1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 bool Resimplify; 178 179 Value *isValueEqualityComparison(Instruction *TI); 180 BasicBlock *GetValueEqualityComparisonCases( 181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 183 BasicBlock *Pred, 184 IRBuilder<> &Builder); 185 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 186 IRBuilder<> &Builder); 187 188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 190 bool SimplifySingleResume(ResumeInst *RI); 191 bool SimplifyCommonResume(ResumeInst *RI); 192 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 193 bool SimplifyUnreachable(UnreachableInst *UI); 194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 195 bool SimplifyIndirectBr(IndirectBrInst *IBI); 196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 198 199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 200 IRBuilder<> &Builder); 201 202 public: 203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 205 const SimplifyCFGOptions &Opts) 206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 207 208 bool run(BasicBlock *BB); 209 bool simplifyOnce(BasicBlock *BB); 210 211 // Helper to set Resimplify and return change indication. 212 bool requestResimplify() { 213 Resimplify = true; 214 return true; 215 } 216 }; 217 218 } // end anonymous namespace 219 220 /// Return true if it is safe to merge these two 221 /// terminator instructions together. 222 static bool 223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 225 if (SI1 == SI2) 226 return false; // Can't merge with self! 227 228 // It is not safe to merge these two switch instructions if they have a common 229 // successor, and if that successor has a PHI node, and if *that* PHI node has 230 // conflicting incoming values from the two switch blocks. 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 235 bool Fail = false; 236 for (BasicBlock *Succ : successors(SI2BB)) 237 if (SI1Succs.count(Succ)) 238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 239 PHINode *PN = cast<PHINode>(BBI); 240 if (PN->getIncomingValueForBlock(SI1BB) != 241 PN->getIncomingValueForBlock(SI2BB)) { 242 if (FailBlocks) 243 FailBlocks->insert(Succ); 244 Fail = true; 245 } 246 } 247 248 return !Fail; 249 } 250 251 /// Return true if it is safe and profitable to merge these two terminator 252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 253 /// store all PHI nodes in common successors. 254 static bool 255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 256 Instruction *Cond, 257 SmallVectorImpl<PHINode *> &PhiNodes) { 258 if (SI1 == SI2) 259 return false; // Can't merge with self! 260 assert(SI1->isUnconditional() && SI2->isConditional()); 261 262 // We fold the unconditional branch if we can easily update all PHI nodes in 263 // common successors: 264 // 1> We have a constant incoming value for the conditional branch; 265 // 2> We have "Cond" as the incoming value for the unconditional branch; 266 // 3> SI2->getCondition() and Cond have same operands. 267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 268 if (!Ci2) 269 return false; 270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 271 Cond->getOperand(1) == Ci2->getOperand(1)) && 272 !(Cond->getOperand(0) == Ci2->getOperand(1) && 273 Cond->getOperand(1) == Ci2->getOperand(0))) 274 return false; 275 276 BasicBlock *SI1BB = SI1->getParent(); 277 BasicBlock *SI2BB = SI2->getParent(); 278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 279 for (BasicBlock *Succ : successors(SI2BB)) 280 if (SI1Succs.count(Succ)) 281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 282 PHINode *PN = cast<PHINode>(BBI); 283 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 285 return false; 286 PhiNodes.push_back(PN); 287 } 288 return true; 289 } 290 291 /// Update PHI nodes in Succ to indicate that there will now be entries in it 292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 293 /// will be the same as those coming in from ExistPred, an existing predecessor 294 /// of Succ. 295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 296 BasicBlock *ExistPred, 297 MemorySSAUpdater *MSSAU = nullptr) { 298 for (PHINode &PN : Succ->phis()) 299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 300 if (MSSAU) 301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 303 } 304 305 /// Compute an abstract "cost" of speculating the given instruction, 306 /// which is assumed to be safe to speculate. TCC_Free means cheap, 307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 308 /// expensive. 309 static unsigned ComputeSpeculationCost(const User *I, 310 const TargetTransformInfo &TTI) { 311 assert(isSafeToSpeculativelyExecute(I) && 312 "Instruction is not safe to speculatively execute!"); 313 return TTI.getUserCost(I); 314 } 315 316 /// If we have a merge point of an "if condition" as accepted above, 317 /// return true if the specified value dominates the block. We 318 /// don't handle the true generality of domination here, just a special case 319 /// which works well enough for us. 320 /// 321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 322 /// see if V (which must be an instruction) and its recursive operands 323 /// that do not dominate BB have a combined cost lower than CostRemaining and 324 /// are non-trapping. If both are true, the instruction is inserted into the 325 /// set and true is returned. 326 /// 327 /// The cost for most non-trapping instructions is defined as 1 except for 328 /// Select whose cost is 2. 329 /// 330 /// After this function returns, CostRemaining is decreased by the cost of 331 /// V plus its non-dominating operands. If that cost is greater than 332 /// CostRemaining, false is returned and CostRemaining is undefined. 333 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 334 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 335 unsigned &CostRemaining, 336 const TargetTransformInfo &TTI, 337 unsigned Depth = 0) { 338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 339 // so limit the recursion depth. 340 // TODO: While this recursion limit does prevent pathological behavior, it 341 // would be better to track visited instructions to avoid cycles. 342 if (Depth == MaxSpeculationDepth) 343 return false; 344 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (!I) { 347 // Non-instructions all dominate instructions, but not all constantexprs 348 // can be executed unconditionally. 349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 350 if (C->canTrap()) 351 return false; 352 return true; 353 } 354 BasicBlock *PBB = I->getParent(); 355 356 // We don't want to allow weird loops that might have the "if condition" in 357 // the bottom of this block. 358 if (PBB == BB) 359 return false; 360 361 // If this instruction is defined in a block that contains an unconditional 362 // branch to BB, then it must be in the 'conditional' part of the "if 363 // statement". If not, it definitely dominates the region. 364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 366 return true; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts.count(I)) 370 return true; 371 372 // Okay, it looks like the instruction IS in the "condition". Check to 373 // see if it's a cheap instruction to unconditionally compute, and if it 374 // only uses stuff defined outside of the condition. If so, hoist it out. 375 if (!isSafeToSpeculativelyExecute(I)) 376 return false; 377 378 unsigned Cost = ComputeSpeculationCost(I, TTI); 379 380 // Allow exactly one instruction to be speculated regardless of its cost 381 // (as long as it is safe to do so). 382 // This is intended to flatten the CFG even if the instruction is a division 383 // or other expensive operation. The speculation of an expensive instruction 384 // is expected to be undone in CodeGenPrepare if the speculation has not 385 // enabled further IR optimizations. 386 if (Cost > CostRemaining && 387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 388 return false; 389 390 // Avoid unsigned wrap. 391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 392 393 // Okay, we can only really hoist these out if their operands do 394 // not take us over the cost threshold. 395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 397 Depth + 1)) 398 return false; 399 // Okay, it's safe to do this! Remember this instruction. 400 AggressiveInsts.insert(I); 401 return true; 402 } 403 404 /// Extract ConstantInt from value, looking through IntToPtr 405 /// and PointerNullValue. Return NULL if value is not a constant int. 406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 407 // Normal constant int. 408 ConstantInt *CI = dyn_cast<ConstantInt>(V); 409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 410 return CI; 411 412 // This is some kind of pointer constant. Turn it into a pointer-sized 413 // ConstantInt if possible. 414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 415 416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 417 if (isa<ConstantPointerNull>(V)) 418 return ConstantInt::get(PtrTy, 0); 419 420 // IntToPtr const int. 421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 422 if (CE->getOpcode() == Instruction::IntToPtr) 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 424 // The constant is very likely to have the right type already. 425 if (CI->getType() == PtrTy) 426 return CI; 427 else 428 return cast<ConstantInt>( 429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 430 } 431 return nullptr; 432 } 433 434 namespace { 435 436 /// Given a chain of or (||) or and (&&) comparison of a value against a 437 /// constant, this will try to recover the information required for a switch 438 /// structure. 439 /// It will depth-first traverse the chain of comparison, seeking for patterns 440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 441 /// representing the different cases for the switch. 442 /// Note that if the chain is composed of '||' it will build the set of elements 443 /// that matches the comparisons (i.e. any of this value validate the chain) 444 /// while for a chain of '&&' it will build the set elements that make the test 445 /// fail. 446 struct ConstantComparesGatherer { 447 const DataLayout &DL; 448 449 /// Value found for the switch comparison 450 Value *CompValue = nullptr; 451 452 /// Extra clause to be checked before the switch 453 Value *Extra = nullptr; 454 455 /// Set of integers to match in switch 456 SmallVector<ConstantInt *, 8> Vals; 457 458 /// Number of comparisons matched in the and/or chain 459 unsigned UsedICmps = 0; 460 461 /// Construct and compute the result for the comparison instruction Cond 462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 463 gather(Cond); 464 } 465 466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 467 ConstantComparesGatherer & 468 operator=(const ConstantComparesGatherer &) = delete; 469 470 private: 471 /// Try to set the current value used for the comparison, it succeeds only if 472 /// it wasn't set before or if the new value is the same as the old one 473 bool setValueOnce(Value *NewVal) { 474 if (CompValue && CompValue != NewVal) 475 return false; 476 CompValue = NewVal; 477 return (CompValue != nullptr); 478 } 479 480 /// Try to match Instruction "I" as a comparison against a constant and 481 /// populates the array Vals with the set of values that match (or do not 482 /// match depending on isEQ). 483 /// Return false on failure. On success, the Value the comparison matched 484 /// against is placed in CompValue. 485 /// If CompValue is already set, the function is expected to fail if a match 486 /// is found but the value compared to is different. 487 bool matchInstruction(Instruction *I, bool isEQ) { 488 // If this is an icmp against a constant, handle this as one of the cases. 489 ICmpInst *ICI; 490 ConstantInt *C; 491 if (!((ICI = dyn_cast<ICmpInst>(I)) && 492 (C = GetConstantInt(I->getOperand(1), DL)))) { 493 return false; 494 } 495 496 Value *RHSVal; 497 const APInt *RHSC; 498 499 // Pattern match a special case 500 // (x & ~2^z) == y --> x == y || x == y|2^z 501 // This undoes a transformation done by instcombine to fuse 2 compares. 502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 503 // It's a little bit hard to see why the following transformations are 504 // correct. Here is a CVC3 program to verify them for 64-bit values: 505 506 /* 507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 508 x : BITVECTOR(64); 509 y : BITVECTOR(64); 510 z : BITVECTOR(64); 511 mask : BITVECTOR(64) = BVSHL(ONE, z); 512 QUERY( (y & ~mask = y) => 513 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 514 ); 515 QUERY( (y | mask = y) => 516 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 517 ); 518 */ 519 520 // Please note that each pattern must be a dual implication (<--> or 521 // iff). One directional implication can create spurious matches. If the 522 // implication is only one-way, an unsatisfiable condition on the left 523 // side can imply a satisfiable condition on the right side. Dual 524 // implication ensures that satisfiable conditions are transformed to 525 // other satisfiable conditions and unsatisfiable conditions are 526 // transformed to other unsatisfiable conditions. 527 528 // Here is a concrete example of a unsatisfiable condition on the left 529 // implying a satisfiable condition on the right: 530 // 531 // mask = (1 << z) 532 // (x & ~mask) == y --> (x == y || x == (y | mask)) 533 // 534 // Substituting y = 3, z = 0 yields: 535 // (x & -2) == 3 --> (x == 3 || x == 2) 536 537 // Pattern match a special case: 538 /* 539 QUERY( (y & ~mask = y) => 540 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 541 ); 542 */ 543 if (match(ICI->getOperand(0), 544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 545 APInt Mask = ~*RHSC; 546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 547 // If we already have a value for the switch, it has to match! 548 if (!setValueOnce(RHSVal)) 549 return false; 550 551 Vals.push_back(C); 552 Vals.push_back( 553 ConstantInt::get(C->getContext(), 554 C->getValue() | Mask)); 555 UsedICmps++; 556 return true; 557 } 558 } 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = *RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back(ConstantInt::get(C->getContext(), 576 C->getValue() & ~Mask)); 577 UsedICmps++; 578 return true; 579 } 580 } 581 582 // If we already have a value for the switch, it has to match! 583 if (!setValueOnce(ICI->getOperand(0))) 584 return false; 585 586 UsedICmps++; 587 Vals.push_back(C); 588 return ICI->getOperand(0); 589 } 590 591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 593 ICI->getPredicate(), C->getValue()); 594 595 // Shift the range if the compare is fed by an add. This is the range 596 // compare idiom as emitted by instcombine. 597 Value *CandidateVal = I->getOperand(0); 598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 599 Span = Span.subtract(*RHSC); 600 CandidateVal = RHSVal; 601 } 602 603 // If this is an and/!= check, then we are looking to build the set of 604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 605 // x != 0 && x != 1. 606 if (!isEQ) 607 Span = Span.inverse(); 608 609 // If there are a ton of values, we don't want to make a ginormous switch. 610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 611 return false; 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(CandidateVal)) 616 return false; 617 618 // Add all values from the range to the set 619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 621 622 UsedICmps++; 623 return true; 624 } 625 626 /// Given a potentially 'or'd or 'and'd together collection of icmp 627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 628 /// the value being compared, and stick the list constants into the Vals 629 /// vector. 630 /// One "Extra" case is allowed to differ from the other. 631 void gather(Value *V) { 632 Instruction *I = dyn_cast<Instruction>(V); 633 bool isEQ = (I->getOpcode() == Instruction::Or); 634 635 // Keep a stack (SmallVector for efficiency) for depth-first traversal 636 SmallVector<Value *, 8> DFT; 637 SmallPtrSet<Value *, 8> Visited; 638 639 // Initialize 640 Visited.insert(V); 641 DFT.push_back(V); 642 643 while (!DFT.empty()) { 644 V = DFT.pop_back_val(); 645 646 if (Instruction *I = dyn_cast<Instruction>(V)) { 647 // If it is a || (or && depending on isEQ), process the operands. 648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 649 if (Visited.insert(I->getOperand(1)).second) 650 DFT.push_back(I->getOperand(1)); 651 if (Visited.insert(I->getOperand(0)).second) 652 DFT.push_back(I->getOperand(0)); 653 continue; 654 } 655 656 // Try to match the current instruction 657 if (matchInstruction(I, isEQ)) 658 // Match succeed, continue the loop 659 continue; 660 } 661 662 // One element of the sequence of || (or &&) could not be match as a 663 // comparison against the same value as the others. 664 // We allow only one "Extra" case to be checked before the switch 665 if (!Extra) { 666 Extra = V; 667 continue; 668 } 669 // Failed to parse a proper sequence, abort now 670 CompValue = nullptr; 671 break; 672 } 673 } 674 }; 675 676 } // end anonymous namespace 677 678 static void EraseTerminatorAndDCECond(Instruction *TI, 679 MemorySSAUpdater *MSSAU = nullptr) { 680 Instruction *Cond = nullptr; 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cond = dyn_cast<Instruction>(SI->getCondition()); 683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 684 if (BI->isConditional()) 685 Cond = dyn_cast<Instruction>(BI->getCondition()); 686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 687 Cond = dyn_cast<Instruction>(IBI->getAddress()); 688 } 689 690 TI->eraseFromParent(); 691 if (Cond) 692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 693 } 694 695 /// Return true if the specified terminator checks 696 /// to see if a value is equal to constant integer value. 697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 698 Value *CV = nullptr; 699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 700 // Do not permit merging of large switch instructions into their 701 // predecessors unless there is only one predecessor. 702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 703 CV = SI->getCondition(); 704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 705 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 708 CV = ICI->getOperand(0); 709 } 710 711 // Unwrap any lossless ptrtoint cast. 712 if (CV) { 713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 714 Value *Ptr = PTII->getPointerOperand(); 715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 716 CV = Ptr; 717 } 718 } 719 return CV; 720 } 721 722 /// Given a value comparison instruction, 723 /// decode all of the 'cases' that it represents and return the 'default' block. 724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 727 Cases.reserve(SI->getNumCases()); 728 for (auto Case : SI->cases()) 729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 730 Case.getCaseSuccessor())); 731 return SI->getDefaultDest(); 732 } 733 734 BranchInst *BI = cast<BranchInst>(TI); 735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 737 Cases.push_back(ValueEqualityComparisonCase( 738 GetConstantInt(ICI->getOperand(1), DL), Succ)); 739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 740 } 741 742 /// Given a vector of bb/value pairs, remove any entries 743 /// in the list that match the specified block. 744 static void 745 EliminateBlockCases(BasicBlock *BB, 746 std::vector<ValueEqualityComparisonCase> &Cases) { 747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 748 } 749 750 /// Return true if there are any keys in C1 that exist in C2 as well. 751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 752 std::vector<ValueEqualityComparisonCase> &C2) { 753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 754 755 // Make V1 be smaller than V2. 756 if (V1->size() > V2->size()) 757 std::swap(V1, V2); 758 759 if (V1->empty()) 760 return false; 761 if (V1->size() == 1) { 762 // Just scan V2. 763 ConstantInt *TheVal = (*V1)[0].Value; 764 for (unsigned i = 0, e = V2->size(); i != e; ++i) 765 if (TheVal == (*V2)[i].Value) 766 return true; 767 } 768 769 // Otherwise, just sort both lists and compare element by element. 770 array_pod_sort(V1->begin(), V1->end()); 771 array_pod_sort(V2->begin(), V2->end()); 772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 773 while (i1 != e1 && i2 != e2) { 774 if ((*V1)[i1].Value == (*V2)[i2].Value) 775 return true; 776 if ((*V1)[i1].Value < (*V2)[i2].Value) 777 ++i1; 778 else 779 ++i2; 780 } 781 return false; 782 } 783 784 // Set branch weights on SwitchInst. This sets the metadata if there is at 785 // least one non-zero weight. 786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 787 // Check that there is at least one non-zero weight. Otherwise, pass 788 // nullptr to setMetadata which will erase the existing metadata. 789 MDNode *N = nullptr; 790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 792 SI->setMetadata(LLVMContext::MD_prof, N); 793 } 794 795 // Similar to the above, but for branch and select instructions that take 796 // exactly 2 weights. 797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 798 uint32_t FalseWeight) { 799 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 800 // Check that there is at least one non-zero weight. Otherwise, pass 801 // nullptr to setMetadata which will erase the existing metadata. 802 MDNode *N = nullptr; 803 if (TrueWeight || FalseWeight) 804 N = MDBuilder(I->getParent()->getContext()) 805 .createBranchWeights(TrueWeight, FalseWeight); 806 I->setMetadata(LLVMContext::MD_prof, N); 807 } 808 809 /// If TI is known to be a terminator instruction and its block is known to 810 /// only have a single predecessor block, check to see if that predecessor is 811 /// also a value comparison with the same value, and if that comparison 812 /// determines the outcome of this comparison. If so, simplify TI. This does a 813 /// very limited form of jump threading. 814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 817 if (!PredVal) 818 return false; // Not a value comparison in predecessor. 819 820 Value *ThisVal = isValueEqualityComparison(TI); 821 assert(ThisVal && "This isn't a value comparison!!"); 822 if (ThisVal != PredVal) 823 return false; // Different predicates. 824 825 // TODO: Preserve branch weight metadata, similarly to how 826 // FoldValueComparisonIntoPredecessors preserves it. 827 828 // Find out information about when control will move from Pred to TI's block. 829 std::vector<ValueEqualityComparisonCase> PredCases; 830 BasicBlock *PredDef = 831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 833 834 // Find information about how control leaves this block. 835 std::vector<ValueEqualityComparisonCase> ThisCases; 836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 838 839 // If TI's block is the default block from Pred's comparison, potentially 840 // simplify TI based on this knowledge. 841 if (PredDef == TI->getParent()) { 842 // If we are here, we know that the value is none of those cases listed in 843 // PredCases. If there are any cases in ThisCases that are in PredCases, we 844 // can simplify TI. 845 if (!ValuesOverlap(PredCases, ThisCases)) 846 return false; 847 848 if (isa<BranchInst>(TI)) { 849 // Okay, one of the successors of this condbr is dead. Convert it to a 850 // uncond br. 851 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 852 // Insert the new branch. 853 Instruction *NI = Builder.CreateBr(ThisDef); 854 (void)NI; 855 856 // Remove PHI node entries for the dead edge. 857 ThisCases[0].Dest->removePredecessor(TI->getParent()); 858 859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 860 << "Through successor TI: " << *TI << "Leaving: " << *NI 861 << "\n"); 862 863 EraseTerminatorAndDCECond(TI); 864 return true; 865 } 866 867 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 868 // Okay, TI has cases that are statically dead, prune them away. 869 SmallPtrSet<Constant *, 16> DeadCases; 870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 871 DeadCases.insert(PredCases[i].Value); 872 873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 874 << "Through successor TI: " << *TI); 875 876 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 877 --i; 878 if (DeadCases.count(i->getCaseValue())) { 879 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 880 SI.removeCase(i); 881 } 882 } 883 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 884 return true; 885 } 886 887 // Otherwise, TI's block must correspond to some matched value. Find out 888 // which value (or set of values) this is. 889 ConstantInt *TIV = nullptr; 890 BasicBlock *TIBB = TI->getParent(); 891 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 892 if (PredCases[i].Dest == TIBB) { 893 if (TIV) 894 return false; // Cannot handle multiple values coming to this block. 895 TIV = PredCases[i].Value; 896 } 897 assert(TIV && "No edge from pred to succ?"); 898 899 // Okay, we found the one constant that our value can be if we get into TI's 900 // BB. Find out which successor will unconditionally be branched to. 901 BasicBlock *TheRealDest = nullptr; 902 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 903 if (ThisCases[i].Value == TIV) { 904 TheRealDest = ThisCases[i].Dest; 905 break; 906 } 907 908 // If not handled by any explicit cases, it is handled by the default case. 909 if (!TheRealDest) 910 TheRealDest = ThisDef; 911 912 // Remove PHI node entries for dead edges. 913 BasicBlock *CheckEdge = TheRealDest; 914 for (BasicBlock *Succ : successors(TIBB)) 915 if (Succ != CheckEdge) 916 Succ->removePredecessor(TIBB); 917 else 918 CheckEdge = nullptr; 919 920 // Insert the new branch. 921 Instruction *NI = Builder.CreateBr(TheRealDest); 922 (void)NI; 923 924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 925 << "Through successor TI: " << *TI << "Leaving: " << *NI 926 << "\n"); 927 928 EraseTerminatorAndDCECond(TI); 929 return true; 930 } 931 932 namespace { 933 934 /// This class implements a stable ordering of constant 935 /// integers that does not depend on their address. This is important for 936 /// applications that sort ConstantInt's to ensure uniqueness. 937 struct ConstantIntOrdering { 938 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 939 return LHS->getValue().ult(RHS->getValue()); 940 } 941 }; 942 943 } // end anonymous namespace 944 945 static int ConstantIntSortPredicate(ConstantInt *const *P1, 946 ConstantInt *const *P2) { 947 const ConstantInt *LHS = *P1; 948 const ConstantInt *RHS = *P2; 949 if (LHS == RHS) 950 return 0; 951 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 952 } 953 954 static inline bool HasBranchWeights(const Instruction *I) { 955 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 956 if (ProfMD && ProfMD->getOperand(0)) 957 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 958 return MDS->getString().equals("branch_weights"); 959 960 return false; 961 } 962 963 /// Get Weights of a given terminator, the default weight is at the front 964 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 965 /// metadata. 966 static void GetBranchWeights(Instruction *TI, 967 SmallVectorImpl<uint64_t> &Weights) { 968 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 969 assert(MD); 970 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 971 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 972 Weights.push_back(CI->getValue().getZExtValue()); 973 } 974 975 // If TI is a conditional eq, the default case is the false case, 976 // and the corresponding branch-weight data is at index 2. We swap the 977 // default weight to be the first entry. 