1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/NoFolder.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <climits>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <map>
76 #include <set>
77 #include <tuple>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 using namespace PatternMatch;
83 
84 #define DEBUG_TYPE "simplifycfg"
85 
86 // Chosen as 2 so as to be cheap, but still to have enough power to fold
87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
88 // To catch this, we need to fold a compare and a select, hence '2' being the
89 // minimum reasonable default.
90 static cl::opt<unsigned> PHINodeFoldingThreshold(
91     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
92     cl::desc(
93         "Control the amount of phi node folding to perform (default = 2)"));
94 
95 static cl::opt<bool> DupRet(
96     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
97     cl::desc("Duplicate return instructions into unconditional branches"));
98 
99 static cl::opt<bool>
100     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
101                cl::desc("Sink common instructions down to the end block"));
102 
103 static cl::opt<bool> HoistCondStores(
104     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
105     cl::desc("Hoist conditional stores if an unconditional store precedes"));
106 
107 static cl::opt<bool> MergeCondStores(
108     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
109     cl::desc("Hoist conditional stores even if an unconditional store does not "
110              "precede - hoist multiple conditional stores into a single "
111              "predicated store"));
112 
113 static cl::opt<bool> MergeCondStoresAggressively(
114     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
115     cl::desc("When merging conditional stores, do so even if the resultant "
116              "basic blocks are unlikely to be if-converted as a result"));
117 
118 static cl::opt<bool> SpeculateOneExpensiveInst(
119     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
120     cl::desc("Allow exactly one expensive instruction to be speculatively "
121              "executed"));
122 
123 static cl::opt<unsigned> MaxSpeculationDepth(
124     "max-speculation-depth", cl::Hidden, cl::init(10),
125     cl::desc("Limit maximum recursion depth when calculating costs of "
126              "speculatively executed instructions"));
127 
128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
129 STATISTIC(NumLinearMaps,
130           "Number of switch instructions turned into linear mapping");
131 STATISTIC(NumLookupTables,
132           "Number of switch instructions turned into lookup tables");
133 STATISTIC(
134     NumLookupTablesHoles,
135     "Number of switch instructions turned into lookup tables (holes checked)");
136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
137 STATISTIC(NumSinkCommons,
138           "Number of common instructions sunk down to the end block");
139 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
140 
141 namespace {
142 
143 // The first field contains the value that the switch produces when a certain
144 // case group is selected, and the second field is a vector containing the
145 // cases composing the case group.
146 using SwitchCaseResultVectorTy =
147     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
148 
149 // The first field contains the phi node that generates a result of the switch
150 // and the second field contains the value generated for a certain case in the
151 // switch for that PHI.
152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
153 
154 /// ValueEqualityComparisonCase - Represents a case of a switch.
155 struct ValueEqualityComparisonCase {
156   ConstantInt *Value;
157   BasicBlock *Dest;
158 
159   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
160       : Value(Value), Dest(Dest) {}
161 
162   bool operator<(ValueEqualityComparisonCase RHS) const {
163     // Comparing pointers is ok as we only rely on the order for uniquing.
164     return Value < RHS.Value;
165   }
166 
167   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
168 };
169 
170 class SimplifyCFGOpt {
171   const TargetTransformInfo &TTI;
172   const DataLayout &DL;
173   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
174   const SimplifyCFGOptions &Options;
175   bool Resimplify;
176 
177   Value *isValueEqualityComparison(Instruction *TI);
178   BasicBlock *GetValueEqualityComparisonCases(
179       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
181                                                      BasicBlock *Pred,
182                                                      IRBuilder<> &Builder);
183   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
184                                            IRBuilder<> &Builder);
185 
186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188   bool SimplifySingleResume(ResumeInst *RI);
189   bool SimplifyCommonResume(ResumeInst *RI);
190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191   bool SimplifyUnreachable(UnreachableInst *UI);
192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
196 
197   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
198                                              IRBuilder<> &Builder);
199 
200 public:
201   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
202                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
203                  const SimplifyCFGOptions &Opts)
204       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
205 
206   bool run(BasicBlock *BB);
207   bool simplifyOnce(BasicBlock *BB);
208 
209   // Helper to set Resimplify and return change indication.
210   bool requestResimplify() {
211     Resimplify = true;
212     return true;
213   }
214 };
215 
216 } // end anonymous namespace
217 
218 /// Return true if it is safe to merge these two
219 /// terminator instructions together.
220 static bool
221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
222                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
223   if (SI1 == SI2)
224     return false; // Can't merge with self!
225 
226   // It is not safe to merge these two switch instructions if they have a common
227   // successor, and if that successor has a PHI node, and if *that* PHI node has
228   // conflicting incoming values from the two switch blocks.
229   BasicBlock *SI1BB = SI1->getParent();
230   BasicBlock *SI2BB = SI2->getParent();
231 
232   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
233   bool Fail = false;
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) !=
239             PN->getIncomingValueForBlock(SI2BB)) {
240           if (FailBlocks)
241             FailBlocks->insert(Succ);
242           Fail = true;
243         }
244       }
245 
246   return !Fail;
247 }
248 
249 /// Return true if it is safe and profitable to merge these two terminator
250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
251 /// store all PHI nodes in common successors.
252 static bool
253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
254                                 Instruction *Cond,
255                                 SmallVectorImpl<PHINode *> &PhiNodes) {
256   if (SI1 == SI2)
257     return false; // Can't merge with self!
258   assert(SI1->isUnconditional() && SI2->isConditional());
259 
260   // We fold the unconditional branch if we can easily update all PHI nodes in
261   // common successors:
262   // 1> We have a constant incoming value for the conditional branch;
263   // 2> We have "Cond" as the incoming value for the unconditional branch;
264   // 3> SI2->getCondition() and Cond have same operands.
265   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
266   if (!Ci2)
267     return false;
268   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
269         Cond->getOperand(1) == Ci2->getOperand(1)) &&
270       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
271         Cond->getOperand(1) == Ci2->getOperand(0)))
272     return false;
273 
274   BasicBlock *SI1BB = SI1->getParent();
275   BasicBlock *SI2BB = SI2->getParent();
276   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
277   for (BasicBlock *Succ : successors(SI2BB))
278     if (SI1Succs.count(Succ))
279       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
280         PHINode *PN = cast<PHINode>(BBI);
281         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
282             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
283           return false;
284         PhiNodes.push_back(PN);
285       }
286   return true;
287 }
288 
289 /// Update PHI nodes in Succ to indicate that there will now be entries in it
290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
291 /// will be the same as those coming in from ExistPred, an existing predecessor
292 /// of Succ.
293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
294                                   BasicBlock *ExistPred) {
295   for (PHINode &PN : Succ->phis())
296     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
297 }
298 
299 /// Compute an abstract "cost" of speculating the given instruction,
300 /// which is assumed to be safe to speculate. TCC_Free means cheap,
301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
302 /// expensive.
303 static unsigned ComputeSpeculationCost(const User *I,
304                                        const TargetTransformInfo &TTI) {
305   assert(isSafeToSpeculativelyExecute(I) &&
306          "Instruction is not safe to speculatively execute!");
307   return TTI.getUserCost(I);
308 }
309 
310 /// If we have a merge point of an "if condition" as accepted above,
311 /// return true if the specified value dominates the block.  We
312 /// don't handle the true generality of domination here, just a special case
313 /// which works well enough for us.
314 ///
315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
316 /// see if V (which must be an instruction) and its recursive operands
317 /// that do not dominate BB have a combined cost lower than CostRemaining and
318 /// are non-trapping.  If both are true, the instruction is inserted into the
319 /// set and true is returned.
320 ///
321 /// The cost for most non-trapping instructions is defined as 1 except for
322 /// Select whose cost is 2.
323 ///
324 /// After this function returns, CostRemaining is decreased by the cost of
325 /// V plus its non-dominating operands.  If that cost is greater than
326 /// CostRemaining, false is returned and CostRemaining is undefined.
327 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
328                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
329                                 unsigned &CostRemaining,
330                                 const TargetTransformInfo &TTI,
331                                 unsigned Depth = 0) {
332   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
333   // so limit the recursion depth.
334   // TODO: While this recursion limit does prevent pathological behavior, it
335   // would be better to track visited instructions to avoid cycles.
336   if (Depth == MaxSpeculationDepth)
337     return false;
338 
339   Instruction *I = dyn_cast<Instruction>(V);
340   if (!I) {
341     // Non-instructions all dominate instructions, but not all constantexprs
342     // can be executed unconditionally.
343     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
344       if (C->canTrap())
345         return false;
346     return true;
347   }
348   BasicBlock *PBB = I->getParent();
349 
350   // We don't want to allow weird loops that might have the "if condition" in
351   // the bottom of this block.
352   if (PBB == BB)
353     return false;
354 
355   // If this instruction is defined in a block that contains an unconditional
356   // branch to BB, then it must be in the 'conditional' part of the "if
357   // statement".  If not, it definitely dominates the region.
358   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
360     return true;
361 
362   // If we have seen this instruction before, don't count it again.
363   if (AggressiveInsts.count(I))
364     return true;
365 
366   // Okay, it looks like the instruction IS in the "condition".  Check to
367   // see if it's a cheap instruction to unconditionally compute, and if it
368   // only uses stuff defined outside of the condition.  If so, hoist it out.
369   if (!isSafeToSpeculativelyExecute(I))
370     return false;
371 
372   unsigned Cost = ComputeSpeculationCost(I, TTI);
373 
374   // Allow exactly one instruction to be speculated regardless of its cost
375   // (as long as it is safe to do so).
376   // This is intended to flatten the CFG even if the instruction is a division
377   // or other expensive operation. The speculation of an expensive instruction
378   // is expected to be undone in CodeGenPrepare if the speculation has not
379   // enabled further IR optimizations.
380   if (Cost > CostRemaining &&
381       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
382     return false;
383 
384   // Avoid unsigned wrap.
385   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
386 
387   // Okay, we can only really hoist these out if their operands do
388   // not take us over the cost threshold.
389   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
390     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
391                              Depth + 1))
392       return false;
393   // Okay, it's safe to do this!  Remember this instruction.
394   AggressiveInsts.insert(I);
395   return true;
396 }
397 
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
401   // Normal constant int.
402   ConstantInt *CI = dyn_cast<ConstantInt>(V);
403   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
404     return CI;
405 
406   // This is some kind of pointer constant. Turn it into a pointer-sized
407   // ConstantInt if possible.
408   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
409 
410   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411   if (isa<ConstantPointerNull>(V))
412     return ConstantInt::get(PtrTy, 0);
413 
414   // IntToPtr const int.
415   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
416     if (CE->getOpcode() == Instruction::IntToPtr)
417       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
418         // The constant is very likely to have the right type already.
419         if (CI->getType() == PtrTy)
420           return CI;
421         else
422           return cast<ConstantInt>(
423               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
424       }
425   return nullptr;
426 }
427 
428 namespace {
429 
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
432 /// structure.
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
439 /// fail.
440 struct ConstantComparesGatherer {
441   const DataLayout &DL;
442 
443   /// Value found for the switch comparison
444   Value *CompValue = nullptr;
445 
446   /// Extra clause to be checked before the switch
447   Value *Extra = nullptr;
448 
449   /// Set of integers to match in switch
450   SmallVector<ConstantInt *, 8> Vals;
451 
452   /// Number of comparisons matched in the and/or chain
453   unsigned UsedICmps = 0;
454 
455   /// Construct and compute the result for the comparison instruction Cond
456   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
457     gather(Cond);
458   }
459 
460   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
461   ConstantComparesGatherer &
462   operator=(const ConstantComparesGatherer &) = delete;
463 
464 private:
465   /// Try to set the current value used for the comparison, it succeeds only if
466   /// it wasn't set before or if the new value is the same as the old one
467   bool setValueOnce(Value *NewVal) {
468     if (CompValue && CompValue != NewVal)
469       return false;
470     CompValue = NewVal;
471     return (CompValue != nullptr);
472   }
473 
474   /// Try to match Instruction "I" as a comparison against a constant and
475   /// populates the array Vals with the set of values that match (or do not
476   /// match depending on isEQ).
477   /// Return false on failure. On success, the Value the comparison matched
478   /// against is placed in CompValue.
479   /// If CompValue is already set, the function is expected to fail if a match
480   /// is found but the value compared to is different.
481   bool matchInstruction(Instruction *I, bool isEQ) {
482     // If this is an icmp against a constant, handle this as one of the cases.
483     ICmpInst *ICI;
484     ConstantInt *C;
485     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
486           (C = GetConstantInt(I->getOperand(1), DL)))) {
487       return false;
488     }
489 
490     Value *RHSVal;
491     const APInt *RHSC;
492 
493     // Pattern match a special case
494     // (x & ~2^z) == y --> x == y || x == y|2^z
495     // This undoes a transformation done by instcombine to fuse 2 compares.
496     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
497       // It's a little bit hard to see why the following transformations are
498       // correct. Here is a CVC3 program to verify them for 64-bit values:
499 
500       /*
501          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
502          x    : BITVECTOR(64);
503          y    : BITVECTOR(64);
504          z    : BITVECTOR(64);
505          mask : BITVECTOR(64) = BVSHL(ONE, z);
506          QUERY( (y & ~mask = y) =>
507                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
508          );
509          QUERY( (y |  mask = y) =>
510                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
511          );
512       */
513 
514       // Please note that each pattern must be a dual implication (<--> or
515       // iff). One directional implication can create spurious matches. If the
516       // implication is only one-way, an unsatisfiable condition on the left
517       // side can imply a satisfiable condition on the right side. Dual
518       // implication ensures that satisfiable conditions are transformed to
519       // other satisfiable conditions and unsatisfiable conditions are
520       // transformed to other unsatisfiable conditions.
521 
522       // Here is a concrete example of a unsatisfiable condition on the left
523       // implying a satisfiable condition on the right:
524       //
525       // mask = (1 << z)
526       // (x & ~mask) == y  --> (x == y || x == (y | mask))
527       //
528       // Substituting y = 3, z = 0 yields:
529       // (x & -2) == 3 --> (x == 3 || x == 2)
530 
531       // Pattern match a special case:
532       /*
533         QUERY( (y & ~mask = y) =>
534                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
535         );
536       */
537       if (match(ICI->getOperand(0),
538                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
539         APInt Mask = ~*RHSC;
540         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
541           // If we already have a value for the switch, it has to match!
542           if (!setValueOnce(RHSVal))
543             return false;
544 
545           Vals.push_back(C);
546           Vals.push_back(
547               ConstantInt::get(C->getContext(),
548                                C->getValue() | Mask));
549           UsedICmps++;
550           return true;
551         }
552       }
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y |  mask = y) =>
557                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = *RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(ConstantInt::get(C->getContext(),
570                                           C->getValue() & ~Mask));
571           UsedICmps++;
572           return true;
573         }
574       }
575 
576       // If we already have a value for the switch, it has to match!
577       if (!setValueOnce(ICI->getOperand(0)))
578         return false;
579 
580       UsedICmps++;
581       Vals.push_back(C);
582       return ICI->getOperand(0);
583     }
584 
585     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
587         ICI->getPredicate(), C->getValue());
588 
589     // Shift the range if the compare is fed by an add. This is the range
590     // compare idiom as emitted by instcombine.
591     Value *CandidateVal = I->getOperand(0);
592     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
593       Span = Span.subtract(*RHSC);
594       CandidateVal = RHSVal;
595     }
596 
597     // If this is an and/!= check, then we are looking to build the set of
598     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
599     // x != 0 && x != 1.
600     if (!isEQ)
601       Span = Span.inverse();
602 
603     // If there are a ton of values, we don't want to make a ginormous switch.
604     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
605       return false;
606     }
607 
608     // If we already have a value for the switch, it has to match!
609     if (!setValueOnce(CandidateVal))
610       return false;
611 
612     // Add all values from the range to the set
613     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
614       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
615 
616     UsedICmps++;
617     return true;
618   }
619 
620   /// Given a potentially 'or'd or 'and'd together collection of icmp
621   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622   /// the value being compared, and stick the list constants into the Vals
623   /// vector.
624   /// One "Extra" case is allowed to differ from the other.
625   void gather(Value *V) {
626     Instruction *I = dyn_cast<Instruction>(V);
627     bool isEQ = (I->getOpcode() == Instruction::Or);
628 
629     // Keep a stack (SmallVector for efficiency) for depth-first traversal
630     SmallVector<Value *, 8> DFT;
631     SmallPtrSet<Value *, 8> Visited;
632 
633     // Initialize
634     Visited.insert(V);
635     DFT.push_back(V);
636 
637     while (!DFT.empty()) {
638       V = DFT.pop_back_val();
639 
640       if (Instruction *I = dyn_cast<Instruction>(V)) {
641         // If it is a || (or && depending on isEQ), process the operands.
642         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
643           if (Visited.insert(I->getOperand(1)).second)
644             DFT.push_back(I->getOperand(1));
645           if (Visited.insert(I->getOperand(0)).second)
646             DFT.push_back(I->getOperand(0));
647           continue;
648         }
649 
650         // Try to match the current instruction
651         if (matchInstruction(I, isEQ))
652           // Match succeed, continue the loop
653           continue;
654       }
655 
656       // One element of the sequence of || (or &&) could not be match as a
657       // comparison against the same value as the others.
658       // We allow only one "Extra" case to be checked before the switch
659       if (!Extra) {
660         Extra = V;
661         continue;
662       }
663       // Failed to parse a proper sequence, abort now
664       CompValue = nullptr;
665       break;
666     }
667   }
668 };
669 
670 } // end anonymous namespace
671 
672 static void EraseTerminatorAndDCECond(Instruction *TI) {
673   Instruction *Cond = nullptr;
674   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
675     Cond = dyn_cast<Instruction>(SI->getCondition());
676   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
677     if (BI->isConditional())
678       Cond = dyn_cast<Instruction>(BI->getCondition());
679   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
680     Cond = dyn_cast<Instruction>(IBI->getAddress());
681   }
682 
683   TI->eraseFromParent();
684   if (Cond)
685     RecursivelyDeleteTriviallyDeadInstructions(Cond);
686 }
687 
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
691   Value *CV = nullptr;
692   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
693     // Do not permit merging of large switch instructions into their
694     // predecessors unless there is only one predecessor.
695     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
696       CV = SI->getCondition();
697   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
698     if (BI->isConditional() && BI->getCondition()->hasOneUse())
699       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
700         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
701           CV = ICI->getOperand(0);
702       }
703 
704   // Unwrap any lossless ptrtoint cast.
705   if (CV) {
706     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
707       Value *Ptr = PTII->getPointerOperand();
708       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
709         CV = Ptr;
710     }
711   }
712   return CV;
713 }
714 
715 /// Given a value comparison instruction,
716 /// decode all of the 'cases' that it represents and return the 'default' block.
717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
718     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
719   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
720     Cases.reserve(SI->getNumCases());
721     for (auto Case : SI->cases())
722       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
723                                                   Case.getCaseSuccessor()));
724     return SI->getDefaultDest();
725   }
726 
727   BranchInst *BI = cast<BranchInst>(TI);
728   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
729   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
730   Cases.push_back(ValueEqualityComparisonCase(
731       GetConstantInt(ICI->getOperand(1), DL), Succ));
732   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
733 }
734 
735 /// Given a vector of bb/value pairs, remove any entries
736 /// in the list that match the specified block.
737 static void
738 EliminateBlockCases(BasicBlock *BB,
739                     std::vector<ValueEqualityComparisonCase> &Cases) {
740   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
741 }
742 
743 /// Return true if there are any keys in C1 that exist in C2 as well.
744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
745                           std::vector<ValueEqualityComparisonCase> &C2) {
746   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
747 
748   // Make V1 be smaller than V2.
749   if (V1->size() > V2->size())
750     std::swap(V1, V2);
751 
752   if (V1->empty())
753     return false;
754   if (V1->size() == 1) {
755     // Just scan V2.
756     ConstantInt *TheVal = (*V1)[0].Value;
757     for (unsigned i = 0, e = V2->size(); i != e; ++i)
758       if (TheVal == (*V2)[i].Value)
759         return true;
760   }
761 
762   // Otherwise, just sort both lists and compare element by element.
763   array_pod_sort(V1->begin(), V1->end());
764   array_pod_sort(V2->begin(), V2->end());
765   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
766   while (i1 != e1 && i2 != e2) {
767     if ((*V1)[i1].Value == (*V2)[i2].Value)
768       return true;
769     if ((*V1)[i1].Value < (*V2)[i2].Value)
770       ++i1;
771     else
772       ++i2;
773   }
774   return false;
775 }
776 
777 // Set branch weights on SwitchInst. This sets the metadata if there is at
778 // least one non-zero weight.
779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
780   // Check that there is at least one non-zero weight. Otherwise, pass
781   // nullptr to setMetadata which will erase the existing metadata.
782   MDNode *N = nullptr;
783   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
784     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
785   SI->setMetadata(LLVMContext::MD_prof, N);
786 }
787 
788 // Similar to the above, but for branch and select instructions that take
789 // exactly 2 weights.
790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
791                              uint32_t FalseWeight) {
792   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
793   // Check that there is at least one non-zero weight. Otherwise, pass
794   // nullptr to setMetadata which will erase the existing metadata.
795   MDNode *N = nullptr;
796   if (TrueWeight || FalseWeight)
797     N = MDBuilder(I->getParent()->getContext())
798             .createBranchWeights(TrueWeight, FalseWeight);
799   I->setMetadata(LLVMContext::MD_prof, N);
800 }
801 
802 /// If TI is known to be a terminator instruction and its block is known to
803 /// only have a single predecessor block, check to see if that predecessor is
804 /// also a value comparison with the same value, and if that comparison
805 /// determines the outcome of this comparison. If so, simplify TI. This does a
806 /// very limited form of jump threading.
807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
808     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
809   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
810   if (!PredVal)
811     return false; // Not a value comparison in predecessor.
812 
813   Value *ThisVal = isValueEqualityComparison(TI);
814   assert(ThisVal && "This isn't a value comparison!!");
815   if (ThisVal != PredVal)
816     return false; // Different predicates.
817 
818   // TODO: Preserve branch weight metadata, similarly to how
819   // FoldValueComparisonIntoPredecessors preserves it.
820 
821   // Find out information about when control will move from Pred to TI's block.
822   std::vector<ValueEqualityComparisonCase> PredCases;
823   BasicBlock *PredDef =
824       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
825   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
826 
827   // Find information about how control leaves this block.
828   std::vector<ValueEqualityComparisonCase> ThisCases;
829   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
830   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
831 
832   // If TI's block is the default block from Pred's comparison, potentially
833   // simplify TI based on this knowledge.
834   if (PredDef == TI->getParent()) {
835     // If we are here, we know that the value is none of those cases listed in
836     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
837     // can simplify TI.
838     if (!ValuesOverlap(PredCases, ThisCases))
839       return false;
840 
841     if (isa<BranchInst>(TI)) {
842       // Okay, one of the successors of this condbr is dead.  Convert it to a
843       // uncond br.
844       assert(ThisCases.size() == 1 && "Branch can only have one case!");
845       // Insert the new branch.
846       Instruction *NI = Builder.CreateBr(ThisDef);
847       (void)NI;
848 
849       // Remove PHI node entries for the dead edge.
850       ThisCases[0].Dest->removePredecessor(TI->getParent());
851 
852       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
853                         << "Through successor TI: " << *TI << "Leaving: " << *NI
854                         << "\n");
855 
856       EraseTerminatorAndDCECond(TI);
857       return true;
858     }
859 
860     SwitchInst *SI = cast<SwitchInst>(TI);
861     // Okay, TI has cases that are statically dead, prune them away.
862     SmallPtrSet<Constant *, 16> DeadCases;
863     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
864       DeadCases.insert(PredCases[i].Value);
865 
866     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
867                       << "Through successor TI: " << *TI);
868 
869     // Collect branch weights into a vector.
870     SmallVector<uint32_t, 8> Weights;
871     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
872     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
873     if (HasWeight)
874       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
875            ++MD_i) {
876         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
877         Weights.push_back(CI->getValue().getZExtValue());
878       }
879     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880       --i;
881       if (DeadCases.count(i->getCaseValue())) {
882         if (HasWeight) {
883           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
884           Weights.pop_back();
885         }
886         i->getCaseSuccessor()->removePredecessor(TI->getParent());
887         SI->removeCase(i);
888       }
889     }
890     if (HasWeight && Weights.size() >= 2)
891       setBranchWeights(SI, Weights);
892 
893     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
894     return true;
895   }
896 
897   // Otherwise, TI's block must correspond to some matched value.  Find out
898   // which value (or set of values) this is.
