1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/NoFolder.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <climits> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <map> 76 #include <set> 77 #include <tuple> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 #define DEBUG_TYPE "simplifycfg" 85 86 // Chosen as 2 so as to be cheap, but still to have enough power to fold 87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 88 // To catch this, we need to fold a compare and a select, hence '2' being the 89 // minimum reasonable default. 90 static cl::opt<unsigned> PHINodeFoldingThreshold( 91 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 92 cl::desc( 93 "Control the amount of phi node folding to perform (default = 2)")); 94 95 static cl::opt<bool> DupRet( 96 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 97 cl::desc("Duplicate return instructions into unconditional branches")); 98 99 static cl::opt<bool> 100 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 101 cl::desc("Sink common instructions down to the end block")); 102 103 static cl::opt<bool> HoistCondStores( 104 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 105 cl::desc("Hoist conditional stores if an unconditional store precedes")); 106 107 static cl::opt<bool> MergeCondStores( 108 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 109 cl::desc("Hoist conditional stores even if an unconditional store does not " 110 "precede - hoist multiple conditional stores into a single " 111 "predicated store")); 112 113 static cl::opt<bool> MergeCondStoresAggressively( 114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 115 cl::desc("When merging conditional stores, do so even if the resultant " 116 "basic blocks are unlikely to be if-converted as a result")); 117 118 static cl::opt<bool> SpeculateOneExpensiveInst( 119 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 120 cl::desc("Allow exactly one expensive instruction to be speculatively " 121 "executed")); 122 123 static cl::opt<unsigned> MaxSpeculationDepth( 124 "max-speculation-depth", cl::Hidden, cl::init(10), 125 cl::desc("Limit maximum recursion depth when calculating costs of " 126 "speculatively executed instructions")); 127 128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 129 STATISTIC(NumLinearMaps, 130 "Number of switch instructions turned into linear mapping"); 131 STATISTIC(NumLookupTables, 132 "Number of switch instructions turned into lookup tables"); 133 STATISTIC( 134 NumLookupTablesHoles, 135 "Number of switch instructions turned into lookup tables (holes checked)"); 136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 137 STATISTIC(NumSinkCommons, 138 "Number of common instructions sunk down to the end block"); 139 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 140 141 namespace { 142 143 // The first field contains the value that the switch produces when a certain 144 // case group is selected, and the second field is a vector containing the 145 // cases composing the case group. 146 using SwitchCaseResultVectorTy = 147 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 148 149 // The first field contains the phi node that generates a result of the switch 150 // and the second field contains the value generated for a certain case in the 151 // switch for that PHI. 152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 153 154 /// ValueEqualityComparisonCase - Represents a case of a switch. 155 struct ValueEqualityComparisonCase { 156 ConstantInt *Value; 157 BasicBlock *Dest; 158 159 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 160 : Value(Value), Dest(Dest) {} 161 162 bool operator<(ValueEqualityComparisonCase RHS) const { 163 // Comparing pointers is ok as we only rely on the order for uniquing. 164 return Value < RHS.Value; 165 } 166 167 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 168 }; 169 170 class SimplifyCFGOpt { 171 const TargetTransformInfo &TTI; 172 const DataLayout &DL; 173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 174 const SimplifyCFGOptions &Options; 175 bool Resimplify; 176 177 Value *isValueEqualityComparison(Instruction *TI); 178 BasicBlock *GetValueEqualityComparisonCases( 179 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 181 BasicBlock *Pred, 182 IRBuilder<> &Builder); 183 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 184 IRBuilder<> &Builder); 185 186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 188 bool SimplifySingleResume(ResumeInst *RI); 189 bool SimplifyCommonResume(ResumeInst *RI); 190 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 191 bool SimplifyUnreachable(UnreachableInst *UI); 192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 193 bool SimplifyIndirectBr(IndirectBrInst *IBI); 194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 198 IRBuilder<> &Builder); 199 200 public: 201 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 202 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 203 const SimplifyCFGOptions &Opts) 204 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 205 206 bool run(BasicBlock *BB); 207 bool simplifyOnce(BasicBlock *BB); 208 209 // Helper to set Resimplify and return change indication. 210 bool requestResimplify() { 211 Resimplify = true; 212 return true; 213 } 214 }; 215 216 } // end anonymous namespace 217 218 /// Return true if it is safe to merge these two 219 /// terminator instructions together. 220 static bool 221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 222 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 223 if (SI1 == SI2) 224 return false; // Can't merge with self! 225 226 // It is not safe to merge these two switch instructions if they have a common 227 // successor, and if that successor has a PHI node, and if *that* PHI node has 228 // conflicting incoming values from the two switch blocks. 229 BasicBlock *SI1BB = SI1->getParent(); 230 BasicBlock *SI2BB = SI2->getParent(); 231 232 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 233 bool Fail = false; 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != 239 PN->getIncomingValueForBlock(SI2BB)) { 240 if (FailBlocks) 241 FailBlocks->insert(Succ); 242 Fail = true; 243 } 244 } 245 246 return !Fail; 247 } 248 249 /// Return true if it is safe and profitable to merge these two terminator 250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 251 /// store all PHI nodes in common successors. 252 static bool 253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 254 Instruction *Cond, 255 SmallVectorImpl<PHINode *> &PhiNodes) { 256 if (SI1 == SI2) 257 return false; // Can't merge with self! 258 assert(SI1->isUnconditional() && SI2->isConditional()); 259 260 // We fold the unconditional branch if we can easily update all PHI nodes in 261 // common successors: 262 // 1> We have a constant incoming value for the conditional branch; 263 // 2> We have "Cond" as the incoming value for the unconditional branch; 264 // 3> SI2->getCondition() and Cond have same operands. 265 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 266 if (!Ci2) 267 return false; 268 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 269 Cond->getOperand(1) == Ci2->getOperand(1)) && 270 !(Cond->getOperand(0) == Ci2->getOperand(1) && 271 Cond->getOperand(1) == Ci2->getOperand(0))) 272 return false; 273 274 BasicBlock *SI1BB = SI1->getParent(); 275 BasicBlock *SI2BB = SI2->getParent(); 276 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 277 for (BasicBlock *Succ : successors(SI2BB)) 278 if (SI1Succs.count(Succ)) 279 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 280 PHINode *PN = cast<PHINode>(BBI); 281 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 282 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 283 return false; 284 PhiNodes.push_back(PN); 285 } 286 return true; 287 } 288 289 /// Update PHI nodes in Succ to indicate that there will now be entries in it 290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 291 /// will be the same as those coming in from ExistPred, an existing predecessor 292 /// of Succ. 293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 294 BasicBlock *ExistPred) { 295 for (PHINode &PN : Succ->phis()) 296 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 297 } 298 299 /// Compute an abstract "cost" of speculating the given instruction, 300 /// which is assumed to be safe to speculate. TCC_Free means cheap, 301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 302 /// expensive. 303 static unsigned ComputeSpeculationCost(const User *I, 304 const TargetTransformInfo &TTI) { 305 assert(isSafeToSpeculativelyExecute(I) && 306 "Instruction is not safe to speculatively execute!"); 307 return TTI.getUserCost(I); 308 } 309 310 /// If we have a merge point of an "if condition" as accepted above, 311 /// return true if the specified value dominates the block. We 312 /// don't handle the true generality of domination here, just a special case 313 /// which works well enough for us. 314 /// 315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 316 /// see if V (which must be an instruction) and its recursive operands 317 /// that do not dominate BB have a combined cost lower than CostRemaining and 318 /// are non-trapping. If both are true, the instruction is inserted into the 319 /// set and true is returned. 320 /// 321 /// The cost for most non-trapping instructions is defined as 1 except for 322 /// Select whose cost is 2. 323 /// 324 /// After this function returns, CostRemaining is decreased by the cost of 325 /// V plus its non-dominating operands. If that cost is greater than 326 /// CostRemaining, false is returned and CostRemaining is undefined. 327 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 328 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 329 unsigned &CostRemaining, 330 const TargetTransformInfo &TTI, 331 unsigned Depth = 0) { 332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 333 // so limit the recursion depth. 334 // TODO: While this recursion limit does prevent pathological behavior, it 335 // would be better to track visited instructions to avoid cycles. 336 if (Depth == MaxSpeculationDepth) 337 return false; 338 339 Instruction *I = dyn_cast<Instruction>(V); 340 if (!I) { 341 // Non-instructions all dominate instructions, but not all constantexprs 342 // can be executed unconditionally. 343 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 344 if (C->canTrap()) 345 return false; 346 return true; 347 } 348 BasicBlock *PBB = I->getParent(); 349 350 // We don't want to allow weird loops that might have the "if condition" in 351 // the bottom of this block. 352 if (PBB == BB) 353 return false; 354 355 // If this instruction is defined in a block that contains an unconditional 356 // branch to BB, then it must be in the 'conditional' part of the "if 357 // statement". If not, it definitely dominates the region. 358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 359 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 360 return true; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts.count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts.insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 443 /// Value found for the switch comparison 444 Value *CompValue = nullptr; 445 446 /// Extra clause to be checked before the switch 447 Value *Extra = nullptr; 448 449 /// Set of integers to match in switch 450 SmallVector<ConstantInt *, 8> Vals; 451 452 /// Number of comparisons matched in the and/or chain 453 unsigned UsedICmps = 0; 454 455 /// Construct and compute the result for the comparison instruction Cond 456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 457 gather(Cond); 458 } 459 460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 461 ConstantComparesGatherer & 462 operator=(const ConstantComparesGatherer &) = delete; 463 464 private: 465 /// Try to set the current value used for the comparison, it succeeds only if 466 /// it wasn't set before or if the new value is the same as the old one 467 bool setValueOnce(Value *NewVal) { 468 if (CompValue && CompValue != NewVal) 469 return false; 470 CompValue = NewVal; 471 return (CompValue != nullptr); 472 } 473 474 /// Try to match Instruction "I" as a comparison against a constant and 475 /// populates the array Vals with the set of values that match (or do not 476 /// match depending on isEQ). 477 /// Return false on failure. On success, the Value the comparison matched 478 /// against is placed in CompValue. 479 /// If CompValue is already set, the function is expected to fail if a match 480 /// is found but the value compared to is different. 481 bool matchInstruction(Instruction *I, bool isEQ) { 482 // If this is an icmp against a constant, handle this as one of the cases. 483 ICmpInst *ICI; 484 ConstantInt *C; 485 if (!((ICI = dyn_cast<ICmpInst>(I)) && 486 (C = GetConstantInt(I->getOperand(1), DL)))) { 487 return false; 488 } 489 490 Value *RHSVal; 491 const APInt *RHSC; 492 493 // Pattern match a special case 494 // (x & ~2^z) == y --> x == y || x == y|2^z 495 // This undoes a transformation done by instcombine to fuse 2 compares. 496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 497 // It's a little bit hard to see why the following transformations are 498 // correct. Here is a CVC3 program to verify them for 64-bit values: 499 500 /* 501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 502 x : BITVECTOR(64); 503 y : BITVECTOR(64); 504 z : BITVECTOR(64); 505 mask : BITVECTOR(64) = BVSHL(ONE, z); 506 QUERY( (y & ~mask = y) => 507 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 508 ); 509 QUERY( (y | mask = y) => 510 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 511 ); 512 */ 513 514 // Please note that each pattern must be a dual implication (<--> or 515 // iff). One directional implication can create spurious matches. If the 516 // implication is only one-way, an unsatisfiable condition on the left 517 // side can imply a satisfiable condition on the right side. Dual 518 // implication ensures that satisfiable conditions are transformed to 519 // other satisfiable conditions and unsatisfiable conditions are 520 // transformed to other unsatisfiable conditions. 