978 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 979 assert(Weights.size() == 2); 980 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 981 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 982 std::swap(Weights.front(), Weights.back()); 983 } 984 } 985 986 /// Keep halving the weights until all can fit in uint32_t. 987 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 988 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 989 if (Max > UINT_MAX) { 990 unsigned Offset = 32 - countLeadingZeros(Max); 991 for (uint64_t &I : Weights) 992 I >>= Offset; 993 } 994 } 995 996 /// The specified terminator is a value equality comparison instruction 997 /// (either a switch or a branch on "X == c"). 998 /// See if any of the predecessors of the terminator block are value comparisons 999 /// on the same value. If so, and if safe to do so, fold them together. 1000 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1001 IRBuilder<> &Builder) { 1002 BasicBlock *BB = TI->getParent(); 1003 Value *CV = isValueEqualityComparison(TI); // CondVal 1004 assert(CV && "Not a comparison?"); 1005 bool Changed = false; 1006 1007 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1008 while (!Preds.empty()) { 1009 BasicBlock *Pred = Preds.pop_back_val(); 1010 1011 // See if the predecessor is a comparison with the same value. 1012 Instruction *PTI = Pred->getTerminator(); 1013 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1014 1015 if (PCV == CV && TI != PTI) { 1016 SmallSetVector<BasicBlock*, 4> FailBlocks; 1017 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1018 for (auto *Succ : FailBlocks) { 1019 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1020 return false; 1021 } 1022 } 1023 1024 // Figure out which 'cases' to copy from SI to PSI. 1025 std::vector<ValueEqualityComparisonCase> BBCases; 1026 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1027 1028 std::vector<ValueEqualityComparisonCase> PredCases; 1029 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1030 1031 // Based on whether the default edge from PTI goes to BB or not, fill in 1032 // PredCases and PredDefault with the new switch cases we would like to 1033 // build. 1034 SmallVector<BasicBlock *, 8> NewSuccessors; 1035 1036 // Update the branch weight metadata along the way 1037 SmallVector<uint64_t, 8> Weights; 1038 bool PredHasWeights = HasBranchWeights(PTI); 1039 bool SuccHasWeights = HasBranchWeights(TI); 1040 1041 if (PredHasWeights) { 1042 GetBranchWeights(PTI, Weights); 1043 // branch-weight metadata is inconsistent here. 1044 if (Weights.size() != 1 + PredCases.size()) 1045 PredHasWeights = SuccHasWeights = false; 1046 } else if (SuccHasWeights) 1047 // If there are no predecessor weights but there are successor weights, 1048 // populate Weights with 1, which will later be scaled to the sum of 1049 // successor's weights 1050 Weights.assign(1 + PredCases.size(), 1); 1051 1052 SmallVector<uint64_t, 8> SuccWeights; 1053 if (SuccHasWeights) { 1054 GetBranchWeights(TI, SuccWeights); 1055 // branch-weight metadata is inconsistent here. 1056 if (SuccWeights.size() != 1 + BBCases.size()) 1057 PredHasWeights = SuccHasWeights = false; 1058 } else if (PredHasWeights) 1059 SuccWeights.assign(1 + BBCases.size(), 1); 1060 1061 if (PredDefault == BB) { 1062 // If this is the default destination from PTI, only the edges in TI 1063 // that don't occur in PTI, or that branch to BB will be activated. 1064 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1065 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1066 if (PredCases[i].Dest != BB) 1067 PTIHandled.insert(PredCases[i].Value); 1068 else { 1069 // The default destination is BB, we don't need explicit targets. 1070 std::swap(PredCases[i], PredCases.back()); 1071 1072 if (PredHasWeights || SuccHasWeights) { 1073 // Increase weight for the default case. 1074 Weights[0] += Weights[i + 1]; 1075 std::swap(Weights[i + 1], Weights.back()); 1076 Weights.pop_back(); 1077 } 1078 1079 PredCases.pop_back(); 1080 --i; 1081 --e; 1082 } 1083 1084 // Reconstruct the new switch statement we will be building. 1085 if (PredDefault != BBDefault) { 1086 PredDefault->removePredecessor(Pred); 1087 PredDefault = BBDefault; 1088 NewSuccessors.push_back(BBDefault); 1089 } 1090 1091 unsigned CasesFromPred = Weights.size(); 1092 uint64_t ValidTotalSuccWeight = 0; 1093 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1094 if (!PTIHandled.count(BBCases[i].Value) && 1095 BBCases[i].Dest != BBDefault) { 1096 PredCases.push_back(BBCases[i]); 1097 NewSuccessors.push_back(BBCases[i].Dest); 1098 if (SuccHasWeights || PredHasWeights) { 1099 // The default weight is at index 0, so weight for the ith case 1100 // should be at index i+1. Scale the cases from successor by 1101 // PredDefaultWeight (Weights[0]). 1102 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1103 ValidTotalSuccWeight += SuccWeights[i + 1]; 1104 } 1105 } 1106 1107 if (SuccHasWeights || PredHasWeights) { 1108 ValidTotalSuccWeight += SuccWeights[0]; 1109 // Scale the cases from predecessor by ValidTotalSuccWeight. 1110 for (unsigned i = 1; i < CasesFromPred; ++i) 1111 Weights[i] *= ValidTotalSuccWeight; 1112 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1113 Weights[0] *= SuccWeights[0]; 1114 } 1115 } else { 1116 // If this is not the default destination from PSI, only the edges 1117 // in SI that occur in PSI with a destination of BB will be 1118 // activated. 1119 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1120 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1121 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1122 if (PredCases[i].Dest == BB) { 1123 PTIHandled.insert(PredCases[i].Value); 1124 1125 if (PredHasWeights || SuccHasWeights) { 1126 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1127 std::swap(Weights[i + 1], Weights.back()); 1128 Weights.pop_back(); 1129 } 1130 1131 std::swap(PredCases[i], PredCases.back()); 1132 PredCases.pop_back(); 1133 --i; 1134 --e; 1135 } 1136 1137 // Okay, now we know which constants were sent to BB from the 1138 // predecessor. Figure out where they will all go now. 1139 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1140 if (PTIHandled.count(BBCases[i].Value)) { 1141 // If this is one we are capable of getting... 1142 if (PredHasWeights || SuccHasWeights) 1143 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1144 PredCases.push_back(BBCases[i]); 1145 NewSuccessors.push_back(BBCases[i].Dest); 1146 PTIHandled.erase( 1147 BBCases[i].Value); // This constant is taken care of 1148 } 1149 1150 // If there are any constants vectored to BB that TI doesn't handle, 1151 // they must go to the default destination of TI. 1152 for (ConstantInt *I : PTIHandled) { 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[I]); 1155 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1156 NewSuccessors.push_back(BBDefault); 1157 } 1158 } 1159 1160 // Okay, at this point, we know which new successor Pred will get. Make 1161 // sure we update the number of entries in the PHI nodes for these 1162 // successors. 1163 for (BasicBlock *NewSuccessor : NewSuccessors) 1164 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1165 1166 Builder.SetInsertPoint(PTI); 1167 // Convert pointer to int before we switch. 1168 if (CV->getType()->isPointerTy()) { 1169 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1170 "magicptr"); 1171 } 1172 1173 // Now that the successors are updated, create the new Switch instruction. 1174 SwitchInst *NewSI = 1175 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1176 NewSI->setDebugLoc(PTI->getDebugLoc()); 1177 for (ValueEqualityComparisonCase &V : PredCases) 1178 NewSI->addCase(V.Value, V.Dest); 1179 1180 if (PredHasWeights || SuccHasWeights) { 1181 // Halve the weights if any of them cannot fit in an uint32_t 1182 FitWeights(Weights); 1183 1184 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1185 1186 setBranchWeights(NewSI, MDWeights); 1187 } 1188 1189 EraseTerminatorAndDCECond(PTI); 1190 1191 // Okay, last check. If BB is still a successor of PSI, then we must 1192 // have an infinite loop case. If so, add an infinitely looping block 1193 // to handle the case to preserve the behavior of the code. 1194 BasicBlock *InfLoopBlock = nullptr; 1195 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1196 if (NewSI->getSuccessor(i) == BB) { 1197 if (!InfLoopBlock) { 1198 // Insert it at the end of the function, because it's either code, 1199 // or it won't matter if it's hot. :) 1200 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1201 BB->getParent()); 1202 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1203 } 1204 NewSI->setSuccessor(i, InfLoopBlock); 1205 } 1206 1207 Changed = true; 1208 } 1209 } 1210 return Changed; 1211 } 1212 1213 // If we would need to insert a select that uses the value of this invoke 1214 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1215 // can't hoist the invoke, as there is nowhere to put the select in this case. 1216 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1217 Instruction *I1, Instruction *I2) { 1218 for (BasicBlock *Succ : successors(BB1)) { 1219 for (const PHINode &PN : Succ->phis()) { 1220 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1221 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1222 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1223 return false; 1224 } 1225 } 1226 } 1227 return true; 1228 } 1229 1230 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1231 1232 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1233 /// in the two blocks up into the branch block. The caller of this function 1234 /// guarantees that BI's block dominates BB1 and BB2. 1235 static bool HoistThenElseCodeToIf(BranchInst *BI, 1236 const TargetTransformInfo &TTI) { 1237 // This does very trivial matching, with limited scanning, to find identical 1238 // instructions in the two blocks. In particular, we don't want to get into 1239 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1240 // such, we currently just scan for obviously identical instructions in an 1241 // identical order. 1242 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1243 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1244 1245 BasicBlock::iterator BB1_Itr = BB1->begin(); 1246 BasicBlock::iterator BB2_Itr = BB2->begin(); 1247 1248 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1249 // Skip debug info if it is not identical. 1250 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1251 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1252 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1253 while (isa<DbgInfoIntrinsic>(I1)) 1254 I1 = &*BB1_Itr++; 1255 while (isa<DbgInfoIntrinsic>(I2)) 1256 I2 = &*BB2_Itr++; 1257 } 1258 // FIXME: Can we define a safety predicate for CallBr? 1259 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1260 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1261 isa<CallBrInst>(I1)) 1262 return false; 1263 1264 BasicBlock *BIParent = BI->getParent(); 1265 1266 bool Changed = false; 1267 do { 1268 // If we are hoisting the terminator instruction, don't move one (making a 1269 // broken BB), instead clone it, and remove BI. 1270 if (I1->isTerminator()) 1271 goto HoistTerminator; 1272 1273 // If we're going to hoist a call, make sure that the two instructions we're 1274 // commoning/hoisting are both marked with musttail, or neither of them is 1275 // marked as such. Otherwise, we might end up in a situation where we hoist 1276 // from a block where the terminator is a `ret` to a block where the terminator 1277 // is a `br`, and `musttail` calls expect to be followed by a return. 1278 auto *C1 = dyn_cast<CallInst>(I1); 1279 auto *C2 = dyn_cast<CallInst>(I2); 1280 if (C1 && C2) 1281 if (C1->isMustTailCall() != C2->isMustTailCall()) 1282 return Changed; 1283 1284 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1285 return Changed; 1286 1287 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1288 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1289 // The debug location is an integral part of a debug info intrinsic 1290 // and can't be separated from it or replaced. Instead of attempting 1291 // to merge locations, simply hoist both copies of the intrinsic. 1292 BIParent->getInstList().splice(BI->getIterator(), 1293 BB1->getInstList(), I1); 1294 BIParent->getInstList().splice(BI->getIterator(), 1295 BB2->getInstList(), I2); 1296 Changed = true; 1297 } else { 1298 // For a normal instruction, we just move one to right before the branch, 1299 // then replace all uses of the other with the first. Finally, we remove 1300 // the now redundant second instruction. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 if (!I2->use_empty()) 1304 I2->replaceAllUsesWith(I1); 1305 I1->andIRFlags(I2); 1306 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1307 LLVMContext::MD_range, 1308 LLVMContext::MD_fpmath, 1309 LLVMContext::MD_invariant_load, 1310 LLVMContext::MD_nonnull, 1311 LLVMContext::MD_invariant_group, 1312 LLVMContext::MD_align, 1313 LLVMContext::MD_dereferenceable, 1314 LLVMContext::MD_dereferenceable_or_null, 1315 LLVMContext::MD_mem_parallel_loop_access, 1316 LLVMContext::MD_access_group, 1317 LLVMContext::MD_preserve_access_index}; 1318 combineMetadata(I1, I2, KnownIDs, true); 1319 1320 // I1 and I2 are being combined into a single instruction. Its debug 1321 // location is the merged locations of the original instructions. 1322 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1323 1324 I2->eraseFromParent(); 1325 Changed = true; 1326 } 1327 1328 I1 = &*BB1_Itr++; 1329 I2 = &*BB2_Itr++; 1330 // Skip debug info if it is not identical. 1331 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1332 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1333 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1334 while (isa<DbgInfoIntrinsic>(I1)) 1335 I1 = &*BB1_Itr++; 1336 while (isa<DbgInfoIntrinsic>(I2)) 1337 I2 = &*BB2_Itr++; 1338 } 1339 } while (I1->isIdenticalToWhenDefined(I2)); 1340 1341 return true; 1342 1343 HoistTerminator: 1344 // It may not be possible to hoist an invoke. 1345 // FIXME: Can we define a safety predicate for CallBr? 1346 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1347 return Changed; 1348 1349 // TODO: callbr hoisting currently disabled pending further study. 1350 if (isa<CallBrInst>(I1)) 1351 return Changed; 1352 1353 for (BasicBlock *Succ : successors(BB1)) { 1354 for (PHINode &PN : Succ->phis()) { 1355 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1356 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1357 if (BB1V == BB2V) 1358 continue; 1359 1360 // Check for passingValueIsAlwaysUndefined here because we would rather 1361 // eliminate undefined control flow then converting it to a select. 1362 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1363 passingValueIsAlwaysUndefined(BB2V, &PN)) 1364 return Changed; 1365 1366 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1367 return Changed; 1368 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1369 return Changed; 1370 } 1371 } 1372 1373 // Okay, it is safe to hoist the terminator. 1374 Instruction *NT = I1->clone(); 1375 BIParent->getInstList().insert(BI->getIterator(), NT); 1376 if (!NT->getType()->isVoidTy()) { 1377 I1->replaceAllUsesWith(NT); 1378 I2->replaceAllUsesWith(NT); 1379 NT->takeName(I1); 1380 } 1381 1382 // Ensure terminator gets a debug location, even an unknown one, in case 1383 // it involves inlinable calls. 1384 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1385 1386 // PHIs created below will adopt NT's merged DebugLoc. 1387 IRBuilder<NoFolder> Builder(NT); 1388 1389 // Hoisting one of the terminators from our successor is a great thing. 1390 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1391 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1392 // nodes, so we insert select instruction to compute the final result. 1393 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1394 for (BasicBlock *Succ : successors(BB1)) { 1395 for (PHINode &PN : Succ->phis()) { 1396 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1397 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1398 if (BB1V == BB2V) 1399 continue; 1400 1401 // These values do not agree. Insert a select instruction before NT 1402 // that determines the right value. 1403 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1404 if (!SI) 1405 SI = cast<SelectInst>( 1406 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1407 BB1V->getName() + "." + BB2V->getName(), BI)); 1408 1409 // Make the PHI node use the select for all incoming values for BB1/BB2 1410 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1411 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1412 PN.setIncomingValue(i, SI); 1413 } 1414 } 1415 1416 // Update any PHI nodes in our new successors. 1417 for (BasicBlock *Succ : successors(BB1)) 1418 AddPredecessorToBlock(Succ, BIParent, BB1); 1419 1420 EraseTerminatorAndDCECond(BI); 1421 return true; 1422 } 1423 1424 // All instructions in Insts belong to different blocks that all unconditionally 1425 // branch to a common successor. Analyze each instruction and return true if it 1426 // would be possible to sink them into their successor, creating one common 1427 // instruction instead. For every value that would be required to be provided by 1428 // PHI node (because an operand varies in each input block), add to PHIOperands. 1429 static bool canSinkInstructions( 1430 ArrayRef<Instruction *> Insts, 1431 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1432 // Prune out obviously bad instructions to move. Each instruction must have 1433 // exactly zero or one use, and we check later that use is by a single, common 1434 // PHI instruction in the successor. 1435 bool HasUse = !Insts.front()->user_empty(); 1436 for (auto *I : Insts) { 1437 // These instructions may change or break semantics if moved. 1438 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1439 I->getType()->isTokenTy()) 1440 return false; 1441 1442 // Conservatively return false if I is an inline-asm instruction. Sinking 1443 // and merging inline-asm instructions can potentially create arguments 1444 // that cannot satisfy the inline-asm constraints. 1445 if (const auto *C = dyn_cast<CallBase>(I)) 1446 if (C->isInlineAsm()) 1447 return false; 1448 1449 // Each instruction must have zero or one use. 1450 if (HasUse && !I->hasOneUse()) 1451 return false; 1452 if (!HasUse && !I->user_empty()) 1453 return false; 1454 } 1455 1456 const Instruction *I0 = Insts.front(); 1457 for (auto *I : Insts) 1458 if (!I->isSameOperationAs(I0)) 1459 return false; 1460 1461 // All instructions in Insts are known to be the same opcode. If they have a 1462 // use, check that the only user is a PHI or in the same block as the 1463 // instruction, because if a user is in the same block as an instruction we're 1464 // contemplating sinking, it must already be determined to be sinkable. 1465 if (HasUse) { 1466 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1467 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1468 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1469 auto *U = cast<Instruction>(*I->user_begin()); 1470 return (PNUse && 1471 PNUse->getParent() == Succ && 1472 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1473 U->getParent() == I->getParent(); 1474 })) 1475 return false; 1476 } 1477 1478 // Because SROA can't handle speculating stores of selects, try not 1479 // to sink loads or stores of allocas when we'd have to create a PHI for 1480 // the address operand. Also, because it is likely that loads or stores 1481 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1482 // This can cause code churn which can have unintended consequences down 1483 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1484 // FIXME: This is a workaround for a deficiency in SROA - see 1485 // https://llvm.org/bugs/show_bug.cgi?id=30188 1486 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1487 return isa<AllocaInst>(I->getOperand(1)); 1488 })) 1489 return false; 1490 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1491 return isa<AllocaInst>(I->getOperand(0)); 1492 })) 1493 return false; 1494 1495 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1496 if (I0->getOperand(OI)->getType()->isTokenTy()) 1497 // Don't touch any operand of token type. 1498 return false; 1499 1500 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1501 assert(I->getNumOperands() == I0->getNumOperands()); 1502 return I->getOperand(OI) == I0->getOperand(OI); 1503 }; 1504 if (!all_of(Insts, SameAsI0)) { 1505 if (!canReplaceOperandWithVariable(I0, OI)) 1506 // We can't create a PHI from this GEP. 1507 return false; 1508 // Don't create indirect calls! The called value is the final operand. 1509 if (isa<CallBase>(I0) && OI == OE - 1) { 1510 // FIXME: if the call was *already* indirect, we should do this. 1511 return false; 1512 } 1513 for (auto *I : Insts) 1514 PHIOperands[I].push_back(I->getOperand(OI)); 1515 } 1516 } 1517 return true; 1518 } 1519 1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1521 // instruction of every block in Blocks to their common successor, commoning 1522 // into one instruction. 1523 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1524 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1525 1526 // canSinkLastInstruction returning true guarantees that every block has at 1527 // least one non-terminator instruction. 1528 SmallVector<Instruction*,4> Insts; 1529 for (auto *BB : Blocks) { 1530 Instruction *I = BB->getTerminator(); 1531 do { 1532 I = I->getPrevNode(); 1533 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1534 if (!isa<DbgInfoIntrinsic>(I)) 1535 Insts.push_back(I); 1536 } 1537 1538 // The only checking we need to do now is that all users of all instructions 1539 // are the same PHI node. canSinkLastInstruction should have checked this but 1540 // it is slightly over-aggressive - it gets confused by commutative instructions 1541 // so double-check it here. 1542 Instruction *I0 = Insts.front(); 1543 if (!I0->user_empty()) { 1544 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1545 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1546 auto *U = cast<Instruction>(*I->user_begin()); 1547 return U == PNUse; 1548 })) 1549 return false; 1550 } 1551 1552 // We don't need to do any more checking here; canSinkLastInstruction should 1553 // have done it all for us. 1554 SmallVector<Value*, 4> NewOperands; 1555 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1556 // This check is different to that in canSinkLastInstruction. There, we 1557 // cared about the global view once simplifycfg (and instcombine) have 1558 // completed - it takes into account PHIs that become trivially 1559 // simplifiable. However here we need a more local view; if an operand 1560 // differs we create a PHI and rely on instcombine to clean up the very 1561 // small mess we may make. 1562 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1563 return I->getOperand(O) != I0->getOperand(O); 1564 }); 1565 if (!NeedPHI) { 1566 NewOperands.push_back(I0->getOperand(O)); 1567 continue; 1568 } 1569 1570 // Create a new PHI in the successor block and populate it. 1571 auto *Op = I0->getOperand(O); 1572 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1573 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1574 Op->getName() + ".sink", &BBEnd->front()); 1575 for (auto *I : Insts) 1576 PN->addIncoming(I->getOperand(O), I->getParent()); 1577 NewOperands.push_back(PN); 1578 } 1579 1580 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1581 // and move it to the start of the successor block. 1582 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1583 I0->getOperandUse(O).set(NewOperands[O]); 1584 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1585 1586 // Update metadata and IR flags, and merge debug locations. 1587 for (auto *I : Insts) 1588 if (I != I0) { 1589 // The debug location for the "common" instruction is the merged locations 1590 // of all the commoned instructions. We start with the original location 1591 // of the "common" instruction and iteratively merge each location in the 1592 // loop below. 1593 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1594 // However, as N-way merge for CallInst is rare, so we use simplified API 1595 // instead of using complex API for N-way merge. 1596 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1597 combineMetadataForCSE(I0, I, true); 1598 I0->andIRFlags(I); 1599 } 1600 1601 if (!I0->user_empty()) { 1602 // canSinkLastInstruction checked that all instructions were used by 1603 // one and only one PHI node. Find that now, RAUW it to our common 1604 // instruction and nuke it. 1605 auto *PN = cast<PHINode>(*I0->user_begin()); 1606 PN->replaceAllUsesWith(I0); 1607 PN->eraseFromParent(); 1608 } 1609 1610 // Finally nuke all instructions apart from the common instruction. 1611 for (auto *I : Insts) 1612 if (I != I0) 1613 I->eraseFromParent(); 1614 1615 return true; 1616 } 1617 1618 namespace { 1619 1620 // LockstepReverseIterator - Iterates through instructions 1621 // in a set of blocks in reverse order from the first non-terminator. 1622 // For example (assume all blocks have size n): 1623 // LockstepReverseIterator I([B1, B2, B3]); 1624 // *I-- = [B1[n], B2[n], B3[n]]; 1625 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1626 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1627 // ... 1628 class LockstepReverseIterator { 1629 ArrayRef<BasicBlock*> Blocks; 1630 SmallVector<Instruction*,4> Insts; 1631 bool Fail; 1632 1633 public: 1634 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1635 reset(); 1636 } 1637 1638 void reset() { 1639 Fail = false; 1640 Insts.clear(); 1641 for (auto *BB : Blocks) { 1642 Instruction *Inst = BB->getTerminator(); 1643 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1644 Inst = Inst->getPrevNode(); 1645 if (!Inst) { 1646 // Block wasn't big enough. 1647 Fail = true; 1648 return; 1649 } 1650 Insts.push_back(Inst); 1651 } 1652 } 1653 1654 bool isValid() const { 1655 return !Fail; 1656 } 1657 1658 void operator--() { 1659 if (Fail) 1660 return; 1661 for (auto *&Inst : Insts) { 1662 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1663 Inst = Inst->getPrevNode(); 1664 // Already at beginning of block. 1665 if (!Inst) { 1666 Fail = true; 1667 return; 1668 } 1669 } 1670 } 1671 1672 ArrayRef<Instruction*> operator * () const { 1673 return Insts; 1674 } 1675 }; 1676 1677 } // end anonymous namespace 1678 1679 /// Check whether BB's predecessors end with unconditional branches. If it is 1680 /// true, sink any common code from the predecessors to BB. 1681 /// We also allow one predecessor to end with conditional branch (but no more 1682 /// than one). 1683 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1684 // We support two situations: 1685 // (1) all incoming arcs are unconditional 1686 // (2) one incoming arc is conditional 1687 // 1688 // (2) is very common in switch defaults and 1689 // else-if patterns; 1690 // 1691 // if (a) f(1); 1692 // else if (b) f(2); 1693 // 1694 // produces: 1695 // 1696 // [if] 1697 // / \ 1698 // [f(1)] [if] 1699 // | | \ 1700 // | | | 1701 // | [f(2)]| 1702 // \ | / 1703 // [ end ] 1704 // 1705 // [end] has two unconditional predecessor arcs and one conditional. The 1706 // conditional refers to the implicit empty 'else' arc. This conditional 1707 // arc can also be caused by an empty default block in a switch. 