899   ConstantInt *TIV = nullptr;
900   BasicBlock *TIBB = TI->getParent();
901   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
902     if (PredCases[i].Dest == TIBB) {
903       if (TIV)
904         return false; // Cannot handle multiple values coming to this block.
905       TIV = PredCases[i].Value;
906     }
907   assert(TIV && "No edge from pred to succ?");
908 
909   // Okay, we found the one constant that our value can be if we get into TI's
910   // BB.  Find out which successor will unconditionally be branched to.
911   BasicBlock *TheRealDest = nullptr;
912   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
913     if (ThisCases[i].Value == TIV) {
914       TheRealDest = ThisCases[i].Dest;
915       break;
916     }
917 
918   // If not handled by any explicit cases, it is handled by the default case.
919   if (!TheRealDest)
920     TheRealDest = ThisDef;
921 
922   // Remove PHI node entries for dead edges.
923   BasicBlock *CheckEdge = TheRealDest;
924   for (BasicBlock *Succ : successors(TIBB))
925     if (Succ != CheckEdge)
926       Succ->removePredecessor(TIBB);
927     else
928       CheckEdge = nullptr;
929 
930   // Insert the new branch.
931   Instruction *NI = Builder.CreateBr(TheRealDest);
932   (void)NI;
933 
934   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
935                     << "Through successor TI: " << *TI << "Leaving: " << *NI
936                     << "\n");
937 
938   EraseTerminatorAndDCECond(TI);
939   return true;
940 }
941 
942 namespace {
943 
944 /// This class implements a stable ordering of constant
945 /// integers that does not depend on their address.  This is important for
946 /// applications that sort ConstantInt's to ensure uniqueness.
947 struct ConstantIntOrdering {
948   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
949     return LHS->getValue().ult(RHS->getValue());
950   }
951 };
952 
953 } // end anonymous namespace
954 
955 static int ConstantIntSortPredicate(ConstantInt *const *P1,
956                                     ConstantInt *const *P2) {
957   const ConstantInt *LHS = *P1;
958   const ConstantInt *RHS = *P2;
959   if (LHS == RHS)
960     return 0;
961   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
962 }
963 
964 static inline bool HasBranchWeights(const Instruction *I) {
965   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
966   if (ProfMD && ProfMD->getOperand(0))
967     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
968       return MDS->getString().equals("branch_weights");
969 
970   return false;
971 }
972 
973 /// Get Weights of a given terminator, the default weight is at the front
974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
975 /// metadata.
976 static void GetBranchWeights(Instruction *TI,
977                              SmallVectorImpl<uint64_t> &Weights) {
978   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
979   assert(MD);
980   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
981     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
982     Weights.push_back(CI->getValue().getZExtValue());
983   }
984 
985   // If TI is a conditional eq, the default case is the false case,
986   // and the corresponding branch-weight data is at index 2. We swap the
987   // default weight to be the first entry.
988   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
989     assert(Weights.size() == 2);
990     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
991     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
992       std::swap(Weights.front(), Weights.back());
993   }
994 }
995 
996 /// Keep halving the weights until all can fit in uint32_t.
997 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
998   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
999   if (Max > UINT_MAX) {
1000     unsigned Offset = 32 - countLeadingZeros(Max);
1001     for (uint64_t &I : Weights)
1002       I >>= Offset;
1003   }
1004 }
1005 
1006 /// The specified terminator is a value equality comparison instruction
1007 /// (either a switch or a branch on "X == c").
1008 /// See if any of the predecessors of the terminator block are value comparisons
1009 /// on the same value.  If so, and if safe to do so, fold them together.
1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1011                                                          IRBuilder<> &Builder) {
1012   BasicBlock *BB = TI->getParent();
1013   Value *CV = isValueEqualityComparison(TI); // CondVal
1014   assert(CV && "Not a comparison?");
1015   bool Changed = false;
1016 
1017   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1018   while (!Preds.empty()) {
1019     BasicBlock *Pred = Preds.pop_back_val();
1020 
1021     // See if the predecessor is a comparison with the same value.
1022     Instruction *PTI = Pred->getTerminator();
1023     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1024 
1025     if (PCV == CV && TI != PTI) {
1026       SmallSetVector<BasicBlock*, 4> FailBlocks;
1027       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1028         for (auto *Succ : FailBlocks) {
1029           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1030             return false;
1031         }
1032       }
1033 
1034       // Figure out which 'cases' to copy from SI to PSI.
1035       std::vector<ValueEqualityComparisonCase> BBCases;
1036       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1037 
1038       std::vector<ValueEqualityComparisonCase> PredCases;
1039       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1040 
1041       // Based on whether the default edge from PTI goes to BB or not, fill in
1042       // PredCases and PredDefault with the new switch cases we would like to
1043       // build.
1044       SmallVector<BasicBlock *, 8> NewSuccessors;
1045 
1046       // Update the branch weight metadata along the way
1047       SmallVector<uint64_t, 8> Weights;
1048       bool PredHasWeights = HasBranchWeights(PTI);
1049       bool SuccHasWeights = HasBranchWeights(TI);
1050 
1051       if (PredHasWeights) {
1052         GetBranchWeights(PTI, Weights);
1053         // branch-weight metadata is inconsistent here.
1054         if (Weights.size() != 1 + PredCases.size())
1055           PredHasWeights = SuccHasWeights = false;
1056       } else if (SuccHasWeights)
1057         // If there are no predecessor weights but there are successor weights,
1058         // populate Weights with 1, which will later be scaled to the sum of
1059         // successor's weights
1060         Weights.assign(1 + PredCases.size(), 1);
1061 
1062       SmallVector<uint64_t, 8> SuccWeights;
1063       if (SuccHasWeights) {
1064         GetBranchWeights(TI, SuccWeights);
1065         // branch-weight metadata is inconsistent here.
1066         if (SuccWeights.size() != 1 + BBCases.size())
1067           PredHasWeights = SuccHasWeights = false;
1068       } else if (PredHasWeights)
1069         SuccWeights.assign(1 + BBCases.size(), 1);
1070 
1071       if (PredDefault == BB) {
1072         // If this is the default destination from PTI, only the edges in TI
1073         // that don't occur in PTI, or that branch to BB will be activated.
1074         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1075         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1076           if (PredCases[i].Dest != BB)
1077             PTIHandled.insert(PredCases[i].Value);
1078           else {
1079             // The default destination is BB, we don't need explicit targets.
1080             std::swap(PredCases[i], PredCases.back());
1081 
1082             if (PredHasWeights || SuccHasWeights) {
1083               // Increase weight for the default case.
1084               Weights[0] += Weights[i + 1];
1085               std::swap(Weights[i + 1], Weights.back());
1086               Weights.pop_back();
1087             }
1088 
1089             PredCases.pop_back();
1090             --i;
1091             --e;
1092           }
1093 
1094         // Reconstruct the new switch statement we will be building.
1095         if (PredDefault != BBDefault) {
1096           PredDefault->removePredecessor(Pred);
1097           PredDefault = BBDefault;
1098           NewSuccessors.push_back(BBDefault);
1099         }
1100 
1101         unsigned CasesFromPred = Weights.size();
1102         uint64_t ValidTotalSuccWeight = 0;
1103         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1104           if (!PTIHandled.count(BBCases[i].Value) &&
1105               BBCases[i].Dest != BBDefault) {
1106             PredCases.push_back(BBCases[i]);
1107             NewSuccessors.push_back(BBCases[i].Dest);
1108             if (SuccHasWeights || PredHasWeights) {
1109               // The default weight is at index 0, so weight for the ith case
1110               // should be at index i+1. Scale the cases from successor by
1111               // PredDefaultWeight (Weights[0]).
1112               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1113               ValidTotalSuccWeight += SuccWeights[i + 1];
1114             }
1115           }
1116 
1117         if (SuccHasWeights || PredHasWeights) {
1118           ValidTotalSuccWeight += SuccWeights[0];
1119           // Scale the cases from predecessor by ValidTotalSuccWeight.
1120           for (unsigned i = 1; i < CasesFromPred; ++i)
1121             Weights[i] *= ValidTotalSuccWeight;
1122           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1123           Weights[0] *= SuccWeights[0];
1124         }
1125       } else {
1126         // If this is not the default destination from PSI, only the edges
1127         // in SI that occur in PSI with a destination of BB will be
1128         // activated.
1129         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1130         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1131         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1132           if (PredCases[i].Dest == BB) {
1133             PTIHandled.insert(PredCases[i].Value);
1134 
1135             if (PredHasWeights || SuccHasWeights) {
1136               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1137               std::swap(Weights[i + 1], Weights.back());
1138               Weights.pop_back();
1139             }
1140 
1141             std::swap(PredCases[i], PredCases.back());
1142             PredCases.pop_back();
1143             --i;
1144             --e;
1145           }
1146 
1147         // Okay, now we know which constants were sent to BB from the
1148         // predecessor.  Figure out where they will all go now.
1149         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1150           if (PTIHandled.count(BBCases[i].Value)) {
1151             // If this is one we are capable of getting...
1152             if (PredHasWeights || SuccHasWeights)
1153               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1154             PredCases.push_back(BBCases[i]);
1155             NewSuccessors.push_back(BBCases[i].Dest);
1156             PTIHandled.erase(
1157                 BBCases[i].Value); // This constant is taken care of
1158           }
1159 
1160         // If there are any constants vectored to BB that TI doesn't handle,
1161         // they must go to the default destination of TI.
1162         for (ConstantInt *I : PTIHandled) {
1163           if (PredHasWeights || SuccHasWeights)
1164             Weights.push_back(WeightsForHandled[I]);
1165           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1166           NewSuccessors.push_back(BBDefault);
1167         }
1168       }
1169 
1170       // Okay, at this point, we know which new successor Pred will get.  Make
1171       // sure we update the number of entries in the PHI nodes for these
1172       // successors.
1173       for (BasicBlock *NewSuccessor : NewSuccessors)
1174         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1175 
1176       Builder.SetInsertPoint(PTI);
1177       // Convert pointer to int before we switch.
1178       if (CV->getType()->isPointerTy()) {
1179         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1180                                     "magicptr");
1181       }
1182 
1183       // Now that the successors are updated, create the new Switch instruction.
1184       SwitchInst *NewSI =
1185           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1186       NewSI->setDebugLoc(PTI->getDebugLoc());
1187       for (ValueEqualityComparisonCase &V : PredCases)
1188         NewSI->addCase(V.Value, V.Dest);
1189 
1190       if (PredHasWeights || SuccHasWeights) {
1191         // Halve the weights if any of them cannot fit in an uint32_t
1192         FitWeights(Weights);
1193 
1194         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1195 
1196         setBranchWeights(NewSI, MDWeights);
1197       }
1198 
1199       EraseTerminatorAndDCECond(PTI);
1200 
1201       // Okay, last check.  If BB is still a successor of PSI, then we must
1202       // have an infinite loop case.  If so, add an infinitely looping block
1203       // to handle the case to preserve the behavior of the code.
1204       BasicBlock *InfLoopBlock = nullptr;
1205       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1206         if (NewSI->getSuccessor(i) == BB) {
1207           if (!InfLoopBlock) {
1208             // Insert it at the end of the function, because it's either code,
1209             // or it won't matter if it's hot. :)
1210             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1211                                               BB->getParent());
1212             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1213           }
1214           NewSI->setSuccessor(i, InfLoopBlock);
1215         }
1216 
1217       Changed = true;
1218     }
1219   }
1220   return Changed;
1221 }
1222 
1223 // If we would need to insert a select that uses the value of this invoke
1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1225 // can't hoist the invoke, as there is nowhere to put the select in this case.
1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1227                                 Instruction *I1, Instruction *I2) {
1228   for (BasicBlock *Succ : successors(BB1)) {
1229     for (const PHINode &PN : Succ->phis()) {
1230       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1231       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1232       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1233         return false;
1234       }
1235     }
1236   }
1237   return true;
1238 }
1239 
1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1241 
1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1243 /// in the two blocks up into the branch block. The caller of this function
1244 /// guarantees that BI's block dominates BB1 and BB2.
1245 static bool HoistThenElseCodeToIf(BranchInst *BI,
1246                                   const TargetTransformInfo &TTI) {
1247   // This does very trivial matching, with limited scanning, to find identical
1248   // instructions in the two blocks.  In particular, we don't want to get into
1249   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1250   // such, we currently just scan for obviously identical instructions in an
1251   // identical order.
1252   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1253   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1254 
1255   BasicBlock::iterator BB1_Itr = BB1->begin();
1256   BasicBlock::iterator BB2_Itr = BB2->begin();
1257 
1258   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1259   // Skip debug info if it is not identical.
1260   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1261   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1262   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1263     while (isa<DbgInfoIntrinsic>(I1))
1264       I1 = &*BB1_Itr++;
1265     while (isa<DbgInfoIntrinsic>(I2))
1266       I2 = &*BB2_Itr++;
1267   }
1268   // FIXME: Can we define a safety predicate for CallBr?
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1271       isa<CallBrInst>(I1))
1272     return false;
1273 
1274   BasicBlock *BIParent = BI->getParent();
1275 
1276   bool Changed = false;
1277   do {
1278     // If we are hoisting the terminator instruction, don't move one (making a
1279     // broken BB), instead clone it, and remove BI.
1280     if (I1->isTerminator())
1281       goto HoistTerminator;
1282 
1283     // If we're going to hoist a call, make sure that the two instructions we're
1284     // commoning/hoisting are both marked with musttail, or neither of them is
1285     // marked as such. Otherwise, we might end up in a situation where we hoist
1286     // from a block where the terminator is a `ret` to a block where the terminator
1287     // is a `br`, and `musttail` calls expect to be followed by a return.
1288     auto *C1 = dyn_cast<CallInst>(I1);
1289     auto *C2 = dyn_cast<CallInst>(I2);
1290     if (C1 && C2)
1291       if (C1->isMustTailCall() != C2->isMustTailCall())
1292         return Changed;
1293 
1294     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1295       return Changed;
1296 
1297     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1298       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1299       // The debug location is an integral part of a debug info intrinsic
1300       // and can't be separated from it or replaced.  Instead of attempting
1301       // to merge locations, simply hoist both copies of the intrinsic.
1302       BIParent->getInstList().splice(BI->getIterator(),
1303                                      BB1->getInstList(), I1);
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB2->getInstList(), I2);
1306       Changed = true;
1307     } else {
1308       // For a normal instruction, we just move one to right before the branch,
1309       // then replace all uses of the other with the first.  Finally, we remove
1310       // the now redundant second instruction.
1311       BIParent->getInstList().splice(BI->getIterator(),
1312                                      BB1->getInstList(), I1);
1313       if (!I2->use_empty())
1314         I2->replaceAllUsesWith(I1);
1315       I1->andIRFlags(I2);
1316       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1317                              LLVMContext::MD_range,
1318                              LLVMContext::MD_fpmath,
1319                              LLVMContext::MD_invariant_load,
1320                              LLVMContext::MD_nonnull,
1321                              LLVMContext::MD_invariant_group,
1322                              LLVMContext::MD_align,
1323                              LLVMContext::MD_dereferenceable,
1324                              LLVMContext::MD_dereferenceable_or_null,
1325                              LLVMContext::MD_mem_parallel_loop_access,
1326                              LLVMContext::MD_access_group};
1327       combineMetadata(I1, I2, KnownIDs, true);
1328 
1329       // I1 and I2 are being combined into a single instruction.  Its debug
1330       // location is the merged locations of the original instructions.
1331       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1332 
1333       I2->eraseFromParent();
1334       Changed = true;
1335     }
1336 
1337     I1 = &*BB1_Itr++;
1338     I2 = &*BB2_Itr++;
1339     // Skip debug info if it is not identical.
1340     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1341     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1342     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1343       while (isa<DbgInfoIntrinsic>(I1))
1344         I1 = &*BB1_Itr++;
1345       while (isa<DbgInfoIntrinsic>(I2))
1346         I2 = &*BB2_Itr++;
1347     }
1348   } while (I1->isIdenticalToWhenDefined(I2));
1349 
1350   return true;
1351 
1352 HoistTerminator:
1353   // It may not be possible to hoist an invoke.
1354   // FIXME: Can we define a safety predicate for CallBr?
1355   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1356     return Changed;
1357 
1358   // TODO: callbr hoisting currently disabled pending further study.
1359   if (isa<CallBrInst>(I1))
1360     return Changed;
1361 
1362   for (BasicBlock *Succ : successors(BB1)) {
1363     for (PHINode &PN : Succ->phis()) {
1364       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1365       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1366       if (BB1V == BB2V)
1367         continue;
1368 
1369       // Check for passingValueIsAlwaysUndefined here because we would rather
1370       // eliminate undefined control flow then converting it to a select.
1371       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1372           passingValueIsAlwaysUndefined(BB2V, &PN))
1373         return Changed;
1374 
1375       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1376         return Changed;
1377       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1378         return Changed;
1379     }
1380   }
1381 
1382   // Okay, it is safe to hoist the terminator.
1383   Instruction *NT = I1->clone();
1384   BIParent->getInstList().insert(BI->getIterator(), NT);
1385   if (!NT->getType()->isVoidTy()) {
1386     I1->replaceAllUsesWith(NT);
1387     I2->replaceAllUsesWith(NT);
1388     NT->takeName(I1);
1389   }
1390 
1391   // Ensure terminator gets a debug location, even an unknown one, in case
1392   // it involves inlinable calls.
1393   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1394 
1395   // PHIs created below will adopt NT's merged DebugLoc.
1396   IRBuilder<NoFolder> Builder(NT);
1397 
1398   // Hoisting one of the terminators from our successor is a great thing.
1399   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1400   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1401   // nodes, so we insert select instruction to compute the final result.
1402   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1403   for (BasicBlock *Succ : successors(BB1)) {
1404     for (PHINode &PN : Succ->phis()) {
1405       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1406       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1407       if (BB1V == BB2V)
1408         continue;
1409 
1410       // These values do not agree.  Insert a select instruction before NT
1411       // that determines the right value.
1412       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1413       if (!SI)
1414         SI = cast<SelectInst>(
1415             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1416                                  BB1V->getName() + "." + BB2V->getName(), BI));
1417 
1418       // Make the PHI node use the select for all incoming values for BB1/BB2
1419       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1420         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1421           PN.setIncomingValue(i, SI);
1422     }
1423   }
1424 
1425   // Update any PHI nodes in our new successors.
1426   for (BasicBlock *Succ : successors(BB1))
1427     AddPredecessorToBlock(Succ, BIParent, BB1);
1428 
1429   EraseTerminatorAndDCECond(BI);
1430   return true;
1431 }
1432 
1433 // All instructions in Insts belong to different blocks that all unconditionally
1434 // branch to a common successor. Analyze each instruction and return true if it
1435 // would be possible to sink them into their successor, creating one common
1436 // instruction instead. For every value that would be required to be provided by
1437 // PHI node (because an operand varies in each input block), add to PHIOperands.
1438 static bool canSinkInstructions(
1439     ArrayRef<Instruction *> Insts,
1440     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1441   // Prune out obviously bad instructions to move. Any non-store instruction
1442   // must have exactly one use, and we check later that use is by a single,
1443   // common PHI instruction in the successor.
1444   for (auto *I : Insts) {
1445     // These instructions may change or break semantics if moved.
1446     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1447         I->getType()->isTokenTy())
1448       return false;
1449 
1450     // Conservatively return false if I is an inline-asm instruction. Sinking
1451     // and merging inline-asm instructions can potentially create arguments
1452     // that cannot satisfy the inline-asm constraints.
1453     if (const auto *C = dyn_cast<CallBase>(I))
1454       if (C->isInlineAsm())
1455         return false;
1456 
1457     // Everything must have only one use too, apart from stores which
1458     // have no uses.
1459     if (!isa<StoreInst>(I) && !I->hasOneUse())
1460       return false;
1461   }
1462 
1463   const Instruction *I0 = Insts.front();
1464   for (auto *I : Insts)
1465     if (!I->isSameOperationAs(I0))
1466       return false;
1467 
1468   // All instructions in Insts are known to be the same opcode. If they aren't
1469   // stores, check the only user of each is a PHI or in the same block as the
1470   // instruction, because if a user is in the same block as an instruction
1471   // we're contemplating sinking, it must already be determined to be sinkable.
1472   if (!isa<StoreInst>(I0)) {
1473     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1474     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1475     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1476           auto *U = cast<Instruction>(*I->user_begin());
1477           return (PNUse &&
1478                   PNUse->getParent() == Succ &&
1479                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1480                  U->getParent() == I->getParent();
1481         }))
1482       return false;
1483   }
1484 
1485   // Because SROA can't handle speculating stores of selects, try not
1486   // to sink loads or stores of allocas when we'd have to create a PHI for
1487   // the address operand. Also, because it is likely that loads or stores
1488   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1489   // This can cause code churn which can have unintended consequences down
1490   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1491   // FIXME: This is a workaround for a deficiency in SROA - see
1492   // https://llvm.org/bugs/show_bug.cgi?id=30188
1493   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1494         return isa<AllocaInst>(I->getOperand(1));
1495       }))
1496     return false;
1497   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1498         return isa<AllocaInst>(I->getOperand(0));
1499       }))
1500     return false;
1501 
1502   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1503     if (I0->getOperand(OI)->getType()->isTokenTy())
1504       // Don't touch any operand of token type.
1505       return false;
1506 
1507     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1508       assert(I->getNumOperands() == I0->getNumOperands());
1509       return I->getOperand(OI) == I0->getOperand(OI);
1510     };
1511     if (!all_of(Insts, SameAsI0)) {
1512       if (!canReplaceOperandWithVariable(I0, OI))
1513         // We can't create a PHI from this GEP.
1514         return false;
1515       // Don't create indirect calls! The called value is the final operand.
1516       if (isa<CallBase>(I0) && OI == OE - 1) {
1517         // FIXME: if the call was *already* indirect, we should do this.
1518         return false;
1519       }
1520       for (auto *I : Insts)
1521         PHIOperands[I].push_back(I->getOperand(OI));
1522     }
1523   }
1524   return true;
1525 }
1526 
1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1528 // instruction of every block in Blocks to their common successor, commoning
1529 // into one instruction.
1530 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1531   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1532 
1533   // canSinkLastInstruction returning true guarantees that every block has at
1534   // least one non-terminator instruction.
1535   SmallVector<Instruction*,4> Insts;
1536   for (auto *BB : Blocks) {
1537     Instruction *I = BB->getTerminator();
1538     do {
1539       I = I->getPrevNode();
1540     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1541     if (!isa<DbgInfoIntrinsic>(I))
1542       Insts.push_back(I);
1543   }
1544 
1545   // The only checking we need to do now is that all users of all instructions
1546   // are the same PHI node. canSinkLastInstruction should have checked this but
1547   // it is slightly over-aggressive - it gets confused by commutative instructions
1548   // so double-check it here.
1549   Instruction *I0 = Insts.front();
1550   if (!isa<StoreInst>(I0)) {
1551     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1552     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1553           auto *U = cast<Instruction>(*I->user_begin());
1554           return U == PNUse;
1555         }))
1556       return false;
1557   }
1558 
1559   // We don't need to do any more checking here; canSinkLastInstruction should
1560   // have done it all for us.
1561   SmallVector<Value*, 4> NewOperands;
1562   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1563     // This check is different to that in canSinkLastInstruction. There, we
1564     // cared about the global view once simplifycfg (and instcombine) have
1565     // completed - it takes into account PHIs that become trivially
1566     // simplifiable.  However here we need a more local view; if an operand
1567     // differs we create a PHI and rely on instcombine to clean up the very
1568     // small mess we may make.
1569     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1570       return I->getOperand(O) != I0->getOperand(O);
1571     });
1572     if (!NeedPHI) {
1573       NewOperands.push_back(I0->getOperand(O));
1574       continue;
1575     }
1576 
1577     // Create a new PHI in the successor block and populate it.
1578     auto *Op = I0->getOperand(O);
1579     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1580     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1581                                Op->getName() + ".sink", &BBEnd->front());
1582     for (auto *I : Insts)
1583       PN->addIncoming(I->getOperand(O), I->getParent());
1584     NewOperands.push_back(PN);
1585   }
1586 
1587   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1588   // and move it to the start of the successor block.
