276 /// Update PHI nodes in Succ to indicate that there will now be entries in it
277 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
278 /// will be the same as those coming in from ExistPred, an existing predecessor
279 /// of Succ.
280 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
281                                   BasicBlock *ExistPred) {
282   if (!isa<PHINode>(Succ->begin()))
283     return; // Quick exit if nothing to do
284 
285   PHINode *PN;
286   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
287     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
288 }
289 
290 /// Compute an abstract "cost" of speculating the given instruction,
291 /// which is assumed to be safe to speculate. TCC_Free means cheap,
292 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
293 /// expensive.
294 static unsigned ComputeSpeculationCost(const User *I,
295                                        const TargetTransformInfo &TTI) {
296   assert(isSafeToSpeculativelyExecute(I) &&
297          "Instruction is not safe to speculatively execute!");
298   return TTI.getUserCost(I);
299 }
300 
301 /// If we have a merge point of an "if condition" as accepted above,
302 /// return true if the specified value dominates the block.  We
303 /// don't handle the true generality of domination here, just a special case
304 /// which works well enough for us.
305 ///
306 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
307 /// see if V (which must be an instruction) and its recursive operands
308 /// that do not dominate BB have a combined cost lower than CostRemaining and
309 /// are non-trapping.  If both are true, the instruction is inserted into the
310 /// set and true is returned.
311 ///
312 /// The cost for most non-trapping instructions is defined as 1 except for
313 /// Select whose cost is 2.
314 ///
315 /// After this function returns, CostRemaining is decreased by the cost of
316 /// V plus its non-dominating operands.  If that cost is greater than
317 /// CostRemaining, false is returned and CostRemaining is undefined.
318 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
319                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
320                                 unsigned &CostRemaining,
321                                 const TargetTransformInfo &TTI,
322                                 unsigned Depth = 0) {
323   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
324   // so limit the recursion depth.
325   // TODO: While this recursion limit does prevent pathological behavior, it
326   // would be better to track visited instructions to avoid cycles.
327   if (Depth == MaxSpeculationDepth)
328     return false;
329 
330   Instruction *I = dyn_cast<Instruction>(V);
331   if (!I) {
332     // Non-instructions all dominate instructions, but not all constantexprs
333     // can be executed unconditionally.
334     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
335       if (C->canTrap())
336         return false;
337     return true;
338   }
339   BasicBlock *PBB = I->getParent();
340 
341   // We don't want to allow weird loops that might have the "if condition" in
342   // the bottom of this block.
343   if (PBB == BB)
344     return false;
345 
346   // If this instruction is defined in a block that contains an unconditional
347   // branch to BB, then it must be in the 'conditional' part of the "if
348   // statement".  If not, it definitely dominates the region.
349   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
351     return true;
352 
353   // If we aren't allowing aggressive promotion anymore, then don't consider
354   // instructions in the 'if region'.
355   if (!AggressiveInsts)
356     return false;
357 
358   // If we have seen this instruction before, don't count it again.
359   if (AggressiveInsts->count(I))
360     return true;
361 
362   // Okay, it looks like the instruction IS in the "condition".  Check to
363   // see if it's a cheap instruction to unconditionally compute, and if it
364   // only uses stuff defined outside of the condition.  If so, hoist it out.
365   if (!isSafeToSpeculativelyExecute(I))
366     return false;
367 
368   unsigned Cost = ComputeSpeculationCost(I, TTI);
369 
370   // Allow exactly one instruction to be speculated regardless of its cost
371   // (as long as it is safe to do so).
372   // This is intended to flatten the CFG even if the instruction is a division
373   // or other expensive operation. The speculation of an expensive instruction
374   // is expected to be undone in CodeGenPrepare if the speculation has not
375   // enabled further IR optimizations.
376   if (Cost > CostRemaining &&
377       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
378     return false;
379 
380   // Avoid unsigned wrap.
381   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
382 
383   // Okay, we can only really hoist these out if their operands do
384   // not take us over the cost threshold.
385   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
386     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
387                              Depth + 1))
388       return false;
389   // Okay, it's safe to do this!  Remember this instruction.
390   AggressiveInsts->insert(I);
391   return true;
392 }
393 
394 /// Extract ConstantInt from value, looking through IntToPtr
395 /// and PointerNullValue. Return NULL if value is not a constant int.
396 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
397   // Normal constant int.
398   ConstantInt *CI = dyn_cast<ConstantInt>(V);
399   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
400     return CI;
401 
402   // This is some kind of pointer constant. Turn it into a pointer-sized
403   // ConstantInt if possible.
404   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
405 
406   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
407   if (isa<ConstantPointerNull>(V))
408     return ConstantInt::get(PtrTy, 0);
409 
410   // IntToPtr const int.
411   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
412     if (CE->getOpcode() == Instruction::IntToPtr)
413       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
414         // The constant is very likely to have the right type already.
415         if (CI->getType() == PtrTy)
416           return CI;
417         else
418           return cast<ConstantInt>(
419               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
420       }
421   return nullptr;
422 }
423 
424 namespace {
425 
426 /// Given a chain of or (||) or and (&&) comparison of a value against a
427 /// constant, this will try to recover the information required for a switch
428 /// structure.
429 /// It will depth-first traverse the chain of comparison, seeking for patterns
430 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
431 /// representing the different cases for the switch.
432 /// Note that if the chain is composed of '||' it will build the set of elements
433 /// that matches the comparisons (i.e. any of this value validate the chain)
434 /// while for a chain of '&&' it will build the set elements that make the test
435 /// fail.
436 struct ConstantComparesGatherer {
437   const DataLayout &DL;
438   Value *CompValue; /// Value found for the switch comparison
439   Value *Extra;     /// Extra clause to be checked before the switch
440   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
441   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
442 
443   /// Construct and compute the result for the comparison instruction Cond
444   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
445       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
446     gather(Cond);
447   }
448 
449   /// Prevent copy
450   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
451   ConstantComparesGatherer &
452   operator=(const ConstantComparesGatherer &) = delete;
453 
454 private:
455   /// Try to set the current value used for the comparison, it succeeds only if
456   /// it wasn't set before or if the new value is the same as the old one
457   bool setValueOnce(Value *NewVal) {
458     if (CompValue && CompValue != NewVal)
459       return false;
460     CompValue = NewVal;
461     return (CompValue != nullptr);
462   }
463 
464   /// Try to match Instruction "I" as a comparison against a constant and
465   /// populates the array Vals with the set of values that match (or do not
466   /// match depending on isEQ).
467   /// Return false on failure. On success, the Value the comparison matched
468   /// against is placed in CompValue.
469   /// If CompValue is already set, the function is expected to fail if a match
470   /// is found but the value compared to is different.
471   bool matchInstruction(Instruction *I, bool isEQ) {
472     // If this is an icmp against a constant, handle this as one of the cases.
473     ICmpInst *ICI;
474     ConstantInt *C;
475     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
476           (C = GetConstantInt(I->getOperand(1), DL)))) {
477       return false;
478     }
479 
480     Value *RHSVal;
481     const APInt *RHSC;
482 
483     // Pattern match a special case
484     // (x & ~2^z) == y --> x == y || x == y|2^z
485     // This undoes a transformation done by instcombine to fuse 2 compares.
486     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
487 
488       // It's a little bit hard to see why the following transformations are
489       // correct. Here is a CVC3 program to verify them for 64-bit values:
490 
491       /*
492          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
493          x    : BITVECTOR(64);
494          y    : BITVECTOR(64);
495          z    : BITVECTOR(64);
496          mask : BITVECTOR(64) = BVSHL(ONE, z);
497          QUERY( (y & ~mask = y) =>
498                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
499          );
500          QUERY( (y |  mask = y) =>
501                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
502          );
503       */
504 
505       // Please note that each pattern must be a dual implication (<--> or
506       // iff). One directional implication can create spurious matches. If the
507       // implication is only one-way, an unsatisfiable condition on the left
508       // side can imply a satisfiable condition on the right side. Dual
509       // implication ensures that satisfiable conditions are transformed to
510       // other satisfiable conditions and unsatisfiable conditions are
511       // transformed to other unsatisfiable conditions.
512 
513       // Here is a concrete example of a unsatisfiable condition on the left
514       // implying a satisfiable condition on the right:
515       //
516       // mask = (1 << z)
517       // (x & ~mask) == y  --> (x == y || x == (y | mask))
518       //
519       // Substituting y = 3, z = 0 yields:
520       // (x & -2) == 3 --> (x == 3 || x == 2)
521 
522       // Pattern match a special case:
523       /*
524         QUERY( (y & ~mask = y) =>
525                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
526         );
527       */
528       if (match(ICI->getOperand(0),
529                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
530         APInt Mask = ~*RHSC;
531         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
532           // If we already have a value for the switch, it has to match!
533           if (!setValueOnce(RHSVal))
534             return false;
535 
536           Vals.push_back(C);
537           Vals.push_back(
538               ConstantInt::get(C->getContext(),
539                                C->getValue() | Mask));
540           UsedICmps++;
541           return true;
542         }
543       }
544 
545       // Pattern match a special case:
546       /*
547         QUERY( (y |  mask = y) =>
548                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
549         );
550       */
551       if (match(ICI->getOperand(0),
552                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
553         APInt Mask = *RHSC;
554         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
555           // If we already have a value for the switch, it has to match!
556           if (!setValueOnce(RHSVal))
557             return false;
558 
559           Vals.push_back(C);
560           Vals.push_back(ConstantInt::get(C->getContext(),
561                                           C->getValue() & ~Mask));
562           UsedICmps++;
563           return true;
564         }
565       }
566 
567       // If we already have a value for the switch, it has to match!
568       if (!setValueOnce(ICI->getOperand(0)))
569         return false;
570 
571       UsedICmps++;
572       Vals.push_back(C);
573       return ICI->getOperand(0);
574     }
575 
576     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
577     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
578         ICI->getPredicate(), C->getValue());
579 
580     // Shift the range if the compare is fed by an add. This is the range
581     // compare idiom as emitted by instcombine.
582     Value *CandidateVal = I->getOperand(0);
583     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
584       Span = Span.subtract(*RHSC);
585       CandidateVal = RHSVal;
586     }
587 
588     // If this is an and/!= check, then we are looking to build the set of
589     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
590     // x != 0 && x != 1.
591     if (!isEQ)
592       Span = Span.inverse();
593 
594     // If there are a ton of values, we don't want to make a ginormous switch.
595     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
596       return false;
597     }
598 
599     // If we already have a value for the switch, it has to match!
600     if (!setValueOnce(CandidateVal))
601       return false;
602 
603     // Add all values from the range to the set
604     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
605       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
606 
607     UsedICmps++;
608     return true;
609   }
610 
611   /// Given a potentially 'or'd or 'and'd together collection of icmp
612   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
613   /// the value being compared, and stick the list constants into the Vals
614   /// vector.
615   /// One "Extra" case is allowed to differ from the other.
616   void gather(Value *V) {
617     Instruction *I = dyn_cast<Instruction>(V);
618     bool isEQ = (I->getOpcode() == Instruction::Or);
619 
620     // Keep a stack (SmallVector for efficiency) for depth-first traversal
621     SmallVector<Value *, 8> DFT;
622     SmallPtrSet<Value *, 8> Visited;
623 
624     // Initialize
625     Visited.insert(V);
626     DFT.push_back(V);
627 
628     while (!DFT.empty()) {
629       V = DFT.pop_back_val();
630 
631       if (Instruction *I = dyn_cast<Instruction>(V)) {
632         // If it is a || (or && depending on isEQ), process the operands.
633         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
634           if (Visited.insert(I->getOperand(1)).second)
635             DFT.push_back(I->getOperand(1));
636           if (Visited.insert(I->getOperand(0)).second)
637             DFT.push_back(I->getOperand(0));
638           continue;
639         }
640 
641         // Try to match the current instruction
642         if (matchInstruction(I, isEQ))
643           // Match succeed, continue the loop
644           continue;
645       }
646 
647       // One element of the sequence of || (or &&) could not be match as a
648       // comparison against the same value as the others.
649       // We allow only one "Extra" case to be checked before the switch
650       if (!Extra) {
651         Extra = V;
652         continue;
653       }
654       // Failed to parse a proper sequence, abort now
655       CompValue = nullptr;
656       break;
657     }
658   }
659 };
660 
661 } // end anonymous namespace
662 
663 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
664   Instruction *Cond = nullptr;
665   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
666     Cond = dyn_cast<Instruction>(SI->getCondition());
667   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
668     if (BI->isConditional())
669       Cond = dyn_cast<Instruction>(BI->getCondition());
670   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
671     Cond = dyn_cast<Instruction>(IBI->getAddress());
672   }
673 
674   TI->eraseFromParent();
675   if (Cond)
676     RecursivelyDeleteTriviallyDeadInstructions(Cond);
677 }
678 
679 /// Return true if the specified terminator checks
680 /// to see if a value is equal to constant integer value.
681 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
682   Value *CV = nullptr;
683   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
684     // Do not permit merging of large switch instructions into their
685     // predecessors unless there is only one predecessor.
686     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
687                                                pred_end(SI->getParent())) <=
688         128)
689       CV = SI->getCondition();
690   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
691     if (BI->isConditional() && BI->getCondition()->hasOneUse())
692       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
693         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
694           CV = ICI->getOperand(0);
695       }
696 
697   // Unwrap any lossless ptrtoint cast.
698   if (CV) {
699     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
700       Value *Ptr = PTII->getPointerOperand();
701       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
702         CV = Ptr;
703     }
704   }
705   return CV;
706 }
707 
708 /// Given a value comparison instruction,
709 /// decode all of the 'cases' that it represents and return the 'default' block.
710 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
711     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
712   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
713     Cases.reserve(SI->getNumCases());
714     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
715          ++i)
716       Cases.push_back(
717           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
718     return SI->getDefaultDest();
719   }
720 
721   BranchInst *BI = cast<BranchInst>(TI);
722   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
723   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
724   Cases.push_back(ValueEqualityComparisonCase(
725       GetConstantInt(ICI->getOperand(1), DL), Succ));
726   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
727 }
728 
729 /// Given a vector of bb/value pairs, remove any entries
730 /// in the list that match the specified block.
731 static void
732 EliminateBlockCases(BasicBlock *BB,
733                     std::vector<ValueEqualityComparisonCase> &Cases) {
734   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
735 }
736 
737 /// Return true if there are any keys in C1 that exist in C2 as well.
738 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
739                           std::vector<ValueEqualityComparisonCase> &C2) {
740   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
741 
742   // Make V1 be smaller than V2.
743   if (V1->size() > V2->size())
744     std::swap(V1, V2);
745 
746   if (V1->empty())
747     return false;
748   if (V1->size() == 1) {
749     // Just scan V2.
750     ConstantInt *TheVal = (*V1)[0].Value;
751     for (unsigned i = 0, e = V2->size(); i != e; ++i)
752       if (TheVal == (*V2)[i].Value)
753         return true;
754   }
755 
756   // Otherwise, just sort both lists and compare element by element.
757   array_pod_sort(V1->begin(), V1->end());
758   array_pod_sort(V2->begin(), V2->end());
759   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
760   while (i1 != e1 && i2 != e2) {
761     if ((*V1)[i1].Value == (*V2)[i2].Value)
762       return true;
763     if ((*V1)[i1].Value < (*V2)[i2].Value)
764       ++i1;
765     else
766       ++i2;
767   }
768   return false;
769 }
770 
771 /// If TI is known to be a terminator instruction and its block is known to
772 /// only have a single predecessor block, check to see if that predecessor is
773 /// also a value comparison with the same value, and if that comparison
774 /// determines the outcome of this comparison. If so, simplify TI. This does a
775 /// very limited form of jump threading.
776 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
777     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
778   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
779   if (!PredVal)
780     return false; // Not a value comparison in predecessor.
781 
782   Value *ThisVal = isValueEqualityComparison(TI);
783   assert(ThisVal && "This isn't a value comparison!!");
784   if (ThisVal != PredVal)
785     return false; // Different predicates.
786 
787   // TODO: Preserve branch weight metadata, similarly to how
788   // FoldValueComparisonIntoPredecessors preserves it.
789 
790   // Find out information about when control will move from Pred to TI's block.
791   std::vector<ValueEqualityComparisonCase> PredCases;
792   BasicBlock *PredDef =
793       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
794   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
795 
796   // Find information about how control leaves this block.
797   std::vector<ValueEqualityComparisonCase> ThisCases;
798   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
799   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
800 
801   // If TI's block is the default block from Pred's comparison, potentially
802   // simplify TI based on this knowledge.
803   if (PredDef == TI->getParent()) {
804     // If we are here, we know that the value is none of those cases listed in
805     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
806     // can simplify TI.
807     if (!ValuesOverlap(PredCases, ThisCases))
808       return false;
809 
810     if (isa<BranchInst>(TI)) {
811       // Okay, one of the successors of this condbr is dead.  Convert it to a
812       // uncond br.
813       assert(ThisCases.size() == 1 && "Branch can only have one case!");
814       // Insert the new branch.
815       Instruction *NI = Builder.CreateBr(ThisDef);
816       (void)NI;
817 
818       // Remove PHI node entries for the dead edge.
819       ThisCases[0].Dest->removePredecessor(TI->getParent());
820 
821       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
822                    << "Through successor TI: " << *TI << "Leaving: " << *NI
823                    << "\n");
824 
825       EraseTerminatorInstAndDCECond(TI);
826       return true;
827     }
828 
829     SwitchInst *SI = cast<SwitchInst>(TI);
830     // Okay, TI has cases that are statically dead, prune them away.
831     SmallPtrSet<Constant *, 16> DeadCases;
832     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
833       DeadCases.insert(PredCases[i].Value);
834 
835     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
836                  << "Through successor TI: " << *TI);
837 
838     // Collect branch weights into a vector.
839     SmallVector<uint32_t, 8> Weights;
840     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
841     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
842     if (HasWeight)
843       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
844            ++MD_i) {
845         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
846         Weights.push_back(CI->getValue().getZExtValue());
847       }
848     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
849       --i;
850       if (DeadCases.count(i.getCaseValue())) {
851         if (HasWeight) {
852           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
853           Weights.pop_back();
854         }
855         i.getCaseSuccessor()->removePredecessor(TI->getParent());
856         SI->removeCase(i);
857       }
858     }
859     if (HasWeight && Weights.size() >= 2)
860       SI->setMetadata(LLVMContext::MD_prof,
861                       MDBuilder(SI->getParent()->getContext())
862                           .createBranchWeights(Weights));
863 
864     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
865     return true;
866   }
867 
868   // Otherwise, TI's block must correspond to some matched value.  Find out
869   // which value (or set of values) this is.
870   ConstantInt *TIV = nullptr;
871   BasicBlock *TIBB = TI->getParent();
872   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
873     if (PredCases[i].Dest == TIBB) {
874       if (TIV)
875         return false; // Cannot handle multiple values coming to this block.
876       TIV = PredCases[i].Value;
877     }
878   assert(TIV && "No edge from pred to succ?");
879 
880   // Okay, we found the one constant that our value can be if we get into TI's
881   // BB.  Find out which successor will unconditionally be branched to.
882   BasicBlock *TheRealDest = nullptr;
883   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
884     if (ThisCases[i].Value == TIV) {
885       TheRealDest = ThisCases[i].Dest;
886       break;
887     }
888 
889   // If not handled by any explicit cases, it is handled by the default case.
890   if (!TheRealDest)
891     TheRealDest = ThisDef;
892 
893   // Remove PHI node entries for dead edges.
894   BasicBlock *CheckEdge = TheRealDest;
895   for (BasicBlock *Succ : successors(TIBB))
896     if (Succ != CheckEdge)
897       Succ->removePredecessor(TIBB);
898     else
899       CheckEdge = nullptr;
900 
901   // Insert the new branch.
902   Instruction *NI = Builder.CreateBr(TheRealDest);
903   (void)NI;
904 
905   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
906                << "Through successor TI: " << *TI << "Leaving: " << *NI
907                << "\n");
908 
909   EraseTerminatorInstAndDCECond(TI);
910   return true;
911 }
912 
913 namespace {
914 
915 /// This class implements a stable ordering of constant
916 /// integers that does not depend on their address.  This is important for
917 /// applications that sort ConstantInt's to ensure uniqueness.
918 struct ConstantIntOrdering {
919   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
920     return LHS->getValue().ult(RHS->getValue());
921   }
922 };
923 
924 } // end anonymous namespace
925 
926 static int ConstantIntSortPredicate(ConstantInt *const *P1,
927                                     ConstantInt *const *P2) {
928   const ConstantInt *LHS = *P1;
929   const ConstantInt *RHS = *P2;
930   if (LHS == RHS)
931     return 0;
932   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
933 }
934 
935 static inline bool HasBranchWeights(const Instruction *I) {
936   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
937   if (ProfMD && ProfMD->getOperand(0))
938     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
939       return MDS->getString().equals("branch_weights");
940 
941   return false;
942 }
943 
944 /// Get Weights of a given TerminatorInst, the default weight is at the front
945 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
946 /// metadata.
947 static void GetBranchWeights(TerminatorInst *TI,
948                              SmallVectorImpl<uint64_t> &Weights) {
949   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
950   assert(MD);
951   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
952     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
953     Weights.push_back(CI->getValue().getZExtValue());
954   }
955 
956   // If TI is a conditional eq, the default case is the false case,
957   // and the corresponding branch-weight data is at index 2. We swap the
958   // default weight to be the first entry.
959   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
960     assert(Weights.size() == 2);
961     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
962     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
963       std::swap(Weights.front(), Weights.back());
964   }
965 }
966 
967 /// Keep halving the weights until all can fit in uint32_t.
968 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
969   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
970   if (Max > UINT_MAX) {
971     unsigned Offset = 32 - countLeadingZeros(Max);
972     for (uint64_t &I : Weights)
973       I >>= Offset;
974   }
975 }
976 
977 /// The specified terminator is a value equality comparison instruction
978 /// (either a switch or a branch on "X == c").
979 /// See if any of the predecessors of the terminator block are value comparisons
980 /// on the same value.  If so, and if safe to do so, fold them together.
981 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
982                                                          IRBuilder<> &Builder) {
983   BasicBlock *BB = TI->getParent();
984   Value *CV = isValueEqualityComparison(TI); // CondVal
985   assert(CV && "Not a comparison?");
986   bool Changed = false;
987 
988   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
989   while (!Preds.empty()) {
990     BasicBlock *Pred = Preds.pop_back_val();
991 
992     // See if the predecessor is a comparison with the same value.
993     TerminatorInst *PTI = Pred->getTerminator();
994     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
995 
996     if (PCV == CV && TI != PTI) {
997       SmallSetVector<BasicBlock*, 4> FailBlocks;
998       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
999         for (auto *Succ : FailBlocks) {
1000           std::vector<BasicBlock*> Blocks = { TI->getParent() };
1001           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
1002             return false;
1003         }
1004       }
1005 
1006       // Figure out which 'cases' to copy from SI to PSI.
1007       std::vector<ValueEqualityComparisonCase> BBCases;
1008       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1009 
1010       std::vector<ValueEqualityComparisonCase> PredCases;
1011       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1012 
1013       // Based on whether the default edge from PTI goes to BB or not, fill in
1014       // PredCases and PredDefault with the new switch cases we would like to
1015       // build.