1708 // 1709 // In this case, we attempt to sink code from all *unconditional* arcs. 1710 // If we can sink instructions from these arcs (determined during the scan 1711 // phase below) we insert a common successor for all unconditional arcs and 1712 // connect that to [end], to enable sinking: 1713 // 1714 // [if] 1715 // / \ 1716 // [x(1)] [if] 1717 // | | \ 1718 // | | \ 1719 // | [x(2)] | 1720 // \ / | 1721 // [sink.split] | 1722 // \ / 1723 // [ end ] 1724 // 1725 SmallVector<BasicBlock*,4> UnconditionalPreds; 1726 Instruction *Cond = nullptr; 1727 for (auto *B : predecessors(BB)) { 1728 auto *T = B->getTerminator(); 1729 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1730 UnconditionalPreds.push_back(B); 1731 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1732 Cond = T; 1733 else 1734 return false; 1735 } 1736 if (UnconditionalPreds.size() < 2) 1737 return false; 1738 1739 bool Changed = false; 1740 // We take a two-step approach to tail sinking. First we scan from the end of 1741 // each block upwards in lockstep. If the n'th instruction from the end of each 1742 // block can be sunk, those instructions are added to ValuesToSink and we 1743 // carry on. If we can sink an instruction but need to PHI-merge some operands 1744 // (because they're not identical in each instruction) we add these to 1745 // PHIOperands. 1746 unsigned ScanIdx = 0; 1747 SmallPtrSet<Value*,4> InstructionsToSink; 1748 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1749 LockstepReverseIterator LRI(UnconditionalPreds); 1750 while (LRI.isValid() && 1751 canSinkInstructions(*LRI, PHIOperands)) { 1752 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1753 << "\n"); 1754 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1755 ++ScanIdx; 1756 --LRI; 1757 } 1758 1759 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1760 unsigned NumPHIdValues = 0; 1761 for (auto *I : *LRI) 1762 for (auto *V : PHIOperands[I]) 1763 if (InstructionsToSink.count(V) == 0) 1764 ++NumPHIdValues; 1765 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1766 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1767 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1768 NumPHIInsts++; 1769 1770 return NumPHIInsts <= 1; 1771 }; 1772 1773 if (ScanIdx > 0 && Cond) { 1774 // Check if we would actually sink anything first! This mutates the CFG and 1775 // adds an extra block. The goal in doing this is to allow instructions that 1776 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1777 // (such as trunc, add) can be sunk and predicated already. So we check that 1778 // we're going to sink at least one non-speculatable instruction. 1779 LRI.reset(); 1780 unsigned Idx = 0; 1781 bool Profitable = false; 1782 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1783 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1784 Profitable = true; 1785 break; 1786 } 1787 --LRI; 1788 ++Idx; 1789 } 1790 if (!Profitable) 1791 return false; 1792 1793 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1794 // We have a conditional edge and we're going to sink some instructions. 1795 // Insert a new block postdominating all blocks we're going to sink from. 1796 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1797 // Edges couldn't be split. 1798 return false; 1799 Changed = true; 1800 } 1801 1802 // Now that we've analyzed all potential sinking candidates, perform the 1803 // actual sink. We iteratively sink the last non-terminator of the source 1804 // blocks into their common successor unless doing so would require too 1805 // many PHI instructions to be generated (currently only one PHI is allowed 1806 // per sunk instruction). 1807 // 1808 // We can use InstructionsToSink to discount values needing PHI-merging that will 1809 // actually be sunk in a later iteration. This allows us to be more 1810 // aggressive in what we sink. This does allow a false positive where we 1811 // sink presuming a later value will also be sunk, but stop half way through 1812 // and never actually sink it which means we produce more PHIs than intended. 1813 // This is unlikely in practice though. 1814 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1815 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1816 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1817 << "\n"); 1818 1819 // Because we've sunk every instruction in turn, the current instruction to 1820 // sink is always at index 0. 1821 LRI.reset(); 1822 if (!ProfitableToSinkInstruction(LRI)) { 1823 // Too many PHIs would be created. 1824 LLVM_DEBUG( 1825 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1826 break; 1827 } 1828 1829 if (!sinkLastInstruction(UnconditionalPreds)) 1830 return Changed; 1831 NumSinkCommons++; 1832 Changed = true; 1833 } 1834 return Changed; 1835 } 1836 1837 /// Determine if we can hoist sink a sole store instruction out of a 1838 /// conditional block. 1839 /// 1840 /// We are looking for code like the following: 1841 /// BrBB: 1842 /// store i32 %add, i32* %arrayidx2 1843 /// ... // No other stores or function calls (we could be calling a memory 1844 /// ... // function). 1845 /// %cmp = icmp ult %x, %y 1846 /// br i1 %cmp, label %EndBB, label %ThenBB 1847 /// ThenBB: 1848 /// store i32 %add5, i32* %arrayidx2 1849 /// br label EndBB 1850 /// EndBB: 1851 /// ... 1852 /// We are going to transform this into: 1853 /// BrBB: 1854 /// store i32 %add, i32* %arrayidx2 1855 /// ... // 1856 /// %cmp = icmp ult %x, %y 1857 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1858 /// store i32 %add.add5, i32* %arrayidx2 1859 /// ... 1860 /// 1861 /// \return The pointer to the value of the previous store if the store can be 1862 /// hoisted into the predecessor block. 0 otherwise. 1863 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1864 BasicBlock *StoreBB, BasicBlock *EndBB) { 1865 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1866 if (!StoreToHoist) 1867 return nullptr; 1868 1869 // Volatile or atomic. 1870 if (!StoreToHoist->isSimple()) 1871 return nullptr; 1872 1873 Value *StorePtr = StoreToHoist->getPointerOperand(); 1874 1875 // Look for a store to the same pointer in BrBB. 1876 unsigned MaxNumInstToLookAt = 9; 1877 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1878 if (!MaxNumInstToLookAt) 1879 break; 1880 --MaxNumInstToLookAt; 1881 1882 // Could be calling an instruction that affects memory like free(). 1883 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1884 return nullptr; 1885 1886 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1887 // Found the previous store make sure it stores to the same location. 1888 if (SI->getPointerOperand() == StorePtr) 1889 // Found the previous store, return its value operand. 1890 return SI->getValueOperand(); 1891 return nullptr; // Unknown store. 1892 } 1893 } 1894 1895 return nullptr; 1896 } 1897 1898 /// Speculate a conditional basic block flattening the CFG. 1899 /// 1900 /// Note that this is a very risky transform currently. Speculating 1901 /// instructions like this is most often not desirable. Instead, there is an MI 1902 /// pass which can do it with full awareness of the resource constraints. 1903 /// However, some cases are "obvious" and we should do directly. An example of 1904 /// this is speculating a single, reasonably cheap instruction. 1905 /// 1906 /// There is only one distinct advantage to flattening the CFG at the IR level: 1907 /// it makes very common but simplistic optimizations such as are common in 1908 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1909 /// modeling their effects with easier to reason about SSA value graphs. 1910 /// 1911 /// 1912 /// An illustration of this transform is turning this IR: 1913 /// \code 1914 /// BB: 1915 /// %cmp = icmp ult %x, %y 1916 /// br i1 %cmp, label %EndBB, label %ThenBB 1917 /// ThenBB: 1918 /// %sub = sub %x, %y 1919 /// br label BB2 1920 /// EndBB: 1921 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1922 /// ... 1923 /// \endcode 1924 /// 1925 /// Into this IR: 1926 /// \code 1927 /// BB: 1928 /// %cmp = icmp ult %x, %y 1929 /// %sub = sub %x, %y 1930 /// %cond = select i1 %cmp, 0, %sub 1931 /// ... 1932 /// \endcode 1933 /// 1934 /// \returns true if the conditional block is removed. 1935 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1936 const TargetTransformInfo &TTI) { 1937 // Be conservative for now. FP select instruction can often be expensive. 1938 Value *BrCond = BI->getCondition(); 1939 if (isa<FCmpInst>(BrCond)) 1940 return false; 1941 1942 BasicBlock *BB = BI->getParent(); 1943 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1944 1945 // If ThenBB is actually on the false edge of the conditional branch, remember 1946 // to swap the select operands later. 1947 bool Invert = false; 1948 if (ThenBB != BI->getSuccessor(0)) { 1949 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1950 Invert = true; 1951 } 1952 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1953 1954 // Keep a count of how many times instructions are used within ThenBB when 1955 // they are candidates for sinking into ThenBB. Specifically: 1956 // - They are defined in BB, and 1957 // - They have no side effects, and 1958 // - All of their uses are in ThenBB. 1959 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1960 1961 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1962 1963 unsigned SpeculationCost = 0; 1964 Value *SpeculatedStoreValue = nullptr; 1965 StoreInst *SpeculatedStore = nullptr; 1966 for (BasicBlock::iterator BBI = ThenBB->begin(), 1967 BBE = std::prev(ThenBB->end()); 1968 BBI != BBE; ++BBI) { 1969 Instruction *I = &*BBI; 1970 // Skip debug info. 1971 if (isa<DbgInfoIntrinsic>(I)) { 1972 SpeculatedDbgIntrinsics.push_back(I); 1973 continue; 1974 } 1975 1976 // Only speculatively execute a single instruction (not counting the 1977 // terminator) for now. 1978 ++SpeculationCost; 1979 if (SpeculationCost > 1) 1980 return false; 1981 1982 // Don't hoist the instruction if it's unsafe or expensive. 1983 if (!isSafeToSpeculativelyExecute(I) && 1984 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1985 I, BB, ThenBB, EndBB)))) 1986 return false; 1987 if (!SpeculatedStoreValue && 1988 ComputeSpeculationCost(I, TTI) > 1989 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1990 return false; 1991 1992 // Store the store speculation candidate. 1993 if (SpeculatedStoreValue) 1994 SpeculatedStore = cast<StoreInst>(I); 1995 1996 // Do not hoist the instruction if any of its operands are defined but not 1997 // used in BB. The transformation will prevent the operand from 1998 // being sunk into the use block. 1999 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2000 Instruction *OpI = dyn_cast<Instruction>(*i); 2001 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2002 continue; // Not a candidate for sinking. 2003 2004 ++SinkCandidateUseCounts[OpI]; 2005 } 2006 } 2007 2008 // Consider any sink candidates which are only used in ThenBB as costs for 2009 // speculation. Note, while we iterate over a DenseMap here, we are summing 2010 // and so iteration order isn't significant. 2011 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2012 I = SinkCandidateUseCounts.begin(), 2013 E = SinkCandidateUseCounts.end(); 2014 I != E; ++I) 2015 if (I->first->hasNUses(I->second)) { 2016 ++SpeculationCost; 2017 if (SpeculationCost > 1) 2018 return false; 2019 } 2020 2021 // Check that the PHI nodes can be converted to selects. 2022 bool HaveRewritablePHIs = false; 2023 for (PHINode &PN : EndBB->phis()) { 2024 Value *OrigV = PN.getIncomingValueForBlock(BB); 2025 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2026 2027 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2028 // Skip PHIs which are trivial. 2029 if (ThenV == OrigV) 2030 continue; 2031 2032 // Don't convert to selects if we could remove undefined behavior instead. 2033 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2034 passingValueIsAlwaysUndefined(ThenV, &PN)) 2035 return false; 2036 2037 HaveRewritablePHIs = true; 2038 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2039 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2040 if (!OrigCE && !ThenCE) 2041 continue; // Known safe and cheap. 2042 2043 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2044 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2045 return false; 2046 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2047 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2048 unsigned MaxCost = 2049 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2050 if (OrigCost + ThenCost > MaxCost) 2051 return false; 2052 2053 // Account for the cost of an unfolded ConstantExpr which could end up 2054 // getting expanded into Instructions. 2055 // FIXME: This doesn't account for how many operations are combined in the 2056 // constant expression. 2057 ++SpeculationCost; 2058 if (SpeculationCost > 1) 2059 return false; 2060 } 2061 2062 // If there are no PHIs to process, bail early. This helps ensure idempotence 2063 // as well. 2064 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2065 return false; 2066 2067 // If we get here, we can hoist the instruction and if-convert. 2068 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2069 2070 // Insert a select of the value of the speculated store. 2071 if (SpeculatedStoreValue) { 2072 IRBuilder<NoFolder> Builder(BI); 2073 Value *TrueV = SpeculatedStore->getValueOperand(); 2074 Value *FalseV = SpeculatedStoreValue; 2075 if (Invert) 2076 std::swap(TrueV, FalseV); 2077 Value *S = Builder.CreateSelect( 2078 BrCond, TrueV, FalseV, "spec.store.select", BI); 2079 SpeculatedStore->setOperand(0, S); 2080 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2081 SpeculatedStore->getDebugLoc()); 2082 } 2083 2084 // Metadata can be dependent on the condition we are hoisting above. 2085 // Conservatively strip all metadata on the instruction. 2086 for (auto &I : *ThenBB) 2087 I.dropUnknownNonDebugMetadata(); 2088 2089 // Hoist the instructions. 2090 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2091 ThenBB->begin(), std::prev(ThenBB->end())); 2092 2093 // Insert selects and rewrite the PHI operands. 2094 IRBuilder<NoFolder> Builder(BI); 2095 for (PHINode &PN : EndBB->phis()) { 2096 unsigned OrigI = PN.getBasicBlockIndex(BB); 2097 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2098 Value *OrigV = PN.getIncomingValue(OrigI); 2099 Value *ThenV = PN.getIncomingValue(ThenI); 2100 2101 // Skip PHIs which are trivial. 2102 if (OrigV == ThenV) 2103 continue; 2104 2105 // Create a select whose true value is the speculatively executed value and 2106 // false value is the preexisting value. Swap them if the branch 2107 // destinations were inverted. 2108 Value *TrueV = ThenV, *FalseV = OrigV; 2109 if (Invert) 2110 std::swap(TrueV, FalseV); 2111 Value *V = Builder.CreateSelect( 2112 BrCond, TrueV, FalseV, "spec.select", BI); 2113 PN.setIncomingValue(OrigI, V); 2114 PN.setIncomingValue(ThenI, V); 2115 } 2116 2117 // Remove speculated dbg intrinsics. 2118 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2119 // dbg value for the different flows and inserting it after the select. 2120 for (Instruction *I : SpeculatedDbgIntrinsics) 2121 I->eraseFromParent(); 2122 2123 ++NumSpeculations; 2124 return true; 2125 } 2126 2127 /// Return true if we can thread a branch across this block. 2128 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2129 unsigned Size = 0; 2130 2131 for (Instruction &I : BB->instructionsWithoutDebug()) { 2132 if (Size > 10) 2133 return false; // Don't clone large BB's. 2134 ++Size; 2135 2136 // We can only support instructions that do not define values that are 2137 // live outside of the current basic block. 2138 for (User *U : I.users()) { 2139 Instruction *UI = cast<Instruction>(U); 2140 if (UI->getParent() != BB || isa<PHINode>(UI)) 2141 return false; 2142 } 2143 2144 // Looks ok, continue checking. 2145 } 2146 2147 return true; 2148 } 2149 2150 /// If we have a conditional branch on a PHI node value that is defined in the 2151 /// same block as the branch and if any PHI entries are constants, thread edges 2152 /// corresponding to that entry to be branches to their ultimate destination. 2153 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2154 AssumptionCache *AC) { 2155 BasicBlock *BB = BI->getParent(); 2156 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2157 // NOTE: we currently cannot transform this case if the PHI node is used 2158 // outside of the block. 2159 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2160 return false; 2161 2162 // Degenerate case of a single entry PHI. 2163 if (PN->getNumIncomingValues() == 1) { 2164 FoldSingleEntryPHINodes(PN->getParent()); 2165 return true; 2166 } 2167 2168 // Now we know that this block has multiple preds and two succs. 2169 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2170 return false; 2171 2172 // Can't fold blocks that contain noduplicate or convergent calls. 2173 if (any_of(*BB, [](const Instruction &I) { 2174 const CallInst *CI = dyn_cast<CallInst>(&I); 2175 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2176 })) 2177 return false; 2178 2179 // Okay, this is a simple enough basic block. See if any phi values are 2180 // constants. 2181 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2182 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2183 if (!CB || !CB->getType()->isIntegerTy(1)) 2184 continue; 2185 2186 // Okay, we now know that all edges from PredBB should be revectored to 2187 // branch to RealDest. 2188 BasicBlock *PredBB = PN->getIncomingBlock(i); 2189 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2190 2191 if (RealDest == BB) 2192 continue; // Skip self loops. 2193 // Skip if the predecessor's terminator is an indirect branch. 2194 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2195 continue; 2196 2197 // The dest block might have PHI nodes, other predecessors and other 2198 // difficult cases. Instead of being smart about this, just insert a new 2199 // block that jumps to the destination block, effectively splitting 2200 // the edge we are about to create. 2201 BasicBlock *EdgeBB = 2202 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2203 RealDest->getParent(), RealDest); 2204 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2205 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2206 2207 // Update PHI nodes. 2208 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2209 2210 // BB may have instructions that are being threaded over. Clone these 2211 // instructions into EdgeBB. We know that there will be no uses of the 2212 // cloned instructions outside of EdgeBB. 2213 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2214 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2215 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2216 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2217 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2218 continue; 2219 } 2220 // Clone the instruction. 2221 Instruction *N = BBI->clone(); 2222 if (BBI->hasName()) 2223 N->setName(BBI->getName() + ".c"); 2224 2225 // Update operands due to translation. 2226 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2227 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2228 if (PI != TranslateMap.end()) 2229 *i = PI->second; 2230 } 2231 2232 // Check for trivial simplification. 2233 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2234 if (!BBI->use_empty()) 2235 TranslateMap[&*BBI] = V; 2236 if (!N->mayHaveSideEffects()) { 2237 N->deleteValue(); // Instruction folded away, don't need actual inst 2238 N = nullptr; 2239 } 2240 } else { 2241 if (!BBI->use_empty()) 2242 TranslateMap[&*BBI] = N; 2243 } 2244 // Insert the new instruction into its new home. 2245 if (N) 2246 EdgeBB->getInstList().insert(InsertPt, N); 2247 2248 // Register the new instruction with the assumption cache if necessary. 2249 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2250 if (II->getIntrinsicID() == Intrinsic::assume) 2251 AC->registerAssumption(II); 2252 } 2253 2254 // Loop over all of the edges from PredBB to BB, changing them to branch 2255 // to EdgeBB instead. 2256 Instruction *PredBBTI = PredBB->getTerminator(); 2257 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2258 if (PredBBTI->getSuccessor(i) == BB) { 2259 BB->removePredecessor(PredBB); 2260 PredBBTI->setSuccessor(i, EdgeBB); 2261 } 2262 2263 // Recurse, simplifying any other constants. 2264 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2265 } 2266 2267 return false; 2268 } 2269 2270 /// Given a BB that starts with the specified two-entry PHI node, 2271 /// see if we can eliminate it. 2272 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2273 const DataLayout &DL) { 2274 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2275 // statement", which has a very simple dominance structure. Basically, we 2276 // are trying to find the condition that is being branched on, which 2277 // subsequently causes this merge to happen. We really want control 2278 // dependence information for this check, but simplifycfg can't keep it up 2279 // to date, and this catches most of the cases we care about anyway. 2280 BasicBlock *BB = PN->getParent(); 2281 const Function *Fn = BB->getParent(); 2282 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2283 return false; 2284 2285 BasicBlock *IfTrue, *IfFalse; 2286 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2287 if (!IfCond || 2288 // Don't bother if the branch will be constant folded trivially. 2289 isa<ConstantInt>(IfCond)) 2290 return false; 2291 2292 // Okay, we found that we can merge this two-entry phi node into a select. 2293 // Doing so would require us to fold *all* two entry phi nodes in this block. 2294 // At some point this becomes non-profitable (particularly if the target 2295 // doesn't support cmov's). Only do this transformation if there are two or 2296 // fewer PHI nodes in this block. 2297 unsigned NumPhis = 0; 2298 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2299 if (NumPhis > 2) 2300 return false; 2301 2302 // Loop over the PHI's seeing if we can promote them all to select 2303 // instructions. While we are at it, keep track of the instructions 2304 // that need to be moved to the dominating block. 2305 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2306 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2307 MaxCostVal1 = PHINodeFoldingThreshold; 2308 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2309 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2310 2311 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2312 PHINode *PN = cast<PHINode>(II++); 2313 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2314 PN->replaceAllUsesWith(V); 2315 PN->eraseFromParent(); 2316 continue; 2317 } 2318 2319 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2320 MaxCostVal0, TTI) || 2321 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2322 MaxCostVal1, TTI)) 2323 return false; 2324 } 2325 2326 // If we folded the first phi, PN dangles at this point. Refresh it. If 2327 // we ran out of PHIs then we simplified them all. 2328 PN = dyn_cast<PHINode>(BB->begin()); 2329 if (!PN) 2330 return true; 2331 2332 // Don't fold i1 branches on PHIs which contain binary operators. These can 2333 // often be turned into switches and other things. 2334 if (PN->getType()->isIntegerTy(1) && 2335 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2336 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2337 isa<BinaryOperator>(IfCond))) 2338 return false; 2339 2340 // If all PHI nodes are promotable, check to make sure that all instructions 2341 // in the predecessor blocks can be promoted as well. If not, we won't be able 2342 // to get rid of the control flow, so it's not worth promoting to select 2343 // instructions. 2344 BasicBlock *DomBlock = nullptr; 2345 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2346 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2347 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2348 IfBlock1 = nullptr; 2349 } else { 2350 DomBlock = *pred_begin(IfBlock1); 2351 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2352 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2353 // This is not an aggressive instruction that we can promote. 2354 // Because of this, we won't be able to get rid of the control flow, so 2355 // the xform is not worth it. 2356 return false; 2357 } 2358 } 2359 2360 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2361 IfBlock2 = nullptr; 2362 } else { 2363 DomBlock = *pred_begin(IfBlock2); 2364 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2365 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2366 // This is not an aggressive instruction that we can promote. 2367 // Because of this, we won't be able to get rid of the control flow, so 2368 // the xform is not worth it. 2369 return false; 2370 } 2371 } 2372 2373 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2374 << " T: " << IfTrue->getName() 2375 << " F: " << IfFalse->getName() << "\n"); 2376 2377 // If we can still promote the PHI nodes after this gauntlet of tests, 2378 // do all of the PHI's now. 2379 Instruction *InsertPt = DomBlock->getTerminator(); 2380 IRBuilder<NoFolder> Builder(InsertPt); 2381 2382 // Move all 'aggressive' instructions, which are defined in the 2383 // conditional parts of the if's up to the dominating block. 2384 if (IfBlock1) 2385 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2386 if (IfBlock2) 2387 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2388 2389 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2390 // Change the PHI node into a select instruction. 2391 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2392 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2393 2394 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2395 PN->replaceAllUsesWith(Sel); 2396 Sel->takeName(PN); 2397 PN->eraseFromParent(); 2398 } 2399 2400 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2401 // has been flattened. Change DomBlock to jump directly to our new block to 2402 // avoid other simplifycfg's kicking in on the diamond. 2403 Instruction *OldTI = DomBlock->getTerminator(); 2404 Builder.SetInsertPoint(OldTI); 2405 Builder.CreateBr(BB); 2406 OldTI->eraseFromParent(); 2407 return true; 2408 } 2409 2410 /// If we found a conditional branch that goes to two returning blocks, 2411 /// try to merge them together into one return, 2412 /// introducing a select if the return values disagree. 2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2414 IRBuilder<> &Builder) { 2415 assert(BI->isConditional() && "Must be a conditional branch"); 2416 BasicBlock *TrueSucc = BI->getSuccessor(0); 2417 BasicBlock *FalseSucc = BI->getSuccessor(1); 2418 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2419 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2420 2421 // Check to ensure both blocks are empty (just a return) or optionally empty 2422 // with PHI nodes. If there are other instructions, merging would cause extra 2423 // computation on one path or the other. 2424 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2425 return false; 2426 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2427 return false; 2428 2429 Builder.SetInsertPoint(BI); 2430 // Okay, we found a branch that is going to two return nodes. If 2431 // there is no return value for this function, just change the 2432 // branch into a return. 