521 522 // Here is a concrete example of a unsatisfiable condition on the left 523 // implying a satisfiable condition on the right: 524 // 525 // mask = (1 << z) 526 // (x & ~mask) == y --> (x == y || x == (y | mask)) 527 // 528 // Substituting y = 3, z = 0 yields: 529 // (x & -2) == 3 --> (x == 3 || x == 2) 530 531 // Pattern match a special case: 532 /* 533 QUERY( (y & ~mask = y) => 534 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 535 ); 536 */ 537 if (match(ICI->getOperand(0), 538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 539 APInt Mask = ~*RHSC; 540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 541 // If we already have a value for the switch, it has to match! 542 if (!setValueOnce(RHSVal)) 543 return false; 544 545 Vals.push_back(C); 546 Vals.push_back( 547 ConstantInt::get(C->getContext(), 548 C->getValue() | Mask)); 549 UsedICmps++; 550 return true; 551 } 552 } 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y | mask = y) => 557 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = *RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back(ConstantInt::get(C->getContext(), 570 C->getValue() & ~Mask)); 571 UsedICmps++; 572 return true; 573 } 574 } 575 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(ICI->getOperand(0))) 578 return false; 579 580 UsedICmps++; 581 Vals.push_back(C); 582 return ICI->getOperand(0); 583 } 584 585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 587 ICI->getPredicate(), C->getValue()); 588 589 // Shift the range if the compare is fed by an add. This is the range 590 // compare idiom as emitted by instcombine. 591 Value *CandidateVal = I->getOperand(0); 592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 593 Span = Span.subtract(*RHSC); 594 CandidateVal = RHSVal; 595 } 596 597 // If this is an and/!= check, then we are looking to build the set of 598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 599 // x != 0 && x != 1. 600 if (!isEQ) 601 Span = Span.inverse(); 602 603 // If there are a ton of values, we don't want to make a ginormous switch. 604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 605 return false; 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(CandidateVal)) 610 return false; 611 612 // Add all values from the range to the set 613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 615 616 UsedICmps++; 617 return true; 618 } 619 620 /// Given a potentially 'or'd or 'and'd together collection of icmp 621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 622 /// the value being compared, and stick the list constants into the Vals 623 /// vector. 624 /// One "Extra" case is allowed to differ from the other. 625 void gather(Value *V) { 626 Instruction *I = dyn_cast<Instruction>(V); 627 bool isEQ = (I->getOpcode() == Instruction::Or); 628 629 // Keep a stack (SmallVector for efficiency) for depth-first traversal 630 SmallVector<Value *, 8> DFT; 631 SmallPtrSet<Value *, 8> Visited; 632 633 // Initialize 634 Visited.insert(V); 635 DFT.push_back(V); 636 637 while (!DFT.empty()) { 638 V = DFT.pop_back_val(); 639 640 if (Instruction *I = dyn_cast<Instruction>(V)) { 641 // If it is a || (or && depending on isEQ), process the operands. 642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 643 if (Visited.insert(I->getOperand(1)).second) 644 DFT.push_back(I->getOperand(1)); 645 if (Visited.insert(I->getOperand(0)).second) 646 DFT.push_back(I->getOperand(0)); 647 continue; 648 } 649 650 // Try to match the current instruction 651 if (matchInstruction(I, isEQ)) 652 // Match succeed, continue the loop 653 continue; 654 } 655 656 // One element of the sequence of || (or &&) could not be match as a 657 // comparison against the same value as the others. 658 // We allow only one "Extra" case to be checked before the switch 659 if (!Extra) { 660 Extra = V; 661 continue; 662 } 663 // Failed to parse a proper sequence, abort now 664 CompValue = nullptr; 665 break; 666 } 667 } 668 }; 669 670 } // end anonymous namespace 671 672 static void EraseTerminatorAndDCECond(Instruction *TI) { 673 Instruction *Cond = nullptr; 674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 675 Cond = dyn_cast<Instruction>(SI->getCondition()); 676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 677 if (BI->isConditional()) 678 Cond = dyn_cast<Instruction>(BI->getCondition()); 679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 680 Cond = dyn_cast<Instruction>(IBI->getAddress()); 681 } 682 683 TI->eraseFromParent(); 684 if (Cond) 685 RecursivelyDeleteTriviallyDeadInstructions(Cond); 686 } 687 688 /// Return true if the specified terminator checks 689 /// to see if a value is equal to constant integer value. 690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 691 Value *CV = nullptr; 692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 693 // Do not permit merging of large switch instructions into their 694 // predecessors unless there is only one predecessor. 695 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 696 CV = SI->getCondition(); 697 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 698 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 699 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 700 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 701 CV = ICI->getOperand(0); 702 } 703 704 // Unwrap any lossless ptrtoint cast. 705 if (CV) { 706 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 707 Value *Ptr = PTII->getPointerOperand(); 708 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 709 CV = Ptr; 710 } 711 } 712 return CV; 713 } 714 715 /// Given a value comparison instruction, 716 /// decode all of the 'cases' that it represents and return the 'default' block. 717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 718 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 719 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 720 Cases.reserve(SI->getNumCases()); 721 for (auto Case : SI->cases()) 722 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 723 Case.getCaseSuccessor())); 724 return SI->getDefaultDest(); 725 } 726 727 BranchInst *BI = cast<BranchInst>(TI); 728 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 729 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 730 Cases.push_back(ValueEqualityComparisonCase( 731 GetConstantInt(ICI->getOperand(1), DL), Succ)); 732 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 733 } 734 735 /// Given a vector of bb/value pairs, remove any entries 736 /// in the list that match the specified block. 737 static void 738 EliminateBlockCases(BasicBlock *BB, 739 std::vector<ValueEqualityComparisonCase> &Cases) { 740 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 741 } 742 743 /// Return true if there are any keys in C1 that exist in C2 as well. 744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 745 std::vector<ValueEqualityComparisonCase> &C2) { 746 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 747 748 // Make V1 be smaller than V2. 749 if (V1->size() > V2->size()) 750 std::swap(V1, V2); 751 752 if (V1->empty()) 753 return false; 754 if (V1->size() == 1) { 755 // Just scan V2. 756 ConstantInt *TheVal = (*V1)[0].Value; 757 for (unsigned i = 0, e = V2->size(); i != e; ++i) 758 if (TheVal == (*V2)[i].Value) 759 return true; 760 } 761 762 // Otherwise, just sort both lists and compare element by element. 763 array_pod_sort(V1->begin(), V1->end()); 764 array_pod_sort(V2->begin(), V2->end()); 765 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 766 while (i1 != e1 && i2 != e2) { 767 if ((*V1)[i1].Value == (*V2)[i2].Value) 768 return true; 769 if ((*V1)[i1].Value < (*V2)[i2].Value) 770 ++i1; 771 else 772 ++i2; 773 } 774 return false; 775 } 776 777 // Set branch weights on SwitchInst. This sets the metadata if there is at 778 // least one non-zero weight. 779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 780 // Check that there is at least one non-zero weight. Otherwise, pass 781 // nullptr to setMetadata which will erase the existing metadata. 782 MDNode *N = nullptr; 783 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 784 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 785 SI->setMetadata(LLVMContext::MD_prof, N); 786 } 787 788 // Similar to the above, but for branch and select instructions that take 789 // exactly 2 weights. 790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 791 uint32_t FalseWeight) { 792 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 793 // Check that there is at least one non-zero weight. Otherwise, pass 794 // nullptr to setMetadata which will erase the existing metadata. 795 MDNode *N = nullptr; 796 if (TrueWeight || FalseWeight) 797 N = MDBuilder(I->getParent()->getContext()) 798 .createBranchWeights(TrueWeight, FalseWeight); 799 I->setMetadata(LLVMContext::MD_prof, N); 800 } 801 802 /// If TI is known to be a terminator instruction and its block is known to 803 /// only have a single predecessor block, check to see if that predecessor is 804 /// also a value comparison with the same value, and if that comparison 805 /// determines the outcome of this comparison. If so, simplify TI. This does a 806 /// very limited form of jump threading. 807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 808 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 809 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 810 if (!PredVal) 811 return false; // Not a value comparison in predecessor. 812 813 Value *ThisVal = isValueEqualityComparison(TI); 814 assert(ThisVal && "This isn't a value comparison!!"); 815 if (ThisVal != PredVal) 816 return false; // Different predicates. 817 818 // TODO: Preserve branch weight metadata, similarly to how 819 // FoldValueComparisonIntoPredecessors preserves it. 820 821 // Find out information about when control will move from Pred to TI's block. 822 std::vector<ValueEqualityComparisonCase> PredCases; 823 BasicBlock *PredDef = 824 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 825 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 826 827 // Find information about how control leaves this block. 828 std::vector<ValueEqualityComparisonCase> ThisCases; 829 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 830 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 831 832 // If TI's block is the default block from Pred's comparison, potentially 833 // simplify TI based on this knowledge. 834 if (PredDef == TI->getParent()) { 835 // If we are here, we know that the value is none of those cases listed in 836 // PredCases. If there are any cases in ThisCases that are in PredCases, we 837 // can simplify TI. 838 if (!ValuesOverlap(PredCases, ThisCases)) 839 return false; 840 841 if (isa<BranchInst>(TI)) { 842 // Okay, one of the successors of this condbr is dead. Convert it to a 843 // uncond br. 844 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 845 // Insert the new branch. 846 Instruction *NI = Builder.CreateBr(ThisDef); 847 (void)NI; 848 849 // Remove PHI node entries for the dead edge. 850 ThisCases[0].Dest->removePredecessor(TI->getParent()); 851 852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 853 << "Through successor TI: " << *TI << "Leaving: " << *NI 854 << "\n"); 855 856 EraseTerminatorAndDCECond(TI); 857 return true; 858 } 859 860 SwitchInst *SI = cast<SwitchInst>(TI); 861 // Okay, TI has cases that are statically dead, prune them away. 862 SmallPtrSet<Constant *, 16> DeadCases; 863 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 864 DeadCases.insert(PredCases[i].Value); 865 866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 867 << "Through successor TI: " << *TI); 868 869 // Collect branch weights into a vector. 870 SmallVector<uint32_t, 8> Weights; 871 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 872 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 873 if (HasWeight) 874 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 875 ++MD_i) { 876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 877 Weights.push_back(CI->getValue().getZExtValue()); 878 } 879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 880 --i; 881 if (DeadCases.count(i->getCaseValue())) { 882 if (HasWeight) { 883 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 884 Weights.pop_back(); 885 } 886 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 887 SI->removeCase(i); 888 } 889 } 890 if (HasWeight && Weights.size() >= 2) 891 setBranchWeights(SI, Weights); 892 893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 894 return true; 895 } 896 897 // Otherwise, TI's block must correspond to some matched value. Find out 898 // which value (or set of values) this is. 899 ConstantInt *TIV = nullptr; 900 BasicBlock *TIBB = TI->getParent(); 901 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 902 if (PredCases[i].Dest == TIBB) { 903 if (TIV) 904 return false; // Cannot handle multiple values coming to this block. 905 TIV = PredCases[i].Value; 906 } 907 assert(TIV && "No edge from pred to succ?"); 908 909 // Okay, we found the one constant that our value can be if we get into TI's 910 // BB. Find out which successor will unconditionally be branched to. 911 BasicBlock *TheRealDest = nullptr; 912 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 913 if (ThisCases[i].Value == TIV) { 914 TheRealDest = ThisCases[i].Dest; 915 break; 916 } 917 918 // If not handled by any explicit cases, it is handled by the default case. 919 if (!TheRealDest) 920 TheRealDest = ThisDef; 921 922 // Remove PHI node entries for dead edges. 923 BasicBlock *CheckEdge = TheRealDest; 924 for (BasicBlock *Succ : successors(TIBB)) 925 if (Succ != CheckEdge) 926 Succ->removePredecessor(TIBB); 927 else 928 CheckEdge = nullptr; 929 930 // Insert the new branch. 931 Instruction *NI = Builder.CreateBr(TheRealDest); 932 (void)NI; 933 934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 935 << "Through successor TI: " << *TI << "Leaving: " << *NI 936 << "\n"); 937 938 EraseTerminatorAndDCECond(TI); 939 return true; 940 } 941 942 namespace { 943 944 /// This class implements a stable ordering of constant 945 /// integers that does not depend on their address. This is important for 946 /// applications that sort ConstantInt's to ensure uniqueness. 947 struct ConstantIntOrdering { 948 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 949 return LHS->getValue().ult(RHS->getValue()); 950 } 951 }; 952 953 } // end anonymous namespace 954 955 static int ConstantIntSortPredicate(ConstantInt *const *P1, 956 ConstantInt *const *P2) { 957 const ConstantInt *LHS = *P1; 958 const ConstantInt *RHS = *P2; 959 if (LHS == RHS) 960 return 0; 961 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 962 } 963 964 static inline bool HasBranchWeights(const Instruction *I) { 965 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 966 if (ProfMD && ProfMD->getOperand(0)) 967 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 968 return MDS->getString().equals("branch_weights"); 969 970 return false; 971 } 972 973 /// Get Weights of a given terminator, the default weight is at the front 974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 975 /// metadata. 