1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/MemorySSA.h" 29 #include "llvm/Analysis/MemorySSAUpdater.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<bool> DupRet( 98 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 99 cl::desc("Duplicate return instructions into unconditional branches")); 100 101 static cl::opt<bool> 102 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 103 cl::desc("Sink common instructions down to the end block")); 104 105 static cl::opt<bool> HoistCondStores( 106 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 107 cl::desc("Hoist conditional stores if an unconditional store precedes")); 108 109 static cl::opt<bool> MergeCondStores( 110 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 111 cl::desc("Hoist conditional stores even if an unconditional store does not " 112 "precede - hoist multiple conditional stores into a single " 113 "predicated store")); 114 115 static cl::opt<bool> MergeCondStoresAggressively( 116 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 117 cl::desc("When merging conditional stores, do so even if the resultant " 118 "basic blocks are unlikely to be if-converted as a result")); 119 120 static cl::opt<bool> SpeculateOneExpensiveInst( 121 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 122 cl::desc("Allow exactly one expensive instruction to be speculatively " 123 "executed")); 124 125 static cl::opt<unsigned> MaxSpeculationDepth( 126 "max-speculation-depth", cl::Hidden, cl::init(10), 127 cl::desc("Limit maximum recursion depth when calculating costs of " 128 "speculatively executed instructions")); 129 130 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 131 STATISTIC(NumLinearMaps, 132 "Number of switch instructions turned into linear mapping"); 133 STATISTIC(NumLookupTables, 134 "Number of switch instructions turned into lookup tables"); 135 STATISTIC( 136 NumLookupTablesHoles, 137 "Number of switch instructions turned into lookup tables (holes checked)"); 138 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 139 STATISTIC(NumSinkCommons, 140 "Number of common instructions sunk down to the end block"); 141 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 142 143 namespace { 144 145 // The first field contains the value that the switch produces when a certain 146 // case group is selected, and the second field is a vector containing the 147 // cases composing the case group. 148 using SwitchCaseResultVectorTy = 149 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 150 151 // The first field contains the phi node that generates a result of the switch 152 // and the second field contains the value generated for a certain case in the 153 // switch for that PHI. 154 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 155 156 /// ValueEqualityComparisonCase - Represents a case of a switch. 157 struct ValueEqualityComparisonCase { 158 ConstantInt *Value; 159 BasicBlock *Dest; 160 161 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 162 : Value(Value), Dest(Dest) {} 163 164 bool operator<(ValueEqualityComparisonCase RHS) const { 165 // Comparing pointers is ok as we only rely on the order for uniquing. 166 return Value < RHS.Value; 167 } 168 169 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 170 }; 171 172 class SimplifyCFGOpt { 173 const TargetTransformInfo &TTI; 174 const DataLayout &DL; 175 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 176 const SimplifyCFGOptions &Options; 177 bool Resimplify; 178 179 Value *isValueEqualityComparison(Instruction *TI); 180 BasicBlock *GetValueEqualityComparisonCases( 181 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 182 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 183 BasicBlock *Pred, 184 IRBuilder<> &Builder); 185 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 186 IRBuilder<> &Builder); 187 188 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 189 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 190 bool SimplifySingleResume(ResumeInst *RI); 191 bool SimplifyCommonResume(ResumeInst *RI); 192 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 193 bool SimplifyUnreachable(UnreachableInst *UI); 194 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 195 bool SimplifyIndirectBr(IndirectBrInst *IBI); 196 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 198 199 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 200 IRBuilder<> &Builder); 201 202 public: 203 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 204 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 205 const SimplifyCFGOptions &Opts) 206 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 207 208 bool run(BasicBlock *BB); 209 bool simplifyOnce(BasicBlock *BB); 210 211 // Helper to set Resimplify and return change indication. 212 bool requestResimplify() { 213 Resimplify = true; 214 return true; 215 } 216 }; 217 218 } // end anonymous namespace 219 220 /// Return true if it is safe to merge these two 221 /// terminator instructions together. 222 static bool 223 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 224 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 225 if (SI1 == SI2) 226 return false; // Can't merge with self! 227 228 // It is not safe to merge these two switch instructions if they have a common 229 // successor, and if that successor has a PHI node, and if *that* PHI node has 230 // conflicting incoming values from the two switch blocks. 231 BasicBlock *SI1BB = SI1->getParent(); 232 BasicBlock *SI2BB = SI2->getParent(); 233 234 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 235 bool Fail = false; 236 for (BasicBlock *Succ : successors(SI2BB)) 237 if (SI1Succs.count(Succ)) 238 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 239 PHINode *PN = cast<PHINode>(BBI); 240 if (PN->getIncomingValueForBlock(SI1BB) != 241 PN->getIncomingValueForBlock(SI2BB)) { 242 if (FailBlocks) 243 FailBlocks->insert(Succ); 244 Fail = true; 245 } 246 } 247 248 return !Fail; 249 } 250 251 /// Return true if it is safe and profitable to merge these two terminator 252 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 253 /// store all PHI nodes in common successors. 254 static bool 255 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 256 Instruction *Cond, 257 SmallVectorImpl<PHINode *> &PhiNodes) { 258 if (SI1 == SI2) 259 return false; // Can't merge with self! 260 assert(SI1->isUnconditional() && SI2->isConditional()); 261 262 // We fold the unconditional branch if we can easily update all PHI nodes in 263 // common successors: 264 // 1> We have a constant incoming value for the conditional branch; 265 // 2> We have "Cond" as the incoming value for the unconditional branch; 266 // 3> SI2->getCondition() and Cond have same operands. 267 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 268 if (!Ci2) 269 return false; 270 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 271 Cond->getOperand(1) == Ci2->getOperand(1)) && 272 !(Cond->getOperand(0) == Ci2->getOperand(1) && 273 Cond->getOperand(1) == Ci2->getOperand(0))) 274 return false; 275 276 BasicBlock *SI1BB = SI1->getParent(); 277 BasicBlock *SI2BB = SI2->getParent(); 278 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 279 for (BasicBlock *Succ : successors(SI2BB)) 280 if (SI1Succs.count(Succ)) 281 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 282 PHINode *PN = cast<PHINode>(BBI); 283 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 284 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 285 return false; 286 PhiNodes.push_back(PN); 287 } 288 return true; 289 } 290 291 /// Update PHI nodes in Succ to indicate that there will now be entries in it 292 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 293 /// will be the same as those coming in from ExistPred, an existing predecessor 294 /// of Succ. 295 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 296 BasicBlock *ExistPred, 297 MemorySSAUpdater *MSSAU = nullptr) { 298 for (PHINode &PN : Succ->phis()) 299 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 300 if (MSSAU) 301 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 302 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 303 } 304 305 /// Compute an abstract "cost" of speculating the given instruction, 306 /// which is assumed to be safe to speculate. TCC_Free means cheap, 307 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 308 /// expensive. 309 static unsigned ComputeSpeculationCost(const User *I, 310 const TargetTransformInfo &TTI) { 311 assert(isSafeToSpeculativelyExecute(I) && 312 "Instruction is not safe to speculatively execute!"); 313 return TTI.getUserCost(I); 314 } 315 316 /// If we have a merge point of an "if condition" as accepted above, 317 /// return true if the specified value dominates the block. We 318 /// don't handle the true generality of domination here, just a special case 319 /// which works well enough for us. 320 /// 321 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 322 /// see if V (which must be an instruction) and its recursive operands 323 /// that do not dominate BB have a combined cost lower than CostRemaining and 324 /// are non-trapping. If both are true, the instruction is inserted into the 325 /// set and true is returned. 326 /// 327 /// The cost for most non-trapping instructions is defined as 1 except for 328 /// Select whose cost is 2. 329 /// 330 /// After this function returns, CostRemaining is decreased by the cost of 331 /// V plus its non-dominating operands. If that cost is greater than 332 /// CostRemaining, false is returned and CostRemaining is undefined. 333 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 334 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 335 unsigned &CostRemaining, 336 const TargetTransformInfo &TTI, 337 unsigned Depth = 0) { 338 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 339 // so limit the recursion depth. 340 // TODO: While this recursion limit does prevent pathological behavior, it 341 // would be better to track visited instructions to avoid cycles. 342 if (Depth == MaxSpeculationDepth) 343 return false; 344 345 Instruction *I = dyn_cast<Instruction>(V); 346 if (!I) { 347 // Non-instructions all dominate instructions, but not all constantexprs 348 // can be executed unconditionally. 349 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 350 if (C->canTrap()) 351 return false; 352 return true; 353 } 354 BasicBlock *PBB = I->getParent(); 355 356 // We don't want to allow weird loops that might have the "if condition" in 357 // the bottom of this block. 358 if (PBB == BB) 359 return false; 360 361 // If this instruction is defined in a block that contains an unconditional 362 // branch to BB, then it must be in the 'conditional' part of the "if 363 // statement". If not, it definitely dominates the region. 364 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 365 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 366 return true; 367 368 // If we have seen this instruction before, don't count it again. 369 if (AggressiveInsts.count(I)) 370 return true; 371 372 // Okay, it looks like the instruction IS in the "condition". Check to 373 // see if it's a cheap instruction to unconditionally compute, and if it 374 // only uses stuff defined outside of the condition. If so, hoist it out. 375 if (!isSafeToSpeculativelyExecute(I)) 376 return false; 377 378 unsigned Cost = ComputeSpeculationCost(I, TTI); 379 380 // Allow exactly one instruction to be speculated regardless of its cost 381 // (as long as it is safe to do so). 382 // This is intended to flatten the CFG even if the instruction is a division 383 // or other expensive operation. The speculation of an expensive instruction 384 // is expected to be undone in CodeGenPrepare if the speculation has not 385 // enabled further IR optimizations. 386 if (Cost > CostRemaining && 387 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 388 return false; 389 390 // Avoid unsigned wrap. 391 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 392 393 // Okay, we can only really hoist these out if their operands do 394 // not take us over the cost threshold. 395 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 396 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 397 Depth + 1)) 398 return false; 399 // Okay, it's safe to do this! Remember this instruction. 400 AggressiveInsts.insert(I); 401 return true; 402 } 403 404 /// Extract ConstantInt from value, looking through IntToPtr 405 /// and PointerNullValue. Return NULL if value is not a constant int. 406 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 407 // Normal constant int. 408 ConstantInt *CI = dyn_cast<ConstantInt>(V); 409 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 410 return CI; 411 412 // This is some kind of pointer constant. Turn it into a pointer-sized 413 // ConstantInt if possible. 414 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 415 416 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 417 if (isa<ConstantPointerNull>(V)) 418 return ConstantInt::get(PtrTy, 0); 419 420 // IntToPtr const int. 421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 422 if (CE->getOpcode() == Instruction::IntToPtr) 423 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 424 // The constant is very likely to have the right type already. 425 if (CI->getType() == PtrTy) 426 return CI; 427 else 428 return cast<ConstantInt>( 429 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 430 } 431 return nullptr; 432 } 433 434 namespace { 435 436 /// Given a chain of or (||) or and (&&) comparison of a value against a 437 /// constant, this will try to recover the information required for a switch 438 /// structure. 439 /// It will depth-first traverse the chain of comparison, seeking for patterns 440 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 441 /// representing the different cases for the switch. 442 /// Note that if the chain is composed of '||' it will build the set of elements 443 /// that matches the comparisons (i.e. any of this value validate the chain) 444 /// while for a chain of '&&' it will build the set elements that make the test 445 /// fail. 446 struct ConstantComparesGatherer { 447 const DataLayout &DL; 448 449 /// Value found for the switch comparison 450 Value *CompValue = nullptr; 451 452 /// Extra clause to be checked before the switch 453 Value *Extra = nullptr; 454 455 /// Set of integers to match in switch 456 SmallVector<ConstantInt *, 8> Vals; 457 458 /// Number of comparisons matched in the and/or chain 459 unsigned UsedICmps = 0; 460 461 /// Construct and compute the result for the comparison instruction Cond 462 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 463 gather(Cond); 464 } 465 466 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 467 ConstantComparesGatherer & 468 operator=(const ConstantComparesGatherer &) = delete; 469 470 private: 471 /// Try to set the current value used for the comparison, it succeeds only if 472 /// it wasn't set before or if the new value is the same as the old one 473 bool setValueOnce(Value *NewVal) { 474 if (CompValue && CompValue != NewVal) 475 return false; 476 CompValue = NewVal; 477 return (CompValue != nullptr); 478 } 479 480 /// Try to match Instruction "I" as a comparison against a constant and 481 /// populates the array Vals with the set of values that match (or do not 482 /// match depending on isEQ). 483 /// Return false on failure. On success, the Value the comparison matched 484 /// against is placed in CompValue. 485 /// If CompValue is already set, the function is expected to fail if a match 486 /// is found but the value compared to is different. 487 bool matchInstruction(Instruction *I, bool isEQ) { 488 // If this is an icmp against a constant, handle this as one of the cases. 489 ICmpInst *ICI; 490 ConstantInt *C; 491 if (!((ICI = dyn_cast<ICmpInst>(I)) && 492 (C = GetConstantInt(I->getOperand(1), DL)))) { 493 return false; 494 } 495 496 Value *RHSVal; 497 const APInt *RHSC; 498 499 // Pattern match a special case 500 // (x & ~2^z) == y --> x == y || x == y|2^z 501 // This undoes a transformation done by instcombine to fuse 2 compares. 502 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 503 // It's a little bit hard to see why the following transformations are 504 // correct. Here is a CVC3 program to verify them for 64-bit values: 505 506 /* 507 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 508 x : BITVECTOR(64); 509 y : BITVECTOR(64); 510 z : BITVECTOR(64); 511 mask : BITVECTOR(64) = BVSHL(ONE, z); 512 QUERY( (y & ~mask = y) => 513 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 514 ); 515 QUERY( (y | mask = y) => 516 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 517 ); 518 */ 519 520 // Please note that each pattern must be a dual implication (<--> or 521 // iff). One directional implication can create spurious matches. If the 522 // implication is only one-way, an unsatisfiable condition on the left 523 // side can imply a satisfiable condition on the right side. Dual 524 // implication ensures that satisfiable conditions are transformed to 525 // other satisfiable conditions and unsatisfiable conditions are 526 // transformed to other unsatisfiable conditions. 527 528 // Here is a concrete example of a unsatisfiable condition on the left 529 // implying a satisfiable condition on the right: 530 // 531 // mask = (1 << z) 532 // (x & ~mask) == y --> (x == y || x == (y | mask)) 533 // 534 // Substituting y = 3, z = 0 yields: 535 // (x & -2) == 3 --> (x == 3 || x == 2) 536 537 // Pattern match a special case: 538 /* 539 QUERY( (y & ~mask = y) => 540 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 541 ); 542 */ 543 if (match(ICI->getOperand(0), 544 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 545 APInt Mask = ~*RHSC; 546 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 547 // If we already have a value for the switch, it has to match! 548 if (!setValueOnce(RHSVal)) 549 return false; 550 551 Vals.push_back(C); 552 Vals.push_back( 553 ConstantInt::get(C->getContext(), 554 C->getValue() | Mask)); 555 UsedICmps++; 556 return true; 557 } 558 } 559 560 // Pattern match a special case: 561 /* 562 QUERY( (y | mask = y) => 563 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 564 ); 565 */ 566 if (match(ICI->getOperand(0), 567 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 568 APInt Mask = *RHSC; 569 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 570 // If we already have a value for the switch, it has to match! 571 if (!setValueOnce(RHSVal)) 572 return false; 573 574 Vals.push_back(C); 575 Vals.push_back(ConstantInt::get(C->getContext(), 576 C->getValue() & ~Mask)); 577 UsedICmps++; 578 return true; 579 } 580 } 581 582 // If we already have a value for the switch, it has to match! 583 if (!setValueOnce(ICI->getOperand(0))) 584 return false; 585 586 UsedICmps++; 587 Vals.push_back(C); 588 return ICI->getOperand(0); 589 } 590 591 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 592 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 593 ICI->getPredicate(), C->getValue()); 594 595 // Shift the range if the compare is fed by an add. This is the range 596 // compare idiom as emitted by instcombine. 597 Value *CandidateVal = I->getOperand(0); 598 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 599 Span = Span.subtract(*RHSC); 600 CandidateVal = RHSVal; 601 } 602 603 // If this is an and/!= check, then we are looking to build the set of 604 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 605 // x != 0 && x != 1. 606 if (!isEQ) 607 Span = Span.inverse(); 608 609 // If there are a ton of values, we don't want to make a ginormous switch. 610 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 611 return false; 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(CandidateVal)) 616 return false; 617 618 // Add all values from the range to the set 619 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 620 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 621 622 UsedICmps++; 623 return true; 624 } 625 626 /// Given a potentially 'or'd or 'and'd together collection of icmp 627 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 628 /// the value being compared, and stick the list constants into the Vals 629 /// vector. 630 /// One "Extra" case is allowed to differ from the other. 631 void gather(Value *V) { 632 Instruction *I = dyn_cast<Instruction>(V); 633 bool isEQ = (I->getOpcode() == Instruction::Or); 634 635 // Keep a stack (SmallVector for efficiency) for depth-first traversal 636 SmallVector<Value *, 8> DFT; 637 SmallPtrSet<Value *, 8> Visited; 638 639 // Initialize 640 Visited.insert(V); 641 DFT.push_back(V); 642 643 while (!DFT.empty()) { 644 V = DFT.pop_back_val(); 645 646 if (Instruction *I = dyn_cast<Instruction>(V)) { 647 // If it is a || (or && depending on isEQ), process the operands. 648 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 649 if (Visited.insert(I->getOperand(1)).second) 650 DFT.push_back(I->getOperand(1)); 651 if (Visited.insert(I->getOperand(0)).second) 652 DFT.push_back(I->getOperand(0)); 653 continue; 654 } 655 656 // Try to match the current instruction 657 if (matchInstruction(I, isEQ)) 658 // Match succeed, continue the loop 659 continue; 660 } 661 662 // One element of the sequence of || (or &&) could not be match as a 663 // comparison against the same value as the others. 664 // We allow only one "Extra" case to be checked before the switch 665 if (!Extra) { 666 Extra = V; 667 continue; 668 } 669 // Failed to parse a proper sequence, abort now 670 CompValue = nullptr; 671 break; 672 } 673 } 674 }; 675 676 } // end anonymous namespace 677 678 static void EraseTerminatorAndDCECond(Instruction *TI, 679 MemorySSAUpdater *MSSAU = nullptr) { 680 Instruction *Cond = nullptr; 681 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 682 Cond = dyn_cast<Instruction>(SI->getCondition()); 683 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 684 if (BI->isConditional()) 685 Cond = dyn_cast<Instruction>(BI->getCondition()); 686 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 687 Cond = dyn_cast<Instruction>(IBI->getAddress()); 688 } 689 690 TI->eraseFromParent(); 691 if (Cond) 692 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 693 } 694 695 /// Return true if the specified terminator checks 696 /// to see if a value is equal to constant integer value. 697 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 698 Value *CV = nullptr; 699 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 700 // Do not permit merging of large switch instructions into their 701 // predecessors unless there is only one predecessor. 702 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 703 CV = SI->getCondition(); 704 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 705 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 706 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 707 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 708 CV = ICI->getOperand(0); 709 } 710 711 // Unwrap any lossless ptrtoint cast. 712 if (CV) { 713 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 714 Value *Ptr = PTII->getPointerOperand(); 715 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 716 CV = Ptr; 717 } 718 } 719 return CV; 720 } 721 722 /// Given a value comparison instruction, 723 /// decode all of the 'cases' that it represents and return the 'default' block. 724 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 725 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 726 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 727 Cases.reserve(SI->getNumCases()); 728 for (auto Case : SI->cases()) 729 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 730 Case.getCaseSuccessor())); 731 return SI->getDefaultDest(); 732 } 733 734 BranchInst *BI = cast<BranchInst>(TI); 735 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 736 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 737 Cases.push_back(ValueEqualityComparisonCase( 738 GetConstantInt(ICI->getOperand(1), DL), Succ)); 739 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 740 } 741 742 /// Given a vector of bb/value pairs, remove any entries 743 /// in the list that match the specified block. 744 static void 745 EliminateBlockCases(BasicBlock *BB, 746 std::vector<ValueEqualityComparisonCase> &Cases) { 747 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 748 } 749 750 /// Return true if there are any keys in C1 that exist in C2 as well. 751 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 752 std::vector<ValueEqualityComparisonCase> &C2) { 753 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 754 755 // Make V1 be smaller than V2. 756 if (V1->size() > V2->size()) 757 std::swap(V1, V2); 758 759 if (V1->empty()) 760 return false; 761 if (V1->size() == 1) { 762 // Just scan V2. 763 ConstantInt *TheVal = (*V1)[0].Value; 764 for (unsigned i = 0, e = V2->size(); i != e; ++i) 765 if (TheVal == (*V2)[i].Value) 766 return true; 767 } 768 769 // Otherwise, just sort both lists and compare element by element. 770 array_pod_sort(V1->begin(), V1->end()); 771 array_pod_sort(V2->begin(), V2->end()); 772 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 773 while (i1 != e1 && i2 != e2) { 774 if ((*V1)[i1].Value == (*V2)[i2].Value) 775 return true; 776 if ((*V1)[i1].Value < (*V2)[i2].Value) 777 ++i1; 778 else 779 ++i2; 780 } 781 return false; 782 } 783 784 // Set branch weights on SwitchInst. This sets the metadata if there is at 785 // least one non-zero weight. 786 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 787 // Check that there is at least one non-zero weight. Otherwise, pass 788 // nullptr to setMetadata which will erase the existing metadata. 789 MDNode *N = nullptr; 790 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 791 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 792 SI->setMetadata(LLVMContext::MD_prof, N); 793 } 794 795 // Similar to the above, but for branch and select instructions that take 796 // exactly 2 weights. 797 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 798 uint32_t FalseWeight) { 799 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 800 // Check that there is at least one non-zero weight. Otherwise, pass 801 // nullptr to setMetadata which will erase the existing metadata. 802 MDNode *N = nullptr; 803 if (TrueWeight || FalseWeight) 804 N = MDBuilder(I->getParent()->getContext()) 805 .createBranchWeights(TrueWeight, FalseWeight); 806 I->setMetadata(LLVMContext::MD_prof, N); 807 } 808 809 /// If TI is known to be a terminator instruction and its block is known to 810 /// only have a single predecessor block, check to see if that predecessor is 811 /// also a value comparison with the same value, and if that comparison 812 /// determines the outcome of this comparison. If so, simplify TI. This does a 813 /// very limited form of jump threading. 814 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 815 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 816 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 817 if (!PredVal) 818 return false; // Not a value comparison in predecessor. 819 820 Value *ThisVal = isValueEqualityComparison(TI); 821 assert(ThisVal && "This isn't a value comparison!!"); 822 if (ThisVal != PredVal) 823 return false; // Different predicates. 824 825 // TODO: Preserve branch weight metadata, similarly to how 826 // FoldValueComparisonIntoPredecessors preserves it. 827 828 // Find out information about when control will move from Pred to TI's block. 829 std::vector<ValueEqualityComparisonCase> PredCases; 830 BasicBlock *PredDef = 831 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 832 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 833 834 // Find information about how control leaves this block. 835 std::vector<ValueEqualityComparisonCase> ThisCases; 836 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 837 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 838 839 // If TI's block is the default block from Pred's comparison, potentially 840 // simplify TI based on this knowledge. 