1016       SmallVector<BasicBlock *, 8> NewSuccessors;
1017 
1018       // Update the branch weight metadata along the way
1019       SmallVector<uint64_t, 8> Weights;
1020       bool PredHasWeights = HasBranchWeights(PTI);
1021       bool SuccHasWeights = HasBranchWeights(TI);
1022 
1023       if (PredHasWeights) {
1024         GetBranchWeights(PTI, Weights);
1025         // branch-weight metadata is inconsistent here.
1026         if (Weights.size() != 1 + PredCases.size())
1027           PredHasWeights = SuccHasWeights = false;
1028       } else if (SuccHasWeights)
1029         // If there are no predecessor weights but there are successor weights,
1030         // populate Weights with 1, which will later be scaled to the sum of
1031         // successor's weights
1032         Weights.assign(1 + PredCases.size(), 1);
1033 
1034       SmallVector<uint64_t, 8> SuccWeights;
1035       if (SuccHasWeights) {
1036         GetBranchWeights(TI, SuccWeights);
1037         // branch-weight metadata is inconsistent here.
1038         if (SuccWeights.size() != 1 + BBCases.size())
1039           PredHasWeights = SuccHasWeights = false;
1040       } else if (PredHasWeights)
1041         SuccWeights.assign(1 + BBCases.size(), 1);
1042 
1043       if (PredDefault == BB) {
1044         // If this is the default destination from PTI, only the edges in TI
1045         // that don't occur in PTI, or that branch to BB will be activated.
1046         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1047         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1048           if (PredCases[i].Dest != BB)
1049             PTIHandled.insert(PredCases[i].Value);
1050           else {
1051             // The default destination is BB, we don't need explicit targets.
1052             std::swap(PredCases[i], PredCases.back());
1053 
1054             if (PredHasWeights || SuccHasWeights) {
1055               // Increase weight for the default case.
1056               Weights[0] += Weights[i + 1];
1057               std::swap(Weights[i + 1], Weights.back());
1058               Weights.pop_back();
1059             }
1060 
1061             PredCases.pop_back();
1062             --i;
1063             --e;
1064           }
1065 
1066         // Reconstruct the new switch statement we will be building.
1067         if (PredDefault != BBDefault) {
1068           PredDefault->removePredecessor(Pred);
1069           PredDefault = BBDefault;
1070           NewSuccessors.push_back(BBDefault);
1071         }
1072 
1073         unsigned CasesFromPred = Weights.size();
1074         uint64_t ValidTotalSuccWeight = 0;
1075         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1076           if (!PTIHandled.count(BBCases[i].Value) &&
1077               BBCases[i].Dest != BBDefault) {
1078             PredCases.push_back(BBCases[i]);
1079             NewSuccessors.push_back(BBCases[i].Dest);
1080             if (SuccHasWeights || PredHasWeights) {
1081               // The default weight is at index 0, so weight for the ith case
1082               // should be at index i+1. Scale the cases from successor by
1083               // PredDefaultWeight (Weights[0]).
1084               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1085               ValidTotalSuccWeight += SuccWeights[i + 1];
1086             }
1087           }
1088 
1089         if (SuccHasWeights || PredHasWeights) {
1090           ValidTotalSuccWeight += SuccWeights[0];
1091           // Scale the cases from predecessor by ValidTotalSuccWeight.
1092           for (unsigned i = 1; i < CasesFromPred; ++i)
1093             Weights[i] *= ValidTotalSuccWeight;
1094           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1095           Weights[0] *= SuccWeights[0];
1096         }
1097       } else {
1098         // If this is not the default destination from PSI, only the edges
1099         // in SI that occur in PSI with a destination of BB will be
1100         // activated.
1101         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1102         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1103         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1104           if (PredCases[i].Dest == BB) {
1105             PTIHandled.insert(PredCases[i].Value);
1106 
1107             if (PredHasWeights || SuccHasWeights) {
1108               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1109               std::swap(Weights[i + 1], Weights.back());
1110               Weights.pop_back();
1111             }
1112 
1113             std::swap(PredCases[i], PredCases.back());
1114             PredCases.pop_back();
1115             --i;
1116             --e;
1117           }
1118 
1119         // Okay, now we know which constants were sent to BB from the
1120         // predecessor.  Figure out where they will all go now.
1121         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1122           if (PTIHandled.count(BBCases[i].Value)) {
1123             // If this is one we are capable of getting...
1124             if (PredHasWeights || SuccHasWeights)
1125               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1126             PredCases.push_back(BBCases[i]);
1127             NewSuccessors.push_back(BBCases[i].Dest);
1128             PTIHandled.erase(
1129                 BBCases[i].Value); // This constant is taken care of
1130           }
1131 
1132         // If there are any constants vectored to BB that TI doesn't handle,
1133         // they must go to the default destination of TI.
1134         for (ConstantInt *I : PTIHandled) {
1135           if (PredHasWeights || SuccHasWeights)
1136             Weights.push_back(WeightsForHandled[I]);
1137           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1138           NewSuccessors.push_back(BBDefault);
1139         }
1140       }
1141 
1142       // Okay, at this point, we know which new successor Pred will get.  Make
1143       // sure we update the number of entries in the PHI nodes for these
1144       // successors.
1145       for (BasicBlock *NewSuccessor : NewSuccessors)
1146         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1147 
1148       Builder.SetInsertPoint(PTI);
1149       // Convert pointer to int before we switch.
1150       if (CV->getType()->isPointerTy()) {
1151         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1152                                     "magicptr");
1153       }
1154 
1155       // Now that the successors are updated, create the new Switch instruction.
1156       SwitchInst *NewSI =
1157           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1158       NewSI->setDebugLoc(PTI->getDebugLoc());
1159       for (ValueEqualityComparisonCase &V : PredCases)
1160         NewSI->addCase(V.Value, V.Dest);
1161 
1162       if (PredHasWeights || SuccHasWeights) {
1163         // Halve the weights if any of them cannot fit in an uint32_t
1164         FitWeights(Weights);
1165 
1166         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1167 
1168         NewSI->setMetadata(
1169             LLVMContext::MD_prof,
1170             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1171       }
1172 
1173       EraseTerminatorInstAndDCECond(PTI);
1174 
1175       // Okay, last check.  If BB is still a successor of PSI, then we must
1176       // have an infinite loop case.  If so, add an infinitely looping block
1177       // to handle the case to preserve the behavior of the code.
1178       BasicBlock *InfLoopBlock = nullptr;
1179       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1180         if (NewSI->getSuccessor(i) == BB) {
1181           if (!InfLoopBlock) {
1182             // Insert it at the end of the function, because it's either code,
1183             // or it won't matter if it's hot. :)
1184             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1185                                               BB->getParent());
1186             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1187           }
1188           NewSI->setSuccessor(i, InfLoopBlock);
1189         }
1190 
1191       Changed = true;
1192     }
1193   }
1194   return Changed;
1195 }
1196 
1197 // If we would need to insert a select that uses the value of this invoke
1198 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1199 // can't hoist the invoke, as there is nowhere to put the select in this case.
1200 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1201                                 Instruction *I1, Instruction *I2) {
1202   for (BasicBlock *Succ : successors(BB1)) {
1203     PHINode *PN;
1204     for (BasicBlock::iterator BBI = Succ->begin();
1205          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1206       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1207       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1208       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1209         return false;
1210       }
1211     }
1212   }
1213   return true;
1214 }
1215 
1216 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1217 
1218 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1219 /// in the two blocks up into the branch block. The caller of this function
1220 /// guarantees that BI's block dominates BB1 and BB2.
1221 static bool HoistThenElseCodeToIf(BranchInst *BI,
1222                                   const TargetTransformInfo &TTI) {
1223   // This does very trivial matching, with limited scanning, to find identical
1224   // instructions in the two blocks.  In particular, we don't want to get into
1225   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1226   // such, we currently just scan for obviously identical instructions in an
1227   // identical order.
1228   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1229   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1230 
1231   BasicBlock::iterator BB1_Itr = BB1->begin();
1232   BasicBlock::iterator BB2_Itr = BB2->begin();
1233 
1234   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1235   // Skip debug info if it is not identical.
1236   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1237   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1238   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1239     while (isa<DbgInfoIntrinsic>(I1))
1240       I1 = &*BB1_Itr++;
1241     while (isa<DbgInfoIntrinsic>(I2))
1242       I2 = &*BB2_Itr++;
1243   }
1244   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1245       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1246     return false;
1247 
1248   BasicBlock *BIParent = BI->getParent();
1249 
1250   bool Changed = false;
1251   do {
1252     // If we are hoisting the terminator instruction, don't move one (making a
1253     // broken BB), instead clone it, and remove BI.
1254     if (isa<TerminatorInst>(I1))
1255       goto HoistTerminator;
1256 
1257     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1258       return Changed;
1259 
1260     // For a normal instruction, we just move one to right before the branch,
1261     // then replace all uses of the other with the first.  Finally, we remove
1262     // the now redundant second instruction.
1263     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1264     if (!I2->use_empty())
1265       I2->replaceAllUsesWith(I1);
1266     I1->andIRFlags(I2);
1267     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1268                            LLVMContext::MD_range,
1269                            LLVMContext::MD_fpmath,
1270                            LLVMContext::MD_invariant_load,
1271                            LLVMContext::MD_nonnull,
1272                            LLVMContext::MD_invariant_group,
1273                            LLVMContext::MD_align,
1274                            LLVMContext::MD_dereferenceable,
1275                            LLVMContext::MD_dereferenceable_or_null,
1276                            LLVMContext::MD_mem_parallel_loop_access};
1277     combineMetadata(I1, I2, KnownIDs);
1278 
1279     // I1 and I2 are being combined into a single instruction.  Its debug
1280     // location is the merged locations of the original instructions.
1281     if (!isa<CallInst>(I1))
1282       I1->setDebugLoc(
1283           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1284 
1285     I2->eraseFromParent();
1286     Changed = true;
1287 
1288     I1 = &*BB1_Itr++;
1289     I2 = &*BB2_Itr++;
1290     // Skip debug info if it is not identical.
1291     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1292     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1293     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1294       while (isa<DbgInfoIntrinsic>(I1))
1295         I1 = &*BB1_Itr++;
1296       while (isa<DbgInfoIntrinsic>(I2))
1297         I2 = &*BB2_Itr++;
1298     }
1299   } while (I1->isIdenticalToWhenDefined(I2));
1300 
1301   return true;
1302 
1303 HoistTerminator:
1304   // It may not be possible to hoist an invoke.
1305   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1306     return Changed;
1307 
1308   for (BasicBlock *Succ : successors(BB1)) {
1309     PHINode *PN;
1310     for (BasicBlock::iterator BBI = Succ->begin();
1311          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1312       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1313       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1314       if (BB1V == BB2V)
1315         continue;
1316 
1317       // Check for passingValueIsAlwaysUndefined here because we would rather
1318       // eliminate undefined control flow then converting it to a select.
1319       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1320           passingValueIsAlwaysUndefined(BB2V, PN))
1321         return Changed;
1322 
1323       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1324         return Changed;
1325       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1326         return Changed;
1327     }
1328   }
1329 
1330   // Okay, it is safe to hoist the terminator.
1331   Instruction *NT = I1->clone();
1332   BIParent->getInstList().insert(BI->getIterator(), NT);
1333   if (!NT->getType()->isVoidTy()) {
1334     I1->replaceAllUsesWith(NT);
1335     I2->replaceAllUsesWith(NT);
1336     NT->takeName(I1);
1337   }
1338 
1339   IRBuilder<NoFolder> Builder(NT);
1340   // Hoisting one of the terminators from our successor is a great thing.
1341   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1342   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1343   // nodes, so we insert select instruction to compute the final result.
1344   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1345   for (BasicBlock *Succ : successors(BB1)) {
1346     PHINode *PN;
1347     for (BasicBlock::iterator BBI = Succ->begin();
1348          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1349       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1350       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1351       if (BB1V == BB2V)
1352         continue;
1353 
1354       // These values do not agree.  Insert a select instruction before NT
1355       // that determines the right value.
1356       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1357       if (!SI)
1358         SI = cast<SelectInst>(
1359             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1360                                  BB1V->getName() + "." + BB2V->getName(), BI));
1361 
1362       // Make the PHI node use the select for all incoming values for BB1/BB2
1363       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1364         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1365           PN->setIncomingValue(i, SI);
1366     }
1367   }
1368 
1369   // Update any PHI nodes in our new successors.
1370   for (BasicBlock *Succ : successors(BB1))
1371     AddPredecessorToBlock(Succ, BIParent, BB1);
1372 
1373   EraseTerminatorInstAndDCECond(BI);
1374   return true;
1375 }
1376 
1377 // Is it legal to place a variable in operand \c OpIdx of \c I?
1378 // FIXME: This should be promoted to Instruction.
1379 static bool canReplaceOperandWithVariable(const Instruction *I,
1380                                           unsigned OpIdx) {
1381   // We can't have a PHI with a metadata type.
1382   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1383     return false;
1384 
1385   // Early exit.
1386   if (!isa<Constant>(I->getOperand(OpIdx)))
1387     return true;
1388 
1389   switch (I->getOpcode()) {
1390   default:
1391     return true;
1392   case Instruction::Call:
1393   case Instruction::Invoke:
1394     // FIXME: many arithmetic intrinsics have no issue taking a
1395     // variable, however it's hard to distingish these from
1396     // specials such as @llvm.frameaddress that require a constant.
1397     if (isa<IntrinsicInst>(I))
1398       return false;
1399 
1400     // Constant bundle operands may need to retain their constant-ness for
1401     // correctness.
1402     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1403       return false;
1404 
1405     return true;
1406 
1407   case Instruction::ShuffleVector:
1408     // Shufflevector masks are constant.
1409     return OpIdx != 2;
1410   case Instruction::ExtractValue:
1411   case Instruction::InsertValue:
1412     // All operands apart from the first are constant.
1413     return OpIdx == 0;
1414   case Instruction::Alloca:
1415     return false;
1416   case Instruction::GetElementPtr:
1417     if (OpIdx == 0)
1418       return true;
1419     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1420     return It.isSequential();
1421   }
1422 }
1423 
1424 // All instructions in Insts belong to different blocks that all unconditionally
1425 // branch to a common successor. Analyze each instruction and return true if it
1426 // would be possible to sink them into their successor, creating one common
1427 // instruction instead. For every value that would be required to be provided by
1428 // PHI node (because an operand varies in each input block), add to PHIOperands.
1429 static bool canSinkInstructions(
1430     ArrayRef<Instruction *> Insts,
1431     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1432   // Prune out obviously bad instructions to move. Any non-store instruction
1433   // must have exactly one use, and we check later that use is by a single,
1434   // common PHI instruction in the successor.
1435   for (auto *I : Insts) {
1436     // These instructions may change or break semantics if moved.
1437     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1438         I->getType()->isTokenTy())
1439       return false;
1440 
1441     // Conservatively return false if I is an inline-asm instruction. Sinking
1442     // and merging inline-asm instructions can potentially create arguments
1443     // that cannot satisfy the inline-asm constraints.
1444     if (const auto *C = dyn_cast<CallInst>(I))
1445       if (C->isInlineAsm())
1446         return false;
1447 
1448     // Everything must have only one use too, apart from stores which
1449     // have no uses.
1450     if (!isa<StoreInst>(I) && !I->hasOneUse())
1451       return false;
1452   }
1453 
1454   const Instruction *I0 = Insts.front();
1455   for (auto *I : Insts)
1456     if (!I->isSameOperationAs(I0))
1457       return false;
1458 
1459   // All instructions in Insts are known to be the same opcode. If they aren't
1460   // stores, check the only user of each is a PHI or in the same block as the
1461   // instruction, because if a user is in the same block as an instruction
1462   // we're contemplating sinking, it must already be determined to be sinkable.
1463   if (!isa<StoreInst>(I0)) {
1464     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1465     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1466     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1467           auto *U = cast<Instruction>(*I->user_begin());
1468           return (PNUse &&
1469                   PNUse->getParent() == Succ &&
1470                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1471                  U->getParent() == I->getParent();
1472         }))
1473       return false;
1474   }
1475 
1476   // Because SROA can't handle speculating stores of selects, try not
1477   // to sink loads or stores of allocas when we'd have to create a PHI for
1478   // the address operand. Also, because it is likely that loads or stores
1479   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1480   // This can cause code churn which can have unintended consequences down
1481   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1482   // FIXME: This is a workaround for a deficiency in SROA - see
1483   // https://llvm.org/bugs/show_bug.cgi?id=30188
1484   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1485         return isa<AllocaInst>(I->getOperand(1));
1486       }))
1487     return false;
1488   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1489         return isa<AllocaInst>(I->getOperand(0));
1490       }))
1491     return false;
1492 
1493   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1494     if (I0->getOperand(OI)->getType()->isTokenTy())
1495       // Don't touch any operand of token type.
1496       return false;
1497 
1498     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1499       assert(I->getNumOperands() == I0->getNumOperands());
1500       return I->getOperand(OI) == I0->getOperand(OI);
1501     };
1502     if (!all_of(Insts, SameAsI0)) {
1503       if (!canReplaceOperandWithVariable(I0, OI))
1504         // We can't create a PHI from this GEP.
1505         return false;
1506       // Don't create indirect calls! The called value is the final operand.
1507       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1508         // FIXME: if the call was *already* indirect, we should do this.
1509         return false;
1510       }
1511       for (auto *I : Insts)
1512         PHIOperands[I].push_back(I->getOperand(OI));
1513     }
1514   }
1515   return true;
1516 }
1517 
1518 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1519 // instruction of every block in Blocks to their common successor, commoning
1520 // into one instruction.
1521 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1522   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1523 
1524   // canSinkLastInstruction returning true guarantees that every block has at
1525   // least one non-terminator instruction.
1526   SmallVector<Instruction*,4> Insts;
1527   for (auto *BB : Blocks) {
1528     Instruction *I = BB->getTerminator();
1529     do {
1530       I = I->getPrevNode();
1531     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1532     if (!isa<DbgInfoIntrinsic>(I))
1533       Insts.push_back(I);
1534   }
1535 
1536   // The only checking we need to do now is that all users of all instructions
1537   // are the same PHI node. canSinkLastInstruction should have checked this but
1538   // it is slightly over-aggressive - it gets confused by commutative instructions
1539   // so double-check it here.
1540   Instruction *I0 = Insts.front();
1541   if (!isa<StoreInst>(I0)) {
1542     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1543     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1544           auto *U = cast<Instruction>(*I->user_begin());
1545           return U == PNUse;
1546         }))
1547       return false;
1548   }
1549 
1550   // We don't need to do any more checking here; canSinkLastInstruction should
1551   // have done it all for us.
1552   SmallVector<Value*, 4> NewOperands;
1553   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1554     // This check is different to that in canSinkLastInstruction. There, we
1555     // cared about the global view once simplifycfg (and instcombine) have
1556     // completed - it takes into account PHIs that become trivially
1557     // simplifiable.  However here we need a more local view; if an operand
1558     // differs we create a PHI and rely on instcombine to clean up the very
1559     // small mess we may make.
1560     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1561       return I->getOperand(O) != I0->getOperand(O);
1562     });
1563     if (!NeedPHI) {
1564       NewOperands.push_back(I0->getOperand(O));
1565       continue;
1566     }
1567 
1568     // Create a new PHI in the successor block and populate it.
1569     auto *Op = I0->getOperand(O);
1570     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1571     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1572                                Op->getName() + ".sink", &BBEnd->front());
1573     for (auto *I : Insts)
1574       PN->addIncoming(I->getOperand(O), I->getParent());
1575     NewOperands.push_back(PN);
1576   }
1577 
1578   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1579   // and move it to the start of the successor block.
1580   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1581     I0->getOperandUse(O).set(NewOperands[O]);
1582   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1583 
1584   // The debug location for the "common" instruction is the merged locations of
1585   // all the commoned instructions.  We start with the original location of the
1586   // "common" instruction and iteratively merge each location in the loop below.
1587   const DILocation *Loc = I0->getDebugLoc();
1588 
1589   // Update metadata and IR flags, and merge debug locations.
1590   for (auto *I : Insts)
1591     if (I != I0) {
1592       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1593       combineMetadataForCSE(I0, I);
1594       I0->andIRFlags(I);
1595     }
1596   if (!isa<CallInst>(I0))
1597     I0->setDebugLoc(Loc);
1598 
1599   if (!isa<StoreInst>(I0)) {
1600     // canSinkLastInstruction checked that all instructions were used by
1601     // one and only one PHI node. Find that now, RAUW it to our common
1602     // instruction and nuke it.
1603     assert(I0->hasOneUse());
1604     auto *PN = cast<PHINode>(*I0->user_begin());
1605     PN->replaceAllUsesWith(I0);
1606     PN->eraseFromParent();
1607   }
1608 
1609   // Finally nuke all instructions apart from the common instruction.
1610   for (auto *I : Insts)
1611     if (I != I0)
1612       I->eraseFromParent();
1613 
1614   return true;
1615 }
1616 
1617 namespace {
1618 
1619   // LockstepReverseIterator - Iterates through instructions
1620   // in a set of blocks in reverse order from the first non-terminator.
1621   // For example (assume all blocks have size n):
1622   //   LockstepReverseIterator I([B1, B2, B3]);
1623   //   *I-- = [B1[n], B2[n], B3[n]];
1624   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1625   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1626   //   ...
1627   class LockstepReverseIterator {
1628     ArrayRef<BasicBlock*> Blocks;
1629     SmallVector<Instruction*,4> Insts;
1630     bool Fail;
1631   public:
1632     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1633       Blocks(Blocks) {
1634       reset();
1635     }
1636 
1637     void reset() {
1638       Fail = false;
1639       Insts.clear();
1640       for (auto *BB : Blocks) {
1641         Instruction *Inst = BB->getTerminator();
1642         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1643           Inst = Inst->getPrevNode();
1644         if (!Inst) {
1645           // Block wasn't big enough.
1646           Fail = true;
1647           return;
1648         }
1649         Insts.push_back(Inst);
1650       }
1651     }
1652 
1653     bool isValid() const {
1654       return !Fail;
1655     }
1656 
1657     void operator -- () {
1658       if (Fail)
1659         return;
1660       for (auto *&Inst : Insts) {
1661         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1662           Inst = Inst->getPrevNode();
1663         // Already at beginning of block.
1664         if (!Inst) {
1665           Fail = true;
1666           return;
1667         }
1668       }
1669     }
1670 
1671     ArrayRef<Instruction*> operator * () const {
1672       return Insts;
1673     }
1674   };
1675 
1676 } // end anonymous namespace
1677 
1678 /// Given an unconditional branch that goes to BBEnd,
1679 /// check whether BBEnd has only two predecessors and the other predecessor
1680 /// ends with an unconditional branch. If it is true, sink any common code
1681 /// in the two predecessors to BBEnd.
1682 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1683   assert(BI1->isUnconditional());
1684   BasicBlock *BBEnd = BI1->getSuccessor(0);
1685 
1686   // We support two situations:
1687   //   (1) all incoming arcs are unconditional
1688   //   (2) one incoming arc is conditional
1689   //
1690   // (2) is very common in switch defaults and
1691   // else-if patterns;
1692   //
1693   //   if (a) f(1);
1694   //   else if (b) f(2);
1695   //
1696   // produces:
1697   //
1698   //       [if]
1699   //      /    \
1700   //    [f(1)] [if]
1701   //      |     | \
1702   //      |     |  |
1703   //      |  [f(2)]|
1704   //       \    | /
1705   //        [ end ]
1706   //
1707   // [end] has two unconditional predecessor arcs and one conditional. The
1708   // conditional refers to the implicit empty 'else' arc. This conditional
1709   // arc can also be caused by an empty default block in a switch.