976 static void GetBranchWeights(Instruction *TI, 977 SmallVectorImpl<uint64_t> &Weights) { 978 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 979 assert(MD); 980 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 982 Weights.push_back(CI->getValue().getZExtValue()); 983 } 984 985 // If TI is a conditional eq, the default case is the false case, 986 // and the corresponding branch-weight data is at index 2. We swap the 987 // default weight to be the first entry. 988 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 989 assert(Weights.size() == 2); 990 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 991 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 992 std::swap(Weights.front(), Weights.back()); 993 } 994 } 995 996 /// Keep halving the weights until all can fit in uint32_t. 997 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 998 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 999 if (Max > UINT_MAX) { 1000 unsigned Offset = 32 - countLeadingZeros(Max); 1001 for (uint64_t &I : Weights) 1002 I >>= Offset; 1003 } 1004 } 1005 1006 /// The specified terminator is a value equality comparison instruction 1007 /// (either a switch or a branch on "X == c"). 1008 /// See if any of the predecessors of the terminator block are value comparisons 1009 /// on the same value. If so, and if safe to do so, fold them together. 1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1011 IRBuilder<> &Builder) { 1012 BasicBlock *BB = TI->getParent(); 1013 Value *CV = isValueEqualityComparison(TI); // CondVal 1014 assert(CV && "Not a comparison?"); 1015 bool Changed = false; 1016 1017 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1018 while (!Preds.empty()) { 1019 BasicBlock *Pred = Preds.pop_back_val(); 1020 1021 // See if the predecessor is a comparison with the same value. 1022 Instruction *PTI = Pred->getTerminator(); 1023 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1024 1025 if (PCV == CV && TI != PTI) { 1026 SmallSetVector<BasicBlock*, 4> FailBlocks; 1027 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1028 for (auto *Succ : FailBlocks) { 1029 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1030 return false; 1031 } 1032 } 1033 1034 // Figure out which 'cases' to copy from SI to PSI. 1035 std::vector<ValueEqualityComparisonCase> BBCases; 1036 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1037 1038 std::vector<ValueEqualityComparisonCase> PredCases; 1039 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1040 1041 // Based on whether the default edge from PTI goes to BB or not, fill in 1042 // PredCases and PredDefault with the new switch cases we would like to 1043 // build. 1044 SmallVector<BasicBlock *, 8> NewSuccessors; 1045 1046 // Update the branch weight metadata along the way 1047 SmallVector<uint64_t, 8> Weights; 1048 bool PredHasWeights = HasBranchWeights(PTI); 1049 bool SuccHasWeights = HasBranchWeights(TI); 1050 1051 if (PredHasWeights) { 1052 GetBranchWeights(PTI, Weights); 1053 // branch-weight metadata is inconsistent here. 1054 if (Weights.size() != 1 + PredCases.size()) 1055 PredHasWeights = SuccHasWeights = false; 1056 } else if (SuccHasWeights) 1057 // If there are no predecessor weights but there are successor weights, 1058 // populate Weights with 1, which will later be scaled to the sum of 1059 // successor's weights 1060 Weights.assign(1 + PredCases.size(), 1); 1061 1062 SmallVector<uint64_t, 8> SuccWeights; 1063 if (SuccHasWeights) { 1064 GetBranchWeights(TI, SuccWeights); 1065 // branch-weight metadata is inconsistent here. 1066 if (SuccWeights.size() != 1 + BBCases.size()) 1067 PredHasWeights = SuccHasWeights = false; 1068 } else if (PredHasWeights) 1069 SuccWeights.assign(1 + BBCases.size(), 1); 1070 1071 if (PredDefault == BB) { 1072 // If this is the default destination from PTI, only the edges in TI 1073 // that don't occur in PTI, or that branch to BB will be activated. 1074 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1075 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1076 if (PredCases[i].Dest != BB) 1077 PTIHandled.insert(PredCases[i].Value); 1078 else { 1079 // The default destination is BB, we don't need explicit targets. 1080 std::swap(PredCases[i], PredCases.back()); 1081 1082 if (PredHasWeights || SuccHasWeights) { 1083 // Increase weight for the default case. 1084 Weights[0] += Weights[i + 1]; 1085 std::swap(Weights[i + 1], Weights.back()); 1086 Weights.pop_back(); 1087 } 1088 1089 PredCases.pop_back(); 1090 --i; 1091 --e; 1092 } 1093 1094 // Reconstruct the new switch statement we will be building. 1095 if (PredDefault != BBDefault) { 1096 PredDefault->removePredecessor(Pred); 1097 PredDefault = BBDefault; 1098 NewSuccessors.push_back(BBDefault); 1099 } 1100 1101 unsigned CasesFromPred = Weights.size(); 1102 uint64_t ValidTotalSuccWeight = 0; 1103 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1104 if (!PTIHandled.count(BBCases[i].Value) && 1105 BBCases[i].Dest != BBDefault) { 1106 PredCases.push_back(BBCases[i]); 1107 NewSuccessors.push_back(BBCases[i].Dest); 1108 if (SuccHasWeights || PredHasWeights) { 1109 // The default weight is at index 0, so weight for the ith case 1110 // should be at index i+1. Scale the cases from successor by 1111 // PredDefaultWeight (Weights[0]). 1112 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1113 ValidTotalSuccWeight += SuccWeights[i + 1]; 1114 } 1115 } 1116 1117 if (SuccHasWeights || PredHasWeights) { 1118 ValidTotalSuccWeight += SuccWeights[0]; 1119 // Scale the cases from predecessor by ValidTotalSuccWeight. 1120 for (unsigned i = 1; i < CasesFromPred; ++i) 1121 Weights[i] *= ValidTotalSuccWeight; 1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1123 Weights[0] *= SuccWeights[0]; 1124 } 1125 } else { 1126 // If this is not the default destination from PSI, only the edges 1127 // in SI that occur in PSI with a destination of BB will be 1128 // activated. 1129 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1130 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1131 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1132 if (PredCases[i].Dest == BB) { 1133 PTIHandled.insert(PredCases[i].Value); 1134 1135 if (PredHasWeights || SuccHasWeights) { 1136 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1137 std::swap(Weights[i + 1], Weights.back()); 1138 Weights.pop_back(); 1139 } 1140 1141 std::swap(PredCases[i], PredCases.back()); 1142 PredCases.pop_back(); 1143 --i; 1144 --e; 1145 } 1146 1147 // Okay, now we know which constants were sent to BB from the 1148 // predecessor. Figure out where they will all go now. 1149 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1150 if (PTIHandled.count(BBCases[i].Value)) { 1151 // If this is one we are capable of getting... 1152 if (PredHasWeights || SuccHasWeights) 1153 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1154 PredCases.push_back(BBCases[i]); 1155 NewSuccessors.push_back(BBCases[i].Dest); 1156 PTIHandled.erase( 1157 BBCases[i].Value); // This constant is taken care of 1158 } 1159 1160 // If there are any constants vectored to BB that TI doesn't handle, 1161 // they must go to the default destination of TI. 1162 for (ConstantInt *I : PTIHandled) { 1163 if (PredHasWeights || SuccHasWeights) 1164 Weights.push_back(WeightsForHandled[I]); 1165 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1166 NewSuccessors.push_back(BBDefault); 1167 } 1168 } 1169 1170 // Okay, at this point, we know which new successor Pred will get. Make 1171 // sure we update the number of entries in the PHI nodes for these 1172 // successors. 1173 for (BasicBlock *NewSuccessor : NewSuccessors) 1174 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1175 1176 Builder.SetInsertPoint(PTI); 1177 // Convert pointer to int before we switch. 1178 if (CV->getType()->isPointerTy()) { 1179 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1180 "magicptr"); 1181 } 1182 1183 // Now that the successors are updated, create the new Switch instruction. 1184 SwitchInst *NewSI = 1185 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1186 NewSI->setDebugLoc(PTI->getDebugLoc()); 1187 for (ValueEqualityComparisonCase &V : PredCases) 1188 NewSI->addCase(V.Value, V.Dest); 1189 1190 if (PredHasWeights || SuccHasWeights) { 1191 // Halve the weights if any of them cannot fit in an uint32_t 1192 FitWeights(Weights); 1193 1194 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1195 1196 setBranchWeights(NewSI, MDWeights); 1197 } 1198 1199 EraseTerminatorAndDCECond(PTI); 1200 1201 // Okay, last check. If BB is still a successor of PSI, then we must 1202 // have an infinite loop case. If so, add an infinitely looping block 1203 // to handle the case to preserve the behavior of the code. 1204 BasicBlock *InfLoopBlock = nullptr; 1205 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1206 if (NewSI->getSuccessor(i) == BB) { 1207 if (!InfLoopBlock) { 1208 // Insert it at the end of the function, because it's either code, 1209 // or it won't matter if it's hot. :) 1210 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1211 BB->getParent()); 1212 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1213 } 1214 NewSI->setSuccessor(i, InfLoopBlock); 1215 } 1216 1217 Changed = true; 1218 } 1219 } 1220 return Changed; 1221 } 1222 1223 // If we would need to insert a select that uses the value of this invoke 1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1225 // can't hoist the invoke, as there is nowhere to put the select in this case. 1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1227 Instruction *I1, Instruction *I2) { 1228 for (BasicBlock *Succ : successors(BB1)) { 1229 for (const PHINode &PN : Succ->phis()) { 1230 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1231 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1232 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1233 return false; 1234 } 1235 } 1236 } 1237 return true; 1238 } 1239 1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1241 1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1243 /// in the two blocks up into the branch block. The caller of this function 1244 /// guarantees that BI's block dominates BB1 and BB2. 1245 static bool HoistThenElseCodeToIf(BranchInst *BI, 1246 const TargetTransformInfo &TTI) { 1247 // This does very trivial matching, with limited scanning, to find identical 1248 // instructions in the two blocks. In particular, we don't want to get into 1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1250 // such, we currently just scan for obviously identical instructions in an 1251 // identical order. 1252 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1253 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1254 1255 BasicBlock::iterator BB1_Itr = BB1->begin(); 1256 BasicBlock::iterator BB2_Itr = BB2->begin(); 1257 1258 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1259 // Skip debug info if it is not identical. 1260 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1261 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1262 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1263 while (isa<DbgInfoIntrinsic>(I1)) 1264 I1 = &*BB1_Itr++; 1265 while (isa<DbgInfoIntrinsic>(I2)) 1266 I2 = &*BB2_Itr++; 1267 } 1268 // FIXME: Can we define a safety predicate for CallBr? 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1271 isa<CallBrInst>(I1)) 1272 return false; 1273 1274 BasicBlock *BIParent = BI->getParent(); 1275 1276 bool Changed = false; 1277 do { 1278 // If we are hoisting the terminator instruction, don't move one (making a 1279 // broken BB), instead clone it, and remove BI. 1280 if (I1->isTerminator()) 1281 goto HoistTerminator; 1282 1283 // If we're going to hoist a call, make sure that the two instructions we're 1284 // commoning/hoisting are both marked with musttail, or neither of them is 1285 // marked as such. Otherwise, we might end up in a situation where we hoist 1286 // from a block where the terminator is a `ret` to a block where the terminator 1287 // is a `br`, and `musttail` calls expect to be followed by a return. 1288 auto *C1 = dyn_cast<CallInst>(I1); 1289 auto *C2 = dyn_cast<CallInst>(I2); 1290 if (C1 && C2) 1291 if (C1->isMustTailCall() != C2->isMustTailCall()) 1292 return Changed; 1293 1294 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1295 return Changed; 1296 1297 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1298 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1299 // The debug location is an integral part of a debug info intrinsic 1300 // and can't be separated from it or replaced. Instead of attempting 1301 // to merge locations, simply hoist both copies of the intrinsic. 1302 BIParent->getInstList().splice(BI->getIterator(), 1303 BB1->getInstList(), I1); 1304 BIParent->getInstList().splice(BI->getIterator(), 1305 BB2->getInstList(), I2); 1306 Changed = true; 1307 } else { 1308 // For a normal instruction, we just move one to right before the branch, 1309 // then replace all uses of the other with the first. Finally, we remove 1310 // the now redundant second instruction. 1311 BIParent->getInstList().splice(BI->getIterator(), 1312 BB1->getInstList(), I1); 1313 if (!I2->use_empty()) 1314 I2->replaceAllUsesWith(I1); 1315 I1->andIRFlags(I2); 1316 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1317 LLVMContext::MD_range, 1318 LLVMContext::MD_fpmath, 1319 LLVMContext::MD_invariant_load, 1320 LLVMContext::MD_nonnull, 1321 LLVMContext::MD_invariant_group, 1322 LLVMContext::MD_align, 1323 LLVMContext::MD_dereferenceable, 1324 LLVMContext::MD_dereferenceable_or_null, 1325 LLVMContext::MD_mem_parallel_loop_access, 1326 LLVMContext::MD_access_group}; 1327 combineMetadata(I1, I2, KnownIDs, true); 1328 1329 // I1 and I2 are being combined into a single instruction. Its debug 1330 // location is the merged locations of the original instructions. 1331 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1332 1333 I2->eraseFromParent(); 1334 Changed = true; 1335 } 1336 1337 I1 = &*BB1_Itr++; 1338 I2 = &*BB2_Itr++; 1339 // Skip debug info if it is not identical. 