2433 if (FalseRet->getNumOperands() == 0) { 2434 TrueSucc->removePredecessor(BI->getParent()); 2435 FalseSucc->removePredecessor(BI->getParent()); 2436 Builder.CreateRetVoid(); 2437 EraseTerminatorAndDCECond(BI); 2438 return true; 2439 } 2440 2441 // Otherwise, figure out what the true and false return values are 2442 // so we can insert a new select instruction. 2443 Value *TrueValue = TrueRet->getReturnValue(); 2444 Value *FalseValue = FalseRet->getReturnValue(); 2445 2446 // Unwrap any PHI nodes in the return blocks. 2447 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2448 if (TVPN->getParent() == TrueSucc) 2449 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2450 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2451 if (FVPN->getParent() == FalseSucc) 2452 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2453 2454 // In order for this transformation to be safe, we must be able to 2455 // unconditionally execute both operands to the return. This is 2456 // normally the case, but we could have a potentially-trapping 2457 // constant expression that prevents this transformation from being 2458 // safe. 2459 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2460 if (TCV->canTrap()) 2461 return false; 2462 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2463 if (FCV->canTrap()) 2464 return false; 2465 2466 // Okay, we collected all the mapped values and checked them for sanity, and 2467 // defined to really do this transformation. First, update the CFG. 2468 TrueSucc->removePredecessor(BI->getParent()); 2469 FalseSucc->removePredecessor(BI->getParent()); 2470 2471 // Insert select instructions where needed. 2472 Value *BrCond = BI->getCondition(); 2473 if (TrueValue) { 2474 // Insert a select if the results differ. 2475 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2476 } else if (isa<UndefValue>(TrueValue)) { 2477 TrueValue = FalseValue; 2478 } else { 2479 TrueValue = 2480 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2481 } 2482 } 2483 2484 Value *RI = 2485 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2486 2487 (void)RI; 2488 2489 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2490 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2491 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2492 2493 EraseTerminatorAndDCECond(BI); 2494 2495 return true; 2496 } 2497 2498 /// Return true if the given instruction is available 2499 /// in its predecessor block. If yes, the instruction will be removed. 2500 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2501 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2502 return false; 2503 for (Instruction &I : *PB) { 2504 Instruction *PBI = &I; 2505 // Check whether Inst and PBI generate the same value. 2506 if (Inst->isIdenticalTo(PBI)) { 2507 Inst->replaceAllUsesWith(PBI); 2508 Inst->eraseFromParent(); 2509 return true; 2510 } 2511 } 2512 return false; 2513 } 2514 2515 /// Return true if either PBI or BI has branch weight available, and store 2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2517 /// not have branch weight, use 1:1 as its weight. 2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2519 uint64_t &PredTrueWeight, 2520 uint64_t &PredFalseWeight, 2521 uint64_t &SuccTrueWeight, 2522 uint64_t &SuccFalseWeight) { 2523 bool PredHasWeights = 2524 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2525 bool SuccHasWeights = 2526 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2527 if (PredHasWeights || SuccHasWeights) { 2528 if (!PredHasWeights) 2529 PredTrueWeight = PredFalseWeight = 1; 2530 if (!SuccHasWeights) 2531 SuccTrueWeight = SuccFalseWeight = 1; 2532 return true; 2533 } else { 2534 return false; 2535 } 2536 } 2537 2538 /// If this basic block is simple enough, and if a predecessor branches to us 2539 /// and one of our successors, fold the block into the predecessor and use 2540 /// logical operations to pick the right destination. 2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2542 unsigned BonusInstThreshold) { 2543 BasicBlock *BB = BI->getParent(); 2544 2545 const unsigned PredCount = pred_size(BB); 2546 2547 Instruction *Cond = nullptr; 2548 if (BI->isConditional()) 2549 Cond = dyn_cast<Instruction>(BI->getCondition()); 2550 else { 2551 // For unconditional branch, check for a simple CFG pattern, where 2552 // BB has a single predecessor and BB's successor is also its predecessor's 2553 // successor. If such pattern exists, check for CSE between BB and its 2554 // predecessor. 2555 if (BasicBlock *PB = BB->getSinglePredecessor()) 2556 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2557 if (PBI->isConditional() && 2558 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2559 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2560 for (auto I = BB->instructionsWithoutDebug().begin(), 2561 E = BB->instructionsWithoutDebug().end(); 2562 I != E;) { 2563 Instruction *Curr = &*I++; 2564 if (isa<CmpInst>(Curr)) { 2565 Cond = Curr; 2566 break; 2567 } 2568 // Quit if we can't remove this instruction. 2569 if (!tryCSEWithPredecessor(Curr, PB)) 2570 return false; 2571 } 2572 } 2573 2574 if (!Cond) 2575 return false; 2576 } 2577 2578 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2579 Cond->getParent() != BB || !Cond->hasOneUse()) 2580 return false; 2581 2582 // Make sure the instruction after the condition is the cond branch. 2583 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2584 2585 // Ignore dbg intrinsics. 2586 while (isa<DbgInfoIntrinsic>(CondIt)) 2587 ++CondIt; 2588 2589 if (&*CondIt != BI) 2590 return false; 2591 2592 // Only allow this transformation if computing the condition doesn't involve 2593 // too many instructions and these involved instructions can be executed 2594 // unconditionally. We denote all involved instructions except the condition 2595 // as "bonus instructions", and only allow this transformation when the 2596 // number of the bonus instructions we'll need to create when cloning into 2597 // each predecessor does not exceed a certain threshold. 2598 unsigned NumBonusInsts = 0; 2599 for (auto I = BB->begin(); Cond != &*I; ++I) { 2600 // Ignore dbg intrinsics. 2601 if (isa<DbgInfoIntrinsic>(I)) 2602 continue; 2603 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2604 return false; 2605 // I has only one use and can be executed unconditionally. 2606 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2607 if (User == nullptr || User->getParent() != BB) 2608 return false; 2609 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2610 // to use any other instruction, User must be an instruction between next(I) 2611 // and Cond. 2612 2613 // Account for the cost of duplicating this instruction into each 2614 // predecessor. 2615 NumBonusInsts += PredCount; 2616 // Early exits once we reach the limit. 2617 if (NumBonusInsts > BonusInstThreshold) 2618 return false; 2619 } 2620 2621 // Cond is known to be a compare or binary operator. Check to make sure that 2622 // neither operand is a potentially-trapping constant expression. 2623 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2624 if (CE->canTrap()) 2625 return false; 2626 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2627 if (CE->canTrap()) 2628 return false; 2629 2630 // Finally, don't infinitely unroll conditional loops. 2631 BasicBlock *TrueDest = BI->getSuccessor(0); 2632 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2633 if (TrueDest == BB || FalseDest == BB) 2634 return false; 2635 2636 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2637 BasicBlock *PredBlock = *PI; 2638 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2639 2640 // Check that we have two conditional branches. If there is a PHI node in 2641 // the common successor, verify that the same value flows in from both 2642 // blocks. 2643 SmallVector<PHINode *, 4> PHIs; 2644 if (!PBI || PBI->isUnconditional() || 2645 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2646 (!BI->isConditional() && 2647 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2648 continue; 2649 2650 // Determine if the two branches share a common destination. 2651 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2652 bool InvertPredCond = false; 2653 2654 if (BI->isConditional()) { 2655 if (PBI->getSuccessor(0) == TrueDest) { 2656 Opc = Instruction::Or; 2657 } else if (PBI->getSuccessor(1) == FalseDest) { 2658 Opc = Instruction::And; 2659 } else if (PBI->getSuccessor(0) == FalseDest) { 2660 Opc = Instruction::And; 2661 InvertPredCond = true; 2662 } else if (PBI->getSuccessor(1) == TrueDest) { 2663 Opc = Instruction::Or; 2664 InvertPredCond = true; 2665 } else { 2666 continue; 2667 } 2668 } else { 2669 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2670 continue; 2671 } 2672 2673 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2674 IRBuilder<> Builder(PBI); 2675 2676 // If we need to invert the condition in the pred block to match, do so now. 2677 if (InvertPredCond) { 2678 Value *NewCond = PBI->getCondition(); 2679 2680 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2681 CmpInst *CI = cast<CmpInst>(NewCond); 2682 CI->setPredicate(CI->getInversePredicate()); 2683 } else { 2684 NewCond = 2685 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2686 } 2687 2688 PBI->setCondition(NewCond); 2689 PBI->swapSuccessors(); 2690 } 2691 2692 // If we have bonus instructions, clone them into the predecessor block. 2693 // Note that there may be multiple predecessor blocks, so we cannot move 2694 // bonus instructions to a predecessor block. 2695 ValueToValueMapTy VMap; // maps original values to cloned values 2696 // We already make sure Cond is the last instruction before BI. Therefore, 2697 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2698 // instructions. 2699 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2700 if (isa<DbgInfoIntrinsic>(BonusInst)) 2701 continue; 2702 Instruction *NewBonusInst = BonusInst->clone(); 2703 RemapInstruction(NewBonusInst, VMap, 2704 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2705 VMap[&*BonusInst] = NewBonusInst; 2706 2707 // If we moved a load, we cannot any longer claim any knowledge about 2708 // its potential value. The previous information might have been valid 2709 // only given the branch precondition. 2710 // For an analogous reason, we must also drop all the metadata whose 2711 // semantics we don't understand. 2712 NewBonusInst->dropUnknownNonDebugMetadata(); 2713 2714 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2715 NewBonusInst->takeName(&*BonusInst); 2716 BonusInst->setName(BonusInst->getName() + ".old"); 2717 } 2718 2719 // Clone Cond into the predecessor basic block, and or/and the 2720 // two conditions together. 2721 Instruction *CondInPred = Cond->clone(); 2722 RemapInstruction(CondInPred, VMap, 2723 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2724 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2725 CondInPred->takeName(Cond); 2726 Cond->setName(CondInPred->getName() + ".old"); 2727 2728 if (BI->isConditional()) { 2729 Instruction *NewCond = cast<Instruction>( 2730 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2731 PBI->setCondition(NewCond); 2732 2733 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2734 bool HasWeights = 2735 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2736 SuccTrueWeight, SuccFalseWeight); 2737 SmallVector<uint64_t, 8> NewWeights; 2738 2739 if (PBI->getSuccessor(0) == BB) { 2740 if (HasWeights) { 2741 // PBI: br i1 %x, BB, FalseDest 2742 // BI: br i1 %y, TrueDest, FalseDest 2743 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2744 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2745 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2746 // TrueWeight for PBI * FalseWeight for BI. 2747 // We assume that total weights of a BranchInst can fit into 32 bits. 2748 // Therefore, we will not have overflow using 64-bit arithmetic. 2749 NewWeights.push_back(PredFalseWeight * 2750 (SuccFalseWeight + SuccTrueWeight) + 2751 PredTrueWeight * SuccFalseWeight); 2752 } 2753 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2754 PBI->setSuccessor(0, TrueDest); 2755 } 2756 if (PBI->getSuccessor(1) == BB) { 2757 if (HasWeights) { 2758 // PBI: br i1 %x, TrueDest, BB 2759 // BI: br i1 %y, TrueDest, FalseDest 2760 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2761 // FalseWeight for PBI * TrueWeight for BI. 2762 NewWeights.push_back(PredTrueWeight * 2763 (SuccFalseWeight + SuccTrueWeight) + 2764 PredFalseWeight * SuccTrueWeight); 2765 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2766 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2767 } 2768 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2769 PBI->setSuccessor(1, FalseDest); 2770 } 2771 if (NewWeights.size() == 2) { 2772 // Halve the weights if any of them cannot fit in an uint32_t 2773 FitWeights(NewWeights); 2774 2775 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2776 NewWeights.end()); 2777 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2778 } else 2779 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2780 } else { 2781 // Update PHI nodes in the common successors. 2782 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2783 ConstantInt *PBI_C = cast<ConstantInt>( 2784 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2785 assert(PBI_C->getType()->isIntegerTy(1)); 2786 Instruction *MergedCond = nullptr; 2787 if (PBI->getSuccessor(0) == TrueDest) { 2788 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2789 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2790 // is false: !PBI_Cond and BI_Value 2791 Instruction *NotCond = cast<Instruction>( 2792 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2793 MergedCond = cast<Instruction>( 2794 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2795 "and.cond")); 2796 if (PBI_C->isOne()) 2797 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2798 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2799 } else { 2800 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2801 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2802 // is false: PBI_Cond and BI_Value 2803 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2804 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2805 if (PBI_C->isOne()) { 2806 Instruction *NotCond = cast<Instruction>( 2807 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2808 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2809 Instruction::Or, NotCond, MergedCond, "or.cond")); 2810 } 2811 } 2812 // Update PHI Node. 2813 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2814 } 2815 2816 // PBI is changed to branch to TrueDest below. Remove itself from 2817 // potential phis from all other successors. 2818 if (MSSAU) 2819 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2820 2821 // Change PBI from Conditional to Unconditional. 2822 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2823 EraseTerminatorAndDCECond(PBI, MSSAU); 2824 PBI = New_PBI; 2825 } 2826 2827 // If BI was a loop latch, it may have had associated loop metadata. 2828 // We need to copy it to the new latch, that is, PBI. 2829 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2830 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2831 2832 // TODO: If BB is reachable from all paths through PredBlock, then we 2833 // could replace PBI's branch probabilities with BI's. 2834 2835 // Copy any debug value intrinsics into the end of PredBlock. 2836 for (Instruction &I : *BB) 2837 if (isa<DbgInfoIntrinsic>(I)) 2838 I.clone()->insertBefore(PBI); 2839 2840 return true; 2841 } 2842 return false; 2843 } 2844 2845 // If there is only one store in BB1 and BB2, return it, otherwise return 2846 // nullptr. 2847 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2848 StoreInst *S = nullptr; 2849 for (auto *BB : {BB1, BB2}) { 2850 if (!BB) 2851 continue; 2852 for (auto &I : *BB) 2853 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2854 if (S) 2855 // Multiple stores seen. 2856 return nullptr; 2857 else 2858 S = SI; 2859 } 2860 } 2861 return S; 2862 } 2863 2864 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2865 Value *AlternativeV = nullptr) { 2866 // PHI is going to be a PHI node that allows the value V that is defined in 2867 // BB to be referenced in BB's only successor. 2868 // 2869 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2870 // doesn't matter to us what the other operand is (it'll never get used). We 2871 // could just create a new PHI with an undef incoming value, but that could 2872 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2873 // other PHI. So here we directly look for some PHI in BB's successor with V 2874 // as an incoming operand. If we find one, we use it, else we create a new 2875 // one. 2876 // 2877 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2878 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2879 // where OtherBB is the single other predecessor of BB's only successor. 2880 PHINode *PHI = nullptr; 2881 BasicBlock *Succ = BB->getSingleSuccessor(); 2882 2883 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2884 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2885 PHI = cast<PHINode>(I); 2886 if (!AlternativeV) 2887 break; 2888 2889 assert(Succ->hasNPredecessors(2)); 2890 auto PredI = pred_begin(Succ); 2891 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2892 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2893 break; 2894 PHI = nullptr; 2895 } 2896 if (PHI) 2897 return PHI; 2898 2899 // If V is not an instruction defined in BB, just return it. 2900 if (!AlternativeV && 2901 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2902 return V; 2903 2904 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2905 PHI->addIncoming(V, BB); 2906 for (BasicBlock *PredBB : predecessors(Succ)) 2907 if (PredBB != BB) 2908 PHI->addIncoming( 2909 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2910 return PHI; 2911 } 2912 2913 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2914 BasicBlock *QTB, BasicBlock *QFB, 2915 BasicBlock *PostBB, Value *Address, 2916 bool InvertPCond, bool InvertQCond, 2917 const DataLayout &DL) { 2918 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2919 return Operator::getOpcode(&I) == Instruction::BitCast && 2920 I.getType()->isPointerTy(); 2921 }; 2922 2923 // If we're not in aggressive mode, we only optimize if we have some 2924 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2925 auto IsWorthwhile = [&](BasicBlock *BB) { 2926 if (!BB) 2927 return true; 2928 // Heuristic: if the block can be if-converted/phi-folded and the 2929 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2930 // thread this store. 2931 unsigned N = 0; 2932 for (auto &I : BB->instructionsWithoutDebug()) { 2933 // Cheap instructions viable for folding. 2934 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2935 isa<StoreInst>(I)) 2936 ++N; 2937 // Free instructions. 2938 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2939 continue; 2940 else 2941 return false; 2942 } 2943 // The store we want to merge is counted in N, so add 1 to make sure 2944 // we're counting the instructions that would be left. 2945 return N <= (PHINodeFoldingThreshold + 1); 2946 }; 2947 2948 if (!MergeCondStoresAggressively && 2949 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2950 !IsWorthwhile(QFB))) 2951 return false; 2952 2953 // For every pointer, there must be exactly two stores, one coming from 2954 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2955 // store (to any address) in PTB,PFB or QTB,QFB. 2956 // FIXME: We could relax this restriction with a bit more work and performance 2957 // testing. 2958 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2959 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2960 if (!PStore || !QStore) 2961 return false; 2962 2963 // Now check the stores are compatible. 2964 if (!QStore->isUnordered() || !PStore->isUnordered()) 2965 return false; 2966 2967 // Check that sinking the store won't cause program behavior changes. Sinking 2968 // the store out of the Q blocks won't change any behavior as we're sinking 2969 // from a block to its unconditional successor. But we're moving a store from 2970 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2971 // So we need to check that there are no aliasing loads or stores in 2972 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2973 // operations between PStore and the end of its parent block. 2974 // 2975 // The ideal way to do this is to query AliasAnalysis, but we don't 2976 // preserve AA currently so that is dangerous. Be super safe and just 2977 // check there are no other memory operations at all. 2978 for (auto &I : *QFB->getSinglePredecessor()) 2979 if (I.mayReadOrWriteMemory()) 2980 return false; 2981 for (auto &I : *QFB) 2982 if (&I != QStore && I.mayReadOrWriteMemory()) 2983 return false; 2984 if (QTB) 2985 for (auto &I : *QTB) 2986 if (&I != QStore && I.mayReadOrWriteMemory()) 2987 return false; 2988 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2989 I != E; ++I) 2990 if (&*I != PStore && I->mayReadOrWriteMemory()) 2991 return false; 2992 2993 // If PostBB has more than two predecessors, we need to split it so we can 2994 // sink the store. 2995 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2996 // We know that QFB's only successor is PostBB. And QFB has a single 2997 // predecessor. If QTB exists, then its only successor is also PostBB. 2998 // If QTB does not exist, then QFB's only predecessor has a conditional 2999 // branch to QFB and PostBB. 3000 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3001 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3002 "condstore.split"); 3003 if (!NewBB) 3004 return false; 3005 PostBB = NewBB; 3006 } 3007 3008 // OK, we're going to sink the stores to PostBB. The store has to be 3009 // conditional though, so first create the predicate. 3010 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3011 ->getCondition(); 3012 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3013 ->getCondition(); 3014 3015 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3016 PStore->getParent()); 3017 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3018 QStore->getParent(), PPHI); 3019 3020 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3021 3022 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3023 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3024 3025 if (InvertPCond) 3026 PPred = QB.CreateNot(PPred); 3027 if (InvertQCond) 3028 QPred = QB.CreateNot(QPred); 3029 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3030 3031 auto *T = 3032 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3033 QB.SetInsertPoint(T); 3034 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3035 AAMDNodes AAMD; 3036 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3037 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3038 SI->setAAMetadata(AAMD); 3039 unsigned PAlignment = PStore->getAlignment(); 3040 unsigned QAlignment = QStore->getAlignment(); 3041 unsigned TypeAlignment = 3042 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3043 unsigned MinAlignment; 3044 unsigned MaxAlignment; 3045 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3046 // Choose the minimum alignment. If we could prove both stores execute, we 3047 // could use biggest one. In this case, though, we only know that one of the 3048 // stores executes. And we don't know it's safe to take the alignment from a 3049 // store that doesn't execute. 3050 if (MinAlignment != 0) { 3051 // Choose the minimum of all non-zero alignments. 3052 SI->setAlignment(MinAlignment); 3053 } else if (MaxAlignment != 0) { 3054 // Choose the minimal alignment between the non-zero alignment and the ABI 3055 // default alignment for the type of the stored value. 3056 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3057 } else { 3058 // If both alignments are zero, use ABI default alignment for the type of 3059 // the stored value. 3060 SI->setAlignment(TypeAlignment); 3061 } 3062 3063 QStore->eraseFromParent(); 3064 PStore->eraseFromParent(); 3065 3066 return true; 3067 } 3068 3069 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3070 const DataLayout &DL) { 3071 // The intention here is to find diamonds or triangles (see below) where each 3072 // conditional block contains a store to the same address. Both of these 3073 // stores are conditional, so they can't be unconditionally sunk. But it may 3074 // be profitable to speculatively sink the stores into one merged store at the 3075 // end, and predicate the merged store on the union of the two conditions of 3076 // PBI and QBI. 3077 // 3078 // This can reduce the number of stores executed if both of the conditions are 3079 // true, and can allow the blocks to become small enough to be if-converted. 3080 // This optimization will also chain, so that ladders of test-and-set 3081 // sequences can be if-converted away. 3082 // 3083 // We only deal with simple diamonds or triangles: 3084 // 3085 // PBI or PBI or a combination of the two 3086 // / \ | \ 3087 // PTB PFB | PFB 3088 // \ / | / 3089 // QBI QBI 3090 // / \ | \ 3091 // QTB QFB | QFB 3092 // \ / | / 3093 // PostBB PostBB 3094 // 3095 // We model triangles as a type of diamond with a nullptr "true" block. 3096 // Triangles are canonicalized so that the fallthrough edge is represented by 3097 // a true condition, as in the diagram above. 3098 BasicBlock *PTB = PBI->getSuccessor(0); 3099 BasicBlock *PFB = PBI->getSuccessor(1); 3100 BasicBlock *QTB = QBI->getSuccessor(0); 3101 BasicBlock *QFB = QBI->getSuccessor(1); 3102 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3103 3104 // Make sure we have a good guess for PostBB. If QTB's only successor is 3105 // QFB, then QFB is a better PostBB. 3106 if (QTB->getSingleSuccessor() == QFB) 3107 PostBB = QFB; 3108 3109 // If we couldn't find a good PostBB, stop. 3110 if (!PostBB) 3111 return false; 3112 3113 bool InvertPCond = false, InvertQCond = false; 3114 // Canonicalize fallthroughs to the true branches. 3115 if (PFB == QBI->getParent()) { 3116 std::swap(PFB, PTB); 3117 InvertPCond = true; 3118 } 3119 if (QFB == PostBB) { 3120 std::swap(QFB, QTB); 3121 InvertQCond = true; 3122 } 3123 3124 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3125 // and QFB may not. Model fallthroughs as a nullptr block. 3126 if (PTB == QBI->getParent()) 3127 PTB = nullptr; 3128 if (QTB == PostBB) 3129 QTB = nullptr; 3130 3131 // Legality bailouts. We must have at least the non-fallthrough blocks and 3132 // the post-dominating block, and the non-fallthroughs must only have one 3133 // predecessor. 3134 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3135 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3136 }; 3137 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3138 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3139 return false; 3140 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3141 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3142 return false; 3143 if (!QBI->getParent()->hasNUses(2)) 3144 return false; 3145 3146 // OK, this is a sequence of two diamonds or triangles. 