1589   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1590     I0->getOperandUse(O).set(NewOperands[O]);
1591   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1592 
1593   // Update metadata and IR flags, and merge debug locations.
1594   for (auto *I : Insts)
1595     if (I != I0) {
1596       // The debug location for the "common" instruction is the merged locations
1597       // of all the commoned instructions.  We start with the original location
1598       // of the "common" instruction and iteratively merge each location in the
1599       // loop below.
1600       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1601       // However, as N-way merge for CallInst is rare, so we use simplified API
1602       // instead of using complex API for N-way merge.
1603       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1604       combineMetadataForCSE(I0, I, true);
1605       I0->andIRFlags(I);
1606     }
1607 
1608   if (!isa<StoreInst>(I0)) {
1609     // canSinkLastInstruction checked that all instructions were used by
1610     // one and only one PHI node. Find that now, RAUW it to our common
1611     // instruction and nuke it.
1612     assert(I0->hasOneUse());
1613     auto *PN = cast<PHINode>(*I0->user_begin());
1614     PN->replaceAllUsesWith(I0);
1615     PN->eraseFromParent();
1616   }
1617 
1618   // Finally nuke all instructions apart from the common instruction.
1619   for (auto *I : Insts)
1620     if (I != I0)
1621       I->eraseFromParent();
1622 
1623   return true;
1624 }
1625 
1626 namespace {
1627 
1628   // LockstepReverseIterator - Iterates through instructions
1629   // in a set of blocks in reverse order from the first non-terminator.
1630   // For example (assume all blocks have size n):
1631   //   LockstepReverseIterator I([B1, B2, B3]);
1632   //   *I-- = [B1[n], B2[n], B3[n]];
1633   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1634   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1635   //   ...
1636   class LockstepReverseIterator {
1637     ArrayRef<BasicBlock*> Blocks;
1638     SmallVector<Instruction*,4> Insts;
1639     bool Fail;
1640 
1641   public:
1642     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1643       reset();
1644     }
1645 
1646     void reset() {
1647       Fail = false;
1648       Insts.clear();
1649       for (auto *BB : Blocks) {
1650         Instruction *Inst = BB->getTerminator();
1651         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1652           Inst = Inst->getPrevNode();
1653         if (!Inst) {
1654           // Block wasn't big enough.
1655           Fail = true;
1656           return;
1657         }
1658         Insts.push_back(Inst);
1659       }
1660     }
1661 
1662     bool isValid() const {
1663       return !Fail;
1664     }
1665 
1666     void operator--() {
1667       if (Fail)
1668         return;
1669       for (auto *&Inst : Insts) {
1670         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1671           Inst = Inst->getPrevNode();
1672         // Already at beginning of block.
1673         if (!Inst) {
1674           Fail = true;
1675           return;
1676         }
1677       }
1678     }
1679 
1680     ArrayRef<Instruction*> operator * () const {
1681       return Insts;
1682     }
1683   };
1684 
1685 } // end anonymous namespace
1686 
1687 /// Check whether BB's predecessors end with unconditional branches. If it is
1688 /// true, sink any common code from the predecessors to BB.
1689 /// We also allow one predecessor to end with conditional branch (but no more
1690 /// than one).
1691 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1692   // We support two situations:
1693   //   (1) all incoming arcs are unconditional
1694   //   (2) one incoming arc is conditional
1695   //
1696   // (2) is very common in switch defaults and
1697   // else-if patterns;
1698   //
1699   //   if (a) f(1);
1700   //   else if (b) f(2);
1701   //
1702   // produces:
1703   //
1704   //       [if]
1705   //      /    \
1706   //    [f(1)] [if]
1707   //      |     | \
1708   //      |     |  |
1709   //      |  [f(2)]|
1710   //       \    | /
1711   //        [ end ]
1712   //
1713   // [end] has two unconditional predecessor arcs and one conditional. The
1714   // conditional refers to the implicit empty 'else' arc. This conditional
1715   // arc can also be caused by an empty default block in a switch.
1716   //
1717   // In this case, we attempt to sink code from all *unconditional* arcs.
1718   // If we can sink instructions from these arcs (determined during the scan
1719   // phase below) we insert a common successor for all unconditional arcs and
1720   // connect that to [end], to enable sinking:
1721   //
1722   //       [if]
1723   //      /    \
1724   //    [x(1)] [if]
1725   //      |     | \
1726   //      |     |  \
1727   //      |  [x(2)] |
1728   //       \   /    |
1729   //   [sink.split] |
1730   //         \     /
1731   //         [ end ]
1732   //
1733   SmallVector<BasicBlock*,4> UnconditionalPreds;
1734   Instruction *Cond = nullptr;
1735   for (auto *B : predecessors(BB)) {
1736     auto *T = B->getTerminator();
1737     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1738       UnconditionalPreds.push_back(B);
1739     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1740       Cond = T;
1741     else
1742       return false;
1743   }
1744   if (UnconditionalPreds.size() < 2)
1745     return false;
1746 
1747   bool Changed = false;
1748   // We take a two-step approach to tail sinking. First we scan from the end of
1749   // each block upwards in lockstep. If the n'th instruction from the end of each
1750   // block can be sunk, those instructions are added to ValuesToSink and we
1751   // carry on. If we can sink an instruction but need to PHI-merge some operands
1752   // (because they're not identical in each instruction) we add these to
1753   // PHIOperands.
1754   unsigned ScanIdx = 0;
1755   SmallPtrSet<Value*,4> InstructionsToSink;
1756   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1757   LockstepReverseIterator LRI(UnconditionalPreds);
1758   while (LRI.isValid() &&
1759          canSinkInstructions(*LRI, PHIOperands)) {
1760     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1761                       << "\n");
1762     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1763     ++ScanIdx;
1764     --LRI;
1765   }
1766 
1767   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1768     unsigned NumPHIdValues = 0;
1769     for (auto *I : *LRI)
1770       for (auto *V : PHIOperands[I])
1771         if (InstructionsToSink.count(V) == 0)
1772           ++NumPHIdValues;
1773     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1774     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1775     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1776         NumPHIInsts++;
1777 
1778     return NumPHIInsts <= 1;
1779   };
1780 
1781   if (ScanIdx > 0 && Cond) {
1782     // Check if we would actually sink anything first! This mutates the CFG and
1783     // adds an extra block. The goal in doing this is to allow instructions that
1784     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1785     // (such as trunc, add) can be sunk and predicated already. So we check that
1786     // we're going to sink at least one non-speculatable instruction.
1787     LRI.reset();
1788     unsigned Idx = 0;
1789     bool Profitable = false;
1790     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1791       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1792         Profitable = true;
1793         break;
1794       }
1795       --LRI;
1796       ++Idx;
1797     }
1798     if (!Profitable)
1799       return false;
1800 
1801     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1802     // We have a conditional edge and we're going to sink some instructions.
1803     // Insert a new block postdominating all blocks we're going to sink from.
1804     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1805       // Edges couldn't be split.
1806       return false;
1807     Changed = true;
1808   }
1809 
1810   // Now that we've analyzed all potential sinking candidates, perform the
1811   // actual sink. We iteratively sink the last non-terminator of the source
1812   // blocks into their common successor unless doing so would require too
1813   // many PHI instructions to be generated (currently only one PHI is allowed
1814   // per sunk instruction).
1815   //
1816   // We can use InstructionsToSink to discount values needing PHI-merging that will
1817   // actually be sunk in a later iteration. This allows us to be more
1818   // aggressive in what we sink. This does allow a false positive where we
1819   // sink presuming a later value will also be sunk, but stop half way through
1820   // and never actually sink it which means we produce more PHIs than intended.
1821   // This is unlikely in practice though.
1822   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1823     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1824                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1825                       << "\n");
1826 
1827     // Because we've sunk every instruction in turn, the current instruction to
1828     // sink is always at index 0.
1829     LRI.reset();
1830     if (!ProfitableToSinkInstruction(LRI)) {
1831       // Too many PHIs would be created.
1832       LLVM_DEBUG(
1833           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1834       break;
1835     }
1836 
1837     if (!sinkLastInstruction(UnconditionalPreds))
1838       return Changed;
1839     NumSinkCommons++;
1840     Changed = true;
1841   }
1842   return Changed;
1843 }
1844 
1845 /// Determine if we can hoist sink a sole store instruction out of a
1846 /// conditional block.
1847 ///
1848 /// We are looking for code like the following:
1849 ///   BrBB:
1850 ///     store i32 %add, i32* %arrayidx2
1851 ///     ... // No other stores or function calls (we could be calling a memory
1852 ///     ... // function).
1853 ///     %cmp = icmp ult %x, %y
1854 ///     br i1 %cmp, label %EndBB, label %ThenBB
1855 ///   ThenBB:
1856 ///     store i32 %add5, i32* %arrayidx2
1857 ///     br label EndBB
1858 ///   EndBB:
1859 ///     ...
1860 ///   We are going to transform this into:
1861 ///   BrBB:
1862 ///     store i32 %add, i32* %arrayidx2
1863 ///     ... //
1864 ///     %cmp = icmp ult %x, %y
1865 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1866 ///     store i32 %add.add5, i32* %arrayidx2
1867 ///     ...
1868 ///
1869 /// \return The pointer to the value of the previous store if the store can be
1870 ///         hoisted into the predecessor block. 0 otherwise.
1871 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1872                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1873   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1874   if (!StoreToHoist)
1875     return nullptr;
1876 
1877   // Volatile or atomic.
1878   if (!StoreToHoist->isSimple())
1879     return nullptr;
1880 
1881   Value *StorePtr = StoreToHoist->getPointerOperand();
1882 
1883   // Look for a store to the same pointer in BrBB.
1884   unsigned MaxNumInstToLookAt = 9;
1885   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1886     if (!MaxNumInstToLookAt)
1887       break;
1888     --MaxNumInstToLookAt;
1889 
1890     // Could be calling an instruction that affects memory like free().
1891     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1892       return nullptr;
1893 
1894     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1895       // Found the previous store make sure it stores to the same location.
1896       if (SI->getPointerOperand() == StorePtr)
1897         // Found the previous store, return its value operand.
1898         return SI->getValueOperand();
1899       return nullptr; // Unknown store.
1900     }
1901   }
1902 
1903   return nullptr;
1904 }
1905 
1906 /// Speculate a conditional basic block flattening the CFG.
1907 ///
1908 /// Note that this is a very risky transform currently. Speculating
1909 /// instructions like this is most often not desirable. Instead, there is an MI
1910 /// pass which can do it with full awareness of the resource constraints.
1911 /// However, some cases are "obvious" and we should do directly. An example of
1912 /// this is speculating a single, reasonably cheap instruction.
1913 ///
1914 /// There is only one distinct advantage to flattening the CFG at the IR level:
1915 /// it makes very common but simplistic optimizations such as are common in
1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1917 /// modeling their effects with easier to reason about SSA value graphs.
1918 ///
1919 ///
1920 /// An illustration of this transform is turning this IR:
1921 /// \code
1922 ///   BB:
1923 ///     %cmp = icmp ult %x, %y
1924 ///     br i1 %cmp, label %EndBB, label %ThenBB
1925 ///   ThenBB:
1926 ///     %sub = sub %x, %y
1927 ///     br label BB2
1928 ///   EndBB:
1929 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1930 ///     ...
1931 /// \endcode
1932 ///
1933 /// Into this IR:
1934 /// \code
1935 ///   BB:
1936 ///     %cmp = icmp ult %x, %y
1937 ///     %sub = sub %x, %y
1938 ///     %cond = select i1 %cmp, 0, %sub
1939 ///     ...
1940 /// \endcode
1941 ///
1942 /// \returns true if the conditional block is removed.
1943 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1944                                    const TargetTransformInfo &TTI) {
1945   // Be conservative for now. FP select instruction can often be expensive.
1946   Value *BrCond = BI->getCondition();
1947   if (isa<FCmpInst>(BrCond))
1948     return false;
1949 
1950   BasicBlock *BB = BI->getParent();
1951   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1952 
1953   // If ThenBB is actually on the false edge of the conditional branch, remember
1954   // to swap the select operands later.
1955   bool Invert = false;
1956   if (ThenBB != BI->getSuccessor(0)) {
1957     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1958     Invert = true;
1959   }
1960   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1961 
1962   // Keep a count of how many times instructions are used within ThenBB when
1963   // they are candidates for sinking into ThenBB. Specifically:
1964   // - They are defined in BB, and
1965   // - They have no side effects, and
1966   // - All of their uses are in ThenBB.
1967   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1968 
1969   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1970 
1971   unsigned SpeculationCost = 0;
1972   Value *SpeculatedStoreValue = nullptr;
1973   StoreInst *SpeculatedStore = nullptr;
1974   for (BasicBlock::iterator BBI = ThenBB->begin(),
1975                             BBE = std::prev(ThenBB->end());
1976        BBI != BBE; ++BBI) {
1977     Instruction *I = &*BBI;
1978     // Skip debug info.
1979     if (isa<DbgInfoIntrinsic>(I)) {
1980       SpeculatedDbgIntrinsics.push_back(I);
1981       continue;
1982     }
1983 
1984     // Only speculatively execute a single instruction (not counting the
1985     // terminator) for now.
1986     ++SpeculationCost;
1987     if (SpeculationCost > 1)
1988       return false;
1989 
1990     // Don't hoist the instruction if it's unsafe or expensive.
1991     if (!isSafeToSpeculativelyExecute(I) &&
1992         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1993                                   I, BB, ThenBB, EndBB))))
1994       return false;
1995     if (!SpeculatedStoreValue &&
1996         ComputeSpeculationCost(I, TTI) >
1997             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1998       return false;
1999 
2000     // Store the store speculation candidate.
2001     if (SpeculatedStoreValue)
2002       SpeculatedStore = cast<StoreInst>(I);
2003 
2004     // Do not hoist the instruction if any of its operands are defined but not
2005     // used in BB. The transformation will prevent the operand from
2006     // being sunk into the use block.
2007     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2008       Instruction *OpI = dyn_cast<Instruction>(*i);
2009       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2010         continue; // Not a candidate for sinking.
2011 
2012       ++SinkCandidateUseCounts[OpI];
2013     }
2014   }
2015 
2016   // Consider any sink candidates which are only used in ThenBB as costs for
2017   // speculation. Note, while we iterate over a DenseMap here, we are summing
2018   // and so iteration order isn't significant.
2019   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2020            I = SinkCandidateUseCounts.begin(),
2021            E = SinkCandidateUseCounts.end();
2022        I != E; ++I)
2023     if (I->first->hasNUses(I->second)) {
2024       ++SpeculationCost;
2025       if (SpeculationCost > 1)
2026         return false;
2027     }
2028 
2029   // Check that the PHI nodes can be converted to selects.
2030   bool HaveRewritablePHIs = false;
2031   for (PHINode &PN : EndBB->phis()) {
2032     Value *OrigV = PN.getIncomingValueForBlock(BB);
2033     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2034 
2035     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2036     // Skip PHIs which are trivial.
2037     if (ThenV == OrigV)
2038       continue;
2039 
2040     // Don't convert to selects if we could remove undefined behavior instead.
2041     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2042         passingValueIsAlwaysUndefined(ThenV, &PN))
2043       return false;
2044 
2045     HaveRewritablePHIs = true;
2046     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2047     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2048     if (!OrigCE && !ThenCE)
2049       continue; // Known safe and cheap.
2050 
2051     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2052         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2053       return false;
2054     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2055     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2056     unsigned MaxCost =
2057         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2058     if (OrigCost + ThenCost > MaxCost)
2059       return false;
2060 
2061     // Account for the cost of an unfolded ConstantExpr which could end up
2062     // getting expanded into Instructions.
2063     // FIXME: This doesn't account for how many operations are combined in the
2064     // constant expression.
2065     ++SpeculationCost;
2066     if (SpeculationCost > 1)
2067       return false;
2068   }
2069 
2070   // If there are no PHIs to process, bail early. This helps ensure idempotence
2071   // as well.
2072   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2073     return false;
2074 
2075   // If we get here, we can hoist the instruction and if-convert.
2076   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2077 
2078   // Insert a select of the value of the speculated store.
2079   if (SpeculatedStoreValue) {
2080     IRBuilder<NoFolder> Builder(BI);
2081     Value *TrueV = SpeculatedStore->getValueOperand();
2082     Value *FalseV = SpeculatedStoreValue;
2083     if (Invert)
2084       std::swap(TrueV, FalseV);
2085     Value *S = Builder.CreateSelect(
2086         BrCond, TrueV, FalseV, "spec.store.select", BI);
2087     SpeculatedStore->setOperand(0, S);
2088     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2089                                          SpeculatedStore->getDebugLoc());
2090   }
2091 
2092   // Metadata can be dependent on the condition we are hoisting above.
2093   // Conservatively strip all metadata on the instruction.
2094   for (auto &I : *ThenBB)
2095     I.dropUnknownNonDebugMetadata();
2096 
2097   // Hoist the instructions.
2098   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2099                            ThenBB->begin(), std::prev(ThenBB->end()));
2100 
2101   // Insert selects and rewrite the PHI operands.
2102   IRBuilder<NoFolder> Builder(BI);
2103   for (PHINode &PN : EndBB->phis()) {
2104     unsigned OrigI = PN.getBasicBlockIndex(BB);
2105     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2106     Value *OrigV = PN.getIncomingValue(OrigI);
2107     Value *ThenV = PN.getIncomingValue(ThenI);
2108 
2109     // Skip PHIs which are trivial.
2110     if (OrigV == ThenV)
2111       continue;
2112 
2113     // Create a select whose true value is the speculatively executed value and
2114     // false value is the preexisting value. Swap them if the branch
2115     // destinations were inverted.
2116     Value *TrueV = ThenV, *FalseV = OrigV;
2117     if (Invert)
2118       std::swap(TrueV, FalseV);
2119     Value *V = Builder.CreateSelect(
2120         BrCond, TrueV, FalseV, "spec.select", BI);
2121     PN.setIncomingValue(OrigI, V);
2122     PN.setIncomingValue(ThenI, V);
2123   }
2124 
2125   // Remove speculated dbg intrinsics.
2126   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2127   // dbg value for the different flows and inserting it after the select.
2128   for (Instruction *I : SpeculatedDbgIntrinsics)
2129     I->eraseFromParent();
2130 
2131   ++NumSpeculations;
2132   return true;
2133 }
2134 
2135 /// Return true if we can thread a branch across this block.
2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2137   unsigned Size = 0;
2138 
2139   for (Instruction &I : BB->instructionsWithoutDebug()) {
2140     if (Size > 10)
2141       return false; // Don't clone large BB's.
2142     ++Size;
2143 
2144     // We can only support instructions that do not define values that are
2145     // live outside of the current basic block.
2146     for (User *U : I.users()) {
2147       Instruction *UI = cast<Instruction>(U);
2148       if (UI->getParent() != BB || isa<PHINode>(UI))
2149         return false;
2150     }
2151 
2152     // Looks ok, continue checking.
2153   }
2154 
2155   return true;
2156 }
2157 
2158 /// If we have a conditional branch on a PHI node value that is defined in the
2159 /// same block as the branch and if any PHI entries are constants, thread edges
2160 /// corresponding to that entry to be branches to their ultimate destination.
2161 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2162                                 AssumptionCache *AC) {
2163   BasicBlock *BB = BI->getParent();
2164   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2165   // NOTE: we currently cannot transform this case if the PHI node is used
2166   // outside of the block.
2167   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2168     return false;
2169 
2170   // Degenerate case of a single entry PHI.
2171   if (PN->getNumIncomingValues() == 1) {
2172     FoldSingleEntryPHINodes(PN->getParent());
2173     return true;
2174   }
2175 
2176   // Now we know that this block has multiple preds and two succs.
2177   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2178     return false;
2179 
2180   // Can't fold blocks that contain noduplicate or convergent calls.
2181   if (any_of(*BB, [](const Instruction &I) {
2182         const CallInst *CI = dyn_cast<CallInst>(&I);
2183         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2184       }))
2185     return false;
2186 
2187   // Okay, this is a simple enough basic block.  See if any phi values are
2188   // constants.
2189   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2190     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2191     if (!CB || !CB->getType()->isIntegerTy(1))
2192       continue;
2193 
2194     // Okay, we now know that all edges from PredBB should be revectored to
2195     // branch to RealDest.
2196     BasicBlock *PredBB = PN->getIncomingBlock(i);
2197     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2198 
2199     if (RealDest == BB)
2200       continue; // Skip self loops.
2201     // Skip if the predecessor's terminator is an indirect branch.
2202     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2203       continue;
2204 
2205     // The dest block might have PHI nodes, other predecessors and other
2206     // difficult cases.  Instead of being smart about this, just insert a new
2207     // block that jumps to the destination block, effectively splitting
2208     // the edge we are about to create.
2209     BasicBlock *EdgeBB =
2210         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2211                            RealDest->getParent(), RealDest);
2212     BranchInst::Create(RealDest, EdgeBB);
2213 
2214     // Update PHI nodes.
2215     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2216 
2217     // BB may have instructions that are being threaded over.  Clone these
2218     // instructions into EdgeBB.  We know that there will be no uses of the
2219     // cloned instructions outside of EdgeBB.
2220     BasicBlock::iterator InsertPt = EdgeBB->begin();
2221     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2222     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2223       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2224         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2225         continue;
2226       }
2227       // Clone the instruction.
2228       Instruction *N = BBI->clone();
2229       if (BBI->hasName())
2230         N->setName(BBI->getName() + ".c");
2231 
2232       // Update operands due to translation.
2233       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2234         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2235         if (PI != TranslateMap.end())
2236           *i = PI->second;
2237       }
2238 
2239       // Check for trivial simplification.
2240       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2241         if (!BBI->use_empty())
2242           TranslateMap[&*BBI] = V;
2243         if (!N->mayHaveSideEffects()) {
2244           N->deleteValue(); // Instruction folded away, don't need actual inst
2245           N = nullptr;
2246         }
2247       } else {
2248         if (!BBI->use_empty())
2249           TranslateMap[&*BBI] = N;
2250       }
2251       // Insert the new instruction into its new home.
2252       if (N)
2253         EdgeBB->getInstList().insert(InsertPt, N);
2254 
2255       // Register the new instruction with the assumption cache if necessary.
2256       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2257         if (II->getIntrinsicID() == Intrinsic::assume)
2258           AC->registerAssumption(II);
2259     }
2260 
2261     // Loop over all of the edges from PredBB to BB, changing them to branch
2262     // to EdgeBB instead.
2263     Instruction *PredBBTI = PredBB->getTerminator();
2264     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2265       if (PredBBTI->getSuccessor(i) == BB) {
2266         BB->removePredecessor(PredBB);
2267         PredBBTI->setSuccessor(i, EdgeBB);
2268       }
2269 
2270     // Recurse, simplifying any other constants.
2271     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2272   }
2273 
2274   return false;
2275 }
2276 
2277 /// Given a BB that starts with the specified two-entry PHI node,
2278 /// see if we can eliminate it.
2279 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2280                                 const DataLayout &DL) {
2281   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2282   // statement", which has a very simple dominance structure.  Basically, we
2283   // are trying to find the condition that is being branched on, which
2284   // subsequently causes this merge to happen.  We really want control
2285   // dependence information for this check, but simplifycfg can't keep it up
2286   // to date, and this catches most of the cases we care about anyway.
2287   BasicBlock *BB = PN->getParent();
2288   const Function *Fn = BB->getParent();
2289   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2290     return false;
2291 
2292   BasicBlock *IfTrue, *IfFalse;
2293   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2294   if (!IfCond ||
2295       // Don't bother if the branch will be constant folded trivially.
2296       isa<ConstantInt>(IfCond))
2297     return false;
2298 
2299   // Okay, we found that we can merge this two-entry phi node into a select.
2300   // Doing so would require us to fold *all* two entry phi nodes in this block.
2301   // At some point this becomes non-profitable (particularly if the target
2302   // doesn't support cmov's).  Only do this transformation if there are two or
2303   // fewer PHI nodes in this block.
2304   unsigned NumPhis = 0;
2305   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2306     if (NumPhis > 2)
2307       return false;
2308 
2309   // Loop over the PHI's seeing if we can promote them all to select
2310   // instructions.  While we are at it, keep track of the instructions
2311   // that need to be moved to the dominating block.