841 if (PredDef == TI->getParent()) { 842 // If we are here, we know that the value is none of those cases listed in 843 // PredCases. If there are any cases in ThisCases that are in PredCases, we 844 // can simplify TI. 845 if (!ValuesOverlap(PredCases, ThisCases)) 846 return false; 847 848 if (isa<BranchInst>(TI)) { 849 // Okay, one of the successors of this condbr is dead. Convert it to a 850 // uncond br. 851 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 852 // Insert the new branch. 853 Instruction *NI = Builder.CreateBr(ThisDef); 854 (void)NI; 855 856 // Remove PHI node entries for the dead edge. 857 ThisCases[0].Dest->removePredecessor(TI->getParent()); 858 859 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 860 << "Through successor TI: " << *TI << "Leaving: " << *NI 861 << "\n"); 862 863 EraseTerminatorAndDCECond(TI); 864 return true; 865 } 866 867 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 868 // Okay, TI has cases that are statically dead, prune them away. 869 SmallPtrSet<Constant *, 16> DeadCases; 870 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 871 DeadCases.insert(PredCases[i].Value); 872 873 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 874 << "Through successor TI: " << *TI); 875 876 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 877 --i; 878 if (DeadCases.count(i->getCaseValue())) { 879 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 880 SI.removeCase(i); 881 } 882 } 883 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 884 return true; 885 } 886 887 // Otherwise, TI's block must correspond to some matched value. Find out 888 // which value (or set of values) this is. 889 ConstantInt *TIV = nullptr; 890 BasicBlock *TIBB = TI->getParent(); 891 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 892 if (PredCases[i].Dest == TIBB) { 893 if (TIV) 894 return false; // Cannot handle multiple values coming to this block. 895 TIV = PredCases[i].Value; 896 } 897 assert(TIV && "No edge from pred to succ?"); 898 899 // Okay, we found the one constant that our value can be if we get into TI's 900 // BB. Find out which successor will unconditionally be branched to. 901 BasicBlock *TheRealDest = nullptr; 902 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 903 if (ThisCases[i].Value == TIV) { 904 TheRealDest = ThisCases[i].Dest; 905 break; 906 } 907 908 // If not handled by any explicit cases, it is handled by the default case. 909 if (!TheRealDest) 910 TheRealDest = ThisDef; 911 912 // Remove PHI node entries for dead edges. 913 BasicBlock *CheckEdge = TheRealDest; 914 for (BasicBlock *Succ : successors(TIBB)) 915 if (Succ != CheckEdge) 916 Succ->removePredecessor(TIBB); 917 else 918 CheckEdge = nullptr; 919 920 // Insert the new branch. 921 Instruction *NI = Builder.CreateBr(TheRealDest); 922 (void)NI; 923 924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 925 << "Through successor TI: " << *TI << "Leaving: " << *NI 926 << "\n"); 927 928 EraseTerminatorAndDCECond(TI); 929 return true; 930 } 931 932 namespace { 933 934 /// This class implements a stable ordering of constant 935 /// integers that does not depend on their address. This is important for 936 /// applications that sort ConstantInt's to ensure uniqueness. 937 struct ConstantIntOrdering { 938 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 939 return LHS->getValue().ult(RHS->getValue()); 940 } 941 }; 942 943 } // end anonymous namespace 944 945 static int ConstantIntSortPredicate(ConstantInt *const *P1, 946 ConstantInt *const *P2) { 947 const ConstantInt *LHS = *P1; 948 const ConstantInt *RHS = *P2; 949 if (LHS == RHS) 950 return 0; 951 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 952 } 953 954 static inline bool HasBranchWeights(const Instruction *I) { 955 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 956 if (ProfMD && ProfMD->getOperand(0)) 957 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 958 return MDS->getString().equals("branch_weights"); 959 960 return false; 961 } 962 963 /// Get Weights of a given terminator, the default weight is at the front 964 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 965 /// metadata. 966 static void GetBranchWeights(Instruction *TI, 967 SmallVectorImpl<uint64_t> &Weights) { 968 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 969 assert(MD); 970 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 971 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 972 Weights.push_back(CI->getValue().getZExtValue()); 973 } 974 975 // If TI is a conditional eq, the default case is the false case, 976 // and the corresponding branch-weight data is at index 2. We swap the 977 // default weight to be the first entry. 978 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 979 assert(Weights.size() == 2); 980 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 981 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 982 std::swap(Weights.front(), Weights.back()); 983 } 984 } 985 986 /// Keep halving the weights until all can fit in uint32_t. 987 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 988 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 989 if (Max > UINT_MAX) { 990 unsigned Offset = 32 - countLeadingZeros(Max); 991 for (uint64_t &I : Weights) 992 I >>= Offset; 993 } 994 } 995 996 /// The specified terminator is a value equality comparison instruction 997 /// (either a switch or a branch on "X == c"). 998 /// See if any of the predecessors of the terminator block are value comparisons 999 /// on the same value. If so, and if safe to do so, fold them together. 1000 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1001 IRBuilder<> &Builder) { 1002 BasicBlock *BB = TI->getParent(); 1003 Value *CV = isValueEqualityComparison(TI); // CondVal 1004 assert(CV && "Not a comparison?"); 1005 bool Changed = false; 1006 1007 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1008 while (!Preds.empty()) { 1009 BasicBlock *Pred = Preds.pop_back_val(); 1010 1011 // See if the predecessor is a comparison with the same value. 1012 Instruction *PTI = Pred->getTerminator(); 1013 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1014 1015 if (PCV == CV && TI != PTI) { 1016 SmallSetVector<BasicBlock*, 4> FailBlocks; 1017 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1018 for (auto *Succ : FailBlocks) { 1019 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1020 return false; 1021 } 1022 } 1023 1024 // Figure out which 'cases' to copy from SI to PSI. 1025 std::vector<ValueEqualityComparisonCase> BBCases; 1026 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1027 1028 std::vector<ValueEqualityComparisonCase> PredCases; 1029 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1030 1031 // Based on whether the default edge from PTI goes to BB or not, fill in 1032 // PredCases and PredDefault with the new switch cases we would like to 1033 // build. 1034 SmallVector<BasicBlock *, 8> NewSuccessors; 1035 1036 // Update the branch weight metadata along the way 1037 SmallVector<uint64_t, 8> Weights; 1038 bool PredHasWeights = HasBranchWeights(PTI); 1039 bool SuccHasWeights = HasBranchWeights(TI); 1040 1041 if (PredHasWeights) { 1042 GetBranchWeights(PTI, Weights); 1043 // branch-weight metadata is inconsistent here. 1044 if (Weights.size() != 1 + PredCases.size()) 1045 PredHasWeights = SuccHasWeights = false; 1046 } else if (SuccHasWeights) 1047 // If there are no predecessor weights but there are successor weights, 1048 // populate Weights with 1, which will later be scaled to the sum of 1049 // successor's weights 1050 Weights.assign(1 + PredCases.size(), 1); 1051 1052 SmallVector<uint64_t, 8> SuccWeights; 1053 if (SuccHasWeights) { 1054 GetBranchWeights(TI, SuccWeights); 1055 // branch-weight metadata is inconsistent here. 1056 if (SuccWeights.size() != 1 + BBCases.size()) 1057 PredHasWeights = SuccHasWeights = false; 1058 } else if (PredHasWeights) 1059 SuccWeights.assign(1 + BBCases.size(), 1); 1060 1061 if (PredDefault == BB) { 1062 // If this is the default destination from PTI, only the edges in TI 1063 // that don't occur in PTI, or that branch to BB will be activated. 1064 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1065 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1066 if (PredCases[i].Dest != BB) 1067 PTIHandled.insert(PredCases[i].Value); 1068 else { 1069 // The default destination is BB, we don't need explicit targets. 1070 std::swap(PredCases[i], PredCases.back()); 1071 1072 if (PredHasWeights || SuccHasWeights) { 1073 // Increase weight for the default case. 1074 Weights[0] += Weights[i + 1]; 1075 std::swap(Weights[i + 1], Weights.back()); 1076 Weights.pop_back(); 1077 } 1078 1079 PredCases.pop_back(); 1080 --i; 1081 --e; 1082 } 1083 1084 // Reconstruct the new switch statement we will be building. 1085 if (PredDefault != BBDefault) { 1086 PredDefault->removePredecessor(Pred); 1087 PredDefault = BBDefault; 1088 NewSuccessors.push_back(BBDefault); 1089 } 1090 1091 unsigned CasesFromPred = Weights.size(); 1092 uint64_t ValidTotalSuccWeight = 0; 1093 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1094 if (!PTIHandled.count(BBCases[i].Value) && 1095 BBCases[i].Dest != BBDefault) { 1096 PredCases.push_back(BBCases[i]); 1097 NewSuccessors.push_back(BBCases[i].Dest); 1098 if (SuccHasWeights || PredHasWeights) { 1099 // The default weight is at index 0, so weight for the ith case 1100 // should be at index i+1. Scale the cases from successor by 1101 // PredDefaultWeight (Weights[0]). 1102 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1103 ValidTotalSuccWeight += SuccWeights[i + 1]; 1104 } 1105 } 1106 1107 if (SuccHasWeights || PredHasWeights) { 1108 ValidTotalSuccWeight += SuccWeights[0]; 1109 // Scale the cases from predecessor by ValidTotalSuccWeight. 1110 for (unsigned i = 1; i < CasesFromPred; ++i) 1111 Weights[i] *= ValidTotalSuccWeight; 1112 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1113 Weights[0] *= SuccWeights[0]; 1114 } 1115 } else { 1116 // If this is not the default destination from PSI, only the edges 1117 // in SI that occur in PSI with a destination of BB will be 1118 // activated. 1119 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1120 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1121 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1122 if (PredCases[i].Dest == BB) { 1123 PTIHandled.insert(PredCases[i].Value); 1124 1125 if (PredHasWeights || SuccHasWeights) { 1126 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1127 std::swap(Weights[i + 1], Weights.back()); 1128 Weights.pop_back(); 1129 } 1130 1131 std::swap(PredCases[i], PredCases.back()); 1132 PredCases.pop_back(); 1133 --i; 1134 --e; 1135 } 1136 1137 // Okay, now we know which constants were sent to BB from the 1138 // predecessor. Figure out where they will all go now. 1139 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1140 if (PTIHandled.count(BBCases[i].Value)) { 1141 // If this is one we are capable of getting... 1142 if (PredHasWeights || SuccHasWeights) 1143 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1144 PredCases.push_back(BBCases[i]); 1145 NewSuccessors.push_back(BBCases[i].Dest); 1146 PTIHandled.erase( 1147 BBCases[i].Value); // This constant is taken care of 1148 } 1149 1150 // If there are any constants vectored to BB that TI doesn't handle, 1151 // they must go to the default destination of TI. 1152 for (ConstantInt *I : PTIHandled) { 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[I]); 1155 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1156 NewSuccessors.push_back(BBDefault); 1157 } 1158 } 1159 1160 // Okay, at this point, we know which new successor Pred will get. Make 1161 // sure we update the number of entries in the PHI nodes for these 1162 // successors. 1163 for (BasicBlock *NewSuccessor : NewSuccessors) 1164 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1165 1166 Builder.SetInsertPoint(PTI); 1167 // Convert pointer to int before we switch. 1168 if (CV->getType()->isPointerTy()) { 1169 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1170 "magicptr"); 1171 } 1172 1173 // Now that the successors are updated, create the new Switch instruction. 1174 SwitchInst *NewSI = 1175 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1176 NewSI->setDebugLoc(PTI->getDebugLoc()); 1177 for (ValueEqualityComparisonCase &V : PredCases) 1178 NewSI->addCase(V.Value, V.Dest); 1179 1180 if (PredHasWeights || SuccHasWeights) { 1181 // Halve the weights if any of them cannot fit in an uint32_t 1182 FitWeights(Weights); 1183 1184 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1185 1186 setBranchWeights(NewSI, MDWeights); 1187 } 1188 1189 EraseTerminatorAndDCECond(PTI); 1190 1191 // Okay, last check. If BB is still a successor of PSI, then we must 1192 // have an infinite loop case. If so, add an infinitely looping block 1193 // to handle the case to preserve the behavior of the code. 1194 BasicBlock *InfLoopBlock = nullptr; 1195 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1196 if (NewSI->getSuccessor(i) == BB) { 1197 if (!InfLoopBlock) { 1198 // Insert it at the end of the function, because it's either code, 1199 // or it won't matter if it's hot. :) 1200 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1201 BB->getParent()); 1202 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1203 } 1204 NewSI->setSuccessor(i, InfLoopBlock); 1205 } 1206 1207 Changed = true; 1208 } 1209 } 1210 return Changed; 1211 } 1212 1213 // If we would need to insert a select that uses the value of this invoke 1214 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1215 // can't hoist the invoke, as there is nowhere to put the select in this case. 1216 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1217 Instruction *I1, Instruction *I2) { 1218 for (BasicBlock *Succ : successors(BB1)) { 1219 for (const PHINode &PN : Succ->phis()) { 1220 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1221 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1222 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1223 return false; 1224 } 1225 } 1226 } 1227 return true; 1228 } 1229 1230 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1231 1232 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1233 /// in the two blocks up into the branch block. The caller of this function 1234 /// guarantees that BI's block dominates BB1 and BB2. 1235 static bool HoistThenElseCodeToIf(BranchInst *BI, 1236 const TargetTransformInfo &TTI) { 1237 // This does very trivial matching, with limited scanning, to find identical 1238 // instructions in the two blocks. In particular, we don't want to get into 1239 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1240 // such, we currently just scan for obviously identical instructions in an 1241 // identical order. 1242 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1243 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1244 1245 BasicBlock::iterator BB1_Itr = BB1->begin(); 1246 BasicBlock::iterator BB2_Itr = BB2->begin(); 1247 1248 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1249 // Skip debug info if it is not identical. 1250 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1251 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1252 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1253 while (isa<DbgInfoIntrinsic>(I1)) 1254 I1 = &*BB1_Itr++; 1255 while (isa<DbgInfoIntrinsic>(I2)) 1256 I2 = &*BB2_Itr++; 1257 } 1258 // FIXME: Can we define a safety predicate for CallBr? 1259 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1260 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1261 isa<CallBrInst>(I1)) 1262 return false; 1263 1264 BasicBlock *BIParent = BI->getParent(); 1265 1266 bool Changed = false; 1267 do { 1268 // If we are hoisting the terminator instruction, don't move one (making a 1269 // broken BB), instead clone it, and remove BI. 1270 if (I1->isTerminator()) 1271 goto HoistTerminator; 1272 1273 // If we're going to hoist a call, make sure that the two instructions we're 1274 // commoning/hoisting are both marked with musttail, or neither of them is 1275 // marked as such. Otherwise, we might end up in a situation where we hoist 1276 // from a block where the terminator is a `ret` to a block where the terminator 1277 // is a `br`, and `musttail` calls expect to be followed by a return. 1278 auto *C1 = dyn_cast<CallInst>(I1); 1279 auto *C2 = dyn_cast<CallInst>(I2); 1280 if (C1 && C2) 1281 if (C1->isMustTailCall() != C2->isMustTailCall()) 1282 return Changed; 1283 1284 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1285 return Changed; 1286 1287 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1288 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1289 // The debug location is an integral part of a debug info intrinsic 1290 // and can't be separated from it or replaced. Instead of attempting 1291 // to merge locations, simply hoist both copies of the intrinsic. 1292 BIParent->getInstList().splice(BI->getIterator(), 1293 BB1->getInstList(), I1); 1294 BIParent->getInstList().splice(BI->getIterator(), 1295 BB2->getInstList(), I2); 1296 Changed = true; 1297 } else { 1298 // For a normal instruction, we just move one to right before the branch, 1299 // then replace all uses of the other with the first. Finally, we remove 1300 // the now redundant second instruction. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 if (!I2->use_empty()) 1304 I2->replaceAllUsesWith(I1); 1305 I1->andIRFlags(I2); 1306 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1307 LLVMContext::MD_range, 1308 LLVMContext::MD_fpmath, 1309 LLVMContext::MD_invariant_load, 1310 LLVMContext::MD_nonnull, 1311 LLVMContext::MD_invariant_group, 1312 LLVMContext::MD_align, 1313 LLVMContext::MD_dereferenceable, 1314 LLVMContext::MD_dereferenceable_or_null, 1315 LLVMContext::MD_mem_parallel_loop_access, 1316 LLVMContext::MD_access_group, 1317 LLVMContext::MD_preserve_access_index}; 1318 combineMetadata(I1, I2, KnownIDs, true); 1319 1320 // I1 and I2 are being combined into a single instruction. Its debug 1321 // location is the merged locations of the original instructions. 1322 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1323 1324 I2->eraseFromParent(); 1325 Changed = true; 1326 } 1327 1328 I1 = &*BB1_Itr++; 1329 I2 = &*BB2_Itr++; 1330 // Skip debug info if it is not identical. 1331 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1332 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1333 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1334 while (isa<DbgInfoIntrinsic>(I1)) 1335 I1 = &*BB1_Itr++; 1336 while (isa<DbgInfoIntrinsic>(I2)) 1337 I2 = &*BB2_Itr++; 1338 } 1339 } while (I1->isIdenticalToWhenDefined(I2)); 1340 1341 return true; 1342 1343 HoistTerminator: 1344 // It may not be possible to hoist an invoke. 1345 // FIXME: Can we define a safety predicate for CallBr? 1346 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1347 return Changed; 1348 1349 // TODO: callbr hoisting currently disabled pending further study. 1350 if (isa<CallBrInst>(I1)) 1351 return Changed; 1352 1353 for (BasicBlock *Succ : successors(BB1)) { 1354 for (PHINode &PN : Succ->phis()) { 1355 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1356 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1357 if (BB1V == BB2V) 1358 continue; 1359 1360 // Check for passingValueIsAlwaysUndefined here because we would rather 1361 // eliminate undefined control flow then converting it to a select. 1362 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1363 passingValueIsAlwaysUndefined(BB2V, &PN)) 1364 return Changed; 1365 1366 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1367 return Changed; 1368 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1369 return Changed; 1370 } 1371 } 1372 1373 // Okay, it is safe to hoist the terminator. 1374 Instruction *NT = I1->clone(); 1375 BIParent->getInstList().insert(BI->getIterator(), NT); 1376 if (!NT->getType()->isVoidTy()) { 1377 I1->replaceAllUsesWith(NT); 1378 I2->replaceAllUsesWith(NT); 1379 NT->takeName(I1); 1380 } 1381 1382 // Ensure terminator gets a debug location, even an unknown one, in case 1383 // it involves inlinable calls. 1384 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1385 1386 // PHIs created below will adopt NT's merged DebugLoc. 1387 IRBuilder<NoFolder> Builder(NT); 1388 1389 // Hoisting one of the terminators from our successor is a great thing. 1390 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1391 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1392 // nodes, so we insert select instruction to compute the final result. 1393 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1394 for (BasicBlock *Succ : successors(BB1)) { 1395 for (PHINode &PN : Succ->phis()) { 1396 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1397 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1398 if (BB1V == BB2V) 1399 continue; 1400 1401 // These values do not agree. Insert a select instruction before NT 1402 // that determines the right value. 1403 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1404 if (!SI) 1405 SI = cast<SelectInst>( 1406 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1407 BB1V->getName() + "." + BB2V->getName(), BI)); 1408 1409 // Make the PHI node use the select for all incoming values for BB1/BB2 1410 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1411 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1412 PN.setIncomingValue(i, SI); 1413 } 1414 } 1415 1416 // Update any PHI nodes in our new successors. 1417 for (BasicBlock *Succ : successors(BB1)) 1418 AddPredecessorToBlock(Succ, BIParent, BB1); 1419 1420 EraseTerminatorAndDCECond(BI); 1421 return true; 1422 } 1423 1424 // Check lifetime markers. 1425 static bool isLifeTimeMarker(const Instruction *I) { 1426 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1427 switch (II->getIntrinsicID()) { 1428 default: 1429 break; 1430 case Intrinsic::lifetime_start: 1431 case Intrinsic::lifetime_end: 1432 return true; 1433 } 1434 } 1435 return false; 1436 } 1437 1438 // All instructions in Insts belong to different blocks that all unconditionally 1439 // branch to a common successor. Analyze each instruction and return true if it 1440 // would be possible to sink them into their successor, creating one common 1441 // instruction instead. For every value that would be required to be provided by 1442 // PHI node (because an operand varies in each input block), add to PHIOperands. 1443 static bool canSinkInstructions( 1444 ArrayRef<Instruction *> Insts, 1445 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1446 // Prune out obviously bad instructions to move. Each instruction must have 1447 // exactly zero or one use, and we check later that use is by a single, common 1448 // PHI instruction in the successor. 1449 bool HasUse = !Insts.front()->user_empty(); 1450 for (auto *I : Insts) { 1451 // These instructions may change or break semantics if moved. 1452 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1453 I->getType()->isTokenTy()) 1454 return false; 1455 1456 // Conservatively return false if I is an inline-asm instruction. Sinking 1457 // and merging inline-asm instructions can potentially create arguments 1458 // that cannot satisfy the inline-asm constraints. 1459 if (const auto *C = dyn_cast<CallBase>(I)) 1460 if (C->isInlineAsm()) 1461 return false; 1462 1463 // Each instruction must have zero or one use. 1464 if (HasUse && !I->hasOneUse()) 1465 return false; 1466 if (!HasUse && !I->user_empty()) 1467 return false; 1468 } 1469 1470 const Instruction *I0 = Insts.front(); 1471 for (auto *I : Insts) 1472 if (!I->isSameOperationAs(I0)) 1473 return false; 1474 1475 // All instructions in Insts are known to be the same opcode. If they have a 1476 // use, check that the only user is a PHI or in the same block as the 1477 // instruction, because if a user is in the same block as an instruction we're 1478 // contemplating sinking, it must already be determined to be sinkable. 1479 if (HasUse) { 1480 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1481 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1482 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1483 auto *U = cast<Instruction>(*I->user_begin()); 1484 return (PNUse && 1485 PNUse->getParent() == Succ && 1486 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1487 U->getParent() == I->getParent(); 1488 })) 1489 return false; 1490 } 1491 1492 // Because SROA can't handle speculating stores of selects, try not to sink 1493 // loads, stores or lifetime markers of allocas when we'd have to create a 1494 // PHI for the address operand. Also, because it is likely that loads or 1495 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1496 // them. 1497 // This can cause code churn which can have unintended consequences down 1498 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1499 // FIXME: This is a workaround for a deficiency in SROA - see 1500 // https://llvm.org/bugs/show_bug.cgi?id=30188 1501 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1502 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1503 })) 1504 return false; 1505 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1506 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1507 })) 1508 return false; 1509 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1510 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1511 })) 1512 return false; 1513 1514 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1515 if (I0->getOperand(OI)->getType()->isTokenTy()) 1516 // Don't touch any operand of token type. 1517 return false; 1518 1519 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1520 assert(I->getNumOperands() == I0->getNumOperands()); 1521 return I->getOperand(OI) == I0->getOperand(OI); 1522 }; 1523 if (!all_of(Insts, SameAsI0)) { 1524 if (!canReplaceOperandWithVariable(I0, OI)) 1525 // We can't create a PHI from this GEP. 1526 return false; 1527 // Don't create indirect calls! The called value is the final operand. 1528 if (isa<CallBase>(I0) && OI == OE - 1) { 1529 // FIXME: if the call was *already* indirect, we should do this. 1530 return false; 1531 } 1532 for (auto *I : Insts) 1533 PHIOperands[I].push_back(I->getOperand(OI)); 1534 } 1535 } 1536 return true; 1537 } 1538 1539 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1540 // instruction of every block in Blocks to their common successor, commoning 1541 // into one instruction. 1542 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1543 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1544 1545 // canSinkLastInstruction returning true guarantees that every block has at 1546 // least one non-terminator instruction. 1547 SmallVector<Instruction*,4> Insts; 1548 for (auto *BB : Blocks) { 1549 Instruction *I = BB->getTerminator(); 1550 do { 1551 I = I->getPrevNode(); 1552 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1553 if (!isa<DbgInfoIntrinsic>(I)) 1554 Insts.push_back(I); 1555 } 1556 1557 // The only checking we need to do now is that all users of all instructions 1558 // are the same PHI node. canSinkLastInstruction should have checked this but 1559 // it is slightly over-aggressive - it gets confused by commutative instructions 1560 // so double-check it here. 1561 Instruction *I0 = Insts.front(); 1562 if (!I0->user_empty()) { 1563 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1564 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1565 auto *U = cast<Instruction>(*I->user_begin()); 1566 return U == PNUse; 1567 })) 1568 return false; 1569 } 1570 1571 // We don't need to do any more checking here; canSinkLastInstruction should 1572 // have done it all for us. 1573 SmallVector<Value*, 4> NewOperands; 1574 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1575 // This check is different to that in canSinkLastInstruction. There, we 1576 // cared about the global view once simplifycfg (and instcombine) have 1577 // completed - it takes into account PHIs that become trivially 1578 // simplifiable. However here we need a more local view; if an operand 1579 // differs we create a PHI and rely on instcombine to clean up the very 1580 // small mess we may make. 1581 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1582 return I->getOperand(O) != I0->getOperand(O); 1583 }); 1584 if (!NeedPHI) { 1585 NewOperands.push_back(I0->getOperand(O)); 1586 continue; 1587 } 1588 1589 // Create a new PHI in the successor block and populate it. 1590 auto *Op = I0->getOperand(O); 1591 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1592 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1593 Op->getName() + ".sink", &BBEnd->front()); 1594 for (auto *I : Insts) 1595 PN->addIncoming(I->getOperand(O), I->getParent()); 1596 NewOperands.push_back(PN); 1597 } 1598 1599 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1600 // and move it to the start of the successor block. 