1710   //
1711   // In this case, we attempt to sink code from all *unconditional* arcs.
1712   // If we can sink instructions from these arcs (determined during the scan
1713   // phase below) we insert a common successor for all unconditional arcs and
1714   // connect that to [end], to enable sinking:
1715   //
1716   //       [if]
1717   //      /    \
1718   //    [x(1)] [if]
1719   //      |     | \
1720   //      |     |  \
1721   //      |  [x(2)] |
1722   //       \   /    |
1723   //   [sink.split] |
1724   //         \     /
1725   //         [ end ]
1726   //
1727   SmallVector<BasicBlock*,4> UnconditionalPreds;
1728   Instruction *Cond = nullptr;
1729   for (auto *B : predecessors(BBEnd)) {
1730     auto *T = B->getTerminator();
1731     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1732       UnconditionalPreds.push_back(B);
1733     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1734       Cond = T;
1735     else
1736       return false;
1737   }
1738   if (UnconditionalPreds.size() < 2)
1739     return false;
1740 
1741   bool Changed = false;
1742   // We take a two-step approach to tail sinking. First we scan from the end of
1743   // each block upwards in lockstep. If the n'th instruction from the end of each
1744   // block can be sunk, those instructions are added to ValuesToSink and we
1745   // carry on. If we can sink an instruction but need to PHI-merge some operands
1746   // (because they're not identical in each instruction) we add these to
1747   // PHIOperands.
1748   unsigned ScanIdx = 0;
1749   SmallPtrSet<Value*,4> InstructionsToSink;
1750   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1751   LockstepReverseIterator LRI(UnconditionalPreds);
1752   while (LRI.isValid() &&
1753          canSinkInstructions(*LRI, PHIOperands)) {
1754     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1755     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1756     ++ScanIdx;
1757     --LRI;
1758   }
1759 
1760   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1761     unsigned NumPHIdValues = 0;
1762     for (auto *I : *LRI)
1763       for (auto *V : PHIOperands[I])
1764         if (InstructionsToSink.count(V) == 0)
1765           ++NumPHIdValues;
1766     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1767     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1768     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1769         NumPHIInsts++;
1770 
1771     return NumPHIInsts <= 1;
1772   };
1773 
1774   if (ScanIdx > 0 && Cond) {
1775     // Check if we would actually sink anything first! This mutates the CFG and
1776     // adds an extra block. The goal in doing this is to allow instructions that
1777     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1778     // (such as trunc, add) can be sunk and predicated already. So we check that
1779     // we're going to sink at least one non-speculatable instruction.
1780     LRI.reset();
1781     unsigned Idx = 0;
1782     bool Profitable = false;
1783     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1784       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1785         Profitable = true;
1786         break;
1787       }
1788       --LRI;
1789       ++Idx;
1790     }
1791     if (!Profitable)
1792       return false;
1793 
1794     DEBUG(dbgs() << "SINK: Splitting edge\n");
1795     // We have a conditional edge and we're going to sink some instructions.
1796     // Insert a new block postdominating all blocks we're going to sink from.
1797     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1798                                 ".sink.split"))
1799       // Edges couldn't be split.
1800       return false;
1801     Changed = true;
1802   }
1803 
1804   // Now that we've analyzed all potential sinking candidates, perform the
1805   // actual sink. We iteratively sink the last non-terminator of the source
1806   // blocks into their common successor unless doing so would require too
1807   // many PHI instructions to be generated (currently only one PHI is allowed
1808   // per sunk instruction).
1809   //
1810   // We can use InstructionsToSink to discount values needing PHI-merging that will
1811   // actually be sunk in a later iteration. This allows us to be more
1812   // aggressive in what we sink. This does allow a false positive where we
1813   // sink presuming a later value will also be sunk, but stop half way through
1814   // and never actually sink it which means we produce more PHIs than intended.
1815   // This is unlikely in practice though.
1816   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1817     DEBUG(dbgs() << "SINK: Sink: "
1818                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1819                  << "\n");
1820 
1821     // Because we've sunk every instruction in turn, the current instruction to
1822     // sink is always at index 0.
1823     LRI.reset();
1824     if (!ProfitableToSinkInstruction(LRI)) {
1825       // Too many PHIs would be created.
1826       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1827       break;
1828     }
1829 
1830     if (!sinkLastInstruction(UnconditionalPreds))
1831       return Changed;
1832     NumSinkCommons++;
1833     Changed = true;
1834   }
1835   return Changed;
1836 }
1837 
1838 /// \brief Determine if we can hoist sink a sole store instruction out of a
1839 /// conditional block.
1840 ///
1841 /// We are looking for code like the following:
1842 ///   BrBB:
1843 ///     store i32 %add, i32* %arrayidx2
1844 ///     ... // No other stores or function calls (we could be calling a memory
1845 ///     ... // function).
1846 ///     %cmp = icmp ult %x, %y
1847 ///     br i1 %cmp, label %EndBB, label %ThenBB
1848 ///   ThenBB:
1849 ///     store i32 %add5, i32* %arrayidx2
1850 ///     br label EndBB
1851 ///   EndBB:
1852 ///     ...
1853 ///   We are going to transform this into:
1854 ///   BrBB:
1855 ///     store i32 %add, i32* %arrayidx2
1856 ///     ... //
1857 ///     %cmp = icmp ult %x, %y
1858 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1859 ///     store i32 %add.add5, i32* %arrayidx2
1860 ///     ...
1861 ///
1862 /// \return The pointer to the value of the previous store if the store can be
1863 ///         hoisted into the predecessor block. 0 otherwise.
1864 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1865                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1866   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1867   if (!StoreToHoist)
1868     return nullptr;
1869 
1870   // Volatile or atomic.
1871   if (!StoreToHoist->isSimple())
1872     return nullptr;
1873 
1874   Value *StorePtr = StoreToHoist->getPointerOperand();
1875 
1876   // Look for a store to the same pointer in BrBB.
1877   unsigned MaxNumInstToLookAt = 9;
1878   for (Instruction &CurI : reverse(*BrBB)) {
1879     if (!MaxNumInstToLookAt)
1880       break;
1881     // Skip debug info.
1882     if (isa<DbgInfoIntrinsic>(CurI))
1883       continue;
1884     --MaxNumInstToLookAt;
1885 
1886     // Could be calling an instruction that affects memory like free().
1887     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1888       return nullptr;
1889 
1890     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1891       // Found the previous store make sure it stores to the same location.
1892       if (SI->getPointerOperand() == StorePtr)
1893         // Found the previous store, return its value operand.
1894         return SI->getValueOperand();
1895       return nullptr; // Unknown store.
1896     }
1897   }
1898 
1899   return nullptr;
1900 }
1901 
1902 /// \brief Speculate a conditional basic block flattening the CFG.
1903 ///
1904 /// Note that this is a very risky transform currently. Speculating
1905 /// instructions like this is most often not desirable. Instead, there is an MI
1906 /// pass which can do it with full awareness of the resource constraints.
1907 /// However, some cases are "obvious" and we should do directly. An example of
1908 /// this is speculating a single, reasonably cheap instruction.
1909 ///
1910 /// There is only one distinct advantage to flattening the CFG at the IR level:
1911 /// it makes very common but simplistic optimizations such as are common in
1912 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1913 /// modeling their effects with easier to reason about SSA value graphs.
1914 ///
1915 ///
1916 /// An illustration of this transform is turning this IR:
1917 /// \code
1918 ///   BB:
1919 ///     %cmp = icmp ult %x, %y
1920 ///     br i1 %cmp, label %EndBB, label %ThenBB
1921 ///   ThenBB:
1922 ///     %sub = sub %x, %y
1923 ///     br label BB2
1924 ///   EndBB:
1925 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1926 ///     ...
1927 /// \endcode
1928 ///
1929 /// Into this IR:
1930 /// \code
1931 ///   BB:
1932 ///     %cmp = icmp ult %x, %y
1933 ///     %sub = sub %x, %y
1934 ///     %cond = select i1 %cmp, 0, %sub
1935 ///     ...
1936 /// \endcode
1937 ///
1938 /// \returns true if the conditional block is removed.
1939 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1940                                    const TargetTransformInfo &TTI) {
1941   // Be conservative for now. FP select instruction can often be expensive.
1942   Value *BrCond = BI->getCondition();
1943   if (isa<FCmpInst>(BrCond))
1944     return false;
1945 
1946   BasicBlock *BB = BI->getParent();
1947   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1948 
1949   // If ThenBB is actually on the false edge of the conditional branch, remember
1950   // to swap the select operands later.
1951   bool Invert = false;
1952   if (ThenBB != BI->getSuccessor(0)) {
1953     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1954     Invert = true;
1955   }
1956   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1957 
1958   // Keep a count of how many times instructions are used within CondBB when
1959   // they are candidates for sinking into CondBB. Specifically:
1960   // - They are defined in BB, and
1961   // - They have no side effects, and
1962   // - All of their uses are in CondBB.
1963   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1964 
1965   unsigned SpeculationCost = 0;
1966   Value *SpeculatedStoreValue = nullptr;
1967   StoreInst *SpeculatedStore = nullptr;
1968   for (BasicBlock::iterator BBI = ThenBB->begin(),
1969                             BBE = std::prev(ThenBB->end());
1970        BBI != BBE; ++BBI) {
1971     Instruction *I = &*BBI;
1972     // Skip debug info.
1973     if (isa<DbgInfoIntrinsic>(I))
1974       continue;
1975 
1976     // Only speculatively execute a single instruction (not counting the
1977     // terminator) for now.
1978     ++SpeculationCost;
1979     if (SpeculationCost > 1)
1980       return false;
1981 
1982     // Don't hoist the instruction if it's unsafe or expensive.
1983     if (!isSafeToSpeculativelyExecute(I) &&
1984         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1985                                   I, BB, ThenBB, EndBB))))
1986       return false;
1987     if (!SpeculatedStoreValue &&
1988         ComputeSpeculationCost(I, TTI) >
1989             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1990       return false;
1991 
1992     // Store the store speculation candidate.
1993     if (SpeculatedStoreValue)
1994       SpeculatedStore = cast<StoreInst>(I);
1995 
1996     // Do not hoist the instruction if any of its operands are defined but not
1997     // used in BB. The transformation will prevent the operand from
1998     // being sunk into the use block.
1999     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2000       Instruction *OpI = dyn_cast<Instruction>(*i);
2001       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2002         continue; // Not a candidate for sinking.
2003 
2004       ++SinkCandidateUseCounts[OpI];
2005     }
2006   }
2007 
2008   // Consider any sink candidates which are only used in CondBB as costs for
2009   // speculation. Note, while we iterate over a DenseMap here, we are summing
2010   // and so iteration order isn't significant.
2011   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2012            I = SinkCandidateUseCounts.begin(),
2013            E = SinkCandidateUseCounts.end();
2014        I != E; ++I)
2015     if (I->first->getNumUses() == I->second) {
2016       ++SpeculationCost;
2017       if (SpeculationCost > 1)
2018         return false;
2019     }
2020 
2021   // Check that the PHI nodes can be converted to selects.
2022   bool HaveRewritablePHIs = false;
2023   for (BasicBlock::iterator I = EndBB->begin();
2024        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2025     Value *OrigV = PN->getIncomingValueForBlock(BB);
2026     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2027 
2028     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2029     // Skip PHIs which are trivial.
2030     if (ThenV == OrigV)
2031       continue;
2032 
2033     // Don't convert to selects if we could remove undefined behavior instead.
2034     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2035         passingValueIsAlwaysUndefined(ThenV, PN))
2036       return false;
2037 
2038     HaveRewritablePHIs = true;
2039     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2040     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2041     if (!OrigCE && !ThenCE)
2042       continue; // Known safe and cheap.
2043 
2044     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2045         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2046       return false;
2047     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2048     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2049     unsigned MaxCost =
2050         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2051     if (OrigCost + ThenCost > MaxCost)
2052       return false;
2053 
2054     // Account for the cost of an unfolded ConstantExpr which could end up
2055     // getting expanded into Instructions.
2056     // FIXME: This doesn't account for how many operations are combined in the
2057     // constant expression.
2058     ++SpeculationCost;
2059     if (SpeculationCost > 1)
2060       return false;
2061   }
2062 
2063   // If there are no PHIs to process, bail early. This helps ensure idempotence
2064   // as well.
2065   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2066     return false;
2067 
2068   // If we get here, we can hoist the instruction and if-convert.
2069   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2070 
2071   // Insert a select of the value of the speculated store.
2072   if (SpeculatedStoreValue) {
2073     IRBuilder<NoFolder> Builder(BI);
2074     Value *TrueV = SpeculatedStore->getValueOperand();
2075     Value *FalseV = SpeculatedStoreValue;
2076     if (Invert)
2077       std::swap(TrueV, FalseV);
2078     Value *S = Builder.CreateSelect(
2079         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2080     SpeculatedStore->setOperand(0, S);
2081     SpeculatedStore->setDebugLoc(
2082         DILocation::getMergedLocation(
2083           BI->getDebugLoc(), SpeculatedStore->getDebugLoc()));
2084   }
2085 
2086   // Metadata can be dependent on the condition we are hoisting above.
2087   // Conservatively strip all metadata on the instruction.
2088   for (auto &I : *ThenBB)
2089     I.dropUnknownNonDebugMetadata();
2090 
2091   // Hoist the instructions.
2092   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2093                            ThenBB->begin(), std::prev(ThenBB->end()));
2094 
2095   // Insert selects and rewrite the PHI operands.
2096   IRBuilder<NoFolder> Builder(BI);
2097   for (BasicBlock::iterator I = EndBB->begin();
2098        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2099     unsigned OrigI = PN->getBasicBlockIndex(BB);
2100     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2101     Value *OrigV = PN->getIncomingValue(OrigI);
2102     Value *ThenV = PN->getIncomingValue(ThenI);
2103 
2104     // Skip PHIs which are trivial.
2105     if (OrigV == ThenV)
2106       continue;
2107 
2108     // Create a select whose true value is the speculatively executed value and
2109     // false value is the preexisting value. Swap them if the branch
2110     // destinations were inverted.
2111     Value *TrueV = ThenV, *FalseV = OrigV;
2112     if (Invert)
2113       std::swap(TrueV, FalseV);
2114     Value *V = Builder.CreateSelect(
2115         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2116     PN->setIncomingValue(OrigI, V);
2117     PN->setIncomingValue(ThenI, V);
2118   }
2119 
2120   ++NumSpeculations;
2121   return true;
2122 }
2123 
2124 /// Return true if we can thread a branch across this block.
2125 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2126   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2127   unsigned Size = 0;
2128 
2129   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2130     if (isa<DbgInfoIntrinsic>(BBI))
2131       continue;
2132     if (Size > 10)
2133       return false; // Don't clone large BB's.
2134     ++Size;
2135 
2136     // We can only support instructions that do not define values that are
2137     // live outside of the current basic block.
2138     for (User *U : BBI->users()) {
2139       Instruction *UI = cast<Instruction>(U);
2140       if (UI->getParent() != BB || isa<PHINode>(UI))
2141         return false;
2142     }
2143 
2144     // Looks ok, continue checking.
2145   }
2146 
2147   return true;
2148 }
2149 
2150 /// If we have a conditional branch on a PHI node value that is defined in the
2151 /// same block as the branch and if any PHI entries are constants, thread edges
2152 /// corresponding to that entry to be branches to their ultimate destination.
2153 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2154                                 AssumptionCache *AC) {
2155   BasicBlock *BB = BI->getParent();
2156   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2157   // NOTE: we currently cannot transform this case if the PHI node is used
2158   // outside of the block.
2159   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2160     return false;
2161 
2162   // Degenerate case of a single entry PHI.
2163   if (PN->getNumIncomingValues() == 1) {
2164     FoldSingleEntryPHINodes(PN->getParent());
2165     return true;
2166   }
2167 
2168   // Now we know that this block has multiple preds and two succs.
2169   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2170     return false;
2171 
2172   // Can't fold blocks that contain noduplicate or convergent calls.
2173   if (any_of(*BB, [](const Instruction &I) {
2174         const CallInst *CI = dyn_cast<CallInst>(&I);
2175         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2176       }))
2177     return false;
2178 
2179   // Okay, this is a simple enough basic block.  See if any phi values are
2180   // constants.
2181   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2182     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2183     if (!CB || !CB->getType()->isIntegerTy(1))
2184       continue;
2185 
2186     // Okay, we now know that all edges from PredBB should be revectored to
2187     // branch to RealDest.
2188     BasicBlock *PredBB = PN->getIncomingBlock(i);
2189     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2190 
2191     if (RealDest == BB)
2192       continue; // Skip self loops.
2193     // Skip if the predecessor's terminator is an indirect branch.
2194     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2195       continue;
2196 
2197     // The dest block might have PHI nodes, other predecessors and other
2198     // difficult cases.  Instead of being smart about this, just insert a new
2199     // block that jumps to the destination block, effectively splitting
2200     // the edge we are about to create.
2201     BasicBlock *EdgeBB =
2202         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2203                            RealDest->getParent(), RealDest);
2204     BranchInst::Create(RealDest, EdgeBB);
2205 
2206     // Update PHI nodes.
2207     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2208 
2209     // BB may have instructions that are being threaded over.  Clone these
2210     // instructions into EdgeBB.  We know that there will be no uses of the
2211     // cloned instructions outside of EdgeBB.
2212     BasicBlock::iterator InsertPt = EdgeBB->begin();
2213     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2214     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2215       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2216         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2217         continue;
2218       }
2219       // Clone the instruction.
2220       Instruction *N = BBI->clone();
2221       if (BBI->hasName())
2222         N->setName(BBI->getName() + ".c");
2223 
2224       // Update operands due to translation.
2225       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2226         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2227         if (PI != TranslateMap.end())
2228           *i = PI->second;
2229       }
2230 
2231       // Check for trivial simplification.
2232       if (Value *V = SimplifyInstruction(N, DL)) {
2233         if (!BBI->use_empty())
2234           TranslateMap[&*BBI] = V;
2235         if (!N->mayHaveSideEffects()) {
2236           delete N; // Instruction folded away, don't need actual inst
2237           N = nullptr;
2238         }
2239       } else {
2240         if (!BBI->use_empty())
2241           TranslateMap[&*BBI] = N;
2242       }
2243       // Insert the new instruction into its new home.
2244       if (N)
2245         EdgeBB->getInstList().insert(InsertPt, N);
2246 
2247       // Register the new instruction with the assumption cache if necessary.
2248       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2249         if (II->getIntrinsicID() == Intrinsic::assume)
2250           AC->registerAssumption(II);
2251     }
2252 
2253     // Loop over all of the edges from PredBB to BB, changing them to branch
2254     // to EdgeBB instead.
2255     TerminatorInst *PredBBTI = PredBB->getTerminator();
2256     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2257       if (PredBBTI->getSuccessor(i) == BB) {
2258         BB->removePredecessor(PredBB);
2259         PredBBTI->setSuccessor(i, EdgeBB);
2260       }
2261 
2262     // Recurse, simplifying any other constants.
2263     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2264   }
2265 
2266   return false;
2267 }
2268 
2269 /// Given a BB that starts with the specified two-entry PHI node,
2270 /// see if we can eliminate it.
2271 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2272                                 const DataLayout &DL) {
2273   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2274   // statement", which has a very simple dominance structure.  Basically, we
2275   // are trying to find the condition that is being branched on, which
2276   // subsequently causes this merge to happen.  We really want control
2277   // dependence information for this check, but simplifycfg can't keep it up
2278   // to date, and this catches most of the cases we care about anyway.
2279   BasicBlock *BB = PN->getParent();
2280   BasicBlock *IfTrue, *IfFalse;
2281   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2282   if (!IfCond ||
2283       // Don't bother if the branch will be constant folded trivially.
2284       isa<ConstantInt>(IfCond))
2285     return false;
2286 
2287   // Okay, we found that we can merge this two-entry phi node into a select.
2288   // Doing so would require us to fold *all* two entry phi nodes in this block.
2289   // At some point this becomes non-profitable (particularly if the target
2290   // doesn't support cmov's).  Only do this transformation if there are two or
2291   // fewer PHI nodes in this block.
2292   unsigned NumPhis = 0;
2293   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2294     if (NumPhis > 2)
2295       return false;
2296 
2297   // Loop over the PHI's seeing if we can promote them all to select
2298   // instructions.  While we are at it, keep track of the instructions
2299   // that need to be moved to the dominating block.
2300   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2301   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2302            MaxCostVal1 = PHINodeFoldingThreshold;
2303   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2304   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2305 
2306   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2307     PHINode *PN = cast<PHINode>(II++);
2308     if (Value *V = SimplifyInstruction(PN, DL)) {
2309       PN->replaceAllUsesWith(V);
2310       PN->eraseFromParent();
2311       continue;
2312     }
2313 
2314     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2315                              MaxCostVal0, TTI) ||
2316         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2317                              MaxCostVal1, TTI))
2318       return false;
2319   }
2320 
2321   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2322   // we ran out of PHIs then we simplified them all.
2323   PN = dyn_cast<PHINode>(BB->begin());
2324   if (!PN)
2325     return true;
2326 
2327   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2328   // often be turned into switches and other things.
2329   if (PN->getType()->isIntegerTy(1) &&
2330       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2331        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2332        isa<BinaryOperator>(IfCond)))
2333     return false;
2334 
2335   // If all PHI nodes are promotable, check to make sure that all instructions
2336   // in the predecessor blocks can be promoted as well. If not, we won't be able
2337   // to get rid of the control flow, so it's not worth promoting to select
2338   // instructions.
2339   BasicBlock *DomBlock = nullptr;
2340   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2341   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2342   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2343     IfBlock1 = nullptr;
2344   } else {
2345     DomBlock = *pred_begin(IfBlock1);
2346     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2347          ++I)
2348       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2349         // This is not an aggressive instruction that we can promote.
2350         // Because of this, we won't be able to get rid of the control flow, so
2351         // the xform is not worth it.
2352         return false;
2353       }
2354   }
2355 
2356   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2357     IfBlock2 = nullptr;
2358   } else {
2359     DomBlock = *pred_begin(IfBlock2);
2360     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2361          ++I)
2362       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2363         // This is not an aggressive instruction that we can promote.
2364         // Because of this, we won't be able to get rid of the control flow, so
2365         // the xform is not worth it.
2366         return false;
2367       }
2368   }
2369 
2370   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2371                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2372 
2373   // If we can still promote the PHI nodes after this gauntlet of tests,
2374   // do all of the PHI's now.
2375   Instruction *InsertPt = DomBlock->getTerminator();
2376   IRBuilder<NoFolder> Builder(InsertPt);
2377 
2378   // Move all 'aggressive' instructions, which are defined in the
2379   // conditional parts of the if's up to the dominating block.