2312   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2313   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2314            MaxCostVal1 = PHINodeFoldingThreshold;
2315   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2316   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2317 
2318   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2319     PHINode *PN = cast<PHINode>(II++);
2320     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2321       PN->replaceAllUsesWith(V);
2322       PN->eraseFromParent();
2323       continue;
2324     }
2325 
2326     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2327                              MaxCostVal0, TTI) ||
2328         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2329                              MaxCostVal1, TTI))
2330       return false;
2331   }
2332 
2333   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2334   // we ran out of PHIs then we simplified them all.
2335   PN = dyn_cast<PHINode>(BB->begin());
2336   if (!PN)
2337     return true;
2338 
2339   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2340   // often be turned into switches and other things.
2341   if (PN->getType()->isIntegerTy(1) &&
2342       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2343        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2344        isa<BinaryOperator>(IfCond)))
2345     return false;
2346 
2347   // If all PHI nodes are promotable, check to make sure that all instructions
2348   // in the predecessor blocks can be promoted as well. If not, we won't be able
2349   // to get rid of the control flow, so it's not worth promoting to select
2350   // instructions.
2351   BasicBlock *DomBlock = nullptr;
2352   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2353   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2354   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2355     IfBlock1 = nullptr;
2356   } else {
2357     DomBlock = *pred_begin(IfBlock1);
2358     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2359       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2360         // This is not an aggressive instruction that we can promote.
2361         // Because of this, we won't be able to get rid of the control flow, so
2362         // the xform is not worth it.
2363         return false;
2364       }
2365   }
2366 
2367   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2368     IfBlock2 = nullptr;
2369   } else {
2370     DomBlock = *pred_begin(IfBlock2);
2371     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2372       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2373         // This is not an aggressive instruction that we can promote.
2374         // Because of this, we won't be able to get rid of the control flow, so
2375         // the xform is not worth it.
2376         return false;
2377       }
2378   }
2379 
2380   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2381                     << "  T: " << IfTrue->getName()
2382                     << "  F: " << IfFalse->getName() << "\n");
2383 
2384   // If we can still promote the PHI nodes after this gauntlet of tests,
2385   // do all of the PHI's now.
2386   Instruction *InsertPt = DomBlock->getTerminator();
2387   IRBuilder<NoFolder> Builder(InsertPt);
2388 
2389   // Move all 'aggressive' instructions, which are defined in the
2390   // conditional parts of the if's up to the dominating block.
2391   if (IfBlock1)
2392     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2393   if (IfBlock2)
2394     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2395 
2396   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2397     // Change the PHI node into a select instruction.
2398     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2399     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2400 
2401     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2402     PN->replaceAllUsesWith(Sel);
2403     Sel->takeName(PN);
2404     PN->eraseFromParent();
2405   }
2406 
2407   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2408   // has been flattened.  Change DomBlock to jump directly to our new block to
2409   // avoid other simplifycfg's kicking in on the diamond.
2410   Instruction *OldTI = DomBlock->getTerminator();
2411   Builder.SetInsertPoint(OldTI);
2412   Builder.CreateBr(BB);
2413   OldTI->eraseFromParent();
2414   return true;
2415 }
2416 
2417 /// If we found a conditional branch that goes to two returning blocks,
2418 /// try to merge them together into one return,
2419 /// introducing a select if the return values disagree.
2420 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2421                                            IRBuilder<> &Builder) {
2422   assert(BI->isConditional() && "Must be a conditional branch");
2423   BasicBlock *TrueSucc = BI->getSuccessor(0);
2424   BasicBlock *FalseSucc = BI->getSuccessor(1);
2425   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2426   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2427 
2428   // Check to ensure both blocks are empty (just a return) or optionally empty
2429   // with PHI nodes.  If there are other instructions, merging would cause extra
2430   // computation on one path or the other.
2431   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2432     return false;
2433   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2434     return false;
2435 
2436   Builder.SetInsertPoint(BI);
2437   // Okay, we found a branch that is going to two return nodes.  If
2438   // there is no return value for this function, just change the
2439   // branch into a return.
2440   if (FalseRet->getNumOperands() == 0) {
2441     TrueSucc->removePredecessor(BI->getParent());
2442     FalseSucc->removePredecessor(BI->getParent());
2443     Builder.CreateRetVoid();
2444     EraseTerminatorAndDCECond(BI);
2445     return true;
2446   }
2447 
2448   // Otherwise, figure out what the true and false return values are
2449   // so we can insert a new select instruction.
2450   Value *TrueValue = TrueRet->getReturnValue();
2451   Value *FalseValue = FalseRet->getReturnValue();
2452 
2453   // Unwrap any PHI nodes in the return blocks.
2454   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2455     if (TVPN->getParent() == TrueSucc)
2456       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2457   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2458     if (FVPN->getParent() == FalseSucc)
2459       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2460 
2461   // In order for this transformation to be safe, we must be able to
2462   // unconditionally execute both operands to the return.  This is
2463   // normally the case, but we could have a potentially-trapping
2464   // constant expression that prevents this transformation from being
2465   // safe.
2466   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2467     if (TCV->canTrap())
2468       return false;
2469   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2470     if (FCV->canTrap())
2471       return false;
2472 
2473   // Okay, we collected all the mapped values and checked them for sanity, and
2474   // defined to really do this transformation.  First, update the CFG.
2475   TrueSucc->removePredecessor(BI->getParent());
2476   FalseSucc->removePredecessor(BI->getParent());
2477 
2478   // Insert select instructions where needed.
2479   Value *BrCond = BI->getCondition();
2480   if (TrueValue) {
2481     // Insert a select if the results differ.
2482     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2483     } else if (isa<UndefValue>(TrueValue)) {
2484       TrueValue = FalseValue;
2485     } else {
2486       TrueValue =
2487           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2488     }
2489   }
2490 
2491   Value *RI =
2492       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2493 
2494   (void)RI;
2495 
2496   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2497                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2498                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2499 
2500   EraseTerminatorAndDCECond(BI);
2501 
2502   return true;
2503 }
2504 
2505 /// Return true if the given instruction is available
2506 /// in its predecessor block. If yes, the instruction will be removed.
2507 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2508   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2509     return false;
2510   for (Instruction &I : *PB) {
2511     Instruction *PBI = &I;
2512     // Check whether Inst and PBI generate the same value.
2513     if (Inst->isIdenticalTo(PBI)) {
2514       Inst->replaceAllUsesWith(PBI);
2515       Inst->eraseFromParent();
2516       return true;
2517     }
2518   }
2519   return false;
2520 }
2521 
2522 /// Return true if either PBI or BI has branch weight available, and store
2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2524 /// not have branch weight, use 1:1 as its weight.
2525 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2526                                    uint64_t &PredTrueWeight,
2527                                    uint64_t &PredFalseWeight,
2528                                    uint64_t &SuccTrueWeight,
2529                                    uint64_t &SuccFalseWeight) {
2530   bool PredHasWeights =
2531       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2532   bool SuccHasWeights =
2533       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2534   if (PredHasWeights || SuccHasWeights) {
2535     if (!PredHasWeights)
2536       PredTrueWeight = PredFalseWeight = 1;
2537     if (!SuccHasWeights)
2538       SuccTrueWeight = SuccFalseWeight = 1;
2539     return true;
2540   } else {
2541     return false;
2542   }
2543 }
2544 
2545 /// If this basic block is simple enough, and if a predecessor branches to us
2546 /// and one of our successors, fold the block into the predecessor and use
2547 /// logical operations to pick the right destination.
2548 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2549   BasicBlock *BB = BI->getParent();
2550 
2551   const unsigned PredCount = pred_size(BB);
2552 
2553   Instruction *Cond = nullptr;
2554   if (BI->isConditional())
2555     Cond = dyn_cast<Instruction>(BI->getCondition());
2556   else {
2557     // For unconditional branch, check for a simple CFG pattern, where
2558     // BB has a single predecessor and BB's successor is also its predecessor's
2559     // successor. If such pattern exists, check for CSE between BB and its
2560     // predecessor.
2561     if (BasicBlock *PB = BB->getSinglePredecessor())
2562       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2563         if (PBI->isConditional() &&
2564             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2565              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2566           for (auto I = BB->instructionsWithoutDebug().begin(),
2567                     E = BB->instructionsWithoutDebug().end();
2568                I != E;) {
2569             Instruction *Curr = &*I++;
2570             if (isa<CmpInst>(Curr)) {
2571               Cond = Curr;
2572               break;
2573             }
2574             // Quit if we can't remove this instruction.
2575             if (!tryCSEWithPredecessor(Curr, PB))
2576               return false;
2577           }
2578         }
2579 
2580     if (!Cond)
2581       return false;
2582   }
2583 
2584   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2585       Cond->getParent() != BB || !Cond->hasOneUse())
2586     return false;
2587 
2588   // Make sure the instruction after the condition is the cond branch.
2589   BasicBlock::iterator CondIt = ++Cond->getIterator();
2590 
2591   // Ignore dbg intrinsics.
2592   while (isa<DbgInfoIntrinsic>(CondIt))
2593     ++CondIt;
2594 
2595   if (&*CondIt != BI)
2596     return false;
2597 
2598   // Only allow this transformation if computing the condition doesn't involve
2599   // too many instructions and these involved instructions can be executed
2600   // unconditionally. We denote all involved instructions except the condition
2601   // as "bonus instructions", and only allow this transformation when the
2602   // number of the bonus instructions we'll need to create when cloning into
2603   // each predecessor does not exceed a certain threshold.
2604   unsigned NumBonusInsts = 0;
2605   for (auto I = BB->begin(); Cond != &*I; ++I) {
2606     // Ignore dbg intrinsics.
2607     if (isa<DbgInfoIntrinsic>(I))
2608       continue;
2609     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2610       return false;
2611     // I has only one use and can be executed unconditionally.
2612     Instruction *User = dyn_cast<Instruction>(I->user_back());
2613     if (User == nullptr || User->getParent() != BB)
2614       return false;
2615     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2616     // to use any other instruction, User must be an instruction between next(I)
2617     // and Cond.
2618 
2619     // Account for the cost of duplicating this instruction into each
2620     // predecessor.
2621     NumBonusInsts += PredCount;
2622     // Early exits once we reach the limit.
2623     if (NumBonusInsts > BonusInstThreshold)
2624       return false;
2625   }
2626 
2627   // Cond is known to be a compare or binary operator.  Check to make sure that
2628   // neither operand is a potentially-trapping constant expression.
2629   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2630     if (CE->canTrap())
2631       return false;
2632   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2633     if (CE->canTrap())
2634       return false;
2635 
2636   // Finally, don't infinitely unroll conditional loops.
2637   BasicBlock *TrueDest = BI->getSuccessor(0);
2638   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2639   if (TrueDest == BB || FalseDest == BB)
2640     return false;
2641 
2642   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2643     BasicBlock *PredBlock = *PI;
2644     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2645 
2646     // Check that we have two conditional branches.  If there is a PHI node in
2647     // the common successor, verify that the same value flows in from both
2648     // blocks.
2649     SmallVector<PHINode *, 4> PHIs;
2650     if (!PBI || PBI->isUnconditional() ||
2651         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2652         (!BI->isConditional() &&
2653          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2654       continue;
2655 
2656     // Determine if the two branches share a common destination.
2657     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2658     bool InvertPredCond = false;
2659 
2660     if (BI->isConditional()) {
2661       if (PBI->getSuccessor(0) == TrueDest) {
2662         Opc = Instruction::Or;
2663       } else if (PBI->getSuccessor(1) == FalseDest) {
2664         Opc = Instruction::And;
2665       } else if (PBI->getSuccessor(0) == FalseDest) {
2666         Opc = Instruction::And;
2667         InvertPredCond = true;
2668       } else if (PBI->getSuccessor(1) == TrueDest) {
2669         Opc = Instruction::Or;
2670         InvertPredCond = true;
2671       } else {
2672         continue;
2673       }
2674     } else {
2675       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2676         continue;
2677     }
2678 
2679     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2680     IRBuilder<> Builder(PBI);
2681 
2682     // If we need to invert the condition in the pred block to match, do so now.
2683     if (InvertPredCond) {
2684       Value *NewCond = PBI->getCondition();
2685 
2686       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2687         CmpInst *CI = cast<CmpInst>(NewCond);
2688         CI->setPredicate(CI->getInversePredicate());
2689       } else {
2690         NewCond =
2691             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2692       }
2693 
2694       PBI->setCondition(NewCond);
2695       PBI->swapSuccessors();
2696     }
2697 
2698     // If we have bonus instructions, clone them into the predecessor block.
2699     // Note that there may be multiple predecessor blocks, so we cannot move
2700     // bonus instructions to a predecessor block.
2701     ValueToValueMapTy VMap; // maps original values to cloned values
2702     // We already make sure Cond is the last instruction before BI. Therefore,
2703     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2704     // instructions.
2705     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2706       if (isa<DbgInfoIntrinsic>(BonusInst))
2707         continue;
2708       Instruction *NewBonusInst = BonusInst->clone();
2709       RemapInstruction(NewBonusInst, VMap,
2710                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2711       VMap[&*BonusInst] = NewBonusInst;
2712 
2713       // If we moved a load, we cannot any longer claim any knowledge about
2714       // its potential value. The previous information might have been valid
2715       // only given the branch precondition.
2716       // For an analogous reason, we must also drop all the metadata whose
2717       // semantics we don't understand.
2718       NewBonusInst->dropUnknownNonDebugMetadata();
2719 
2720       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2721       NewBonusInst->takeName(&*BonusInst);
2722       BonusInst->setName(BonusInst->getName() + ".old");
2723     }
2724 
2725     // Clone Cond into the predecessor basic block, and or/and the
2726     // two conditions together.
2727     Instruction *CondInPred = Cond->clone();
2728     RemapInstruction(CondInPred, VMap,
2729                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2730     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2731     CondInPred->takeName(Cond);
2732     Cond->setName(CondInPred->getName() + ".old");
2733 
2734     if (BI->isConditional()) {
2735       Instruction *NewCond = cast<Instruction>(
2736           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2737       PBI->setCondition(NewCond);
2738 
2739       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2740       bool HasWeights =
2741           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2742                                  SuccTrueWeight, SuccFalseWeight);
2743       SmallVector<uint64_t, 8> NewWeights;
2744 
2745       if (PBI->getSuccessor(0) == BB) {
2746         if (HasWeights) {
2747           // PBI: br i1 %x, BB, FalseDest
2748           // BI:  br i1 %y, TrueDest, FalseDest
2749           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2750           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2751           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2752           //               TrueWeight for PBI * FalseWeight for BI.
2753           // We assume that total weights of a BranchInst can fit into 32 bits.
2754           // Therefore, we will not have overflow using 64-bit arithmetic.
2755           NewWeights.push_back(PredFalseWeight *
2756                                    (SuccFalseWeight + SuccTrueWeight) +
2757                                PredTrueWeight * SuccFalseWeight);
2758         }
2759         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2760         PBI->setSuccessor(0, TrueDest);
2761       }
2762       if (PBI->getSuccessor(1) == BB) {
2763         if (HasWeights) {
2764           // PBI: br i1 %x, TrueDest, BB
2765           // BI:  br i1 %y, TrueDest, FalseDest
2766           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2767           //              FalseWeight for PBI * TrueWeight for BI.
2768           NewWeights.push_back(PredTrueWeight *
2769                                    (SuccFalseWeight + SuccTrueWeight) +
2770                                PredFalseWeight * SuccTrueWeight);
2771           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2772           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2773         }
2774         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2775         PBI->setSuccessor(1, FalseDest);
2776       }
2777       if (NewWeights.size() == 2) {
2778         // Halve the weights if any of them cannot fit in an uint32_t
2779         FitWeights(NewWeights);
2780 
2781         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2782                                            NewWeights.end());
2783         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2784       } else
2785         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2786     } else {
2787       // Update PHI nodes in the common successors.
2788       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2789         ConstantInt *PBI_C = cast<ConstantInt>(
2790             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2791         assert(PBI_C->getType()->isIntegerTy(1));
2792         Instruction *MergedCond = nullptr;
2793         if (PBI->getSuccessor(0) == TrueDest) {
2794           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2795           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2796           //       is false: !PBI_Cond and BI_Value
2797           Instruction *NotCond = cast<Instruction>(
2798               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2799           MergedCond = cast<Instruction>(
2800                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2801                                    "and.cond"));
2802           if (PBI_C->isOne())
2803             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2804                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2805         } else {
2806           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2807           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2808           //       is false: PBI_Cond and BI_Value
2809           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2810               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2811           if (PBI_C->isOne()) {
2812             Instruction *NotCond = cast<Instruction>(
2813                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2814             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2815                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2816           }
2817         }
2818         // Update PHI Node.
2819         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2820                                   MergedCond);
2821       }
2822       // Change PBI from Conditional to Unconditional.
2823       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2824       EraseTerminatorAndDCECond(PBI);
2825       PBI = New_PBI;
2826     }
2827 
2828     // If BI was a loop latch, it may have had associated loop metadata.
2829     // We need to copy it to the new latch, that is, PBI.
2830     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2831       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2832 
2833     // TODO: If BB is reachable from all paths through PredBlock, then we
2834     // could replace PBI's branch probabilities with BI's.
2835 
2836     // Copy any debug value intrinsics into the end of PredBlock.
2837     for (Instruction &I : *BB)
2838       if (isa<DbgInfoIntrinsic>(I))
2839         I.clone()->insertBefore(PBI);
2840 
2841     return true;
2842   }
2843   return false;
2844 }
2845 
2846 // If there is only one store in BB1 and BB2, return it, otherwise return
2847 // nullptr.
2848 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2849   StoreInst *S = nullptr;
2850   for (auto *BB : {BB1, BB2}) {
2851     if (!BB)
2852       continue;
2853     for (auto &I : *BB)
2854       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2855         if (S)
2856           // Multiple stores seen.
2857           return nullptr;
2858         else
2859           S = SI;
2860       }
2861   }
2862   return S;
2863 }
2864 
2865 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2866                                               Value *AlternativeV = nullptr) {
2867   // PHI is going to be a PHI node that allows the value V that is defined in
2868   // BB to be referenced in BB's only successor.
2869   //
2870   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2871   // doesn't matter to us what the other operand is (it'll never get used). We
2872   // could just create a new PHI with an undef incoming value, but that could
2873   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2874   // other PHI. So here we directly look for some PHI in BB's successor with V
2875   // as an incoming operand. If we find one, we use it, else we create a new
2876   // one.
2877   //
2878   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2879   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2880   // where OtherBB is the single other predecessor of BB's only successor.
2881   PHINode *PHI = nullptr;
2882   BasicBlock *Succ = BB->getSingleSuccessor();
2883 
2884   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2885     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2886       PHI = cast<PHINode>(I);
2887       if (!AlternativeV)
2888         break;
2889 
2890       assert(Succ->hasNPredecessors(2));
2891       auto PredI = pred_begin(Succ);
2892       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2893       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2894         break;
2895       PHI = nullptr;
2896     }
2897   if (PHI)
2898     return PHI;
2899 
2900   // If V is not an instruction defined in BB, just return it.
2901   if (!AlternativeV &&
2902       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2903     return V;
2904 
2905   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2906   PHI->addIncoming(V, BB);
2907   for (BasicBlock *PredBB : predecessors(Succ))
2908     if (PredBB != BB)
2909       PHI->addIncoming(
2910           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2911   return PHI;
2912 }
2913 
2914 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2915                                            BasicBlock *QTB, BasicBlock *QFB,
2916                                            BasicBlock *PostBB, Value *Address,
2917                                            bool InvertPCond, bool InvertQCond,
2918                                            const DataLayout &DL) {
2919   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2920     return Operator::getOpcode(&I) == Instruction::BitCast &&
2921            I.getType()->isPointerTy();
2922   };
2923 
2924   // If we're not in aggressive mode, we only optimize if we have some
2925   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2926   auto IsWorthwhile = [&](BasicBlock *BB) {
2927     if (!BB)
2928       return true;
2929     // Heuristic: if the block can be if-converted/phi-folded and the
2930     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2931     // thread this store.
2932     unsigned N = 0;
2933     for (auto &I : BB->instructionsWithoutDebug()) {
2934       // Cheap instructions viable for folding.
2935       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2936           isa<StoreInst>(I))
2937         ++N;
2938       // Free instructions.
2939       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2940         continue;
2941       else
2942         return false;
2943     }
2944     // The store we want to merge is counted in N, so add 1 to make sure
2945     // we're counting the instructions that would be left.
2946     return N <= (PHINodeFoldingThreshold + 1);
2947   };
2948 
2949   if (!MergeCondStoresAggressively &&
2950       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2951        !IsWorthwhile(QFB)))
2952     return false;
2953 
2954   // For every pointer, there must be exactly two stores, one coming from
2955   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2956   // store (to any address) in PTB,PFB or QTB,QFB.
2957   // FIXME: We could relax this restriction with a bit more work and performance
2958   // testing.
2959   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2960   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2961   if (!PStore || !QStore)
2962     return false;
2963 
2964   // Now check the stores are compatible.
2965   if (!QStore->isUnordered() || !PStore->isUnordered())
2966     return false;
2967 
2968   // Check that sinking the store won't cause program behavior changes. Sinking
2969   // the store out of the Q blocks won't change any behavior as we're sinking
2970   // from a block to its unconditional successor. But we're moving a store from
2971   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2972   // So we need to check that there are no aliasing loads or stores in
2973   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2974   // operations between PStore and the end of its parent block.
2975   //
2976   // The ideal way to do this is to query AliasAnalysis, but we don't
2977   // preserve AA currently so that is dangerous. Be super safe and just
2978   // check there are no other memory operations at all.
2979   for (auto &I : *QFB->getSinglePredecessor())
2980     if (I.mayReadOrWriteMemory())
2981       return false;
2982   for (auto &I : *QFB)
2983     if (&I != QStore && I.mayReadOrWriteMemory())
2984       return false;
2985   if (QTB)
2986     for (auto &I : *QTB)
2987       if (&I != QStore && I.mayReadOrWriteMemory())
2988         return false;
2989   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2990        I != E; ++I)
2991     if (&*I != PStore && I->mayReadOrWriteMemory())
2992       return false;
2993 
2994   // If PostBB has more than two predecessors, we need to split it so we can
2995   // sink the store.
2996   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2997     // We know that QFB's only successor is PostBB. And QFB has a single
2998     // predecessor. If QTB exists, then its only successor is also PostBB.
2999     // If QTB does not exist, then QFB's only predecessor has a conditional
3000     // branch to QFB and PostBB.
3001     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3002     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3003                                                "condstore.split");
3004     if (!NewBB)
3005       return false;
3006     PostBB = NewBB;
3007   }
3008 
3009   // OK, we're going to sink the stores to PostBB. The store has to be
3010   // conditional though, so first create the predicate.
3011   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3012                      ->getCondition();
3013   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3014                      ->getCondition();
3015 
3016   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3017                                                 PStore->getParent());
3018   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3019                                                 QStore->getParent(), PPHI);
3020 
3021   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3022 
3023   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3024   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3025 
3026   if (InvertPCond)
3027     PPred = QB.CreateNot(PPred);
3028   if (InvertQCond)
3029     QPred = QB.CreateNot(QPred);
3030   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3031 
3032   auto *T =
3033       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3034   QB.SetInsertPoint(T);
3035   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3036   AAMDNodes AAMD;
3037   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3038   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3039   SI->setAAMetadata(AAMD);
3040   unsigned PAlignment = PStore->getAlignment();
3041   unsigned QAlignment = QStore->getAlignment();
3042   unsigned TypeAlignment =
3043       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3044   unsigned MinAlignment;
3045   unsigned MaxAlignment;
3046   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3047   // Choose the minimum alignment. If we could prove both stores execute, we
3048   // could use biggest one.  In this case, though, we only know that one of the
3049   // stores executes.  And we don't know it's safe to take the alignment from a
3050   // store that doesn't execute.
3051   if (MinAlignment != 0) {
3052     // Choose the minimum of all non-zero alignments.
3053     SI->setAlignment(MinAlignment);
3054   } else if (MaxAlignment != 0) {
3055     // Choose the minimal alignment between the non-zero alignment and the ABI
3056     // default alignment for the type of the stored value.
3057     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3058   } else {
3059     // If both alignments are zero, use ABI default alignment for the type of
3060     // the stored value.