1340 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1341 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1342 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1343 while (isa<DbgInfoIntrinsic>(I1)) 1344 I1 = &*BB1_Itr++; 1345 while (isa<DbgInfoIntrinsic>(I2)) 1346 I2 = &*BB2_Itr++; 1347 } 1348 } while (I1->isIdenticalToWhenDefined(I2)); 1349 1350 return true; 1351 1352 HoistTerminator: 1353 // It may not be possible to hoist an invoke. 1354 // FIXME: Can we define a safety predicate for CallBr? 1355 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1356 return Changed; 1357 1358 // TODO: callbr hoisting currently disabled pending further study. 1359 if (isa<CallBrInst>(I1)) 1360 return Changed; 1361 1362 for (BasicBlock *Succ : successors(BB1)) { 1363 for (PHINode &PN : Succ->phis()) { 1364 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1365 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1366 if (BB1V == BB2V) 1367 continue; 1368 1369 // Check for passingValueIsAlwaysUndefined here because we would rather 1370 // eliminate undefined control flow then converting it to a select. 1371 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1372 passingValueIsAlwaysUndefined(BB2V, &PN)) 1373 return Changed; 1374 1375 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1376 return Changed; 1377 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1378 return Changed; 1379 } 1380 } 1381 1382 // Okay, it is safe to hoist the terminator. 1383 Instruction *NT = I1->clone(); 1384 BIParent->getInstList().insert(BI->getIterator(), NT); 1385 if (!NT->getType()->isVoidTy()) { 1386 I1->replaceAllUsesWith(NT); 1387 I2->replaceAllUsesWith(NT); 1388 NT->takeName(I1); 1389 } 1390 1391 // Ensure terminator gets a debug location, even an unknown one, in case 1392 // it involves inlinable calls. 1393 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1394 1395 // PHIs created below will adopt NT's merged DebugLoc. 1396 IRBuilder<NoFolder> Builder(NT); 1397 1398 // Hoisting one of the terminators from our successor is a great thing. 1399 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1400 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1401 // nodes, so we insert select instruction to compute the final result. 1402 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1403 for (BasicBlock *Succ : successors(BB1)) { 1404 for (PHINode &PN : Succ->phis()) { 1405 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1406 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1407 if (BB1V == BB2V) 1408 continue; 1409 1410 // These values do not agree. Insert a select instruction before NT 1411 // that determines the right value. 1412 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1413 if (!SI) 1414 SI = cast<SelectInst>( 1415 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1416 BB1V->getName() + "." + BB2V->getName(), BI)); 1417 1418 // Make the PHI node use the select for all incoming values for BB1/BB2 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1420 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1421 PN.setIncomingValue(i, SI); 1422 } 1423 } 1424 1425 // Update any PHI nodes in our new successors. 1426 for (BasicBlock *Succ : successors(BB1)) 1427 AddPredecessorToBlock(Succ, BIParent, BB1); 1428 1429 EraseTerminatorAndDCECond(BI); 1430 return true; 1431 } 1432 1433 // All instructions in Insts belong to different blocks that all unconditionally 1434 // branch to a common successor. Analyze each instruction and return true if it 1435 // would be possible to sink them into their successor, creating one common 1436 // instruction instead. For every value that would be required to be provided by 1437 // PHI node (because an operand varies in each input block), add to PHIOperands. 1438 static bool canSinkInstructions( 1439 ArrayRef<Instruction *> Insts, 1440 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1441 // Prune out obviously bad instructions to move. Any non-store instruction 1442 // must have exactly one use, and we check later that use is by a single, 1443 // common PHI instruction in the successor. 1444 for (auto *I : Insts) { 1445 // These instructions may change or break semantics if moved. 1446 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1447 I->getType()->isTokenTy()) 1448 return false; 1449 1450 // Conservatively return false if I is an inline-asm instruction. Sinking 1451 // and merging inline-asm instructions can potentially create arguments 1452 // that cannot satisfy the inline-asm constraints. 1453 if (const auto *C = dyn_cast<CallBase>(I)) 1454 if (C->isInlineAsm()) 1455 return false; 1456 1457 // Everything must have only one use too, apart from stores which 1458 // have no uses. 1459 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1460 return false; 1461 } 1462 1463 const Instruction *I0 = Insts.front(); 1464 for (auto *I : Insts) 1465 if (!I->isSameOperationAs(I0)) 1466 return false; 1467 1468 // All instructions in Insts are known to be the same opcode. If they aren't 1469 // stores, check the only user of each is a PHI or in the same block as the 1470 // instruction, because if a user is in the same block as an instruction 1471 // we're contemplating sinking, it must already be determined to be sinkable. 1472 if (!isa<StoreInst>(I0)) { 1473 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1474 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1475 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1476 auto *U = cast<Instruction>(*I->user_begin()); 1477 return (PNUse && 1478 PNUse->getParent() == Succ && 1479 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1480 U->getParent() == I->getParent(); 1481 })) 1482 return false; 1483 } 1484 1485 // Because SROA can't handle speculating stores of selects, try not 1486 // to sink loads or stores of allocas when we'd have to create a PHI for 1487 // the address operand. Also, because it is likely that loads or stores 1488 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1489 // This can cause code churn which can have unintended consequences down 1490 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1491 // FIXME: This is a workaround for a deficiency in SROA - see 1492 // https://llvm.org/bugs/show_bug.cgi?id=30188 1493 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1494 return isa<AllocaInst>(I->getOperand(1)); 1495 })) 1496 return false; 1497 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1498 return isa<AllocaInst>(I->getOperand(0)); 1499 })) 1500 return false; 1501 1502 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1503 if (I0->getOperand(OI)->getType()->isTokenTy()) 1504 // Don't touch any operand of token type. 1505 return false; 1506 1507 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1508 assert(I->getNumOperands() == I0->getNumOperands()); 1509 return I->getOperand(OI) == I0->getOperand(OI); 1510 }; 1511 if (!all_of(Insts, SameAsI0)) { 1512 if (!canReplaceOperandWithVariable(I0, OI)) 1513 // We can't create a PHI from this GEP. 1514 return false; 1515 // Don't create indirect calls! The called value is the final operand. 1516 if (isa<CallBase>(I0) && OI == OE - 1) { 1517 // FIXME: if the call was *already* indirect, we should do this. 1518 return false; 1519 } 1520 for (auto *I : Insts) 1521 PHIOperands[I].push_back(I->getOperand(OI)); 1522 } 1523 } 1524 return true; 1525 } 1526 1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1528 // instruction of every block in Blocks to their common successor, commoning 1529 // into one instruction. 1530 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1531 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1532 1533 // canSinkLastInstruction returning true guarantees that every block has at 1534 // least one non-terminator instruction. 1535 SmallVector<Instruction*,4> Insts; 1536 for (auto *BB : Blocks) { 1537 Instruction *I = BB->getTerminator(); 1538 do { 1539 I = I->getPrevNode(); 1540 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1541 if (!isa<DbgInfoIntrinsic>(I)) 1542 Insts.push_back(I); 1543 } 1544 1545 // The only checking we need to do now is that all users of all instructions 1546 // are the same PHI node. canSinkLastInstruction should have checked this but 1547 // it is slightly over-aggressive - it gets confused by commutative instructions 1548 // so double-check it here. 1549 Instruction *I0 = Insts.front(); 1550 if (!isa<StoreInst>(I0)) { 1551 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1552 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1553 auto *U = cast<Instruction>(*I->user_begin()); 1554 return U == PNUse; 1555 })) 1556 return false; 1557 } 1558 1559 // We don't need to do any more checking here; canSinkLastInstruction should 1560 // have done it all for us. 1561 SmallVector<Value*, 4> NewOperands; 1562 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1563 // This check is different to that in canSinkLastInstruction. There, we 1564 // cared about the global view once simplifycfg (and instcombine) have 1565 // completed - it takes into account PHIs that become trivially 1566 // simplifiable. However here we need a more local view; if an operand 1567 // differs we create a PHI and rely on instcombine to clean up the very 1568 // small mess we may make. 1569 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1570 return I->getOperand(O) != I0->getOperand(O); 1571 }); 1572 if (!NeedPHI) { 1573 NewOperands.push_back(I0->getOperand(O)); 1574 continue; 1575 } 1576 1577 // Create a new PHI in the successor block and populate it. 1578 auto *Op = I0->getOperand(O); 1579 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1580 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1581 Op->getName() + ".sink", &BBEnd->front()); 1582 for (auto *I : Insts) 1583 PN->addIncoming(I->getOperand(O), I->getParent()); 1584 NewOperands.push_back(PN); 1585 } 1586 1587 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1588 // and move it to the start of the successor block. 1589 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1590 I0->getOperandUse(O).set(NewOperands[O]); 1591 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1592 1593 // Update metadata and IR flags, and merge debug locations. 1594 for (auto *I : Insts) 1595 if (I != I0) { 1596 // The debug location for the "common" instruction is the merged locations 1597 // of all the commoned instructions. We start with the original location 1598 // of the "common" instruction and iteratively merge each location in the 1599 // loop below. 1600 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1601 // However, as N-way merge for CallInst is rare, so we use simplified API 1602 // instead of using complex API for N-way merge. 1603 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1604 combineMetadataForCSE(I0, I, true); 1605 I0->andIRFlags(I); 1606 } 1607 1608 if (!isa<StoreInst>(I0)) { 1609 // canSinkLastInstruction checked that all instructions were used by 1610 // one and only one PHI node. Find that now, RAUW it to our common 1611 // instruction and nuke it. 1612 assert(I0->hasOneUse()); 1613 auto *PN = cast<PHINode>(*I0->user_begin()); 1614 PN->replaceAllUsesWith(I0); 1615 PN->eraseFromParent(); 1616 } 1617 1618 // Finally nuke all instructions apart from the common instruction. 1619 for (auto *I : Insts) 1620 if (I != I0) 1621 I->eraseFromParent(); 1622 1623 return true; 1624 } 1625 1626 namespace { 1627 1628 // LockstepReverseIterator - Iterates through instructions 1629 // in a set of blocks in reverse order from the first non-terminator. 1630 // For example (assume all blocks have size n): 1631 // LockstepReverseIterator I([B1, B2, B3]); 1632 // *I-- = [B1[n], B2[n], B3[n]]; 1633 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1634 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1635 // ... 1636 class LockstepReverseIterator { 1637 ArrayRef<BasicBlock*> Blocks; 1638 SmallVector<Instruction*,4> Insts; 1639 bool Fail; 1640 1641 public: 1642 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1643 reset(); 1644 } 1645 1646 void reset() { 1647 Fail = false; 1648 Insts.clear(); 1649 for (auto *BB : Blocks) { 1650 Instruction *Inst = BB->getTerminator(); 1651 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1652 Inst = Inst->getPrevNode(); 1653 if (!Inst) { 1654 // Block wasn't big enough. 1655 Fail = true; 1656 return; 1657 } 1658 Insts.push_back(Inst); 1659 } 1660 } 1661 1662 bool isValid() const { 1663 return !Fail; 1664 } 1665 1666 void operator--() { 1667 if (Fail) 1668 return; 1669 for (auto *&Inst : Insts) { 1670 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1671 Inst = Inst->getPrevNode(); 1672 // Already at beginning of block. 1673 if (!Inst) { 1674 Fail = true; 1675 return; 1676 } 1677 } 1678 } 1679 1680 ArrayRef<Instruction*> operator * () const { 1681 return Insts; 1682 } 1683 }; 1684 1685 } // end anonymous namespace 1686 1687 /// Check whether BB's predecessors end with unconditional branches. If it is 1688 /// true, sink any common code from the predecessors to BB. 1689 /// We also allow one predecessor to end with conditional branch (but no more 1690 /// than one). 1691 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1692 // We support two situations: 1693 // (1) all incoming arcs are unconditional 1694 // (2) one incoming arc is conditional 1695 // 1696 // (2) is very common in switch defaults and 1697 // else-if patterns; 1698 // 1699 // if (a) f(1); 1700 // else if (b) f(2); 1701 // 1702 // produces: 1703 // 1704 // [if] 1705 // / \ 1706 // [f(1)] [if] 1707 // | | \ 1708 // | | | 1709 // | [f(2)]| 1710 // \ | / 1711 // [ end ] 1712 // 1713 // [end] has two unconditional predecessor arcs and one conditional. The 1714 // conditional refers to the implicit empty 'else' arc. This conditional 1715 // arc can also be caused by an empty default block in a switch. 1716 // 1717 // In this case, we attempt to sink code from all *unconditional* arcs. 1718 // If we can sink instructions from these arcs (determined during the scan 1719 // phase below) we insert a common successor for all unconditional arcs and 1720 // connect that to [end], to enable sinking: 1721 // 1722 // [if] 1723 // / \ 1724 // [x(1)] [if] 1725 // | | \ 1726 // | | \ 1727 // | [x(2)] | 1728 // \ / | 1729 // [sink.split] | 1730 // \ / 1731 // [ end ] 1732 // 1733 SmallVector<BasicBlock*,4> UnconditionalPreds; 1734 Instruction *Cond = nullptr; 1735 for (auto *B : predecessors(BB)) { 1736 auto *T = B->getTerminator(); 1737 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1738 UnconditionalPreds.push_back(B); 1739 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1740 Cond = T; 1741 else 1742 return false; 1743 } 1744 if (UnconditionalPreds.size() < 2) 1745 return false; 1746 1747 bool Changed = false; 1748 // We take a two-step approach to tail sinking. First we scan from the end of 1749 // each block upwards in lockstep. If the n'th instruction from the end of each 1750 // block can be sunk, those instructions are added to ValuesToSink and we 1751 // carry on. If we can sink an instruction but need to PHI-merge some operands 1752 // (because they're not identical in each instruction) we add these to 1753 // PHIOperands. 