2380   if (IfBlock1) {
2381     for (auto &I : *IfBlock1)
2382       I.dropUnknownNonDebugMetadata();
2383     DomBlock->getInstList().splice(InsertPt->getIterator(),
2384                                    IfBlock1->getInstList(), IfBlock1->begin(),
2385                                    IfBlock1->getTerminator()->getIterator());
2386   }
2387   if (IfBlock2) {
2388     for (auto &I : *IfBlock2)
2389       I.dropUnknownNonDebugMetadata();
2390     DomBlock->getInstList().splice(InsertPt->getIterator(),
2391                                    IfBlock2->getInstList(), IfBlock2->begin(),
2392                                    IfBlock2->getTerminator()->getIterator());
2393   }
2394 
2395   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2396     // Change the PHI node into a select instruction.
2397     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2398     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2399 
2400     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2401     PN->replaceAllUsesWith(Sel);
2402     Sel->takeName(PN);
2403     PN->eraseFromParent();
2404   }
2405 
2406   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2407   // has been flattened.  Change DomBlock to jump directly to our new block to
2408   // avoid other simplifycfg's kicking in on the diamond.
2409   TerminatorInst *OldTI = DomBlock->getTerminator();
2410   Builder.SetInsertPoint(OldTI);
2411   Builder.CreateBr(BB);
2412   OldTI->eraseFromParent();
2413   return true;
2414 }
2415 
2416 /// If we found a conditional branch that goes to two returning blocks,
2417 /// try to merge them together into one return,
2418 /// introducing a select if the return values disagree.
2419 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2420                                            IRBuilder<> &Builder) {
2421   assert(BI->isConditional() && "Must be a conditional branch");
2422   BasicBlock *TrueSucc = BI->getSuccessor(0);
2423   BasicBlock *FalseSucc = BI->getSuccessor(1);
2424   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2425   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2426 
2427   // Check to ensure both blocks are empty (just a return) or optionally empty
2428   // with PHI nodes.  If there are other instructions, merging would cause extra
2429   // computation on one path or the other.
2430   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2431     return false;
2432   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2433     return false;
2434 
2435   Builder.SetInsertPoint(BI);
2436   // Okay, we found a branch that is going to two return nodes.  If
2437   // there is no return value for this function, just change the
2438   // branch into a return.
2439   if (FalseRet->getNumOperands() == 0) {
2440     TrueSucc->removePredecessor(BI->getParent());
2441     FalseSucc->removePredecessor(BI->getParent());
2442     Builder.CreateRetVoid();
2443     EraseTerminatorInstAndDCECond(BI);
2444     return true;
2445   }
2446 
2447   // Otherwise, figure out what the true and false return values are
2448   // so we can insert a new select instruction.
2449   Value *TrueValue = TrueRet->getReturnValue();
2450   Value *FalseValue = FalseRet->getReturnValue();
2451 
2452   // Unwrap any PHI nodes in the return blocks.
2453   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2454     if (TVPN->getParent() == TrueSucc)
2455       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2456   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2457     if (FVPN->getParent() == FalseSucc)
2458       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2459 
2460   // In order for this transformation to be safe, we must be able to
2461   // unconditionally execute both operands to the return.  This is
2462   // normally the case, but we could have a potentially-trapping
2463   // constant expression that prevents this transformation from being
2464   // safe.
2465   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2466     if (TCV->canTrap())
2467       return false;
2468   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2469     if (FCV->canTrap())
2470       return false;
2471 
2472   // Okay, we collected all the mapped values and checked them for sanity, and
2473   // defined to really do this transformation.  First, update the CFG.
2474   TrueSucc->removePredecessor(BI->getParent());
2475   FalseSucc->removePredecessor(BI->getParent());
2476 
2477   // Insert select instructions where needed.
2478   Value *BrCond = BI->getCondition();
2479   if (TrueValue) {
2480     // Insert a select if the results differ.
2481     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2482     } else if (isa<UndefValue>(TrueValue)) {
2483       TrueValue = FalseValue;
2484     } else {
2485       TrueValue =
2486           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2487     }
2488   }
2489 
2490   Value *RI =
2491       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2492 
2493   (void)RI;
2494 
2495   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2496                << "\n  " << *BI << "NewRet = " << *RI
2497                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2498 
2499   EraseTerminatorInstAndDCECond(BI);
2500 
2501   return true;
2502 }
2503 
2504 /// Return true if the given instruction is available
2505 /// in its predecessor block. If yes, the instruction will be removed.
2506 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2507   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2508     return false;
2509   for (Instruction &I : *PB) {
2510     Instruction *PBI = &I;
2511     // Check whether Inst and PBI generate the same value.
2512     if (Inst->isIdenticalTo(PBI)) {
2513       Inst->replaceAllUsesWith(PBI);
2514       Inst->eraseFromParent();
2515       return true;
2516     }
2517   }
2518   return false;
2519 }
2520 
2521 /// Return true if either PBI or BI has branch weight available, and store
2522 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2523 /// not have branch weight, use 1:1 as its weight.
2524 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2525                                    uint64_t &PredTrueWeight,
2526                                    uint64_t &PredFalseWeight,
2527                                    uint64_t &SuccTrueWeight,
2528                                    uint64_t &SuccFalseWeight) {
2529   bool PredHasWeights =
2530       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2531   bool SuccHasWeights =
2532       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2533   if (PredHasWeights || SuccHasWeights) {
2534     if (!PredHasWeights)
2535       PredTrueWeight = PredFalseWeight = 1;
2536     if (!SuccHasWeights)
2537       SuccTrueWeight = SuccFalseWeight = 1;
2538     return true;
2539   } else {
2540     return false;
2541   }
2542 }
2543 
2544 /// If this basic block is simple enough, and if a predecessor branches to us
2545 /// and one of our successors, fold the block into the predecessor and use
2546 /// logical operations to pick the right destination.
2547 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2548   BasicBlock *BB = BI->getParent();
2549 
2550   Instruction *Cond = nullptr;
2551   if (BI->isConditional())
2552     Cond = dyn_cast<Instruction>(BI->getCondition());
2553   else {
2554     // For unconditional branch, check for a simple CFG pattern, where
2555     // BB has a single predecessor and BB's successor is also its predecessor's
2556     // successor. If such pattern exisits, check for CSE between BB and its
2557     // predecessor.
2558     if (BasicBlock *PB = BB->getSinglePredecessor())
2559       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2560         if (PBI->isConditional() &&
2561             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2562              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2563           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2564             Instruction *Curr = &*I++;
2565             if (isa<CmpInst>(Curr)) {
2566               Cond = Curr;
2567               break;
2568             }
2569             // Quit if we can't remove this instruction.
2570             if (!checkCSEInPredecessor(Curr, PB))
2571               return false;
2572           }
2573         }
2574 
2575     if (!Cond)
2576       return false;
2577   }
2578 
2579   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2580       Cond->getParent() != BB || !Cond->hasOneUse())
2581     return false;
2582 
2583   // Make sure the instruction after the condition is the cond branch.
2584   BasicBlock::iterator CondIt = ++Cond->getIterator();
2585 
2586   // Ignore dbg intrinsics.
2587   while (isa<DbgInfoIntrinsic>(CondIt))
2588     ++CondIt;
2589 
2590   if (&*CondIt != BI)
2591     return false;
2592 
2593   // Only allow this transformation if computing the condition doesn't involve
2594   // too many instructions and these involved instructions can be executed
2595   // unconditionally. We denote all involved instructions except the condition
2596   // as "bonus instructions", and only allow this transformation when the
2597   // number of the bonus instructions does not exceed a certain threshold.
2598   unsigned NumBonusInsts = 0;
2599   for (auto I = BB->begin(); Cond != &*I; ++I) {
2600     // Ignore dbg intrinsics.
2601     if (isa<DbgInfoIntrinsic>(I))
2602       continue;
2603     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2604       return false;
2605     // I has only one use and can be executed unconditionally.
2606     Instruction *User = dyn_cast<Instruction>(I->user_back());
2607     if (User == nullptr || User->getParent() != BB)
2608       return false;
2609     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2610     // to use any other instruction, User must be an instruction between next(I)
2611     // and Cond.
2612     ++NumBonusInsts;
2613     // Early exits once we reach the limit.
2614     if (NumBonusInsts > BonusInstThreshold)
2615       return false;
2616   }
2617 
2618   // Cond is known to be a compare or binary operator.  Check to make sure that
2619   // neither operand is a potentially-trapping constant expression.
2620   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2621     if (CE->canTrap())
2622       return false;
2623   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2624     if (CE->canTrap())
2625       return false;
2626 
2627   // Finally, don't infinitely unroll conditional loops.
2628   BasicBlock *TrueDest = BI->getSuccessor(0);
2629   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2630   if (TrueDest == BB || FalseDest == BB)
2631     return false;
2632 
2633   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2634     BasicBlock *PredBlock = *PI;
2635     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2636 
2637     // Check that we have two conditional branches.  If there is a PHI node in
2638     // the common successor, verify that the same value flows in from both
2639     // blocks.
2640     SmallVector<PHINode *, 4> PHIs;
2641     if (!PBI || PBI->isUnconditional() ||
2642         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2643         (!BI->isConditional() &&
2644          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2645       continue;
2646 
2647     // Determine if the two branches share a common destination.
2648     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2649     bool InvertPredCond = false;
2650 
2651     if (BI->isConditional()) {
2652       if (PBI->getSuccessor(0) == TrueDest) {
2653         Opc = Instruction::Or;
2654       } else if (PBI->getSuccessor(1) == FalseDest) {
2655         Opc = Instruction::And;
2656       } else if (PBI->getSuccessor(0) == FalseDest) {
2657         Opc = Instruction::And;
2658         InvertPredCond = true;
2659       } else if (PBI->getSuccessor(1) == TrueDest) {
2660         Opc = Instruction::Or;
2661         InvertPredCond = true;
2662       } else {
2663         continue;
2664       }
2665     } else {
2666       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2667         continue;
2668     }
2669 
2670     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2671     IRBuilder<> Builder(PBI);
2672 
2673     // If we need to invert the condition in the pred block to match, do so now.
2674     if (InvertPredCond) {
2675       Value *NewCond = PBI->getCondition();
2676 
2677       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2678         CmpInst *CI = cast<CmpInst>(NewCond);
2679         CI->setPredicate(CI->getInversePredicate());
2680       } else {
2681         NewCond =
2682             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2683       }
2684 
2685       PBI->setCondition(NewCond);
2686       PBI->swapSuccessors();
2687     }
2688 
2689     // If we have bonus instructions, clone them into the predecessor block.
2690     // Note that there may be multiple predecessor blocks, so we cannot move
2691     // bonus instructions to a predecessor block.
2692     ValueToValueMapTy VMap; // maps original values to cloned values
2693     // We already make sure Cond is the last instruction before BI. Therefore,
2694     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2695     // instructions.
2696     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2697       if (isa<DbgInfoIntrinsic>(BonusInst))
2698         continue;
2699       Instruction *NewBonusInst = BonusInst->clone();
2700       RemapInstruction(NewBonusInst, VMap,
2701                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2702       VMap[&*BonusInst] = NewBonusInst;
2703 
2704       // If we moved a load, we cannot any longer claim any knowledge about
2705       // its potential value. The previous information might have been valid
2706       // only given the branch precondition.
2707       // For an analogous reason, we must also drop all the metadata whose
2708       // semantics we don't understand.
2709       NewBonusInst->dropUnknownNonDebugMetadata();
2710 
2711       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2712       NewBonusInst->takeName(&*BonusInst);
2713       BonusInst->setName(BonusInst->getName() + ".old");
2714     }
2715 
2716     // Clone Cond into the predecessor basic block, and or/and the
2717     // two conditions together.
2718     Instruction *New = Cond->clone();
2719     RemapInstruction(New, VMap,
2720                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2721     PredBlock->getInstList().insert(PBI->getIterator(), New);
2722     New->takeName(Cond);
2723     Cond->setName(New->getName() + ".old");
2724 
2725     if (BI->isConditional()) {
2726       Instruction *NewCond = cast<Instruction>(
2727           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2728       PBI->setCondition(NewCond);
2729 
2730       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2731       bool HasWeights =
2732           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2733                                  SuccTrueWeight, SuccFalseWeight);
2734       SmallVector<uint64_t, 8> NewWeights;
2735 
2736       if (PBI->getSuccessor(0) == BB) {
2737         if (HasWeights) {
2738           // PBI: br i1 %x, BB, FalseDest
2739           // BI:  br i1 %y, TrueDest, FalseDest
2740           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2741           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2742           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2743           //               TrueWeight for PBI * FalseWeight for BI.
2744           // We assume that total weights of a BranchInst can fit into 32 bits.
2745           // Therefore, we will not have overflow using 64-bit arithmetic.
2746           NewWeights.push_back(PredFalseWeight *
2747                                    (SuccFalseWeight + SuccTrueWeight) +
2748                                PredTrueWeight * SuccFalseWeight);
2749         }
2750         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2751         PBI->setSuccessor(0, TrueDest);
2752       }
2753       if (PBI->getSuccessor(1) == BB) {
2754         if (HasWeights) {
2755           // PBI: br i1 %x, TrueDest, BB
2756           // BI:  br i1 %y, TrueDest, FalseDest
2757           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2758           //              FalseWeight for PBI * TrueWeight for BI.
2759           NewWeights.push_back(PredTrueWeight *
2760                                    (SuccFalseWeight + SuccTrueWeight) +
2761                                PredFalseWeight * SuccTrueWeight);
2762           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2763           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2764         }
2765         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2766         PBI->setSuccessor(1, FalseDest);
2767       }
2768       if (NewWeights.size() == 2) {
2769         // Halve the weights if any of them cannot fit in an uint32_t
2770         FitWeights(NewWeights);
2771 
2772         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2773                                            NewWeights.end());
2774         PBI->setMetadata(
2775             LLVMContext::MD_prof,
2776             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2777       } else
2778         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2779     } else {
2780       // Update PHI nodes in the common successors.
2781       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2782         ConstantInt *PBI_C = cast<ConstantInt>(
2783             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2784         assert(PBI_C->getType()->isIntegerTy(1));
2785         Instruction *MergedCond = nullptr;
2786         if (PBI->getSuccessor(0) == TrueDest) {
2787           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2788           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2789           //       is false: !PBI_Cond and BI_Value
2790           Instruction *NotCond = cast<Instruction>(
2791               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2792           MergedCond = cast<Instruction>(
2793               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2794           if (PBI_C->isOne())
2795             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2796                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2797         } else {
2798           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2799           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2800           //       is false: PBI_Cond and BI_Value
2801           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2802               Instruction::And, PBI->getCondition(), New, "and.cond"));
2803           if (PBI_C->isOne()) {
2804             Instruction *NotCond = cast<Instruction>(
2805                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2806             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2807                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2808           }
2809         }
2810         // Update PHI Node.
2811         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2812                                   MergedCond);
2813       }
2814       // Change PBI from Conditional to Unconditional.
2815       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2816       EraseTerminatorInstAndDCECond(PBI);
2817       PBI = New_PBI;
2818     }
2819 
2820     // If BI was a loop latch, it may have had associated loop metadata.
2821     // We need to copy it to the new latch, that is, PBI.
2822     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2823       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2824 
2825     // TODO: If BB is reachable from all paths through PredBlock, then we
2826     // could replace PBI's branch probabilities with BI's.
2827 
2828     // Copy any debug value intrinsics into the end of PredBlock.
2829     for (Instruction &I : *BB)
2830       if (isa<DbgInfoIntrinsic>(I))
2831         I.clone()->insertBefore(PBI);
2832 
2833     return true;
2834   }
2835   return false;
2836 }
2837 
2838 // If there is only one store in BB1 and BB2, return it, otherwise return
2839 // nullptr.
2840 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2841   StoreInst *S = nullptr;
2842   for (auto *BB : {BB1, BB2}) {
2843     if (!BB)
2844       continue;
2845     for (auto &I : *BB)
2846       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2847         if (S)
2848           // Multiple stores seen.
2849           return nullptr;
2850         else
2851           S = SI;
2852       }
2853   }
2854   return S;
2855 }
2856 
2857 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2858                                               Value *AlternativeV = nullptr) {
2859   // PHI is going to be a PHI node that allows the value V that is defined in
2860   // BB to be referenced in BB's only successor.
2861   //
2862   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2863   // doesn't matter to us what the other operand is (it'll never get used). We
2864   // could just create a new PHI with an undef incoming value, but that could
2865   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2866   // other PHI. So here we directly look for some PHI in BB's successor with V
2867   // as an incoming operand. If we find one, we use it, else we create a new
2868   // one.
2869   //
2870   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2871   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2872   // where OtherBB is the single other predecessor of BB's only successor.
2873   PHINode *PHI = nullptr;
2874   BasicBlock *Succ = BB->getSingleSuccessor();
2875 
2876   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2877     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2878       PHI = cast<PHINode>(I);
2879       if (!AlternativeV)
2880         break;
2881 
2882       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2883       auto PredI = pred_begin(Succ);
2884       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2885       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2886         break;
2887       PHI = nullptr;
2888     }
2889   if (PHI)
2890     return PHI;
2891 
2892   // If V is not an instruction defined in BB, just return it.
2893   if (!AlternativeV &&
2894       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2895     return V;
2896 
2897   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2898   PHI->addIncoming(V, BB);
2899   for (BasicBlock *PredBB : predecessors(Succ))
2900     if (PredBB != BB)
2901       PHI->addIncoming(
2902           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2903   return PHI;
2904 }
2905 
2906 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2907                                            BasicBlock *QTB, BasicBlock *QFB,
2908                                            BasicBlock *PostBB, Value *Address,
2909                                            bool InvertPCond, bool InvertQCond) {
2910   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2911     return Operator::getOpcode(&I) == Instruction::BitCast &&
2912            I.getType()->isPointerTy();
2913   };
2914 
2915   // If we're not in aggressive mode, we only optimize if we have some
2916   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2917   auto IsWorthwhile = [&](BasicBlock *BB) {
2918     if (!BB)
2919       return true;
2920     // Heuristic: if the block can be if-converted/phi-folded and the
2921     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2922     // thread this store.
2923     unsigned N = 0;
2924     for (auto &I : *BB) {
2925       // Cheap instructions viable for folding.
2926       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2927           isa<StoreInst>(I))
2928         ++N;
2929       // Free instructions.
2930       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2931                IsaBitcastOfPointerType(I))
2932         continue;
2933       else
2934         return false;
2935     }
2936     return N <= PHINodeFoldingThreshold;
2937   };
2938 
2939   if (!MergeCondStoresAggressively &&
2940       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2941        !IsWorthwhile(QFB)))
2942     return false;
2943 
2944   // For every pointer, there must be exactly two stores, one coming from
2945   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2946   // store (to any address) in PTB,PFB or QTB,QFB.
2947   // FIXME: We could relax this restriction with a bit more work and performance
2948   // testing.
2949   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2950   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2951   if (!PStore || !QStore)
2952     return false;
2953 
2954   // Now check the stores are compatible.
2955   if (!QStore->isUnordered() || !PStore->isUnordered())
2956     return false;
2957 
2958   // Check that sinking the store won't cause program behavior changes. Sinking
2959   // the store out of the Q blocks won't change any behavior as we're sinking
2960   // from a block to its unconditional successor. But we're moving a store from
2961   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2962   // So we need to check that there are no aliasing loads or stores in
2963   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2964   // operations between PStore and the end of its parent block.
2965   //
2966   // The ideal way to do this is to query AliasAnalysis, but we don't
2967   // preserve AA currently so that is dangerous. Be super safe and just
2968   // check there are no other memory operations at all.
2969   for (auto &I : *QFB->getSinglePredecessor())
2970     if (I.mayReadOrWriteMemory())
2971       return false;
2972   for (auto &I : *QFB)
2973     if (&I != QStore && I.mayReadOrWriteMemory())
2974       return false;
2975   if (QTB)
2976     for (auto &I : *QTB)
2977       if (&I != QStore && I.mayReadOrWriteMemory())
2978         return false;
2979   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2980        I != E; ++I)
2981     if (&*I != PStore && I->mayReadOrWriteMemory())
2982       return false;
2983 
2984   // OK, we're going to sink the stores to PostBB. The store has to be
2985   // conditional though, so first create the predicate.
2986   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2987                      ->getCondition();
2988   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2989                      ->getCondition();
2990 
2991   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2992                                                 PStore->getParent());
2993   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2994                                                 QStore->getParent(), PPHI);
2995 
2996   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2997 
2998   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2999   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3000 
3001   if (InvertPCond)
3002     PPred = QB.CreateNot(PPred);
3003   if (InvertQCond)
3004     QPred = QB.CreateNot(QPred);
3005   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3006 
3007   auto *T =
3008       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3009   QB.SetInsertPoint(T);
3010   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3011   AAMDNodes AAMD;
3012   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3013   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3014   SI->setAAMetadata(AAMD);
3015 
3016   QStore->eraseFromParent();
3017   PStore->eraseFromParent();
3018 
3019   return true;
3020 }
3021 
3022 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
3023   // The intention here is to find diamonds or triangles (see below) where each
3024   // conditional block contains a store to the same address. Both of these
3025   // stores are conditional, so they can't be unconditionally sunk. But it may
3026   // be profitable to speculatively sink the stores into one merged store at the
3027   // end, and predicate the merged store on the union of the two conditions of
3028   // PBI and QBI.
3029   //
3030   // This can reduce the number of stores executed if both of the conditions are
3031   // true, and can allow the blocks to become small enough to be if-converted.
3032   // This optimization will also chain, so that ladders of test-and-set
3033   // sequences can be if-converted away.
3034   //
3035   // We only deal with simple diamonds or triangles:
3036   //
3037   //     PBI       or      PBI        or a combination of the two
3038   //    /   \               | \
3039   //   PTB  PFB             |  PFB
3040   //    \   /               | /
3041   //     QBI                QBI
3042   //    /  \                | \
3043   //   QTB  QFB             |  QFB
3044   //    \  /                | /
3045   //    PostBB            PostBB
3046   //
3047   // We model triangles as a type of diamond with a nullptr "true" block.
3048   // Triangles are canonicalized so that the fallthrough edge is represented by
3049   // a true condition, as in the diagram above.
3050   //
3051   BasicBlock *PTB = PBI->getSuccessor(0);
3052   BasicBlock *PFB = PBI->getSuccessor(1);
3053   BasicBlock *QTB = QBI->getSuccessor(0);
3054   BasicBlock *QFB = QBI->getSuccessor(1);
3055   BasicBlock *PostBB = QFB->getSingleSuccessor();
3056 
3057   bool InvertPCond = false, InvertQCond = false;
3058   // Canonicalize fallthroughs to the true branches.
3059   if (PFB == QBI->getParent()) {
3060     std::swap(PFB, PTB);
3061     InvertPCond = true;
3062   }
3063   if (QFB == PostBB) {
3064     std::swap(QFB, QTB);
3065     InvertQCond = true;
3066   }
3067 
3068   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3069   // and QFB may not. Model fallthroughs as a nullptr block.
3070   if (PTB == QBI->getParent())
3071     PTB = nullptr;
3072   if (QTB == PostBB)
3073     QTB = nullptr;
3074 
3075   // Legality bailouts. We must have at least the non-fallthrough blocks and
3076   // the post-dominating block, and the non-fallthroughs must only have one
3077   // predecessor.
3078   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3079     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3080   };
3081   if (!PostBB ||
3082       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3083       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3084     return false;
3085   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3086       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3087     return false;
3088   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3089     return false;
3090 
3091   // OK, this is a sequence of two diamonds or triangles.