3147 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3148 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3149 for (auto *BB : {PTB, PFB}) { 3150 if (!BB) 3151 continue; 3152 for (auto &I : *BB) 3153 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3154 PStoreAddresses.insert(SI->getPointerOperand()); 3155 } 3156 for (auto *BB : {QTB, QFB}) { 3157 if (!BB) 3158 continue; 3159 for (auto &I : *BB) 3160 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3161 QStoreAddresses.insert(SI->getPointerOperand()); 3162 } 3163 3164 set_intersect(PStoreAddresses, QStoreAddresses); 3165 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3166 // clear what it contains. 3167 auto &CommonAddresses = PStoreAddresses; 3168 3169 bool Changed = false; 3170 for (auto *Address : CommonAddresses) 3171 Changed |= mergeConditionalStoreToAddress( 3172 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3173 return Changed; 3174 } 3175 3176 /// If we have a conditional branch as a predecessor of another block, 3177 /// this function tries to simplify it. We know 3178 /// that PBI and BI are both conditional branches, and BI is in one of the 3179 /// successor blocks of PBI - PBI branches to BI. 3180 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3181 const DataLayout &DL) { 3182 assert(PBI->isConditional() && BI->isConditional()); 3183 BasicBlock *BB = BI->getParent(); 3184 3185 // If this block ends with a branch instruction, and if there is a 3186 // predecessor that ends on a branch of the same condition, make 3187 // this conditional branch redundant. 3188 if (PBI->getCondition() == BI->getCondition() && 3189 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3190 // Okay, the outcome of this conditional branch is statically 3191 // knowable. If this block had a single pred, handle specially. 3192 if (BB->getSinglePredecessor()) { 3193 // Turn this into a branch on constant. 3194 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3195 BI->setCondition( 3196 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3197 return true; // Nuke the branch on constant. 3198 } 3199 3200 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3201 // in the constant and simplify the block result. Subsequent passes of 3202 // simplifycfg will thread the block. 3203 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3204 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3205 PHINode *NewPN = PHINode::Create( 3206 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3207 BI->getCondition()->getName() + ".pr", &BB->front()); 3208 // Okay, we're going to insert the PHI node. Since PBI is not the only 3209 // predecessor, compute the PHI'd conditional value for all of the preds. 3210 // Any predecessor where the condition is not computable we keep symbolic. 3211 for (pred_iterator PI = PB; PI != PE; ++PI) { 3212 BasicBlock *P = *PI; 3213 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3214 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3215 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3216 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3217 NewPN->addIncoming( 3218 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3219 P); 3220 } else { 3221 NewPN->addIncoming(BI->getCondition(), P); 3222 } 3223 } 3224 3225 BI->setCondition(NewPN); 3226 return true; 3227 } 3228 } 3229 3230 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3231 if (CE->canTrap()) 3232 return false; 3233 3234 // If both branches are conditional and both contain stores to the same 3235 // address, remove the stores from the conditionals and create a conditional 3236 // merged store at the end. 3237 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3238 return true; 3239 3240 // If this is a conditional branch in an empty block, and if any 3241 // predecessors are a conditional branch to one of our destinations, 3242 // fold the conditions into logical ops and one cond br. 3243 3244 // Ignore dbg intrinsics. 3245 if (&*BB->instructionsWithoutDebug().begin() != BI) 3246 return false; 3247 3248 int PBIOp, BIOp; 3249 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3250 PBIOp = 0; 3251 BIOp = 0; 3252 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3253 PBIOp = 0; 3254 BIOp = 1; 3255 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3256 PBIOp = 1; 3257 BIOp = 0; 3258 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3259 PBIOp = 1; 3260 BIOp = 1; 3261 } else { 3262 return false; 3263 } 3264 3265 // Check to make sure that the other destination of this branch 3266 // isn't BB itself. If so, this is an infinite loop that will 3267 // keep getting unwound. 3268 if (PBI->getSuccessor(PBIOp) == BB) 3269 return false; 3270 3271 // Do not perform this transformation if it would require 3272 // insertion of a large number of select instructions. For targets 3273 // without predication/cmovs, this is a big pessimization. 3274 3275 // Also do not perform this transformation if any phi node in the common 3276 // destination block can trap when reached by BB or PBB (PR17073). In that 3277 // case, it would be unsafe to hoist the operation into a select instruction. 3278 3279 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3280 unsigned NumPhis = 0; 3281 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3282 ++II, ++NumPhis) { 3283 if (NumPhis > 2) // Disable this xform. 3284 return false; 3285 3286 PHINode *PN = cast<PHINode>(II); 3287 Value *BIV = PN->getIncomingValueForBlock(BB); 3288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3289 if (CE->canTrap()) 3290 return false; 3291 3292 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3293 Value *PBIV = PN->getIncomingValue(PBBIdx); 3294 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3295 if (CE->canTrap()) 3296 return false; 3297 } 3298 3299 // Finally, if everything is ok, fold the branches to logical ops. 3300 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3301 3302 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3303 << "AND: " << *BI->getParent()); 3304 3305 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3306 // branch in it, where one edge (OtherDest) goes back to itself but the other 3307 // exits. We don't *know* that the program avoids the infinite loop 3308 // (even though that seems likely). If we do this xform naively, we'll end up 3309 // recursively unpeeling the loop. Since we know that (after the xform is 3310 // done) that the block *is* infinite if reached, we just make it an obviously 3311 // infinite loop with no cond branch. 3312 if (OtherDest == BB) { 3313 // Insert it at the end of the function, because it's either code, 3314 // or it won't matter if it's hot. :) 3315 BasicBlock *InfLoopBlock = 3316 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3317 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3318 OtherDest = InfLoopBlock; 3319 } 3320 3321 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3322 3323 // BI may have other predecessors. Because of this, we leave 3324 // it alone, but modify PBI. 3325 3326 // Make sure we get to CommonDest on True&True directions. 3327 Value *PBICond = PBI->getCondition(); 3328 IRBuilder<NoFolder> Builder(PBI); 3329 if (PBIOp) 3330 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3331 3332 Value *BICond = BI->getCondition(); 3333 if (BIOp) 3334 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3335 3336 // Merge the conditions. 3337 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3338 3339 // Modify PBI to branch on the new condition to the new dests. 3340 PBI->setCondition(Cond); 3341 PBI->setSuccessor(0, CommonDest); 3342 PBI->setSuccessor(1, OtherDest); 3343 3344 // Update branch weight for PBI. 3345 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3346 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3347 bool HasWeights = 3348 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3349 SuccTrueWeight, SuccFalseWeight); 3350 if (HasWeights) { 3351 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3352 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3353 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3354 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3355 // The weight to CommonDest should be PredCommon * SuccTotal + 3356 // PredOther * SuccCommon. 3357 // The weight to OtherDest should be PredOther * SuccOther. 3358 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3359 PredOther * SuccCommon, 3360 PredOther * SuccOther}; 3361 // Halve the weights if any of them cannot fit in an uint32_t 3362 FitWeights(NewWeights); 3363 3364 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3365 } 3366 3367 // OtherDest may have phi nodes. If so, add an entry from PBI's 3368 // block that are identical to the entries for BI's block. 3369 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3370 3371 // We know that the CommonDest already had an edge from PBI to 3372 // it. If it has PHIs though, the PHIs may have different 3373 // entries for BB and PBI's BB. If so, insert a select to make 3374 // them agree. 3375 for (PHINode &PN : CommonDest->phis()) { 3376 Value *BIV = PN.getIncomingValueForBlock(BB); 3377 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3378 Value *PBIV = PN.getIncomingValue(PBBIdx); 3379 if (BIV != PBIV) { 3380 // Insert a select in PBI to pick the right value. 3381 SelectInst *NV = cast<SelectInst>( 3382 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3383 PN.setIncomingValue(PBBIdx, NV); 3384 // Although the select has the same condition as PBI, the original branch 3385 // weights for PBI do not apply to the new select because the select's 3386 // 'logical' edges are incoming edges of the phi that is eliminated, not 3387 // the outgoing edges of PBI. 3388 if (HasWeights) { 3389 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3390 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3391 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3392 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3393 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3394 // The weight to PredOtherDest should be PredOther * SuccCommon. 3395 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3396 PredOther * SuccCommon}; 3397 3398 FitWeights(NewWeights); 3399 3400 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3401 } 3402 } 3403 } 3404 3405 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3406 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3407 3408 // This basic block is probably dead. We know it has at least 3409 // one fewer predecessor. 3410 return true; 3411 } 3412 3413 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3414 // true or to FalseBB if Cond is false. 3415 // Takes care of updating the successors and removing the old terminator. 3416 // Also makes sure not to introduce new successors by assuming that edges to 3417 // non-successor TrueBBs and FalseBBs aren't reachable. 3418 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3419 BasicBlock *TrueBB, BasicBlock *FalseBB, 3420 uint32_t TrueWeight, 3421 uint32_t FalseWeight) { 3422 // Remove any superfluous successor edges from the CFG. 3423 // First, figure out which successors to preserve. 3424 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3425 // successor. 3426 BasicBlock *KeepEdge1 = TrueBB; 3427 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3428 3429 // Then remove the rest. 3430 for (BasicBlock *Succ : successors(OldTerm)) { 3431 // Make sure only to keep exactly one copy of each edge. 3432 if (Succ == KeepEdge1) 3433 KeepEdge1 = nullptr; 3434 else if (Succ == KeepEdge2) 3435 KeepEdge2 = nullptr; 3436 else 3437 Succ->removePredecessor(OldTerm->getParent(), 3438 /*KeepOneInputPHIs=*/true); 3439 } 3440 3441 IRBuilder<> Builder(OldTerm); 3442 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3443 3444 // Insert an appropriate new terminator. 3445 if (!KeepEdge1 && !KeepEdge2) { 3446 if (TrueBB == FalseBB) 3447 // We were only looking for one successor, and it was present. 3448 // Create an unconditional branch to it. 3449 Builder.CreateBr(TrueBB); 3450 else { 3451 // We found both of the successors we were looking for. 3452 // Create a conditional branch sharing the condition of the select. 3453 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3454 if (TrueWeight != FalseWeight) 3455 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3456 } 3457 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3458 // Neither of the selected blocks were successors, so this 3459 // terminator must be unreachable. 3460 new UnreachableInst(OldTerm->getContext(), OldTerm); 3461 } else { 3462 // One of the selected values was a successor, but the other wasn't. 3463 // Insert an unconditional branch to the one that was found; 3464 // the edge to the one that wasn't must be unreachable. 3465 if (!KeepEdge1) 3466 // Only TrueBB was found. 3467 Builder.CreateBr(TrueBB); 3468 else 3469 // Only FalseBB was found. 3470 Builder.CreateBr(FalseBB); 3471 } 3472 3473 EraseTerminatorAndDCECond(OldTerm); 3474 return true; 3475 } 3476 3477 // Replaces 3478 // (switch (select cond, X, Y)) on constant X, Y 3479 // with a branch - conditional if X and Y lead to distinct BBs, 3480 // unconditional otherwise. 3481 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3482 // Check for constant integer values in the select. 3483 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3484 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3485 if (!TrueVal || !FalseVal) 3486 return false; 3487 3488 // Find the relevant condition and destinations. 3489 Value *Condition = Select->getCondition(); 3490 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3491 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3492 3493 // Get weight for TrueBB and FalseBB. 3494 uint32_t TrueWeight = 0, FalseWeight = 0; 3495 SmallVector<uint64_t, 8> Weights; 3496 bool HasWeights = HasBranchWeights(SI); 3497 if (HasWeights) { 3498 GetBranchWeights(SI, Weights); 3499 if (Weights.size() == 1 + SI->getNumCases()) { 3500 TrueWeight = 3501 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3502 FalseWeight = 3503 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3504 } 3505 } 3506 3507 // Perform the actual simplification. 3508 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3509 FalseWeight); 3510 } 3511 3512 // Replaces 3513 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3514 // blockaddress(@fn, BlockB))) 3515 // with 3516 // (br cond, BlockA, BlockB). 3517 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3518 // Check that both operands of the select are block addresses. 3519 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3520 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3521 if (!TBA || !FBA) 3522 return false; 3523 3524 // Extract the actual blocks. 3525 BasicBlock *TrueBB = TBA->getBasicBlock(); 3526 BasicBlock *FalseBB = FBA->getBasicBlock(); 3527 3528 // Perform the actual simplification. 3529 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3530 0); 3531 } 3532 3533 /// This is called when we find an icmp instruction 3534 /// (a seteq/setne with a constant) as the only instruction in a 3535 /// block that ends with an uncond branch. We are looking for a very specific 3536 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3537 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3538 /// default value goes to an uncond block with a seteq in it, we get something 3539 /// like: 3540 /// 3541 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3542 /// DEFAULT: 3543 /// %tmp = icmp eq i8 %A, 92 3544 /// br label %end 3545 /// end: 3546 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3547 /// 3548 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3549 /// the PHI, merging the third icmp into the switch. 3550 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3551 ICmpInst *ICI, IRBuilder<> &Builder) { 3552 BasicBlock *BB = ICI->getParent(); 3553 3554 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3555 // complex. 3556 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3557 return false; 3558 3559 Value *V = ICI->getOperand(0); 3560 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3561 3562 // The pattern we're looking for is where our only predecessor is a switch on 3563 // 'V' and this block is the default case for the switch. In this case we can 3564 // fold the compared value into the switch to simplify things. 3565 BasicBlock *Pred = BB->getSinglePredecessor(); 3566 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3567 return false; 3568 3569 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3570 if (SI->getCondition() != V) 3571 return false; 3572 3573 // If BB is reachable on a non-default case, then we simply know the value of 3574 // V in this block. Substitute it and constant fold the icmp instruction 3575 // away. 3576 if (SI->getDefaultDest() != BB) { 3577 ConstantInt *VVal = SI->findCaseDest(BB); 3578 assert(VVal && "Should have a unique destination value"); 3579 ICI->setOperand(0, VVal); 3580 3581 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3582 ICI->replaceAllUsesWith(V); 3583 ICI->eraseFromParent(); 3584 } 3585 // BB is now empty, so it is likely to simplify away. 3586 return requestResimplify(); 3587 } 3588 3589 // Ok, the block is reachable from the default dest. If the constant we're 3590 // comparing exists in one of the other edges, then we can constant fold ICI 3591 // and zap it. 3592 if (SI->findCaseValue(Cst) != SI->case_default()) { 3593 Value *V; 3594 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3595 V = ConstantInt::getFalse(BB->getContext()); 3596 else 3597 V = ConstantInt::getTrue(BB->getContext()); 3598 3599 ICI->replaceAllUsesWith(V); 3600 ICI->eraseFromParent(); 3601 // BB is now empty, so it is likely to simplify away. 3602 return requestResimplify(); 3603 } 3604 3605 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3606 // the block. 3607 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3608 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3609 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3610 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3611 return false; 3612 3613 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3614 // true in the PHI. 3615 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3616 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3617 3618 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3619 std::swap(DefaultCst, NewCst); 3620 3621 // Replace ICI (which is used by the PHI for the default value) with true or 3622 // false depending on if it is EQ or NE. 3623 ICI->replaceAllUsesWith(DefaultCst); 3624 ICI->eraseFromParent(); 3625 3626 // Okay, the switch goes to this block on a default value. Add an edge from 3627 // the switch to the merge point on the compared value. 3628 BasicBlock *NewBB = 3629 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3630 { 3631 SwitchInstProfUpdateWrapper SIW(*SI); 3632 auto W0 = SIW.getSuccessorWeight(0); 3633 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3634 if (W0) { 3635 NewW = ((uint64_t(*W0) + 1) >> 1); 3636 SIW.setSuccessorWeight(0, *NewW); 3637 } 3638 SIW.addCase(Cst, NewBB, NewW); 3639 } 3640 3641 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3642 Builder.SetInsertPoint(NewBB); 3643 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3644 Builder.CreateBr(SuccBlock); 3645 PHIUse->addIncoming(NewCst, NewBB); 3646 return true; 3647 } 3648 3649 /// The specified branch is a conditional branch. 3650 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3651 /// fold it into a switch instruction if so. 3652 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3653 const DataLayout &DL) { 3654 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3655 if (!Cond) 3656 return false; 3657 3658 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3659 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3660 // 'setne's and'ed together, collect them. 3661 3662 // Try to gather values from a chain of and/or to be turned into a switch 3663 ConstantComparesGatherer ConstantCompare(Cond, DL); 3664 // Unpack the result 3665 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3666 Value *CompVal = ConstantCompare.CompValue; 3667 unsigned UsedICmps = ConstantCompare.UsedICmps; 3668 Value *ExtraCase = ConstantCompare.Extra; 3669 3670 // If we didn't have a multiply compared value, fail. 3671 if (!CompVal) 3672 return false; 3673 3674 // Avoid turning single icmps into a switch. 3675 if (UsedICmps <= 1) 3676 return false; 3677 3678 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3679 3680 // There might be duplicate constants in the list, which the switch 3681 // instruction can't handle, remove them now. 3682 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3683 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3684 3685 // If Extra was used, we require at least two switch values to do the 3686 // transformation. A switch with one value is just a conditional branch. 3687 if (ExtraCase && Values.size() < 2) 3688 return false; 3689 3690 // TODO: Preserve branch weight metadata, similarly to how 3691 // FoldValueComparisonIntoPredecessors preserves it. 3692 3693 // Figure out which block is which destination. 3694 BasicBlock *DefaultBB = BI->getSuccessor(1); 3695 BasicBlock *EdgeBB = BI->getSuccessor(0); 3696 if (!TrueWhenEqual) 3697 std::swap(DefaultBB, EdgeBB); 3698 3699 BasicBlock *BB = BI->getParent(); 3700 3701 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3702 << " cases into SWITCH. BB is:\n" 3703 << *BB); 3704 3705 // If there are any extra values that couldn't be folded into the switch 3706 // then we evaluate them with an explicit branch first. Split the block 3707 // right before the condbr to handle it. 3708 if (ExtraCase) { 3709 BasicBlock *NewBB = 3710 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3711 // Remove the uncond branch added to the old block. 3712 Instruction *OldTI = BB->getTerminator(); 3713 Builder.SetInsertPoint(OldTI); 3714 3715 if (TrueWhenEqual) 3716 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3717 else 3718 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3719 3720 OldTI->eraseFromParent(); 3721 3722 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3723 // for the edge we just added. 3724 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3725 3726 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3727 << "\nEXTRABB = " << *BB); 3728 BB = NewBB; 3729 } 3730 3731 Builder.SetInsertPoint(BI); 3732 // Convert pointer to int before we switch. 3733 if (CompVal->getType()->isPointerTy()) { 3734 CompVal = Builder.CreatePtrToInt( 3735 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3736 } 3737 3738 // Create the new switch instruction now. 3739 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3740 3741 // Add all of the 'cases' to the switch instruction. 3742 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3743 New->addCase(Values[i], EdgeBB); 3744 3745 // We added edges from PI to the EdgeBB. As such, if there were any 3746 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3747 // the number of edges added. 3748 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3749 PHINode *PN = cast<PHINode>(BBI); 3750 Value *InVal = PN->getIncomingValueForBlock(BB); 3751 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3752 PN->addIncoming(InVal, BB); 3753 } 3754 3755 // Erase the old branch instruction. 3756 EraseTerminatorAndDCECond(BI); 3757 3758 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3759 return true; 3760 } 3761 3762 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3763 if (isa<PHINode>(RI->getValue())) 3764 return SimplifyCommonResume(RI); 3765 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3766 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3767 // The resume must unwind the exception that caused control to branch here. 3768 return SimplifySingleResume(RI); 3769 3770 return false; 3771 } 3772 3773 // Simplify resume that is shared by several landing pads (phi of landing pad). 3774 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3775 BasicBlock *BB = RI->getParent(); 3776 3777 // Check that there are no other instructions except for debug intrinsics 3778 // between the phi of landing pads (RI->getValue()) and resume instruction. 3779 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3780 E = RI->getIterator(); 3781 while (++I != E) 3782 if (!isa<DbgInfoIntrinsic>(I)) 3783 return false; 3784 3785 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3786 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3787 3788 // Check incoming blocks to see if any of them are trivial. 3789 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3790 Idx++) { 3791 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3792 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3793 3794 // If the block has other successors, we can not delete it because 3795 // it has other dependents. 3796 if (IncomingBB->getUniqueSuccessor() != BB) 3797 continue; 3798 3799 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3800 // Not the landing pad that caused the control to branch here. 3801 if (IncomingValue != LandingPad) 3802 continue; 3803 3804 bool isTrivial = true; 3805 3806 I = IncomingBB->getFirstNonPHI()->getIterator(); 3807 E = IncomingBB->getTerminator()->getIterator(); 3808 while (++I != E) 3809 if (!isa<DbgInfoIntrinsic>(I)) { 3810 isTrivial = false; 3811 break; 3812 } 3813 3814 if (isTrivial) 3815 TrivialUnwindBlocks.insert(IncomingBB); 3816 } 3817 3818 // If no trivial unwind blocks, don't do any simplifications. 3819 if (TrivialUnwindBlocks.empty()) 3820 return false; 3821 3822 // Turn all invokes that unwind here into calls. 3823 for (auto *TrivialBB : TrivialUnwindBlocks) { 3824 // Blocks that will be simplified should be removed from the phi node. 3825 // Note there could be multiple edges to the resume block, and we need 3826 // to remove them all. 3827 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3828 BB->removePredecessor(TrivialBB, true); 3829 3830 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3831 PI != PE;) { 3832 BasicBlock *Pred = *PI++; 3833 removeUnwindEdge(Pred); 3834 } 3835 3836 // In each SimplifyCFG run, only the current processed block can be erased. 3837 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3838 // of erasing TrivialBB, we only remove the branch to the common resume 3839 // block so that we can later erase the resume block since it has no 3840 // predecessors. 3841 TrivialBB->getTerminator()->eraseFromParent(); 3842 new UnreachableInst(RI->getContext(), TrivialBB); 3843 } 3844 3845 // Delete the resume block if all its predecessors have been removed. 3846 if (pred_empty(BB)) 3847 BB->eraseFromParent(); 3848 3849 return !TrivialUnwindBlocks.empty(); 3850 } 3851 3852 // Simplify resume that is only used by a single (non-phi) landing pad. 3853 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3854 BasicBlock *BB = RI->getParent(); 3855 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3856 assert(RI->getValue() == LPInst && 3857 "Resume must unwind the exception that caused control to here"); 3858 3859 // Check that there are no other instructions except for debug intrinsics. 3860 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3861 while (++I != E) 3862 if (!isa<DbgInfoIntrinsic>(I)) 3863 return false; 3864 3865 // Turn all invokes that unwind here into calls and delete the basic block. 