1601 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1602 I0->getOperandUse(O).set(NewOperands[O]); 1603 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1604 1605 // Update metadata and IR flags, and merge debug locations. 1606 for (auto *I : Insts) 1607 if (I != I0) { 1608 // The debug location for the "common" instruction is the merged locations 1609 // of all the commoned instructions. We start with the original location 1610 // of the "common" instruction and iteratively merge each location in the 1611 // loop below. 1612 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1613 // However, as N-way merge for CallInst is rare, so we use simplified API 1614 // instead of using complex API for N-way merge. 1615 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1616 combineMetadataForCSE(I0, I, true); 1617 I0->andIRFlags(I); 1618 } 1619 1620 if (!I0->user_empty()) { 1621 // canSinkLastInstruction checked that all instructions were used by 1622 // one and only one PHI node. Find that now, RAUW it to our common 1623 // instruction and nuke it. 1624 auto *PN = cast<PHINode>(*I0->user_begin()); 1625 PN->replaceAllUsesWith(I0); 1626 PN->eraseFromParent(); 1627 } 1628 1629 // Finally nuke all instructions apart from the common instruction. 1630 for (auto *I : Insts) 1631 if (I != I0) 1632 I->eraseFromParent(); 1633 1634 return true; 1635 } 1636 1637 namespace { 1638 1639 // LockstepReverseIterator - Iterates through instructions 1640 // in a set of blocks in reverse order from the first non-terminator. 1641 // For example (assume all blocks have size n): 1642 // LockstepReverseIterator I([B1, B2, B3]); 1643 // *I-- = [B1[n], B2[n], B3[n]]; 1644 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1645 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1646 // ... 1647 class LockstepReverseIterator { 1648 ArrayRef<BasicBlock*> Blocks; 1649 SmallVector<Instruction*,4> Insts; 1650 bool Fail; 1651 1652 public: 1653 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1654 reset(); 1655 } 1656 1657 void reset() { 1658 Fail = false; 1659 Insts.clear(); 1660 for (auto *BB : Blocks) { 1661 Instruction *Inst = BB->getTerminator(); 1662 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1663 Inst = Inst->getPrevNode(); 1664 if (!Inst) { 1665 // Block wasn't big enough. 1666 Fail = true; 1667 return; 1668 } 1669 Insts.push_back(Inst); 1670 } 1671 } 1672 1673 bool isValid() const { 1674 return !Fail; 1675 } 1676 1677 void operator--() { 1678 if (Fail) 1679 return; 1680 for (auto *&Inst : Insts) { 1681 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1682 Inst = Inst->getPrevNode(); 1683 // Already at beginning of block. 1684 if (!Inst) { 1685 Fail = true; 1686 return; 1687 } 1688 } 1689 } 1690 1691 ArrayRef<Instruction*> operator * () const { 1692 return Insts; 1693 } 1694 }; 1695 1696 } // end anonymous namespace 1697 1698 /// Check whether BB's predecessors end with unconditional branches. If it is 1699 /// true, sink any common code from the predecessors to BB. 1700 /// We also allow one predecessor to end with conditional branch (but no more 1701 /// than one). 1702 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1703 // We support two situations: 1704 // (1) all incoming arcs are unconditional 1705 // (2) one incoming arc is conditional 1706 // 1707 // (2) is very common in switch defaults and 1708 // else-if patterns; 1709 // 1710 // if (a) f(1); 1711 // else if (b) f(2); 1712 // 1713 // produces: 1714 // 1715 // [if] 1716 // / \ 1717 // [f(1)] [if] 1718 // | | \ 1719 // | | | 1720 // | [f(2)]| 1721 // \ | / 1722 // [ end ] 1723 // 1724 // [end] has two unconditional predecessor arcs and one conditional. The 1725 // conditional refers to the implicit empty 'else' arc. This conditional 1726 // arc can also be caused by an empty default block in a switch. 1727 // 1728 // In this case, we attempt to sink code from all *unconditional* arcs. 1729 // If we can sink instructions from these arcs (determined during the scan 1730 // phase below) we insert a common successor for all unconditional arcs and 1731 // connect that to [end], to enable sinking: 1732 // 1733 // [if] 1734 // / \ 1735 // [x(1)] [if] 1736 // | | \ 1737 // | | \ 1738 // | [x(2)] | 1739 // \ / | 1740 // [sink.split] | 1741 // \ / 1742 // [ end ] 1743 // 1744 SmallVector<BasicBlock*,4> UnconditionalPreds; 1745 Instruction *Cond = nullptr; 1746 for (auto *B : predecessors(BB)) { 1747 auto *T = B->getTerminator(); 1748 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1749 UnconditionalPreds.push_back(B); 1750 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1751 Cond = T; 1752 else 1753 return false; 1754 } 1755 if (UnconditionalPreds.size() < 2) 1756 return false; 1757 1758 bool Changed = false; 1759 // We take a two-step approach to tail sinking. First we scan from the end of 1760 // each block upwards in lockstep. If the n'th instruction from the end of each 1761 // block can be sunk, those instructions are added to ValuesToSink and we 1762 // carry on. If we can sink an instruction but need to PHI-merge some operands 1763 // (because they're not identical in each instruction) we add these to 1764 // PHIOperands. 1765 unsigned ScanIdx = 0; 1766 SmallPtrSet<Value*,4> InstructionsToSink; 1767 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1768 LockstepReverseIterator LRI(UnconditionalPreds); 1769 while (LRI.isValid() && 1770 canSinkInstructions(*LRI, PHIOperands)) { 1771 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1772 << "\n"); 1773 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1774 ++ScanIdx; 1775 --LRI; 1776 } 1777 1778 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1779 unsigned NumPHIdValues = 0; 1780 for (auto *I : *LRI) 1781 for (auto *V : PHIOperands[I]) 1782 if (InstructionsToSink.count(V) == 0) 1783 ++NumPHIdValues; 1784 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1785 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1786 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1787 NumPHIInsts++; 1788 1789 return NumPHIInsts <= 1; 1790 }; 1791 1792 if (ScanIdx > 0 && Cond) { 1793 // Check if we would actually sink anything first! This mutates the CFG and 1794 // adds an extra block. The goal in doing this is to allow instructions that 1795 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1796 // (such as trunc, add) can be sunk and predicated already. So we check that 1797 // we're going to sink at least one non-speculatable instruction. 1798 LRI.reset(); 1799 unsigned Idx = 0; 1800 bool Profitable = false; 1801 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1802 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1803 Profitable = true; 1804 break; 1805 } 1806 --LRI; 1807 ++Idx; 1808 } 1809 if (!Profitable) 1810 return false; 1811 1812 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1813 // We have a conditional edge and we're going to sink some instructions. 1814 // Insert a new block postdominating all blocks we're going to sink from. 1815 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1816 // Edges couldn't be split. 1817 return false; 1818 Changed = true; 1819 } 1820 1821 // Now that we've analyzed all potential sinking candidates, perform the 1822 // actual sink. We iteratively sink the last non-terminator of the source 1823 // blocks into their common successor unless doing so would require too 1824 // many PHI instructions to be generated (currently only one PHI is allowed 1825 // per sunk instruction). 1826 // 1827 // We can use InstructionsToSink to discount values needing PHI-merging that will 1828 // actually be sunk in a later iteration. This allows us to be more 1829 // aggressive in what we sink. This does allow a false positive where we 1830 // sink presuming a later value will also be sunk, but stop half way through 1831 // and never actually sink it which means we produce more PHIs than intended. 1832 // This is unlikely in practice though. 1833 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1834 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1835 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1836 << "\n"); 1837 1838 // Because we've sunk every instruction in turn, the current instruction to 1839 // sink is always at index 0. 1840 LRI.reset(); 1841 if (!ProfitableToSinkInstruction(LRI)) { 1842 // Too many PHIs would be created. 1843 LLVM_DEBUG( 1844 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1845 break; 1846 } 1847 1848 if (!sinkLastInstruction(UnconditionalPreds)) 1849 return Changed; 1850 NumSinkCommons++; 1851 Changed = true; 1852 } 1853 return Changed; 1854 } 1855 1856 /// Determine if we can hoist sink a sole store instruction out of a 1857 /// conditional block. 1858 /// 1859 /// We are looking for code like the following: 1860 /// BrBB: 1861 /// store i32 %add, i32* %arrayidx2 1862 /// ... // No other stores or function calls (we could be calling a memory 1863 /// ... // function). 1864 /// %cmp = icmp ult %x, %y 1865 /// br i1 %cmp, label %EndBB, label %ThenBB 1866 /// ThenBB: 1867 /// store i32 %add5, i32* %arrayidx2 1868 /// br label EndBB 1869 /// EndBB: 1870 /// ... 1871 /// We are going to transform this into: 1872 /// BrBB: 1873 /// store i32 %add, i32* %arrayidx2 1874 /// ... // 1875 /// %cmp = icmp ult %x, %y 1876 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1877 /// store i32 %add.add5, i32* %arrayidx2 1878 /// ... 1879 /// 1880 /// \return The pointer to the value of the previous store if the store can be 1881 /// hoisted into the predecessor block. 0 otherwise. 1882 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1883 BasicBlock *StoreBB, BasicBlock *EndBB) { 1884 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1885 if (!StoreToHoist) 1886 return nullptr; 1887 1888 // Volatile or atomic. 1889 if (!StoreToHoist->isSimple()) 1890 return nullptr; 1891 1892 Value *StorePtr = StoreToHoist->getPointerOperand(); 1893 1894 // Look for a store to the same pointer in BrBB. 1895 unsigned MaxNumInstToLookAt = 9; 1896 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1897 if (!MaxNumInstToLookAt) 1898 break; 1899 --MaxNumInstToLookAt; 1900 1901 // Could be calling an instruction that affects memory like free(). 1902 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1903 return nullptr; 1904 1905 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1906 // Found the previous store make sure it stores to the same location. 1907 if (SI->getPointerOperand() == StorePtr) 1908 // Found the previous store, return its value operand. 1909 return SI->getValueOperand(); 1910 return nullptr; // Unknown store. 1911 } 1912 } 1913 1914 return nullptr; 1915 } 1916 1917 /// Speculate a conditional basic block flattening the CFG. 1918 /// 1919 /// Note that this is a very risky transform currently. Speculating 1920 /// instructions like this is most often not desirable. Instead, there is an MI 1921 /// pass which can do it with full awareness of the resource constraints. 1922 /// However, some cases are "obvious" and we should do directly. An example of 1923 /// this is speculating a single, reasonably cheap instruction. 1924 /// 1925 /// There is only one distinct advantage to flattening the CFG at the IR level: 1926 /// it makes very common but simplistic optimizations such as are common in 1927 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1928 /// modeling their effects with easier to reason about SSA value graphs. 1929 /// 1930 /// 1931 /// An illustration of this transform is turning this IR: 1932 /// \code 1933 /// BB: 1934 /// %cmp = icmp ult %x, %y 1935 /// br i1 %cmp, label %EndBB, label %ThenBB 1936 /// ThenBB: 1937 /// %sub = sub %x, %y 1938 /// br label BB2 1939 /// EndBB: 1940 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1941 /// ... 1942 /// \endcode 1943 /// 1944 /// Into this IR: 1945 /// \code 1946 /// BB: 1947 /// %cmp = icmp ult %x, %y 1948 /// %sub = sub %x, %y 1949 /// %cond = select i1 %cmp, 0, %sub 1950 /// ... 1951 /// \endcode 1952 /// 1953 /// \returns true if the conditional block is removed. 1954 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1955 const TargetTransformInfo &TTI) { 1956 // Be conservative for now. FP select instruction can often be expensive. 1957 Value *BrCond = BI->getCondition(); 1958 if (isa<FCmpInst>(BrCond)) 1959 return false; 1960 1961 BasicBlock *BB = BI->getParent(); 1962 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1963 1964 // If ThenBB is actually on the false edge of the conditional branch, remember 1965 // to swap the select operands later. 1966 bool Invert = false; 1967 if (ThenBB != BI->getSuccessor(0)) { 1968 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1969 Invert = true; 1970 } 1971 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1972 1973 // Keep a count of how many times instructions are used within ThenBB when 1974 // they are candidates for sinking into ThenBB. Specifically: 1975 // - They are defined in BB, and 1976 // - They have no side effects, and 1977 // - All of their uses are in ThenBB. 1978 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1979 1980 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1981 1982 unsigned SpeculatedInstructions = 0; 1983 Value *SpeculatedStoreValue = nullptr; 1984 StoreInst *SpeculatedStore = nullptr; 1985 for (BasicBlock::iterator BBI = ThenBB->begin(), 1986 BBE = std::prev(ThenBB->end()); 1987 BBI != BBE; ++BBI) { 1988 Instruction *I = &*BBI; 1989 // Skip debug info. 1990 if (isa<DbgInfoIntrinsic>(I)) { 1991 SpeculatedDbgIntrinsics.push_back(I); 1992 continue; 1993 } 1994 1995 // Only speculatively execute a single instruction (not counting the 1996 // terminator) for now. 1997 ++SpeculatedInstructions; 1998 if (SpeculatedInstructions > 1) 1999 return false; 2000 2001 // Don't hoist the instruction if it's unsafe or expensive. 2002 if (!isSafeToSpeculativelyExecute(I) && 2003 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2004 I, BB, ThenBB, EndBB)))) 2005 return false; 2006 if (!SpeculatedStoreValue && 2007 ComputeSpeculationCost(I, TTI) > 2008 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2009 return false; 2010 2011 // Store the store speculation candidate. 2012 if (SpeculatedStoreValue) 2013 SpeculatedStore = cast<StoreInst>(I); 2014 2015 // Do not hoist the instruction if any of its operands are defined but not 2016 // used in BB. The transformation will prevent the operand from 2017 // being sunk into the use block. 2018 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2019 Instruction *OpI = dyn_cast<Instruction>(*i); 2020 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2021 continue; // Not a candidate for sinking. 2022 2023 ++SinkCandidateUseCounts[OpI]; 2024 } 2025 } 2026 2027 // Consider any sink candidates which are only used in ThenBB as costs for 2028 // speculation. Note, while we iterate over a DenseMap here, we are summing 2029 // and so iteration order isn't significant. 2030 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2031 I = SinkCandidateUseCounts.begin(), 2032 E = SinkCandidateUseCounts.end(); 2033 I != E; ++I) 2034 if (I->first->hasNUses(I->second)) { 2035 ++SpeculatedInstructions; 2036 if (SpeculatedInstructions > 1) 2037 return false; 2038 } 2039 2040 // Check that the PHI nodes can be converted to selects. 2041 bool HaveRewritablePHIs = false; 2042 for (PHINode &PN : EndBB->phis()) { 2043 Value *OrigV = PN.getIncomingValueForBlock(BB); 2044 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2045 2046 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2047 // Skip PHIs which are trivial. 2048 if (ThenV == OrigV) 2049 continue; 2050 2051 // Don't convert to selects if we could remove undefined behavior instead. 2052 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2053 passingValueIsAlwaysUndefined(ThenV, &PN)) 2054 return false; 2055 2056 HaveRewritablePHIs = true; 2057 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2058 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2059 if (!OrigCE && !ThenCE) 2060 continue; // Known safe and cheap. 2061 2062 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2063 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2064 return false; 2065 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2066 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2067 unsigned MaxCost = 2068 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2069 if (OrigCost + ThenCost > MaxCost) 2070 return false; 2071 2072 // Account for the cost of an unfolded ConstantExpr which could end up 2073 // getting expanded into Instructions. 2074 // FIXME: This doesn't account for how many operations are combined in the 2075 // constant expression. 2076 ++SpeculatedInstructions; 2077 if (SpeculatedInstructions > 1) 2078 return false; 2079 } 2080 2081 // If there are no PHIs to process, bail early. This helps ensure idempotence 2082 // as well. 2083 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2084 return false; 2085 2086 // If we get here, we can hoist the instruction and if-convert. 2087 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2088 2089 // Insert a select of the value of the speculated store. 2090 if (SpeculatedStoreValue) { 2091 IRBuilder<NoFolder> Builder(BI); 2092 Value *TrueV = SpeculatedStore->getValueOperand(); 2093 Value *FalseV = SpeculatedStoreValue; 2094 if (Invert) 2095 std::swap(TrueV, FalseV); 2096 Value *S = Builder.CreateSelect( 2097 BrCond, TrueV, FalseV, "spec.store.select", BI); 2098 SpeculatedStore->setOperand(0, S); 2099 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2100 SpeculatedStore->getDebugLoc()); 2101 } 2102 2103 // Metadata can be dependent on the condition we are hoisting above. 2104 // Conservatively strip all metadata on the instruction. 2105 for (auto &I : *ThenBB) 2106 I.dropUnknownNonDebugMetadata(); 2107 2108 // Hoist the instructions. 2109 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2110 ThenBB->begin(), std::prev(ThenBB->end())); 2111 2112 // Insert selects and rewrite the PHI operands. 2113 IRBuilder<NoFolder> Builder(BI); 2114 for (PHINode &PN : EndBB->phis()) { 2115 unsigned OrigI = PN.getBasicBlockIndex(BB); 2116 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2117 Value *OrigV = PN.getIncomingValue(OrigI); 2118 Value *ThenV = PN.getIncomingValue(ThenI); 2119 2120 // Skip PHIs which are trivial. 2121 if (OrigV == ThenV) 2122 continue; 2123 2124 // Create a select whose true value is the speculatively executed value and 2125 // false value is the preexisting value. Swap them if the branch 2126 // destinations were inverted. 2127 Value *TrueV = ThenV, *FalseV = OrigV; 2128 if (Invert) 2129 std::swap(TrueV, FalseV); 2130 Value *V = Builder.CreateSelect( 2131 BrCond, TrueV, FalseV, "spec.select", BI); 2132 PN.setIncomingValue(OrigI, V); 2133 PN.setIncomingValue(ThenI, V); 2134 } 2135 2136 // Remove speculated dbg intrinsics. 2137 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2138 // dbg value for the different flows and inserting it after the select. 2139 for (Instruction *I : SpeculatedDbgIntrinsics) 2140 I->eraseFromParent(); 2141 2142 ++NumSpeculations; 2143 return true; 2144 } 2145 2146 /// Return true if we can thread a branch across this block. 2147 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2148 unsigned Size = 0; 2149 2150 for (Instruction &I : BB->instructionsWithoutDebug()) { 2151 if (Size > 10) 2152 return false; // Don't clone large BB's. 2153 ++Size; 2154 2155 // We can only support instructions that do not define values that are 2156 // live outside of the current basic block. 2157 for (User *U : I.users()) { 2158 Instruction *UI = cast<Instruction>(U); 2159 if (UI->getParent() != BB || isa<PHINode>(UI)) 2160 return false; 2161 } 2162 2163 // Looks ok, continue checking. 2164 } 2165 2166 return true; 2167 } 2168 2169 /// If we have a conditional branch on a PHI node value that is defined in the 2170 /// same block as the branch and if any PHI entries are constants, thread edges 2171 /// corresponding to that entry to be branches to their ultimate destination. 2172 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2173 AssumptionCache *AC) { 2174 BasicBlock *BB = BI->getParent(); 2175 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2176 // NOTE: we currently cannot transform this case if the PHI node is used 2177 // outside of the block. 2178 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2179 return false; 2180 2181 // Degenerate case of a single entry PHI. 2182 if (PN->getNumIncomingValues() == 1) { 2183 FoldSingleEntryPHINodes(PN->getParent()); 2184 return true; 2185 } 2186 2187 // Now we know that this block has multiple preds and two succs. 2188 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2189 return false; 2190 2191 // Can't fold blocks that contain noduplicate or convergent calls. 2192 if (any_of(*BB, [](const Instruction &I) { 2193 const CallInst *CI = dyn_cast<CallInst>(&I); 2194 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2195 })) 2196 return false; 2197 2198 // Okay, this is a simple enough basic block. See if any phi values are 2199 // constants. 2200 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2201 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2202 if (!CB || !CB->getType()->isIntegerTy(1)) 2203 continue; 2204 2205 // Okay, we now know that all edges from PredBB should be revectored to 2206 // branch to RealDest. 2207 BasicBlock *PredBB = PN->getIncomingBlock(i); 2208 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2209 2210 if (RealDest == BB) 2211 continue; // Skip self loops. 2212 // Skip if the predecessor's terminator is an indirect branch. 2213 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2214 continue; 2215 2216 // The dest block might have PHI nodes, other predecessors and other 2217 // difficult cases. Instead of being smart about this, just insert a new 2218 // block that jumps to the destination block, effectively splitting 2219 // the edge we are about to create. 2220 BasicBlock *EdgeBB = 2221 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2222 RealDest->getParent(), RealDest); 2223 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2224 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2225 2226 // Update PHI nodes. 2227 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2228 2229 // BB may have instructions that are being threaded over. Clone these 2230 // instructions into EdgeBB. We know that there will be no uses of the 2231 // cloned instructions outside of EdgeBB. 2232 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2233 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2234 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2235 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2236 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2237 continue; 2238 } 2239 // Clone the instruction. 2240 Instruction *N = BBI->clone(); 2241 if (BBI->hasName()) 2242 N->setName(BBI->getName() + ".c"); 2243 2244 // Update operands due to translation. 2245 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2246 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2247 if (PI != TranslateMap.end()) 2248 *i = PI->second; 2249 } 2250 2251 // Check for trivial simplification. 2252 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2253 if (!BBI->use_empty()) 2254 TranslateMap[&*BBI] = V; 2255 if (!N->mayHaveSideEffects()) { 2256 N->deleteValue(); // Instruction folded away, don't need actual inst 2257 N = nullptr; 2258 } 2259 } else { 2260 if (!BBI->use_empty()) 2261 TranslateMap[&*BBI] = N; 2262 } 2263 // Insert the new instruction into its new home. 2264 if (N) 2265 EdgeBB->getInstList().insert(InsertPt, N); 2266 2267 // Register the new instruction with the assumption cache if necessary. 2268 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2269 if (II->getIntrinsicID() == Intrinsic::assume) 2270 AC->registerAssumption(II); 2271 } 2272 2273 // Loop over all of the edges from PredBB to BB, changing them to branch 2274 // to EdgeBB instead. 2275 Instruction *PredBBTI = PredBB->getTerminator(); 2276 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2277 if (PredBBTI->getSuccessor(i) == BB) { 2278 BB->removePredecessor(PredBB); 2279 PredBBTI->setSuccessor(i, EdgeBB); 2280 } 2281 2282 // Recurse, simplifying any other constants. 2283 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2284 } 2285 2286 return false; 2287 } 2288 2289 /// Given a BB that starts with the specified two-entry PHI node, 2290 /// see if we can eliminate it. 2291 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2292 const DataLayout &DL) { 2293 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2294 // statement", which has a very simple dominance structure. Basically, we 2295 // are trying to find the condition that is being branched on, which 2296 // subsequently causes this merge to happen. We really want control 2297 // dependence information for this check, but simplifycfg can't keep it up 2298 // to date, and this catches most of the cases we care about anyway. 2299 BasicBlock *BB = PN->getParent(); 2300 const Function *Fn = BB->getParent(); 2301 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2302 return false; 2303 2304 BasicBlock *IfTrue, *IfFalse; 2305 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2306 if (!IfCond || 2307 // Don't bother if the branch will be constant folded trivially. 2308 isa<ConstantInt>(IfCond)) 2309 return false; 2310 2311 // Okay, we found that we can merge this two-entry phi node into a select. 2312 // Doing so would require us to fold *all* two entry phi nodes in this block. 2313 // At some point this becomes non-profitable (particularly if the target 2314 // doesn't support cmov's). Only do this transformation if there are two or 2315 // fewer PHI nodes in this block. 2316 unsigned NumPhis = 0; 2317 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2318 if (NumPhis > 2) 2319 return false; 2320 2321 // Loop over the PHI's seeing if we can promote them all to select 2322 // instructions. While we are at it, keep track of the instructions 2323 // that need to be moved to the dominating block. 2324 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2325 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2326 MaxCostVal1 = PHINodeFoldingThreshold; 2327 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2328 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2329 2330 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2331 PHINode *PN = cast<PHINode>(II++); 2332 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2333 PN->replaceAllUsesWith(V); 2334 PN->eraseFromParent(); 2335 continue; 2336 } 2337 2338 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2339 MaxCostVal0, TTI) || 2340 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2341 MaxCostVal1, TTI)) 2342 return false; 2343 } 2344 2345 // If we folded the first phi, PN dangles at this point. Refresh it. If 2346 // we ran out of PHIs then we simplified them all. 2347 PN = dyn_cast<PHINode>(BB->begin()); 2348 if (!PN) 2349 return true; 2350 2351 // Return true if at least one of these is a 'not', and another is either 2352 // a 'not' too, or a constant. 2353 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2354 if (!match(V0, m_Not(m_Value()))) 2355 std::swap(V0, V1); 2356 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2357 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2358 }; 2359 2360 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2361 // of the incoming values is an 'not' and another one is freely invertible. 2362 // These can often be turned into switches and other things. 