3061     SI->setAlignment(TypeAlignment);
3062   }
3063 
3064   QStore->eraseFromParent();
3065   PStore->eraseFromParent();
3066 
3067   return true;
3068 }
3069 
3070 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3071                                    const DataLayout &DL) {
3072   // The intention here is to find diamonds or triangles (see below) where each
3073   // conditional block contains a store to the same address. Both of these
3074   // stores are conditional, so they can't be unconditionally sunk. But it may
3075   // be profitable to speculatively sink the stores into one merged store at the
3076   // end, and predicate the merged store on the union of the two conditions of
3077   // PBI and QBI.
3078   //
3079   // This can reduce the number of stores executed if both of the conditions are
3080   // true, and can allow the blocks to become small enough to be if-converted.
3081   // This optimization will also chain, so that ladders of test-and-set
3082   // sequences can be if-converted away.
3083   //
3084   // We only deal with simple diamonds or triangles:
3085   //
3086   //     PBI       or      PBI        or a combination of the two
3087   //    /   \               | \
3088   //   PTB  PFB             |  PFB
3089   //    \   /               | /
3090   //     QBI                QBI
3091   //    /  \                | \
3092   //   QTB  QFB             |  QFB
3093   //    \  /                | /
3094   //    PostBB            PostBB
3095   //
3096   // We model triangles as a type of diamond with a nullptr "true" block.
3097   // Triangles are canonicalized so that the fallthrough edge is represented by
3098   // a true condition, as in the diagram above.
3099   BasicBlock *PTB = PBI->getSuccessor(0);
3100   BasicBlock *PFB = PBI->getSuccessor(1);
3101   BasicBlock *QTB = QBI->getSuccessor(0);
3102   BasicBlock *QFB = QBI->getSuccessor(1);
3103   BasicBlock *PostBB = QFB->getSingleSuccessor();
3104 
3105   // Make sure we have a good guess for PostBB. If QTB's only successor is
3106   // QFB, then QFB is a better PostBB.
3107   if (QTB->getSingleSuccessor() == QFB)
3108     PostBB = QFB;
3109 
3110   // If we couldn't find a good PostBB, stop.
3111   if (!PostBB)
3112     return false;
3113 
3114   bool InvertPCond = false, InvertQCond = false;
3115   // Canonicalize fallthroughs to the true branches.
3116   if (PFB == QBI->getParent()) {
3117     std::swap(PFB, PTB);
3118     InvertPCond = true;
3119   }
3120   if (QFB == PostBB) {
3121     std::swap(QFB, QTB);
3122     InvertQCond = true;
3123   }
3124 
3125   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3126   // and QFB may not. Model fallthroughs as a nullptr block.
3127   if (PTB == QBI->getParent())
3128     PTB = nullptr;
3129   if (QTB == PostBB)
3130     QTB = nullptr;
3131 
3132   // Legality bailouts. We must have at least the non-fallthrough blocks and
3133   // the post-dominating block, and the non-fallthroughs must only have one
3134   // predecessor.
3135   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3136     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3137   };
3138   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3139       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3140     return false;
3141   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3142       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3143     return false;
3144   if (!QBI->getParent()->hasNUses(2))
3145     return false;
3146 
3147   // OK, this is a sequence of two diamonds or triangles.
3148   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3149   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3150   for (auto *BB : {PTB, PFB}) {
3151     if (!BB)
3152       continue;
3153     for (auto &I : *BB)
3154       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3155         PStoreAddresses.insert(SI->getPointerOperand());
3156   }
3157   for (auto *BB : {QTB, QFB}) {
3158     if (!BB)
3159       continue;
3160     for (auto &I : *BB)
3161       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3162         QStoreAddresses.insert(SI->getPointerOperand());
3163   }
3164 
3165   set_intersect(PStoreAddresses, QStoreAddresses);
3166   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3167   // clear what it contains.
3168   auto &CommonAddresses = PStoreAddresses;
3169 
3170   bool Changed = false;
3171   for (auto *Address : CommonAddresses)
3172     Changed |= mergeConditionalStoreToAddress(
3173         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3174   return Changed;
3175 }
3176 
3177 /// If we have a conditional branch as a predecessor of another block,
3178 /// this function tries to simplify it.  We know
3179 /// that PBI and BI are both conditional branches, and BI is in one of the
3180 /// successor blocks of PBI - PBI branches to BI.
3181 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3182                                            const DataLayout &DL) {
3183   assert(PBI->isConditional() && BI->isConditional());
3184   BasicBlock *BB = BI->getParent();
3185 
3186   // If this block ends with a branch instruction, and if there is a
3187   // predecessor that ends on a branch of the same condition, make
3188   // this conditional branch redundant.
3189   if (PBI->getCondition() == BI->getCondition() &&
3190       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3191     // Okay, the outcome of this conditional branch is statically
3192     // knowable.  If this block had a single pred, handle specially.
3193     if (BB->getSinglePredecessor()) {
3194       // Turn this into a branch on constant.
3195       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3196       BI->setCondition(
3197           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3198       return true; // Nuke the branch on constant.
3199     }
3200 
3201     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3202     // in the constant and simplify the block result.  Subsequent passes of
3203     // simplifycfg will thread the block.
3204     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3205       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3206       PHINode *NewPN = PHINode::Create(
3207           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3208           BI->getCondition()->getName() + ".pr", &BB->front());
3209       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3210       // predecessor, compute the PHI'd conditional value for all of the preds.
3211       // Any predecessor where the condition is not computable we keep symbolic.
3212       for (pred_iterator PI = PB; PI != PE; ++PI) {
3213         BasicBlock *P = *PI;
3214         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3215             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3216             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3217           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3218           NewPN->addIncoming(
3219               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3220               P);
3221         } else {
3222           NewPN->addIncoming(BI->getCondition(), P);
3223         }
3224       }
3225 
3226       BI->setCondition(NewPN);
3227       return true;
3228     }
3229   }
3230 
3231   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3232     if (CE->canTrap())
3233       return false;
3234 
3235   // If both branches are conditional and both contain stores to the same
3236   // address, remove the stores from the conditionals and create a conditional
3237   // merged store at the end.
3238   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3239     return true;
3240 
3241   // If this is a conditional branch in an empty block, and if any
3242   // predecessors are a conditional branch to one of our destinations,
3243   // fold the conditions into logical ops and one cond br.
3244 
3245   // Ignore dbg intrinsics.
3246   if (&*BB->instructionsWithoutDebug().begin() != BI)
3247     return false;
3248 
3249   int PBIOp, BIOp;
3250   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3251     PBIOp = 0;
3252     BIOp = 0;
3253   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3254     PBIOp = 0;
3255     BIOp = 1;
3256   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3257     PBIOp = 1;
3258     BIOp = 0;
3259   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3260     PBIOp = 1;
3261     BIOp = 1;
3262   } else {
3263     return false;
3264   }
3265 
3266   // Check to make sure that the other destination of this branch
3267   // isn't BB itself.  If so, this is an infinite loop that will
3268   // keep getting unwound.
3269   if (PBI->getSuccessor(PBIOp) == BB)
3270     return false;
3271 
3272   // Do not perform this transformation if it would require
3273   // insertion of a large number of select instructions. For targets
3274   // without predication/cmovs, this is a big pessimization.
3275 
3276   // Also do not perform this transformation if any phi node in the common
3277   // destination block can trap when reached by BB or PBB (PR17073). In that
3278   // case, it would be unsafe to hoist the operation into a select instruction.
3279 
3280   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3281   unsigned NumPhis = 0;
3282   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3283        ++II, ++NumPhis) {
3284     if (NumPhis > 2) // Disable this xform.
3285       return false;
3286 
3287     PHINode *PN = cast<PHINode>(II);
3288     Value *BIV = PN->getIncomingValueForBlock(BB);
3289     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3290       if (CE->canTrap())
3291         return false;
3292 
3293     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3294     Value *PBIV = PN->getIncomingValue(PBBIdx);
3295     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3296       if (CE->canTrap())
3297         return false;
3298   }
3299 
3300   // Finally, if everything is ok, fold the branches to logical ops.
3301   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3302 
3303   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3304                     << "AND: " << *BI->getParent());
3305 
3306   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3307   // branch in it, where one edge (OtherDest) goes back to itself but the other
3308   // exits.  We don't *know* that the program avoids the infinite loop
3309   // (even though that seems likely).  If we do this xform naively, we'll end up
3310   // recursively unpeeling the loop.  Since we know that (after the xform is
3311   // done) that the block *is* infinite if reached, we just make it an obviously
3312   // infinite loop with no cond branch.
3313   if (OtherDest == BB) {
3314     // Insert it at the end of the function, because it's either code,
3315     // or it won't matter if it's hot. :)
3316     BasicBlock *InfLoopBlock =
3317         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3318     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3319     OtherDest = InfLoopBlock;
3320   }
3321 
3322   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3323 
3324   // BI may have other predecessors.  Because of this, we leave
3325   // it alone, but modify PBI.
3326 
3327   // Make sure we get to CommonDest on True&True directions.
3328   Value *PBICond = PBI->getCondition();
3329   IRBuilder<NoFolder> Builder(PBI);
3330   if (PBIOp)
3331     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3332 
3333   Value *BICond = BI->getCondition();
3334   if (BIOp)
3335     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3336 
3337   // Merge the conditions.
3338   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3339 
3340   // Modify PBI to branch on the new condition to the new dests.
3341   PBI->setCondition(Cond);
3342   PBI->setSuccessor(0, CommonDest);
3343   PBI->setSuccessor(1, OtherDest);
3344 
3345   // Update branch weight for PBI.
3346   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3347   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3348   bool HasWeights =
3349       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3350                              SuccTrueWeight, SuccFalseWeight);
3351   if (HasWeights) {
3352     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3353     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3354     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3355     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3356     // The weight to CommonDest should be PredCommon * SuccTotal +
3357     //                                    PredOther * SuccCommon.
3358     // The weight to OtherDest should be PredOther * SuccOther.
3359     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3360                                   PredOther * SuccCommon,
3361                               PredOther * SuccOther};
3362     // Halve the weights if any of them cannot fit in an uint32_t
3363     FitWeights(NewWeights);
3364 
3365     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3366   }
3367 
3368   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3369   // block that are identical to the entries for BI's block.
3370   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3371 
3372   // We know that the CommonDest already had an edge from PBI to
3373   // it.  If it has PHIs though, the PHIs may have different
3374   // entries for BB and PBI's BB.  If so, insert a select to make
3375   // them agree.
3376   for (PHINode &PN : CommonDest->phis()) {
3377     Value *BIV = PN.getIncomingValueForBlock(BB);
3378     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3379     Value *PBIV = PN.getIncomingValue(PBBIdx);
3380     if (BIV != PBIV) {
3381       // Insert a select in PBI to pick the right value.
3382       SelectInst *NV = cast<SelectInst>(
3383           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3384       PN.setIncomingValue(PBBIdx, NV);
3385       // Although the select has the same condition as PBI, the original branch
3386       // weights for PBI do not apply to the new select because the select's
3387       // 'logical' edges are incoming edges of the phi that is eliminated, not
3388       // the outgoing edges of PBI.
3389       if (HasWeights) {
3390         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3391         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3392         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3393         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3394         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3395         // The weight to PredOtherDest should be PredOther * SuccCommon.
3396         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3397                                   PredOther * SuccCommon};
3398 
3399         FitWeights(NewWeights);
3400 
3401         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3402       }
3403     }
3404   }
3405 
3406   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3407   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3408 
3409   // This basic block is probably dead.  We know it has at least
3410   // one fewer predecessor.
3411   return true;
3412 }
3413 
3414 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3415 // true or to FalseBB if Cond is false.
3416 // Takes care of updating the successors and removing the old terminator.
3417 // Also makes sure not to introduce new successors by assuming that edges to
3418 // non-successor TrueBBs and FalseBBs aren't reachable.
3419 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3420                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3421                                        uint32_t TrueWeight,
3422                                        uint32_t FalseWeight) {
3423   // Remove any superfluous successor edges from the CFG.
3424   // First, figure out which successors to preserve.
3425   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3426   // successor.
3427   BasicBlock *KeepEdge1 = TrueBB;
3428   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3429 
3430   // Then remove the rest.
3431   for (BasicBlock *Succ : successors(OldTerm)) {
3432     // Make sure only to keep exactly one copy of each edge.
3433     if (Succ == KeepEdge1)
3434       KeepEdge1 = nullptr;
3435     else if (Succ == KeepEdge2)
3436       KeepEdge2 = nullptr;
3437     else
3438       Succ->removePredecessor(OldTerm->getParent(),
3439                               /*KeepOneInputPHIs=*/true);
3440   }
3441 
3442   IRBuilder<> Builder(OldTerm);
3443   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3444 
3445   // Insert an appropriate new terminator.
3446   if (!KeepEdge1 && !KeepEdge2) {
3447     if (TrueBB == FalseBB)
3448       // We were only looking for one successor, and it was present.
3449       // Create an unconditional branch to it.
3450       Builder.CreateBr(TrueBB);
3451     else {
3452       // We found both of the successors we were looking for.
3453       // Create a conditional branch sharing the condition of the select.
3454       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3455       if (TrueWeight != FalseWeight)
3456         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3457     }
3458   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3459     // Neither of the selected blocks were successors, so this
3460     // terminator must be unreachable.
3461     new UnreachableInst(OldTerm->getContext(), OldTerm);
3462   } else {
3463     // One of the selected values was a successor, but the other wasn't.
3464     // Insert an unconditional branch to the one that was found;
3465     // the edge to the one that wasn't must be unreachable.
3466     if (!KeepEdge1)
3467       // Only TrueBB was found.
3468       Builder.CreateBr(TrueBB);
3469     else
3470       // Only FalseBB was found.
3471       Builder.CreateBr(FalseBB);
3472   }
3473 
3474   EraseTerminatorAndDCECond(OldTerm);
3475   return true;
3476 }
3477 
3478 // Replaces
3479 //   (switch (select cond, X, Y)) on constant X, Y
3480 // with a branch - conditional if X and Y lead to distinct BBs,
3481 // unconditional otherwise.
3482 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3483   // Check for constant integer values in the select.
3484   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3485   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3486   if (!TrueVal || !FalseVal)
3487     return false;
3488 
3489   // Find the relevant condition and destinations.
3490   Value *Condition = Select->getCondition();
3491   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3492   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3493 
3494   // Get weight for TrueBB and FalseBB.
3495   uint32_t TrueWeight = 0, FalseWeight = 0;
3496   SmallVector<uint64_t, 8> Weights;
3497   bool HasWeights = HasBranchWeights(SI);
3498   if (HasWeights) {
3499     GetBranchWeights(SI, Weights);
3500     if (Weights.size() == 1 + SI->getNumCases()) {
3501       TrueWeight =
3502           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3503       FalseWeight =
3504           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3505     }
3506   }
3507 
3508   // Perform the actual simplification.
3509   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3510                                     FalseWeight);
3511 }
3512 
3513 // Replaces
3514 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3515 //                             blockaddress(@fn, BlockB)))
3516 // with
3517 //   (br cond, BlockA, BlockB).
3518 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3519   // Check that both operands of the select are block addresses.
3520   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3521   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3522   if (!TBA || !FBA)
3523     return false;
3524 
3525   // Extract the actual blocks.
3526   BasicBlock *TrueBB = TBA->getBasicBlock();
3527   BasicBlock *FalseBB = FBA->getBasicBlock();
3528 
3529   // Perform the actual simplification.
3530   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3531                                     0);
3532 }
3533 
3534 /// This is called when we find an icmp instruction
3535 /// (a seteq/setne with a constant) as the only instruction in a
3536 /// block that ends with an uncond branch.  We are looking for a very specific
3537 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3538 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3539 /// default value goes to an uncond block with a seteq in it, we get something
3540 /// like:
3541 ///
3542 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3543 /// DEFAULT:
3544 ///   %tmp = icmp eq i8 %A, 92
3545 ///   br label %end
3546 /// end:
3547 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3548 ///
3549 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3550 /// the PHI, merging the third icmp into the switch.
3551 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3552     ICmpInst *ICI, IRBuilder<> &Builder) {
3553   BasicBlock *BB = ICI->getParent();
3554 
3555   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3556   // complex.
3557   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3558     return false;
3559 
3560   Value *V = ICI->getOperand(0);
3561   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3562 
3563   // The pattern we're looking for is where our only predecessor is a switch on
3564   // 'V' and this block is the default case for the switch.  In this case we can
3565   // fold the compared value into the switch to simplify things.
3566   BasicBlock *Pred = BB->getSinglePredecessor();
3567   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3568     return false;
3569 
3570   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3571   if (SI->getCondition() != V)
3572     return false;
3573 
3574   // If BB is reachable on a non-default case, then we simply know the value of
3575   // V in this block.  Substitute it and constant fold the icmp instruction
3576   // away.
3577   if (SI->getDefaultDest() != BB) {
3578     ConstantInt *VVal = SI->findCaseDest(BB);
3579     assert(VVal && "Should have a unique destination value");
3580     ICI->setOperand(0, VVal);
3581 
3582     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3583       ICI->replaceAllUsesWith(V);
3584       ICI->eraseFromParent();
3585     }
3586     // BB is now empty, so it is likely to simplify away.
3587     return requestResimplify();
3588   }
3589 
3590   // Ok, the block is reachable from the default dest.  If the constant we're
3591   // comparing exists in one of the other edges, then we can constant fold ICI
3592   // and zap it.
3593   if (SI->findCaseValue(Cst) != SI->case_default()) {
3594     Value *V;
3595     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3596       V = ConstantInt::getFalse(BB->getContext());
3597     else
3598       V = ConstantInt::getTrue(BB->getContext());
3599 
3600     ICI->replaceAllUsesWith(V);
3601     ICI->eraseFromParent();
3602     // BB is now empty, so it is likely to simplify away.
3603     return requestResimplify();
3604   }
3605 
3606   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3607   // the block.
3608   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3609   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3610   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3611       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3612     return false;
3613 
3614   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3615   // true in the PHI.
3616   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3617   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3618 
3619   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3620     std::swap(DefaultCst, NewCst);
3621 
3622   // Replace ICI (which is used by the PHI for the default value) with true or
3623   // false depending on if it is EQ or NE.
3624   ICI->replaceAllUsesWith(DefaultCst);
3625   ICI->eraseFromParent();
3626 
3627   // Okay, the switch goes to this block on a default value.  Add an edge from
3628   // the switch to the merge point on the compared value.
3629   BasicBlock *NewBB =
3630       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3631   SmallVector<uint64_t, 8> Weights;
3632   bool HasWeights = HasBranchWeights(SI);
3633   if (HasWeights) {
3634     GetBranchWeights(SI, Weights);
3635     if (Weights.size() == 1 + SI->getNumCases()) {
3636       // Split weight for default case to case for "Cst".
3637       Weights[0] = (Weights[0] + 1) >> 1;
3638       Weights.push_back(Weights[0]);
3639 
3640       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3641       setBranchWeights(SI, MDWeights);
3642     }
3643   }
3644   SI->addCase(Cst, NewBB);
3645 
3646   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3647   Builder.SetInsertPoint(NewBB);
3648   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3649   Builder.CreateBr(SuccBlock);
3650   PHIUse->addIncoming(NewCst, NewBB);
3651   return true;
3652 }
3653 
3654 /// The specified branch is a conditional branch.
3655 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3656 /// fold it into a switch instruction if so.
3657 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3658                                       const DataLayout &DL) {
3659   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3660   if (!Cond)
3661     return false;
3662 
3663   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3664   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3665   // 'setne's and'ed together, collect them.
3666 
3667   // Try to gather values from a chain of and/or to be turned into a switch
3668   ConstantComparesGatherer ConstantCompare(Cond, DL);
3669   // Unpack the result
3670   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3671   Value *CompVal = ConstantCompare.CompValue;
3672   unsigned UsedICmps = ConstantCompare.UsedICmps;
3673   Value *ExtraCase = ConstantCompare.Extra;
3674 
3675   // If we didn't have a multiply compared value, fail.
3676   if (!CompVal)
3677     return false;
3678 
3679   // Avoid turning single icmps into a switch.
3680   if (UsedICmps <= 1)
3681     return false;
3682 
3683   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3684 
3685   // There might be duplicate constants in the list, which the switch
3686   // instruction can't handle, remove them now.
3687   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3688   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3689 
3690   // If Extra was used, we require at least two switch values to do the
3691   // transformation.  A switch with one value is just a conditional branch.
3692   if (ExtraCase && Values.size() < 2)
3693     return false;
3694 
3695   // TODO: Preserve branch weight metadata, similarly to how
3696   // FoldValueComparisonIntoPredecessors preserves it.
3697 
3698   // Figure out which block is which destination.
3699   BasicBlock *DefaultBB = BI->getSuccessor(1);
3700   BasicBlock *EdgeBB = BI->getSuccessor(0);
3701   if (!TrueWhenEqual)
3702     std::swap(DefaultBB, EdgeBB);
3703 
3704   BasicBlock *BB = BI->getParent();
3705 
3706   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3707                     << " cases into SWITCH.  BB is:\n"
3708                     << *BB);
3709 
3710   // If there are any extra values that couldn't be folded into the switch
3711   // then we evaluate them with an explicit branch first.  Split the block
3712   // right before the condbr to handle it.
3713   if (ExtraCase) {
3714     BasicBlock *NewBB =
3715         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3716     // Remove the uncond branch added to the old block.
3717     Instruction *OldTI = BB->getTerminator();
3718     Builder.SetInsertPoint(OldTI);
3719 
3720     if (TrueWhenEqual)
3721       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3722     else
3723       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3724 
3725     OldTI->eraseFromParent();
3726 
3727     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3728     // for the edge we just added.
3729     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3730 
3731     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3732                       << "\nEXTRABB = " << *BB);
3733     BB = NewBB;
3734   }
3735 
3736   Builder.SetInsertPoint(BI);
3737   // Convert pointer to int before we switch.
3738   if (CompVal->getType()->isPointerTy()) {
3739     CompVal = Builder.CreatePtrToInt(
3740         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3741   }
3742 
3743   // Create the new switch instruction now.
3744   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3745 
3746   // Add all of the 'cases' to the switch instruction.
3747   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3748     New->addCase(Values[i], EdgeBB);
3749 
3750   // We added edges from PI to the EdgeBB.  As such, if there were any
3751   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3752   // the number of edges added.
3753   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3754     PHINode *PN = cast<PHINode>(BBI);
3755     Value *InVal = PN->getIncomingValueForBlock(BB);
3756     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3757       PN->addIncoming(InVal, BB);
3758   }
3759 
3760   // Erase the old branch instruction.
3761   EraseTerminatorAndDCECond(BI);
3762 
3763   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3764   return true;
3765 }
3766 
3767 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3768   if (isa<PHINode>(RI->getValue()))
3769     return SimplifyCommonResume(RI);
3770   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3771            RI->getValue() == RI->getParent()->getFirstNonPHI())
3772     // The resume must unwind the exception that caused control to branch here.
3773     return SimplifySingleResume(RI);
3774 
3775   return false;
3776 }
3777 
3778 // Simplify resume that is shared by several landing pads (phi of landing pad).
3779 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3780   BasicBlock *BB = RI->getParent();
3781 
3782   // Check that there are no other instructions except for debug intrinsics
3783   // between the phi of landing pads (RI->getValue()) and resume instruction.
3784   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3785                        E = RI->getIterator();
3786   while (++I != E)
3787     if (!isa<DbgInfoIntrinsic>(I))
3788       return false;
3789 
3790   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3791   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3792 
3793   // Check incoming blocks to see if any of them are trivial.
3794   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3795        Idx++) {
3796     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3797     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3798 
3799     // If the block has other successors, we can not delete it because
3800     // it has other dependents.
3801     if (IncomingBB->getUniqueSuccessor() != BB)
3802       continue;
3803 
3804     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3805     // Not the landing pad that caused the control to branch here.
3806     if (IncomingValue != LandingPad)
3807       continue;
3808 
3809     bool isTrivial = true;
3810 
3811     I = IncomingBB->getFirstNonPHI()->getIterator();
3812     E = IncomingBB->getTerminator()->getIterator();
3813     while (++I != E)
3814       if (!isa<DbgInfoIntrinsic>(I)) {
3815         isTrivial = false;
3816         break;
3817       }
3818 
3819     if (isTrivial)
3820       TrivialUnwindBlocks.insert(IncomingBB);
3821   }
3822 
3823   // If no trivial unwind blocks, don't do any simplifications.