3092   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3093   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3094   for (auto *BB : {PTB, PFB}) {
3095     if (!BB)
3096       continue;
3097     for (auto &I : *BB)
3098       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3099         PStoreAddresses.insert(SI->getPointerOperand());
3100   }
3101   for (auto *BB : {QTB, QFB}) {
3102     if (!BB)
3103       continue;
3104     for (auto &I : *BB)
3105       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3106         QStoreAddresses.insert(SI->getPointerOperand());
3107   }
3108 
3109   set_intersect(PStoreAddresses, QStoreAddresses);
3110   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3111   // clear what it contains.
3112   auto &CommonAddresses = PStoreAddresses;
3113 
3114   bool Changed = false;
3115   for (auto *Address : CommonAddresses)
3116     Changed |= mergeConditionalStoreToAddress(
3117         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3118   return Changed;
3119 }
3120 
3121 /// If we have a conditional branch as a predecessor of another block,
3122 /// this function tries to simplify it.  We know
3123 /// that PBI and BI are both conditional branches, and BI is in one of the
3124 /// successor blocks of PBI - PBI branches to BI.
3125 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3126                                            const DataLayout &DL) {
3127   assert(PBI->isConditional() && BI->isConditional());
3128   BasicBlock *BB = BI->getParent();
3129 
3130   // If this block ends with a branch instruction, and if there is a
3131   // predecessor that ends on a branch of the same condition, make
3132   // this conditional branch redundant.
3133   if (PBI->getCondition() == BI->getCondition() &&
3134       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3135     // Okay, the outcome of this conditional branch is statically
3136     // knowable.  If this block had a single pred, handle specially.
3137     if (BB->getSinglePredecessor()) {
3138       // Turn this into a branch on constant.
3139       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3140       BI->setCondition(
3141           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3142       return true; // Nuke the branch on constant.
3143     }
3144 
3145     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3146     // in the constant and simplify the block result.  Subsequent passes of
3147     // simplifycfg will thread the block.
3148     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3149       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3150       PHINode *NewPN = PHINode::Create(
3151           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3152           BI->getCondition()->getName() + ".pr", &BB->front());
3153       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3154       // predecessor, compute the PHI'd conditional value for all of the preds.
3155       // Any predecessor where the condition is not computable we keep symbolic.
3156       for (pred_iterator PI = PB; PI != PE; ++PI) {
3157         BasicBlock *P = *PI;
3158         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3159             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3160             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3161           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3162           NewPN->addIncoming(
3163               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3164               P);
3165         } else {
3166           NewPN->addIncoming(BI->getCondition(), P);
3167         }
3168       }
3169 
3170       BI->setCondition(NewPN);
3171       return true;
3172     }
3173   }
3174 
3175   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3176     if (CE->canTrap())
3177       return false;
3178 
3179   // If both branches are conditional and both contain stores to the same
3180   // address, remove the stores from the conditionals and create a conditional
3181   // merged store at the end.
3182   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3183     return true;
3184 
3185   // If this is a conditional branch in an empty block, and if any
3186   // predecessors are a conditional branch to one of our destinations,
3187   // fold the conditions into logical ops and one cond br.
3188   BasicBlock::iterator BBI = BB->begin();
3189   // Ignore dbg intrinsics.
3190   while (isa<DbgInfoIntrinsic>(BBI))
3191     ++BBI;
3192   if (&*BBI != BI)
3193     return false;
3194 
3195   int PBIOp, BIOp;
3196   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3197     PBIOp = 0;
3198     BIOp = 0;
3199   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3200     PBIOp = 0;
3201     BIOp = 1;
3202   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3203     PBIOp = 1;
3204     BIOp = 0;
3205   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3206     PBIOp = 1;
3207     BIOp = 1;
3208   } else {
3209     return false;
3210   }
3211 
3212   // Check to make sure that the other destination of this branch
3213   // isn't BB itself.  If so, this is an infinite loop that will
3214   // keep getting unwound.
3215   if (PBI->getSuccessor(PBIOp) == BB)
3216     return false;
3217 
3218   // Do not perform this transformation if it would require
3219   // insertion of a large number of select instructions. For targets
3220   // without predication/cmovs, this is a big pessimization.
3221 
3222   // Also do not perform this transformation if any phi node in the common
3223   // destination block can trap when reached by BB or PBB (PR17073). In that
3224   // case, it would be unsafe to hoist the operation into a select instruction.
3225 
3226   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3227   unsigned NumPhis = 0;
3228   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3229        ++II, ++NumPhis) {
3230     if (NumPhis > 2) // Disable this xform.
3231       return false;
3232 
3233     PHINode *PN = cast<PHINode>(II);
3234     Value *BIV = PN->getIncomingValueForBlock(BB);
3235     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3236       if (CE->canTrap())
3237         return false;
3238 
3239     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3240     Value *PBIV = PN->getIncomingValue(PBBIdx);
3241     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3242       if (CE->canTrap())
3243         return false;
3244   }
3245 
3246   // Finally, if everything is ok, fold the branches to logical ops.
3247   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3248 
3249   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3250                << "AND: " << *BI->getParent());
3251 
3252   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3253   // branch in it, where one edge (OtherDest) goes back to itself but the other
3254   // exits.  We don't *know* that the program avoids the infinite loop
3255   // (even though that seems likely).  If we do this xform naively, we'll end up
3256   // recursively unpeeling the loop.  Since we know that (after the xform is
3257   // done) that the block *is* infinite if reached, we just make it an obviously
3258   // infinite loop with no cond branch.
3259   if (OtherDest == BB) {
3260     // Insert it at the end of the function, because it's either code,
3261     // or it won't matter if it's hot. :)
3262     BasicBlock *InfLoopBlock =
3263         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3264     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3265     OtherDest = InfLoopBlock;
3266   }
3267 
3268   DEBUG(dbgs() << *PBI->getParent()->getParent());
3269 
3270   // BI may have other predecessors.  Because of this, we leave
3271   // it alone, but modify PBI.
3272 
3273   // Make sure we get to CommonDest on True&True directions.
3274   Value *PBICond = PBI->getCondition();
3275   IRBuilder<NoFolder> Builder(PBI);
3276   if (PBIOp)
3277     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3278 
3279   Value *BICond = BI->getCondition();
3280   if (BIOp)
3281     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3282 
3283   // Merge the conditions.
3284   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3285 
3286   // Modify PBI to branch on the new condition to the new dests.
3287   PBI->setCondition(Cond);
3288   PBI->setSuccessor(0, CommonDest);
3289   PBI->setSuccessor(1, OtherDest);
3290 
3291   // Update branch weight for PBI.
3292   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3293   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3294   bool HasWeights =
3295       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3296                              SuccTrueWeight, SuccFalseWeight);
3297   if (HasWeights) {
3298     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3299     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3300     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3301     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3302     // The weight to CommonDest should be PredCommon * SuccTotal +
3303     //                                    PredOther * SuccCommon.
3304     // The weight to OtherDest should be PredOther * SuccOther.
3305     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3306                                   PredOther * SuccCommon,
3307                               PredOther * SuccOther};
3308     // Halve the weights if any of them cannot fit in an uint32_t
3309     FitWeights(NewWeights);
3310 
3311     PBI->setMetadata(LLVMContext::MD_prof,
3312                      MDBuilder(BI->getContext())
3313                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3314   }
3315 
3316   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3317   // block that are identical to the entries for BI's block.
3318   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3319 
3320   // We know that the CommonDest already had an edge from PBI to
3321   // it.  If it has PHIs though, the PHIs may have different
3322   // entries for BB and PBI's BB.  If so, insert a select to make
3323   // them agree.
3324   PHINode *PN;
3325   for (BasicBlock::iterator II = CommonDest->begin();
3326        (PN = dyn_cast<PHINode>(II)); ++II) {
3327     Value *BIV = PN->getIncomingValueForBlock(BB);
3328     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3329     Value *PBIV = PN->getIncomingValue(PBBIdx);
3330     if (BIV != PBIV) {
3331       // Insert a select in PBI to pick the right value.
3332       SelectInst *NV = cast<SelectInst>(
3333           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3334       PN->setIncomingValue(PBBIdx, NV);
3335       // Although the select has the same condition as PBI, the original branch
3336       // weights for PBI do not apply to the new select because the select's
3337       // 'logical' edges are incoming edges of the phi that is eliminated, not
3338       // the outgoing edges of PBI.
3339       if (HasWeights) {
3340         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3341         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3342         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3343         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3344         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3345         // The weight to PredOtherDest should be PredOther * SuccCommon.
3346         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3347                                   PredOther * SuccCommon};
3348 
3349         FitWeights(NewWeights);
3350 
3351         NV->setMetadata(LLVMContext::MD_prof,
3352                         MDBuilder(BI->getContext())
3353                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3354       }
3355     }
3356   }
3357 
3358   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3359   DEBUG(dbgs() << *PBI->getParent()->getParent());
3360 
3361   // This basic block is probably dead.  We know it has at least
3362   // one fewer predecessor.
3363   return true;
3364 }
3365 
3366 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3367 // true or to FalseBB if Cond is false.
3368 // Takes care of updating the successors and removing the old terminator.
3369 // Also makes sure not to introduce new successors by assuming that edges to
3370 // non-successor TrueBBs and FalseBBs aren't reachable.
3371 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3372                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3373                                        uint32_t TrueWeight,
3374                                        uint32_t FalseWeight) {
3375   // Remove any superfluous successor edges from the CFG.
3376   // First, figure out which successors to preserve.
3377   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3378   // successor.
3379   BasicBlock *KeepEdge1 = TrueBB;
3380   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3381 
3382   // Then remove the rest.
3383   for (BasicBlock *Succ : OldTerm->successors()) {
3384     // Make sure only to keep exactly one copy of each edge.
3385     if (Succ == KeepEdge1)
3386       KeepEdge1 = nullptr;
3387     else if (Succ == KeepEdge2)
3388       KeepEdge2 = nullptr;
3389     else
3390       Succ->removePredecessor(OldTerm->getParent(),
3391                               /*DontDeleteUselessPHIs=*/true);
3392   }
3393 
3394   IRBuilder<> Builder(OldTerm);
3395   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3396 
3397   // Insert an appropriate new terminator.
3398   if (!KeepEdge1 && !KeepEdge2) {
3399     if (TrueBB == FalseBB)
3400       // We were only looking for one successor, and it was present.
3401       // Create an unconditional branch to it.
3402       Builder.CreateBr(TrueBB);
3403     else {
3404       // We found both of the successors we were looking for.
3405       // Create a conditional branch sharing the condition of the select.
3406       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3407       if (TrueWeight != FalseWeight)
3408         NewBI->setMetadata(LLVMContext::MD_prof,
3409                            MDBuilder(OldTerm->getContext())
3410                                .createBranchWeights(TrueWeight, FalseWeight));
3411     }
3412   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3413     // Neither of the selected blocks were successors, so this
3414     // terminator must be unreachable.
3415     new UnreachableInst(OldTerm->getContext(), OldTerm);
3416   } else {
3417     // One of the selected values was a successor, but the other wasn't.
3418     // Insert an unconditional branch to the one that was found;
3419     // the edge to the one that wasn't must be unreachable.
3420     if (!KeepEdge1)
3421       // Only TrueBB was found.
3422       Builder.CreateBr(TrueBB);
3423     else
3424       // Only FalseBB was found.
3425       Builder.CreateBr(FalseBB);
3426   }
3427 
3428   EraseTerminatorInstAndDCECond(OldTerm);
3429   return true;
3430 }
3431 
3432 // Replaces
3433 //   (switch (select cond, X, Y)) on constant X, Y
3434 // with a branch - conditional if X and Y lead to distinct BBs,
3435 // unconditional otherwise.
3436 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3437   // Check for constant integer values in the select.
3438   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3439   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3440   if (!TrueVal || !FalseVal)
3441     return false;
3442 
3443   // Find the relevant condition and destinations.
3444   Value *Condition = Select->getCondition();
3445   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3446   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3447 
3448   // Get weight for TrueBB and FalseBB.
3449   uint32_t TrueWeight = 0, FalseWeight = 0;
3450   SmallVector<uint64_t, 8> Weights;
3451   bool HasWeights = HasBranchWeights(SI);
3452   if (HasWeights) {
3453     GetBranchWeights(SI, Weights);
3454     if (Weights.size() == 1 + SI->getNumCases()) {
3455       TrueWeight =
3456           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3457       FalseWeight =
3458           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3459     }
3460   }
3461 
3462   // Perform the actual simplification.
3463   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3464                                     FalseWeight);
3465 }
3466 
3467 // Replaces
3468 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3469 //                             blockaddress(@fn, BlockB)))
3470 // with
3471 //   (br cond, BlockA, BlockB).
3472 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3473   // Check that both operands of the select are block addresses.
3474   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3475   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3476   if (!TBA || !FBA)
3477     return false;
3478 
3479   // Extract the actual blocks.
3480   BasicBlock *TrueBB = TBA->getBasicBlock();
3481   BasicBlock *FalseBB = FBA->getBasicBlock();
3482 
3483   // Perform the actual simplification.
3484   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3485                                     0);
3486 }
3487 
3488 /// This is called when we find an icmp instruction
3489 /// (a seteq/setne with a constant) as the only instruction in a
3490 /// block that ends with an uncond branch.  We are looking for a very specific
3491 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3492 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3493 /// default value goes to an uncond block with a seteq in it, we get something
3494 /// like:
3495 ///
3496 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3497 /// DEFAULT:
3498 ///   %tmp = icmp eq i8 %A, 92
3499 ///   br label %end
3500 /// end:
3501 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3502 ///
3503 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3504 /// the PHI, merging the third icmp into the switch.
3505 static bool TryToSimplifyUncondBranchWithICmpInIt(
3506     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3507     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3508     AssumptionCache *AC) {
3509   BasicBlock *BB = ICI->getParent();
3510 
3511   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3512   // complex.
3513   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3514     return false;
3515 
3516   Value *V = ICI->getOperand(0);
3517   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3518 
3519   // The pattern we're looking for is where our only predecessor is a switch on
3520   // 'V' and this block is the default case for the switch.  In this case we can
3521   // fold the compared value into the switch to simplify things.
3522   BasicBlock *Pred = BB->getSinglePredecessor();
3523   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3524     return false;
3525 
3526   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3527   if (SI->getCondition() != V)
3528     return false;
3529 
3530   // If BB is reachable on a non-default case, then we simply know the value of
3531   // V in this block.  Substitute it and constant fold the icmp instruction
3532   // away.
3533   if (SI->getDefaultDest() != BB) {
3534     ConstantInt *VVal = SI->findCaseDest(BB);
3535     assert(VVal && "Should have a unique destination value");
3536     ICI->setOperand(0, VVal);
3537 
3538     if (Value *V = SimplifyInstruction(ICI, DL)) {
3539       ICI->replaceAllUsesWith(V);
3540       ICI->eraseFromParent();
3541     }
3542     // BB is now empty, so it is likely to simplify away.
3543     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3544   }
3545 
3546   // Ok, the block is reachable from the default dest.  If the constant we're
3547   // comparing exists in one of the other edges, then we can constant fold ICI
3548   // and zap it.
3549   if (SI->findCaseValue(Cst) != SI->case_default()) {
3550     Value *V;
3551     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3552       V = ConstantInt::getFalse(BB->getContext());
3553     else
3554       V = ConstantInt::getTrue(BB->getContext());
3555 
3556     ICI->replaceAllUsesWith(V);
3557     ICI->eraseFromParent();
3558     // BB is now empty, so it is likely to simplify away.
3559     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3560   }
3561 
3562   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3563   // the block.
3564   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3565   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3566   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3567       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3568     return false;
3569 
3570   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3571   // true in the PHI.
3572   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3573   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3574 
3575   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3576     std::swap(DefaultCst, NewCst);
3577 
3578   // Replace ICI (which is used by the PHI for the default value) with true or
3579   // false depending on if it is EQ or NE.
3580   ICI->replaceAllUsesWith(DefaultCst);
3581   ICI->eraseFromParent();
3582 
3583   // Okay, the switch goes to this block on a default value.  Add an edge from
3584   // the switch to the merge point on the compared value.
3585   BasicBlock *NewBB =
3586       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3587   SmallVector<uint64_t, 8> Weights;
3588   bool HasWeights = HasBranchWeights(SI);
3589   if (HasWeights) {
3590     GetBranchWeights(SI, Weights);
3591     if (Weights.size() == 1 + SI->getNumCases()) {
3592       // Split weight for default case to case for "Cst".
3593       Weights[0] = (Weights[0] + 1) >> 1;
3594       Weights.push_back(Weights[0]);
3595 
3596       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3597       SI->setMetadata(
3598           LLVMContext::MD_prof,
3599           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3600     }
3601   }
3602   SI->addCase(Cst, NewBB);
3603 
3604   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3605   Builder.SetInsertPoint(NewBB);
3606   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3607   Builder.CreateBr(SuccBlock);
3608   PHIUse->addIncoming(NewCst, NewBB);
3609   return true;
3610 }
3611 
3612 /// The specified branch is a conditional branch.
3613 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3614 /// fold it into a switch instruction if so.
3615 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3616                                       const DataLayout &DL) {
3617   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3618   if (!Cond)
3619     return false;
3620 
3621   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3622   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3623   // 'setne's and'ed together, collect them.
3624 
3625   // Try to gather values from a chain of and/or to be turned into a switch
3626   ConstantComparesGatherer ConstantCompare(Cond, DL);
3627   // Unpack the result
3628   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3629   Value *CompVal = ConstantCompare.CompValue;
3630   unsigned UsedICmps = ConstantCompare.UsedICmps;
3631   Value *ExtraCase = ConstantCompare.Extra;
3632 
3633   // If we didn't have a multiply compared value, fail.
3634   if (!CompVal)
3635     return false;
3636 
3637   // Avoid turning single icmps into a switch.
3638   if (UsedICmps <= 1)
3639     return false;
3640 
3641   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3642 
3643   // There might be duplicate constants in the list, which the switch
3644   // instruction can't handle, remove them now.
3645   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3646   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3647 
3648   // If Extra was used, we require at least two switch values to do the
3649   // transformation.  A switch with one value is just a conditional branch.
3650   if (ExtraCase && Values.size() < 2)
3651     return false;
3652 
3653   // TODO: Preserve branch weight metadata, similarly to how
3654   // FoldValueComparisonIntoPredecessors preserves it.
3655 
3656   // Figure out which block is which destination.
3657   BasicBlock *DefaultBB = BI->getSuccessor(1);
3658   BasicBlock *EdgeBB = BI->getSuccessor(0);
3659   if (!TrueWhenEqual)
3660     std::swap(DefaultBB, EdgeBB);
3661 
3662   BasicBlock *BB = BI->getParent();
3663 
3664   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3665                << " cases into SWITCH.  BB is:\n"
3666                << *BB);
3667 
3668   // If there are any extra values that couldn't be folded into the switch
3669   // then we evaluate them with an explicit branch first.  Split the block
3670   // right before the condbr to handle it.
3671   if (ExtraCase) {
3672     BasicBlock *NewBB =
3673         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3674     // Remove the uncond branch added to the old block.
3675     TerminatorInst *OldTI = BB->getTerminator();
3676     Builder.SetInsertPoint(OldTI);
3677 
3678     if (TrueWhenEqual)
3679       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3680     else
3681       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3682 
3683     OldTI->eraseFromParent();
3684 
3685     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3686     // for the edge we just added.
3687     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3688 
3689     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3690                  << "\nEXTRABB = " << *BB);
3691     BB = NewBB;
3692   }
3693 
3694   Builder.SetInsertPoint(BI);
3695   // Convert pointer to int before we switch.
3696   if (CompVal->getType()->isPointerTy()) {
3697     CompVal = Builder.CreatePtrToInt(
3698         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3699   }
3700 
3701   // Create the new switch instruction now.
3702   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3703 
3704   // Add all of the 'cases' to the switch instruction.
3705   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3706     New->addCase(Values[i], EdgeBB);
3707 
3708   // We added edges from PI to the EdgeBB.  As such, if there were any
3709   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3710   // the number of edges added.
3711   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3712     PHINode *PN = cast<PHINode>(BBI);
3713     Value *InVal = PN->getIncomingValueForBlock(BB);
3714     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3715       PN->addIncoming(InVal, BB);
3716   }
3717 
3718   // Erase the old branch instruction.
3719   EraseTerminatorInstAndDCECond(BI);
3720 
3721   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3722   return true;
3723 }
3724 
3725 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3726   if (isa<PHINode>(RI->getValue()))
3727     return SimplifyCommonResume(RI);
3728   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3729            RI->getValue() == RI->getParent()->getFirstNonPHI())
3730     // The resume must unwind the exception that caused control to branch here.
3731     return SimplifySingleResume(RI);
3732 
3733   return false;
3734 }
3735 
3736 // Simplify resume that is shared by several landing pads (phi of landing pad).
3737 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3738   BasicBlock *BB = RI->getParent();
3739 
3740   // Check that there are no other instructions except for debug intrinsics
3741   // between the phi of landing pads (RI->getValue()) and resume instruction.
3742   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3743                        E = RI->getIterator();
3744   while (++I != E)
3745     if (!isa<DbgInfoIntrinsic>(I))
3746       return false;
3747 
3748   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3749   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3750 
3751   // Check incoming blocks to see if any of them are trivial.
3752   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3753        Idx++) {
3754     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3755     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3756 
3757     // If the block has other successors, we can not delete it because
3758     // it has other dependents.
3759     if (IncomingBB->getUniqueSuccessor() != BB)
3760       continue;
3761 
3762     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3763     // Not the landing pad that caused the control to branch here.
3764     if (IncomingValue != LandingPad)
3765       continue;
3766 
3767     bool isTrivial = true;
3768 
3769     I = IncomingBB->getFirstNonPHI()->getIterator();
3770     E = IncomingBB->getTerminator()->getIterator();
3771     while (++I != E)
3772       if (!isa<DbgInfoIntrinsic>(I)) {
3773         isTrivial = false;
3774         break;
3775       }
3776 
3777     if (isTrivial)
3778       TrivialUnwindBlocks.insert(IncomingBB);
3779   }
3780 
3781   // If no trivial unwind blocks, don't do any simplifications.
3782   if (TrivialUnwindBlocks.empty())
3783     return false;
3784 
3785   // Turn all invokes that unwind here into calls.
3786   for (auto *TrivialBB : TrivialUnwindBlocks) {
3787     // Blocks that will be simplified should be removed from the phi node.
3788     // Note there could be multiple edges to the resume block, and we need
3789     // to remove them all.
3790     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3791       BB->removePredecessor(TrivialBB, true);
3792 
3793     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3794          PI != PE;) {
3795       BasicBlock *Pred = *PI++;
3796       removeUnwindEdge(Pred);
3797     }
3798 
3799     // In each SimplifyCFG run, only the current processed block can be erased.
3800     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3801     // of erasing TrivialBB, we only remove the branch to the common resume
3802     // block so that we can later erase the resume block since it has no
3803     // predecessors.
3804     TrivialBB->getTerminator()->eraseFromParent();
3805     new UnreachableInst(RI->getContext(), TrivialBB);
3806   }
3807 
3808   // Delete the resume block if all its predecessors have been removed.
3809   if (pred_empty(BB))
3810     BB->eraseFromParent();
3811 
3812   return !TrivialUnwindBlocks.empty();
3813 }
3814 
3815 // Simplify resume that is only used by a single (non-phi) landing pad.