2363 if (PN->getType()->isIntegerTy(1) && 2364 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2365 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2366 isa<BinaryOperator>(IfCond)) && 2367 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2368 PN->getIncomingValue(1))) 2369 return false; 2370 2371 // If all PHI nodes are promotable, check to make sure that all instructions 2372 // in the predecessor blocks can be promoted as well. If not, we won't be able 2373 // to get rid of the control flow, so it's not worth promoting to select 2374 // instructions. 2375 BasicBlock *DomBlock = nullptr; 2376 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2377 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2378 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2379 IfBlock1 = nullptr; 2380 } else { 2381 DomBlock = *pred_begin(IfBlock1); 2382 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2383 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2384 // This is not an aggressive instruction that we can promote. 2385 // Because of this, we won't be able to get rid of the control flow, so 2386 // the xform is not worth it. 2387 return false; 2388 } 2389 } 2390 2391 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2392 IfBlock2 = nullptr; 2393 } else { 2394 DomBlock = *pred_begin(IfBlock2); 2395 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2396 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2397 // This is not an aggressive instruction that we can promote. 2398 // Because of this, we won't be able to get rid of the control flow, so 2399 // the xform is not worth it. 2400 return false; 2401 } 2402 } 2403 2404 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2405 << " T: " << IfTrue->getName() 2406 << " F: " << IfFalse->getName() << "\n"); 2407 2408 // If we can still promote the PHI nodes after this gauntlet of tests, 2409 // do all of the PHI's now. 2410 Instruction *InsertPt = DomBlock->getTerminator(); 2411 IRBuilder<NoFolder> Builder(InsertPt); 2412 2413 // Move all 'aggressive' instructions, which are defined in the 2414 // conditional parts of the if's up to the dominating block. 2415 if (IfBlock1) 2416 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2417 if (IfBlock2) 2418 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2419 2420 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2421 // Change the PHI node into a select instruction. 2422 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2423 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2424 2425 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2426 PN->replaceAllUsesWith(Sel); 2427 Sel->takeName(PN); 2428 PN->eraseFromParent(); 2429 } 2430 2431 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2432 // has been flattened. Change DomBlock to jump directly to our new block to 2433 // avoid other simplifycfg's kicking in on the diamond. 2434 Instruction *OldTI = DomBlock->getTerminator(); 2435 Builder.SetInsertPoint(OldTI); 2436 Builder.CreateBr(BB); 2437 OldTI->eraseFromParent(); 2438 return true; 2439 } 2440 2441 /// If we found a conditional branch that goes to two returning blocks, 2442 /// try to merge them together into one return, 2443 /// introducing a select if the return values disagree. 2444 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2445 IRBuilder<> &Builder) { 2446 assert(BI->isConditional() && "Must be a conditional branch"); 2447 BasicBlock *TrueSucc = BI->getSuccessor(0); 2448 BasicBlock *FalseSucc = BI->getSuccessor(1); 2449 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2450 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2451 2452 // Check to ensure both blocks are empty (just a return) or optionally empty 2453 // with PHI nodes. If there are other instructions, merging would cause extra 2454 // computation on one path or the other. 2455 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2456 return false; 2457 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2458 return false; 2459 2460 Builder.SetInsertPoint(BI); 2461 // Okay, we found a branch that is going to two return nodes. If 2462 // there is no return value for this function, just change the 2463 // branch into a return. 2464 if (FalseRet->getNumOperands() == 0) { 2465 TrueSucc->removePredecessor(BI->getParent()); 2466 FalseSucc->removePredecessor(BI->getParent()); 2467 Builder.CreateRetVoid(); 2468 EraseTerminatorAndDCECond(BI); 2469 return true; 2470 } 2471 2472 // Otherwise, figure out what the true and false return values are 2473 // so we can insert a new select instruction. 2474 Value *TrueValue = TrueRet->getReturnValue(); 2475 Value *FalseValue = FalseRet->getReturnValue(); 2476 2477 // Unwrap any PHI nodes in the return blocks. 2478 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2479 if (TVPN->getParent() == TrueSucc) 2480 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2481 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2482 if (FVPN->getParent() == FalseSucc) 2483 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2484 2485 // In order for this transformation to be safe, we must be able to 2486 // unconditionally execute both operands to the return. This is 2487 // normally the case, but we could have a potentially-trapping 2488 // constant expression that prevents this transformation from being 2489 // safe. 2490 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2491 if (TCV->canTrap()) 2492 return false; 2493 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2494 if (FCV->canTrap()) 2495 return false; 2496 2497 // Okay, we collected all the mapped values and checked them for sanity, and 2498 // defined to really do this transformation. First, update the CFG. 2499 TrueSucc->removePredecessor(BI->getParent()); 2500 FalseSucc->removePredecessor(BI->getParent()); 2501 2502 // Insert select instructions where needed. 2503 Value *BrCond = BI->getCondition(); 2504 if (TrueValue) { 2505 // Insert a select if the results differ. 2506 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2507 } else if (isa<UndefValue>(TrueValue)) { 2508 TrueValue = FalseValue; 2509 } else { 2510 TrueValue = 2511 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2512 } 2513 } 2514 2515 Value *RI = 2516 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2517 2518 (void)RI; 2519 2520 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2521 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2522 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2523 2524 EraseTerminatorAndDCECond(BI); 2525 2526 return true; 2527 } 2528 2529 /// Return true if the given instruction is available 2530 /// in its predecessor block. If yes, the instruction will be removed. 2531 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2532 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2533 return false; 2534 for (Instruction &I : *PB) { 2535 Instruction *PBI = &I; 2536 // Check whether Inst and PBI generate the same value. 2537 if (Inst->isIdenticalTo(PBI)) { 2538 Inst->replaceAllUsesWith(PBI); 2539 Inst->eraseFromParent(); 2540 return true; 2541 } 2542 } 2543 return false; 2544 } 2545 2546 /// Return true if either PBI or BI has branch weight available, and store 2547 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2548 /// not have branch weight, use 1:1 as its weight. 2549 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2550 uint64_t &PredTrueWeight, 2551 uint64_t &PredFalseWeight, 2552 uint64_t &SuccTrueWeight, 2553 uint64_t &SuccFalseWeight) { 2554 bool PredHasWeights = 2555 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2556 bool SuccHasWeights = 2557 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2558 if (PredHasWeights || SuccHasWeights) { 2559 if (!PredHasWeights) 2560 PredTrueWeight = PredFalseWeight = 1; 2561 if (!SuccHasWeights) 2562 SuccTrueWeight = SuccFalseWeight = 1; 2563 return true; 2564 } else { 2565 return false; 2566 } 2567 } 2568 2569 /// If this basic block is simple enough, and if a predecessor branches to us 2570 /// and one of our successors, fold the block into the predecessor and use 2571 /// logical operations to pick the right destination. 2572 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2573 unsigned BonusInstThreshold) { 2574 BasicBlock *BB = BI->getParent(); 2575 2576 const unsigned PredCount = pred_size(BB); 2577 2578 Instruction *Cond = nullptr; 2579 if (BI->isConditional()) 2580 Cond = dyn_cast<Instruction>(BI->getCondition()); 2581 else { 2582 // For unconditional branch, check for a simple CFG pattern, where 2583 // BB has a single predecessor and BB's successor is also its predecessor's 2584 // successor. If such pattern exists, check for CSE between BB and its 2585 // predecessor. 2586 if (BasicBlock *PB = BB->getSinglePredecessor()) 2587 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2588 if (PBI->isConditional() && 2589 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2590 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2591 for (auto I = BB->instructionsWithoutDebug().begin(), 2592 E = BB->instructionsWithoutDebug().end(); 2593 I != E;) { 2594 Instruction *Curr = &*I++; 2595 if (isa<CmpInst>(Curr)) { 2596 Cond = Curr; 2597 break; 2598 } 2599 // Quit if we can't remove this instruction. 2600 if (!tryCSEWithPredecessor(Curr, PB)) 2601 return false; 2602 } 2603 } 2604 2605 if (!Cond) 2606 return false; 2607 } 2608 2609 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2610 Cond->getParent() != BB || !Cond->hasOneUse()) 2611 return false; 2612 2613 // Make sure the instruction after the condition is the cond branch. 2614 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2615 2616 // Ignore dbg intrinsics. 2617 while (isa<DbgInfoIntrinsic>(CondIt)) 2618 ++CondIt; 2619 2620 if (&*CondIt != BI) 2621 return false; 2622 2623 // Only allow this transformation if computing the condition doesn't involve 2624 // too many instructions and these involved instructions can be executed 2625 // unconditionally. We denote all involved instructions except the condition 2626 // as "bonus instructions", and only allow this transformation when the 2627 // number of the bonus instructions we'll need to create when cloning into 2628 // each predecessor does not exceed a certain threshold. 2629 unsigned NumBonusInsts = 0; 2630 for (auto I = BB->begin(); Cond != &*I; ++I) { 2631 // Ignore dbg intrinsics. 2632 if (isa<DbgInfoIntrinsic>(I)) 2633 continue; 2634 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2635 return false; 2636 // I has only one use and can be executed unconditionally. 2637 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2638 if (User == nullptr || User->getParent() != BB) 2639 return false; 2640 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2641 // to use any other instruction, User must be an instruction between next(I) 2642 // and Cond. 2643 2644 // Account for the cost of duplicating this instruction into each 2645 // predecessor. 2646 NumBonusInsts += PredCount; 2647 // Early exits once we reach the limit. 2648 if (NumBonusInsts > BonusInstThreshold) 2649 return false; 2650 } 2651 2652 // Cond is known to be a compare or binary operator. Check to make sure that 2653 // neither operand is a potentially-trapping constant expression. 2654 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2655 if (CE->canTrap()) 2656 return false; 2657 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2658 if (CE->canTrap()) 2659 return false; 2660 2661 // Finally, don't infinitely unroll conditional loops. 2662 BasicBlock *TrueDest = BI->getSuccessor(0); 2663 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2664 if (TrueDest == BB || FalseDest == BB) 2665 return false; 2666 2667 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2668 BasicBlock *PredBlock = *PI; 2669 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2670 2671 // Check that we have two conditional branches. If there is a PHI node in 2672 // the common successor, verify that the same value flows in from both 2673 // blocks. 2674 SmallVector<PHINode *, 4> PHIs; 2675 if (!PBI || PBI->isUnconditional() || 2676 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2677 (!BI->isConditional() && 2678 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2679 continue; 2680 2681 // Determine if the two branches share a common destination. 2682 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2683 bool InvertPredCond = false; 2684 2685 if (BI->isConditional()) { 2686 if (PBI->getSuccessor(0) == TrueDest) { 2687 Opc = Instruction::Or; 2688 } else if (PBI->getSuccessor(1) == FalseDest) { 2689 Opc = Instruction::And; 2690 } else if (PBI->getSuccessor(0) == FalseDest) { 2691 Opc = Instruction::And; 2692 InvertPredCond = true; 2693 } else if (PBI->getSuccessor(1) == TrueDest) { 2694 Opc = Instruction::Or; 2695 InvertPredCond = true; 2696 } else { 2697 continue; 2698 } 2699 } else { 2700 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2701 continue; 2702 } 2703 2704 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2705 IRBuilder<> Builder(PBI); 2706 2707 // If we need to invert the condition in the pred block to match, do so now. 2708 if (InvertPredCond) { 2709 Value *NewCond = PBI->getCondition(); 2710 2711 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2712 CmpInst *CI = cast<CmpInst>(NewCond); 2713 CI->setPredicate(CI->getInversePredicate()); 2714 } else { 2715 NewCond = 2716 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2717 } 2718 2719 PBI->setCondition(NewCond); 2720 PBI->swapSuccessors(); 2721 } 2722 2723 // If we have bonus instructions, clone them into the predecessor block. 2724 // Note that there may be multiple predecessor blocks, so we cannot move 2725 // bonus instructions to a predecessor block. 2726 ValueToValueMapTy VMap; // maps original values to cloned values 2727 // We already make sure Cond is the last instruction before BI. Therefore, 2728 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2729 // instructions. 2730 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2731 if (isa<DbgInfoIntrinsic>(BonusInst)) 2732 continue; 2733 Instruction *NewBonusInst = BonusInst->clone(); 2734 RemapInstruction(NewBonusInst, VMap, 2735 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2736 VMap[&*BonusInst] = NewBonusInst; 2737 2738 // If we moved a load, we cannot any longer claim any knowledge about 2739 // its potential value. The previous information might have been valid 2740 // only given the branch precondition. 2741 // For an analogous reason, we must also drop all the metadata whose 2742 // semantics we don't understand. 2743 NewBonusInst->dropUnknownNonDebugMetadata(); 2744 2745 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2746 NewBonusInst->takeName(&*BonusInst); 2747 BonusInst->setName(BonusInst->getName() + ".old"); 2748 } 2749 2750 // Clone Cond into the predecessor basic block, and or/and the 2751 // two conditions together. 2752 Instruction *CondInPred = Cond->clone(); 2753 RemapInstruction(CondInPred, VMap, 2754 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2755 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2756 CondInPred->takeName(Cond); 2757 Cond->setName(CondInPred->getName() + ".old"); 2758 2759 if (BI->isConditional()) { 2760 Instruction *NewCond = cast<Instruction>( 2761 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2762 PBI->setCondition(NewCond); 2763 2764 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2765 bool HasWeights = 2766 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2767 SuccTrueWeight, SuccFalseWeight); 2768 SmallVector<uint64_t, 8> NewWeights; 2769 2770 if (PBI->getSuccessor(0) == BB) { 2771 if (HasWeights) { 2772 // PBI: br i1 %x, BB, FalseDest 2773 // BI: br i1 %y, TrueDest, FalseDest 2774 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2775 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2776 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2777 // TrueWeight for PBI * FalseWeight for BI. 2778 // We assume that total weights of a BranchInst can fit into 32 bits. 2779 // Therefore, we will not have overflow using 64-bit arithmetic. 2780 NewWeights.push_back(PredFalseWeight * 2781 (SuccFalseWeight + SuccTrueWeight) + 2782 PredTrueWeight * SuccFalseWeight); 2783 } 2784 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2785 PBI->setSuccessor(0, TrueDest); 2786 } 2787 if (PBI->getSuccessor(1) == BB) { 2788 if (HasWeights) { 2789 // PBI: br i1 %x, TrueDest, BB 2790 // BI: br i1 %y, TrueDest, FalseDest 2791 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2792 // FalseWeight for PBI * TrueWeight for BI. 2793 NewWeights.push_back(PredTrueWeight * 2794 (SuccFalseWeight + SuccTrueWeight) + 2795 PredFalseWeight * SuccTrueWeight); 2796 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2797 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2798 } 2799 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2800 PBI->setSuccessor(1, FalseDest); 2801 } 2802 if (NewWeights.size() == 2) { 2803 // Halve the weights if any of them cannot fit in an uint32_t 2804 FitWeights(NewWeights); 2805 2806 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2807 NewWeights.end()); 2808 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2809 } else 2810 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2811 } else { 2812 // Update PHI nodes in the common successors. 2813 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2814 ConstantInt *PBI_C = cast<ConstantInt>( 2815 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2816 assert(PBI_C->getType()->isIntegerTy(1)); 2817 Instruction *MergedCond = nullptr; 2818 if (PBI->getSuccessor(0) == TrueDest) { 2819 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2820 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2821 // is false: !PBI_Cond and BI_Value 2822 Instruction *NotCond = cast<Instruction>( 2823 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2824 MergedCond = cast<Instruction>( 2825 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2826 "and.cond")); 2827 if (PBI_C->isOne()) 2828 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2829 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2830 } else { 2831 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2832 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2833 // is false: PBI_Cond and BI_Value 2834 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2835 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2836 if (PBI_C->isOne()) { 2837 Instruction *NotCond = cast<Instruction>( 2838 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2839 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2840 Instruction::Or, NotCond, MergedCond, "or.cond")); 2841 } 2842 } 2843 // Update PHI Node. 2844 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2845 } 2846 2847 // PBI is changed to branch to TrueDest below. Remove itself from 2848 // potential phis from all other successors. 2849 if (MSSAU) 2850 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2851 2852 // Change PBI from Conditional to Unconditional. 2853 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2854 EraseTerminatorAndDCECond(PBI, MSSAU); 2855 PBI = New_PBI; 2856 } 2857 2858 // If BI was a loop latch, it may have had associated loop metadata. 2859 // We need to copy it to the new latch, that is, PBI. 2860 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2861 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2862 2863 // TODO: If BB is reachable from all paths through PredBlock, then we 2864 // could replace PBI's branch probabilities with BI's. 2865 2866 // Copy any debug value intrinsics into the end of PredBlock. 2867 for (Instruction &I : *BB) 2868 if (isa<DbgInfoIntrinsic>(I)) 2869 I.clone()->insertBefore(PBI); 2870 2871 return true; 2872 } 2873 return false; 2874 } 2875 2876 // If there is only one store in BB1 and BB2, return it, otherwise return 2877 // nullptr. 2878 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2879 StoreInst *S = nullptr; 2880 for (auto *BB : {BB1, BB2}) { 2881 if (!BB) 2882 continue; 2883 for (auto &I : *BB) 2884 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2885 if (S) 2886 // Multiple stores seen. 2887 return nullptr; 2888 else 2889 S = SI; 2890 } 2891 } 2892 return S; 2893 } 2894 2895 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2896 Value *AlternativeV = nullptr) { 2897 // PHI is going to be a PHI node that allows the value V that is defined in 2898 // BB to be referenced in BB's only successor. 2899 // 2900 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2901 // doesn't matter to us what the other operand is (it'll never get used). We 2902 // could just create a new PHI with an undef incoming value, but that could 2903 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2904 // other PHI. So here we directly look for some PHI in BB's successor with V 2905 // as an incoming operand. If we find one, we use it, else we create a new 2906 // one. 2907 // 2908 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2909 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2910 // where OtherBB is the single other predecessor of BB's only successor. 2911 PHINode *PHI = nullptr; 2912 BasicBlock *Succ = BB->getSingleSuccessor(); 2913 2914 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2915 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2916 PHI = cast<PHINode>(I); 2917 if (!AlternativeV) 2918 break; 2919 2920 assert(Succ->hasNPredecessors(2)); 2921 auto PredI = pred_begin(Succ); 2922 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2923 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2924 break; 2925 PHI = nullptr; 2926 } 2927 if (PHI) 2928 return PHI; 2929 2930 // If V is not an instruction defined in BB, just return it. 2931 if (!AlternativeV && 2932 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2933 return V; 2934 2935 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2936 PHI->addIncoming(V, BB); 2937 for (BasicBlock *PredBB : predecessors(Succ)) 2938 if (PredBB != BB) 2939 PHI->addIncoming( 2940 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2941 return PHI; 2942 } 2943 2944 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2945 BasicBlock *QTB, BasicBlock *QFB, 2946 BasicBlock *PostBB, Value *Address, 2947 bool InvertPCond, bool InvertQCond, 2948 const DataLayout &DL) { 2949 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2950 return Operator::getOpcode(&I) == Instruction::BitCast && 2951 I.getType()->isPointerTy(); 2952 }; 2953 2954 // If we're not in aggressive mode, we only optimize if we have some 2955 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2956 auto IsWorthwhile = [&](BasicBlock *BB) { 2957 if (!BB) 2958 return true; 2959 // Heuristic: if the block can be if-converted/phi-folded and the 2960 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2961 // thread this store. 2962 unsigned N = 0; 2963 for (auto &I : BB->instructionsWithoutDebug()) { 2964 // Cheap instructions viable for folding. 2965 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2966 isa<StoreInst>(I)) 2967 ++N; 2968 // Free instructions. 2969 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2970 continue; 2971 else 2972 return false; 2973 } 2974 // The store we want to merge is counted in N, so add 1 to make sure 2975 // we're counting the instructions that would be left. 2976 return N <= (PHINodeFoldingThreshold + 1); 2977 }; 2978 2979 if (!MergeCondStoresAggressively && 2980 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2981 !IsWorthwhile(QFB))) 2982 return false; 2983 2984 // For every pointer, there must be exactly two stores, one coming from 2985 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2986 // store (to any address) in PTB,PFB or QTB,QFB. 2987 // FIXME: We could relax this restriction with a bit more work and performance 2988 // testing. 2989 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2990 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2991 if (!PStore || !QStore) 2992 return false; 2993 2994 // Now check the stores are compatible. 2995 if (!QStore->isUnordered() || !PStore->isUnordered()) 2996 return false; 2997 2998 // Check that sinking the store won't cause program behavior changes. Sinking 2999 // the store out of the Q blocks won't change any behavior as we're sinking 3000 // from a block to its unconditional successor. But we're moving a store from 3001 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3002 // So we need to check that there are no aliasing loads or stores in 3003 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3004 // operations between PStore and the end of its parent block. 3005 // 3006 // The ideal way to do this is to query AliasAnalysis, but we don't 3007 // preserve AA currently so that is dangerous. Be super safe and just 3008 // check there are no other memory operations at all. 3009 for (auto &I : *QFB->getSinglePredecessor()) 3010 if (I.mayReadOrWriteMemory()) 3011 return false; 3012 for (auto &I : *QFB) 3013 if (&I != QStore && I.mayReadOrWriteMemory()) 3014 return false; 3015 if (QTB) 3016 for (auto &I : *QTB) 3017 if (&I != QStore && I.mayReadOrWriteMemory()) 3018 return false; 3019 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3020 I != E; ++I) 3021 if (&*I != PStore && I->mayReadOrWriteMemory()) 3022 return false; 3023 3024 // If PostBB has more than two predecessors, we need to split it so we can 3025 // sink the store. 3026 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3027 // We know that QFB's only successor is PostBB. And QFB has a single 3028 // predecessor. If QTB exists, then its only successor is also PostBB. 3029 // If QTB does not exist, then QFB's only predecessor has a conditional 3030 // branch to QFB and PostBB. 3031 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3032 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3033 "condstore.split"); 3034 if (!NewBB) 3035 return false; 3036 PostBB = NewBB; 3037 } 3038 3039 // OK, we're going to sink the stores to PostBB. The store has to be 3040 // conditional though, so first create the predicate. 3041 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3042 ->getCondition(); 3043 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3044 ->getCondition(); 3045 3046 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3047 PStore->getParent()); 3048 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3049 QStore->getParent(), PPHI); 3050 3051 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3052 3053 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3054 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3055 3056 if (InvertPCond) 3057 PPred = QB.CreateNot(PPred); 3058 if (InvertQCond) 3059 QPred = QB.CreateNot(QPred); 3060 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3061 3062 auto *T = 3063 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3064 QB.SetInsertPoint(T); 3065 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3066 AAMDNodes AAMD; 3067 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3068 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3069 SI->setAAMetadata(AAMD); 3070 unsigned PAlignment = PStore->getAlignment(); 3071 unsigned QAlignment = QStore->getAlignment(); 3072 unsigned TypeAlignment = 3073 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3074 unsigned MinAlignment; 3075 unsigned MaxAlignment; 3076 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3077 // Choose the minimum alignment. If we could prove both stores execute, we 3078 // could use biggest one. In this case, though, we only know that one of the 3079 // stores executes. And we don't know it's safe to take the alignment from a 3080 // store that doesn't execute. 3081 if (MinAlignment != 0) { 3082 // Choose the minimum of all non-zero alignments. 3083 SI->setAlignment(MinAlignment); 3084 } else if (MaxAlignment != 0) { 3085 // Choose the minimal alignment between the non-zero alignment and the ABI 3086 // default alignment for the type of the stored value. 3087 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3088 } else { 3089 // If both alignments are zero, use ABI default alignment for the type of 3090 // the stored value. 