1754 unsigned ScanIdx = 0; 1755 SmallPtrSet<Value*,4> InstructionsToSink; 1756 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1757 LockstepReverseIterator LRI(UnconditionalPreds); 1758 while (LRI.isValid() && 1759 canSinkInstructions(*LRI, PHIOperands)) { 1760 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1761 << "\n"); 1762 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1763 ++ScanIdx; 1764 --LRI; 1765 } 1766 1767 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1768 unsigned NumPHIdValues = 0; 1769 for (auto *I : *LRI) 1770 for (auto *V : PHIOperands[I]) 1771 if (InstructionsToSink.count(V) == 0) 1772 ++NumPHIdValues; 1773 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1774 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1775 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1776 NumPHIInsts++; 1777 1778 return NumPHIInsts <= 1; 1779 }; 1780 1781 if (ScanIdx > 0 && Cond) { 1782 // Check if we would actually sink anything first! This mutates the CFG and 1783 // adds an extra block. The goal in doing this is to allow instructions that 1784 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1785 // (such as trunc, add) can be sunk and predicated already. So we check that 1786 // we're going to sink at least one non-speculatable instruction. 1787 LRI.reset(); 1788 unsigned Idx = 0; 1789 bool Profitable = false; 1790 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1791 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1792 Profitable = true; 1793 break; 1794 } 1795 --LRI; 1796 ++Idx; 1797 } 1798 if (!Profitable) 1799 return false; 1800 1801 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1802 // We have a conditional edge and we're going to sink some instructions. 1803 // Insert a new block postdominating all blocks we're going to sink from. 1804 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1805 // Edges couldn't be split. 1806 return false; 1807 Changed = true; 1808 } 1809 1810 // Now that we've analyzed all potential sinking candidates, perform the 1811 // actual sink. We iteratively sink the last non-terminator of the source 1812 // blocks into their common successor unless doing so would require too 1813 // many PHI instructions to be generated (currently only one PHI is allowed 1814 // per sunk instruction). 1815 // 1816 // We can use InstructionsToSink to discount values needing PHI-merging that will 1817 // actually be sunk in a later iteration. This allows us to be more 1818 // aggressive in what we sink. This does allow a false positive where we 1819 // sink presuming a later value will also be sunk, but stop half way through 1820 // and never actually sink it which means we produce more PHIs than intended. 1821 // This is unlikely in practice though. 1822 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1823 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1824 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1825 << "\n"); 1826 1827 // Because we've sunk every instruction in turn, the current instruction to 1828 // sink is always at index 0. 1829 LRI.reset(); 1830 if (!ProfitableToSinkInstruction(LRI)) { 1831 // Too many PHIs would be created. 1832 LLVM_DEBUG( 1833 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1834 break; 1835 } 1836 1837 if (!sinkLastInstruction(UnconditionalPreds)) 1838 return Changed; 1839 NumSinkCommons++; 1840 Changed = true; 1841 } 1842 return Changed; 1843 } 1844 1845 /// Determine if we can hoist sink a sole store instruction out of a 1846 /// conditional block. 1847 /// 1848 /// We are looking for code like the following: 1849 /// BrBB: 1850 /// store i32 %add, i32* %arrayidx2 1851 /// ... // No other stores or function calls (we could be calling a memory 1852 /// ... // function). 1853 /// %cmp = icmp ult %x, %y 1854 /// br i1 %cmp, label %EndBB, label %ThenBB 1855 /// ThenBB: 1856 /// store i32 %add5, i32* %arrayidx2 1857 /// br label EndBB 1858 /// EndBB: 1859 /// ... 1860 /// We are going to transform this into: 1861 /// BrBB: 1862 /// store i32 %add, i32* %arrayidx2 1863 /// ... // 1864 /// %cmp = icmp ult %x, %y 1865 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1866 /// store i32 %add.add5, i32* %arrayidx2 1867 /// ... 1868 /// 1869 /// \return The pointer to the value of the previous store if the store can be 1870 /// hoisted into the predecessor block. 0 otherwise. 1871 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1872 BasicBlock *StoreBB, BasicBlock *EndBB) { 1873 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1874 if (!StoreToHoist) 1875 return nullptr; 1876 1877 // Volatile or atomic. 1878 if (!StoreToHoist->isSimple()) 1879 return nullptr; 1880 1881 Value *StorePtr = StoreToHoist->getPointerOperand(); 1882 1883 // Look for a store to the same pointer in BrBB. 1884 unsigned MaxNumInstToLookAt = 9; 1885 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1886 if (!MaxNumInstToLookAt) 1887 break; 1888 --MaxNumInstToLookAt; 1889 1890 // Could be calling an instruction that affects memory like free(). 1891 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1892 return nullptr; 1893 1894 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1895 // Found the previous store make sure it stores to the same location. 1896 if (SI->getPointerOperand() == StorePtr) 1897 // Found the previous store, return its value operand. 1898 return SI->getValueOperand(); 1899 return nullptr; // Unknown store. 1900 } 1901 } 1902 1903 return nullptr; 1904 } 1905 1906 /// Speculate a conditional basic block flattening the CFG. 1907 /// 1908 /// Note that this is a very risky transform currently. Speculating 1909 /// instructions like this is most often not desirable. Instead, there is an MI 1910 /// pass which can do it with full awareness of the resource constraints. 1911 /// However, some cases are "obvious" and we should do directly. An example of 1912 /// this is speculating a single, reasonably cheap instruction. 1913 /// 1914 /// There is only one distinct advantage to flattening the CFG at the IR level: 1915 /// it makes very common but simplistic optimizations such as are common in 1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1917 /// modeling their effects with easier to reason about SSA value graphs. 1918 /// 1919 /// 1920 /// An illustration of this transform is turning this IR: 1921 /// \code 1922 /// BB: 1923 /// %cmp = icmp ult %x, %y 1924 /// br i1 %cmp, label %EndBB, label %ThenBB 1925 /// ThenBB: 1926 /// %sub = sub %x, %y 1927 /// br label BB2 1928 /// EndBB: 1929 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1930 /// ... 1931 /// \endcode 1932 /// 1933 /// Into this IR: 1934 /// \code 1935 /// BB: 1936 /// %cmp = icmp ult %x, %y 1937 /// %sub = sub %x, %y 1938 /// %cond = select i1 %cmp, 0, %sub 1939 /// ... 1940 /// \endcode 1941 /// 1942 /// \returns true if the conditional block is removed. 1943 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1944 const TargetTransformInfo &TTI) { 1945 // Be conservative for now. FP select instruction can often be expensive. 1946 Value *BrCond = BI->getCondition(); 1947 if (isa<FCmpInst>(BrCond)) 1948 return false; 1949 1950 BasicBlock *BB = BI->getParent(); 1951 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1952 1953 // If ThenBB is actually on the false edge of the conditional branch, remember 1954 // to swap the select operands later. 1955 bool Invert = false; 1956 if (ThenBB != BI->getSuccessor(0)) { 1957 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1958 Invert = true; 1959 } 1960 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1961 1962 // Keep a count of how many times instructions are used within ThenBB when 1963 // they are candidates for sinking into ThenBB. Specifically: 1964 // - They are defined in BB, and 1965 // - They have no side effects, and 1966 // - All of their uses are in ThenBB. 1967 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1968 1969 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1970 1971 unsigned SpeculationCost = 0; 1972 Value *SpeculatedStoreValue = nullptr; 1973 StoreInst *SpeculatedStore = nullptr; 1974 for (BasicBlock::iterator BBI = ThenBB->begin(), 1975 BBE = std::prev(ThenBB->end()); 1976 BBI != BBE; ++BBI) { 1977 Instruction *I = &*BBI; 1978 // Skip debug info. 1979 if (isa<DbgInfoIntrinsic>(I)) { 1980 SpeculatedDbgIntrinsics.push_back(I); 1981 continue; 1982 } 1983 1984 // Only speculatively execute a single instruction (not counting the 1985 // terminator) for now. 1986 ++SpeculationCost; 1987 if (SpeculationCost > 1) 1988 return false; 1989 1990 // Don't hoist the instruction if it's unsafe or expensive. 1991 if (!isSafeToSpeculativelyExecute(I) && 1992 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1993 I, BB, ThenBB, EndBB)))) 1994 return false; 1995 if (!SpeculatedStoreValue && 1996 ComputeSpeculationCost(I, TTI) > 1997 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1998 return false; 1999 2000 // Store the store speculation candidate. 2001 if (SpeculatedStoreValue) 2002 SpeculatedStore = cast<StoreInst>(I); 2003 2004 // Do not hoist the instruction if any of its operands are defined but not 2005 // used in BB. The transformation will prevent the operand from 2006 // being sunk into the use block. 2007 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2008 Instruction *OpI = dyn_cast<Instruction>(*i); 2009 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2010 continue; // Not a candidate for sinking. 2011 2012 ++SinkCandidateUseCounts[OpI]; 2013 } 2014 } 2015 2016 // Consider any sink candidates which are only used in ThenBB as costs for 2017 // speculation. Note, while we iterate over a DenseMap here, we are summing 2018 // and so iteration order isn't significant. 2019 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2020 I = SinkCandidateUseCounts.begin(), 2021 E = SinkCandidateUseCounts.end(); 2022 I != E; ++I) 2023 if (I->first->hasNUses(I->second)) { 2024 ++SpeculationCost; 2025 if (SpeculationCost > 1) 2026 return false; 2027 } 2028 2029 // Check that the PHI nodes can be converted to selects. 2030 bool HaveRewritablePHIs = false; 2031 for (PHINode &PN : EndBB->phis()) { 2032 Value *OrigV = PN.getIncomingValueForBlock(BB); 2033 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2034 2035 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2036 // Skip PHIs which are trivial. 2037 if (ThenV == OrigV) 2038 continue; 2039 2040 // Don't convert to selects if we could remove undefined behavior instead. 2041 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2042 passingValueIsAlwaysUndefined(ThenV, &PN)) 2043 return false; 2044 2045 HaveRewritablePHIs = true; 2046 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2047 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2048 if (!OrigCE && !ThenCE) 2049 continue; // Known safe and cheap. 2050 2051 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2052 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2053 return false; 2054 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2055 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2056 unsigned MaxCost = 2057 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2058 if (OrigCost + ThenCost > MaxCost) 2059 return false; 2060 2061 // Account for the cost of an unfolded ConstantExpr which could end up 2062 // getting expanded into Instructions. 2063 // FIXME: This doesn't account for how many operations are combined in the 2064 // constant expression. 2065 ++SpeculationCost; 2066 if (SpeculationCost > 1) 2067 return false; 2068 } 2069 2070 // If there are no PHIs to process, bail early. This helps ensure idempotence 2071 // as well. 2072 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2073 return false; 2074 2075 // If we get here, we can hoist the instruction and if-convert. 2076 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2077 2078 // Insert a select of the value of the speculated store. 2079 if (SpeculatedStoreValue) { 2080 IRBuilder<NoFolder> Builder(BI); 2081 Value *TrueV = SpeculatedStore->getValueOperand(); 2082 Value *FalseV = SpeculatedStoreValue; 2083 if (Invert) 2084 std::swap(TrueV, FalseV); 2085 Value *S = Builder.CreateSelect( 2086 BrCond, TrueV, FalseV, "spec.store.select", BI); 2087 SpeculatedStore->setOperand(0, S); 2088 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2089 SpeculatedStore->getDebugLoc()); 2090 } 2091 2092 // Metadata can be dependent on the condition we are hoisting above. 2093 // Conservatively strip all metadata on the instruction. 2094 for (auto &I : *ThenBB) 2095 I.dropUnknownNonDebugMetadata(); 2096 2097 // Hoist the instructions. 2098 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2099 ThenBB->begin(), std::prev(ThenBB->end())); 2100 2101 // Insert selects and rewrite the PHI operands. 2102 IRBuilder<NoFolder> Builder(BI); 2103 for (PHINode &PN : EndBB->phis()) { 2104 unsigned OrigI = PN.getBasicBlockIndex(BB); 2105 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2106 Value *OrigV = PN.getIncomingValue(OrigI); 2107 Value *ThenV = PN.getIncomingValue(ThenI); 2108 2109 // Skip PHIs which are trivial. 2110 if (OrigV == ThenV) 2111 continue; 2112 2113 // Create a select whose true value is the speculatively executed value and 2114 // false value is the preexisting value. Swap them if the branch 2115 // destinations were inverted. 2116 Value *TrueV = ThenV, *FalseV = OrigV; 2117 if (Invert) 2118 std::swap(TrueV, FalseV); 2119 Value *V = Builder.CreateSelect( 2120 BrCond, TrueV, FalseV, "spec.select", BI); 2121 PN.setIncomingValue(OrigI, V); 2122 PN.setIncomingValue(ThenI, V); 2123 } 2124 2125 // Remove speculated dbg intrinsics. 2126 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2127 // dbg value for the different flows and inserting it after the select. 