3816 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3817   BasicBlock *BB = RI->getParent();
3818   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3819   assert(RI->getValue() == LPInst &&
3820          "Resume must unwind the exception that caused control to here");
3821 
3822   // Check that there are no other instructions except for debug intrinsics.
3823   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3824   while (++I != E)
3825     if (!isa<DbgInfoIntrinsic>(I))
3826       return false;
3827 
3828   // Turn all invokes that unwind here into calls and delete the basic block.
3829   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3830     BasicBlock *Pred = *PI++;
3831     removeUnwindEdge(Pred);
3832   }
3833 
3834   // The landingpad is now unreachable.  Zap it.
3835   BB->eraseFromParent();
3836   if (LoopHeaders)
3837     LoopHeaders->erase(BB);
3838   return true;
3839 }
3840 
3841 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3842   // If this is a trivial cleanup pad that executes no instructions, it can be
3843   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3844   // that is an EH pad will be updated to continue to the caller and any
3845   // predecessor that terminates with an invoke instruction will have its invoke
3846   // instruction converted to a call instruction.  If the cleanup pad being
3847   // simplified does not continue to the caller, each predecessor will be
3848   // updated to continue to the unwind destination of the cleanup pad being
3849   // simplified.
3850   BasicBlock *BB = RI->getParent();
3851   CleanupPadInst *CPInst = RI->getCleanupPad();
3852   if (CPInst->getParent() != BB)
3853     // This isn't an empty cleanup.
3854     return false;
3855 
3856   // We cannot kill the pad if it has multiple uses.  This typically arises
3857   // from unreachable basic blocks.
3858   if (!CPInst->hasOneUse())
3859     return false;
3860 
3861   // Check that there are no other instructions except for benign intrinsics.
3862   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3863   while (++I != E) {
3864     auto *II = dyn_cast<IntrinsicInst>(I);
3865     if (!II)
3866       return false;
3867 
3868     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3869     switch (IntrinsicID) {
3870     case Intrinsic::dbg_declare:
3871     case Intrinsic::dbg_value:
3872     case Intrinsic::lifetime_end:
3873       break;
3874     default:
3875       return false;
3876     }
3877   }
3878 
3879   // If the cleanup return we are simplifying unwinds to the caller, this will
3880   // set UnwindDest to nullptr.
3881   BasicBlock *UnwindDest = RI->getUnwindDest();
3882   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3883 
3884   // We're about to remove BB from the control flow.  Before we do, sink any
3885   // PHINodes into the unwind destination.  Doing this before changing the
3886   // control flow avoids some potentially slow checks, since we can currently
3887   // be certain that UnwindDest and BB have no common predecessors (since they
3888   // are both EH pads).
3889   if (UnwindDest) {
3890     // First, go through the PHI nodes in UnwindDest and update any nodes that
3891     // reference the block we are removing
3892     for (BasicBlock::iterator I = UnwindDest->begin(),
3893                               IE = DestEHPad->getIterator();
3894          I != IE; ++I) {
3895       PHINode *DestPN = cast<PHINode>(I);
3896 
3897       int Idx = DestPN->getBasicBlockIndex(BB);
3898       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3899       assert(Idx != -1);
3900       // This PHI node has an incoming value that corresponds to a control
3901       // path through the cleanup pad we are removing.  If the incoming
3902       // value is in the cleanup pad, it must be a PHINode (because we
3903       // verified above that the block is otherwise empty).  Otherwise, the
3904       // value is either a constant or a value that dominates the cleanup
3905       // pad being removed.
3906       //
3907       // Because BB and UnwindDest are both EH pads, all of their
3908       // predecessors must unwind to these blocks, and since no instruction
3909       // can have multiple unwind destinations, there will be no overlap in
3910       // incoming blocks between SrcPN and DestPN.
3911       Value *SrcVal = DestPN->getIncomingValue(Idx);
3912       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3913 
3914       // Remove the entry for the block we are deleting.
3915       DestPN->removeIncomingValue(Idx, false);
3916 
3917       if (SrcPN && SrcPN->getParent() == BB) {
3918         // If the incoming value was a PHI node in the cleanup pad we are
3919         // removing, we need to merge that PHI node's incoming values into
3920         // DestPN.
3921         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3922              SrcIdx != SrcE; ++SrcIdx) {
3923           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3924                               SrcPN->getIncomingBlock(SrcIdx));
3925         }
3926       } else {
3927         // Otherwise, the incoming value came from above BB and
3928         // so we can just reuse it.  We must associate all of BB's
3929         // predecessors with this value.
3930         for (auto *pred : predecessors(BB)) {
3931           DestPN->addIncoming(SrcVal, pred);
3932         }
3933       }
3934     }
3935 
3936     // Sink any remaining PHI nodes directly into UnwindDest.
3937     Instruction *InsertPt = DestEHPad;
3938     for (BasicBlock::iterator I = BB->begin(),
3939                               IE = BB->getFirstNonPHI()->getIterator();
3940          I != IE;) {
3941       // The iterator must be incremented here because the instructions are
3942       // being moved to another block.
3943       PHINode *PN = cast<PHINode>(I++);
3944       if (PN->use_empty())
3945         // If the PHI node has no uses, just leave it.  It will be erased
3946         // when we erase BB below.
3947         continue;
3948 
3949       // Otherwise, sink this PHI node into UnwindDest.
3950       // Any predecessors to UnwindDest which are not already represented
3951       // must be back edges which inherit the value from the path through
3952       // BB.  In this case, the PHI value must reference itself.
3953       for (auto *pred : predecessors(UnwindDest))
3954         if (pred != BB)
3955           PN->addIncoming(PN, pred);
3956       PN->moveBefore(InsertPt);
3957     }
3958   }
3959 
3960   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3961     // The iterator must be updated here because we are removing this pred.
3962     BasicBlock *PredBB = *PI++;
3963     if (UnwindDest == nullptr) {
3964       removeUnwindEdge(PredBB);
3965     } else {
3966       TerminatorInst *TI = PredBB->getTerminator();
3967       TI->replaceUsesOfWith(BB, UnwindDest);
3968     }
3969   }
3970 
3971   // The cleanup pad is now unreachable.  Zap it.
3972   BB->eraseFromParent();
3973   return true;
3974 }
3975 
3976 // Try to merge two cleanuppads together.
3977 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3978   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3979   // with.
3980   BasicBlock *UnwindDest = RI->getUnwindDest();
3981   if (!UnwindDest)
3982     return false;
3983 
3984   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3985   // be safe to merge without code duplication.
3986   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3987     return false;
3988 
3989   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3990   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3991   if (!SuccessorCleanupPad)
3992     return false;
3993 
3994   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3995   // Replace any uses of the successor cleanupad with the predecessor pad
3996   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3997   // funclet bundle operands.
3998   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3999   // Remove the old cleanuppad.
4000   SuccessorCleanupPad->eraseFromParent();
4001   // Now, we simply replace the cleanupret with a branch to the unwind
4002   // destination.
4003   BranchInst::Create(UnwindDest, RI->getParent());
4004   RI->eraseFromParent();
4005 
4006   return true;
4007 }
4008 
4009 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4010   // It is possible to transiantly have an undef cleanuppad operand because we
4011   // have deleted some, but not all, dead blocks.
4012   // Eventually, this block will be deleted.
4013   if (isa<UndefValue>(RI->getOperand(0)))
4014     return false;
4015 
4016   if (mergeCleanupPad(RI))
4017     return true;
4018 
4019   if (removeEmptyCleanup(RI))
4020     return true;
4021 
4022   return false;
4023 }
4024 
4025 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4026   BasicBlock *BB = RI->getParent();
4027   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4028     return false;
4029 
4030   // Find predecessors that end with branches.
4031   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4032   SmallVector<BranchInst *, 8> CondBranchPreds;
4033   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4034     BasicBlock *P = *PI;
4035     TerminatorInst *PTI = P->getTerminator();
4036     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4037       if (BI->isUnconditional())
4038         UncondBranchPreds.push_back(P);
4039       else
4040         CondBranchPreds.push_back(BI);
4041     }
4042   }
4043 
4044   // If we found some, do the transformation!
4045   if (!UncondBranchPreds.empty() && DupRet) {
4046     while (!UncondBranchPreds.empty()) {
4047       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4048       DEBUG(dbgs() << "FOLDING: " << *BB
4049                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4050       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4051     }
4052 
4053     // If we eliminated all predecessors of the block, delete the block now.
4054     if (pred_empty(BB)) {
4055       // We know there are no successors, so just nuke the block.
4056       BB->eraseFromParent();
4057       if (LoopHeaders)
4058         LoopHeaders->erase(BB);
4059     }
4060 
4061     return true;
4062   }
4063 
4064   // Check out all of the conditional branches going to this return
4065   // instruction.  If any of them just select between returns, change the
4066   // branch itself into a select/return pair.
4067   while (!CondBranchPreds.empty()) {
4068     BranchInst *BI = CondBranchPreds.pop_back_val();
4069 
4070     // Check to see if the non-BB successor is also a return block.
4071     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4072         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4073         SimplifyCondBranchToTwoReturns(BI, Builder))
4074       return true;
4075   }
4076   return false;
4077 }
4078 
4079 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4080   BasicBlock *BB = UI->getParent();
4081 
4082   bool Changed = false;
4083 
4084   // If there are any instructions immediately before the unreachable that can
4085   // be removed, do so.
4086   while (UI->getIterator() != BB->begin()) {
4087     BasicBlock::iterator BBI = UI->getIterator();
4088     --BBI;
4089     // Do not delete instructions that can have side effects which might cause
4090     // the unreachable to not be reachable; specifically, calls and volatile
4091     // operations may have this effect.
4092     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4093       break;
4094 
4095     if (BBI->mayHaveSideEffects()) {
4096       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4097         if (SI->isVolatile())
4098           break;
4099       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4100         if (LI->isVolatile())
4101           break;
4102       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4103         if (RMWI->isVolatile())
4104           break;
4105       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4106         if (CXI->isVolatile())
4107           break;
4108       } else if (isa<CatchPadInst>(BBI)) {
4109         // A catchpad may invoke exception object constructors and such, which
4110         // in some languages can be arbitrary code, so be conservative by
4111         // default.
4112         // For CoreCLR, it just involves a type test, so can be removed.
4113         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4114             EHPersonality::CoreCLR)
4115           break;
4116       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4117                  !isa<LandingPadInst>(BBI)) {
4118         break;
4119       }
4120       // Note that deleting LandingPad's here is in fact okay, although it
4121       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4122       // all the predecessors of this block will be the unwind edges of Invokes,
4123       // and we can therefore guarantee this block will be erased.
4124     }
4125 
4126     // Delete this instruction (any uses are guaranteed to be dead)
4127     if (!BBI->use_empty())
4128       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4129     BBI->eraseFromParent();
4130     Changed = true;
4131   }
4132 
4133   // If the unreachable instruction is the first in the block, take a gander
4134   // at all of the predecessors of this instruction, and simplify them.
4135   if (&BB->front() != UI)
4136     return Changed;
4137 
4138   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4139   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4140     TerminatorInst *TI = Preds[i]->getTerminator();
4141     IRBuilder<> Builder(TI);
4142     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4143       if (BI->isUnconditional()) {
4144         if (BI->getSuccessor(0) == BB) {
4145           new UnreachableInst(TI->getContext(), TI);
4146           TI->eraseFromParent();
4147           Changed = true;
4148         }
4149       } else {
4150         if (BI->getSuccessor(0) == BB) {
4151           Builder.CreateBr(BI->getSuccessor(1));
4152           EraseTerminatorInstAndDCECond(BI);
4153         } else if (BI->getSuccessor(1) == BB) {
4154           Builder.CreateBr(BI->getSuccessor(0));
4155           EraseTerminatorInstAndDCECond(BI);
4156           Changed = true;
4157         }
4158       }
4159     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4160       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4161            ++i)
4162         if (i.getCaseSuccessor() == BB) {
4163           BB->removePredecessor(SI->getParent());
4164           SI->removeCase(i);
4165           --i;
4166           --e;
4167           Changed = true;
4168         }
4169     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4170       if (II->getUnwindDest() == BB) {
4171         removeUnwindEdge(TI->getParent());
4172         Changed = true;
4173       }
4174     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4175       if (CSI->getUnwindDest() == BB) {
4176         removeUnwindEdge(TI->getParent());
4177         Changed = true;
4178         continue;
4179       }
4180 
4181       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4182                                              E = CSI->handler_end();
4183            I != E; ++I) {
4184         if (*I == BB) {
4185           CSI->removeHandler(I);
4186           --I;
4187           --E;
4188           Changed = true;
4189         }
4190       }
4191       if (CSI->getNumHandlers() == 0) {
4192         BasicBlock *CatchSwitchBB = CSI->getParent();
4193         if (CSI->hasUnwindDest()) {
4194           // Redirect preds to the unwind dest
4195           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4196         } else {
4197           // Rewrite all preds to unwind to caller (or from invoke to call).
4198           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4199           for (BasicBlock *EHPred : EHPreds)
4200             removeUnwindEdge(EHPred);
4201         }
4202         // The catchswitch is no longer reachable.
4203         new UnreachableInst(CSI->getContext(), CSI);
4204         CSI->eraseFromParent();
4205         Changed = true;
4206       }
4207     } else if (isa<CleanupReturnInst>(TI)) {
4208       new UnreachableInst(TI->getContext(), TI);
4209       TI->eraseFromParent();
4210       Changed = true;
4211     }
4212   }
4213 
4214   // If this block is now dead, remove it.
4215   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4216     // We know there are no successors, so just nuke the block.
4217     BB->eraseFromParent();
4218     if (LoopHeaders)
4219       LoopHeaders->erase(BB);
4220     return true;
4221   }
4222 
4223   return Changed;
4224 }
4225 
4226 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4227   assert(Cases.size() >= 1);
4228 
4229   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4230   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4231     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4232       return false;
4233   }
4234   return true;
4235 }
4236 
4237 /// Turn a switch with two reachable destinations into an integer range
4238 /// comparison and branch.
4239 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4240   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4241 
4242   bool HasDefault =
4243       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4244 
4245   // Partition the cases into two sets with different destinations.
4246   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4247   BasicBlock *DestB = nullptr;
4248   SmallVector<ConstantInt *, 16> CasesA;
4249   SmallVector<ConstantInt *, 16> CasesB;
4250 
4251   for (SwitchInst::CaseIt I : SI->cases()) {
4252     BasicBlock *Dest = I.getCaseSuccessor();
4253     if (!DestA)
4254       DestA = Dest;
4255     if (Dest == DestA) {
4256       CasesA.push_back(I.getCaseValue());
4257       continue;
4258     }
4259     if (!DestB)
4260       DestB = Dest;
4261     if (Dest == DestB) {
4262       CasesB.push_back(I.getCaseValue());
4263       continue;
4264     }
4265     return false; // More than two destinations.
4266   }
4267 
4268   assert(DestA && DestB &&
4269          "Single-destination switch should have been folded.");
4270   assert(DestA != DestB);
4271   assert(DestB != SI->getDefaultDest());
4272   assert(!CasesB.empty() && "There must be non-default cases.");
4273   assert(!CasesA.empty() || HasDefault);
4274 
4275   // Figure out if one of the sets of cases form a contiguous range.
4276   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4277   BasicBlock *ContiguousDest = nullptr;
4278   BasicBlock *OtherDest = nullptr;
4279   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4280     ContiguousCases = &CasesA;
4281     ContiguousDest = DestA;
4282     OtherDest = DestB;
4283   } else if (CasesAreContiguous(CasesB)) {
4284     ContiguousCases = &CasesB;
4285     ContiguousDest = DestB;
4286     OtherDest = DestA;
4287   } else
4288     return false;
4289 
4290   // Start building the compare and branch.
4291 
4292   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4293   Constant *NumCases =
4294       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4295 
4296   Value *Sub = SI->getCondition();
4297   if (!Offset->isNullValue())
4298     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4299 
4300   Value *Cmp;
4301   // If NumCases overflowed, then all possible values jump to the successor.
4302   if (NumCases->isNullValue() && !ContiguousCases->empty())
4303     Cmp = ConstantInt::getTrue(SI->getContext());
4304   else
4305     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4306   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4307 
4308   // Update weight for the newly-created conditional branch.
4309   if (HasBranchWeights(SI)) {
4310     SmallVector<uint64_t, 8> Weights;
4311     GetBranchWeights(SI, Weights);
4312     if (Weights.size() == 1 + SI->getNumCases()) {
4313       uint64_t TrueWeight = 0;
4314       uint64_t FalseWeight = 0;
4315       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4316         if (SI->getSuccessor(I) == ContiguousDest)
4317           TrueWeight += Weights[I];
4318         else
4319           FalseWeight += Weights[I];
4320       }
4321       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4322         TrueWeight /= 2;
4323         FalseWeight /= 2;
4324       }
4325       NewBI->setMetadata(LLVMContext::MD_prof,
4326                          MDBuilder(SI->getContext())
4327                              .createBranchWeights((uint32_t)TrueWeight,
4328                                                   (uint32_t)FalseWeight));
4329     }
4330   }
4331 
4332   // Prune obsolete incoming values off the successors' PHI nodes.
4333   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4334     unsigned PreviousEdges = ContiguousCases->size();
4335     if (ContiguousDest == SI->getDefaultDest())
4336       ++PreviousEdges;
4337     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4338       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4339   }
4340   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4341     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4342     if (OtherDest == SI->getDefaultDest())
4343       ++PreviousEdges;
4344     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4345       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4346   }
4347 
4348   // Drop the switch.
4349   SI->eraseFromParent();
4350 
4351   return true;
4352 }
4353 
4354 /// Compute masked bits for the condition of a switch
4355 /// and use it to remove dead cases.
4356 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4357                                      const DataLayout &DL) {
4358   Value *Cond = SI->getCondition();
4359   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4360   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4361   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4362 
4363   // We can also eliminate cases by determining that their values are outside of
4364   // the limited range of the condition based on how many significant (non-sign)
4365   // bits are in the condition value.
4366   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4367   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4368 
4369   // Gather dead cases.
4370   SmallVector<ConstantInt *, 8> DeadCases;
4371   for (auto &Case : SI->cases()) {
4372     APInt CaseVal = Case.getCaseValue()->getValue();
4373     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4374         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4375       DeadCases.push_back(Case.getCaseValue());
4376       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4377     }
4378   }
4379 
4380   // If we can prove that the cases must cover all possible values, the
4381   // default destination becomes dead and we can remove it.  If we know some
4382   // of the bits in the value, we can use that to more precisely compute the
4383   // number of possible unique case values.
4384   bool HasDefault =
4385       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4386   const unsigned NumUnknownBits =
4387       Bits - (KnownZero | KnownOne).countPopulation();
4388   assert(NumUnknownBits <= Bits);
4389   if (HasDefault && DeadCases.empty() &&
4390       NumUnknownBits < 64 /* avoid overflow */ &&
4391       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4392     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4393     BasicBlock *NewDefault =
4394         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4395     SI->setDefaultDest(&*NewDefault);
4396     SplitBlock(&*NewDefault, &NewDefault->front());
4397     auto *OldTI = NewDefault->getTerminator();
4398     new UnreachableInst(SI->getContext(), OldTI);
4399     EraseTerminatorInstAndDCECond(OldTI);
4400     return true;
4401   }
4402 
4403   SmallVector<uint64_t, 8> Weights;
4404   bool HasWeight = HasBranchWeights(SI);
4405   if (HasWeight) {
4406     GetBranchWeights(SI, Weights);
4407     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4408   }
4409 
4410   // Remove dead cases from the switch.
4411   for (ConstantInt *DeadCase : DeadCases) {
4412     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4413     assert(Case != SI->case_default() &&
4414            "Case was not found. Probably mistake in DeadCases forming.");
4415     if (HasWeight) {
4416       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4417       Weights.pop_back();
4418     }
4419 
4420     // Prune unused values from PHI nodes.
4421     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4422     SI->removeCase(Case);
4423   }
4424   if (HasWeight && Weights.size() >= 2) {
4425     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4426     SI->setMetadata(LLVMContext::MD_prof,
4427                     MDBuilder(SI->getParent()->getContext())
4428                         .createBranchWeights(MDWeights));
4429   }
4430 
4431   return !DeadCases.empty();
4432 }
4433 
4434 /// If BB would be eligible for simplification by
4435 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4436 /// by an unconditional branch), look at the phi node for BB in the successor
4437 /// block and see if the incoming value is equal to CaseValue. If so, return
4438 /// the phi node, and set PhiIndex to BB's index in the phi node.
4439 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4440                                               BasicBlock *BB, int *PhiIndex) {
4441   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4442     return nullptr; // BB must be empty to be a candidate for simplification.
4443   if (!BB->getSinglePredecessor())
4444     return nullptr; // BB must be dominated by the switch.
4445 
4446   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4447   if (!Branch || !Branch->isUnconditional())
4448     return nullptr; // Terminator must be unconditional branch.
4449 
4450   BasicBlock *Succ = Branch->getSuccessor(0);
4451 
4452   BasicBlock::iterator I = Succ->begin();
4453   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4454     int Idx = PHI->getBasicBlockIndex(BB);
4455     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4456 
4457     Value *InValue = PHI->getIncomingValue(Idx);
4458     if (InValue != CaseValue)
4459       continue;
4460 
4461     *PhiIndex = Idx;
4462     return PHI;
4463   }
4464 
4465   return nullptr;
4466 }
4467 
4468 /// Try to forward the condition of a switch instruction to a phi node
4469 /// dominated by the switch, if that would mean that some of the destination
4470 /// blocks of the switch can be folded away.
4471 /// Returns true if a change is made.
4472 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4473   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4474   ForwardingNodesMap ForwardingNodes;
4475 
4476   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4477        ++I) {
4478     ConstantInt *CaseValue = I.getCaseValue();
4479     BasicBlock *CaseDest = I.getCaseSuccessor();
4480 
4481     int PhiIndex;
4482     PHINode *PHI =
4483         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4484     if (!PHI)
4485       continue;
4486 
4487     ForwardingNodes[PHI].push_back(PhiIndex);
4488   }
4489 
4490   bool Changed = false;
4491 
4492   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4493                                     E = ForwardingNodes.end();
4494        I != E; ++I) {
4495     PHINode *Phi = I->first;
4496     SmallVectorImpl<int> &Indexes = I->second;
4497 
4498     if (Indexes.size() < 2)
4499       continue;
4500 
4501     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4502       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4503     Changed = true;
4504   }
4505 
4506   return Changed;
4507 }
4508 
4509 /// Return true if the backend will be able to handle
4510 /// initializing an array of constants like C.
4511 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4512   if (C->isThreadDependent())
4513     return false;
4514   if (C->isDLLImportDependent())
4515     return false;
4516 
4517   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4518       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4519       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4520     return false;
4521 
4522   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4523     if (!CE->isGEPWithNoNotionalOverIndexing())
4524       return false;
4525     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4526       return false;
4527   }
4528 
4529   if (!TTI.shouldBuildLookupTablesForConstant(C))
4530     return false;
4531 
4532   return true;
4533 }
4534 
4535 /// If V is a Constant, return it. Otherwise, try to look up
4536 /// its constant value in ConstantPool, returning 0 if it's not there.