3091 SI->setAlignment(TypeAlignment); 3092 } 3093 3094 QStore->eraseFromParent(); 3095 PStore->eraseFromParent(); 3096 3097 return true; 3098 } 3099 3100 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3101 const DataLayout &DL) { 3102 // The intention here is to find diamonds or triangles (see below) where each 3103 // conditional block contains a store to the same address. Both of these 3104 // stores are conditional, so they can't be unconditionally sunk. But it may 3105 // be profitable to speculatively sink the stores into one merged store at the 3106 // end, and predicate the merged store on the union of the two conditions of 3107 // PBI and QBI. 3108 // 3109 // This can reduce the number of stores executed if both of the conditions are 3110 // true, and can allow the blocks to become small enough to be if-converted. 3111 // This optimization will also chain, so that ladders of test-and-set 3112 // sequences can be if-converted away. 3113 // 3114 // We only deal with simple diamonds or triangles: 3115 // 3116 // PBI or PBI or a combination of the two 3117 // / \ | \ 3118 // PTB PFB | PFB 3119 // \ / | / 3120 // QBI QBI 3121 // / \ | \ 3122 // QTB QFB | QFB 3123 // \ / | / 3124 // PostBB PostBB 3125 // 3126 // We model triangles as a type of diamond with a nullptr "true" block. 3127 // Triangles are canonicalized so that the fallthrough edge is represented by 3128 // a true condition, as in the diagram above. 3129 BasicBlock *PTB = PBI->getSuccessor(0); 3130 BasicBlock *PFB = PBI->getSuccessor(1); 3131 BasicBlock *QTB = QBI->getSuccessor(0); 3132 BasicBlock *QFB = QBI->getSuccessor(1); 3133 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3134 3135 // Make sure we have a good guess for PostBB. If QTB's only successor is 3136 // QFB, then QFB is a better PostBB. 3137 if (QTB->getSingleSuccessor() == QFB) 3138 PostBB = QFB; 3139 3140 // If we couldn't find a good PostBB, stop. 3141 if (!PostBB) 3142 return false; 3143 3144 bool InvertPCond = false, InvertQCond = false; 3145 // Canonicalize fallthroughs to the true branches. 3146 if (PFB == QBI->getParent()) { 3147 std::swap(PFB, PTB); 3148 InvertPCond = true; 3149 } 3150 if (QFB == PostBB) { 3151 std::swap(QFB, QTB); 3152 InvertQCond = true; 3153 } 3154 3155 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3156 // and QFB may not. Model fallthroughs as a nullptr block. 3157 if (PTB == QBI->getParent()) 3158 PTB = nullptr; 3159 if (QTB == PostBB) 3160 QTB = nullptr; 3161 3162 // Legality bailouts. We must have at least the non-fallthrough blocks and 3163 // the post-dominating block, and the non-fallthroughs must only have one 3164 // predecessor. 3165 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3166 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3167 }; 3168 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3169 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3170 return false; 3171 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3172 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3173 return false; 3174 if (!QBI->getParent()->hasNUses(2)) 3175 return false; 3176 3177 // OK, this is a sequence of two diamonds or triangles. 3178 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3179 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3180 for (auto *BB : {PTB, PFB}) { 3181 if (!BB) 3182 continue; 3183 for (auto &I : *BB) 3184 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3185 PStoreAddresses.insert(SI->getPointerOperand()); 3186 } 3187 for (auto *BB : {QTB, QFB}) { 3188 if (!BB) 3189 continue; 3190 for (auto &I : *BB) 3191 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3192 QStoreAddresses.insert(SI->getPointerOperand()); 3193 } 3194 3195 set_intersect(PStoreAddresses, QStoreAddresses); 3196 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3197 // clear what it contains. 3198 auto &CommonAddresses = PStoreAddresses; 3199 3200 bool Changed = false; 3201 for (auto *Address : CommonAddresses) 3202 Changed |= mergeConditionalStoreToAddress( 3203 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3204 return Changed; 3205 } 3206 3207 /// If we have a conditional branch as a predecessor of another block, 3208 /// this function tries to simplify it. We know 3209 /// that PBI and BI are both conditional branches, and BI is in one of the 3210 /// successor blocks of PBI - PBI branches to BI. 3211 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3212 const DataLayout &DL) { 3213 assert(PBI->isConditional() && BI->isConditional()); 3214 BasicBlock *BB = BI->getParent(); 3215 3216 // If this block ends with a branch instruction, and if there is a 3217 // predecessor that ends on a branch of the same condition, make 3218 // this conditional branch redundant. 3219 if (PBI->getCondition() == BI->getCondition() && 3220 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3221 // Okay, the outcome of this conditional branch is statically 3222 // knowable. If this block had a single pred, handle specially. 3223 if (BB->getSinglePredecessor()) { 3224 // Turn this into a branch on constant. 3225 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3226 BI->setCondition( 3227 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3228 return true; // Nuke the branch on constant. 3229 } 3230 3231 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3232 // in the constant and simplify the block result. Subsequent passes of 3233 // simplifycfg will thread the block. 3234 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3235 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3236 PHINode *NewPN = PHINode::Create( 3237 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3238 BI->getCondition()->getName() + ".pr", &BB->front()); 3239 // Okay, we're going to insert the PHI node. Since PBI is not the only 3240 // predecessor, compute the PHI'd conditional value for all of the preds. 3241 // Any predecessor where the condition is not computable we keep symbolic. 3242 for (pred_iterator PI = PB; PI != PE; ++PI) { 3243 BasicBlock *P = *PI; 3244 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3245 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3246 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3247 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3248 NewPN->addIncoming( 3249 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3250 P); 3251 } else { 3252 NewPN->addIncoming(BI->getCondition(), P); 3253 } 3254 } 3255 3256 BI->setCondition(NewPN); 3257 return true; 3258 } 3259 } 3260 3261 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3262 if (CE->canTrap()) 3263 return false; 3264 3265 // If both branches are conditional and both contain stores to the same 3266 // address, remove the stores from the conditionals and create a conditional 3267 // merged store at the end. 3268 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3269 return true; 3270 3271 // If this is a conditional branch in an empty block, and if any 3272 // predecessors are a conditional branch to one of our destinations, 3273 // fold the conditions into logical ops and one cond br. 3274 3275 // Ignore dbg intrinsics. 3276 if (&*BB->instructionsWithoutDebug().begin() != BI) 3277 return false; 3278 3279 int PBIOp, BIOp; 3280 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3281 PBIOp = 0; 3282 BIOp = 0; 3283 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3284 PBIOp = 0; 3285 BIOp = 1; 3286 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3287 PBIOp = 1; 3288 BIOp = 0; 3289 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3290 PBIOp = 1; 3291 BIOp = 1; 3292 } else { 3293 return false; 3294 } 3295 3296 // Check to make sure that the other destination of this branch 3297 // isn't BB itself. If so, this is an infinite loop that will 3298 // keep getting unwound. 3299 if (PBI->getSuccessor(PBIOp) == BB) 3300 return false; 3301 3302 // Do not perform this transformation if it would require 3303 // insertion of a large number of select instructions. For targets 3304 // without predication/cmovs, this is a big pessimization. 3305 3306 // Also do not perform this transformation if any phi node in the common 3307 // destination block can trap when reached by BB or PBB (PR17073). In that 3308 // case, it would be unsafe to hoist the operation into a select instruction. 3309 3310 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3311 unsigned NumPhis = 0; 3312 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3313 ++II, ++NumPhis) { 3314 if (NumPhis > 2) // Disable this xform. 3315 return false; 3316 3317 PHINode *PN = cast<PHINode>(II); 3318 Value *BIV = PN->getIncomingValueForBlock(BB); 3319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3320 if (CE->canTrap()) 3321 return false; 3322 3323 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3324 Value *PBIV = PN->getIncomingValue(PBBIdx); 3325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3326 if (CE->canTrap()) 3327 return false; 3328 } 3329 3330 // Finally, if everything is ok, fold the branches to logical ops. 3331 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3332 3333 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3334 << "AND: " << *BI->getParent()); 3335 3336 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3337 // branch in it, where one edge (OtherDest) goes back to itself but the other 3338 // exits. We don't *know* that the program avoids the infinite loop 3339 // (even though that seems likely). If we do this xform naively, we'll end up 3340 // recursively unpeeling the loop. Since we know that (after the xform is 3341 // done) that the block *is* infinite if reached, we just make it an obviously 3342 // infinite loop with no cond branch. 3343 if (OtherDest == BB) { 3344 // Insert it at the end of the function, because it's either code, 3345 // or it won't matter if it's hot. :) 3346 BasicBlock *InfLoopBlock = 3347 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3348 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3349 OtherDest = InfLoopBlock; 3350 } 3351 3352 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3353 3354 // BI may have other predecessors. Because of this, we leave 3355 // it alone, but modify PBI. 3356 3357 // Make sure we get to CommonDest on True&True directions. 3358 Value *PBICond = PBI->getCondition(); 3359 IRBuilder<NoFolder> Builder(PBI); 3360 if (PBIOp) 3361 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3362 3363 Value *BICond = BI->getCondition(); 3364 if (BIOp) 3365 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3366 3367 // Merge the conditions. 3368 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3369 3370 // Modify PBI to branch on the new condition to the new dests. 3371 PBI->setCondition(Cond); 3372 PBI->setSuccessor(0, CommonDest); 3373 PBI->setSuccessor(1, OtherDest); 3374 3375 // Update branch weight for PBI. 3376 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3377 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3378 bool HasWeights = 3379 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3380 SuccTrueWeight, SuccFalseWeight); 3381 if (HasWeights) { 3382 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3383 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3384 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3385 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3386 // The weight to CommonDest should be PredCommon * SuccTotal + 3387 // PredOther * SuccCommon. 3388 // The weight to OtherDest should be PredOther * SuccOther. 3389 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3390 PredOther * SuccCommon, 3391 PredOther * SuccOther}; 3392 // Halve the weights if any of them cannot fit in an uint32_t 3393 FitWeights(NewWeights); 3394 3395 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3396 } 3397 3398 // OtherDest may have phi nodes. If so, add an entry from PBI's 3399 // block that are identical to the entries for BI's block. 3400 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3401 3402 // We know that the CommonDest already had an edge from PBI to 3403 // it. If it has PHIs though, the PHIs may have different 3404 // entries for BB and PBI's BB. If so, insert a select to make 3405 // them agree. 3406 for (PHINode &PN : CommonDest->phis()) { 3407 Value *BIV = PN.getIncomingValueForBlock(BB); 3408 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3409 Value *PBIV = PN.getIncomingValue(PBBIdx); 3410 if (BIV != PBIV) { 3411 // Insert a select in PBI to pick the right value. 3412 SelectInst *NV = cast<SelectInst>( 3413 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3414 PN.setIncomingValue(PBBIdx, NV); 3415 // Although the select has the same condition as PBI, the original branch 3416 // weights for PBI do not apply to the new select because the select's 3417 // 'logical' edges are incoming edges of the phi that is eliminated, not 3418 // the outgoing edges of PBI. 3419 if (HasWeights) { 3420 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3421 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3422 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3423 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3424 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3425 // The weight to PredOtherDest should be PredOther * SuccCommon. 3426 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3427 PredOther * SuccCommon}; 3428 3429 FitWeights(NewWeights); 3430 3431 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3432 } 3433 } 3434 } 3435 3436 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3437 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3438 3439 // This basic block is probably dead. We know it has at least 3440 // one fewer predecessor. 3441 return true; 3442 } 3443 3444 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3445 // true or to FalseBB if Cond is false. 3446 // Takes care of updating the successors and removing the old terminator. 3447 // Also makes sure not to introduce new successors by assuming that edges to 3448 // non-successor TrueBBs and FalseBBs aren't reachable. 3449 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3450 BasicBlock *TrueBB, BasicBlock *FalseBB, 3451 uint32_t TrueWeight, 3452 uint32_t FalseWeight) { 3453 // Remove any superfluous successor edges from the CFG. 3454 // First, figure out which successors to preserve. 3455 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3456 // successor. 3457 BasicBlock *KeepEdge1 = TrueBB; 3458 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3459 3460 // Then remove the rest. 3461 for (BasicBlock *Succ : successors(OldTerm)) { 3462 // Make sure only to keep exactly one copy of each edge. 3463 if (Succ == KeepEdge1) 3464 KeepEdge1 = nullptr; 3465 else if (Succ == KeepEdge2) 3466 KeepEdge2 = nullptr; 3467 else 3468 Succ->removePredecessor(OldTerm->getParent(), 3469 /*KeepOneInputPHIs=*/true); 3470 } 3471 3472 IRBuilder<> Builder(OldTerm); 3473 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3474 3475 // Insert an appropriate new terminator. 3476 if (!KeepEdge1 && !KeepEdge2) { 3477 if (TrueBB == FalseBB) 3478 // We were only looking for one successor, and it was present. 3479 // Create an unconditional branch to it. 3480 Builder.CreateBr(TrueBB); 3481 else { 3482 // We found both of the successors we were looking for. 3483 // Create a conditional branch sharing the condition of the select. 3484 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3485 if (TrueWeight != FalseWeight) 3486 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3487 } 3488 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3489 // Neither of the selected blocks were successors, so this 3490 // terminator must be unreachable. 3491 new UnreachableInst(OldTerm->getContext(), OldTerm); 3492 } else { 3493 // One of the selected values was a successor, but the other wasn't. 3494 // Insert an unconditional branch to the one that was found; 3495 // the edge to the one that wasn't must be unreachable. 3496 if (!KeepEdge1) 3497 // Only TrueBB was found. 3498 Builder.CreateBr(TrueBB); 3499 else 3500 // Only FalseBB was found. 3501 Builder.CreateBr(FalseBB); 3502 } 3503 3504 EraseTerminatorAndDCECond(OldTerm); 3505 return true; 3506 } 3507 3508 // Replaces 3509 // (switch (select cond, X, Y)) on constant X, Y 3510 // with a branch - conditional if X and Y lead to distinct BBs, 3511 // unconditional otherwise. 3512 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3513 // Check for constant integer values in the select. 3514 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3515 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3516 if (!TrueVal || !FalseVal) 3517 return false; 3518 3519 // Find the relevant condition and destinations. 3520 Value *Condition = Select->getCondition(); 3521 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3522 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3523 3524 // Get weight for TrueBB and FalseBB. 3525 uint32_t TrueWeight = 0, FalseWeight = 0; 3526 SmallVector<uint64_t, 8> Weights; 3527 bool HasWeights = HasBranchWeights(SI); 3528 if (HasWeights) { 3529 GetBranchWeights(SI, Weights); 3530 if (Weights.size() == 1 + SI->getNumCases()) { 3531 TrueWeight = 3532 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3533 FalseWeight = 3534 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3535 } 3536 } 3537 3538 // Perform the actual simplification. 3539 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3540 FalseWeight); 3541 } 3542 3543 // Replaces 3544 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3545 // blockaddress(@fn, BlockB))) 3546 // with 3547 // (br cond, BlockA, BlockB). 3548 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3549 // Check that both operands of the select are block addresses. 3550 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3551 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3552 if (!TBA || !FBA) 3553 return false; 3554 3555 // Extract the actual blocks. 3556 BasicBlock *TrueBB = TBA->getBasicBlock(); 3557 BasicBlock *FalseBB = FBA->getBasicBlock(); 3558 3559 // Perform the actual simplification. 3560 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3561 0); 3562 } 3563 3564 /// This is called when we find an icmp instruction 3565 /// (a seteq/setne with a constant) as the only instruction in a 3566 /// block that ends with an uncond branch. We are looking for a very specific 3567 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3568 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3569 /// default value goes to an uncond block with a seteq in it, we get something 3570 /// like: 3571 /// 3572 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3573 /// DEFAULT: 3574 /// %tmp = icmp eq i8 %A, 92 3575 /// br label %end 3576 /// end: 3577 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3578 /// 3579 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3580 /// the PHI, merging the third icmp into the switch. 3581 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3582 ICmpInst *ICI, IRBuilder<> &Builder) { 3583 BasicBlock *BB = ICI->getParent(); 3584 3585 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3586 // complex. 3587 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3588 return false; 3589 3590 Value *V = ICI->getOperand(0); 3591 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3592 3593 // The pattern we're looking for is where our only predecessor is a switch on 3594 // 'V' and this block is the default case for the switch. In this case we can 3595 // fold the compared value into the switch to simplify things. 3596 BasicBlock *Pred = BB->getSinglePredecessor(); 3597 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3598 return false; 3599 3600 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3601 if (SI->getCondition() != V) 3602 return false; 3603 3604 // If BB is reachable on a non-default case, then we simply know the value of 3605 // V in this block. Substitute it and constant fold the icmp instruction 3606 // away. 3607 if (SI->getDefaultDest() != BB) { 3608 ConstantInt *VVal = SI->findCaseDest(BB); 3609 assert(VVal && "Should have a unique destination value"); 3610 ICI->setOperand(0, VVal); 3611 3612 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3613 ICI->replaceAllUsesWith(V); 3614 ICI->eraseFromParent(); 3615 } 3616 // BB is now empty, so it is likely to simplify away. 3617 return requestResimplify(); 3618 } 3619 3620 // Ok, the block is reachable from the default dest. If the constant we're 3621 // comparing exists in one of the other edges, then we can constant fold ICI 3622 // and zap it. 3623 if (SI->findCaseValue(Cst) != SI->case_default()) { 3624 Value *V; 3625 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3626 V = ConstantInt::getFalse(BB->getContext()); 3627 else 3628 V = ConstantInt::getTrue(BB->getContext()); 3629 3630 ICI->replaceAllUsesWith(V); 3631 ICI->eraseFromParent(); 3632 // BB is now empty, so it is likely to simplify away. 3633 return requestResimplify(); 3634 } 3635 3636 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3637 // the block. 3638 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3639 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3640 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3641 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3642 return false; 3643 3644 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3645 // true in the PHI. 3646 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3647 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3648 3649 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3650 std::swap(DefaultCst, NewCst); 3651 3652 // Replace ICI (which is used by the PHI for the default value) with true or 3653 // false depending on if it is EQ or NE. 3654 ICI->replaceAllUsesWith(DefaultCst); 3655 ICI->eraseFromParent(); 3656 3657 // Okay, the switch goes to this block on a default value. Add an edge from 3658 // the switch to the merge point on the compared value. 3659 BasicBlock *NewBB = 3660 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3661 { 3662 SwitchInstProfUpdateWrapper SIW(*SI); 3663 auto W0 = SIW.getSuccessorWeight(0); 3664 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3665 if (W0) { 3666 NewW = ((uint64_t(*W0) + 1) >> 1); 3667 SIW.setSuccessorWeight(0, *NewW); 3668 } 3669 SIW.addCase(Cst, NewBB, NewW); 3670 } 3671 3672 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3673 Builder.SetInsertPoint(NewBB); 3674 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3675 Builder.CreateBr(SuccBlock); 3676 PHIUse->addIncoming(NewCst, NewBB); 3677 return true; 3678 } 3679 3680 /// The specified branch is a conditional branch. 3681 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3682 /// fold it into a switch instruction if so. 3683 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3684 const DataLayout &DL) { 3685 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3686 if (!Cond) 3687 return false; 3688 3689 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3690 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3691 // 'setne's and'ed together, collect them. 3692 3693 // Try to gather values from a chain of and/or to be turned into a switch 3694 ConstantComparesGatherer ConstantCompare(Cond, DL); 3695 // Unpack the result 3696 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3697 Value *CompVal = ConstantCompare.CompValue; 3698 unsigned UsedICmps = ConstantCompare.UsedICmps; 3699 Value *ExtraCase = ConstantCompare.Extra; 3700 3701 // If we didn't have a multiply compared value, fail. 3702 if (!CompVal) 3703 return false; 3704 3705 // Avoid turning single icmps into a switch. 3706 if (UsedICmps <= 1) 3707 return false; 3708 3709 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3710 3711 // There might be duplicate constants in the list, which the switch 3712 // instruction can't handle, remove them now. 3713 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3714 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3715 3716 // If Extra was used, we require at least two switch values to do the 3717 // transformation. A switch with one value is just a conditional branch. 3718 if (ExtraCase && Values.size() < 2) 3719 return false; 3720 3721 // TODO: Preserve branch weight metadata, similarly to how 3722 // FoldValueComparisonIntoPredecessors preserves it. 3723 3724 // Figure out which block is which destination. 3725 BasicBlock *DefaultBB = BI->getSuccessor(1); 3726 BasicBlock *EdgeBB = BI->getSuccessor(0); 3727 if (!TrueWhenEqual) 3728 std::swap(DefaultBB, EdgeBB); 3729 3730 BasicBlock *BB = BI->getParent(); 3731 3732 // MSAN does not like undefs as branch condition which can be introduced 3733 // with "explicit branch". 3734 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3735 return false; 3736 3737 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3738 << " cases into SWITCH. BB is:\n" 3739 << *BB); 3740 3741 // If there are any extra values that couldn't be folded into the switch 3742 // then we evaluate them with an explicit branch first. Split the block 3743 // right before the condbr to handle it. 3744 if (ExtraCase) { 3745 BasicBlock *NewBB = 3746 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3747 // Remove the uncond branch added to the old block. 3748 Instruction *OldTI = BB->getTerminator(); 3749 Builder.SetInsertPoint(OldTI); 3750 3751 if (TrueWhenEqual) 3752 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3753 else 3754 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3755 3756 OldTI->eraseFromParent(); 3757 3758 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3759 // for the edge we just added. 3760 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3761 3762 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3763 << "\nEXTRABB = " << *BB); 3764 BB = NewBB; 3765 } 3766 3767 Builder.SetInsertPoint(BI); 3768 // Convert pointer to int before we switch. 3769 if (CompVal->getType()->isPointerTy()) { 3770 CompVal = Builder.CreatePtrToInt( 3771 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3772 } 3773 3774 // Create the new switch instruction now. 3775 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3776 3777 // Add all of the 'cases' to the switch instruction. 3778 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3779 New->addCase(Values[i], EdgeBB); 3780 3781 // We added edges from PI to the EdgeBB. As such, if there were any 3782 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3783 // the number of edges added. 3784 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3785 PHINode *PN = cast<PHINode>(BBI); 3786 Value *InVal = PN->getIncomingValueForBlock(BB); 3787 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3788 PN->addIncoming(InVal, BB); 3789 } 3790 3791 // Erase the old branch instruction. 3792 EraseTerminatorAndDCECond(BI); 3793 3794 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3795 return true; 3796 } 3797 3798 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3799 if (isa<PHINode>(RI->getValue())) 3800 return SimplifyCommonResume(RI); 3801 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3802 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3803 // The resume must unwind the exception that caused control to branch here. 3804 return SimplifySingleResume(RI); 3805 3806 return false; 3807 } 3808 3809 // Simplify resume that is shared by several landing pads (phi of landing pad). 3810 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3811 BasicBlock *BB = RI->getParent(); 3812 3813 // Check that there are no other instructions except for debug intrinsics 3814 // between the phi of landing pads (RI->getValue()) and resume instruction. 3815 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3816 E = RI->getIterator(); 3817 while (++I != E) 3818 if (!isa<DbgInfoIntrinsic>(I)) 3819 return false; 3820 3821 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3822 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3823 3824 // Check incoming blocks to see if any of them are trivial. 3825 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3826 Idx++) { 3827 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3828 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3829 3830 // If the block has other successors, we can not delete it because 3831 // it has other dependents. 