3866 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3867 BasicBlock *Pred = *PI++; 3868 removeUnwindEdge(Pred); 3869 } 3870 3871 // The landingpad is now unreachable. Zap it. 3872 if (LoopHeaders) 3873 LoopHeaders->erase(BB); 3874 BB->eraseFromParent(); 3875 return true; 3876 } 3877 3878 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3879 // If this is a trivial cleanup pad that executes no instructions, it can be 3880 // eliminated. If the cleanup pad continues to the caller, any predecessor 3881 // that is an EH pad will be updated to continue to the caller and any 3882 // predecessor that terminates with an invoke instruction will have its invoke 3883 // instruction converted to a call instruction. If the cleanup pad being 3884 // simplified does not continue to the caller, each predecessor will be 3885 // updated to continue to the unwind destination of the cleanup pad being 3886 // simplified. 3887 BasicBlock *BB = RI->getParent(); 3888 CleanupPadInst *CPInst = RI->getCleanupPad(); 3889 if (CPInst->getParent() != BB) 3890 // This isn't an empty cleanup. 3891 return false; 3892 3893 // We cannot kill the pad if it has multiple uses. This typically arises 3894 // from unreachable basic blocks. 3895 if (!CPInst->hasOneUse()) 3896 return false; 3897 3898 // Check that there are no other instructions except for benign intrinsics. 3899 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3900 while (++I != E) { 3901 auto *II = dyn_cast<IntrinsicInst>(I); 3902 if (!II) 3903 return false; 3904 3905 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3906 switch (IntrinsicID) { 3907 case Intrinsic::dbg_declare: 3908 case Intrinsic::dbg_value: 3909 case Intrinsic::dbg_label: 3910 case Intrinsic::lifetime_end: 3911 break; 3912 default: 3913 return false; 3914 } 3915 } 3916 3917 // If the cleanup return we are simplifying unwinds to the caller, this will 3918 // set UnwindDest to nullptr. 3919 BasicBlock *UnwindDest = RI->getUnwindDest(); 3920 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3921 3922 // We're about to remove BB from the control flow. Before we do, sink any 3923 // PHINodes into the unwind destination. Doing this before changing the 3924 // control flow avoids some potentially slow checks, since we can currently 3925 // be certain that UnwindDest and BB have no common predecessors (since they 3926 // are both EH pads). 3927 if (UnwindDest) { 3928 // First, go through the PHI nodes in UnwindDest and update any nodes that 3929 // reference the block we are removing 3930 for (BasicBlock::iterator I = UnwindDest->begin(), 3931 IE = DestEHPad->getIterator(); 3932 I != IE; ++I) { 3933 PHINode *DestPN = cast<PHINode>(I); 3934 3935 int Idx = DestPN->getBasicBlockIndex(BB); 3936 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3937 assert(Idx != -1); 3938 // This PHI node has an incoming value that corresponds to a control 3939 // path through the cleanup pad we are removing. If the incoming 3940 // value is in the cleanup pad, it must be a PHINode (because we 3941 // verified above that the block is otherwise empty). Otherwise, the 3942 // value is either a constant or a value that dominates the cleanup 3943 // pad being removed. 3944 // 3945 // Because BB and UnwindDest are both EH pads, all of their 3946 // predecessors must unwind to these blocks, and since no instruction 3947 // can have multiple unwind destinations, there will be no overlap in 3948 // incoming blocks between SrcPN and DestPN. 3949 Value *SrcVal = DestPN->getIncomingValue(Idx); 3950 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3951 3952 // Remove the entry for the block we are deleting. 3953 DestPN->removeIncomingValue(Idx, false); 3954 3955 if (SrcPN && SrcPN->getParent() == BB) { 3956 // If the incoming value was a PHI node in the cleanup pad we are 3957 // removing, we need to merge that PHI node's incoming values into 3958 // DestPN. 3959 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3960 SrcIdx != SrcE; ++SrcIdx) { 3961 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3962 SrcPN->getIncomingBlock(SrcIdx)); 3963 } 3964 } else { 3965 // Otherwise, the incoming value came from above BB and 3966 // so we can just reuse it. We must associate all of BB's 3967 // predecessors with this value. 3968 for (auto *pred : predecessors(BB)) { 3969 DestPN->addIncoming(SrcVal, pred); 3970 } 3971 } 3972 } 3973 3974 // Sink any remaining PHI nodes directly into UnwindDest. 3975 Instruction *InsertPt = DestEHPad; 3976 for (BasicBlock::iterator I = BB->begin(), 3977 IE = BB->getFirstNonPHI()->getIterator(); 3978 I != IE;) { 3979 // The iterator must be incremented here because the instructions are 3980 // being moved to another block. 3981 PHINode *PN = cast<PHINode>(I++); 3982 if (PN->use_empty()) 3983 // If the PHI node has no uses, just leave it. It will be erased 3984 // when we erase BB below. 3985 continue; 3986 3987 // Otherwise, sink this PHI node into UnwindDest. 3988 // Any predecessors to UnwindDest which are not already represented 3989 // must be back edges which inherit the value from the path through 3990 // BB. In this case, the PHI value must reference itself. 3991 for (auto *pred : predecessors(UnwindDest)) 3992 if (pred != BB) 3993 PN->addIncoming(PN, pred); 3994 PN->moveBefore(InsertPt); 3995 } 3996 } 3997 3998 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3999 // The iterator must be updated here because we are removing this pred. 4000 BasicBlock *PredBB = *PI++; 4001 if (UnwindDest == nullptr) { 4002 removeUnwindEdge(PredBB); 4003 } else { 4004 Instruction *TI = PredBB->getTerminator(); 4005 TI->replaceUsesOfWith(BB, UnwindDest); 4006 } 4007 } 4008 4009 // The cleanup pad is now unreachable. Zap it. 4010 BB->eraseFromParent(); 4011 return true; 4012 } 4013 4014 // Try to merge two cleanuppads together. 4015 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4016 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4017 // with. 4018 BasicBlock *UnwindDest = RI->getUnwindDest(); 4019 if (!UnwindDest) 4020 return false; 4021 4022 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4023 // be safe to merge without code duplication. 4024 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4025 return false; 4026 4027 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4028 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4029 if (!SuccessorCleanupPad) 4030 return false; 4031 4032 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4033 // Replace any uses of the successor cleanupad with the predecessor pad 4034 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4035 // funclet bundle operands. 4036 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4037 // Remove the old cleanuppad. 4038 SuccessorCleanupPad->eraseFromParent(); 4039 // Now, we simply replace the cleanupret with a branch to the unwind 4040 // destination. 4041 BranchInst::Create(UnwindDest, RI->getParent()); 4042 RI->eraseFromParent(); 4043 4044 return true; 4045 } 4046 4047 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4048 // It is possible to transiantly have an undef cleanuppad operand because we 4049 // have deleted some, but not all, dead blocks. 4050 // Eventually, this block will be deleted. 4051 if (isa<UndefValue>(RI->getOperand(0))) 4052 return false; 4053 4054 if (mergeCleanupPad(RI)) 4055 return true; 4056 4057 if (removeEmptyCleanup(RI)) 4058 return true; 4059 4060 return false; 4061 } 4062 4063 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4064 BasicBlock *BB = RI->getParent(); 4065 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4066 return false; 4067 4068 // Find predecessors that end with branches. 4069 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4070 SmallVector<BranchInst *, 8> CondBranchPreds; 4071 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4072 BasicBlock *P = *PI; 4073 Instruction *PTI = P->getTerminator(); 4074 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4075 if (BI->isUnconditional()) 4076 UncondBranchPreds.push_back(P); 4077 else 4078 CondBranchPreds.push_back(BI); 4079 } 4080 } 4081 4082 // If we found some, do the transformation! 4083 if (!UncondBranchPreds.empty() && DupRet) { 4084 while (!UncondBranchPreds.empty()) { 4085 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4086 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4087 << "INTO UNCOND BRANCH PRED: " << *Pred); 4088 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4089 } 4090 4091 // If we eliminated all predecessors of the block, delete the block now. 4092 if (pred_empty(BB)) { 4093 // We know there are no successors, so just nuke the block. 4094 if (LoopHeaders) 4095 LoopHeaders->erase(BB); 4096 BB->eraseFromParent(); 4097 } 4098 4099 return true; 4100 } 4101 4102 // Check out all of the conditional branches going to this return 4103 // instruction. If any of them just select between returns, change the 4104 // branch itself into a select/return pair. 4105 while (!CondBranchPreds.empty()) { 4106 BranchInst *BI = CondBranchPreds.pop_back_val(); 4107 4108 // Check to see if the non-BB successor is also a return block. 4109 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4110 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4111 SimplifyCondBranchToTwoReturns(BI, Builder)) 4112 return true; 4113 } 4114 return false; 4115 } 4116 4117 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4118 BasicBlock *BB = UI->getParent(); 4119 4120 bool Changed = false; 4121 4122 // If there are any instructions immediately before the unreachable that can 4123 // be removed, do so. 4124 while (UI->getIterator() != BB->begin()) { 4125 BasicBlock::iterator BBI = UI->getIterator(); 4126 --BBI; 4127 // Do not delete instructions that can have side effects which might cause 4128 // the unreachable to not be reachable; specifically, calls and volatile 4129 // operations may have this effect. 4130 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4131 break; 4132 4133 if (BBI->mayHaveSideEffects()) { 4134 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4135 if (SI->isVolatile()) 4136 break; 4137 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4138 if (LI->isVolatile()) 4139 break; 4140 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4141 if (RMWI->isVolatile()) 4142 break; 4143 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4144 if (CXI->isVolatile()) 4145 break; 4146 } else if (isa<CatchPadInst>(BBI)) { 4147 // A catchpad may invoke exception object constructors and such, which 4148 // in some languages can be arbitrary code, so be conservative by 4149 // default. 4150 // For CoreCLR, it just involves a type test, so can be removed. 4151 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4152 EHPersonality::CoreCLR) 4153 break; 4154 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4155 !isa<LandingPadInst>(BBI)) { 4156 break; 4157 } 4158 // Note that deleting LandingPad's here is in fact okay, although it 4159 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4160 // all the predecessors of this block will be the unwind edges of Invokes, 4161 // and we can therefore guarantee this block will be erased. 4162 } 4163 4164 // Delete this instruction (any uses are guaranteed to be dead) 4165 if (!BBI->use_empty()) 4166 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4167 BBI->eraseFromParent(); 4168 Changed = true; 4169 } 4170 4171 // If the unreachable instruction is the first in the block, take a gander 4172 // at all of the predecessors of this instruction, and simplify them. 4173 if (&BB->front() != UI) 4174 return Changed; 4175 4176 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4177 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4178 Instruction *TI = Preds[i]->getTerminator(); 4179 IRBuilder<> Builder(TI); 4180 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4181 if (BI->isUnconditional()) { 4182 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4183 new UnreachableInst(TI->getContext(), TI); 4184 TI->eraseFromParent(); 4185 Changed = true; 4186 } else { 4187 Value* Cond = BI->getCondition(); 4188 if (BI->getSuccessor(0) == BB) { 4189 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4190 Builder.CreateBr(BI->getSuccessor(1)); 4191 } else { 4192 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4193 Builder.CreateAssumption(Cond); 4194 Builder.CreateBr(BI->getSuccessor(0)); 4195 } 4196 EraseTerminatorAndDCECond(BI); 4197 Changed = true; 4198 } 4199 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4200 SwitchInstProfUpdateWrapper SU(*SI); 4201 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4202 if (i->getCaseSuccessor() != BB) { 4203 ++i; 4204 continue; 4205 } 4206 BB->removePredecessor(SU->getParent()); 4207 i = SU.removeCase(i); 4208 e = SU->case_end(); 4209 Changed = true; 4210 } 4211 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4212 if (II->getUnwindDest() == BB) { 4213 removeUnwindEdge(TI->getParent()); 4214 Changed = true; 4215 } 4216 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4217 if (CSI->getUnwindDest() == BB) { 4218 removeUnwindEdge(TI->getParent()); 4219 Changed = true; 4220 continue; 4221 } 4222 4223 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4224 E = CSI->handler_end(); 4225 I != E; ++I) { 4226 if (*I == BB) { 4227 CSI->removeHandler(I); 4228 --I; 4229 --E; 4230 Changed = true; 4231 } 4232 } 4233 if (CSI->getNumHandlers() == 0) { 4234 BasicBlock *CatchSwitchBB = CSI->getParent(); 4235 if (CSI->hasUnwindDest()) { 4236 // Redirect preds to the unwind dest 4237 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4238 } else { 4239 // Rewrite all preds to unwind to caller (or from invoke to call). 4240 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4241 for (BasicBlock *EHPred : EHPreds) 4242 removeUnwindEdge(EHPred); 4243 } 4244 // The catchswitch is no longer reachable. 4245 new UnreachableInst(CSI->getContext(), CSI); 4246 CSI->eraseFromParent(); 4247 Changed = true; 4248 } 4249 } else if (isa<CleanupReturnInst>(TI)) { 4250 new UnreachableInst(TI->getContext(), TI); 4251 TI->eraseFromParent(); 4252 Changed = true; 4253 } 4254 } 4255 4256 // If this block is now dead, remove it. 4257 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4258 // We know there are no successors, so just nuke the block. 4259 if (LoopHeaders) 4260 LoopHeaders->erase(BB); 4261 BB->eraseFromParent(); 4262 return true; 4263 } 4264 4265 return Changed; 4266 } 4267 4268 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4269 assert(Cases.size() >= 1); 4270 4271 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4272 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4273 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4274 return false; 4275 } 4276 return true; 4277 } 4278 4279 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4280 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4281 BasicBlock *NewDefaultBlock = 4282 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4283 Switch->setDefaultDest(&*NewDefaultBlock); 4284 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4285 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4286 new UnreachableInst(Switch->getContext(), NewTerminator); 4287 EraseTerminatorAndDCECond(NewTerminator); 4288 } 4289 4290 /// Turn a switch with two reachable destinations into an integer range 4291 /// comparison and branch. 4292 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4293 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4294 4295 bool HasDefault = 4296 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4297 4298 // Partition the cases into two sets with different destinations. 4299 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4300 BasicBlock *DestB = nullptr; 4301 SmallVector<ConstantInt *, 16> CasesA; 4302 SmallVector<ConstantInt *, 16> CasesB; 4303 4304 for (auto Case : SI->cases()) { 4305 BasicBlock *Dest = Case.getCaseSuccessor(); 4306 if (!DestA) 4307 DestA = Dest; 4308 if (Dest == DestA) { 4309 CasesA.push_back(Case.getCaseValue()); 4310 continue; 4311 } 4312 if (!DestB) 4313 DestB = Dest; 4314 if (Dest == DestB) { 4315 CasesB.push_back(Case.getCaseValue()); 4316 continue; 4317 } 4318 return false; // More than two destinations. 4319 } 4320 4321 assert(DestA && DestB && 4322 "Single-destination switch should have been folded."); 4323 assert(DestA != DestB); 4324 assert(DestB != SI->getDefaultDest()); 4325 assert(!CasesB.empty() && "There must be non-default cases."); 4326 assert(!CasesA.empty() || HasDefault); 4327 4328 // Figure out if one of the sets of cases form a contiguous range. 4329 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4330 BasicBlock *ContiguousDest = nullptr; 4331 BasicBlock *OtherDest = nullptr; 4332 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4333 ContiguousCases = &CasesA; 4334 ContiguousDest = DestA; 4335 OtherDest = DestB; 4336 } else if (CasesAreContiguous(CasesB)) { 4337 ContiguousCases = &CasesB; 4338 ContiguousDest = DestB; 4339 OtherDest = DestA; 4340 } else 4341 return false; 4342 4343 // Start building the compare and branch. 4344 4345 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4346 Constant *NumCases = 4347 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4348 4349 Value *Sub = SI->getCondition(); 4350 if (!Offset->isNullValue()) 4351 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4352 4353 Value *Cmp; 4354 // If NumCases overflowed, then all possible values jump to the successor. 4355 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4356 Cmp = ConstantInt::getTrue(SI->getContext()); 4357 else 4358 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4359 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4360 4361 // Update weight for the newly-created conditional branch. 4362 if (HasBranchWeights(SI)) { 4363 SmallVector<uint64_t, 8> Weights; 4364 GetBranchWeights(SI, Weights); 4365 if (Weights.size() == 1 + SI->getNumCases()) { 4366 uint64_t TrueWeight = 0; 4367 uint64_t FalseWeight = 0; 4368 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4369 if (SI->getSuccessor(I) == ContiguousDest) 4370 TrueWeight += Weights[I]; 4371 else 4372 FalseWeight += Weights[I]; 4373 } 4374 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4375 TrueWeight /= 2; 4376 FalseWeight /= 2; 4377 } 4378 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4379 } 4380 } 4381 4382 // Prune obsolete incoming values off the successors' PHI nodes. 4383 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4384 unsigned PreviousEdges = ContiguousCases->size(); 4385 if (ContiguousDest == SI->getDefaultDest()) 4386 ++PreviousEdges; 4387 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4388 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4389 } 4390 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4391 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4392 if (OtherDest == SI->getDefaultDest()) 4393 ++PreviousEdges; 4394 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4395 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4396 } 4397 4398 // Clean up the default block - it may have phis or other instructions before 4399 // the unreachable terminator. 4400 if (!HasDefault) 4401 createUnreachableSwitchDefault(SI); 4402 4403 // Drop the switch. 4404 SI->eraseFromParent(); 4405 4406 return true; 4407 } 4408 4409 /// Compute masked bits for the condition of a switch 4410 /// and use it to remove dead cases. 4411 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4412 const DataLayout &DL) { 4413 Value *Cond = SI->getCondition(); 4414 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4415 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4416 4417 // We can also eliminate cases by determining that their values are outside of 4418 // the limited range of the condition based on how many significant (non-sign) 4419 // bits are in the condition value. 4420 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4421 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4422 4423 // Gather dead cases. 4424 SmallVector<ConstantInt *, 8> DeadCases; 4425 for (auto &Case : SI->cases()) { 4426 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4427 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4428 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4429 DeadCases.push_back(Case.getCaseValue()); 4430 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4431 << " is dead.\n"); 4432 } 4433 } 4434 4435 // If we can prove that the cases must cover all possible values, the 4436 // default destination becomes dead and we can remove it. If we know some 4437 // of the bits in the value, we can use that to more precisely compute the 4438 // number of possible unique case values. 4439 bool HasDefault = 4440 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4441 const unsigned NumUnknownBits = 4442 Bits - (Known.Zero | Known.One).countPopulation(); 4443 assert(NumUnknownBits <= Bits); 4444 if (HasDefault && DeadCases.empty() && 4445 NumUnknownBits < 64 /* avoid overflow */ && 4446 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4447 createUnreachableSwitchDefault(SI); 4448 return true; 4449 } 4450 4451 if (DeadCases.empty()) 4452 return false; 4453 4454 SwitchInstProfUpdateWrapper SIW(*SI); 4455 for (ConstantInt *DeadCase : DeadCases) { 4456 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4457 assert(CaseI != SI->case_default() && 4458 "Case was not found. Probably mistake in DeadCases forming."); 4459 // Prune unused values from PHI nodes. 4460 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4461 SIW.removeCase(CaseI); 4462 } 4463 4464 return true; 4465 } 4466 4467 /// If BB would be eligible for simplification by 4468 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4469 /// by an unconditional branch), look at the phi node for BB in the successor 4470 /// block and see if the incoming value is equal to CaseValue. If so, return 4471 /// the phi node, and set PhiIndex to BB's index in the phi node. 4472 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4473 BasicBlock *BB, int *PhiIndex) { 4474 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4475 return nullptr; // BB must be empty to be a candidate for simplification. 4476 if (!BB->getSinglePredecessor()) 4477 return nullptr; // BB must be dominated by the switch. 4478 4479 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4480 if (!Branch || !Branch->isUnconditional()) 4481 return nullptr; // Terminator must be unconditional branch. 4482 4483 BasicBlock *Succ = Branch->getSuccessor(0); 4484 4485 for (PHINode &PHI : Succ->phis()) { 4486 int Idx = PHI.getBasicBlockIndex(BB); 4487 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4488 4489 Value *InValue = PHI.getIncomingValue(Idx); 4490 if (InValue != CaseValue) 4491 continue; 4492 4493 *PhiIndex = Idx; 4494 return &PHI; 4495 } 4496 4497 return nullptr; 4498 } 4499 4500 /// Try to forward the condition of a switch instruction to a phi node 4501 /// dominated by the switch, if that would mean that some of the destination 4502 /// blocks of the switch can be folded away. Return true if a change is made. 4503 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4504 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4505 4506 ForwardingNodesMap ForwardingNodes; 4507 BasicBlock *SwitchBlock = SI->getParent(); 4508 bool Changed = false; 4509 for (auto &Case : SI->cases()) { 4510 ConstantInt *CaseValue = Case.getCaseValue(); 4511 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4512 4513 // Replace phi operands in successor blocks that are using the constant case 4514 // value rather than the switch condition variable: 4515 // switchbb: 4516 // switch i32 %x, label %default [ 4517 // i32 17, label %succ 4518 // ... 4519 // succ: 4520 // %r = phi i32 ... [ 17, %switchbb ] ... 4521 // --> 4522 // %r = phi i32 ... [ %x, %switchbb ] ... 4523 4524 for (PHINode &Phi : CaseDest->phis()) { 4525 // This only works if there is exactly 1 incoming edge from the switch to 4526 // a phi. If there is >1, that means multiple cases of the switch map to 1 4527 // value in the phi, and that phi value is not the switch condition. Thus, 4528 // this transform would not make sense (the phi would be invalid because 4529 // a phi can't have different incoming values from the same block). 4530 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4531 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4532 count(Phi.blocks(), SwitchBlock) == 1) { 4533 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4534 Changed = true; 4535 } 4536 } 4537 4538 // Collect phi nodes that are indirectly using this switch's case constants. 4539 int PhiIdx; 4540 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4541 ForwardingNodes[Phi].push_back(PhiIdx); 4542 } 4543 4544 for (auto &ForwardingNode : ForwardingNodes) { 4545 PHINode *Phi = ForwardingNode.first; 4546 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4547 if (Indexes.size() < 2) 4548 continue; 4549 4550 for (int Index : Indexes) 4551 Phi->setIncomingValue(Index, SI->getCondition()); 4552 Changed = true; 4553 } 4554 4555 return Changed; 4556 } 4557 4558 /// Return true if the backend will be able to handle 4559 /// initializing an array of constants like C. 4560 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4561 if (C->isThreadDependent()) 4562 return false; 4563 if (C->isDLLImportDependent()) 4564 return false; 4565 4566 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4567 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4568 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4569 return false; 4570 4571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4572 if (!CE->isGEPWithNoNotionalOverIndexing()) 4573 return false; 4574 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4575 return false; 4576 } 4577 4578 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4579 return false; 4580 4581 return true; 4582 } 4583 4584 /// If V is a Constant, return it. Otherwise, try to look up 4585 /// its constant value in ConstantPool, returning 0 if it's not there. 4586 static Constant * 4587 LookupConstant(Value *V, 4588 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4589 if (Constant *C = dyn_cast<Constant>(V)) 4590 return C; 4591 return ConstantPool.lookup(V); 4592 } 4593 4594 /// Try to fold instruction I into a constant. This works for 4595 /// simple instructions such as binary operations where both operands are 4596 /// constant or can be replaced by constants from the ConstantPool. Returns the 4597 /// resulting constant on success, 0 otherwise. 4598 static Constant * 4599 ConstantFold(Instruction *I, const DataLayout &DL, 4600 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4601 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4602 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4603 if (!A) 4604 return nullptr; 4605 if (A->isAllOnesValue()) 4606 return LookupConstant(Select->getTrueValue(), ConstantPool); 4607 if (A->isNullValue()) 4608 return LookupConstant(Select->getFalseValue(), ConstantPool); 4609 return nullptr; 4610 } 4611 4612 SmallVector<Constant *, 4> COps; 4613 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4614 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4615 COps.push_back(A); 4616 else 4617 return nullptr; 4618 } 4619 4620 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4621 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4622 COps[1], DL); 4623 } 4624 4625 return ConstantFoldInstOperands(I, COps, DL); 4626 } 4627 4628 /// Try to determine the resulting constant values in phi nodes 4629 /// at the common destination basic block, *CommonDest, for one of the case 4630 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4631 /// case), of a switch instruction SI. 4632 static bool 4633 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4634 BasicBlock **CommonDest, 4635 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4636 const DataLayout &DL, const TargetTransformInfo &TTI) { 4637 // The block from which we enter the common destination. 