4537 static Constant *
4538 LookupConstant(Value *V,
4539                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4540   if (Constant *C = dyn_cast<Constant>(V))
4541     return C;
4542   return ConstantPool.lookup(V);
4543 }
4544 
4545 /// Try to fold instruction I into a constant. This works for
4546 /// simple instructions such as binary operations where both operands are
4547 /// constant or can be replaced by constants from the ConstantPool. Returns the
4548 /// resulting constant on success, 0 otherwise.
4549 static Constant *
4550 ConstantFold(Instruction *I, const DataLayout &DL,
4551              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4552   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4553     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4554     if (!A)
4555       return nullptr;
4556     if (A->isAllOnesValue())
4557       return LookupConstant(Select->getTrueValue(), ConstantPool);
4558     if (A->isNullValue())
4559       return LookupConstant(Select->getFalseValue(), ConstantPool);
4560     return nullptr;
4561   }
4562 
4563   SmallVector<Constant *, 4> COps;
4564   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4565     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4566       COps.push_back(A);
4567     else
4568       return nullptr;
4569   }
4570 
4571   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4572     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4573                                            COps[1], DL);
4574   }
4575 
4576   return ConstantFoldInstOperands(I, COps, DL);
4577 }
4578 
4579 /// Try to determine the resulting constant values in phi nodes
4580 /// at the common destination basic block, *CommonDest, for one of the case
4581 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4582 /// case), of a switch instruction SI.
4583 static bool
4584 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4585                BasicBlock **CommonDest,
4586                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4587                const DataLayout &DL, const TargetTransformInfo &TTI) {
4588   // The block from which we enter the common destination.
4589   BasicBlock *Pred = SI->getParent();
4590 
4591   // If CaseDest is empty except for some side-effect free instructions through
4592   // which we can constant-propagate the CaseVal, continue to its successor.
4593   SmallDenseMap<Value *, Constant *> ConstantPool;
4594   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4595   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4596        ++I) {
4597     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4598       // If the terminator is a simple branch, continue to the next block.
4599       if (T->getNumSuccessors() != 1 || T->isExceptional())
4600         return false;
4601       Pred = CaseDest;
4602       CaseDest = T->getSuccessor(0);
4603     } else if (isa<DbgInfoIntrinsic>(I)) {
4604       // Skip debug intrinsic.
4605       continue;
4606     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4607       // Instruction is side-effect free and constant.
4608 
4609       // If the instruction has uses outside this block or a phi node slot for
4610       // the block, it is not safe to bypass the instruction since it would then
4611       // no longer dominate all its uses.
4612       for (auto &Use : I->uses()) {
4613         User *User = Use.getUser();
4614         if (Instruction *I = dyn_cast<Instruction>(User))
4615           if (I->getParent() == CaseDest)
4616             continue;
4617         if (PHINode *Phi = dyn_cast<PHINode>(User))
4618           if (Phi->getIncomingBlock(Use) == CaseDest)
4619             continue;
4620         return false;
4621       }
4622 
4623       ConstantPool.insert(std::make_pair(&*I, C));
4624     } else {
4625       break;
4626     }
4627   }
4628 
4629   // If we did not have a CommonDest before, use the current one.
4630   if (!*CommonDest)
4631     *CommonDest = CaseDest;
4632   // If the destination isn't the common one, abort.
4633   if (CaseDest != *CommonDest)
4634     return false;
4635 
4636   // Get the values for this case from phi nodes in the destination block.
4637   BasicBlock::iterator I = (*CommonDest)->begin();
4638   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4639     int Idx = PHI->getBasicBlockIndex(Pred);
4640     if (Idx == -1)
4641       continue;
4642 
4643     Constant *ConstVal =
4644         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4645     if (!ConstVal)
4646       return false;
4647 
4648     // Be conservative about which kinds of constants we support.
4649     if (!ValidLookupTableConstant(ConstVal, TTI))
4650       return false;
4651 
4652     Res.push_back(std::make_pair(PHI, ConstVal));
4653   }
4654 
4655   return Res.size() > 0;
4656 }
4657 
4658 // Helper function used to add CaseVal to the list of cases that generate
4659 // Result.
4660 static void MapCaseToResult(ConstantInt *CaseVal,
4661                             SwitchCaseResultVectorTy &UniqueResults,
4662                             Constant *Result) {
4663   for (auto &I : UniqueResults) {
4664     if (I.first == Result) {
4665       I.second.push_back(CaseVal);
4666       return;
4667     }
4668   }
4669   UniqueResults.push_back(
4670       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4671 }
4672 
4673 // Helper function that initializes a map containing
4674 // results for the PHI node of the common destination block for a switch
4675 // instruction. Returns false if multiple PHI nodes have been found or if
4676 // there is not a common destination block for the switch.
4677 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4678                                   BasicBlock *&CommonDest,
4679                                   SwitchCaseResultVectorTy &UniqueResults,
4680                                   Constant *&DefaultResult,
4681                                   const DataLayout &DL,
4682                                   const TargetTransformInfo &TTI) {
4683   for (auto &I : SI->cases()) {
4684     ConstantInt *CaseVal = I.getCaseValue();
4685 
4686     // Resulting value at phi nodes for this case value.
4687     SwitchCaseResultsTy Results;
4688     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4689                         DL, TTI))
4690       return false;
4691 
4692     // Only one value per case is permitted
4693     if (Results.size() > 1)
4694       return false;
4695     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4696 
4697     // Check the PHI consistency.
4698     if (!PHI)
4699       PHI = Results[0].first;
4700     else if (PHI != Results[0].first)
4701       return false;
4702   }
4703   // Find the default result value.
4704   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4705   BasicBlock *DefaultDest = SI->getDefaultDest();
4706   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4707                  DL, TTI);
4708   // If the default value is not found abort unless the default destination
4709   // is unreachable.
4710   DefaultResult =
4711       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4712   if ((!DefaultResult &&
4713        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4714     return false;
4715 
4716   return true;
4717 }
4718 
4719 // Helper function that checks if it is possible to transform a switch with only
4720 // two cases (or two cases + default) that produces a result into a select.
4721 // Example:
4722 // switch (a) {
4723 //   case 10:                %0 = icmp eq i32 %a, 10
4724 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4725 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4726 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4727 //   default:
4728 //     return 4;
4729 // }
4730 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4731                                    Constant *DefaultResult, Value *Condition,
4732                                    IRBuilder<> &Builder) {
4733   assert(ResultVector.size() == 2 &&
4734          "We should have exactly two unique results at this point");
4735   // If we are selecting between only two cases transform into a simple
4736   // select or a two-way select if default is possible.
4737   if (ResultVector[0].second.size() == 1 &&
4738       ResultVector[1].second.size() == 1) {
4739     ConstantInt *const FirstCase = ResultVector[0].second[0];
4740     ConstantInt *const SecondCase = ResultVector[1].second[0];
4741 
4742     bool DefaultCanTrigger = DefaultResult;
4743     Value *SelectValue = ResultVector[1].first;
4744     if (DefaultCanTrigger) {
4745       Value *const ValueCompare =
4746           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4747       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4748                                          DefaultResult, "switch.select");
4749     }
4750     Value *const ValueCompare =
4751         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4752     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4753                                 SelectValue, "switch.select");
4754   }
4755 
4756   return nullptr;
4757 }
4758 
4759 // Helper function to cleanup a switch instruction that has been converted into
4760 // a select, fixing up PHI nodes and basic blocks.
4761 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4762                                               Value *SelectValue,
4763                                               IRBuilder<> &Builder) {
4764   BasicBlock *SelectBB = SI->getParent();
4765   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4766     PHI->removeIncomingValue(SelectBB);
4767   PHI->addIncoming(SelectValue, SelectBB);
4768 
4769   Builder.CreateBr(PHI->getParent());
4770 
4771   // Remove the switch.
4772   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4773     BasicBlock *Succ = SI->getSuccessor(i);
4774 
4775     if (Succ == PHI->getParent())
4776       continue;
4777     Succ->removePredecessor(SelectBB);
4778   }
4779   SI->eraseFromParent();
4780 }
4781 
4782 /// If the switch is only used to initialize one or more
4783 /// phi nodes in a common successor block with only two different
4784 /// constant values, replace the switch with select.
4785 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4786                            AssumptionCache *AC, const DataLayout &DL,
4787                            const TargetTransformInfo &TTI) {
4788   Value *const Cond = SI->getCondition();
4789   PHINode *PHI = nullptr;
4790   BasicBlock *CommonDest = nullptr;
4791   Constant *DefaultResult;
4792   SwitchCaseResultVectorTy UniqueResults;
4793   // Collect all the cases that will deliver the same value from the switch.
4794   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4795                              DL, TTI))
4796     return false;
4797   // Selects choose between maximum two values.
4798   if (UniqueResults.size() != 2)
4799     return false;
4800   assert(PHI != nullptr && "PHI for value select not found");
4801 
4802   Builder.SetInsertPoint(SI);
4803   Value *SelectValue =
4804       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4805   if (SelectValue) {
4806     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4807     return true;
4808   }
4809   // The switch couldn't be converted into a select.
4810   return false;
4811 }
4812 
4813 namespace {
4814 
4815 /// This class represents a lookup table that can be used to replace a switch.
4816 class SwitchLookupTable {
4817 public:
4818   /// Create a lookup table to use as a switch replacement with the contents
4819   /// of Values, using DefaultValue to fill any holes in the table.
4820   SwitchLookupTable(
4821       Module &M, uint64_t TableSize, ConstantInt *Offset,
4822       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4823       Constant *DefaultValue, const DataLayout &DL);
4824 
4825   /// Build instructions with Builder to retrieve the value at
4826   /// the position given by Index in the lookup table.
4827   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4828 
4829   /// Return true if a table with TableSize elements of
4830   /// type ElementType would fit in a target-legal register.
4831   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4832                                  Type *ElementType);
4833 
4834 private:
4835   // Depending on the contents of the table, it can be represented in
4836   // different ways.
4837   enum {
4838     // For tables where each element contains the same value, we just have to
4839     // store that single value and return it for each lookup.
4840     SingleValueKind,
4841 
4842     // For tables where there is a linear relationship between table index
4843     // and values. We calculate the result with a simple multiplication
4844     // and addition instead of a table lookup.
4845     LinearMapKind,
4846 
4847     // For small tables with integer elements, we can pack them into a bitmap
4848     // that fits into a target-legal register. Values are retrieved by
4849     // shift and mask operations.
4850     BitMapKind,
4851 
4852     // The table is stored as an array of values. Values are retrieved by load
4853     // instructions from the table.
4854     ArrayKind
4855   } Kind;
4856 
4857   // For SingleValueKind, this is the single value.
4858   Constant *SingleValue;
4859 
4860   // For BitMapKind, this is the bitmap.
4861   ConstantInt *BitMap;
4862   IntegerType *BitMapElementTy;
4863 
4864   // For LinearMapKind, these are the constants used to derive the value.
4865   ConstantInt *LinearOffset;
4866   ConstantInt *LinearMultiplier;
4867 
4868   // For ArrayKind, this is the array.
4869   GlobalVariable *Array;
4870 };
4871 
4872 } // end anonymous namespace
4873 
4874 SwitchLookupTable::SwitchLookupTable(
4875     Module &M, uint64_t TableSize, ConstantInt *Offset,
4876     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4877     Constant *DefaultValue, const DataLayout &DL)
4878     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4879       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4880   assert(Values.size() && "Can't build lookup table without values!");
4881   assert(TableSize >= Values.size() && "Can't fit values in table!");
4882 
4883   // If all values in the table are equal, this is that value.
4884   SingleValue = Values.begin()->second;
4885 
4886   Type *ValueType = Values.begin()->second->getType();
4887 
4888   // Build up the table contents.
4889   SmallVector<Constant *, 64> TableContents(TableSize);
4890   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4891     ConstantInt *CaseVal = Values[I].first;
4892     Constant *CaseRes = Values[I].second;
4893     assert(CaseRes->getType() == ValueType);
4894 
4895     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4896     TableContents[Idx] = CaseRes;
4897 
4898     if (CaseRes != SingleValue)
4899       SingleValue = nullptr;
4900   }
4901 
4902   // Fill in any holes in the table with the default result.
4903   if (Values.size() < TableSize) {
4904     assert(DefaultValue &&
4905            "Need a default value to fill the lookup table holes.");
4906     assert(DefaultValue->getType() == ValueType);
4907     for (uint64_t I = 0; I < TableSize; ++I) {
4908       if (!TableContents[I])
4909         TableContents[I] = DefaultValue;
4910     }
4911 
4912     if (DefaultValue != SingleValue)
4913       SingleValue = nullptr;
4914   }
4915 
4916   // If each element in the table contains the same value, we only need to store
4917   // that single value.
4918   if (SingleValue) {
4919     Kind = SingleValueKind;
4920     return;
4921   }
4922 
4923   // Check if we can derive the value with a linear transformation from the
4924   // table index.
4925   if (isa<IntegerType>(ValueType)) {
4926     bool LinearMappingPossible = true;
4927     APInt PrevVal;
4928     APInt DistToPrev;
4929     assert(TableSize >= 2 && "Should be a SingleValue table.");
4930     // Check if there is the same distance between two consecutive values.
4931     for (uint64_t I = 0; I < TableSize; ++I) {
4932       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4933       if (!ConstVal) {
4934         // This is an undef. We could deal with it, but undefs in lookup tables
4935         // are very seldom. It's probably not worth the additional complexity.
4936         LinearMappingPossible = false;
4937         break;
4938       }
4939       APInt Val = ConstVal->getValue();
4940       if (I != 0) {
4941         APInt Dist = Val - PrevVal;
4942         if (I == 1) {
4943           DistToPrev = Dist;
4944         } else if (Dist != DistToPrev) {
4945           LinearMappingPossible = false;
4946           break;
4947         }
4948       }
4949       PrevVal = Val;
4950     }
4951     if (LinearMappingPossible) {
4952       LinearOffset = cast<ConstantInt>(TableContents[0]);
4953       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4954       Kind = LinearMapKind;
4955       ++NumLinearMaps;
4956       return;
4957     }
4958   }
4959 
4960   // If the type is integer and the table fits in a register, build a bitmap.
4961   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4962     IntegerType *IT = cast<IntegerType>(ValueType);
4963     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4964     for (uint64_t I = TableSize; I > 0; --I) {
4965       TableInt <<= IT->getBitWidth();
4966       // Insert values into the bitmap. Undef values are set to zero.
4967       if (!isa<UndefValue>(TableContents[I - 1])) {
4968         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4969         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4970       }
4971     }
4972     BitMap = ConstantInt::get(M.getContext(), TableInt);
4973     BitMapElementTy = IT;
4974     Kind = BitMapKind;
4975     ++NumBitMaps;
4976     return;
4977   }
4978 
4979   // Store the table in an array.
4980   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4981   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4982 
4983   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4984                              GlobalVariable::PrivateLinkage, Initializer,
4985                              "switch.table");
4986   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4987   Kind = ArrayKind;
4988 }
4989 
4990 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4991   switch (Kind) {
4992   case SingleValueKind:
4993     return SingleValue;
4994   case LinearMapKind: {
4995     // Derive the result value from the input value.
4996     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4997                                           false, "switch.idx.cast");
4998     if (!LinearMultiplier->isOne())
4999       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5000     if (!LinearOffset->isZero())
5001       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5002     return Result;
5003   }
5004   case BitMapKind: {
5005     // Type of the bitmap (e.g. i59).
5006     IntegerType *MapTy = BitMap->getType();
5007 
5008     // Cast Index to the same type as the bitmap.
5009     // Note: The Index is <= the number of elements in the table, so
5010     // truncating it to the width of the bitmask is safe.
5011     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5012 
5013     // Multiply the shift amount by the element width.
5014     ShiftAmt = Builder.CreateMul(
5015         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5016         "switch.shiftamt");
5017 
5018     // Shift down.
5019     Value *DownShifted =
5020         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5021     // Mask off.
5022     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5023   }
5024   case ArrayKind: {
5025     // Make sure the table index will not overflow when treated as signed.
5026     IntegerType *IT = cast<IntegerType>(Index->getType());
5027     uint64_t TableSize =
5028         Array->getInitializer()->getType()->getArrayNumElements();
5029     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5030       Index = Builder.CreateZExt(
5031           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5032           "switch.tableidx.zext");
5033 
5034     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5035     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5036                                            GEPIndices, "switch.gep");
5037     return Builder.CreateLoad(GEP, "switch.load");
5038   }
5039   }
5040   llvm_unreachable("Unknown lookup table kind!");
5041 }
5042 
5043 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5044                                            uint64_t TableSize,
5045                                            Type *ElementType) {
5046   auto *IT = dyn_cast<IntegerType>(ElementType);
5047   if (!IT)
5048     return false;
5049   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5050   // are <= 15, we could try to narrow the type.
5051 
5052   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5053   if (TableSize >= UINT_MAX / IT->getBitWidth())
5054     return false;
5055   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5056 }
5057 
5058 /// Determine whether a lookup table should be built for this switch, based on
5059 /// the number of cases, size of the table, and the types of the results.
5060 static bool
5061 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5062                        const TargetTransformInfo &TTI, const DataLayout &DL,
5063                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5064   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5065     return false; // TableSize overflowed, or mul below might overflow.
5066 
5067   bool AllTablesFitInRegister = true;
5068   bool HasIllegalType = false;
5069   for (const auto &I : ResultTypes) {
5070     Type *Ty = I.second;
5071 
5072     // Saturate this flag to true.
5073     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5074 
5075     // Saturate this flag to false.
5076     AllTablesFitInRegister =
5077         AllTablesFitInRegister &&
5078         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5079 
5080     // If both flags saturate, we're done. NOTE: This *only* works with
5081     // saturating flags, and all flags have to saturate first due to the
5082     // non-deterministic behavior of iterating over a dense map.
5083     if (HasIllegalType && !AllTablesFitInRegister)
5084       break;
5085   }
5086 
5087   // If each table would fit in a register, we should build it anyway.
5088   if (AllTablesFitInRegister)
5089     return true;
5090 
5091   // Don't build a table that doesn't fit in-register if it has illegal types.
5092   if (HasIllegalType)
5093     return false;
5094 
5095   // The table density should be at least 40%. This is the same criterion as for
5096   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5097   // FIXME: Find the best cut-off.
5098   return SI->getNumCases() * 10 >= TableSize * 4;
5099 }
5100 
5101 /// Try to reuse the switch table index compare. Following pattern:
5102 /// \code
5103 ///     if (idx < tablesize)
5104 ///        r = table[idx]; // table does not contain default_value
5105 ///     else
5106 ///        r = default_value;
5107 ///     if (r != default_value)
5108 ///        ...
5109 /// \endcode
5110 /// Is optimized to:
5111 /// \code
5112 ///     cond = idx < tablesize;
5113 ///     if (cond)
5114 ///        r = table[idx];
5115 ///     else
5116 ///        r = default_value;
5117 ///     if (cond)
5118 ///        ...
5119 /// \endcode
5120 /// Jump threading will then eliminate the second if(cond).
5121 static void reuseTableCompare(
5122     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5123     Constant *DefaultValue,
5124     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5125 
5126   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5127   if (!CmpInst)
5128     return;
5129 
5130   // We require that the compare is in the same block as the phi so that jump
5131   // threading can do its work afterwards.
5132   if (CmpInst->getParent() != PhiBlock)
5133     return;
5134 
5135   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5136   if (!CmpOp1)
5137     return;
5138 
5139   Value *RangeCmp = RangeCheckBranch->getCondition();
5140   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5141   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5142 
5143   // Check if the compare with the default value is constant true or false.
5144   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5145                                                  DefaultValue, CmpOp1, true);
5146   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5147     return;
5148 
5149   // Check if the compare with the case values is distinct from the default
5150   // compare result.
5151   for (auto ValuePair : Values) {
5152     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5153                                                 ValuePair.second, CmpOp1, true);
5154     if (!CaseConst || CaseConst == DefaultConst)
5155       return;
5156     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5157            "Expect true or false as compare result.");
5158   }
5159 
5160   // Check if the branch instruction dominates the phi node. It's a simple
5161   // dominance check, but sufficient for our needs.
5162   // Although this check is invariant in the calling loops, it's better to do it
5163   // at this late stage. Practically we do it at most once for a switch.
5164   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5165   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5166     BasicBlock *Pred = *PI;
5167     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5168       return;
5169   }
5170 
5171   if (DefaultConst == FalseConst) {
5172     // The compare yields the same result. We can replace it.
5173     CmpInst->replaceAllUsesWith(RangeCmp);
5174     ++NumTableCmpReuses;
5175   } else {
5176     // The compare yields the same result, just inverted. We can replace it.
5177     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5178         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5179         RangeCheckBranch);
5180     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5181     ++NumTableCmpReuses;
5182   }
5183 }
5184 
5185 /// If the switch is only used to initialize one or more phi nodes in a common
5186 /// successor block with different constant values, replace the switch with
5187 /// lookup tables.
5188 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5189                                 const DataLayout &DL,
5190                                 const TargetTransformInfo &TTI) {
5191   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5192 
5193   // Only build lookup table when we have a target that supports it.
5194   if (!TTI.shouldBuildLookupTables())
5195     return false;
5196 
5197   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5198   // split off a dense part and build a lookup table for that.
5199 
5200   // FIXME: This creates arrays of GEPs to constant strings, which means each
5201   // GEP needs a runtime relocation in PIC code. We should just build one big
5202   // string and lookup indices into that.
5203 
5204   // Ignore switches with less than three cases. Lookup tables will not make
5205   // them
5206   // faster, so we don't analyze them.
5207   if (SI->getNumCases() < 3)
5208     return false;
5209 
5210   // Figure out the corresponding result for each case value and phi node in the
5211   // common destination, as well as the min and max case values.
5212   assert(SI->case_begin() != SI->case_end());
5213   SwitchInst::CaseIt CI = SI->case_begin();
5214   ConstantInt *MinCaseVal = CI.getCaseValue();
5215   ConstantInt *MaxCaseVal = CI.getCaseValue();
5216 
5217   BasicBlock *CommonDest = nullptr;
5218   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5219   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5220   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5221   SmallDenseMap<PHINode *, Type *> ResultTypes;
5222   SmallVector<PHINode *, 4> PHIs;
5223 
5224   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5225     ConstantInt *CaseVal = CI.getCaseValue();
5226     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5227       MinCaseVal = CaseVal;
5228     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5229       MaxCaseVal = CaseVal;
5230 
5231     // Resulting value at phi nodes for this case value.
5232     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5233     ResultsTy Results;
5234     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5235                         Results, DL, TTI))
5236       return false;
5237 
5238     // Append the result from this case to the list for each phi.
5239     for (const auto &I : Results) {
5240       PHINode *PHI = I.first;
5241       Constant *Value = I.second;
5242       if (!ResultLists.count(PHI))
5243         PHIs.push_back(PHI);
5244       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5245     }
5246   }
5247 
5248   // Keep track of the result types.
5249   for (PHINode *PHI : PHIs) {
5250     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5251   }
5252 
5253   uint64_t NumResults = ResultLists[PHIs[0]].size();
5254   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5255   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5256   bool TableHasHoles = (NumResults < TableSize);
5257 
5258   // If the table has holes, we need a constant result for the default case
5259   // or a bitmask that fits in a register.
5260   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5261   bool HasDefaultResults =
5262       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5263                      DefaultResultsList, DL, TTI);
5264 
5265   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5266   if (NeedMask) {
5267     // As an extra penalty for the validity test we require more cases.