3832 if (IncomingBB->getUniqueSuccessor() != BB) 3833 continue; 3834 3835 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3836 // Not the landing pad that caused the control to branch here. 3837 if (IncomingValue != LandingPad) 3838 continue; 3839 3840 bool isTrivial = true; 3841 3842 I = IncomingBB->getFirstNonPHI()->getIterator(); 3843 E = IncomingBB->getTerminator()->getIterator(); 3844 while (++I != E) 3845 if (!isa<DbgInfoIntrinsic>(I)) { 3846 isTrivial = false; 3847 break; 3848 } 3849 3850 if (isTrivial) 3851 TrivialUnwindBlocks.insert(IncomingBB); 3852 } 3853 3854 // If no trivial unwind blocks, don't do any simplifications. 3855 if (TrivialUnwindBlocks.empty()) 3856 return false; 3857 3858 // Turn all invokes that unwind here into calls. 3859 for (auto *TrivialBB : TrivialUnwindBlocks) { 3860 // Blocks that will be simplified should be removed from the phi node. 3861 // Note there could be multiple edges to the resume block, and we need 3862 // to remove them all. 3863 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3864 BB->removePredecessor(TrivialBB, true); 3865 3866 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3867 PI != PE;) { 3868 BasicBlock *Pred = *PI++; 3869 removeUnwindEdge(Pred); 3870 } 3871 3872 // In each SimplifyCFG run, only the current processed block can be erased. 3873 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3874 // of erasing TrivialBB, we only remove the branch to the common resume 3875 // block so that we can later erase the resume block since it has no 3876 // predecessors. 3877 TrivialBB->getTerminator()->eraseFromParent(); 3878 new UnreachableInst(RI->getContext(), TrivialBB); 3879 } 3880 3881 // Delete the resume block if all its predecessors have been removed. 3882 if (pred_empty(BB)) 3883 BB->eraseFromParent(); 3884 3885 return !TrivialUnwindBlocks.empty(); 3886 } 3887 3888 // Simplify resume that is only used by a single (non-phi) landing pad. 3889 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3890 BasicBlock *BB = RI->getParent(); 3891 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3892 assert(RI->getValue() == LPInst && 3893 "Resume must unwind the exception that caused control to here"); 3894 3895 // Check that there are no other instructions except for debug intrinsics. 3896 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3897 while (++I != E) 3898 if (!isa<DbgInfoIntrinsic>(I)) 3899 return false; 3900 3901 // Turn all invokes that unwind here into calls and delete the basic block. 3902 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3903 BasicBlock *Pred = *PI++; 3904 removeUnwindEdge(Pred); 3905 } 3906 3907 // The landingpad is now unreachable. Zap it. 3908 if (LoopHeaders) 3909 LoopHeaders->erase(BB); 3910 BB->eraseFromParent(); 3911 return true; 3912 } 3913 3914 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3915 // If this is a trivial cleanup pad that executes no instructions, it can be 3916 // eliminated. If the cleanup pad continues to the caller, any predecessor 3917 // that is an EH pad will be updated to continue to the caller and any 3918 // predecessor that terminates with an invoke instruction will have its invoke 3919 // instruction converted to a call instruction. If the cleanup pad being 3920 // simplified does not continue to the caller, each predecessor will be 3921 // updated to continue to the unwind destination of the cleanup pad being 3922 // simplified. 3923 BasicBlock *BB = RI->getParent(); 3924 CleanupPadInst *CPInst = RI->getCleanupPad(); 3925 if (CPInst->getParent() != BB) 3926 // This isn't an empty cleanup. 3927 return false; 3928 3929 // We cannot kill the pad if it has multiple uses. This typically arises 3930 // from unreachable basic blocks. 3931 if (!CPInst->hasOneUse()) 3932 return false; 3933 3934 // Check that there are no other instructions except for benign intrinsics. 3935 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3936 while (++I != E) { 3937 auto *II = dyn_cast<IntrinsicInst>(I); 3938 if (!II) 3939 return false; 3940 3941 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3942 switch (IntrinsicID) { 3943 case Intrinsic::dbg_declare: 3944 case Intrinsic::dbg_value: 3945 case Intrinsic::dbg_label: 3946 case Intrinsic::lifetime_end: 3947 break; 3948 default: 3949 return false; 3950 } 3951 } 3952 3953 // If the cleanup return we are simplifying unwinds to the caller, this will 3954 // set UnwindDest to nullptr. 3955 BasicBlock *UnwindDest = RI->getUnwindDest(); 3956 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3957 3958 // We're about to remove BB from the control flow. Before we do, sink any 3959 // PHINodes into the unwind destination. Doing this before changing the 3960 // control flow avoids some potentially slow checks, since we can currently 3961 // be certain that UnwindDest and BB have no common predecessors (since they 3962 // are both EH pads). 3963 if (UnwindDest) { 3964 // First, go through the PHI nodes in UnwindDest and update any nodes that 3965 // reference the block we are removing 3966 for (BasicBlock::iterator I = UnwindDest->begin(), 3967 IE = DestEHPad->getIterator(); 3968 I != IE; ++I) { 3969 PHINode *DestPN = cast<PHINode>(I); 3970 3971 int Idx = DestPN->getBasicBlockIndex(BB); 3972 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3973 assert(Idx != -1); 3974 // This PHI node has an incoming value that corresponds to a control 3975 // path through the cleanup pad we are removing. If the incoming 3976 // value is in the cleanup pad, it must be a PHINode (because we 3977 // verified above that the block is otherwise empty). Otherwise, the 3978 // value is either a constant or a value that dominates the cleanup 3979 // pad being removed. 3980 // 3981 // Because BB and UnwindDest are both EH pads, all of their 3982 // predecessors must unwind to these blocks, and since no instruction 3983 // can have multiple unwind destinations, there will be no overlap in 3984 // incoming blocks between SrcPN and DestPN. 3985 Value *SrcVal = DestPN->getIncomingValue(Idx); 3986 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3987 3988 // Remove the entry for the block we are deleting. 3989 DestPN->removeIncomingValue(Idx, false); 3990 3991 if (SrcPN && SrcPN->getParent() == BB) { 3992 // If the incoming value was a PHI node in the cleanup pad we are 3993 // removing, we need to merge that PHI node's incoming values into 3994 // DestPN. 3995 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3996 SrcIdx != SrcE; ++SrcIdx) { 3997 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3998 SrcPN->getIncomingBlock(SrcIdx)); 3999 } 4000 } else { 4001 // Otherwise, the incoming value came from above BB and 4002 // so we can just reuse it. We must associate all of BB's 4003 // predecessors with this value. 4004 for (auto *pred : predecessors(BB)) { 4005 DestPN->addIncoming(SrcVal, pred); 4006 } 4007 } 4008 } 4009 4010 // Sink any remaining PHI nodes directly into UnwindDest. 4011 Instruction *InsertPt = DestEHPad; 4012 for (BasicBlock::iterator I = BB->begin(), 4013 IE = BB->getFirstNonPHI()->getIterator(); 4014 I != IE;) { 4015 // The iterator must be incremented here because the instructions are 4016 // being moved to another block. 4017 PHINode *PN = cast<PHINode>(I++); 4018 if (PN->use_empty()) 4019 // If the PHI node has no uses, just leave it. It will be erased 4020 // when we erase BB below. 4021 continue; 4022 4023 // Otherwise, sink this PHI node into UnwindDest. 4024 // Any predecessors to UnwindDest which are not already represented 4025 // must be back edges which inherit the value from the path through 4026 // BB. In this case, the PHI value must reference itself. 4027 for (auto *pred : predecessors(UnwindDest)) 4028 if (pred != BB) 4029 PN->addIncoming(PN, pred); 4030 PN->moveBefore(InsertPt); 4031 } 4032 } 4033 4034 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4035 // The iterator must be updated here because we are removing this pred. 4036 BasicBlock *PredBB = *PI++; 4037 if (UnwindDest == nullptr) { 4038 removeUnwindEdge(PredBB); 4039 } else { 4040 Instruction *TI = PredBB->getTerminator(); 4041 TI->replaceUsesOfWith(BB, UnwindDest); 4042 } 4043 } 4044 4045 // The cleanup pad is now unreachable. Zap it. 4046 BB->eraseFromParent(); 4047 return true; 4048 } 4049 4050 // Try to merge two cleanuppads together. 4051 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4052 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4053 // with. 4054 BasicBlock *UnwindDest = RI->getUnwindDest(); 4055 if (!UnwindDest) 4056 return false; 4057 4058 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4059 // be safe to merge without code duplication. 4060 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4061 return false; 4062 4063 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4064 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4065 if (!SuccessorCleanupPad) 4066 return false; 4067 4068 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4069 // Replace any uses of the successor cleanupad with the predecessor pad 4070 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4071 // funclet bundle operands. 4072 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4073 // Remove the old cleanuppad. 4074 SuccessorCleanupPad->eraseFromParent(); 4075 // Now, we simply replace the cleanupret with a branch to the unwind 4076 // destination. 4077 BranchInst::Create(UnwindDest, RI->getParent()); 4078 RI->eraseFromParent(); 4079 4080 return true; 4081 } 4082 4083 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4084 // It is possible to transiantly have an undef cleanuppad operand because we 4085 // have deleted some, but not all, dead blocks. 4086 // Eventually, this block will be deleted. 4087 if (isa<UndefValue>(RI->getOperand(0))) 4088 return false; 4089 4090 if (mergeCleanupPad(RI)) 4091 return true; 4092 4093 if (removeEmptyCleanup(RI)) 4094 return true; 4095 4096 return false; 4097 } 4098 4099 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4100 BasicBlock *BB = RI->getParent(); 4101 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4102 return false; 4103 4104 // Find predecessors that end with branches. 4105 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4106 SmallVector<BranchInst *, 8> CondBranchPreds; 4107 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4108 BasicBlock *P = *PI; 4109 Instruction *PTI = P->getTerminator(); 4110 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4111 if (BI->isUnconditional()) 4112 UncondBranchPreds.push_back(P); 4113 else 4114 CondBranchPreds.push_back(BI); 4115 } 4116 } 4117 4118 // If we found some, do the transformation! 4119 if (!UncondBranchPreds.empty() && DupRet) { 4120 while (!UncondBranchPreds.empty()) { 4121 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4122 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4123 << "INTO UNCOND BRANCH PRED: " << *Pred); 4124 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4125 } 4126 4127 // If we eliminated all predecessors of the block, delete the block now. 4128 if (pred_empty(BB)) { 4129 // We know there are no successors, so just nuke the block. 4130 if (LoopHeaders) 4131 LoopHeaders->erase(BB); 4132 BB->eraseFromParent(); 4133 } 4134 4135 return true; 4136 } 4137 4138 // Check out all of the conditional branches going to this return 4139 // instruction. If any of them just select between returns, change the 4140 // branch itself into a select/return pair. 4141 while (!CondBranchPreds.empty()) { 4142 BranchInst *BI = CondBranchPreds.pop_back_val(); 4143 4144 // Check to see if the non-BB successor is also a return block. 4145 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4146 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4147 SimplifyCondBranchToTwoReturns(BI, Builder)) 4148 return true; 4149 } 4150 return false; 4151 } 4152 4153 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4154 BasicBlock *BB = UI->getParent(); 4155 4156 bool Changed = false; 4157 4158 // If there are any instructions immediately before the unreachable that can 4159 // be removed, do so. 4160 while (UI->getIterator() != BB->begin()) { 4161 BasicBlock::iterator BBI = UI->getIterator(); 4162 --BBI; 4163 // Do not delete instructions that can have side effects which might cause 4164 // the unreachable to not be reachable; specifically, calls and volatile 4165 // operations may have this effect. 4166 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4167 break; 4168 4169 if (BBI->mayHaveSideEffects()) { 4170 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4171 if (SI->isVolatile()) 4172 break; 4173 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4174 if (LI->isVolatile()) 4175 break; 4176 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4177 if (RMWI->isVolatile()) 4178 break; 4179 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4180 if (CXI->isVolatile()) 4181 break; 4182 } else if (isa<CatchPadInst>(BBI)) { 4183 // A catchpad may invoke exception object constructors and such, which 4184 // in some languages can be arbitrary code, so be conservative by 4185 // default. 4186 // For CoreCLR, it just involves a type test, so can be removed. 4187 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4188 EHPersonality::CoreCLR) 4189 break; 4190 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4191 !isa<LandingPadInst>(BBI)) { 4192 break; 4193 } 4194 // Note that deleting LandingPad's here is in fact okay, although it 4195 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4196 // all the predecessors of this block will be the unwind edges of Invokes, 4197 // and we can therefore guarantee this block will be erased. 4198 } 4199 4200 // Delete this instruction (any uses are guaranteed to be dead) 4201 if (!BBI->use_empty()) 4202 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4203 BBI->eraseFromParent(); 4204 Changed = true; 4205 } 4206 4207 // If the unreachable instruction is the first in the block, take a gander 4208 // at all of the predecessors of this instruction, and simplify them. 4209 if (&BB->front() != UI) 4210 return Changed; 4211 4212 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4213 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4214 Instruction *TI = Preds[i]->getTerminator(); 4215 IRBuilder<> Builder(TI); 4216 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4217 if (BI->isUnconditional()) { 4218 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4219 new UnreachableInst(TI->getContext(), TI); 4220 TI->eraseFromParent(); 4221 Changed = true; 4222 } else { 4223 Value* Cond = BI->getCondition(); 4224 if (BI->getSuccessor(0) == BB) { 4225 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4226 Builder.CreateBr(BI->getSuccessor(1)); 4227 } else { 4228 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4229 Builder.CreateAssumption(Cond); 4230 Builder.CreateBr(BI->getSuccessor(0)); 4231 } 4232 EraseTerminatorAndDCECond(BI); 4233 Changed = true; 4234 } 4235 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4236 SwitchInstProfUpdateWrapper SU(*SI); 4237 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4238 if (i->getCaseSuccessor() != BB) { 4239 ++i; 4240 continue; 4241 } 4242 BB->removePredecessor(SU->getParent()); 4243 i = SU.removeCase(i); 4244 e = SU->case_end(); 4245 Changed = true; 4246 } 4247 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4248 if (II->getUnwindDest() == BB) { 4249 removeUnwindEdge(TI->getParent()); 4250 Changed = true; 4251 } 4252 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4253 if (CSI->getUnwindDest() == BB) { 4254 removeUnwindEdge(TI->getParent()); 4255 Changed = true; 4256 continue; 4257 } 4258 4259 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4260 E = CSI->handler_end(); 4261 I != E; ++I) { 4262 if (*I == BB) { 4263 CSI->removeHandler(I); 4264 --I; 4265 --E; 4266 Changed = true; 4267 } 4268 } 4269 if (CSI->getNumHandlers() == 0) { 4270 BasicBlock *CatchSwitchBB = CSI->getParent(); 4271 if (CSI->hasUnwindDest()) { 4272 // Redirect preds to the unwind dest 4273 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4274 } else { 4275 // Rewrite all preds to unwind to caller (or from invoke to call). 4276 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4277 for (BasicBlock *EHPred : EHPreds) 4278 removeUnwindEdge(EHPred); 4279 } 4280 // The catchswitch is no longer reachable. 4281 new UnreachableInst(CSI->getContext(), CSI); 4282 CSI->eraseFromParent(); 4283 Changed = true; 4284 } 4285 } else if (isa<CleanupReturnInst>(TI)) { 4286 new UnreachableInst(TI->getContext(), TI); 4287 TI->eraseFromParent(); 4288 Changed = true; 4289 } 4290 } 4291 4292 // If this block is now dead, remove it. 4293 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4294 // We know there are no successors, so just nuke the block. 4295 if (LoopHeaders) 4296 LoopHeaders->erase(BB); 4297 BB->eraseFromParent(); 4298 return true; 4299 } 4300 4301 return Changed; 4302 } 4303 4304 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4305 assert(Cases.size() >= 1); 4306 4307 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4308 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4309 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4310 return false; 4311 } 4312 return true; 4313 } 4314 4315 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4316 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4317 BasicBlock *NewDefaultBlock = 4318 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4319 Switch->setDefaultDest(&*NewDefaultBlock); 4320 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4321 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4322 new UnreachableInst(Switch->getContext(), NewTerminator); 4323 EraseTerminatorAndDCECond(NewTerminator); 4324 } 4325 4326 /// Turn a switch with two reachable destinations into an integer range 4327 /// comparison and branch. 4328 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4329 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4330 4331 bool HasDefault = 4332 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4333 4334 // Partition the cases into two sets with different destinations. 4335 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4336 BasicBlock *DestB = nullptr; 4337 SmallVector<ConstantInt *, 16> CasesA; 4338 SmallVector<ConstantInt *, 16> CasesB; 4339 4340 for (auto Case : SI->cases()) { 4341 BasicBlock *Dest = Case.getCaseSuccessor(); 4342 if (!DestA) 4343 DestA = Dest; 4344 if (Dest == DestA) { 4345 CasesA.push_back(Case.getCaseValue()); 4346 continue; 4347 } 4348 if (!DestB) 4349 DestB = Dest; 4350 if (Dest == DestB) { 4351 CasesB.push_back(Case.getCaseValue()); 4352 continue; 4353 } 4354 return false; // More than two destinations. 4355 } 4356 4357 assert(DestA && DestB && 4358 "Single-destination switch should have been folded."); 4359 assert(DestA != DestB); 4360 assert(DestB != SI->getDefaultDest()); 4361 assert(!CasesB.empty() && "There must be non-default cases."); 4362 assert(!CasesA.empty() || HasDefault); 4363 4364 // Figure out if one of the sets of cases form a contiguous range. 4365 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4366 BasicBlock *ContiguousDest = nullptr; 4367 BasicBlock *OtherDest = nullptr; 4368 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4369 ContiguousCases = &CasesA; 4370 ContiguousDest = DestA; 4371 OtherDest = DestB; 4372 } else if (CasesAreContiguous(CasesB)) { 4373 ContiguousCases = &CasesB; 4374 ContiguousDest = DestB; 4375 OtherDest = DestA; 4376 } else 4377 return false; 4378 4379 // Start building the compare and branch. 4380 4381 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4382 Constant *NumCases = 4383 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4384 4385 Value *Sub = SI->getCondition(); 4386 if (!Offset->isNullValue()) 4387 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4388 4389 Value *Cmp; 4390 // If NumCases overflowed, then all possible values jump to the successor. 4391 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4392 Cmp = ConstantInt::getTrue(SI->getContext()); 4393 else 4394 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4395 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4396 4397 // Update weight for the newly-created conditional branch. 4398 if (HasBranchWeights(SI)) { 4399 SmallVector<uint64_t, 8> Weights; 4400 GetBranchWeights(SI, Weights); 4401 if (Weights.size() == 1 + SI->getNumCases()) { 4402 uint64_t TrueWeight = 0; 4403 uint64_t FalseWeight = 0; 4404 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4405 if (SI->getSuccessor(I) == ContiguousDest) 4406 TrueWeight += Weights[I]; 4407 else 4408 FalseWeight += Weights[I]; 4409 } 4410 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4411 TrueWeight /= 2; 4412 FalseWeight /= 2; 4413 } 4414 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4415 } 4416 } 4417 4418 // Prune obsolete incoming values off the successors' PHI nodes. 4419 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4420 unsigned PreviousEdges = ContiguousCases->size(); 4421 if (ContiguousDest == SI->getDefaultDest()) 4422 ++PreviousEdges; 4423 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4424 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4425 } 4426 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4427 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4428 if (OtherDest == SI->getDefaultDest()) 4429 ++PreviousEdges; 4430 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4431 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4432 } 4433 4434 // Clean up the default block - it may have phis or other instructions before 4435 // the unreachable terminator. 4436 if (!HasDefault) 4437 createUnreachableSwitchDefault(SI); 4438 4439 // Drop the switch. 4440 SI->eraseFromParent(); 4441 4442 return true; 4443 } 4444 4445 /// Compute masked bits for the condition of a switch 4446 /// and use it to remove dead cases. 4447 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4448 const DataLayout &DL) { 4449 Value *Cond = SI->getCondition(); 4450 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4451 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4452 4453 // We can also eliminate cases by determining that their values are outside of 4454 // the limited range of the condition based on how many significant (non-sign) 4455 // bits are in the condition value. 4456 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4457 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4458 4459 // Gather dead cases. 4460 SmallVector<ConstantInt *, 8> DeadCases; 4461 for (auto &Case : SI->cases()) { 4462 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4463 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4464 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4465 DeadCases.push_back(Case.getCaseValue()); 4466 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4467 << " is dead.\n"); 4468 } 4469 } 4470 4471 // If we can prove that the cases must cover all possible values, the 4472 // default destination becomes dead and we can remove it. If we know some 4473 // of the bits in the value, we can use that to more precisely compute the 4474 // number of possible unique case values. 4475 bool HasDefault = 4476 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4477 const unsigned NumUnknownBits = 4478 Bits - (Known.Zero | Known.One).countPopulation(); 4479 assert(NumUnknownBits <= Bits); 4480 if (HasDefault && DeadCases.empty() && 4481 NumUnknownBits < 64 /* avoid overflow */ && 4482 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4483 createUnreachableSwitchDefault(SI); 4484 return true; 4485 } 4486 4487 if (DeadCases.empty()) 4488 return false; 4489 4490 SwitchInstProfUpdateWrapper SIW(*SI); 4491 for (ConstantInt *DeadCase : DeadCases) { 4492 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4493 assert(CaseI != SI->case_default() && 4494 "Case was not found. Probably mistake in DeadCases forming."); 4495 // Prune unused values from PHI nodes. 4496 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4497 SIW.removeCase(CaseI); 4498 } 4499 4500 return true; 4501 } 4502 4503 /// If BB would be eligible for simplification by 4504 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4505 /// by an unconditional branch), look at the phi node for BB in the successor 4506 /// block and see if the incoming value is equal to CaseValue. If so, return 4507 /// the phi node, and set PhiIndex to BB's index in the phi node. 4508 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4509 BasicBlock *BB, int *PhiIndex) { 4510 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4511 return nullptr; // BB must be empty to be a candidate for simplification. 4512 if (!BB->getSinglePredecessor()) 4513 return nullptr; // BB must be dominated by the switch. 4514 4515 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4516 if (!Branch || !Branch->isUnconditional()) 4517 return nullptr; // Terminator must be unconditional branch. 4518 4519 BasicBlock *Succ = Branch->getSuccessor(0); 4520 4521 for (PHINode &PHI : Succ->phis()) { 4522 int Idx = PHI.getBasicBlockIndex(BB); 4523 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4524 4525 Value *InValue = PHI.getIncomingValue(Idx); 4526 if (InValue != CaseValue) 4527 continue; 4528 4529 *PhiIndex = Idx; 4530 return &PHI; 4531 } 4532 4533 return nullptr; 4534 } 4535 4536 /// Try to forward the condition of a switch instruction to a phi node 4537 /// dominated by the switch, if that would mean that some of the destination 4538 /// blocks of the switch can be folded away. Return true if a change is made. 4539 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4540 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4541 4542 ForwardingNodesMap ForwardingNodes; 4543 BasicBlock *SwitchBlock = SI->getParent(); 4544 bool Changed = false; 4545 for (auto &Case : SI->cases()) { 4546 ConstantInt *CaseValue = Case.getCaseValue(); 4547 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4548 4549 // Replace phi operands in successor blocks that are using the constant case 4550 // value rather than the switch condition variable: 4551 // switchbb: 4552 // switch i32 %x, label %default [ 4553 // i32 17, label %succ 4554 // ... 4555 // succ: 4556 // %r = phi i32 ... [ 17, %switchbb ] ... 4557 // --> 4558 // %r = phi i32 ... [ %x, %switchbb ] ... 4559 4560 for (PHINode &Phi : CaseDest->phis()) { 4561 // This only works if there is exactly 1 incoming edge from the switch to 4562 // a phi. If there is >1, that means multiple cases of the switch map to 1 4563 // value in the phi, and that phi value is not the switch condition. Thus, 4564 // this transform would not make sense (the phi would be invalid because 4565 // a phi can't have different incoming values from the same block). 4566 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4567 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4568 count(Phi.blocks(), SwitchBlock) == 1) { 4569 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4570 Changed = true; 4571 } 4572 } 4573 4574 // Collect phi nodes that are indirectly using this switch's case constants. 4575 int PhiIdx; 4576 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4577 ForwardingNodes[Phi].push_back(PhiIdx); 4578 } 4579 4580 for (auto &ForwardingNode : ForwardingNodes) { 4581 PHINode *Phi = ForwardingNode.first; 4582 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4583 if (Indexes.size() < 2) 4584 continue; 4585 4586 for (int Index : Indexes) 4587 Phi->setIncomingValue(Index, SI->getCondition()); 4588 Changed = true; 4589 } 4590 4591 return Changed; 4592 } 4593 4594 /// Return true if the backend will be able to handle 4595 /// initializing an array of constants like C. 4596 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4597 if (C->isThreadDependent()) 4598 return false; 4599 if (C->isDLLImportDependent()) 4600 return false; 4601 4602 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4603 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4604 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4605 return false; 4606 4607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4608 if (!CE->isGEPWithNoNotionalOverIndexing()) 4609 return false; 4610 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4611 return false; 4612 } 4613 4614 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4615 return false; 4616 4617 return true; 4618 } 4619 4620 /// If V is a Constant, return it. Otherwise, try to look up 4621 /// its constant value in ConstantPool, returning 0 if it's not there. 