3824   if (TrivialUnwindBlocks.empty())
3825     return false;
3826 
3827   // Turn all invokes that unwind here into calls.
3828   for (auto *TrivialBB : TrivialUnwindBlocks) {
3829     // Blocks that will be simplified should be removed from the phi node.
3830     // Note there could be multiple edges to the resume block, and we need
3831     // to remove them all.
3832     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3833       BB->removePredecessor(TrivialBB, true);
3834 
3835     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3836          PI != PE;) {
3837       BasicBlock *Pred = *PI++;
3838       removeUnwindEdge(Pred);
3839     }
3840 
3841     // In each SimplifyCFG run, only the current processed block can be erased.
3842     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3843     // of erasing TrivialBB, we only remove the branch to the common resume
3844     // block so that we can later erase the resume block since it has no
3845     // predecessors.
3846     TrivialBB->getTerminator()->eraseFromParent();
3847     new UnreachableInst(RI->getContext(), TrivialBB);
3848   }
3849 
3850   // Delete the resume block if all its predecessors have been removed.
3851   if (pred_empty(BB))
3852     BB->eraseFromParent();
3853 
3854   return !TrivialUnwindBlocks.empty();
3855 }
3856 
3857 // Simplify resume that is only used by a single (non-phi) landing pad.
3858 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3859   BasicBlock *BB = RI->getParent();
3860   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3861   assert(RI->getValue() == LPInst &&
3862          "Resume must unwind the exception that caused control to here");
3863 
3864   // Check that there are no other instructions except for debug intrinsics.
3865   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3866   while (++I != E)
3867     if (!isa<DbgInfoIntrinsic>(I))
3868       return false;
3869 
3870   // Turn all invokes that unwind here into calls and delete the basic block.
3871   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3872     BasicBlock *Pred = *PI++;
3873     removeUnwindEdge(Pred);
3874   }
3875 
3876   // The landingpad is now unreachable.  Zap it.
3877   if (LoopHeaders)
3878     LoopHeaders->erase(BB);
3879   BB->eraseFromParent();
3880   return true;
3881 }
3882 
3883 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3884   // If this is a trivial cleanup pad that executes no instructions, it can be
3885   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3886   // that is an EH pad will be updated to continue to the caller and any
3887   // predecessor that terminates with an invoke instruction will have its invoke
3888   // instruction converted to a call instruction.  If the cleanup pad being
3889   // simplified does not continue to the caller, each predecessor will be
3890   // updated to continue to the unwind destination of the cleanup pad being
3891   // simplified.
3892   BasicBlock *BB = RI->getParent();
3893   CleanupPadInst *CPInst = RI->getCleanupPad();
3894   if (CPInst->getParent() != BB)
3895     // This isn't an empty cleanup.
3896     return false;
3897 
3898   // We cannot kill the pad if it has multiple uses.  This typically arises
3899   // from unreachable basic blocks.
3900   if (!CPInst->hasOneUse())
3901     return false;
3902 
3903   // Check that there are no other instructions except for benign intrinsics.
3904   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3905   while (++I != E) {
3906     auto *II = dyn_cast<IntrinsicInst>(I);
3907     if (!II)
3908       return false;
3909 
3910     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3911     switch (IntrinsicID) {
3912     case Intrinsic::dbg_declare:
3913     case Intrinsic::dbg_value:
3914     case Intrinsic::dbg_label:
3915     case Intrinsic::lifetime_end:
3916       break;
3917     default:
3918       return false;
3919     }
3920   }
3921 
3922   // If the cleanup return we are simplifying unwinds to the caller, this will
3923   // set UnwindDest to nullptr.
3924   BasicBlock *UnwindDest = RI->getUnwindDest();
3925   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3926 
3927   // We're about to remove BB from the control flow.  Before we do, sink any
3928   // PHINodes into the unwind destination.  Doing this before changing the
3929   // control flow avoids some potentially slow checks, since we can currently
3930   // be certain that UnwindDest and BB have no common predecessors (since they
3931   // are both EH pads).
3932   if (UnwindDest) {
3933     // First, go through the PHI nodes in UnwindDest and update any nodes that
3934     // reference the block we are removing
3935     for (BasicBlock::iterator I = UnwindDest->begin(),
3936                               IE = DestEHPad->getIterator();
3937          I != IE; ++I) {
3938       PHINode *DestPN = cast<PHINode>(I);
3939 
3940       int Idx = DestPN->getBasicBlockIndex(BB);
3941       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3942       assert(Idx != -1);
3943       // This PHI node has an incoming value that corresponds to a control
3944       // path through the cleanup pad we are removing.  If the incoming
3945       // value is in the cleanup pad, it must be a PHINode (because we
3946       // verified above that the block is otherwise empty).  Otherwise, the
3947       // value is either a constant or a value that dominates the cleanup
3948       // pad being removed.
3949       //
3950       // Because BB and UnwindDest are both EH pads, all of their
3951       // predecessors must unwind to these blocks, and since no instruction
3952       // can have multiple unwind destinations, there will be no overlap in
3953       // incoming blocks between SrcPN and DestPN.
3954       Value *SrcVal = DestPN->getIncomingValue(Idx);
3955       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3956 
3957       // Remove the entry for the block we are deleting.
3958       DestPN->removeIncomingValue(Idx, false);
3959 
3960       if (SrcPN && SrcPN->getParent() == BB) {
3961         // If the incoming value was a PHI node in the cleanup pad we are
3962         // removing, we need to merge that PHI node's incoming values into
3963         // DestPN.
3964         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3965              SrcIdx != SrcE; ++SrcIdx) {
3966           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3967                               SrcPN->getIncomingBlock(SrcIdx));
3968         }
3969       } else {
3970         // Otherwise, the incoming value came from above BB and
3971         // so we can just reuse it.  We must associate all of BB's
3972         // predecessors with this value.
3973         for (auto *pred : predecessors(BB)) {
3974           DestPN->addIncoming(SrcVal, pred);
3975         }
3976       }
3977     }
3978 
3979     // Sink any remaining PHI nodes directly into UnwindDest.
3980     Instruction *InsertPt = DestEHPad;
3981     for (BasicBlock::iterator I = BB->begin(),
3982                               IE = BB->getFirstNonPHI()->getIterator();
3983          I != IE;) {
3984       // The iterator must be incremented here because the instructions are
3985       // being moved to another block.
3986       PHINode *PN = cast<PHINode>(I++);
3987       if (PN->use_empty())
3988         // If the PHI node has no uses, just leave it.  It will be erased
3989         // when we erase BB below.
3990         continue;
3991 
3992       // Otherwise, sink this PHI node into UnwindDest.
3993       // Any predecessors to UnwindDest which are not already represented
3994       // must be back edges which inherit the value from the path through
3995       // BB.  In this case, the PHI value must reference itself.
3996       for (auto *pred : predecessors(UnwindDest))
3997         if (pred != BB)
3998           PN->addIncoming(PN, pred);
3999       PN->moveBefore(InsertPt);
4000     }
4001   }
4002 
4003   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4004     // The iterator must be updated here because we are removing this pred.
4005     BasicBlock *PredBB = *PI++;
4006     if (UnwindDest == nullptr) {
4007       removeUnwindEdge(PredBB);
4008     } else {
4009       Instruction *TI = PredBB->getTerminator();
4010       TI->replaceUsesOfWith(BB, UnwindDest);
4011     }
4012   }
4013 
4014   // The cleanup pad is now unreachable.  Zap it.
4015   BB->eraseFromParent();
4016   return true;
4017 }
4018 
4019 // Try to merge two cleanuppads together.
4020 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4021   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4022   // with.
4023   BasicBlock *UnwindDest = RI->getUnwindDest();
4024   if (!UnwindDest)
4025     return false;
4026 
4027   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4028   // be safe to merge without code duplication.
4029   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4030     return false;
4031 
4032   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4033   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4034   if (!SuccessorCleanupPad)
4035     return false;
4036 
4037   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4038   // Replace any uses of the successor cleanupad with the predecessor pad
4039   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4040   // funclet bundle operands.
4041   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4042   // Remove the old cleanuppad.
4043   SuccessorCleanupPad->eraseFromParent();
4044   // Now, we simply replace the cleanupret with a branch to the unwind
4045   // destination.
4046   BranchInst::Create(UnwindDest, RI->getParent());
4047   RI->eraseFromParent();
4048 
4049   return true;
4050 }
4051 
4052 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4053   // It is possible to transiantly have an undef cleanuppad operand because we
4054   // have deleted some, but not all, dead blocks.
4055   // Eventually, this block will be deleted.
4056   if (isa<UndefValue>(RI->getOperand(0)))
4057     return false;
4058 
4059   if (mergeCleanupPad(RI))
4060     return true;
4061 
4062   if (removeEmptyCleanup(RI))
4063     return true;
4064 
4065   return false;
4066 }
4067 
4068 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4069   BasicBlock *BB = RI->getParent();
4070   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4071     return false;
4072 
4073   // Find predecessors that end with branches.
4074   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4075   SmallVector<BranchInst *, 8> CondBranchPreds;
4076   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4077     BasicBlock *P = *PI;
4078     Instruction *PTI = P->getTerminator();
4079     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4080       if (BI->isUnconditional())
4081         UncondBranchPreds.push_back(P);
4082       else
4083         CondBranchPreds.push_back(BI);
4084     }
4085   }
4086 
4087   // If we found some, do the transformation!
4088   if (!UncondBranchPreds.empty() && DupRet) {
4089     while (!UncondBranchPreds.empty()) {
4090       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4091       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4092                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4093       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4094     }
4095 
4096     // If we eliminated all predecessors of the block, delete the block now.
4097     if (pred_empty(BB)) {
4098       // We know there are no successors, so just nuke the block.
4099       if (LoopHeaders)
4100         LoopHeaders->erase(BB);
4101       BB->eraseFromParent();
4102     }
4103 
4104     return true;
4105   }
4106 
4107   // Check out all of the conditional branches going to this return
4108   // instruction.  If any of them just select between returns, change the
4109   // branch itself into a select/return pair.
4110   while (!CondBranchPreds.empty()) {
4111     BranchInst *BI = CondBranchPreds.pop_back_val();
4112 
4113     // Check to see if the non-BB successor is also a return block.
4114     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4115         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4116         SimplifyCondBranchToTwoReturns(BI, Builder))
4117       return true;
4118   }
4119   return false;
4120 }
4121 
4122 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4123   BasicBlock *BB = UI->getParent();
4124 
4125   bool Changed = false;
4126 
4127   // If there are any instructions immediately before the unreachable that can
4128   // be removed, do so.
4129   while (UI->getIterator() != BB->begin()) {
4130     BasicBlock::iterator BBI = UI->getIterator();
4131     --BBI;
4132     // Do not delete instructions that can have side effects which might cause
4133     // the unreachable to not be reachable; specifically, calls and volatile
4134     // operations may have this effect.
4135     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4136       break;
4137 
4138     if (BBI->mayHaveSideEffects()) {
4139       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4140         if (SI->isVolatile())
4141           break;
4142       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4143         if (LI->isVolatile())
4144           break;
4145       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4146         if (RMWI->isVolatile())
4147           break;
4148       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4149         if (CXI->isVolatile())
4150           break;
4151       } else if (isa<CatchPadInst>(BBI)) {
4152         // A catchpad may invoke exception object constructors and such, which
4153         // in some languages can be arbitrary code, so be conservative by
4154         // default.
4155         // For CoreCLR, it just involves a type test, so can be removed.
4156         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4157             EHPersonality::CoreCLR)
4158           break;
4159       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4160                  !isa<LandingPadInst>(BBI)) {
4161         break;
4162       }
4163       // Note that deleting LandingPad's here is in fact okay, although it
4164       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4165       // all the predecessors of this block will be the unwind edges of Invokes,
4166       // and we can therefore guarantee this block will be erased.
4167     }
4168 
4169     // Delete this instruction (any uses are guaranteed to be dead)
4170     if (!BBI->use_empty())
4171       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4172     BBI->eraseFromParent();
4173     Changed = true;
4174   }
4175 
4176   // If the unreachable instruction is the first in the block, take a gander
4177   // at all of the predecessors of this instruction, and simplify them.
4178   if (&BB->front() != UI)
4179     return Changed;
4180 
4181   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4182   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4183     Instruction *TI = Preds[i]->getTerminator();
4184     IRBuilder<> Builder(TI);
4185     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4186       if (BI->isUnconditional()) {
4187         if (BI->getSuccessor(0) == BB) {
4188           new UnreachableInst(TI->getContext(), TI);
4189           TI->eraseFromParent();
4190           Changed = true;
4191         }
4192       } else {
4193         if (BI->getSuccessor(0) == BB) {
4194           Builder.CreateBr(BI->getSuccessor(1));
4195           EraseTerminatorAndDCECond(BI);
4196         } else if (BI->getSuccessor(1) == BB) {
4197           Builder.CreateBr(BI->getSuccessor(0));
4198           EraseTerminatorAndDCECond(BI);
4199           Changed = true;
4200         }
4201       }
4202     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4203       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4204         if (i->getCaseSuccessor() != BB) {
4205           ++i;
4206           continue;
4207         }
4208         BB->removePredecessor(SI->getParent());
4209         i = SI->removeCase(i);
4210         e = SI->case_end();
4211         Changed = true;
4212       }
4213     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4214       if (II->getUnwindDest() == BB) {
4215         removeUnwindEdge(TI->getParent());
4216         Changed = true;
4217       }
4218     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4219       if (CSI->getUnwindDest() == BB) {
4220         removeUnwindEdge(TI->getParent());
4221         Changed = true;
4222         continue;
4223       }
4224 
4225       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4226                                              E = CSI->handler_end();
4227            I != E; ++I) {
4228         if (*I == BB) {
4229           CSI->removeHandler(I);
4230           --I;
4231           --E;
4232           Changed = true;
4233         }
4234       }
4235       if (CSI->getNumHandlers() == 0) {
4236         BasicBlock *CatchSwitchBB = CSI->getParent();
4237         if (CSI->hasUnwindDest()) {
4238           // Redirect preds to the unwind dest
4239           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4240         } else {
4241           // Rewrite all preds to unwind to caller (or from invoke to call).
4242           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4243           for (BasicBlock *EHPred : EHPreds)
4244             removeUnwindEdge(EHPred);
4245         }
4246         // The catchswitch is no longer reachable.
4247         new UnreachableInst(CSI->getContext(), CSI);
4248         CSI->eraseFromParent();
4249         Changed = true;
4250       }
4251     } else if (isa<CleanupReturnInst>(TI)) {
4252       new UnreachableInst(TI->getContext(), TI);
4253       TI->eraseFromParent();
4254       Changed = true;
4255     }
4256   }
4257 
4258   // If this block is now dead, remove it.
4259   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4260     // We know there are no successors, so just nuke the block.
4261     if (LoopHeaders)
4262       LoopHeaders->erase(BB);
4263     BB->eraseFromParent();
4264     return true;
4265   }
4266 
4267   return Changed;
4268 }
4269 
4270 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4271   assert(Cases.size() >= 1);
4272 
4273   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4274   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4275     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4276       return false;
4277   }
4278   return true;
4279 }
4280 
4281 /// Turn a switch with two reachable destinations into an integer range
4282 /// comparison and branch.
4283 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4284   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4285 
4286   bool HasDefault =
4287       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4288 
4289   // Partition the cases into two sets with different destinations.
4290   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4291   BasicBlock *DestB = nullptr;
4292   SmallVector<ConstantInt *, 16> CasesA;
4293   SmallVector<ConstantInt *, 16> CasesB;
4294 
4295   for (auto Case : SI->cases()) {
4296     BasicBlock *Dest = Case.getCaseSuccessor();
4297     if (!DestA)
4298       DestA = Dest;
4299     if (Dest == DestA) {
4300       CasesA.push_back(Case.getCaseValue());
4301       continue;
4302     }
4303     if (!DestB)
4304       DestB = Dest;
4305     if (Dest == DestB) {
4306       CasesB.push_back(Case.getCaseValue());
4307       continue;
4308     }
4309     return false; // More than two destinations.
4310   }
4311 
4312   assert(DestA && DestB &&
4313          "Single-destination switch should have been folded.");
4314   assert(DestA != DestB);
4315   assert(DestB != SI->getDefaultDest());
4316   assert(!CasesB.empty() && "There must be non-default cases.");
4317   assert(!CasesA.empty() || HasDefault);
4318 
4319   // Figure out if one of the sets of cases form a contiguous range.
4320   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4321   BasicBlock *ContiguousDest = nullptr;
4322   BasicBlock *OtherDest = nullptr;
4323   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4324     ContiguousCases = &CasesA;
4325     ContiguousDest = DestA;
4326     OtherDest = DestB;
4327   } else if (CasesAreContiguous(CasesB)) {
4328     ContiguousCases = &CasesB;
4329     ContiguousDest = DestB;
4330     OtherDest = DestA;
4331   } else
4332     return false;
4333 
4334   // Start building the compare and branch.
4335 
4336   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4337   Constant *NumCases =
4338       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4339 
4340   Value *Sub = SI->getCondition();
4341   if (!Offset->isNullValue())
4342     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4343 
4344   Value *Cmp;
4345   // If NumCases overflowed, then all possible values jump to the successor.
4346   if (NumCases->isNullValue() && !ContiguousCases->empty())
4347     Cmp = ConstantInt::getTrue(SI->getContext());
4348   else
4349     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4350   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4351 
4352   // Update weight for the newly-created conditional branch.
4353   if (HasBranchWeights(SI)) {
4354     SmallVector<uint64_t, 8> Weights;
4355     GetBranchWeights(SI, Weights);
4356     if (Weights.size() == 1 + SI->getNumCases()) {
4357       uint64_t TrueWeight = 0;
4358       uint64_t FalseWeight = 0;
4359       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4360         if (SI->getSuccessor(I) == ContiguousDest)
4361           TrueWeight += Weights[I];
4362         else
4363           FalseWeight += Weights[I];
4364       }
4365       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4366         TrueWeight /= 2;
4367         FalseWeight /= 2;
4368       }
4369       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4370     }
4371   }
4372 
4373   // Prune obsolete incoming values off the successors' PHI nodes.
4374   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4375     unsigned PreviousEdges = ContiguousCases->size();
4376     if (ContiguousDest == SI->getDefaultDest())
4377       ++PreviousEdges;
4378     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4379       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4380   }
4381   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4382     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4383     if (OtherDest == SI->getDefaultDest())
4384       ++PreviousEdges;
4385     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4386       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4387   }
4388 
4389   // Drop the switch.
4390   SI->eraseFromParent();
4391 
4392   return true;
4393 }
4394 
4395 /// Compute masked bits for the condition of a switch
4396 /// and use it to remove dead cases.
4397 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4398                                      const DataLayout &DL) {
4399   Value *Cond = SI->getCondition();
4400   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4401   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4402 
4403   // We can also eliminate cases by determining that their values are outside of
4404   // the limited range of the condition based on how many significant (non-sign)
4405   // bits are in the condition value.
4406   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4407   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4408 
4409   // Gather dead cases.
4410   SmallVector<ConstantInt *, 8> DeadCases;
4411   for (auto &Case : SI->cases()) {
4412     const APInt &CaseVal = Case.getCaseValue()->getValue();
4413     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4414         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4415       DeadCases.push_back(Case.getCaseValue());
4416       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4417                         << " is dead.\n");
4418     }
4419   }
4420 
4421   // If we can prove that the cases must cover all possible values, the
4422   // default destination becomes dead and we can remove it.  If we know some
4423   // of the bits in the value, we can use that to more precisely compute the
4424   // number of possible unique case values.
4425   bool HasDefault =
4426       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4427   const unsigned NumUnknownBits =
4428       Bits - (Known.Zero | Known.One).countPopulation();
4429   assert(NumUnknownBits <= Bits);
4430   if (HasDefault && DeadCases.empty() &&
4431       NumUnknownBits < 64 /* avoid overflow */ &&
4432       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4433     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4434     BasicBlock *NewDefault =
4435         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4436     SI->setDefaultDest(&*NewDefault);
4437     SplitBlock(&*NewDefault, &NewDefault->front());
4438     auto *OldTI = NewDefault->getTerminator();
4439     new UnreachableInst(SI->getContext(), OldTI);
4440     EraseTerminatorAndDCECond(OldTI);
4441     return true;
4442   }
4443 
4444   SmallVector<uint64_t, 8> Weights;
4445   bool HasWeight = HasBranchWeights(SI);
4446   if (HasWeight) {
4447     GetBranchWeights(SI, Weights);
4448     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4449   }
4450 
4451   // Remove dead cases from the switch.
4452   for (ConstantInt *DeadCase : DeadCases) {
4453     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4454     assert(CaseI != SI->case_default() &&
4455            "Case was not found. Probably mistake in DeadCases forming.");
4456     if (HasWeight) {
4457       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4458       Weights.pop_back();
4459     }
4460 
4461     // Prune unused values from PHI nodes.
4462     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4463     SI->removeCase(CaseI);
4464   }
4465   if (HasWeight && Weights.size() >= 2) {
4466     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4467     setBranchWeights(SI, MDWeights);
4468   }
4469 
4470   return !DeadCases.empty();
4471 }
4472 
4473 /// If BB would be eligible for simplification by
4474 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4475 /// by an unconditional branch), look at the phi node for BB in the successor
4476 /// block and see if the incoming value is equal to CaseValue. If so, return
4477 /// the phi node, and set PhiIndex to BB's index in the phi node.
4478 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4479                                               BasicBlock *BB, int *PhiIndex) {
4480   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4481     return nullptr; // BB must be empty to be a candidate for simplification.
4482   if (!BB->getSinglePredecessor())
4483     return nullptr; // BB must be dominated by the switch.
4484 
4485   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4486   if (!Branch || !Branch->isUnconditional())
4487     return nullptr; // Terminator must be unconditional branch.
4488 
4489   BasicBlock *Succ = Branch->getSuccessor(0);
4490 
4491   for (PHINode &PHI : Succ->phis()) {
4492     int Idx = PHI.getBasicBlockIndex(BB);
4493     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4494 
4495     Value *InValue = PHI.getIncomingValue(Idx);
4496     if (InValue != CaseValue)
4497       continue;
4498 
4499     *PhiIndex = Idx;
4500     return &PHI;
4501   }
4502 
4503   return nullptr;
4504 }
4505 
4506 /// Try to forward the condition of a switch instruction to a phi node
4507 /// dominated by the switch, if that would mean that some of the destination
4508 /// blocks of the switch can be folded away. Return true if a change is made.
4509 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4510   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4511 
4512   ForwardingNodesMap ForwardingNodes;
4513   BasicBlock *SwitchBlock = SI->getParent();
4514   bool Changed = false;
4515   for (auto &Case : SI->cases()) {
4516     ConstantInt *CaseValue = Case.getCaseValue();
4517     BasicBlock *CaseDest = Case.getCaseSuccessor();
4518 
4519     // Replace phi operands in successor blocks that are using the constant case
4520     // value rather than the switch condition variable:
4521     //   switchbb:
4522     //   switch i32 %x, label %default [
4523     //     i32 17, label %succ
4524     //   ...
4525     //   succ:
4526     //     %r = phi i32 ... [ 17, %switchbb ] ...
4527     // -->
4528     //     %r = phi i32 ... [ %x, %switchbb ] ...
4529 
4530     for (PHINode &Phi : CaseDest->phis()) {
4531       // This only works if there is exactly 1 incoming edge from the switch to
4532       // a phi. If there is >1, that means multiple cases of the switch map to 1
4533       // value in the phi, and that phi value is not the switch condition. Thus,
4534       // this transform would not make sense (the phi would be invalid because
4535       // a phi can't have different incoming values from the same block).
4536       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4537       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4538           count(Phi.blocks(), SwitchBlock) == 1) {
4539         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4540         Changed = true;
4541       }
4542     }
4543 
4544     // Collect phi nodes that are indirectly using this switch's case constants.