4638 BasicBlock *Pred = SI->getParent(); 4639 4640 // If CaseDest is empty except for some side-effect free instructions through 4641 // which we can constant-propagate the CaseVal, continue to its successor. 4642 SmallDenseMap<Value *, Constant *> ConstantPool; 4643 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4644 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4645 if (I.isTerminator()) { 4646 // If the terminator is a simple branch, continue to the next block. 4647 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4648 return false; 4649 Pred = CaseDest; 4650 CaseDest = I.getSuccessor(0); 4651 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4652 // Instruction is side-effect free and constant. 4653 4654 // If the instruction has uses outside this block or a phi node slot for 4655 // the block, it is not safe to bypass the instruction since it would then 4656 // no longer dominate all its uses. 4657 for (auto &Use : I.uses()) { 4658 User *User = Use.getUser(); 4659 if (Instruction *I = dyn_cast<Instruction>(User)) 4660 if (I->getParent() == CaseDest) 4661 continue; 4662 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4663 if (Phi->getIncomingBlock(Use) == CaseDest) 4664 continue; 4665 return false; 4666 } 4667 4668 ConstantPool.insert(std::make_pair(&I, C)); 4669 } else { 4670 break; 4671 } 4672 } 4673 4674 // If we did not have a CommonDest before, use the current one. 4675 if (!*CommonDest) 4676 *CommonDest = CaseDest; 4677 // If the destination isn't the common one, abort. 4678 if (CaseDest != *CommonDest) 4679 return false; 4680 4681 // Get the values for this case from phi nodes in the destination block. 4682 for (PHINode &PHI : (*CommonDest)->phis()) { 4683 int Idx = PHI.getBasicBlockIndex(Pred); 4684 if (Idx == -1) 4685 continue; 4686 4687 Constant *ConstVal = 4688 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4689 if (!ConstVal) 4690 return false; 4691 4692 // Be conservative about which kinds of constants we support. 4693 if (!ValidLookupTableConstant(ConstVal, TTI)) 4694 return false; 4695 4696 Res.push_back(std::make_pair(&PHI, ConstVal)); 4697 } 4698 4699 return Res.size() > 0; 4700 } 4701 4702 // Helper function used to add CaseVal to the list of cases that generate 4703 // Result. Returns the updated number of cases that generate this result. 4704 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4705 SwitchCaseResultVectorTy &UniqueResults, 4706 Constant *Result) { 4707 for (auto &I : UniqueResults) { 4708 if (I.first == Result) { 4709 I.second.push_back(CaseVal); 4710 return I.second.size(); 4711 } 4712 } 4713 UniqueResults.push_back( 4714 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4715 return 1; 4716 } 4717 4718 // Helper function that initializes a map containing 4719 // results for the PHI node of the common destination block for a switch 4720 // instruction. Returns false if multiple PHI nodes have been found or if 4721 // there is not a common destination block for the switch. 4722 static bool 4723 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4724 SwitchCaseResultVectorTy &UniqueResults, 4725 Constant *&DefaultResult, const DataLayout &DL, 4726 const TargetTransformInfo &TTI, 4727 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4728 for (auto &I : SI->cases()) { 4729 ConstantInt *CaseVal = I.getCaseValue(); 4730 4731 // Resulting value at phi nodes for this case value. 4732 SwitchCaseResultsTy Results; 4733 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4734 DL, TTI)) 4735 return false; 4736 4737 // Only one value per case is permitted. 4738 if (Results.size() > 1) 4739 return false; 4740 4741 // Add the case->result mapping to UniqueResults. 4742 const uintptr_t NumCasesForResult = 4743 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4744 4745 // Early out if there are too many cases for this result. 4746 if (NumCasesForResult > MaxCasesPerResult) 4747 return false; 4748 4749 // Early out if there are too many unique results. 4750 if (UniqueResults.size() > MaxUniqueResults) 4751 return false; 4752 4753 // Check the PHI consistency. 4754 if (!PHI) 4755 PHI = Results[0].first; 4756 else if (PHI != Results[0].first) 4757 return false; 4758 } 4759 // Find the default result value. 4760 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4761 BasicBlock *DefaultDest = SI->getDefaultDest(); 4762 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4763 DL, TTI); 4764 // If the default value is not found abort unless the default destination 4765 // is unreachable. 4766 DefaultResult = 4767 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4768 if ((!DefaultResult && 4769 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4770 return false; 4771 4772 return true; 4773 } 4774 4775 // Helper function that checks if it is possible to transform a switch with only 4776 // two cases (or two cases + default) that produces a result into a select. 4777 // Example: 4778 // switch (a) { 4779 // case 10: %0 = icmp eq i32 %a, 10 4780 // return 10; %1 = select i1 %0, i32 10, i32 4 4781 // case 20: ----> %2 = icmp eq i32 %a, 20 4782 // return 2; %3 = select i1 %2, i32 2, i32 %1 4783 // default: 4784 // return 4; 4785 // } 4786 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4787 Constant *DefaultResult, Value *Condition, 4788 IRBuilder<> &Builder) { 4789 assert(ResultVector.size() == 2 && 4790 "We should have exactly two unique results at this point"); 4791 // If we are selecting between only two cases transform into a simple 4792 // select or a two-way select if default is possible. 4793 if (ResultVector[0].second.size() == 1 && 4794 ResultVector[1].second.size() == 1) { 4795 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4796 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4797 4798 bool DefaultCanTrigger = DefaultResult; 4799 Value *SelectValue = ResultVector[1].first; 4800 if (DefaultCanTrigger) { 4801 Value *const ValueCompare = 4802 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4803 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4804 DefaultResult, "switch.select"); 4805 } 4806 Value *const ValueCompare = 4807 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4808 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4809 SelectValue, "switch.select"); 4810 } 4811 4812 return nullptr; 4813 } 4814 4815 // Helper function to cleanup a switch instruction that has been converted into 4816 // a select, fixing up PHI nodes and basic blocks. 4817 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4818 Value *SelectValue, 4819 IRBuilder<> &Builder) { 4820 BasicBlock *SelectBB = SI->getParent(); 4821 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4822 PHI->removeIncomingValue(SelectBB); 4823 PHI->addIncoming(SelectValue, SelectBB); 4824 4825 Builder.CreateBr(PHI->getParent()); 4826 4827 // Remove the switch. 4828 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4829 BasicBlock *Succ = SI->getSuccessor(i); 4830 4831 if (Succ == PHI->getParent()) 4832 continue; 4833 Succ->removePredecessor(SelectBB); 4834 } 4835 SI->eraseFromParent(); 4836 } 4837 4838 /// If the switch is only used to initialize one or more 4839 /// phi nodes in a common successor block with only two different 4840 /// constant values, replace the switch with select. 4841 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4842 const DataLayout &DL, 4843 const TargetTransformInfo &TTI) { 4844 Value *const Cond = SI->getCondition(); 4845 PHINode *PHI = nullptr; 4846 BasicBlock *CommonDest = nullptr; 4847 Constant *DefaultResult; 4848 SwitchCaseResultVectorTy UniqueResults; 4849 // Collect all the cases that will deliver the same value from the switch. 4850 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4851 DL, TTI, 2, 1)) 4852 return false; 4853 // Selects choose between maximum two values. 4854 if (UniqueResults.size() != 2) 4855 return false; 4856 assert(PHI != nullptr && "PHI for value select not found"); 4857 4858 Builder.SetInsertPoint(SI); 4859 Value *SelectValue = 4860 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4861 if (SelectValue) { 4862 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4863 return true; 4864 } 4865 // The switch couldn't be converted into a select. 4866 return false; 4867 } 4868 4869 namespace { 4870 4871 /// This class represents a lookup table that can be used to replace a switch. 4872 class SwitchLookupTable { 4873 public: 4874 /// Create a lookup table to use as a switch replacement with the contents 4875 /// of Values, using DefaultValue to fill any holes in the table. 4876 SwitchLookupTable( 4877 Module &M, uint64_t TableSize, ConstantInt *Offset, 4878 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4879 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4880 4881 /// Build instructions with Builder to retrieve the value at 4882 /// the position given by Index in the lookup table. 4883 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4884 4885 /// Return true if a table with TableSize elements of 4886 /// type ElementType would fit in a target-legal register. 4887 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4888 Type *ElementType); 4889 4890 private: 4891 // Depending on the contents of the table, it can be represented in 4892 // different ways. 4893 enum { 4894 // For tables where each element contains the same value, we just have to 4895 // store that single value and return it for each lookup. 4896 SingleValueKind, 4897 4898 // For tables where there is a linear relationship between table index 4899 // and values. We calculate the result with a simple multiplication 4900 // and addition instead of a table lookup. 4901 LinearMapKind, 4902 4903 // For small tables with integer elements, we can pack them into a bitmap 4904 // that fits into a target-legal register. Values are retrieved by 4905 // shift and mask operations. 4906 BitMapKind, 4907 4908 // The table is stored as an array of values. Values are retrieved by load 4909 // instructions from the table. 4910 ArrayKind 4911 } Kind; 4912 4913 // For SingleValueKind, this is the single value. 4914 Constant *SingleValue = nullptr; 4915 4916 // For BitMapKind, this is the bitmap. 4917 ConstantInt *BitMap = nullptr; 4918 IntegerType *BitMapElementTy = nullptr; 4919 4920 // For LinearMapKind, these are the constants used to derive the value. 4921 ConstantInt *LinearOffset = nullptr; 4922 ConstantInt *LinearMultiplier = nullptr; 4923 4924 // For ArrayKind, this is the array. 4925 GlobalVariable *Array = nullptr; 4926 }; 4927 4928 } // end anonymous namespace 4929 4930 SwitchLookupTable::SwitchLookupTable( 4931 Module &M, uint64_t TableSize, ConstantInt *Offset, 4932 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4933 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4934 assert(Values.size() && "Can't build lookup table without values!"); 4935 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4936 4937 // If all values in the table are equal, this is that value. 4938 SingleValue = Values.begin()->second; 4939 4940 Type *ValueType = Values.begin()->second->getType(); 4941 4942 // Build up the table contents. 4943 SmallVector<Constant *, 64> TableContents(TableSize); 4944 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4945 ConstantInt *CaseVal = Values[I].first; 4946 Constant *CaseRes = Values[I].second; 4947 assert(CaseRes->getType() == ValueType); 4948 4949 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4950 TableContents[Idx] = CaseRes; 4951 4952 if (CaseRes != SingleValue) 4953 SingleValue = nullptr; 4954 } 4955 4956 // Fill in any holes in the table with the default result. 4957 if (Values.size() < TableSize) { 4958 assert(DefaultValue && 4959 "Need a default value to fill the lookup table holes."); 4960 assert(DefaultValue->getType() == ValueType); 4961 for (uint64_t I = 0; I < TableSize; ++I) { 4962 if (!TableContents[I]) 4963 TableContents[I] = DefaultValue; 4964 } 4965 4966 if (DefaultValue != SingleValue) 4967 SingleValue = nullptr; 4968 } 4969 4970 // If each element in the table contains the same value, we only need to store 4971 // that single value. 4972 if (SingleValue) { 4973 Kind = SingleValueKind; 4974 return; 4975 } 4976 4977 // Check if we can derive the value with a linear transformation from the 4978 // table index. 4979 if (isa<IntegerType>(ValueType)) { 4980 bool LinearMappingPossible = true; 4981 APInt PrevVal; 4982 APInt DistToPrev; 4983 assert(TableSize >= 2 && "Should be a SingleValue table."); 4984 // Check if there is the same distance between two consecutive values. 4985 for (uint64_t I = 0; I < TableSize; ++I) { 4986 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4987 if (!ConstVal) { 4988 // This is an undef. We could deal with it, but undefs in lookup tables 4989 // are very seldom. It's probably not worth the additional complexity. 4990 LinearMappingPossible = false; 4991 break; 4992 } 4993 const APInt &Val = ConstVal->getValue(); 4994 if (I != 0) { 4995 APInt Dist = Val - PrevVal; 4996 if (I == 1) { 4997 DistToPrev = Dist; 4998 } else if (Dist != DistToPrev) { 4999 LinearMappingPossible = false; 5000 break; 5001 } 5002 } 5003 PrevVal = Val; 5004 } 5005 if (LinearMappingPossible) { 5006 LinearOffset = cast<ConstantInt>(TableContents[0]); 5007 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5008 Kind = LinearMapKind; 5009 ++NumLinearMaps; 5010 return; 5011 } 5012 } 5013 5014 // If the type is integer and the table fits in a register, build a bitmap. 5015 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5016 IntegerType *IT = cast<IntegerType>(ValueType); 5017 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5018 for (uint64_t I = TableSize; I > 0; --I) { 5019 TableInt <<= IT->getBitWidth(); 5020 // Insert values into the bitmap. Undef values are set to zero. 5021 if (!isa<UndefValue>(TableContents[I - 1])) { 5022 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5023 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5024 } 5025 } 5026 BitMap = ConstantInt::get(M.getContext(), TableInt); 5027 BitMapElementTy = IT; 5028 Kind = BitMapKind; 5029 ++NumBitMaps; 5030 return; 5031 } 5032 5033 // Store the table in an array. 5034 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5035 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5036 5037 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5038 GlobalVariable::PrivateLinkage, Initializer, 5039 "switch.table." + FuncName); 5040 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5041 // Set the alignment to that of an array items. We will be only loading one 5042 // value out of it. 5043 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5044 Kind = ArrayKind; 5045 } 5046 5047 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5048 switch (Kind) { 5049 case SingleValueKind: 5050 return SingleValue; 5051 case LinearMapKind: { 5052 // Derive the result value from the input value. 5053 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5054 false, "switch.idx.cast"); 5055 if (!LinearMultiplier->isOne()) 5056 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5057 if (!LinearOffset->isZero()) 5058 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5059 return Result; 5060 } 5061 case BitMapKind: { 5062 // Type of the bitmap (e.g. i59). 5063 IntegerType *MapTy = BitMap->getType(); 5064 5065 // Cast Index to the same type as the bitmap. 5066 // Note: The Index is <= the number of elements in the table, so 5067 // truncating it to the width of the bitmask is safe. 5068 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5069 5070 // Multiply the shift amount by the element width. 5071 ShiftAmt = Builder.CreateMul( 5072 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5073 "switch.shiftamt"); 5074 5075 // Shift down. 5076 Value *DownShifted = 5077 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5078 // Mask off. 5079 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5080 } 5081 case ArrayKind: { 5082 // Make sure the table index will not overflow when treated as signed. 5083 IntegerType *IT = cast<IntegerType>(Index->getType()); 5084 uint64_t TableSize = 5085 Array->getInitializer()->getType()->getArrayNumElements(); 5086 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5087 Index = Builder.CreateZExt( 5088 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5089 "switch.tableidx.zext"); 5090 5091 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5092 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5093 GEPIndices, "switch.gep"); 5094 return Builder.CreateLoad( 5095 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5096 "switch.load"); 5097 } 5098 } 5099 llvm_unreachable("Unknown lookup table kind!"); 5100 } 5101 5102 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5103 uint64_t TableSize, 5104 Type *ElementType) { 5105 auto *IT = dyn_cast<IntegerType>(ElementType); 5106 if (!IT) 5107 return false; 5108 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5109 // are <= 15, we could try to narrow the type. 5110 5111 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5112 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5113 return false; 5114 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5115 } 5116 5117 /// Determine whether a lookup table should be built for this switch, based on 5118 /// the number of cases, size of the table, and the types of the results. 5119 static bool 5120 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5121 const TargetTransformInfo &TTI, const DataLayout &DL, 5122 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5123 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5124 return false; // TableSize overflowed, or mul below might overflow. 5125 5126 bool AllTablesFitInRegister = true; 5127 bool HasIllegalType = false; 5128 for (const auto &I : ResultTypes) { 5129 Type *Ty = I.second; 5130 5131 // Saturate this flag to true. 5132 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5133 5134 // Saturate this flag to false. 5135 AllTablesFitInRegister = 5136 AllTablesFitInRegister && 5137 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5138 5139 // If both flags saturate, we're done. NOTE: This *only* works with 5140 // saturating flags, and all flags have to saturate first due to the 5141 // non-deterministic behavior of iterating over a dense map. 5142 if (HasIllegalType && !AllTablesFitInRegister) 5143 break; 5144 } 5145 5146 // If each table would fit in a register, we should build it anyway. 5147 if (AllTablesFitInRegister) 5148 return true; 5149 5150 // Don't build a table that doesn't fit in-register if it has illegal types. 5151 if (HasIllegalType) 5152 return false; 5153 5154 // The table density should be at least 40%. This is the same criterion as for 5155 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5156 // FIXME: Find the best cut-off. 5157 return SI->getNumCases() * 10 >= TableSize * 4; 5158 } 5159 5160 /// Try to reuse the switch table index compare. Following pattern: 5161 /// \code 5162 /// if (idx < tablesize) 5163 /// r = table[idx]; // table does not contain default_value 5164 /// else 5165 /// r = default_value; 5166 /// if (r != default_value) 5167 /// ... 5168 /// \endcode 5169 /// Is optimized to: 5170 /// \code 5171 /// cond = idx < tablesize; 5172 /// if (cond) 5173 /// r = table[idx]; 5174 /// else 5175 /// r = default_value; 5176 /// if (cond) 5177 /// ... 5178 /// \endcode 5179 /// Jump threading will then eliminate the second if(cond). 5180 static void reuseTableCompare( 5181 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5182 Constant *DefaultValue, 5183 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5184 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5185 if (!CmpInst) 5186 return; 5187 5188 // We require that the compare is in the same block as the phi so that jump 5189 // threading can do its work afterwards. 5190 if (CmpInst->getParent() != PhiBlock) 5191 return; 5192 5193 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5194 if (!CmpOp1) 5195 return; 5196 5197 Value *RangeCmp = RangeCheckBranch->getCondition(); 5198 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5199 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5200 5201 // Check if the compare with the default value is constant true or false. 5202 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5203 DefaultValue, CmpOp1, true); 5204 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5205 return; 5206 5207 // Check if the compare with the case values is distinct from the default 5208 // compare result. 5209 for (auto ValuePair : Values) { 5210 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5211 ValuePair.second, CmpOp1, true); 5212 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5213 return; 5214 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5215 "Expect true or false as compare result."); 5216 } 5217 5218 // Check if the branch instruction dominates the phi node. It's a simple 5219 // dominance check, but sufficient for our needs. 5220 // Although this check is invariant in the calling loops, it's better to do it 5221 // at this late stage. Practically we do it at most once for a switch. 5222 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5223 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5224 BasicBlock *Pred = *PI; 5225 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5226 return; 5227 } 5228 5229 if (DefaultConst == FalseConst) { 5230 // The compare yields the same result. We can replace it. 5231 CmpInst->replaceAllUsesWith(RangeCmp); 5232 ++NumTableCmpReuses; 5233 } else { 5234 // The compare yields the same result, just inverted. We can replace it. 5235 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5236 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5237 RangeCheckBranch); 5238 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5239 ++NumTableCmpReuses; 5240 } 5241 } 5242 5243 /// If the switch is only used to initialize one or more phi nodes in a common 5244 /// successor block with different constant values, replace the switch with 5245 /// lookup tables. 5246 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5247 const DataLayout &DL, 5248 const TargetTransformInfo &TTI) { 5249 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5250 5251 Function *Fn = SI->getParent()->getParent(); 5252 // Only build lookup table when we have a target that supports it or the 5253 // attribute is not set. 5254 if (!TTI.shouldBuildLookupTables() || 5255 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5256 return false; 5257 5258 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5259 // split off a dense part and build a lookup table for that. 5260 5261 // FIXME: This creates arrays of GEPs to constant strings, which means each 5262 // GEP needs a runtime relocation in PIC code. We should just build one big 5263 // string and lookup indices into that. 5264 5265 // Ignore switches with less than three cases. Lookup tables will not make 5266 // them faster, so we don't analyze them. 5267 if (SI->getNumCases() < 3) 5268 return false; 5269 5270 // Figure out the corresponding result for each case value and phi node in the 5271 // common destination, as well as the min and max case values. 5272 assert(!empty(SI->cases())); 5273 SwitchInst::CaseIt CI = SI->case_begin(); 5274 ConstantInt *MinCaseVal = CI->getCaseValue(); 5275 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5276 5277 BasicBlock *CommonDest = nullptr; 5278 5279 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5280 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5281 5282 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5283 SmallDenseMap<PHINode *, Type *> ResultTypes; 5284 SmallVector<PHINode *, 4> PHIs; 5285 5286 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5287 ConstantInt *CaseVal = CI->getCaseValue(); 5288 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5289 MinCaseVal = CaseVal; 5290 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5291 MaxCaseVal = CaseVal; 5292 5293 // Resulting value at phi nodes for this case value. 5294 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5295 ResultsTy Results; 5296 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5297 Results, DL, TTI)) 5298 return false; 5299 5300 // Append the result from this case to the list for each phi. 5301 for (const auto &I : Results) { 5302 PHINode *PHI = I.first; 5303 Constant *Value = I.second; 5304 if (!ResultLists.count(PHI)) 5305 PHIs.push_back(PHI); 5306 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5307 } 5308 } 5309 5310 // Keep track of the result types. 5311 for (PHINode *PHI : PHIs) { 5312 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5313 } 5314 5315 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5316 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5317 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5318 bool TableHasHoles = (NumResults < TableSize); 5319 5320 // If the table has holes, we need a constant result for the default case 5321 // or a bitmask that fits in a register. 5322 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5323 bool HasDefaultResults = 5324 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5325 DefaultResultsList, DL, TTI); 5326 5327 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5328 if (NeedMask) { 5329 // As an extra penalty for the validity test we require more cases. 5330 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5331 return false; 5332 if (!DL.fitsInLegalInteger(TableSize)) 5333 return false; 5334 } 5335 5336 for (const auto &I : DefaultResultsList) { 5337 PHINode *PHI = I.first; 5338 Constant *Result = I.second; 5339 DefaultResults[PHI] = Result; 5340 } 5341 5342 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5343 return false; 5344 5345 // Create the BB that does the lookups. 5346 Module &Mod = *CommonDest->getParent()->getParent(); 5347 BasicBlock *LookupBB = BasicBlock::Create( 5348 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5349 5350 // Compute the table index value. 5351 Builder.SetInsertPoint(SI); 5352 Value *TableIndex; 5353 if (MinCaseVal->isNullValue()) 5354 TableIndex = SI->getCondition(); 5355 else 5356 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5357 "switch.tableidx"); 5358 5359 // Compute the maximum table size representable by the integer type we are 5360 // switching upon. 5361 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5362 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5363 assert(MaxTableSize >= TableSize && 5364 "It is impossible for a switch to have more entries than the max " 5365 "representable value of its input integer type's size."); 5366 5367 // If the default destination is unreachable, or if the lookup table covers 5368 // all values of the conditional variable, branch directly to the lookup table 5369 // BB. Otherwise, check that the condition is within the case range. 