4622 static Constant * 4623 LookupConstant(Value *V, 4624 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4625 if (Constant *C = dyn_cast<Constant>(V)) 4626 return C; 4627 return ConstantPool.lookup(V); 4628 } 4629 4630 /// Try to fold instruction I into a constant. This works for 4631 /// simple instructions such as binary operations where both operands are 4632 /// constant or can be replaced by constants from the ConstantPool. Returns the 4633 /// resulting constant on success, 0 otherwise. 4634 static Constant * 4635 ConstantFold(Instruction *I, const DataLayout &DL, 4636 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4637 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4638 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4639 if (!A) 4640 return nullptr; 4641 if (A->isAllOnesValue()) 4642 return LookupConstant(Select->getTrueValue(), ConstantPool); 4643 if (A->isNullValue()) 4644 return LookupConstant(Select->getFalseValue(), ConstantPool); 4645 return nullptr; 4646 } 4647 4648 SmallVector<Constant *, 4> COps; 4649 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4650 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4651 COps.push_back(A); 4652 else 4653 return nullptr; 4654 } 4655 4656 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4657 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4658 COps[1], DL); 4659 } 4660 4661 return ConstantFoldInstOperands(I, COps, DL); 4662 } 4663 4664 /// Try to determine the resulting constant values in phi nodes 4665 /// at the common destination basic block, *CommonDest, for one of the case 4666 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4667 /// case), of a switch instruction SI. 4668 static bool 4669 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4670 BasicBlock **CommonDest, 4671 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4672 const DataLayout &DL, const TargetTransformInfo &TTI) { 4673 // The block from which we enter the common destination. 4674 BasicBlock *Pred = SI->getParent(); 4675 4676 // If CaseDest is empty except for some side-effect free instructions through 4677 // which we can constant-propagate the CaseVal, continue to its successor. 4678 SmallDenseMap<Value *, Constant *> ConstantPool; 4679 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4680 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4681 if (I.isTerminator()) { 4682 // If the terminator is a simple branch, continue to the next block. 4683 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4684 return false; 4685 Pred = CaseDest; 4686 CaseDest = I.getSuccessor(0); 4687 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4688 // Instruction is side-effect free and constant. 4689 4690 // If the instruction has uses outside this block or a phi node slot for 4691 // the block, it is not safe to bypass the instruction since it would then 4692 // no longer dominate all its uses. 4693 for (auto &Use : I.uses()) { 4694 User *User = Use.getUser(); 4695 if (Instruction *I = dyn_cast<Instruction>(User)) 4696 if (I->getParent() == CaseDest) 4697 continue; 4698 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4699 if (Phi->getIncomingBlock(Use) == CaseDest) 4700 continue; 4701 return false; 4702 } 4703 4704 ConstantPool.insert(std::make_pair(&I, C)); 4705 } else { 4706 break; 4707 } 4708 } 4709 4710 // If we did not have a CommonDest before, use the current one. 4711 if (!*CommonDest) 4712 *CommonDest = CaseDest; 4713 // If the destination isn't the common one, abort. 4714 if (CaseDest != *CommonDest) 4715 return false; 4716 4717 // Get the values for this case from phi nodes in the destination block. 4718 for (PHINode &PHI : (*CommonDest)->phis()) { 4719 int Idx = PHI.getBasicBlockIndex(Pred); 4720 if (Idx == -1) 4721 continue; 4722 4723 Constant *ConstVal = 4724 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4725 if (!ConstVal) 4726 return false; 4727 4728 // Be conservative about which kinds of constants we support. 4729 if (!ValidLookupTableConstant(ConstVal, TTI)) 4730 return false; 4731 4732 Res.push_back(std::make_pair(&PHI, ConstVal)); 4733 } 4734 4735 return Res.size() > 0; 4736 } 4737 4738 // Helper function used to add CaseVal to the list of cases that generate 4739 // Result. Returns the updated number of cases that generate this result. 4740 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4741 SwitchCaseResultVectorTy &UniqueResults, 4742 Constant *Result) { 4743 for (auto &I : UniqueResults) { 4744 if (I.first == Result) { 4745 I.second.push_back(CaseVal); 4746 return I.second.size(); 4747 } 4748 } 4749 UniqueResults.push_back( 4750 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4751 return 1; 4752 } 4753 4754 // Helper function that initializes a map containing 4755 // results for the PHI node of the common destination block for a switch 4756 // instruction. Returns false if multiple PHI nodes have been found or if 4757 // there is not a common destination block for the switch. 4758 static bool 4759 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4760 SwitchCaseResultVectorTy &UniqueResults, 4761 Constant *&DefaultResult, const DataLayout &DL, 4762 const TargetTransformInfo &TTI, 4763 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4764 for (auto &I : SI->cases()) { 4765 ConstantInt *CaseVal = I.getCaseValue(); 4766 4767 // Resulting value at phi nodes for this case value. 4768 SwitchCaseResultsTy Results; 4769 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4770 DL, TTI)) 4771 return false; 4772 4773 // Only one value per case is permitted. 4774 if (Results.size() > 1) 4775 return false; 4776 4777 // Add the case->result mapping to UniqueResults. 4778 const uintptr_t NumCasesForResult = 4779 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4780 4781 // Early out if there are too many cases for this result. 4782 if (NumCasesForResult > MaxCasesPerResult) 4783 return false; 4784 4785 // Early out if there are too many unique results. 4786 if (UniqueResults.size() > MaxUniqueResults) 4787 return false; 4788 4789 // Check the PHI consistency. 4790 if (!PHI) 4791 PHI = Results[0].first; 4792 else if (PHI != Results[0].first) 4793 return false; 4794 } 4795 // Find the default result value. 4796 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4797 BasicBlock *DefaultDest = SI->getDefaultDest(); 4798 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4799 DL, TTI); 4800 // If the default value is not found abort unless the default destination 4801 // is unreachable. 4802 DefaultResult = 4803 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4804 if ((!DefaultResult && 4805 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4806 return false; 4807 4808 return true; 4809 } 4810 4811 // Helper function that checks if it is possible to transform a switch with only 4812 // two cases (or two cases + default) that produces a result into a select. 4813 // Example: 4814 // switch (a) { 4815 // case 10: %0 = icmp eq i32 %a, 10 4816 // return 10; %1 = select i1 %0, i32 10, i32 4 4817 // case 20: ----> %2 = icmp eq i32 %a, 20 4818 // return 2; %3 = select i1 %2, i32 2, i32 %1 4819 // default: 4820 // return 4; 4821 // } 4822 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4823 Constant *DefaultResult, Value *Condition, 4824 IRBuilder<> &Builder) { 4825 assert(ResultVector.size() == 2 && 4826 "We should have exactly two unique results at this point"); 4827 // If we are selecting between only two cases transform into a simple 4828 // select or a two-way select if default is possible. 4829 if (ResultVector[0].second.size() == 1 && 4830 ResultVector[1].second.size() == 1) { 4831 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4832 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4833 4834 bool DefaultCanTrigger = DefaultResult; 4835 Value *SelectValue = ResultVector[1].first; 4836 if (DefaultCanTrigger) { 4837 Value *const ValueCompare = 4838 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4839 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4840 DefaultResult, "switch.select"); 4841 } 4842 Value *const ValueCompare = 4843 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4844 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4845 SelectValue, "switch.select"); 4846 } 4847 4848 return nullptr; 4849 } 4850 4851 // Helper function to cleanup a switch instruction that has been converted into 4852 // a select, fixing up PHI nodes and basic blocks. 4853 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4854 Value *SelectValue, 4855 IRBuilder<> &Builder) { 4856 BasicBlock *SelectBB = SI->getParent(); 4857 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4858 PHI->removeIncomingValue(SelectBB); 4859 PHI->addIncoming(SelectValue, SelectBB); 4860 4861 Builder.CreateBr(PHI->getParent()); 4862 4863 // Remove the switch. 4864 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4865 BasicBlock *Succ = SI->getSuccessor(i); 4866 4867 if (Succ == PHI->getParent()) 4868 continue; 4869 Succ->removePredecessor(SelectBB); 4870 } 4871 SI->eraseFromParent(); 4872 } 4873 4874 /// If the switch is only used to initialize one or more 4875 /// phi nodes in a common successor block with only two different 4876 /// constant values, replace the switch with select. 4877 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4878 const DataLayout &DL, 4879 const TargetTransformInfo &TTI) { 4880 Value *const Cond = SI->getCondition(); 4881 PHINode *PHI = nullptr; 4882 BasicBlock *CommonDest = nullptr; 4883 Constant *DefaultResult; 4884 SwitchCaseResultVectorTy UniqueResults; 4885 // Collect all the cases that will deliver the same value from the switch. 4886 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4887 DL, TTI, 2, 1)) 4888 return false; 4889 // Selects choose between maximum two values. 4890 if (UniqueResults.size() != 2) 4891 return false; 4892 assert(PHI != nullptr && "PHI for value select not found"); 4893 4894 Builder.SetInsertPoint(SI); 4895 Value *SelectValue = 4896 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4897 if (SelectValue) { 4898 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4899 return true; 4900 } 4901 // The switch couldn't be converted into a select. 4902 return false; 4903 } 4904 4905 namespace { 4906 4907 /// This class represents a lookup table that can be used to replace a switch. 4908 class SwitchLookupTable { 4909 public: 4910 /// Create a lookup table to use as a switch replacement with the contents 4911 /// of Values, using DefaultValue to fill any holes in the table. 4912 SwitchLookupTable( 4913 Module &M, uint64_t TableSize, ConstantInt *Offset, 4914 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4915 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4916 4917 /// Build instructions with Builder to retrieve the value at 4918 /// the position given by Index in the lookup table. 4919 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4920 4921 /// Return true if a table with TableSize elements of 4922 /// type ElementType would fit in a target-legal register. 4923 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4924 Type *ElementType); 4925 4926 private: 4927 // Depending on the contents of the table, it can be represented in 4928 // different ways. 4929 enum { 4930 // For tables where each element contains the same value, we just have to 4931 // store that single value and return it for each lookup. 4932 SingleValueKind, 4933 4934 // For tables where there is a linear relationship between table index 4935 // and values. We calculate the result with a simple multiplication 4936 // and addition instead of a table lookup. 4937 LinearMapKind, 4938 4939 // For small tables with integer elements, we can pack them into a bitmap 4940 // that fits into a target-legal register. Values are retrieved by 4941 // shift and mask operations. 4942 BitMapKind, 4943 4944 // The table is stored as an array of values. Values are retrieved by load 4945 // instructions from the table. 4946 ArrayKind 4947 } Kind; 4948 4949 // For SingleValueKind, this is the single value. 4950 Constant *SingleValue = nullptr; 4951 4952 // For BitMapKind, this is the bitmap. 4953 ConstantInt *BitMap = nullptr; 4954 IntegerType *BitMapElementTy = nullptr; 4955 4956 // For LinearMapKind, these are the constants used to derive the value. 4957 ConstantInt *LinearOffset = nullptr; 4958 ConstantInt *LinearMultiplier = nullptr; 4959 4960 // For ArrayKind, this is the array. 4961 GlobalVariable *Array = nullptr; 4962 }; 4963 4964 } // end anonymous namespace 4965 4966 SwitchLookupTable::SwitchLookupTable( 4967 Module &M, uint64_t TableSize, ConstantInt *Offset, 4968 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4969 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4970 assert(Values.size() && "Can't build lookup table without values!"); 4971 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4972 4973 // If all values in the table are equal, this is that value. 4974 SingleValue = Values.begin()->second; 4975 4976 Type *ValueType = Values.begin()->second->getType(); 4977 4978 // Build up the table contents. 4979 SmallVector<Constant *, 64> TableContents(TableSize); 4980 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4981 ConstantInt *CaseVal = Values[I].first; 4982 Constant *CaseRes = Values[I].second; 4983 assert(CaseRes->getType() == ValueType); 4984 4985 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4986 TableContents[Idx] = CaseRes; 4987 4988 if (CaseRes != SingleValue) 4989 SingleValue = nullptr; 4990 } 4991 4992 // Fill in any holes in the table with the default result. 4993 if (Values.size() < TableSize) { 4994 assert(DefaultValue && 4995 "Need a default value to fill the lookup table holes."); 4996 assert(DefaultValue->getType() == ValueType); 4997 for (uint64_t I = 0; I < TableSize; ++I) { 4998 if (!TableContents[I]) 4999 TableContents[I] = DefaultValue; 5000 } 5001 5002 if (DefaultValue != SingleValue) 5003 SingleValue = nullptr; 5004 } 5005 5006 // If each element in the table contains the same value, we only need to store 5007 // that single value. 5008 if (SingleValue) { 5009 Kind = SingleValueKind; 5010 return; 5011 } 5012 5013 // Check if we can derive the value with a linear transformation from the 5014 // table index. 5015 if (isa<IntegerType>(ValueType)) { 5016 bool LinearMappingPossible = true; 5017 APInt PrevVal; 5018 APInt DistToPrev; 5019 assert(TableSize >= 2 && "Should be a SingleValue table."); 5020 // Check if there is the same distance between two consecutive values. 5021 for (uint64_t I = 0; I < TableSize; ++I) { 5022 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5023 if (!ConstVal) { 5024 // This is an undef. We could deal with it, but undefs in lookup tables 5025 // are very seldom. It's probably not worth the additional complexity. 5026 LinearMappingPossible = false; 5027 break; 5028 } 5029 const APInt &Val = ConstVal->getValue(); 5030 if (I != 0) { 5031 APInt Dist = Val - PrevVal; 5032 if (I == 1) { 5033 DistToPrev = Dist; 5034 } else if (Dist != DistToPrev) { 5035 LinearMappingPossible = false; 5036 break; 5037 } 5038 } 5039 PrevVal = Val; 5040 } 5041 if (LinearMappingPossible) { 5042 LinearOffset = cast<ConstantInt>(TableContents[0]); 5043 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5044 Kind = LinearMapKind; 5045 ++NumLinearMaps; 5046 return; 5047 } 5048 } 5049 5050 // If the type is integer and the table fits in a register, build a bitmap. 5051 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5052 IntegerType *IT = cast<IntegerType>(ValueType); 5053 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5054 for (uint64_t I = TableSize; I > 0; --I) { 5055 TableInt <<= IT->getBitWidth(); 5056 // Insert values into the bitmap. Undef values are set to zero. 5057 if (!isa<UndefValue>(TableContents[I - 1])) { 5058 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5059 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5060 } 5061 } 5062 BitMap = ConstantInt::get(M.getContext(), TableInt); 5063 BitMapElementTy = IT; 5064 Kind = BitMapKind; 5065 ++NumBitMaps; 5066 return; 5067 } 5068 5069 // Store the table in an array. 5070 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5071 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5072 5073 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5074 GlobalVariable::PrivateLinkage, Initializer, 5075 "switch.table." + FuncName); 5076 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5077 // Set the alignment to that of an array items. We will be only loading one 5078 // value out of it. 5079 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5080 Kind = ArrayKind; 5081 } 5082 5083 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5084 switch (Kind) { 5085 case SingleValueKind: 5086 return SingleValue; 5087 case LinearMapKind: { 5088 // Derive the result value from the input value. 5089 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5090 false, "switch.idx.cast"); 5091 if (!LinearMultiplier->isOne()) 5092 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5093 if (!LinearOffset->isZero()) 5094 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5095 return Result; 5096 } 5097 case BitMapKind: { 5098 // Type of the bitmap (e.g. i59). 5099 IntegerType *MapTy = BitMap->getType(); 5100 5101 // Cast Index to the same type as the bitmap. 5102 // Note: The Index is <= the number of elements in the table, so 5103 // truncating it to the width of the bitmask is safe. 5104 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5105 5106 // Multiply the shift amount by the element width. 5107 ShiftAmt = Builder.CreateMul( 5108 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5109 "switch.shiftamt"); 5110 5111 // Shift down. 5112 Value *DownShifted = 5113 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5114 // Mask off. 5115 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5116 } 5117 case ArrayKind: { 5118 // Make sure the table index will not overflow when treated as signed. 5119 IntegerType *IT = cast<IntegerType>(Index->getType()); 5120 uint64_t TableSize = 5121 Array->getInitializer()->getType()->getArrayNumElements(); 5122 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5123 Index = Builder.CreateZExt( 5124 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5125 "switch.tableidx.zext"); 5126 5127 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5128 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5129 GEPIndices, "switch.gep"); 5130 return Builder.CreateLoad( 5131 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5132 "switch.load"); 5133 } 5134 } 5135 llvm_unreachable("Unknown lookup table kind!"); 5136 } 5137 5138 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5139 uint64_t TableSize, 5140 Type *ElementType) { 5141 auto *IT = dyn_cast<IntegerType>(ElementType); 5142 if (!IT) 5143 return false; 5144 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5145 // are <= 15, we could try to narrow the type. 5146 5147 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5148 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5149 return false; 5150 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5151 } 5152 5153 /// Determine whether a lookup table should be built for this switch, based on 5154 /// the number of cases, size of the table, and the types of the results. 5155 static bool 5156 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5157 const TargetTransformInfo &TTI, const DataLayout &DL, 5158 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5159 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5160 return false; // TableSize overflowed, or mul below might overflow. 5161 5162 bool AllTablesFitInRegister = true; 5163 bool HasIllegalType = false; 5164 for (const auto &I : ResultTypes) { 5165 Type *Ty = I.second; 5166 5167 // Saturate this flag to true. 5168 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5169 5170 // Saturate this flag to false. 5171 AllTablesFitInRegister = 5172 AllTablesFitInRegister && 5173 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5174 5175 // If both flags saturate, we're done. NOTE: This *only* works with 5176 // saturating flags, and all flags have to saturate first due to the 5177 // non-deterministic behavior of iterating over a dense map. 5178 if (HasIllegalType && !AllTablesFitInRegister) 5179 break; 5180 } 5181 5182 // If each table would fit in a register, we should build it anyway. 5183 if (AllTablesFitInRegister) 5184 return true; 5185 5186 // Don't build a table that doesn't fit in-register if it has illegal types. 5187 if (HasIllegalType) 5188 return false; 5189 5190 // The table density should be at least 40%. This is the same criterion as for 5191 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5192 // FIXME: Find the best cut-off. 5193 return SI->getNumCases() * 10 >= TableSize * 4; 5194 } 5195 5196 /// Try to reuse the switch table index compare. Following pattern: 5197 /// \code 5198 /// if (idx < tablesize) 5199 /// r = table[idx]; // table does not contain default_value 5200 /// else 5201 /// r = default_value; 5202 /// if (r != default_value) 5203 /// ... 5204 /// \endcode 5205 /// Is optimized to: 5206 /// \code 5207 /// cond = idx < tablesize; 5208 /// if (cond) 5209 /// r = table[idx]; 5210 /// else 5211 /// r = default_value; 5212 /// if (cond) 5213 /// ... 5214 /// \endcode 5215 /// Jump threading will then eliminate the second if(cond). 5216 static void reuseTableCompare( 5217 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5218 Constant *DefaultValue, 5219 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5220 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5221 if (!CmpInst) 5222 return; 5223 5224 // We require that the compare is in the same block as the phi so that jump 5225 // threading can do its work afterwards. 5226 if (CmpInst->getParent() != PhiBlock) 5227 return; 5228 5229 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5230 if (!CmpOp1) 5231 return; 5232 5233 Value *RangeCmp = RangeCheckBranch->getCondition(); 5234 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5235 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5236 5237 // Check if the compare with the default value is constant true or false. 5238 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5239 DefaultValue, CmpOp1, true); 5240 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5241 return; 5242 5243 // Check if the compare with the case values is distinct from the default 5244 // compare result. 5245 for (auto ValuePair : Values) { 5246 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5247 ValuePair.second, CmpOp1, true); 5248 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5249 return; 5250 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5251 "Expect true or false as compare result."); 5252 } 5253 5254 // Check if the branch instruction dominates the phi node. It's a simple 5255 // dominance check, but sufficient for our needs. 5256 // Although this check is invariant in the calling loops, it's better to do it 5257 // at this late stage. Practically we do it at most once for a switch. 5258 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5259 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5260 BasicBlock *Pred = *PI; 5261 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5262 return; 5263 } 5264 5265 if (DefaultConst == FalseConst) { 5266 // The compare yields the same result. We can replace it. 5267 CmpInst->replaceAllUsesWith(RangeCmp); 5268 ++NumTableCmpReuses; 5269 } else { 5270 // The compare yields the same result, just inverted. We can replace it. 5271 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5272 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5273 RangeCheckBranch); 5274 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5275 ++NumTableCmpReuses; 5276 } 5277 } 5278 5279 /// If the switch is only used to initialize one or more phi nodes in a common 5280 /// successor block with different constant values, replace the switch with 5281 /// lookup tables. 5282 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5283 const DataLayout &DL, 5284 const TargetTransformInfo &TTI) { 5285 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5286 5287 Function *Fn = SI->getParent()->getParent(); 5288 // Only build lookup table when we have a target that supports it or the 5289 // attribute is not set. 5290 if (!TTI.shouldBuildLookupTables() || 5291 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5292 return false; 5293 5294 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5295 // split off a dense part and build a lookup table for that. 5296 5297 // FIXME: This creates arrays of GEPs to constant strings, which means each 5298 // GEP needs a runtime relocation in PIC code. We should just build one big 5299 // string and lookup indices into that. 5300 5301 // Ignore switches with less than three cases. Lookup tables will not make 5302 // them faster, so we don't analyze them. 5303 if (SI->getNumCases() < 3) 5304 return false; 5305 5306 // Figure out the corresponding result for each case value and phi node in the 5307 // common destination, as well as the min and max case values. 5308 assert(!empty(SI->cases())); 5309 SwitchInst::CaseIt CI = SI->case_begin(); 5310 ConstantInt *MinCaseVal = CI->getCaseValue(); 5311 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5312 5313 BasicBlock *CommonDest = nullptr; 5314 5315 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5316 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5317 5318 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5319 SmallDenseMap<PHINode *, Type *> ResultTypes; 5320 SmallVector<PHINode *, 4> PHIs; 5321 5322 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5323 ConstantInt *CaseVal = CI->getCaseValue(); 5324 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5325 MinCaseVal = CaseVal; 5326 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5327 MaxCaseVal = CaseVal; 5328 5329 // Resulting value at phi nodes for this case value. 5330 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5331 ResultsTy Results; 5332 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5333 Results, DL, TTI)) 5334 return false; 5335 5336 // Append the result from this case to the list for each phi. 5337 for (const auto &I : Results) { 5338 PHINode *PHI = I.first; 5339 Constant *Value = I.second; 5340 if (!ResultLists.count(PHI)) 5341 PHIs.push_back(PHI); 5342 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5343 } 5344 } 5345 5346 // Keep track of the result types. 5347 for (PHINode *PHI : PHIs) { 5348 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5349 } 5350 5351 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5352 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5353 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5354 bool TableHasHoles = (NumResults < TableSize); 5355 5356 // If the table has holes, we need a constant result for the default case 5357 // or a bitmask that fits in a register. 5358 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5359 bool HasDefaultResults = 5360 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5361 DefaultResultsList, DL, TTI); 5362 5363 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5364 if (NeedMask) { 5365 // As an extra penalty for the validity test we require more cases. 5366 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5367 return false; 5368 if (!DL.fitsInLegalInteger(TableSize)) 5369 return false; 5370 } 5371 5372 for (const auto &I : DefaultResultsList) { 5373 PHINode *PHI = I.first; 5374 Constant *Result = I.second; 5375 DefaultResults[PHI] = Result; 5376 } 5377 5378 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5379 return false; 5380 5381 // Create the BB that does the lookups. 5382 Module &Mod = *CommonDest->getParent()->getParent(); 5383 BasicBlock *LookupBB = BasicBlock::Create( 5384 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5385 5386 // Compute the table index value. 