4545     int PhiIdx;
4546     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4547       ForwardingNodes[Phi].push_back(PhiIdx);
4548   }
4549 
4550   for (auto &ForwardingNode : ForwardingNodes) {
4551     PHINode *Phi = ForwardingNode.first;
4552     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4553     if (Indexes.size() < 2)
4554       continue;
4555 
4556     for (int Index : Indexes)
4557       Phi->setIncomingValue(Index, SI->getCondition());
4558     Changed = true;
4559   }
4560 
4561   return Changed;
4562 }
4563 
4564 /// Return true if the backend will be able to handle
4565 /// initializing an array of constants like C.
4566 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4567   if (C->isThreadDependent())
4568     return false;
4569   if (C->isDLLImportDependent())
4570     return false;
4571 
4572   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4573       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4574       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4575     return false;
4576 
4577   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4578     if (!CE->isGEPWithNoNotionalOverIndexing())
4579       return false;
4580     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4581       return false;
4582   }
4583 
4584   if (!TTI.shouldBuildLookupTablesForConstant(C))
4585     return false;
4586 
4587   return true;
4588 }
4589 
4590 /// If V is a Constant, return it. Otherwise, try to look up
4591 /// its constant value in ConstantPool, returning 0 if it's not there.
4592 static Constant *
4593 LookupConstant(Value *V,
4594                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4595   if (Constant *C = dyn_cast<Constant>(V))
4596     return C;
4597   return ConstantPool.lookup(V);
4598 }
4599 
4600 /// Try to fold instruction I into a constant. This works for
4601 /// simple instructions such as binary operations where both operands are
4602 /// constant or can be replaced by constants from the ConstantPool. Returns the
4603 /// resulting constant on success, 0 otherwise.
4604 static Constant *
4605 ConstantFold(Instruction *I, const DataLayout &DL,
4606              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4607   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4608     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4609     if (!A)
4610       return nullptr;
4611     if (A->isAllOnesValue())
4612       return LookupConstant(Select->getTrueValue(), ConstantPool);
4613     if (A->isNullValue())
4614       return LookupConstant(Select->getFalseValue(), ConstantPool);
4615     return nullptr;
4616   }
4617 
4618   SmallVector<Constant *, 4> COps;
4619   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4620     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4621       COps.push_back(A);
4622     else
4623       return nullptr;
4624   }
4625 
4626   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4627     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4628                                            COps[1], DL);
4629   }
4630 
4631   return ConstantFoldInstOperands(I, COps, DL);
4632 }
4633 
4634 /// Try to determine the resulting constant values in phi nodes
4635 /// at the common destination basic block, *CommonDest, for one of the case
4636 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4637 /// case), of a switch instruction SI.
4638 static bool
4639 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4640                BasicBlock **CommonDest,
4641                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4642                const DataLayout &DL, const TargetTransformInfo &TTI) {
4643   // The block from which we enter the common destination.
4644   BasicBlock *Pred = SI->getParent();
4645 
4646   // If CaseDest is empty except for some side-effect free instructions through
4647   // which we can constant-propagate the CaseVal, continue to its successor.
4648   SmallDenseMap<Value *, Constant *> ConstantPool;
4649   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4650   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4651     if (I.isTerminator()) {
4652       // If the terminator is a simple branch, continue to the next block.
4653       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4654         return false;
4655       Pred = CaseDest;
4656       CaseDest = I.getSuccessor(0);
4657     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4658       // Instruction is side-effect free and constant.
4659 
4660       // If the instruction has uses outside this block or a phi node slot for
4661       // the block, it is not safe to bypass the instruction since it would then
4662       // no longer dominate all its uses.
4663       for (auto &Use : I.uses()) {
4664         User *User = Use.getUser();
4665         if (Instruction *I = dyn_cast<Instruction>(User))
4666           if (I->getParent() == CaseDest)
4667             continue;
4668         if (PHINode *Phi = dyn_cast<PHINode>(User))
4669           if (Phi->getIncomingBlock(Use) == CaseDest)
4670             continue;
4671         return false;
4672       }
4673 
4674       ConstantPool.insert(std::make_pair(&I, C));
4675     } else {
4676       break;
4677     }
4678   }
4679 
4680   // If we did not have a CommonDest before, use the current one.
4681   if (!*CommonDest)
4682     *CommonDest = CaseDest;
4683   // If the destination isn't the common one, abort.
4684   if (CaseDest != *CommonDest)
4685     return false;
4686 
4687   // Get the values for this case from phi nodes in the destination block.
4688   for (PHINode &PHI : (*CommonDest)->phis()) {
4689     int Idx = PHI.getBasicBlockIndex(Pred);
4690     if (Idx == -1)
4691       continue;
4692 
4693     Constant *ConstVal =
4694         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4695     if (!ConstVal)
4696       return false;
4697 
4698     // Be conservative about which kinds of constants we support.
4699     if (!ValidLookupTableConstant(ConstVal, TTI))
4700       return false;
4701 
4702     Res.push_back(std::make_pair(&PHI, ConstVal));
4703   }
4704 
4705   return Res.size() > 0;
4706 }
4707 
4708 // Helper function used to add CaseVal to the list of cases that generate
4709 // Result. Returns the updated number of cases that generate this result.
4710 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4711                                  SwitchCaseResultVectorTy &UniqueResults,
4712                                  Constant *Result) {
4713   for (auto &I : UniqueResults) {
4714     if (I.first == Result) {
4715       I.second.push_back(CaseVal);
4716       return I.second.size();
4717     }
4718   }
4719   UniqueResults.push_back(
4720       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4721   return 1;
4722 }
4723 
4724 // Helper function that initializes a map containing
4725 // results for the PHI node of the common destination block for a switch
4726 // instruction. Returns false if multiple PHI nodes have been found or if
4727 // there is not a common destination block for the switch.
4728 static bool
4729 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4730                       SwitchCaseResultVectorTy &UniqueResults,
4731                       Constant *&DefaultResult, const DataLayout &DL,
4732                       const TargetTransformInfo &TTI,
4733                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4734   for (auto &I : SI->cases()) {
4735     ConstantInt *CaseVal = I.getCaseValue();
4736 
4737     // Resulting value at phi nodes for this case value.
4738     SwitchCaseResultsTy Results;
4739     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4740                         DL, TTI))
4741       return false;
4742 
4743     // Only one value per case is permitted.
4744     if (Results.size() > 1)
4745       return false;
4746 
4747     // Add the case->result mapping to UniqueResults.
4748     const uintptr_t NumCasesForResult =
4749         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4750 
4751     // Early out if there are too many cases for this result.
4752     if (NumCasesForResult > MaxCasesPerResult)
4753       return false;
4754 
4755     // Early out if there are too many unique results.
4756     if (UniqueResults.size() > MaxUniqueResults)
4757       return false;
4758 
4759     // Check the PHI consistency.
4760     if (!PHI)
4761       PHI = Results[0].first;
4762     else if (PHI != Results[0].first)
4763       return false;
4764   }
4765   // Find the default result value.
4766   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4767   BasicBlock *DefaultDest = SI->getDefaultDest();
4768   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4769                  DL, TTI);
4770   // If the default value is not found abort unless the default destination
4771   // is unreachable.
4772   DefaultResult =
4773       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4774   if ((!DefaultResult &&
4775        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4776     return false;
4777 
4778   return true;
4779 }
4780 
4781 // Helper function that checks if it is possible to transform a switch with only
4782 // two cases (or two cases + default) that produces a result into a select.
4783 // Example:
4784 // switch (a) {
4785 //   case 10:                %0 = icmp eq i32 %a, 10
4786 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4787 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4788 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4789 //   default:
4790 //     return 4;
4791 // }
4792 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4793                                    Constant *DefaultResult, Value *Condition,
4794                                    IRBuilder<> &Builder) {
4795   assert(ResultVector.size() == 2 &&
4796          "We should have exactly two unique results at this point");
4797   // If we are selecting between only two cases transform into a simple
4798   // select or a two-way select if default is possible.
4799   if (ResultVector[0].second.size() == 1 &&
4800       ResultVector[1].second.size() == 1) {
4801     ConstantInt *const FirstCase = ResultVector[0].second[0];
4802     ConstantInt *const SecondCase = ResultVector[1].second[0];
4803 
4804     bool DefaultCanTrigger = DefaultResult;
4805     Value *SelectValue = ResultVector[1].first;
4806     if (DefaultCanTrigger) {
4807       Value *const ValueCompare =
4808           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4809       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4810                                          DefaultResult, "switch.select");
4811     }
4812     Value *const ValueCompare =
4813         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4814     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4815                                 SelectValue, "switch.select");
4816   }
4817 
4818   return nullptr;
4819 }
4820 
4821 // Helper function to cleanup a switch instruction that has been converted into
4822 // a select, fixing up PHI nodes and basic blocks.
4823 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4824                                               Value *SelectValue,
4825                                               IRBuilder<> &Builder) {
4826   BasicBlock *SelectBB = SI->getParent();
4827   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4828     PHI->removeIncomingValue(SelectBB);
4829   PHI->addIncoming(SelectValue, SelectBB);
4830 
4831   Builder.CreateBr(PHI->getParent());
4832 
4833   // Remove the switch.
4834   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4835     BasicBlock *Succ = SI->getSuccessor(i);
4836 
4837     if (Succ == PHI->getParent())
4838       continue;
4839     Succ->removePredecessor(SelectBB);
4840   }
4841   SI->eraseFromParent();
4842 }
4843 
4844 /// If the switch is only used to initialize one or more
4845 /// phi nodes in a common successor block with only two different
4846 /// constant values, replace the switch with select.
4847 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4848                            const DataLayout &DL,
4849                            const TargetTransformInfo &TTI) {
4850   Value *const Cond = SI->getCondition();
4851   PHINode *PHI = nullptr;
4852   BasicBlock *CommonDest = nullptr;
4853   Constant *DefaultResult;
4854   SwitchCaseResultVectorTy UniqueResults;
4855   // Collect all the cases that will deliver the same value from the switch.
4856   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4857                              DL, TTI, 2, 1))
4858     return false;
4859   // Selects choose between maximum two values.
4860   if (UniqueResults.size() != 2)
4861     return false;
4862   assert(PHI != nullptr && "PHI for value select not found");
4863 
4864   Builder.SetInsertPoint(SI);
4865   Value *SelectValue =
4866       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4867   if (SelectValue) {
4868     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4869     return true;
4870   }
4871   // The switch couldn't be converted into a select.
4872   return false;
4873 }
4874 
4875 namespace {
4876 
4877 /// This class represents a lookup table that can be used to replace a switch.
4878 class SwitchLookupTable {
4879 public:
4880   /// Create a lookup table to use as a switch replacement with the contents
4881   /// of Values, using DefaultValue to fill any holes in the table.
4882   SwitchLookupTable(
4883       Module &M, uint64_t TableSize, ConstantInt *Offset,
4884       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4885       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4886 
4887   /// Build instructions with Builder to retrieve the value at
4888   /// the position given by Index in the lookup table.
4889   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4890 
4891   /// Return true if a table with TableSize elements of
4892   /// type ElementType would fit in a target-legal register.
4893   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4894                                  Type *ElementType);
4895 
4896 private:
4897   // Depending on the contents of the table, it can be represented in
4898   // different ways.
4899   enum {
4900     // For tables where each element contains the same value, we just have to
4901     // store that single value and return it for each lookup.
4902     SingleValueKind,
4903 
4904     // For tables where there is a linear relationship between table index
4905     // and values. We calculate the result with a simple multiplication
4906     // and addition instead of a table lookup.
4907     LinearMapKind,
4908 
4909     // For small tables with integer elements, we can pack them into a bitmap
4910     // that fits into a target-legal register. Values are retrieved by
4911     // shift and mask operations.
4912     BitMapKind,
4913 
4914     // The table is stored as an array of values. Values are retrieved by load
4915     // instructions from the table.
4916     ArrayKind
4917   } Kind;
4918 
4919   // For SingleValueKind, this is the single value.
4920   Constant *SingleValue = nullptr;
4921 
4922   // For BitMapKind, this is the bitmap.
4923   ConstantInt *BitMap = nullptr;
4924   IntegerType *BitMapElementTy = nullptr;
4925 
4926   // For LinearMapKind, these are the constants used to derive the value.
4927   ConstantInt *LinearOffset = nullptr;
4928   ConstantInt *LinearMultiplier = nullptr;
4929 
4930   // For ArrayKind, this is the array.
4931   GlobalVariable *Array = nullptr;
4932 };
4933 
4934 } // end anonymous namespace
4935 
4936 SwitchLookupTable::SwitchLookupTable(
4937     Module &M, uint64_t TableSize, ConstantInt *Offset,
4938     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4939     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4940   assert(Values.size() && "Can't build lookup table without values!");
4941   assert(TableSize >= Values.size() && "Can't fit values in table!");
4942 
4943   // If all values in the table are equal, this is that value.
4944   SingleValue = Values.begin()->second;
4945 
4946   Type *ValueType = Values.begin()->second->getType();
4947 
4948   // Build up the table contents.
4949   SmallVector<Constant *, 64> TableContents(TableSize);
4950   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4951     ConstantInt *CaseVal = Values[I].first;
4952     Constant *CaseRes = Values[I].second;
4953     assert(CaseRes->getType() == ValueType);
4954 
4955     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4956     TableContents[Idx] = CaseRes;
4957 
4958     if (CaseRes != SingleValue)
4959       SingleValue = nullptr;
4960   }
4961 
4962   // Fill in any holes in the table with the default result.
4963   if (Values.size() < TableSize) {
4964     assert(DefaultValue &&
4965            "Need a default value to fill the lookup table holes.");
4966     assert(DefaultValue->getType() == ValueType);
4967     for (uint64_t I = 0; I < TableSize; ++I) {
4968       if (!TableContents[I])
4969         TableContents[I] = DefaultValue;
4970     }
4971 
4972     if (DefaultValue != SingleValue)
4973       SingleValue = nullptr;
4974   }
4975 
4976   // If each element in the table contains the same value, we only need to store
4977   // that single value.
4978   if (SingleValue) {
4979     Kind = SingleValueKind;
4980     return;
4981   }
4982 
4983   // Check if we can derive the value with a linear transformation from the
4984   // table index.
4985   if (isa<IntegerType>(ValueType)) {
4986     bool LinearMappingPossible = true;
4987     APInt PrevVal;
4988     APInt DistToPrev;
4989     assert(TableSize >= 2 && "Should be a SingleValue table.");
4990     // Check if there is the same distance between two consecutive values.
4991     for (uint64_t I = 0; I < TableSize; ++I) {
4992       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4993       if (!ConstVal) {
4994         // This is an undef. We could deal with it, but undefs in lookup tables
4995         // are very seldom. It's probably not worth the additional complexity.
4996         LinearMappingPossible = false;
4997         break;
4998       }
4999       const APInt &Val = ConstVal->getValue();
5000       if (I != 0) {
5001         APInt Dist = Val - PrevVal;
5002         if (I == 1) {
5003           DistToPrev = Dist;
5004         } else if (Dist != DistToPrev) {
5005           LinearMappingPossible = false;
5006           break;
5007         }
5008       }
5009       PrevVal = Val;
5010     }
5011     if (LinearMappingPossible) {
5012       LinearOffset = cast<ConstantInt>(TableContents[0]);
5013       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5014       Kind = LinearMapKind;
5015       ++NumLinearMaps;
5016       return;
5017     }
5018   }
5019 
5020   // If the type is integer and the table fits in a register, build a bitmap.
5021   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5022     IntegerType *IT = cast<IntegerType>(ValueType);
5023     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5024     for (uint64_t I = TableSize; I > 0; --I) {
5025       TableInt <<= IT->getBitWidth();
5026       // Insert values into the bitmap. Undef values are set to zero.
5027       if (!isa<UndefValue>(TableContents[I - 1])) {
5028         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5029         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5030       }
5031     }
5032     BitMap = ConstantInt::get(M.getContext(), TableInt);
5033     BitMapElementTy = IT;
5034     Kind = BitMapKind;
5035     ++NumBitMaps;
5036     return;
5037   }
5038 
5039   // Store the table in an array.
5040   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5041   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5042 
5043   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5044                              GlobalVariable::PrivateLinkage, Initializer,
5045                              "switch.table." + FuncName);
5046   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5047   // Set the alignment to that of an array items. We will be only loading one
5048   // value out of it.
5049   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5050   Kind = ArrayKind;
5051 }
5052 
5053 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5054   switch (Kind) {
5055   case SingleValueKind:
5056     return SingleValue;
5057   case LinearMapKind: {
5058     // Derive the result value from the input value.
5059     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5060                                           false, "switch.idx.cast");
5061     if (!LinearMultiplier->isOne())
5062       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5063     if (!LinearOffset->isZero())
5064       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5065     return Result;
5066   }
5067   case BitMapKind: {
5068     // Type of the bitmap (e.g. i59).
5069     IntegerType *MapTy = BitMap->getType();
5070 
5071     // Cast Index to the same type as the bitmap.
5072     // Note: The Index is <= the number of elements in the table, so
5073     // truncating it to the width of the bitmask is safe.
5074     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5075 
5076     // Multiply the shift amount by the element width.
5077     ShiftAmt = Builder.CreateMul(
5078         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5079         "switch.shiftamt");
5080 
5081     // Shift down.
5082     Value *DownShifted =
5083         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5084     // Mask off.
5085     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5086   }
5087   case ArrayKind: {
5088     // Make sure the table index will not overflow when treated as signed.
5089     IntegerType *IT = cast<IntegerType>(Index->getType());
5090     uint64_t TableSize =
5091         Array->getInitializer()->getType()->getArrayNumElements();
5092     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5093       Index = Builder.CreateZExt(
5094           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5095           "switch.tableidx.zext");
5096 
5097     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5098     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5099                                            GEPIndices, "switch.gep");
5100     return Builder.CreateLoad(
5101         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5102         "switch.load");
5103   }
5104   }
5105   llvm_unreachable("Unknown lookup table kind!");
5106 }
5107 
5108 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5109                                            uint64_t TableSize,
5110                                            Type *ElementType) {
5111   auto *IT = dyn_cast<IntegerType>(ElementType);
5112   if (!IT)
5113     return false;
5114   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5115   // are <= 15, we could try to narrow the type.
5116 
5117   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5118   if (TableSize >= UINT_MAX / IT->getBitWidth())
5119     return false;
5120   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5121 }
5122 
5123 /// Determine whether a lookup table should be built for this switch, based on
5124 /// the number of cases, size of the table, and the types of the results.
5125 static bool
5126 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5127                        const TargetTransformInfo &TTI, const DataLayout &DL,
5128                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5129   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5130     return false; // TableSize overflowed, or mul below might overflow.
5131 
5132   bool AllTablesFitInRegister = true;
5133   bool HasIllegalType = false;
5134   for (const auto &I : ResultTypes) {
5135     Type *Ty = I.second;
5136 
5137     // Saturate this flag to true.
5138     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5139 
5140     // Saturate this flag to false.
5141     AllTablesFitInRegister =
5142         AllTablesFitInRegister &&
5143         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5144 
5145     // If both flags saturate, we're done. NOTE: This *only* works with
5146     // saturating flags, and all flags have to saturate first due to the
5147     // non-deterministic behavior of iterating over a dense map.
5148     if (HasIllegalType && !AllTablesFitInRegister)
5149       break;
5150   }
5151 
5152   // If each table would fit in a register, we should build it anyway.
5153   if (AllTablesFitInRegister)
5154     return true;
5155 
5156   // Don't build a table that doesn't fit in-register if it has illegal types.
5157   if (HasIllegalType)
5158     return false;
5159 
5160   // The table density should be at least 40%. This is the same criterion as for
5161   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5162   // FIXME: Find the best cut-off.
5163   return SI->getNumCases() * 10 >= TableSize * 4;
5164 }
5165 
5166 /// Try to reuse the switch table index compare. Following pattern:
5167 /// \code
5168 ///     if (idx < tablesize)
5169 ///        r = table[idx]; // table does not contain default_value
5170 ///     else
5171 ///        r = default_value;
5172 ///     if (r != default_value)
5173 ///        ...
5174 /// \endcode
5175 /// Is optimized to:
5176 /// \code
5177 ///     cond = idx < tablesize;
5178 ///     if (cond)
5179 ///        r = table[idx];
5180 ///     else
5181 ///        r = default_value;
5182 ///     if (cond)
5183 ///        ...
5184 /// \endcode
5185 /// Jump threading will then eliminate the second if(cond).
5186 static void reuseTableCompare(
5187     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5188     Constant *DefaultValue,
5189     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5190   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5191   if (!CmpInst)
5192     return;
5193 
5194   // We require that the compare is in the same block as the phi so that jump
5195   // threading can do its work afterwards.
5196   if (CmpInst->getParent() != PhiBlock)
5197     return;
5198 
5199   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5200   if (!CmpOp1)
5201     return;
5202 
5203   Value *RangeCmp = RangeCheckBranch->getCondition();
5204   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5205   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5206 
5207   // Check if the compare with the default value is constant true or false.
5208   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5209                                                  DefaultValue, CmpOp1, true);
5210   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5211     return;
5212 
5213   // Check if the compare with the case values is distinct from the default
5214   // compare result.
5215   for (auto ValuePair : Values) {
5216     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5217                                                 ValuePair.second, CmpOp1, true);
5218     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5219       return;
5220     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5221            "Expect true or false as compare result.");
5222   }
5223 
5224   // Check if the branch instruction dominates the phi node. It's a simple
5225   // dominance check, but sufficient for our needs.
5226   // Although this check is invariant in the calling loops, it's better to do it
5227   // at this late stage. Practically we do it at most once for a switch.
5228   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5229   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5230     BasicBlock *Pred = *PI;
5231     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5232       return;
5233   }
5234 
5235   if (DefaultConst == FalseConst) {
5236     // The compare yields the same result. We can replace it.
5237     CmpInst->replaceAllUsesWith(RangeCmp);
5238     ++NumTableCmpReuses;
5239   } else {
5240     // The compare yields the same result, just inverted. We can replace it.
5241     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5242         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5243         RangeCheckBranch);
5244     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5245     ++NumTableCmpReuses;
5246   }
5247 }
5248 
5249 /// If the switch is only used to initialize one or more phi nodes in a common
5250 /// successor block with different constant values, replace the switch with
5251 /// lookup tables.
5252 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5253                                 const DataLayout &DL,
5254                                 const TargetTransformInfo &TTI) {
5255   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5256 
5257   Function *Fn = SI->getParent()->getParent();
5258   // Only build lookup table when we have a target that supports it or the
5259   // attribute is not set.
5260   if (!TTI.shouldBuildLookupTables() ||
5261       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5262     return false;
5263 
5264   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5265   // split off a dense part and build a lookup table for that.
5266 
5267   // FIXME: This creates arrays of GEPs to constant strings, which means each
5268   // GEP needs a runtime relocation in PIC code. We should just build one big
5269   // string and lookup indices into that.
5270 
5271   // Ignore switches with less than three cases. Lookup tables will not make
5272   // them faster, so we don't analyze them.
5273   if (SI->getNumCases() < 3)
5274     return false;
5275 
5276   // Figure out the corresponding result for each case value and phi node in the
5277   // common destination, as well as the min and max case values.
5278   assert(!empty(SI->cases()));
5279   SwitchInst::CaseIt CI = SI->case_begin();
5280   ConstantInt *MinCaseVal = CI->getCaseValue();
5281   ConstantInt *MaxCaseVal = CI->getCaseValue();
5282 
5283   BasicBlock *CommonDest = nullptr;
5284 
5285   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5286   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5287 
5288   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5289   SmallDenseMap<PHINode *, Type *> ResultTypes;
5290   SmallVector<PHINode *, 4> PHIs;
5291 
5292   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5293     ConstantInt *CaseVal = CI->getCaseValue();
5294     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5295       MinCaseVal = CaseVal;
5296     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5297       MaxCaseVal = CaseVal;
5298 
5299     // Resulting value at phi nodes for this case value.
5300     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5301     ResultsTy Results;
5302     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5303                         Results, DL, TTI))
5304       return false;
5305 
5306     // Append the result from this case to the list for each phi.
5307     for (const auto &I : Results) {
5308       PHINode *PHI = I.first;
5309       Constant *Value = I.second;
5310       if (!ResultLists.count(PHI))
5311         PHIs.push_back(PHI);
5312       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5313     }
5314   }
5315 
5316   // Keep track of the result types.
5317   for (PHINode *PHI : PHIs) {
5318     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5319   }
5320 
5321   uint64_t NumResults = ResultLists[PHIs[0]].size();
5322   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5323   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5324   bool TableHasHoles = (NumResults < TableSize);
5325 
5326   // If the table has holes, we need a constant result for the default case
5327   // or a bitmask that fits in a register.