2128 for (Instruction *I : SpeculatedDbgIntrinsics) 2129 I->eraseFromParent(); 2130 2131 ++NumSpeculations; 2132 return true; 2133 } 2134 2135 /// Return true if we can thread a branch across this block. 2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2137 unsigned Size = 0; 2138 2139 for (Instruction &I : BB->instructionsWithoutDebug()) { 2140 if (Size > 10) 2141 return false; // Don't clone large BB's. 2142 ++Size; 2143 2144 // We can only support instructions that do not define values that are 2145 // live outside of the current basic block. 2146 for (User *U : I.users()) { 2147 Instruction *UI = cast<Instruction>(U); 2148 if (UI->getParent() != BB || isa<PHINode>(UI)) 2149 return false; 2150 } 2151 2152 // Looks ok, continue checking. 2153 } 2154 2155 return true; 2156 } 2157 2158 /// If we have a conditional branch on a PHI node value that is defined in the 2159 /// same block as the branch and if any PHI entries are constants, thread edges 2160 /// corresponding to that entry to be branches to their ultimate destination. 2161 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2162 AssumptionCache *AC) { 2163 BasicBlock *BB = BI->getParent(); 2164 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2165 // NOTE: we currently cannot transform this case if the PHI node is used 2166 // outside of the block. 2167 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2168 return false; 2169 2170 // Degenerate case of a single entry PHI. 2171 if (PN->getNumIncomingValues() == 1) { 2172 FoldSingleEntryPHINodes(PN->getParent()); 2173 return true; 2174 } 2175 2176 // Now we know that this block has multiple preds and two succs. 2177 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2178 return false; 2179 2180 // Can't fold blocks that contain noduplicate or convergent calls. 2181 if (any_of(*BB, [](const Instruction &I) { 2182 const CallInst *CI = dyn_cast<CallInst>(&I); 2183 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2184 })) 2185 return false; 2186 2187 // Okay, this is a simple enough basic block. See if any phi values are 2188 // constants. 2189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2190 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2191 if (!CB || !CB->getType()->isIntegerTy(1)) 2192 continue; 2193 2194 // Okay, we now know that all edges from PredBB should be revectored to 2195 // branch to RealDest. 2196 BasicBlock *PredBB = PN->getIncomingBlock(i); 2197 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2198 2199 if (RealDest == BB) 2200 continue; // Skip self loops. 2201 // Skip if the predecessor's terminator is an indirect branch. 2202 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2203 continue; 2204 2205 // The dest block might have PHI nodes, other predecessors and other 2206 // difficult cases. Instead of being smart about this, just insert a new 2207 // block that jumps to the destination block, effectively splitting 2208 // the edge we are about to create. 2209 BasicBlock *EdgeBB = 2210 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2211 RealDest->getParent(), RealDest); 2212 BranchInst::Create(RealDest, EdgeBB); 2213 2214 // Update PHI nodes. 2215 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2216 2217 // BB may have instructions that are being threaded over. Clone these 2218 // instructions into EdgeBB. We know that there will be no uses of the 2219 // cloned instructions outside of EdgeBB. 2220 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2221 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2222 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2223 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2224 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2225 continue; 2226 } 2227 // Clone the instruction. 2228 Instruction *N = BBI->clone(); 2229 if (BBI->hasName()) 2230 N->setName(BBI->getName() + ".c"); 2231 2232 // Update operands due to translation. 2233 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2234 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2235 if (PI != TranslateMap.end()) 2236 *i = PI->second; 2237 } 2238 2239 // Check for trivial simplification. 2240 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2241 if (!BBI->use_empty()) 2242 TranslateMap[&*BBI] = V; 2243 if (!N->mayHaveSideEffects()) { 2244 N->deleteValue(); // Instruction folded away, don't need actual inst 2245 N = nullptr; 2246 } 2247 } else { 2248 if (!BBI->use_empty()) 2249 TranslateMap[&*BBI] = N; 2250 } 2251 // Insert the new instruction into its new home. 2252 if (N) 2253 EdgeBB->getInstList().insert(InsertPt, N); 2254 2255 // Register the new instruction with the assumption cache if necessary. 2256 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2257 if (II->getIntrinsicID() == Intrinsic::assume) 2258 AC->registerAssumption(II); 2259 } 2260 2261 // Loop over all of the edges from PredBB to BB, changing them to branch 2262 // to EdgeBB instead. 2263 Instruction *PredBBTI = PredBB->getTerminator(); 2264 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2265 if (PredBBTI->getSuccessor(i) == BB) { 2266 BB->removePredecessor(PredBB); 2267 PredBBTI->setSuccessor(i, EdgeBB); 2268 } 2269 2270 // Recurse, simplifying any other constants. 2271 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2272 } 2273 2274 return false; 2275 } 2276 2277 /// Given a BB that starts with the specified two-entry PHI node, 2278 /// see if we can eliminate it. 2279 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2280 const DataLayout &DL) { 2281 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2282 // statement", which has a very simple dominance structure. Basically, we 2283 // are trying to find the condition that is being branched on, which 2284 // subsequently causes this merge to happen. We really want control 2285 // dependence information for this check, but simplifycfg can't keep it up 2286 // to date, and this catches most of the cases we care about anyway. 2287 BasicBlock *BB = PN->getParent(); 2288 const Function *Fn = BB->getParent(); 2289 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2290 return false; 2291 2292 BasicBlock *IfTrue, *IfFalse; 2293 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2294 if (!IfCond || 2295 // Don't bother if the branch will be constant folded trivially. 2296 isa<ConstantInt>(IfCond)) 2297 return false; 2298 2299 // Okay, we found that we can merge this two-entry phi node into a select. 2300 // Doing so would require us to fold *all* two entry phi nodes in this block. 2301 // At some point this becomes non-profitable (particularly if the target 2302 // doesn't support cmov's). Only do this transformation if there are two or 2303 // fewer PHI nodes in this block. 2304 unsigned NumPhis = 0; 2305 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2306 if (NumPhis > 2) 2307 return false; 2308 2309 // Loop over the PHI's seeing if we can promote them all to select 2310 // instructions. While we are at it, keep track of the instructions 2311 // that need to be moved to the dominating block. 2312 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2313 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2314 MaxCostVal1 = PHINodeFoldingThreshold; 2315 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2316 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2317 2318 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2319 PHINode *PN = cast<PHINode>(II++); 2320 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2321 PN->replaceAllUsesWith(V); 2322 PN->eraseFromParent(); 2323 continue; 2324 } 2325 2326 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2327 MaxCostVal0, TTI) || 2328 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2329 MaxCostVal1, TTI)) 2330 return false; 2331 } 2332 2333 // If we folded the first phi, PN dangles at this point. Refresh it. If 2334 // we ran out of PHIs then we simplified them all. 2335 PN = dyn_cast<PHINode>(BB->begin()); 2336 if (!PN) 2337 return true; 2338 2339 // Don't fold i1 branches on PHIs which contain binary operators. These can 2340 // often be turned into switches and other things. 2341 if (PN->getType()->isIntegerTy(1) && 2342 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2343 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2344 isa<BinaryOperator>(IfCond))) 2345 return false; 2346 2347 // If all PHI nodes are promotable, check to make sure that all instructions 2348 // in the predecessor blocks can be promoted as well. If not, we won't be able 2349 // to get rid of the control flow, so it's not worth promoting to select 2350 // instructions. 2351 BasicBlock *DomBlock = nullptr; 2352 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2353 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2354 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2355 IfBlock1 = nullptr; 2356 } else { 2357 DomBlock = *pred_begin(IfBlock1); 2358 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2359 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2360 // This is not an aggressive instruction that we can promote. 2361 // Because of this, we won't be able to get rid of the control flow, so 2362 // the xform is not worth it. 2363 return false; 2364 } 2365 } 2366 2367 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2368 IfBlock2 = nullptr; 2369 } else { 2370 DomBlock = *pred_begin(IfBlock2); 2371 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2372 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2373 // This is not an aggressive instruction that we can promote. 2374 // Because of this, we won't be able to get rid of the control flow, so 2375 // the xform is not worth it. 2376 return false; 2377 } 2378 } 2379 2380 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2381 << " T: " << IfTrue->getName() 2382 << " F: " << IfFalse->getName() << "\n"); 2383 2384 // If we can still promote the PHI nodes after this gauntlet of tests, 2385 // do all of the PHI's now. 2386 Instruction *InsertPt = DomBlock->getTerminator(); 2387 IRBuilder<NoFolder> Builder(InsertPt); 2388 2389 // Move all 'aggressive' instructions, which are defined in the 2390 // conditional parts of the if's up to the dominating block. 2391 if (IfBlock1) 2392 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2393 if (IfBlock2) 2394 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2395 2396 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2397 // Change the PHI node into a select instruction. 2398 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2399 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2400 2401 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2402 PN->replaceAllUsesWith(Sel); 2403 Sel->takeName(PN); 2404 PN->eraseFromParent(); 2405 } 2406 2407 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2408 // has been flattened. Change DomBlock to jump directly to our new block to 2409 // avoid other simplifycfg's kicking in on the diamond. 2410 Instruction *OldTI = DomBlock->getTerminator(); 2411 Builder.SetInsertPoint(OldTI); 2412 Builder.CreateBr(BB); 2413 OldTI->eraseFromParent(); 2414 return true; 2415 } 2416 2417 /// If we found a conditional branch that goes to two returning blocks, 2418 /// try to merge them together into one return, 2419 /// introducing a select if the return values disagree. 2420 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2421 IRBuilder<> &Builder) { 2422 assert(BI->isConditional() && "Must be a conditional branch"); 2423 BasicBlock *TrueSucc = BI->getSuccessor(0); 2424 BasicBlock *FalseSucc = BI->getSuccessor(1); 2425 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2426 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2427 2428 // Check to ensure both blocks are empty (just a return) or optionally empty 2429 // with PHI nodes. If there are other instructions, merging would cause extra 2430 // computation on one path or the other. 2431 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2432 return false; 2433 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2434 return false; 2435 2436 Builder.SetInsertPoint(BI); 2437 // Okay, we found a branch that is going to two return nodes. If 2438 // there is no return value for this function, just change the 2439 // branch into a return. 2440 if (FalseRet->getNumOperands() == 0) { 2441 TrueSucc->removePredecessor(BI->getParent()); 2442 FalseSucc->removePredecessor(BI->getParent()); 2443 Builder.CreateRetVoid(); 2444 EraseTerminatorAndDCECond(BI); 2445 return true; 2446 } 2447 2448 // Otherwise, figure out what the true and false return values are 2449 // so we can insert a new select instruction. 2450 Value *TrueValue = TrueRet->getReturnValue(); 2451 Value *FalseValue = FalseRet->getReturnValue(); 2452 2453 // Unwrap any PHI nodes in the return blocks. 2454 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2455 if (TVPN->getParent() == TrueSucc) 2456 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2457 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2458 if (FVPN->getParent() == FalseSucc) 2459 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2460 2461 // In order for this transformation to be safe, we must be able to 2462 // unconditionally execute both operands to the return. This is 2463 // normally the case, but we could have a potentially-trapping 2464 // constant expression that prevents this transformation from being 2465 // safe. 2466 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2467 if (TCV->canTrap()) 2468 return false; 2469 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2470 if (FCV->canTrap()) 2471 return false; 2472 2473 // Okay, we collected all the mapped values and checked them for sanity, and 2474 // defined to really do this transformation. First, update the CFG. 2475 TrueSucc->removePredecessor(BI->getParent()); 2476 FalseSucc->removePredecessor(BI->getParent()); 2477 2478 // Insert select instructions where needed. 2479 Value *BrCond = BI->getCondition(); 2480 if (TrueValue) { 2481 // Insert a select if the results differ. 2482 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2483 } else if (isa<UndefValue>(TrueValue)) { 2484 TrueValue = FalseValue; 2485 } else { 2486 TrueValue = 2487 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2488 } 2489 } 2490 2491 Value *RI = 2492 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2493 2494 (void)RI; 2495 2496 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2497 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2498 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2499 2500 EraseTerminatorAndDCECond(BI); 2501 2502 return true; 2503 } 2504 2505 /// Return true if the given instruction is available 2506 /// in its predecessor block. If yes, the instruction will be removed. 