5387 Builder.SetInsertPoint(SI); 5388 Value *TableIndex; 5389 if (MinCaseVal->isNullValue()) 5390 TableIndex = SI->getCondition(); 5391 else 5392 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5393 "switch.tableidx"); 5394 5395 // Compute the maximum table size representable by the integer type we are 5396 // switching upon. 5397 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5398 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5399 assert(MaxTableSize >= TableSize && 5400 "It is impossible for a switch to have more entries than the max " 5401 "representable value of its input integer type's size."); 5402 5403 // If the default destination is unreachable, or if the lookup table covers 5404 // all values of the conditional variable, branch directly to the lookup table 5405 // BB. Otherwise, check that the condition is within the case range. 5406 const bool DefaultIsReachable = 5407 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5408 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5409 BranchInst *RangeCheckBranch = nullptr; 5410 5411 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5412 Builder.CreateBr(LookupBB); 5413 // Note: We call removeProdecessor later since we need to be able to get the 5414 // PHI value for the default case in case we're using a bit mask. 5415 } else { 5416 Value *Cmp = Builder.CreateICmpULT( 5417 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5418 RangeCheckBranch = 5419 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5420 } 5421 5422 // Populate the BB that does the lookups. 5423 Builder.SetInsertPoint(LookupBB); 5424 5425 if (NeedMask) { 5426 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5427 // re-purposed to do the hole check, and we create a new LookupBB. 5428 BasicBlock *MaskBB = LookupBB; 5429 MaskBB->setName("switch.hole_check"); 5430 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5431 CommonDest->getParent(), CommonDest); 5432 5433 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5434 // unnecessary illegal types. 5435 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5436 APInt MaskInt(TableSizePowOf2, 0); 5437 APInt One(TableSizePowOf2, 1); 5438 // Build bitmask; fill in a 1 bit for every case. 5439 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5440 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5441 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5442 .getLimitedValue(); 5443 MaskInt |= One << Idx; 5444 } 5445 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5446 5447 // Get the TableIndex'th bit of the bitmask. 5448 // If this bit is 0 (meaning hole) jump to the default destination, 5449 // else continue with table lookup. 5450 IntegerType *MapTy = TableMask->getType(); 5451 Value *MaskIndex = 5452 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5453 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5454 Value *LoBit = Builder.CreateTrunc( 5455 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5456 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5457 5458 Builder.SetInsertPoint(LookupBB); 5459 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5460 } 5461 5462 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5463 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5464 // do not delete PHINodes here. 5465 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5466 /*KeepOneInputPHIs=*/true); 5467 } 5468 5469 bool ReturnedEarly = false; 5470 for (PHINode *PHI : PHIs) { 5471 const ResultListTy &ResultList = ResultLists[PHI]; 5472 5473 // If using a bitmask, use any value to fill the lookup table holes. 5474 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5475 StringRef FuncName = Fn->getName(); 5476 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5477 FuncName); 5478 5479 Value *Result = Table.BuildLookup(TableIndex, Builder); 5480 5481 // If the result is used to return immediately from the function, we want to 5482 // do that right here. 5483 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5484 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5485 Builder.CreateRet(Result); 5486 ReturnedEarly = true; 5487 break; 5488 } 5489 5490 // Do a small peephole optimization: re-use the switch table compare if 5491 // possible. 5492 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5493 BasicBlock *PhiBlock = PHI->getParent(); 5494 // Search for compare instructions which use the phi. 5495 for (auto *User : PHI->users()) { 5496 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5497 } 5498 } 5499 5500 PHI->addIncoming(Result, LookupBB); 5501 } 5502 5503 if (!ReturnedEarly) 5504 Builder.CreateBr(CommonDest); 5505 5506 // Remove the switch. 5507 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5508 BasicBlock *Succ = SI->getSuccessor(i); 5509 5510 if (Succ == SI->getDefaultDest()) 5511 continue; 5512 Succ->removePredecessor(SI->getParent()); 5513 } 5514 SI->eraseFromParent(); 5515 5516 ++NumLookupTables; 5517 if (NeedMask) 5518 ++NumLookupTablesHoles; 5519 return true; 5520 } 5521 5522 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5523 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5524 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5525 uint64_t Range = Diff + 1; 5526 uint64_t NumCases = Values.size(); 5527 // 40% is the default density for building a jump table in optsize/minsize mode. 5528 uint64_t MinDensity = 40; 5529 5530 return NumCases * 100 >= Range * MinDensity; 5531 } 5532 5533 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5534 /// of cases. 5535 /// 5536 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5537 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5538 /// 5539 /// This converts a sparse switch into a dense switch which allows better 5540 /// lowering and could also allow transforming into a lookup table. 5541 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5542 const DataLayout &DL, 5543 const TargetTransformInfo &TTI) { 5544 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5545 if (CondTy->getIntegerBitWidth() > 64 || 5546 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5547 return false; 5548 // Only bother with this optimization if there are more than 3 switch cases; 5549 // SDAG will only bother creating jump tables for 4 or more cases. 5550 if (SI->getNumCases() < 4) 5551 return false; 5552 5553 // This transform is agnostic to the signedness of the input or case values. We 5554 // can treat the case values as signed or unsigned. We can optimize more common 5555 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5556 // as signed. 5557 SmallVector<int64_t,4> Values; 5558 for (auto &C : SI->cases()) 5559 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5560 llvm::sort(Values); 5561 5562 // If the switch is already dense, there's nothing useful to do here. 5563 if (isSwitchDense(Values)) 5564 return false; 5565 5566 // First, transform the values such that they start at zero and ascend. 5567 int64_t Base = Values[0]; 5568 for (auto &V : Values) 5569 V -= (uint64_t)(Base); 5570 5571 // Now we have signed numbers that have been shifted so that, given enough 5572 // precision, there are no negative values. Since the rest of the transform 5573 // is bitwise only, we switch now to an unsigned representation. 5574 5575 // This transform can be done speculatively because it is so cheap - it 5576 // results in a single rotate operation being inserted. 5577 // FIXME: It's possible that optimizing a switch on powers of two might also 5578 // be beneficial - flag values are often powers of two and we could use a CLZ 5579 // as the key function. 5580 5581 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5582 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5583 // less than 64. 5584 unsigned Shift = 64; 5585 for (auto &V : Values) 5586 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5587 assert(Shift < 64); 5588 if (Shift > 0) 5589 for (auto &V : Values) 5590 V = (int64_t)((uint64_t)V >> Shift); 5591 5592 if (!isSwitchDense(Values)) 5593 // Transform didn't create a dense switch. 5594 return false; 5595 5596 // The obvious transform is to shift the switch condition right and emit a 5597 // check that the condition actually cleanly divided by GCD, i.e. 5598 // C & (1 << Shift - 1) == 0 5599 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5600 // 5601 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5602 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5603 // are nonzero then the switch condition will be very large and will hit the 5604 // default case. 5605 5606 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5607 Builder.SetInsertPoint(SI); 5608 auto *ShiftC = ConstantInt::get(Ty, Shift); 5609 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5610 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5611 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5612 auto *Rot = Builder.CreateOr(LShr, Shl); 5613 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5614 5615 for (auto Case : SI->cases()) { 5616 auto *Orig = Case.getCaseValue(); 5617 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5618 Case.setValue( 5619 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5620 } 5621 return true; 5622 } 5623 5624 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5625 BasicBlock *BB = SI->getParent(); 5626 5627 if (isValueEqualityComparison(SI)) { 5628 // If we only have one predecessor, and if it is a branch on this value, 5629 // see if that predecessor totally determines the outcome of this switch. 5630 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5631 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5632 return requestResimplify(); 5633 5634 Value *Cond = SI->getCondition(); 5635 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5636 if (SimplifySwitchOnSelect(SI, Select)) 5637 return requestResimplify(); 5638 5639 // If the block only contains the switch, see if we can fold the block 5640 // away into any preds. 5641 if (SI == &*BB->instructionsWithoutDebug().begin()) 5642 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5643 return requestResimplify(); 5644 } 5645 5646 // Try to transform the switch into an icmp and a branch. 5647 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5648 return requestResimplify(); 5649 5650 // Remove unreachable cases. 5651 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5652 return requestResimplify(); 5653 5654 if (switchToSelect(SI, Builder, DL, TTI)) 5655 return requestResimplify(); 5656 5657 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5658 return requestResimplify(); 5659 5660 // The conversion from switch to lookup tables results in difficult-to-analyze 5661 // code and makes pruning branches much harder. This is a problem if the 5662 // switch expression itself can still be restricted as a result of inlining or 5663 // CVP. Therefore, only apply this transformation during late stages of the 5664 // optimisation pipeline. 5665 if (Options.ConvertSwitchToLookupTable && 5666 SwitchToLookupTable(SI, Builder, DL, TTI)) 5667 return requestResimplify(); 5668 5669 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5670 return requestResimplify(); 5671 5672 return false; 5673 } 5674 5675 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5676 BasicBlock *BB = IBI->getParent(); 5677 bool Changed = false; 5678 5679 // Eliminate redundant destinations. 5680 SmallPtrSet<Value *, 8> Succs; 5681 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5682 BasicBlock *Dest = IBI->getDestination(i); 5683 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5684 Dest->removePredecessor(BB); 5685 IBI->removeDestination(i); 5686 --i; 5687 --e; 5688 Changed = true; 5689 } 5690 } 5691 5692 if (IBI->getNumDestinations() == 0) { 5693 // If the indirectbr has no successors, change it to unreachable. 5694 new UnreachableInst(IBI->getContext(), IBI); 5695 EraseTerminatorAndDCECond(IBI); 5696 return true; 5697 } 5698 5699 if (IBI->getNumDestinations() == 1) { 5700 // If the indirectbr has one successor, change it to a direct branch. 5701 BranchInst::Create(IBI->getDestination(0), IBI); 5702 EraseTerminatorAndDCECond(IBI); 5703 return true; 5704 } 5705 5706 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5707 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5708 return requestResimplify(); 5709 } 5710 return Changed; 5711 } 5712 5713 /// Given an block with only a single landing pad and a unconditional branch 5714 /// try to find another basic block which this one can be merged with. This 5715 /// handles cases where we have multiple invokes with unique landing pads, but 5716 /// a shared handler. 5717 /// 5718 /// We specifically choose to not worry about merging non-empty blocks 5719 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5720 /// practice, the optimizer produces empty landing pad blocks quite frequently 5721 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5722 /// sinking in this file) 5723 /// 5724 /// This is primarily a code size optimization. We need to avoid performing 5725 /// any transform which might inhibit optimization (such as our ability to 5726 /// specialize a particular handler via tail commoning). We do this by not 5727 /// merging any blocks which require us to introduce a phi. Since the same 5728 /// values are flowing through both blocks, we don't lose any ability to 5729 /// specialize. If anything, we make such specialization more likely. 5730 /// 5731 /// TODO - This transformation could remove entries from a phi in the target 5732 /// block when the inputs in the phi are the same for the two blocks being 5733 /// merged. In some cases, this could result in removal of the PHI entirely. 5734 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5735 BasicBlock *BB) { 5736 auto Succ = BB->getUniqueSuccessor(); 5737 assert(Succ); 5738 // If there's a phi in the successor block, we'd likely have to introduce 5739 // a phi into the merged landing pad block. 5740 if (isa<PHINode>(*Succ->begin())) 5741 return false; 5742 5743 for (BasicBlock *OtherPred : predecessors(Succ)) { 5744 if (BB == OtherPred) 5745 continue; 5746 BasicBlock::iterator I = OtherPred->begin(); 5747 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5748 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5749 continue; 5750 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5751 ; 5752 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5753 if (!BI2 || !BI2->isIdenticalTo(BI)) 5754 continue; 5755 5756 // We've found an identical block. Update our predecessors to take that 5757 // path instead and make ourselves dead. 5758 SmallPtrSet<BasicBlock *, 16> Preds; 5759 Preds.insert(pred_begin(BB), pred_end(BB)); 5760 for (BasicBlock *Pred : Preds) { 5761 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5762 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5763 "unexpected successor"); 5764 II->setUnwindDest(OtherPred); 5765 } 5766 5767 // The debug info in OtherPred doesn't cover the merged control flow that 5768 // used to go through BB. We need to delete it or update it. 5769 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5770 Instruction &Inst = *I; 5771 I++; 5772 if (isa<DbgInfoIntrinsic>(Inst)) 5773 Inst.eraseFromParent(); 5774 } 5775 5776 SmallPtrSet<BasicBlock *, 16> Succs; 5777 Succs.insert(succ_begin(BB), succ_end(BB)); 5778 for (BasicBlock *Succ : Succs) { 5779 Succ->removePredecessor(BB); 5780 } 5781 5782 IRBuilder<> Builder(BI); 5783 Builder.CreateUnreachable(); 5784 BI->eraseFromParent(); 5785 return true; 5786 } 5787 return false; 5788 } 5789 5790 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5791 IRBuilder<> &Builder) { 5792 BasicBlock *BB = BI->getParent(); 5793 BasicBlock *Succ = BI->getSuccessor(0); 5794 5795 // If the Terminator is the only non-phi instruction, simplify the block. 5796 // If LoopHeader is provided, check if the block or its successor is a loop 5797 // header. (This is for early invocations before loop simplify and 5798 // vectorization to keep canonical loop forms for nested loops. These blocks 5799 // can be eliminated when the pass is invoked later in the back-end.) 5800 // Note that if BB has only one predecessor then we do not introduce new 5801 // backedge, so we can eliminate BB. 5802 bool NeedCanonicalLoop = 5803 Options.NeedCanonicalLoop && 5804 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5805 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5806 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5807 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5808 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5809 return true; 5810 5811 // If the only instruction in the block is a seteq/setne comparison against a 5812 // constant, try to simplify the block. 5813 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5814 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5815 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5816 ; 5817 if (I->isTerminator() && 5818 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5819 return true; 5820 } 5821 5822 // See if we can merge an empty landing pad block with another which is 5823 // equivalent. 5824 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5825 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5826 ; 5827 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5828 return true; 5829 } 5830 5831 // If this basic block is ONLY a compare and a branch, and if a predecessor 5832 // branches to us and our successor, fold the comparison into the 5833 // predecessor and use logical operations to update the incoming value 5834 // for PHI nodes in common successor. 5835 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5836 return requestResimplify(); 5837 return false; 5838 } 5839 5840 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5841 BasicBlock *PredPred = nullptr; 5842 for (auto *P : predecessors(BB)) { 5843 BasicBlock *PPred = P->getSinglePredecessor(); 5844 if (!PPred || (PredPred && PredPred != PPred)) 5845 return nullptr; 5846 PredPred = PPred; 5847 } 5848 return PredPred; 5849 } 5850 5851 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5852 BasicBlock *BB = BI->getParent(); 5853 const Function *Fn = BB->getParent(); 5854 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5855 return false; 5856 5857 // Conditional branch 5858 if (isValueEqualityComparison(BI)) { 5859 // If we only have one predecessor, and if it is a branch on this value, 5860 // see if that predecessor totally determines the outcome of this 5861 // switch. 5862 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5863 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5864 return requestResimplify(); 5865 5866 // This block must be empty, except for the setcond inst, if it exists. 5867 // Ignore dbg intrinsics. 5868 auto I = BB->instructionsWithoutDebug().begin(); 5869 if (&*I == BI) { 5870 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5871 return requestResimplify(); 5872 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5873 ++I; 5874 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5875 return requestResimplify(); 5876 } 5877 } 5878 5879 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5880 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5881 return true; 5882 5883 // If this basic block has dominating predecessor blocks and the dominating 5884 // blocks' conditions imply BI's condition, we know the direction of BI. 5885 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5886 if (Imp) { 5887 // Turn this into a branch on constant. 5888 auto *OldCond = BI->getCondition(); 5889 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5890 : ConstantInt::getFalse(BB->getContext()); 5891 BI->setCondition(TorF); 5892 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5893 return requestResimplify(); 5894 } 5895 5896 // If this basic block is ONLY a compare and a branch, and if a predecessor 5897 // branches to us and one of our successors, fold the comparison into the 5898 // predecessor and use logical operations to pick the right destination. 5899 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5900 return requestResimplify(); 5901 5902 // We have a conditional branch to two blocks that are only reachable 5903 // from BI. We know that the condbr dominates the two blocks, so see if 5904 // there is any identical code in the "then" and "else" blocks. If so, we 5905 // can hoist it up to the branching block. 5906 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5907 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5908 if (HoistThenElseCodeToIf(BI, TTI)) 5909 return requestResimplify(); 5910 } else { 5911 // If Successor #1 has multiple preds, we may be able to conditionally 5912 // execute Successor #0 if it branches to Successor #1. 5913 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5914 if (Succ0TI->getNumSuccessors() == 1 && 5915 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5916 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5917 return requestResimplify(); 5918 } 5919 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5920 // If Successor #0 has multiple preds, we may be able to conditionally 5921 // execute Successor #1 if it branches to Successor #0. 5922 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5923 if (Succ1TI->getNumSuccessors() == 1 && 5924 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5925 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5926 return requestResimplify(); 5927 } 5928 5929 // If this is a branch on a phi node in the current block, thread control 5930 // through this block if any PHI node entries are constants. 5931 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5932 if (PN->getParent() == BI->getParent()) 5933 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5934 return requestResimplify(); 5935 5936 // Scan predecessor blocks for conditional branches. 5937 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5938 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5939 if (PBI != BI && PBI->isConditional()) 5940 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5941 return requestResimplify(); 5942 5943 // Look for diamond patterns. 5944 if (MergeCondStores) 5945 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5946 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5947 if (PBI != BI && PBI->isConditional()) 5948 if (mergeConditionalStores(PBI, BI, DL)) 5949 return requestResimplify(); 5950 5951 return false; 5952 } 5953 5954 /// Check if passing a value to an instruction will cause undefined behavior. 5955 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5956 Constant *C = dyn_cast<Constant>(V); 5957 if (!C) 5958 return false; 5959 5960 if (I->use_empty()) 5961 return false; 5962 5963 if (C->isNullValue() || isa<UndefValue>(C)) { 5964 // Only look at the first use, avoid hurting compile time with long uselists 5965 User *Use = *I->user_begin(); 5966 5967 // Now make sure that there are no instructions in between that can alter 5968 // control flow (eg. calls) 5969 for (BasicBlock::iterator 5970 i = ++BasicBlock::iterator(I), 5971 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5972 i != UI; ++i) 5973 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5974 return false; 5975 5976 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5977 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5978 if (GEP->getPointerOperand() == I) 5979 return passingValueIsAlwaysUndefined(V, GEP); 5980 5981 // Look through bitcasts. 5982 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5983 return passingValueIsAlwaysUndefined(V, BC); 5984 5985 // Load from null is undefined. 5986 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5987 if (!LI->isVolatile()) 5988 return !NullPointerIsDefined(LI->getFunction(), 5989 LI->getPointerAddressSpace()); 5990 5991 // Store to null is undefined. 5992 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5993 if (!SI->isVolatile()) 5994 return (!NullPointerIsDefined(SI->getFunction(), 5995 SI->getPointerAddressSpace())) && 5996 SI->getPointerOperand() == I; 5997 5998 // A call to null is undefined. 5999 if (auto CS = CallSite(Use)) 6000 return !NullPointerIsDefined(CS->getFunction()) && 6001 CS.getCalledValue() == I; 6002 } 6003 return false; 6004 } 6005 6006 /// If BB has an incoming value that will always trigger undefined behavior 6007 /// (eg. null pointer dereference), remove the branch leading here. 6008 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6009 for (PHINode &PHI : BB->phis()) 6010 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6011 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6012 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6013 IRBuilder<> Builder(T); 6014 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6015 BB->removePredecessor(PHI.getIncomingBlock(i)); 6016 // Turn uncoditional branches into unreachables and remove the dead 6017 // destination from conditional branches. 6018 if (BI->isUnconditional()) 6019 Builder.CreateUnreachable(); 6020 else 6021 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6022 : BI->getSuccessor(0)); 6023 BI->eraseFromParent(); 6024 return true; 6025 } 6026 // TODO: SwitchInst. 6027 } 6028 6029 return false; 6030 } 6031 6032 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6033 bool Changed = false; 6034 6035 assert(BB && BB->getParent() && "Block not embedded in function!"); 6036 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6037 6038 // Remove basic blocks that have no predecessors (except the entry block)... 6039 // or that just have themself as a predecessor. These are unreachable. 6040 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6041 BB->getSinglePredecessor() == BB) { 6042 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6043 DeleteDeadBlock(BB); 6044 return true; 6045 } 6046 6047 // Check to see if we can constant propagate this terminator instruction 6048 // away... 6049 Changed |= ConstantFoldTerminator(BB, true); 6050 6051 // Check for and eliminate duplicate PHI nodes in this block. 6052 Changed |= EliminateDuplicatePHINodes(BB); 6053 6054 // Check for and remove branches that will always cause undefined behavior. 6055 Changed |= removeUndefIntroducingPredecessor(BB); 6056 6057 // Merge basic blocks into their predecessor if there is only one distinct 6058 // pred, and if there is only one distinct successor of the predecessor, and 6059 // if there are no PHI nodes. 6060 if (MergeBlockIntoPredecessor(BB)) 6061 return true; 6062 6063 if (SinkCommon && Options.SinkCommonInsts) 6064 Changed |= SinkCommonCodeFromPredecessors(BB); 6065 6066 IRBuilder<> Builder(BB); 6067 6068 // If there is a trivial two-entry PHI node in this basic block, and we can 6069 // eliminate it, do so now. 6070 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6071 if (PN->getNumIncomingValues() == 2) 6072 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6073 6074 Builder.SetInsertPoint(BB->getTerminator()); 6075 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6076 if (BI->isUnconditional()) { 6077 if (SimplifyUncondBranch(BI, Builder)) 6078 return true; 6079 } else { 6080 if (SimplifyCondBranch(BI, Builder)) 6081 return true; 6082 } 6083 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6084 if (SimplifyReturn(RI, Builder)) 6085 return true; 6086 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6087 if (SimplifyResume(RI, Builder)) 6088 return true; 6089 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6090 if (SimplifyCleanupReturn(RI)) 6091 return true; 6092 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6093 if (SimplifySwitch(SI, Builder)) 6094 return true; 6095 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6096 if (SimplifyUnreachable(UI)) 6097 return true; 6098 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6099 if (SimplifyIndirectBr(IBI)) 6100 return true; 6101 } 6102 6103 return Changed; 6104 } 6105 6106 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6107 bool Changed = false; 6108 6109 // Repeated simplify BB as long as resimplification is requested. 6110 do { 6111 Resimplify = false; 6112 6113 // Perform one round of simplifcation. Resimplify flag will be set if 6114 // another iteration is requested. 6115 Changed |= simplifyOnce(BB); 6116 } while (Resimplify); 6117 6118 return Changed; 6119 } 6120 6121 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6122 const SimplifyCFGOptions &Options, 6123 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6124 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6125 Options) 6126 .run(BB); 6127 } 6128