5268     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5269       return false;
5270     if (!DL.fitsInLegalInteger(TableSize))
5271       return false;
5272   }
5273 
5274   for (const auto &I : DefaultResultsList) {
5275     PHINode *PHI = I.first;
5276     Constant *Result = I.second;
5277     DefaultResults[PHI] = Result;
5278   }
5279 
5280   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5281     return false;
5282 
5283   // Create the BB that does the lookups.
5284   Module &Mod = *CommonDest->getParent()->getParent();
5285   BasicBlock *LookupBB = BasicBlock::Create(
5286       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5287 
5288   // Compute the table index value.
5289   Builder.SetInsertPoint(SI);
5290   Value *TableIndex =
5291       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5292 
5293   // Compute the maximum table size representable by the integer type we are
5294   // switching upon.
5295   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5296   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5297   assert(MaxTableSize >= TableSize &&
5298          "It is impossible for a switch to have more entries than the max "
5299          "representable value of its input integer type's size.");
5300 
5301   // If the default destination is unreachable, or if the lookup table covers
5302   // all values of the conditional variable, branch directly to the lookup table
5303   // BB. Otherwise, check that the condition is within the case range.
5304   const bool DefaultIsReachable =
5305       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5306   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5307   BranchInst *RangeCheckBranch = nullptr;
5308 
5309   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5310     Builder.CreateBr(LookupBB);
5311     // Note: We call removeProdecessor later since we need to be able to get the
5312     // PHI value for the default case in case we're using a bit mask.
5313   } else {
5314     Value *Cmp = Builder.CreateICmpULT(
5315         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5316     RangeCheckBranch =
5317         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5318   }
5319 
5320   // Populate the BB that does the lookups.
5321   Builder.SetInsertPoint(LookupBB);
5322 
5323   if (NeedMask) {
5324     // Before doing the lookup we do the hole check.
5325     // The LookupBB is therefore re-purposed to do the hole check
5326     // and we create a new LookupBB.
5327     BasicBlock *MaskBB = LookupBB;
5328     MaskBB->setName("switch.hole_check");
5329     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5330                                   CommonDest->getParent(), CommonDest);
5331 
5332     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5333     // unnecessary illegal types.
5334     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5335     APInt MaskInt(TableSizePowOf2, 0);
5336     APInt One(TableSizePowOf2, 1);
5337     // Build bitmask; fill in a 1 bit for every case.
5338     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5339     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5340       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5341                          .getLimitedValue();
5342       MaskInt |= One << Idx;
5343     }
5344     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5345 
5346     // Get the TableIndex'th bit of the bitmask.
5347     // If this bit is 0 (meaning hole) jump to the default destination,
5348     // else continue with table lookup.
5349     IntegerType *MapTy = TableMask->getType();
5350     Value *MaskIndex =
5351         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5352     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5353     Value *LoBit = Builder.CreateTrunc(
5354         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5355     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5356 
5357     Builder.SetInsertPoint(LookupBB);
5358     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5359   }
5360 
5361   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5362     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5363     // do not delete PHINodes here.
5364     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5365                                             /*DontDeleteUselessPHIs=*/true);
5366   }
5367 
5368   bool ReturnedEarly = false;
5369   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5370     PHINode *PHI = PHIs[I];
5371     const ResultListTy &ResultList = ResultLists[PHI];
5372 
5373     // If using a bitmask, use any value to fill the lookup table holes.
5374     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5375     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5376 
5377     Value *Result = Table.BuildLookup(TableIndex, Builder);
5378 
5379     // If the result is used to return immediately from the function, we want to
5380     // do that right here.
5381     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5382         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5383       Builder.CreateRet(Result);
5384       ReturnedEarly = true;
5385       break;
5386     }
5387 
5388     // Do a small peephole optimization: re-use the switch table compare if
5389     // possible.
5390     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5391       BasicBlock *PhiBlock = PHI->getParent();
5392       // Search for compare instructions which use the phi.
5393       for (auto *User : PHI->users()) {
5394         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5395       }
5396     }
5397 
5398     PHI->addIncoming(Result, LookupBB);
5399   }
5400 
5401   if (!ReturnedEarly)
5402     Builder.CreateBr(CommonDest);
5403 
5404   // Remove the switch.
5405   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5406     BasicBlock *Succ = SI->getSuccessor(i);
5407 
5408     if (Succ == SI->getDefaultDest())
5409       continue;
5410     Succ->removePredecessor(SI->getParent());
5411   }
5412   SI->eraseFromParent();
5413 
5414   ++NumLookupTables;
5415   if (NeedMask)
5416     ++NumLookupTablesHoles;
5417   return true;
5418 }
5419 
5420 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5421   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5422   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5423   uint64_t Range = Diff + 1;
5424   uint64_t NumCases = Values.size();
5425   // 40% is the default density for building a jump table in optsize/minsize mode.
5426   uint64_t MinDensity = 40;
5427 
5428   return NumCases * 100 >= Range * MinDensity;
5429 }
5430 
5431 // Try and transform a switch that has "holes" in it to a contiguous sequence
5432 // of cases.
5433 //
5434 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5435 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5436 //
5437 // This converts a sparse switch into a dense switch which allows better
5438 // lowering and could also allow transforming into a lookup table.
5439 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5440                               const DataLayout &DL,
5441                               const TargetTransformInfo &TTI) {
5442   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5443   if (CondTy->getIntegerBitWidth() > 64 ||
5444       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5445     return false;
5446   // Only bother with this optimization if there are more than 3 switch cases;
5447   // SDAG will only bother creating jump tables for 4 or more cases.
5448   if (SI->getNumCases() < 4)
5449     return false;
5450 
5451   // This transform is agnostic to the signedness of the input or case values. We
5452   // can treat the case values as signed or unsigned. We can optimize more common
5453   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5454   // as signed.
5455   SmallVector<int64_t,4> Values;
5456   for (auto &C : SI->cases())
5457     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5458   std::sort(Values.begin(), Values.end());
5459 
5460   // If the switch is already dense, there's nothing useful to do here.
5461   if (isSwitchDense(Values))
5462     return false;
5463 
5464   // First, transform the values such that they start at zero and ascend.
5465   int64_t Base = Values[0];
5466   for (auto &V : Values)
5467     V -= Base;
5468 
5469   // Now we have signed numbers that have been shifted so that, given enough
5470   // precision, there are no negative values. Since the rest of the transform
5471   // is bitwise only, we switch now to an unsigned representation.
5472   uint64_t GCD = 0;
5473   for (auto &V : Values)
5474     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5475 
5476   // This transform can be done speculatively because it is so cheap - it results
5477   // in a single rotate operation being inserted. This can only happen if the
5478   // factor extracted is a power of 2.
5479   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5480   // inverse of GCD and then perform this transform.
5481   // FIXME: It's possible that optimizing a switch on powers of two might also
5482   // be beneficial - flag values are often powers of two and we could use a CLZ
5483   // as the key function.
5484   if (GCD <= 1 || !isPowerOf2_64(GCD))
5485     // No common divisor found or too expensive to compute key function.
5486     return false;
5487 
5488   unsigned Shift = Log2_64(GCD);
5489   for (auto &V : Values)
5490     V = (int64_t)((uint64_t)V >> Shift);
5491 
5492   if (!isSwitchDense(Values))
5493     // Transform didn't create a dense switch.
5494     return false;
5495 
5496   // The obvious transform is to shift the switch condition right and emit a
5497   // check that the condition actually cleanly divided by GCD, i.e.
5498   //   C & (1 << Shift - 1) == 0
5499   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5500   //
5501   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5502   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5503   // are nonzero then the switch condition will be very large and will hit the
5504   // default case.
5505 
5506   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5507   Builder.SetInsertPoint(SI);
5508   auto *ShiftC = ConstantInt::get(Ty, Shift);
5509   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5510   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5511   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5512   auto *Rot = Builder.CreateOr(LShr, Shl);
5513   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5514 
5515   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5516        ++C) {
5517     auto *Orig = C.getCaseValue();
5518     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5519     C.setValue(
5520         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5521   }
5522   return true;
5523 }
5524 
5525 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5526   BasicBlock *BB = SI->getParent();
5527 
5528   if (isValueEqualityComparison(SI)) {
5529     // If we only have one predecessor, and if it is a branch on this value,
5530     // see if that predecessor totally determines the outcome of this switch.
5531     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5532       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5533         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5534 
5535     Value *Cond = SI->getCondition();
5536     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5537       if (SimplifySwitchOnSelect(SI, Select))
5538         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5539 
5540     // If the block only contains the switch, see if we can fold the block
5541     // away into any preds.
5542     BasicBlock::iterator BBI = BB->begin();
5543     // Ignore dbg intrinsics.
5544     while (isa<DbgInfoIntrinsic>(BBI))
5545       ++BBI;
5546     if (SI == &*BBI)
5547       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5548         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5549   }
5550 
5551   // Try to transform the switch into an icmp and a branch.
5552   if (TurnSwitchRangeIntoICmp(SI, Builder))
5553     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5554 
5555   // Remove unreachable cases.
5556   if (EliminateDeadSwitchCases(SI, AC, DL))
5557     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5558 
5559   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5560     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5561 
5562   if (ForwardSwitchConditionToPHI(SI))
5563     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5564 
5565   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5566     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5567 
5568   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5569     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5570 
5571   return false;
5572 }
5573 
5574 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5575   BasicBlock *BB = IBI->getParent();
5576   bool Changed = false;
5577 
5578   // Eliminate redundant destinations.
5579   SmallPtrSet<Value *, 8> Succs;
5580   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5581     BasicBlock *Dest = IBI->getDestination(i);
5582     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5583       Dest->removePredecessor(BB);
5584       IBI->removeDestination(i);
5585       --i;
5586       --e;
5587       Changed = true;
5588     }
5589   }
5590 
5591   if (IBI->getNumDestinations() == 0) {
5592     // If the indirectbr has no successors, change it to unreachable.
5593     new UnreachableInst(IBI->getContext(), IBI);
5594     EraseTerminatorInstAndDCECond(IBI);
5595     return true;
5596   }
5597 
5598   if (IBI->getNumDestinations() == 1) {
5599     // If the indirectbr has one successor, change it to a direct branch.
5600     BranchInst::Create(IBI->getDestination(0), IBI);
5601     EraseTerminatorInstAndDCECond(IBI);
5602     return true;
5603   }
5604 
5605   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5606     if (SimplifyIndirectBrOnSelect(IBI, SI))
5607       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5608   }
5609   return Changed;
5610 }
5611 
5612 /// Given an block with only a single landing pad and a unconditional branch
5613 /// try to find another basic block which this one can be merged with.  This
5614 /// handles cases where we have multiple invokes with unique landing pads, but
5615 /// a shared handler.
5616 ///
5617 /// We specifically choose to not worry about merging non-empty blocks
5618 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5619 /// practice, the optimizer produces empty landing pad blocks quite frequently
5620 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5621 /// sinking in this file)
5622 ///
5623 /// This is primarily a code size optimization.  We need to avoid performing
5624 /// any transform which might inhibit optimization (such as our ability to
5625 /// specialize a particular handler via tail commoning).  We do this by not
5626 /// merging any blocks which require us to introduce a phi.  Since the same
5627 /// values are flowing through both blocks, we don't loose any ability to
5628 /// specialize.  If anything, we make such specialization more likely.
5629 ///
5630 /// TODO - This transformation could remove entries from a phi in the target
5631 /// block when the inputs in the phi are the same for the two blocks being
5632 /// merged.  In some cases, this could result in removal of the PHI entirely.
5633 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5634                                  BasicBlock *BB) {
5635   auto Succ = BB->getUniqueSuccessor();
5636   assert(Succ);
5637   // If there's a phi in the successor block, we'd likely have to introduce
5638   // a phi into the merged landing pad block.
5639   if (isa<PHINode>(*Succ->begin()))
5640     return false;
5641 
5642   for (BasicBlock *OtherPred : predecessors(Succ)) {
5643     if (BB == OtherPred)
5644       continue;
5645     BasicBlock::iterator I = OtherPred->begin();
5646     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5647     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5648       continue;
5649     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5650     }
5651     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5652     if (!BI2 || !BI2->isIdenticalTo(BI))
5653       continue;
5654 
5655     // We've found an identical block.  Update our predecessors to take that
5656     // path instead and make ourselves dead.
5657     SmallSet<BasicBlock *, 16> Preds;
5658     Preds.insert(pred_begin(BB), pred_end(BB));
5659     for (BasicBlock *Pred : Preds) {
5660       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5661       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5662              "unexpected successor");
5663       II->setUnwindDest(OtherPred);
5664     }
5665 
5666     // The debug info in OtherPred doesn't cover the merged control flow that
5667     // used to go through BB.  We need to delete it or update it.
5668     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5669       Instruction &Inst = *I;
5670       I++;
5671       if (isa<DbgInfoIntrinsic>(Inst))
5672         Inst.eraseFromParent();
5673     }
5674 
5675     SmallSet<BasicBlock *, 16> Succs;
5676     Succs.insert(succ_begin(BB), succ_end(BB));
5677     for (BasicBlock *Succ : Succs) {
5678       Succ->removePredecessor(BB);
5679     }
5680 
5681     IRBuilder<> Builder(BI);
5682     Builder.CreateUnreachable();
5683     BI->eraseFromParent();
5684     return true;
5685   }
5686   return false;
5687 }
5688 
5689 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5690                                           IRBuilder<> &Builder) {
5691   BasicBlock *BB = BI->getParent();
5692 
5693   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5694     return true;
5695 
5696   // If the Terminator is the only non-phi instruction, simplify the block.
5697   // if LoopHeader is provided, check if the block is a loop header
5698   // (This is for early invocations before loop simplify and vectorization
5699   // to keep canonical loop forms for nested loops.
5700   // These blocks can be eliminated when the pass is invoked later
5701   // in the back-end.)
5702   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5703   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5704       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5705       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5706     return true;
5707 
5708   // If the only instruction in the block is a seteq/setne comparison
5709   // against a constant, try to simplify the block.
5710   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5711     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5712       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5713         ;
5714       if (I->isTerminator() &&
5715           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5716                                                 BonusInstThreshold, AC))
5717         return true;
5718     }
5719 
5720   // See if we can merge an empty landing pad block with another which is
5721   // equivalent.
5722   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5723     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5724     }
5725     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5726       return true;
5727   }
5728 
5729   // If this basic block is ONLY a compare and a branch, and if a predecessor
5730   // branches to us and our successor, fold the comparison into the
5731   // predecessor and use logical operations to update the incoming value
5732   // for PHI nodes in common successor.
5733   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5734     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5735   return false;
5736 }
5737 
5738 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5739   BasicBlock *PredPred = nullptr;
5740   for (auto *P : predecessors(BB)) {
5741     BasicBlock *PPred = P->getSinglePredecessor();
5742     if (!PPred || (PredPred && PredPred != PPred))
5743       return nullptr;
5744     PredPred = PPred;
5745   }
5746   return PredPred;
5747 }
5748 
5749 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5750   BasicBlock *BB = BI->getParent();
5751 
5752   // Conditional branch
5753   if (isValueEqualityComparison(BI)) {
5754     // If we only have one predecessor, and if it is a branch on this value,
5755     // see if that predecessor totally determines the outcome of this
5756     // switch.
5757     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5758       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5759         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5760 
5761     // This block must be empty, except for the setcond inst, if it exists.
5762     // Ignore dbg intrinsics.
5763     BasicBlock::iterator I = BB->begin();
5764     // Ignore dbg intrinsics.
5765     while (isa<DbgInfoIntrinsic>(I))
5766       ++I;
5767     if (&*I == BI) {
5768       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5769         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5770     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5771       ++I;
5772       // Ignore dbg intrinsics.
5773       while (isa<DbgInfoIntrinsic>(I))
5774         ++I;
5775       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5776         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5777     }
5778   }
5779 
5780   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5781   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5782     return true;
5783 
5784   // If this basic block has a single dominating predecessor block and the
5785   // dominating block's condition implies BI's condition, we know the direction
5786   // of the BI branch.
5787   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5788     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5789     if (PBI && PBI->isConditional() &&
5790         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5791         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5792       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5793       Optional<bool> Implication = isImpliedCondition(
5794           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5795       if (Implication) {
5796         // Turn this into a branch on constant.
5797         auto *OldCond = BI->getCondition();
5798         ConstantInt *CI = *Implication
5799                               ? ConstantInt::getTrue(BB->getContext())
5800                               : ConstantInt::getFalse(BB->getContext());
5801         BI->setCondition(CI);
5802         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5803         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5804       }
5805     }
5806   }
5807 
5808   // If this basic block is ONLY a compare and a branch, and if a predecessor
5809   // branches to us and one of our successors, fold the comparison into the
5810   // predecessor and use logical operations to pick the right destination.
5811   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5812     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5813 
5814   // We have a conditional branch to two blocks that are only reachable
5815   // from BI.  We know that the condbr dominates the two blocks, so see if
5816   // there is any identical code in the "then" and "else" blocks.  If so, we
5817   // can hoist it up to the branching block.
5818   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5819     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5820       if (HoistThenElseCodeToIf(BI, TTI))
5821         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5822     } else {
5823       // If Successor #1 has multiple preds, we may be able to conditionally
5824       // execute Successor #0 if it branches to Successor #1.
5825       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5826       if (Succ0TI->getNumSuccessors() == 1 &&
5827           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5828         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5829           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5830     }
5831   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5832     // If Successor #0 has multiple preds, we may be able to conditionally
5833     // execute Successor #1 if it branches to Successor #0.
5834     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5835     if (Succ1TI->getNumSuccessors() == 1 &&
5836         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5837       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5838         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5839   }
5840 
5841   // If this is a branch on a phi node in the current block, thread control
5842   // through this block if any PHI node entries are constants.
5843   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5844     if (PN->getParent() == BI->getParent())
5845       if (FoldCondBranchOnPHI(BI, DL, AC))
5846         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5847 
5848   // Scan predecessor blocks for conditional branches.
5849   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5850     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5851       if (PBI != BI && PBI->isConditional())
5852         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5853           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5854 
5855   // Look for diamond patterns.
5856   if (MergeCondStores)
5857     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5858       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5859         if (PBI != BI && PBI->isConditional())
5860           if (mergeConditionalStores(PBI, BI))
5861             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5862 
5863   return false;
5864 }
5865 
5866 /// Check if passing a value to an instruction will cause undefined behavior.
5867 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5868   Constant *C = dyn_cast<Constant>(V);
5869   if (!C)
5870     return false;
5871 
5872   if (I->use_empty())
5873     return false;
5874 
5875   if (C->isNullValue() || isa<UndefValue>(C)) {
5876     // Only look at the first use, avoid hurting compile time with long uselists
5877     User *Use = *I->user_begin();
5878 
5879     // Now make sure that there are no instructions in between that can alter
5880     // control flow (eg. calls)
5881     for (BasicBlock::iterator
5882              i = ++BasicBlock::iterator(I),
5883              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5884          i != UI; ++i)
5885       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5886         return false;
5887 
5888     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5889     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5890       if (GEP->getPointerOperand() == I)
5891         return passingValueIsAlwaysUndefined(V, GEP);
5892 
5893     // Look through bitcasts.
5894     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5895       return passingValueIsAlwaysUndefined(V, BC);
5896 
5897     // Load from null is undefined.
5898     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5899       if (!LI->isVolatile())
5900         return LI->getPointerAddressSpace() == 0;
5901 
5902     // Store to null is undefined.
5903     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5904       if (!SI->isVolatile())
5905         return SI->getPointerAddressSpace() == 0 &&
5906                SI->getPointerOperand() == I;
5907 
5908     // A call to null is undefined.
5909     if (auto CS = CallSite(Use))
5910       return CS.getCalledValue() == I;
5911   }
5912   return false;
5913 }
5914 
5915 /// If BB has an incoming value that will always trigger undefined behavior
5916 /// (eg. null pointer dereference), remove the branch leading here.
5917 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5918   for (BasicBlock::iterator i = BB->begin();
5919        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5920     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5921       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5922         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5923         IRBuilder<> Builder(T);
5924         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5925           BB->removePredecessor(PHI->getIncomingBlock(i));
5926           // Turn uncoditional branches into unreachables and remove the dead
5927           // destination from conditional branches.
5928           if (BI->isUnconditional())
5929             Builder.CreateUnreachable();
5930           else
5931             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5932                                                        : BI->getSuccessor(0));
5933           BI->eraseFromParent();
5934           return true;
5935         }
5936         // TODO: SwitchInst.
5937       }
5938 
5939   return false;
5940 }
5941 
5942 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5943   bool Changed = false;
5944 
5945   assert(BB && BB->getParent() && "Block not embedded in function!");
5946   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5947 
5948   // Remove basic blocks that have no predecessors (except the entry block)...
5949   // or that just have themself as a predecessor.  These are unreachable.
5950   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5951       BB->getSinglePredecessor() == BB) {
5952     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5953     DeleteDeadBlock(BB);
5954     return true;
5955   }
5956 
5957   // Check to see if we can constant propagate this terminator instruction
5958   // away...
5959   Changed |= ConstantFoldTerminator(BB, true);
5960 
5961   // Check for and eliminate duplicate PHI nodes in this block.
5962   Changed |= EliminateDuplicatePHINodes(BB);
5963 
5964   // Check for and remove branches that will always cause undefined behavior.
5965   Changed |= removeUndefIntroducingPredecessor(BB);
5966 
5967   // Merge basic blocks into their predecessor if there is only one distinct
5968   // pred, and if there is only one distinct successor of the predecessor, and
5969   // if there are no PHI nodes.
5970   //
5971   if (MergeBlockIntoPredecessor(BB))
5972     return true;
5973 
5974   IRBuilder<> Builder(BB);
5975 
5976   // If there is a trivial two-entry PHI node in this basic block, and we can
5977   // eliminate it, do so now.
5978   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5979     if (PN->getNumIncomingValues() == 2)
5980       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5981 
5982   Builder.SetInsertPoint(BB->getTerminator());
5983   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5984     if (BI->isUnconditional()) {
5985       if (SimplifyUncondBranch(BI, Builder))
5986         return true;
5987     } else {
5988       if (SimplifyCondBranch(BI, Builder))
5989         return true;
5990     }
5991   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5992     if (SimplifyReturn(RI, Builder))
5993       return true;
5994   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5995     if (SimplifyResume(RI, Builder))
5996       return true;
5997   } else if (CleanupReturnInst *RI =
5998                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5999     if (SimplifyCleanupReturn(RI))
6000       return true;
6001   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6002     if (SimplifySwitch(SI, Builder))
6003       return true;
6004   } else if (UnreachableInst *UI =
6005                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
6006     if (SimplifyUnreachable(UI))
6007       return true;
6008   } else if (IndirectBrInst *IBI =
6009                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6010     if (SimplifyIndirectBr(IBI))
6011       return true;
6012   }
6013 
6014   return Changed;
6015 }
6016 
6017 /// This function is used to do simplification of a CFG.
6018 /// For example, it adjusts branches to branches to eliminate the extra hop,
6019 /// eliminates unreachable basic blocks, and does other "peephole" optimization
6020 /// of the CFG.  It returns true if a modification was made.
6021 ///
6022 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6023                        unsigned BonusInstThreshold, AssumptionCache *AC,
6024                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6025   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6026                         BonusInstThreshold, AC, LoopHeaders)
6027       .run(BB);
6028 }
6029