2507 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2508 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2509 return false; 2510 for (Instruction &I : *PB) { 2511 Instruction *PBI = &I; 2512 // Check whether Inst and PBI generate the same value. 2513 if (Inst->isIdenticalTo(PBI)) { 2514 Inst->replaceAllUsesWith(PBI); 2515 Inst->eraseFromParent(); 2516 return true; 2517 } 2518 } 2519 return false; 2520 } 2521 2522 /// Return true if either PBI or BI has branch weight available, and store 2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2524 /// not have branch weight, use 1:1 as its weight. 2525 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2526 uint64_t &PredTrueWeight, 2527 uint64_t &PredFalseWeight, 2528 uint64_t &SuccTrueWeight, 2529 uint64_t &SuccFalseWeight) { 2530 bool PredHasWeights = 2531 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2532 bool SuccHasWeights = 2533 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2534 if (PredHasWeights || SuccHasWeights) { 2535 if (!PredHasWeights) 2536 PredTrueWeight = PredFalseWeight = 1; 2537 if (!SuccHasWeights) 2538 SuccTrueWeight = SuccFalseWeight = 1; 2539 return true; 2540 } else { 2541 return false; 2542 } 2543 } 2544 2545 /// If this basic block is simple enough, and if a predecessor branches to us 2546 /// and one of our successors, fold the block into the predecessor and use 2547 /// logical operations to pick the right destination. 2548 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2549 BasicBlock *BB = BI->getParent(); 2550 2551 const unsigned PredCount = pred_size(BB); 2552 2553 Instruction *Cond = nullptr; 2554 if (BI->isConditional()) 2555 Cond = dyn_cast<Instruction>(BI->getCondition()); 2556 else { 2557 // For unconditional branch, check for a simple CFG pattern, where 2558 // BB has a single predecessor and BB's successor is also its predecessor's 2559 // successor. If such pattern exists, check for CSE between BB and its 2560 // predecessor. 2561 if (BasicBlock *PB = BB->getSinglePredecessor()) 2562 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2563 if (PBI->isConditional() && 2564 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2565 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2566 for (auto I = BB->instructionsWithoutDebug().begin(), 2567 E = BB->instructionsWithoutDebug().end(); 2568 I != E;) { 2569 Instruction *Curr = &*I++; 2570 if (isa<CmpInst>(Curr)) { 2571 Cond = Curr; 2572 break; 2573 } 2574 // Quit if we can't remove this instruction. 2575 if (!tryCSEWithPredecessor(Curr, PB)) 2576 return false; 2577 } 2578 } 2579 2580 if (!Cond) 2581 return false; 2582 } 2583 2584 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2585 Cond->getParent() != BB || !Cond->hasOneUse()) 2586 return false; 2587 2588 // Make sure the instruction after the condition is the cond branch. 2589 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2590 2591 // Ignore dbg intrinsics. 2592 while (isa<DbgInfoIntrinsic>(CondIt)) 2593 ++CondIt; 2594 2595 if (&*CondIt != BI) 2596 return false; 2597 2598 // Only allow this transformation if computing the condition doesn't involve 2599 // too many instructions and these involved instructions can be executed 2600 // unconditionally. We denote all involved instructions except the condition 2601 // as "bonus instructions", and only allow this transformation when the 2602 // number of the bonus instructions we'll need to create when cloning into 2603 // each predecessor does not exceed a certain threshold. 2604 unsigned NumBonusInsts = 0; 2605 for (auto I = BB->begin(); Cond != &*I; ++I) { 2606 // Ignore dbg intrinsics. 2607 if (isa<DbgInfoIntrinsic>(I)) 2608 continue; 2609 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2610 return false; 2611 // I has only one use and can be executed unconditionally. 2612 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2613 if (User == nullptr || User->getParent() != BB) 2614 return false; 2615 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2616 // to use any other instruction, User must be an instruction between next(I) 2617 // and Cond. 2618 2619 // Account for the cost of duplicating this instruction into each 2620 // predecessor. 2621 NumBonusInsts += PredCount; 2622 // Early exits once we reach the limit. 2623 if (NumBonusInsts > BonusInstThreshold) 2624 return false; 2625 } 2626 2627 // Cond is known to be a compare or binary operator. Check to make sure that 2628 // neither operand is a potentially-trapping constant expression. 2629 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2630 if (CE->canTrap()) 2631 return false; 2632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2633 if (CE->canTrap()) 2634 return false; 2635 2636 // Finally, don't infinitely unroll conditional loops. 2637 BasicBlock *TrueDest = BI->getSuccessor(0); 2638 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2639 if (TrueDest == BB || FalseDest == BB) 2640 return false; 2641 2642 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2643 BasicBlock *PredBlock = *PI; 2644 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2645 2646 // Check that we have two conditional branches. If there is a PHI node in 2647 // the common successor, verify that the same value flows in from both 2648 // blocks. 2649 SmallVector<PHINode *, 4> PHIs; 2650 if (!PBI || PBI->isUnconditional() || 2651 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2652 (!BI->isConditional() && 2653 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2654 continue; 2655 2656 // Determine if the two branches share a common destination. 2657 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2658 bool InvertPredCond = false; 2659 2660 if (BI->isConditional()) { 2661 if (PBI->getSuccessor(0) == TrueDest) { 2662 Opc = Instruction::Or; 2663 } else if (PBI->getSuccessor(1) == FalseDest) { 2664 Opc = Instruction::And; 2665 } else if (PBI->getSuccessor(0) == FalseDest) { 2666 Opc = Instruction::And; 2667 InvertPredCond = true; 2668 } else if (PBI->getSuccessor(1) == TrueDest) { 2669 Opc = Instruction::Or; 2670 InvertPredCond = true; 2671 } else { 2672 continue; 2673 } 2674 } else { 2675 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2676 continue; 2677 } 2678 2679 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2680 IRBuilder<> Builder(PBI); 2681 2682 // If we need to invert the condition in the pred block to match, do so now. 2683 if (InvertPredCond) { 2684 Value *NewCond = PBI->getCondition(); 2685 2686 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2687 CmpInst *CI = cast<CmpInst>(NewCond); 2688 CI->setPredicate(CI->getInversePredicate()); 2689 } else { 2690 NewCond = 2691 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2692 } 2693 2694 PBI->setCondition(NewCond); 2695 PBI->swapSuccessors(); 2696 } 2697 2698 // If we have bonus instructions, clone them into the predecessor block. 2699 // Note that there may be multiple predecessor blocks, so we cannot move 2700 // bonus instructions to a predecessor block. 2701 ValueToValueMapTy VMap; // maps original values to cloned values 2702 // We already make sure Cond is the last instruction before BI. Therefore, 2703 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2704 // instructions. 2705 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2706 if (isa<DbgInfoIntrinsic>(BonusInst)) 2707 continue; 2708 Instruction *NewBonusInst = BonusInst->clone(); 2709 RemapInstruction(NewBonusInst, VMap, 2710 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2711 VMap[&*BonusInst] = NewBonusInst; 2712 2713 // If we moved a load, we cannot any longer claim any knowledge about 2714 // its potential value. The previous information might have been valid 2715 // only given the branch precondition. 2716 // For an analogous reason, we must also drop all the metadata whose 2717 // semantics we don't understand. 2718 NewBonusInst->dropUnknownNonDebugMetadata(); 2719 2720 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2721 NewBonusInst->takeName(&*BonusInst); 2722 BonusInst->setName(BonusInst->getName() + ".old"); 2723 } 2724 2725 // Clone Cond into the predecessor basic block, and or/and the 2726 // two conditions together. 2727 Instruction *CondInPred = Cond->clone(); 2728 RemapInstruction(CondInPred, VMap, 2729 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2730 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2731 CondInPred->takeName(Cond); 2732 Cond->setName(CondInPred->getName() + ".old"); 2733 2734 if (BI->isConditional()) { 2735 Instruction *NewCond = cast<Instruction>( 2736 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2737 PBI->setCondition(NewCond); 2738 2739 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2740 bool HasWeights = 2741 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2742 SuccTrueWeight, SuccFalseWeight); 2743 SmallVector<uint64_t, 8> NewWeights; 2744 2745 if (PBI->getSuccessor(0) == BB) { 2746 if (HasWeights) { 2747 // PBI: br i1 %x, BB, FalseDest 2748 // BI: br i1 %y, TrueDest, FalseDest 2749 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2750 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2751 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2752 // TrueWeight for PBI * FalseWeight for BI. 2753 // We assume that total weights of a BranchInst can fit into 32 bits. 2754 // Therefore, we will not have overflow using 64-bit arithmetic. 2755 NewWeights.push_back(PredFalseWeight * 2756 (SuccFalseWeight + SuccTrueWeight) + 2757 PredTrueWeight * SuccFalseWeight); 2758 } 2759 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2760 PBI->setSuccessor(0, TrueDest); 2761 } 2762 if (PBI->getSuccessor(1) == BB) { 2763 if (HasWeights) { 2764 // PBI: br i1 %x, TrueDest, BB 2765 // BI: br i1 %y, TrueDest, FalseDest 2766 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2767 // FalseWeight for PBI * TrueWeight for BI. 2768 NewWeights.push_back(PredTrueWeight * 2769 (SuccFalseWeight + SuccTrueWeight) + 2770 PredFalseWeight * SuccTrueWeight); 2771 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2772 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2773 } 2774 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2775 PBI->setSuccessor(1, FalseDest); 2776 } 2777 if (NewWeights.size() == 2) { 2778 // Halve the weights if any of them cannot fit in an uint32_t 2779 FitWeights(NewWeights); 2780 2781 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2782 NewWeights.end()); 2783 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2784 } else 2785 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2786 } else { 2787 // Update PHI nodes in the common successors. 2788 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2789 ConstantInt *PBI_C = cast<ConstantInt>( 2790 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2791 assert(PBI_C->getType()->isIntegerTy(1)); 2792 Instruction *MergedCond = nullptr; 2793 if (PBI->getSuccessor(0) == TrueDest) { 2794 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2795 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2796 // is false: !PBI_Cond and BI_Value 2797 Instruction *NotCond = cast<Instruction>( 2798 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2799 MergedCond = cast<Instruction>( 2800 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2801 "and.cond")); 2802 if (PBI_C->isOne()) 2803 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2804 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2805 } else { 2806 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2807 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2808 // is false: PBI_Cond and BI_Value 2809 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2810 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2811 if (PBI_C->isOne()) { 2812 Instruction *NotCond = cast<Instruction>( 2813 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2814 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2815 Instruction::Or, NotCond, MergedCond, "or.cond")); 2816 } 2817 } 2818 // Update PHI Node. 2819 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2820 MergedCond); 2821 } 2822 // Change PBI from Conditional to Unconditional. 2823 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2824 EraseTerminatorAndDCECond(PBI); 2825 PBI = New_PBI; 2826 } 2827 2828 // If BI was a loop latch, it may have had associated loop metadata. 2829 // We need to copy it to the new latch, that is, PBI. 2830 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2831 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2832 2833 // TODO: If BB is reachable from all paths through PredBlock, then we 2834 // could replace PBI's branch probabilities with BI's. 2835 2836 // Copy any debug value intrinsics into the end of PredBlock. 2837 for (Instruction &I : *BB) 2838 if (isa<DbgInfoIntrinsic>(I)) 2839 I.clone()->insertBefore(PBI); 2840 2841 return true; 2842 } 2843 return false; 2844 } 2845 2846 // If there is only one store in BB1 and BB2, return it, otherwise return 2847 // nullptr. 2848 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2849 StoreInst *S = nullptr; 2850 for (auto *BB : {BB1, BB2}) { 2851 if (!BB) 2852 continue; 2853 for (auto &I : *BB) 2854 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2855 if (S) 2856 // Multiple stores seen. 2857 return nullptr; 2858 else 2859 S = SI; 2860 } 2861 } 2862 return S; 2863 } 2864 2865 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2866 Value *AlternativeV = nullptr) { 2867 // PHI is going to be a PHI node that allows the value V that is defined in 2868 // BB to be referenced in BB's only successor. 2869 // 2870 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2871 // doesn't matter to us what the other operand is (it'll never get used). We 2872 // could just create a new PHI with an undef incoming value, but that could 2873 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2874 // other PHI. So here we directly look for some PHI in BB's successor with V 2875 // as an incoming operand. If we find one, we use it, else we create a new 2876 // one. 2877 // 2878 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2879 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2880 // where OtherBB is the single other predecessor of BB's only successor. 