5370 const bool DefaultIsReachable = 5371 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5372 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5373 BranchInst *RangeCheckBranch = nullptr; 5374 5375 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5376 Builder.CreateBr(LookupBB); 5377 // Note: We call removeProdecessor later since we need to be able to get the 5378 // PHI value for the default case in case we're using a bit mask. 5379 } else { 5380 Value *Cmp = Builder.CreateICmpULT( 5381 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5382 RangeCheckBranch = 5383 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5384 } 5385 5386 // Populate the BB that does the lookups. 5387 Builder.SetInsertPoint(LookupBB); 5388 5389 if (NeedMask) { 5390 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5391 // re-purposed to do the hole check, and we create a new LookupBB. 5392 BasicBlock *MaskBB = LookupBB; 5393 MaskBB->setName("switch.hole_check"); 5394 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5395 CommonDest->getParent(), CommonDest); 5396 5397 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5398 // unnecessary illegal types. 5399 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5400 APInt MaskInt(TableSizePowOf2, 0); 5401 APInt One(TableSizePowOf2, 1); 5402 // Build bitmask; fill in a 1 bit for every case. 5403 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5404 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5405 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5406 .getLimitedValue(); 5407 MaskInt |= One << Idx; 5408 } 5409 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5410 5411 // Get the TableIndex'th bit of the bitmask. 5412 // If this bit is 0 (meaning hole) jump to the default destination, 5413 // else continue with table lookup. 5414 IntegerType *MapTy = TableMask->getType(); 5415 Value *MaskIndex = 5416 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5417 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5418 Value *LoBit = Builder.CreateTrunc( 5419 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5420 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5421 5422 Builder.SetInsertPoint(LookupBB); 5423 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5424 } 5425 5426 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5427 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5428 // do not delete PHINodes here. 5429 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5430 /*KeepOneInputPHIs=*/true); 5431 } 5432 5433 bool ReturnedEarly = false; 5434 for (PHINode *PHI : PHIs) { 5435 const ResultListTy &ResultList = ResultLists[PHI]; 5436 5437 // If using a bitmask, use any value to fill the lookup table holes. 5438 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5439 StringRef FuncName = Fn->getName(); 5440 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5441 FuncName); 5442 5443 Value *Result = Table.BuildLookup(TableIndex, Builder); 5444 5445 // If the result is used to return immediately from the function, we want to 5446 // do that right here. 5447 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5448 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5449 Builder.CreateRet(Result); 5450 ReturnedEarly = true; 5451 break; 5452 } 5453 5454 // Do a small peephole optimization: re-use the switch table compare if 5455 // possible. 5456 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5457 BasicBlock *PhiBlock = PHI->getParent(); 5458 // Search for compare instructions which use the phi. 5459 for (auto *User : PHI->users()) { 5460 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5461 } 5462 } 5463 5464 PHI->addIncoming(Result, LookupBB); 5465 } 5466 5467 if (!ReturnedEarly) 5468 Builder.CreateBr(CommonDest); 5469 5470 // Remove the switch. 5471 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5472 BasicBlock *Succ = SI->getSuccessor(i); 5473 5474 if (Succ == SI->getDefaultDest()) 5475 continue; 5476 Succ->removePredecessor(SI->getParent()); 5477 } 5478 SI->eraseFromParent(); 5479 5480 ++NumLookupTables; 5481 if (NeedMask) 5482 ++NumLookupTablesHoles; 5483 return true; 5484 } 5485 5486 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5487 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5488 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5489 uint64_t Range = Diff + 1; 5490 uint64_t NumCases = Values.size(); 5491 // 40% is the default density for building a jump table in optsize/minsize mode. 5492 uint64_t MinDensity = 40; 5493 5494 return NumCases * 100 >= Range * MinDensity; 5495 } 5496 5497 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5498 /// of cases. 5499 /// 5500 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5501 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5502 /// 5503 /// This converts a sparse switch into a dense switch which allows better 5504 /// lowering and could also allow transforming into a lookup table. 5505 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5506 const DataLayout &DL, 5507 const TargetTransformInfo &TTI) { 5508 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5509 if (CondTy->getIntegerBitWidth() > 64 || 5510 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5511 return false; 5512 // Only bother with this optimization if there are more than 3 switch cases; 5513 // SDAG will only bother creating jump tables for 4 or more cases. 5514 if (SI->getNumCases() < 4) 5515 return false; 5516 5517 // This transform is agnostic to the signedness of the input or case values. We 5518 // can treat the case values as signed or unsigned. We can optimize more common 5519 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5520 // as signed. 5521 SmallVector<int64_t,4> Values; 5522 for (auto &C : SI->cases()) 5523 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5524 llvm::sort(Values); 5525 5526 // If the switch is already dense, there's nothing useful to do here. 5527 if (isSwitchDense(Values)) 5528 return false; 5529 5530 // First, transform the values such that they start at zero and ascend. 5531 int64_t Base = Values[0]; 5532 for (auto &V : Values) 5533 V -= (uint64_t)(Base); 5534 5535 // Now we have signed numbers that have been shifted so that, given enough 5536 // precision, there are no negative values. Since the rest of the transform 5537 // is bitwise only, we switch now to an unsigned representation. 5538 5539 // This transform can be done speculatively because it is so cheap - it 5540 // results in a single rotate operation being inserted. 5541 // FIXME: It's possible that optimizing a switch on powers of two might also 5542 // be beneficial - flag values are often powers of two and we could use a CLZ 5543 // as the key function. 5544 5545 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5546 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5547 // less than 64. 5548 unsigned Shift = 64; 5549 for (auto &V : Values) 5550 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5551 assert(Shift < 64); 5552 if (Shift > 0) 5553 for (auto &V : Values) 5554 V = (int64_t)((uint64_t)V >> Shift); 5555 5556 if (!isSwitchDense(Values)) 5557 // Transform didn't create a dense switch. 5558 return false; 5559 5560 // The obvious transform is to shift the switch condition right and emit a 5561 // check that the condition actually cleanly divided by GCD, i.e. 5562 // C & (1 << Shift - 1) == 0 5563 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5564 // 5565 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5566 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5567 // are nonzero then the switch condition will be very large and will hit the 5568 // default case. 5569 5570 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5571 Builder.SetInsertPoint(SI); 5572 auto *ShiftC = ConstantInt::get(Ty, Shift); 5573 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5574 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5575 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5576 auto *Rot = Builder.CreateOr(LShr, Shl); 5577 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5578 5579 for (auto Case : SI->cases()) { 5580 auto *Orig = Case.getCaseValue(); 5581 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5582 Case.setValue( 5583 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5584 } 5585 return true; 5586 } 5587 5588 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5589 BasicBlock *BB = SI->getParent(); 5590 5591 if (isValueEqualityComparison(SI)) { 5592 // If we only have one predecessor, and if it is a branch on this value, 5593 // see if that predecessor totally determines the outcome of this switch. 5594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5596 return requestResimplify(); 5597 5598 Value *Cond = SI->getCondition(); 5599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5600 if (SimplifySwitchOnSelect(SI, Select)) 5601 return requestResimplify(); 5602 5603 // If the block only contains the switch, see if we can fold the block 5604 // away into any preds. 5605 if (SI == &*BB->instructionsWithoutDebug().begin()) 5606 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5607 return requestResimplify(); 5608 } 5609 5610 // Try to transform the switch into an icmp and a branch. 5611 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5612 return requestResimplify(); 5613 5614 // Remove unreachable cases. 5615 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5616 return requestResimplify(); 5617 5618 if (switchToSelect(SI, Builder, DL, TTI)) 5619 return requestResimplify(); 5620 5621 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5622 return requestResimplify(); 5623 5624 // The conversion from switch to lookup tables results in difficult-to-analyze 5625 // code and makes pruning branches much harder. This is a problem if the 5626 // switch expression itself can still be restricted as a result of inlining or 5627 // CVP. Therefore, only apply this transformation during late stages of the 5628 // optimisation pipeline. 5629 if (Options.ConvertSwitchToLookupTable && 5630 SwitchToLookupTable(SI, Builder, DL, TTI)) 5631 return requestResimplify(); 5632 5633 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5634 return requestResimplify(); 5635 5636 return false; 5637 } 5638 5639 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5640 BasicBlock *BB = IBI->getParent(); 5641 bool Changed = false; 5642 5643 // Eliminate redundant destinations. 5644 SmallPtrSet<Value *, 8> Succs; 5645 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5646 BasicBlock *Dest = IBI->getDestination(i); 5647 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5648 Dest->removePredecessor(BB); 5649 IBI->removeDestination(i); 5650 --i; 5651 --e; 5652 Changed = true; 5653 } 5654 } 5655 5656 if (IBI->getNumDestinations() == 0) { 5657 // If the indirectbr has no successors, change it to unreachable. 5658 new UnreachableInst(IBI->getContext(), IBI); 5659 EraseTerminatorAndDCECond(IBI); 5660 return true; 5661 } 5662 5663 if (IBI->getNumDestinations() == 1) { 5664 // If the indirectbr has one successor, change it to a direct branch. 5665 BranchInst::Create(IBI->getDestination(0), IBI); 5666 EraseTerminatorAndDCECond(IBI); 5667 return true; 5668 } 5669 5670 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5671 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5672 return requestResimplify(); 5673 } 5674 return Changed; 5675 } 5676 5677 /// Given an block with only a single landing pad and a unconditional branch 5678 /// try to find another basic block which this one can be merged with. This 5679 /// handles cases where we have multiple invokes with unique landing pads, but 5680 /// a shared handler. 5681 /// 5682 /// We specifically choose to not worry about merging non-empty blocks 5683 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5684 /// practice, the optimizer produces empty landing pad blocks quite frequently 5685 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5686 /// sinking in this file) 5687 /// 5688 /// This is primarily a code size optimization. We need to avoid performing 5689 /// any transform which might inhibit optimization (such as our ability to 5690 /// specialize a particular handler via tail commoning). We do this by not 5691 /// merging any blocks which require us to introduce a phi. Since the same 5692 /// values are flowing through both blocks, we don't lose any ability to 5693 /// specialize. If anything, we make such specialization more likely. 5694 /// 5695 /// TODO - This transformation could remove entries from a phi in the target 5696 /// block when the inputs in the phi are the same for the two blocks being 5697 /// merged. In some cases, this could result in removal of the PHI entirely. 5698 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5699 BasicBlock *BB) { 5700 auto Succ = BB->getUniqueSuccessor(); 5701 assert(Succ); 5702 // If there's a phi in the successor block, we'd likely have to introduce 5703 // a phi into the merged landing pad block. 5704 if (isa<PHINode>(*Succ->begin())) 5705 return false; 5706 5707 for (BasicBlock *OtherPred : predecessors(Succ)) { 5708 if (BB == OtherPred) 5709 continue; 5710 BasicBlock::iterator I = OtherPred->begin(); 5711 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5712 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5713 continue; 5714 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5715 ; 5716 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5717 if (!BI2 || !BI2->isIdenticalTo(BI)) 5718 continue; 5719 5720 // We've found an identical block. Update our predecessors to take that 5721 // path instead and make ourselves dead. 5722 SmallPtrSet<BasicBlock *, 16> Preds; 5723 Preds.insert(pred_begin(BB), pred_end(BB)); 5724 for (BasicBlock *Pred : Preds) { 5725 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5726 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5727 "unexpected successor"); 5728 II->setUnwindDest(OtherPred); 5729 } 5730 5731 // The debug info in OtherPred doesn't cover the merged control flow that 5732 // used to go through BB. We need to delete it or update it. 5733 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5734 Instruction &Inst = *I; 5735 I++; 5736 if (isa<DbgInfoIntrinsic>(Inst)) 5737 Inst.eraseFromParent(); 5738 } 5739 5740 SmallPtrSet<BasicBlock *, 16> Succs; 5741 Succs.insert(succ_begin(BB), succ_end(BB)); 5742 for (BasicBlock *Succ : Succs) { 5743 Succ->removePredecessor(BB); 5744 } 5745 5746 IRBuilder<> Builder(BI); 5747 Builder.CreateUnreachable(); 5748 BI->eraseFromParent(); 5749 return true; 5750 } 5751 return false; 5752 } 5753 5754 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5755 IRBuilder<> &Builder) { 5756 BasicBlock *BB = BI->getParent(); 5757 BasicBlock *Succ = BI->getSuccessor(0); 5758 5759 // If the Terminator is the only non-phi instruction, simplify the block. 5760 // If LoopHeader is provided, check if the block or its successor is a loop 5761 // header. (This is for early invocations before loop simplify and 5762 // vectorization to keep canonical loop forms for nested loops. These blocks 5763 // can be eliminated when the pass is invoked later in the back-end.) 5764 // Note that if BB has only one predecessor then we do not introduce new 5765 // backedge, so we can eliminate BB. 5766 bool NeedCanonicalLoop = 5767 Options.NeedCanonicalLoop && 5768 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5769 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5770 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5771 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5772 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5773 return true; 5774 5775 // If the only instruction in the block is a seteq/setne comparison against a 5776 // constant, try to simplify the block. 5777 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5778 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5779 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5780 ; 5781 if (I->isTerminator() && 5782 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5783 return true; 5784 } 5785 5786 // See if we can merge an empty landing pad block with another which is 5787 // equivalent. 5788 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5789 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5790 ; 5791 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5792 return true; 5793 } 5794 5795 // If this basic block is ONLY a compare and a branch, and if a predecessor 5796 // branches to us and our successor, fold the comparison into the 5797 // predecessor and use logical operations to update the incoming value 5798 // for PHI nodes in common successor. 5799 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5800 return requestResimplify(); 5801 return false; 5802 } 5803 5804 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5805 BasicBlock *PredPred = nullptr; 5806 for (auto *P : predecessors(BB)) { 5807 BasicBlock *PPred = P->getSinglePredecessor(); 5808 if (!PPred || (PredPred && PredPred != PPred)) 5809 return nullptr; 5810 PredPred = PPred; 5811 } 5812 return PredPred; 5813 } 5814 5815 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5816 BasicBlock *BB = BI->getParent(); 5817 const Function *Fn = BB->getParent(); 5818 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5819 return false; 5820 5821 // Conditional branch 5822 if (isValueEqualityComparison(BI)) { 5823 // If we only have one predecessor, and if it is a branch on this value, 5824 // see if that predecessor totally determines the outcome of this 5825 // switch. 5826 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5827 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5828 return requestResimplify(); 5829 5830 // This block must be empty, except for the setcond inst, if it exists. 5831 // Ignore dbg intrinsics. 5832 auto I = BB->instructionsWithoutDebug().begin(); 5833 if (&*I == BI) { 5834 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5835 return requestResimplify(); 5836 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5837 ++I; 5838 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5839 return requestResimplify(); 5840 } 5841 } 5842 5843 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5844 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5845 return true; 5846 5847 // If this basic block has dominating predecessor blocks and the dominating 5848 // blocks' conditions imply BI's condition, we know the direction of BI. 5849 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5850 if (Imp) { 5851 // Turn this into a branch on constant. 5852 auto *OldCond = BI->getCondition(); 5853 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5854 : ConstantInt::getFalse(BB->getContext()); 5855 BI->setCondition(TorF); 5856 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5857 return requestResimplify(); 5858 } 5859 5860 // If this basic block is ONLY a compare and a branch, and if a predecessor 5861 // branches to us and one of our successors, fold the comparison into the 5862 // predecessor and use logical operations to pick the right destination. 5863 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5864 return requestResimplify(); 5865 5866 // We have a conditional branch to two blocks that are only reachable 5867 // from BI. We know that the condbr dominates the two blocks, so see if 5868 // there is any identical code in the "then" and "else" blocks. If so, we 5869 // can hoist it up to the branching block. 5870 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5871 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5872 if (HoistThenElseCodeToIf(BI, TTI)) 5873 return requestResimplify(); 5874 } else { 5875 // If Successor #1 has multiple preds, we may be able to conditionally 5876 // execute Successor #0 if it branches to Successor #1. 5877 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5878 if (Succ0TI->getNumSuccessors() == 1 && 5879 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5880 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5881 return requestResimplify(); 5882 } 5883 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5884 // If Successor #0 has multiple preds, we may be able to conditionally 5885 // execute Successor #1 if it branches to Successor #0. 5886 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5887 if (Succ1TI->getNumSuccessors() == 1 && 5888 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5889 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5890 return requestResimplify(); 5891 } 5892 5893 // If this is a branch on a phi node in the current block, thread control 5894 // through this block if any PHI node entries are constants. 5895 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5896 if (PN->getParent() == BI->getParent()) 5897 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5898 return requestResimplify(); 5899 5900 // Scan predecessor blocks for conditional branches. 5901 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5902 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5903 if (PBI != BI && PBI->isConditional()) 5904 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5905 return requestResimplify(); 5906 5907 // Look for diamond patterns. 5908 if (MergeCondStores) 5909 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5910 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5911 if (PBI != BI && PBI->isConditional()) 5912 if (mergeConditionalStores(PBI, BI, DL)) 5913 return requestResimplify(); 5914 5915 return false; 5916 } 5917 5918 /// Check if passing a value to an instruction will cause undefined behavior. 5919 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5920 Constant *C = dyn_cast<Constant>(V); 5921 if (!C) 5922 return false; 5923 5924 if (I->use_empty()) 5925 return false; 5926 5927 if (C->isNullValue() || isa<UndefValue>(C)) { 5928 // Only look at the first use, avoid hurting compile time with long uselists 5929 User *Use = *I->user_begin(); 5930 5931 // Now make sure that there are no instructions in between that can alter 5932 // control flow (eg. calls) 5933 for (BasicBlock::iterator 5934 i = ++BasicBlock::iterator(I), 5935 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5936 i != UI; ++i) 5937 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5938 return false; 5939 5940 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5942 if (GEP->getPointerOperand() == I) 5943 return passingValueIsAlwaysUndefined(V, GEP); 5944 5945 // Look through bitcasts. 5946 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5947 return passingValueIsAlwaysUndefined(V, BC); 5948 5949 // Load from null is undefined. 5950 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5951 if (!LI->isVolatile()) 5952 return !NullPointerIsDefined(LI->getFunction(), 5953 LI->getPointerAddressSpace()); 5954 5955 // Store to null is undefined. 5956 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5957 if (!SI->isVolatile()) 5958 return (!NullPointerIsDefined(SI->getFunction(), 5959 SI->getPointerAddressSpace())) && 5960 SI->getPointerOperand() == I; 5961 5962 // A call to null is undefined. 5963 if (auto CS = CallSite(Use)) 5964 return !NullPointerIsDefined(CS->getFunction()) && 5965 CS.getCalledValue() == I; 5966 } 5967 return false; 5968 } 5969 5970 /// If BB has an incoming value that will always trigger undefined behavior 5971 /// (eg. null pointer dereference), remove the branch leading here. 5972 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5973 for (PHINode &PHI : BB->phis()) 5974 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5975 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5976 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5977 IRBuilder<> Builder(T); 5978 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5979 BB->removePredecessor(PHI.getIncomingBlock(i)); 5980 // Turn uncoditional branches into unreachables and remove the dead 5981 // destination from conditional branches. 5982 if (BI->isUnconditional()) 5983 Builder.CreateUnreachable(); 5984 else 5985 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5986 : BI->getSuccessor(0)); 5987 BI->eraseFromParent(); 5988 return true; 5989 } 5990 // TODO: SwitchInst. 5991 } 5992 5993 return false; 5994 } 5995 5996 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 5997 bool Changed = false; 5998 5999 assert(BB && BB->getParent() && "Block not embedded in function!"); 6000 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6001 6002 // Remove basic blocks that have no predecessors (except the entry block)... 6003 // or that just have themself as a predecessor. These are unreachable. 6004 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6005 BB->getSinglePredecessor() == BB) { 6006 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6007 DeleteDeadBlock(BB); 6008 return true; 6009 } 6010 6011 // Check to see if we can constant propagate this terminator instruction 6012 // away... 6013 Changed |= ConstantFoldTerminator(BB, true); 6014 6015 // Check for and eliminate duplicate PHI nodes in this block. 6016 Changed |= EliminateDuplicatePHINodes(BB); 6017 6018 // Check for and remove branches that will always cause undefined behavior. 6019 Changed |= removeUndefIntroducingPredecessor(BB); 6020 6021 // Merge basic blocks into their predecessor if there is only one distinct 6022 // pred, and if there is only one distinct successor of the predecessor, and 6023 // if there are no PHI nodes. 6024 if (MergeBlockIntoPredecessor(BB)) 6025 return true; 6026 6027 if (SinkCommon && Options.SinkCommonInsts) 6028 Changed |= SinkCommonCodeFromPredecessors(BB); 6029 6030 IRBuilder<> Builder(BB); 6031 6032 // If there is a trivial two-entry PHI node in this basic block, and we can 6033 // eliminate it, do so now. 6034 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6035 if (PN->getNumIncomingValues() == 2) 6036 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6037 6038 Builder.SetInsertPoint(BB->getTerminator()); 6039 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6040 if (BI->isUnconditional()) { 6041 if (SimplifyUncondBranch(BI, Builder)) 6042 return true; 6043 } else { 6044 if (SimplifyCondBranch(BI, Builder)) 6045 return true; 6046 } 6047 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6048 if (SimplifyReturn(RI, Builder)) 6049 return true; 6050 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6051 if (SimplifyResume(RI, Builder)) 6052 return true; 6053 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6054 if (SimplifyCleanupReturn(RI)) 6055 return true; 6056 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6057 if (SimplifySwitch(SI, Builder)) 6058 return true; 6059 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6060 if (SimplifyUnreachable(UI)) 6061 return true; 6062 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6063 if (SimplifyIndirectBr(IBI)) 6064 return true; 6065 } 6066 6067 return Changed; 6068 } 6069 6070 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6071 bool Changed = false; 6072 6073 // Repeated simplify BB as long as resimplification is requested. 6074 do { 6075 Resimplify = false; 6076 6077 // Perform one round of simplifcation. Resimplify flag will be set if 6078 // another iteration is requested. 6079 Changed |= simplifyOnce(BB); 6080 } while (Resimplify); 6081 6082 return Changed; 6083 } 6084 6085 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6086 const SimplifyCFGOptions &Options, 6087 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6088 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6089 Options) 6090 .run(BB); 6091 } 6092