5328   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5329   bool HasDefaultResults =
5330       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5331                      DefaultResultsList, DL, TTI);
5332 
5333   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5334   if (NeedMask) {
5335     // As an extra penalty for the validity test we require more cases.
5336     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5337       return false;
5338     if (!DL.fitsInLegalInteger(TableSize))
5339       return false;
5340   }
5341 
5342   for (const auto &I : DefaultResultsList) {
5343     PHINode *PHI = I.first;
5344     Constant *Result = I.second;
5345     DefaultResults[PHI] = Result;
5346   }
5347 
5348   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5349     return false;
5350 
5351   // Create the BB that does the lookups.
5352   Module &Mod = *CommonDest->getParent()->getParent();
5353   BasicBlock *LookupBB = BasicBlock::Create(
5354       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5355 
5356   // Compute the table index value.
5357   Builder.SetInsertPoint(SI);
5358   Value *TableIndex;
5359   if (MinCaseVal->isNullValue())
5360     TableIndex = SI->getCondition();
5361   else
5362     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5363                                    "switch.tableidx");
5364 
5365   // Compute the maximum table size representable by the integer type we are
5366   // switching upon.
5367   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5368   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5369   assert(MaxTableSize >= TableSize &&
5370          "It is impossible for a switch to have more entries than the max "
5371          "representable value of its input integer type's size.");
5372 
5373   // If the default destination is unreachable, or if the lookup table covers
5374   // all values of the conditional variable, branch directly to the lookup table
5375   // BB. Otherwise, check that the condition is within the case range.
5376   const bool DefaultIsReachable =
5377       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5378   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5379   BranchInst *RangeCheckBranch = nullptr;
5380 
5381   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5382     Builder.CreateBr(LookupBB);
5383     // Note: We call removeProdecessor later since we need to be able to get the
5384     // PHI value for the default case in case we're using a bit mask.
5385   } else {
5386     Value *Cmp = Builder.CreateICmpULT(
5387         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5388     RangeCheckBranch =
5389         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5390   }
5391 
5392   // Populate the BB that does the lookups.
5393   Builder.SetInsertPoint(LookupBB);
5394 
5395   if (NeedMask) {
5396     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5397     // re-purposed to do the hole check, and we create a new LookupBB.
5398     BasicBlock *MaskBB = LookupBB;
5399     MaskBB->setName("switch.hole_check");
5400     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5401                                   CommonDest->getParent(), CommonDest);
5402 
5403     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5404     // unnecessary illegal types.
5405     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5406     APInt MaskInt(TableSizePowOf2, 0);
5407     APInt One(TableSizePowOf2, 1);
5408     // Build bitmask; fill in a 1 bit for every case.
5409     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5410     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5411       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5412                          .getLimitedValue();
5413       MaskInt |= One << Idx;
5414     }
5415     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5416 
5417     // Get the TableIndex'th bit of the bitmask.
5418     // If this bit is 0 (meaning hole) jump to the default destination,
5419     // else continue with table lookup.
5420     IntegerType *MapTy = TableMask->getType();
5421     Value *MaskIndex =
5422         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5423     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5424     Value *LoBit = Builder.CreateTrunc(
5425         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5426     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5427 
5428     Builder.SetInsertPoint(LookupBB);
5429     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5430   }
5431 
5432   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5433     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5434     // do not delete PHINodes here.
5435     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5436                                             /*KeepOneInputPHIs=*/true);
5437   }
5438 
5439   bool ReturnedEarly = false;
5440   for (PHINode *PHI : PHIs) {
5441     const ResultListTy &ResultList = ResultLists[PHI];
5442 
5443     // If using a bitmask, use any value to fill the lookup table holes.
5444     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5445     StringRef FuncName = Fn->getName();
5446     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5447                             FuncName);
5448 
5449     Value *Result = Table.BuildLookup(TableIndex, Builder);
5450 
5451     // If the result is used to return immediately from the function, we want to
5452     // do that right here.
5453     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5454         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5455       Builder.CreateRet(Result);
5456       ReturnedEarly = true;
5457       break;
5458     }
5459 
5460     // Do a small peephole optimization: re-use the switch table compare if
5461     // possible.
5462     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5463       BasicBlock *PhiBlock = PHI->getParent();
5464       // Search for compare instructions which use the phi.
5465       for (auto *User : PHI->users()) {
5466         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5467       }
5468     }
5469 
5470     PHI->addIncoming(Result, LookupBB);
5471   }
5472 
5473   if (!ReturnedEarly)
5474     Builder.CreateBr(CommonDest);
5475 
5476   // Remove the switch.
5477   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5478     BasicBlock *Succ = SI->getSuccessor(i);
5479 
5480     if (Succ == SI->getDefaultDest())
5481       continue;
5482     Succ->removePredecessor(SI->getParent());
5483   }
5484   SI->eraseFromParent();
5485 
5486   ++NumLookupTables;
5487   if (NeedMask)
5488     ++NumLookupTablesHoles;
5489   return true;
5490 }
5491 
5492 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5493   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5494   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5495   uint64_t Range = Diff + 1;
5496   uint64_t NumCases = Values.size();
5497   // 40% is the default density for building a jump table in optsize/minsize mode.
5498   uint64_t MinDensity = 40;
5499 
5500   return NumCases * 100 >= Range * MinDensity;
5501 }
5502 
5503 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5504 /// of cases.
5505 ///
5506 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5507 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5508 ///
5509 /// This converts a sparse switch into a dense switch which allows better
5510 /// lowering and could also allow transforming into a lookup table.
5511 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5512                               const DataLayout &DL,
5513                               const TargetTransformInfo &TTI) {
5514   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5515   if (CondTy->getIntegerBitWidth() > 64 ||
5516       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5517     return false;
5518   // Only bother with this optimization if there are more than 3 switch cases;
5519   // SDAG will only bother creating jump tables for 4 or more cases.
5520   if (SI->getNumCases() < 4)
5521     return false;
5522 
5523   // This transform is agnostic to the signedness of the input or case values. We
5524   // can treat the case values as signed or unsigned. We can optimize more common
5525   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5526   // as signed.
5527   SmallVector<int64_t,4> Values;
5528   for (auto &C : SI->cases())
5529     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5530   llvm::sort(Values);
5531 
5532   // If the switch is already dense, there's nothing useful to do here.
5533   if (isSwitchDense(Values))
5534     return false;
5535 
5536   // First, transform the values such that they start at zero and ascend.
5537   int64_t Base = Values[0];
5538   for (auto &V : Values)
5539     V -= (uint64_t)(Base);
5540 
5541   // Now we have signed numbers that have been shifted so that, given enough
5542   // precision, there are no negative values. Since the rest of the transform
5543   // is bitwise only, we switch now to an unsigned representation.
5544   uint64_t GCD = 0;
5545   for (auto &V : Values)
5546     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5547 
5548   // This transform can be done speculatively because it is so cheap - it results
5549   // in a single rotate operation being inserted. This can only happen if the
5550   // factor extracted is a power of 2.
5551   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5552   // inverse of GCD and then perform this transform.
5553   // FIXME: It's possible that optimizing a switch on powers of two might also
5554   // be beneficial - flag values are often powers of two and we could use a CLZ
5555   // as the key function.
5556   if (GCD <= 1 || !isPowerOf2_64(GCD))
5557     // No common divisor found or too expensive to compute key function.
5558     return false;
5559 
5560   unsigned Shift = Log2_64(GCD);
5561   for (auto &V : Values)
5562     V = (int64_t)((uint64_t)V >> Shift);
5563 
5564   if (!isSwitchDense(Values))
5565     // Transform didn't create a dense switch.
5566     return false;
5567 
5568   // The obvious transform is to shift the switch condition right and emit a
5569   // check that the condition actually cleanly divided by GCD, i.e.
5570   //   C & (1 << Shift - 1) == 0
5571   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5572   //
5573   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5574   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5575   // are nonzero then the switch condition will be very large and will hit the
5576   // default case.
5577 
5578   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5579   Builder.SetInsertPoint(SI);
5580   auto *ShiftC = ConstantInt::get(Ty, Shift);
5581   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5582   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5583   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5584   auto *Rot = Builder.CreateOr(LShr, Shl);
5585   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5586 
5587   for (auto Case : SI->cases()) {
5588     auto *Orig = Case.getCaseValue();
5589     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5590     Case.setValue(
5591         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5592   }
5593   return true;
5594 }
5595 
5596 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5597   BasicBlock *BB = SI->getParent();
5598 
5599   if (isValueEqualityComparison(SI)) {
5600     // If we only have one predecessor, and if it is a branch on this value,
5601     // see if that predecessor totally determines the outcome of this switch.
5602     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5603       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5604         return requestResimplify();
5605 
5606     Value *Cond = SI->getCondition();
5607     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5608       if (SimplifySwitchOnSelect(SI, Select))
5609         return requestResimplify();
5610 
5611     // If the block only contains the switch, see if we can fold the block
5612     // away into any preds.
5613     if (SI == &*BB->instructionsWithoutDebug().begin())
5614       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5615         return requestResimplify();
5616   }
5617 
5618   // Try to transform the switch into an icmp and a branch.
5619   if (TurnSwitchRangeIntoICmp(SI, Builder))
5620     return requestResimplify();
5621 
5622   // Remove unreachable cases.
5623   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5624     return requestResimplify();
5625 
5626   if (switchToSelect(SI, Builder, DL, TTI))
5627     return requestResimplify();
5628 
5629   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5630     return requestResimplify();
5631 
5632   // The conversion from switch to lookup tables results in difficult-to-analyze
5633   // code and makes pruning branches much harder. This is a problem if the
5634   // switch expression itself can still be restricted as a result of inlining or
5635   // CVP. Therefore, only apply this transformation during late stages of the
5636   // optimisation pipeline.
5637   if (Options.ConvertSwitchToLookupTable &&
5638       SwitchToLookupTable(SI, Builder, DL, TTI))
5639     return requestResimplify();
5640 
5641   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5642     return requestResimplify();
5643 
5644   return false;
5645 }
5646 
5647 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5648   BasicBlock *BB = IBI->getParent();
5649   bool Changed = false;
5650 
5651   // Eliminate redundant destinations.
5652   SmallPtrSet<Value *, 8> Succs;
5653   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5654     BasicBlock *Dest = IBI->getDestination(i);
5655     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5656       Dest->removePredecessor(BB);
5657       IBI->removeDestination(i);
5658       --i;
5659       --e;
5660       Changed = true;
5661     }
5662   }
5663 
5664   if (IBI->getNumDestinations() == 0) {
5665     // If the indirectbr has no successors, change it to unreachable.
5666     new UnreachableInst(IBI->getContext(), IBI);
5667     EraseTerminatorAndDCECond(IBI);
5668     return true;
5669   }
5670 
5671   if (IBI->getNumDestinations() == 1) {
5672     // If the indirectbr has one successor, change it to a direct branch.
5673     BranchInst::Create(IBI->getDestination(0), IBI);
5674     EraseTerminatorAndDCECond(IBI);
5675     return true;
5676   }
5677 
5678   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5679     if (SimplifyIndirectBrOnSelect(IBI, SI))
5680       return requestResimplify();
5681   }
5682   return Changed;
5683 }
5684 
5685 /// Given an block with only a single landing pad and a unconditional branch
5686 /// try to find another basic block which this one can be merged with.  This
5687 /// handles cases where we have multiple invokes with unique landing pads, but
5688 /// a shared handler.
5689 ///
5690 /// We specifically choose to not worry about merging non-empty blocks
5691 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5692 /// practice, the optimizer produces empty landing pad blocks quite frequently
5693 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5694 /// sinking in this file)
5695 ///
5696 /// This is primarily a code size optimization.  We need to avoid performing
5697 /// any transform which might inhibit optimization (such as our ability to
5698 /// specialize a particular handler via tail commoning).  We do this by not
5699 /// merging any blocks which require us to introduce a phi.  Since the same
5700 /// values are flowing through both blocks, we don't lose any ability to
5701 /// specialize.  If anything, we make such specialization more likely.
5702 ///
5703 /// TODO - This transformation could remove entries from a phi in the target
5704 /// block when the inputs in the phi are the same for the two blocks being
5705 /// merged.  In some cases, this could result in removal of the PHI entirely.
5706 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5707                                  BasicBlock *BB) {
5708   auto Succ = BB->getUniqueSuccessor();
5709   assert(Succ);
5710   // If there's a phi in the successor block, we'd likely have to introduce
5711   // a phi into the merged landing pad block.
5712   if (isa<PHINode>(*Succ->begin()))
5713     return false;
5714 
5715   for (BasicBlock *OtherPred : predecessors(Succ)) {
5716     if (BB == OtherPred)
5717       continue;
5718     BasicBlock::iterator I = OtherPred->begin();
5719     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5720     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5721       continue;
5722     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5723       ;
5724     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5725     if (!BI2 || !BI2->isIdenticalTo(BI))
5726       continue;
5727 
5728     // We've found an identical block.  Update our predecessors to take that
5729     // path instead and make ourselves dead.
5730     SmallPtrSet<BasicBlock *, 16> Preds;
5731     Preds.insert(pred_begin(BB), pred_end(BB));
5732     for (BasicBlock *Pred : Preds) {
5733       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5734       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5735              "unexpected successor");
5736       II->setUnwindDest(OtherPred);
5737     }
5738 
5739     // The debug info in OtherPred doesn't cover the merged control flow that
5740     // used to go through BB.  We need to delete it or update it.
5741     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5742       Instruction &Inst = *I;
5743       I++;
5744       if (isa<DbgInfoIntrinsic>(Inst))
5745         Inst.eraseFromParent();
5746     }
5747 
5748     SmallPtrSet<BasicBlock *, 16> Succs;
5749     Succs.insert(succ_begin(BB), succ_end(BB));
5750     for (BasicBlock *Succ : Succs) {
5751       Succ->removePredecessor(BB);
5752     }
5753 
5754     IRBuilder<> Builder(BI);
5755     Builder.CreateUnreachable();
5756     BI->eraseFromParent();
5757     return true;
5758   }
5759   return false;
5760 }
5761 
5762 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5763                                           IRBuilder<> &Builder) {
5764   BasicBlock *BB = BI->getParent();
5765   BasicBlock *Succ = BI->getSuccessor(0);
5766 
5767   // If the Terminator is the only non-phi instruction, simplify the block.
5768   // If LoopHeader is provided, check if the block or its successor is a loop
5769   // header. (This is for early invocations before loop simplify and
5770   // vectorization to keep canonical loop forms for nested loops. These blocks
5771   // can be eliminated when the pass is invoked later in the back-end.)
5772   // Note that if BB has only one predecessor then we do not introduce new
5773   // backedge, so we can eliminate BB.
5774   bool NeedCanonicalLoop =
5775       Options.NeedCanonicalLoop &&
5776       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5777        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5778   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5779   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5780       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5781     return true;
5782 
5783   // If the only instruction in the block is a seteq/setne comparison against a
5784   // constant, try to simplify the block.
5785   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5786     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5787       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5788         ;
5789       if (I->isTerminator() &&
5790           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5791         return true;
5792     }
5793 
5794   // See if we can merge an empty landing pad block with another which is
5795   // equivalent.
5796   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5797     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5798       ;
5799     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5800       return true;
5801   }
5802 
5803   // If this basic block is ONLY a compare and a branch, and if a predecessor
5804   // branches to us and our successor, fold the comparison into the
5805   // predecessor and use logical operations to update the incoming value
5806   // for PHI nodes in common successor.
5807   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5808     return requestResimplify();
5809   return false;
5810 }
5811 
5812 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5813   BasicBlock *PredPred = nullptr;
5814   for (auto *P : predecessors(BB)) {
5815     BasicBlock *PPred = P->getSinglePredecessor();
5816     if (!PPred || (PredPred && PredPred != PPred))
5817       return nullptr;
5818     PredPred = PPred;
5819   }
5820   return PredPred;
5821 }
5822 
5823 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5824   BasicBlock *BB = BI->getParent();
5825   const Function *Fn = BB->getParent();
5826   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5827     return false;
5828 
5829   // Conditional branch
5830   if (isValueEqualityComparison(BI)) {
5831     // If we only have one predecessor, and if it is a branch on this value,
5832     // see if that predecessor totally determines the outcome of this
5833     // switch.
5834     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5835       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5836         return requestResimplify();
5837 
5838     // This block must be empty, except for the setcond inst, if it exists.
5839     // Ignore dbg intrinsics.
5840     auto I = BB->instructionsWithoutDebug().begin();
5841     if (&*I == BI) {
5842       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5843         return requestResimplify();
5844     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5845       ++I;
5846       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5847         return requestResimplify();
5848     }
5849   }
5850 
5851   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5852   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5853     return true;
5854 
5855   // If this basic block has dominating predecessor blocks and the dominating
5856   // blocks' conditions imply BI's condition, we know the direction of BI.
5857   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5858   if (Imp) {
5859     // Turn this into a branch on constant.
5860     auto *OldCond = BI->getCondition();
5861     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5862                              : ConstantInt::getFalse(BB->getContext());
5863     BI->setCondition(TorF);
5864     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5865     return requestResimplify();
5866   }
5867 
5868   // If this basic block is ONLY a compare and a branch, and if a predecessor
5869   // branches to us and one of our successors, fold the comparison into the
5870   // predecessor and use logical operations to pick the right destination.
5871   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5872     return requestResimplify();
5873 
5874   // We have a conditional branch to two blocks that are only reachable
5875   // from BI.  We know that the condbr dominates the two blocks, so see if
5876   // there is any identical code in the "then" and "else" blocks.  If so, we
5877   // can hoist it up to the branching block.
5878   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5879     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5880       if (HoistThenElseCodeToIf(BI, TTI))
5881         return requestResimplify();
5882     } else {
5883       // If Successor #1 has multiple preds, we may be able to conditionally
5884       // execute Successor #0 if it branches to Successor #1.
5885       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5886       if (Succ0TI->getNumSuccessors() == 1 &&
5887           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5888         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5889           return requestResimplify();
5890     }
5891   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5892     // If Successor #0 has multiple preds, we may be able to conditionally
5893     // execute Successor #1 if it branches to Successor #0.
5894     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5895     if (Succ1TI->getNumSuccessors() == 1 &&
5896         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5897       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5898         return requestResimplify();
5899   }
5900 
5901   // If this is a branch on a phi node in the current block, thread control
5902   // through this block if any PHI node entries are constants.
5903   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5904     if (PN->getParent() == BI->getParent())
5905       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5906         return requestResimplify();
5907 
5908   // Scan predecessor blocks for conditional branches.
5909   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5910     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5911       if (PBI != BI && PBI->isConditional())
5912         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5913           return requestResimplify();
5914 
5915   // Look for diamond patterns.
5916   if (MergeCondStores)
5917     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5918       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5919         if (PBI != BI && PBI->isConditional())
5920           if (mergeConditionalStores(PBI, BI, DL))
5921             return requestResimplify();
5922 
5923   return false;
5924 }
5925 
5926 /// Check if passing a value to an instruction will cause undefined behavior.
5927 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5928   Constant *C = dyn_cast<Constant>(V);
5929   if (!C)
5930     return false;
5931 
5932   if (I->use_empty())
5933     return false;
5934 
5935   if (C->isNullValue() || isa<UndefValue>(C)) {
5936     // Only look at the first use, avoid hurting compile time with long uselists
5937     User *Use = *I->user_begin();
5938 
5939     // Now make sure that there are no instructions in between that can alter
5940     // control flow (eg. calls)
5941     for (BasicBlock::iterator
5942              i = ++BasicBlock::iterator(I),
5943              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5944          i != UI; ++i)
5945       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5946         return false;
5947 
5948     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5949     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5950       if (GEP->getPointerOperand() == I)
5951         return passingValueIsAlwaysUndefined(V, GEP);
5952 
5953     // Look through bitcasts.
5954     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5955       return passingValueIsAlwaysUndefined(V, BC);
5956 
5957     // Load from null is undefined.
5958     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5959       if (!LI->isVolatile())
5960         return !NullPointerIsDefined(LI->getFunction(),
5961                                      LI->getPointerAddressSpace());
5962 
5963     // Store to null is undefined.
5964     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5965       if (!SI->isVolatile())
5966         return (!NullPointerIsDefined(SI->getFunction(),
5967                                       SI->getPointerAddressSpace())) &&
5968                SI->getPointerOperand() == I;
5969 
5970     // A call to null is undefined.
5971     if (auto CS = CallSite(Use))
5972       return !NullPointerIsDefined(CS->getFunction()) &&
5973              CS.getCalledValue() == I;
5974   }
5975   return false;
5976 }
5977 
5978 /// If BB has an incoming value that will always trigger undefined behavior
5979 /// (eg. null pointer dereference), remove the branch leading here.
5980 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5981   for (PHINode &PHI : BB->phis())
5982     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5983       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5984         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5985         IRBuilder<> Builder(T);
5986         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5987           BB->removePredecessor(PHI.getIncomingBlock(i));
5988           // Turn uncoditional branches into unreachables and remove the dead
5989           // destination from conditional branches.
5990           if (BI->isUnconditional())
5991             Builder.CreateUnreachable();
5992           else
5993             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5994                                                        : BI->getSuccessor(0));
5995           BI->eraseFromParent();
5996           return true;
5997         }
5998         // TODO: SwitchInst.
5999       }
6000 
6001   return false;
6002 }
6003 
6004 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6005   bool Changed = false;
6006 
6007   assert(BB && BB->getParent() && "Block not embedded in function!");
6008   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6009 
6010   // Remove basic blocks that have no predecessors (except the entry block)...
6011   // or that just have themself as a predecessor.  These are unreachable.
6012   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6013       BB->getSinglePredecessor() == BB) {
6014     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6015     DeleteDeadBlock(BB);
6016     return true;
6017   }
6018 
6019   // Check to see if we can constant propagate this terminator instruction
6020   // away...
6021   Changed |= ConstantFoldTerminator(BB, true);
6022 
6023   // Check for and eliminate duplicate PHI nodes in this block.
6024   Changed |= EliminateDuplicatePHINodes(BB);
6025 
6026   // Check for and remove branches that will always cause undefined behavior.
6027   Changed |= removeUndefIntroducingPredecessor(BB);
6028 
6029   // Merge basic blocks into their predecessor if there is only one distinct
6030   // pred, and if there is only one distinct successor of the predecessor, and
6031   // if there are no PHI nodes.
6032   if (MergeBlockIntoPredecessor(BB))
6033     return true;
6034 
6035   if (SinkCommon && Options.SinkCommonInsts)
6036     Changed |= SinkCommonCodeFromPredecessors(BB);
6037 
6038   IRBuilder<> Builder(BB);
6039 
6040   // If there is a trivial two-entry PHI node in this basic block, and we can
6041   // eliminate it, do so now.
6042   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6043     if (PN->getNumIncomingValues() == 2)
6044       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6045 
6046   Builder.SetInsertPoint(BB->getTerminator());
6047   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6048     if (BI->isUnconditional()) {
6049       if (SimplifyUncondBranch(BI, Builder))
6050         return true;
6051     } else {
6052       if (SimplifyCondBranch(BI, Builder))
6053         return true;
6054     }
6055   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6056     if (SimplifyReturn(RI, Builder))
6057       return true;
6058   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6059     if (SimplifyResume(RI, Builder))
6060       return true;
6061   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6062     if (SimplifyCleanupReturn(RI))
6063       return true;
6064   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6065     if (SimplifySwitch(SI, Builder))
6066       return true;
6067   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6068     if (SimplifyUnreachable(UI))
6069       return true;
6070   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6071     if (SimplifyIndirectBr(IBI))
6072       return true;
6073   }
6074 
6075   return Changed;
6076 }
6077 
6078 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6079   bool Changed = false;
6080 
6081   // Repeated simplify BB as long as resimplification is requested.
6082   do {
6083     Resimplify = false;
6084 
6085     // Perform one round of simplifcation. Resimplify flag will be set if
6086     // another iteration is requested.
6087     Changed |= simplifyOnce(BB);
6088   } while (Resimplify);
6089 
6090   return Changed;
6091 }
6092 
6093 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6094                        const SimplifyCFGOptions &Options,
6095                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6096   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6097                         Options)
6098       .run(BB);
6099 }
6100