2881 PHINode *PHI = nullptr; 2882 BasicBlock *Succ = BB->getSingleSuccessor(); 2883 2884 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2885 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2886 PHI = cast<PHINode>(I); 2887 if (!AlternativeV) 2888 break; 2889 2890 assert(Succ->hasNPredecessors(2)); 2891 auto PredI = pred_begin(Succ); 2892 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2893 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2894 break; 2895 PHI = nullptr; 2896 } 2897 if (PHI) 2898 return PHI; 2899 2900 // If V is not an instruction defined in BB, just return it. 2901 if (!AlternativeV && 2902 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2903 return V; 2904 2905 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2906 PHI->addIncoming(V, BB); 2907 for (BasicBlock *PredBB : predecessors(Succ)) 2908 if (PredBB != BB) 2909 PHI->addIncoming( 2910 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2911 return PHI; 2912 } 2913 2914 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2915 BasicBlock *QTB, BasicBlock *QFB, 2916 BasicBlock *PostBB, Value *Address, 2917 bool InvertPCond, bool InvertQCond, 2918 const DataLayout &DL) { 2919 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2920 return Operator::getOpcode(&I) == Instruction::BitCast && 2921 I.getType()->isPointerTy(); 2922 }; 2923 2924 // If we're not in aggressive mode, we only optimize if we have some 2925 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2926 auto IsWorthwhile = [&](BasicBlock *BB) { 2927 if (!BB) 2928 return true; 2929 // Heuristic: if the block can be if-converted/phi-folded and the 2930 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2931 // thread this store. 2932 unsigned N = 0; 2933 for (auto &I : BB->instructionsWithoutDebug()) { 2934 // Cheap instructions viable for folding. 2935 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2936 isa<StoreInst>(I)) 2937 ++N; 2938 // Free instructions. 2939 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2940 continue; 2941 else 2942 return false; 2943 } 2944 // The store we want to merge is counted in N, so add 1 to make sure 2945 // we're counting the instructions that would be left. 2946 return N <= (PHINodeFoldingThreshold + 1); 2947 }; 2948 2949 if (!MergeCondStoresAggressively && 2950 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2951 !IsWorthwhile(QFB))) 2952 return false; 2953 2954 // For every pointer, there must be exactly two stores, one coming from 2955 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2956 // store (to any address) in PTB,PFB or QTB,QFB. 2957 // FIXME: We could relax this restriction with a bit more work and performance 2958 // testing. 2959 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2960 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2961 if (!PStore || !QStore) 2962 return false; 2963 2964 // Now check the stores are compatible. 2965 if (!QStore->isUnordered() || !PStore->isUnordered()) 2966 return false; 2967 2968 // Check that sinking the store won't cause program behavior changes. Sinking 2969 // the store out of the Q blocks won't change any behavior as we're sinking 2970 // from a block to its unconditional successor. But we're moving a store from 2971 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2972 // So we need to check that there are no aliasing loads or stores in 2973 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2974 // operations between PStore and the end of its parent block. 2975 // 2976 // The ideal way to do this is to query AliasAnalysis, but we don't 2977 // preserve AA currently so that is dangerous. Be super safe and just 2978 // check there are no other memory operations at all. 2979 for (auto &I : *QFB->getSinglePredecessor()) 2980 if (I.mayReadOrWriteMemory()) 2981 return false; 2982 for (auto &I : *QFB) 2983 if (&I != QStore && I.mayReadOrWriteMemory()) 2984 return false; 2985 if (QTB) 2986 for (auto &I : *QTB) 2987 if (&I != QStore && I.mayReadOrWriteMemory()) 2988 return false; 2989 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2990 I != E; ++I) 2991 if (&*I != PStore && I->mayReadOrWriteMemory()) 2992 return false; 2993 2994 // If PostBB has more than two predecessors, we need to split it so we can 2995 // sink the store. 2996 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2997 // We know that QFB's only successor is PostBB. And QFB has a single 2998 // predecessor. If QTB exists, then its only successor is also PostBB. 2999 // If QTB does not exist, then QFB's only predecessor has a conditional 3000 // branch to QFB and PostBB. 3001 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3002 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3003 "condstore.split"); 3004 if (!NewBB) 3005 return false; 3006 PostBB = NewBB; 3007 } 3008 3009 // OK, we're going to sink the stores to PostBB. The store has to be 3010 // conditional though, so first create the predicate. 3011 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3012 ->getCondition(); 3013 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3014 ->getCondition(); 3015 3016 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3017 PStore->getParent()); 3018 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3019 QStore->getParent(), PPHI); 3020 3021 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3022 3023 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3024 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3025 3026 if (InvertPCond) 3027 PPred = QB.CreateNot(PPred); 3028 if (InvertQCond) 3029 QPred = QB.CreateNot(QPred); 3030 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3031 3032 auto *T = 3033 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3034 QB.SetInsertPoint(T); 3035 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3036 AAMDNodes AAMD; 3037 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3038 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3039 SI->setAAMetadata(AAMD); 3040 unsigned PAlignment = PStore->getAlignment(); 3041 unsigned QAlignment = QStore->getAlignment(); 3042 unsigned TypeAlignment = 3043 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3044 unsigned MinAlignment; 3045 unsigned MaxAlignment; 3046 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3047 // Choose the minimum alignment. If we could prove both stores execute, we 3048 // could use biggest one. In this case, though, we only know that one of the 3049 // stores executes. And we don't know it's safe to take the alignment from a 3050 // store that doesn't execute. 3051 if (MinAlignment != 0) { 3052 // Choose the minimum of all non-zero alignments. 3053 SI->setAlignment(MinAlignment); 3054 } else if (MaxAlignment != 0) { 3055 // Choose the minimal alignment between the non-zero alignment and the ABI 3056 // default alignment for the type of the stored value. 3057 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3058 } else { 3059 // If both alignments are zero, use ABI default alignment for the type of 3060 // the stored value. 3061 SI->setAlignment(TypeAlignment); 3062 } 3063 3064 QStore->eraseFromParent(); 3065 PStore->eraseFromParent(); 3066 3067 return true; 3068 } 3069 3070 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3071 const DataLayout &DL) { 3072 // The intention here is to find diamonds or triangles (see below) where each 3073 // conditional block contains a store to the same address. Both of these 3074 // stores are conditional, so they can't be unconditionally sunk. But it may 3075 // be profitable to speculatively sink the stores into one merged store at the 3076 // end, and predicate the merged store on the union of the two conditions of 3077 // PBI and QBI. 3078 // 3079 // This can reduce the number of stores executed if both of the conditions are 3080 // true, and can allow the blocks to become small enough to be if-converted. 3081 // This optimization will also chain, so that ladders of test-and-set 3082 // sequences can be if-converted away. 3083 // 3084 // We only deal with simple diamonds or triangles: 3085 // 3086 // PBI or PBI or a combination of the two 3087 // / \ | \ 3088 // PTB PFB | PFB 3089 // \ / | / 3090 // QBI QBI 3091 // / \ | \ 3092 // QTB QFB | QFB 3093 // \ / | / 3094 // PostBB PostBB 3095 // 3096 // We model triangles as a type of diamond with a nullptr "true" block. 3097 // Triangles are canonicalized so that the fallthrough edge is represented by 3098 // a true condition, as in the diagram above. 3099 BasicBlock *PTB = PBI->getSuccessor(0); 3100 BasicBlock *PFB = PBI->getSuccessor(1); 3101 BasicBlock *QTB = QBI->getSuccessor(0); 3102 BasicBlock *QFB = QBI->getSuccessor(1); 3103 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3104 3105 // Make sure we have a good guess for PostBB. If QTB's only successor is 3106 // QFB, then QFB is a better PostBB. 3107 if (QTB->getSingleSuccessor() == QFB) 3108 PostBB = QFB; 3109 3110 // If we couldn't find a good PostBB, stop. 3111 if (!PostBB) 3112 return false; 3113 3114 bool InvertPCond = false, InvertQCond = false; 3115 // Canonicalize fallthroughs to the true branches. 3116 if (PFB == QBI->getParent()) { 3117 std::swap(PFB, PTB); 3118 InvertPCond = true; 3119 } 3120 if (QFB == PostBB) { 3121 std::swap(QFB, QTB); 3122 InvertQCond = true; 3123 } 3124 3125 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3126 // and QFB may not. Model fallthroughs as a nullptr block. 3127 if (PTB == QBI->getParent()) 3128 PTB = nullptr; 3129 if (QTB == PostBB) 3130 QTB = nullptr; 3131 3132 // Legality bailouts. We must have at least the non-fallthrough blocks and 3133 // the post-dominating block, and the non-fallthroughs must only have one 3134 // predecessor. 3135 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3136 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3137 }; 3138 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3139 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3140 return false; 3141 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3142 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3143 return false; 3144 if (!QBI->getParent()->hasNUses(2)) 3145 return false; 3146 3147 // OK, this is a sequence of two diamonds or triangles. 3148 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3149 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3150 for (auto *BB : {PTB, PFB}) { 3151 if (!BB) 3152 continue; 3153 for (auto &I : *BB) 3154 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3155 PStoreAddresses.insert(SI->getPointerOperand()); 3156 } 3157 for (auto *BB : {QTB, QFB}) { 3158 if (!BB) 3159 continue; 3160 for (auto &I : *BB) 3161 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3162 QStoreAddresses.insert(SI->getPointerOperand()); 3163 } 3164 3165 set_intersect(PStoreAddresses, QStoreAddresses); 3166 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3167 // clear what it contains. 3168 auto &CommonAddresses = PStoreAddresses; 3169 3170 bool Changed = false; 3171 for (auto *Address : CommonAddresses) 3172 Changed |= mergeConditionalStoreToAddress( 3173 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3174 return Changed; 3175 } 3176 3177 /// If we have a conditional branch as a predecessor of another block, 3178 /// this function tries to simplify it. We know 3179 /// that PBI and BI are both conditional branches, and BI is in one of the 3180 /// successor blocks of PBI - PBI branches to BI. 3181 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3182 const DataLayout &DL) { 3183 assert(PBI->isConditional() && BI->isConditional()); 3184 BasicBlock *BB = BI->getParent(); 3185 3186 // If this block ends with a branch instruction, and if there is a 3187 // predecessor that ends on a branch of the same condition, make 3188 // this conditional branch redundant. 3189 if (PBI->getCondition() == BI->getCondition() && 3190 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3191 // Okay, the outcome of this conditional branch is statically 3192 // knowable. If this block had a single pred, handle specially. 3193 if (BB->getSinglePredecessor()) { 3194 // Turn this into a branch on constant. 3195 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3196 BI->setCondition( 3197 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3198 return true; // Nuke the branch on constant. 3199 } 3200 3201 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3202 // in the constant and simplify the block result. Subsequent passes of 3203 // simplifycfg will thread the block. 3204 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3205 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3206 PHINode *NewPN = PHINode::Create( 3207 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3208 BI->getCondition()->getName() + ".pr", &BB->front()); 3209 // Okay, we're going to insert the PHI node. Since PBI is not the only 3210 // predecessor, compute the PHI'd conditional value for all of the preds. 3211 // Any predecessor where the condition is not computable we keep symbolic. 3212 for (pred_iterator PI = PB; PI != PE; ++PI) { 3213 BasicBlock *P = *PI; 3214 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3215 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3216 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3217 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3218 NewPN->addIncoming( 3219 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3220 P); 3221 } else { 3222 NewPN->addIncoming(BI->getCondition(), P); 3223 } 3224 } 3225 3226 BI->setCondition(NewPN); 3227 return true; 3228 } 3229 } 3230 3231 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3232 if (CE->canTrap()) 3233 return false; 3234 3235 // If both branches are conditional and both contain stores to the same 3236 // address, remove the stores from the conditionals and create a conditional 3237 // merged store at the end. 3238 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3239 return true; 3240 3241 // If this is a conditional branch in an empty block, and if any 3242 // predecessors are a conditional branch to one of our destinations, 3243 // fold the conditions into logical ops and one cond br. 3244 3245 // Ignore dbg intrinsics. 3246 if (&*BB->instructionsWithoutDebug().begin() != BI) 3247 return false; 3248 3249 int PBIOp, BIOp; 3250 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3251 PBIOp = 0; 3252 BIOp = 0; 3253 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3254 PBIOp = 0; 3255 BIOp = 1; 3256 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3257 PBIOp = 1; 3258 BIOp = 0; 3259 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3260 PBIOp = 1; 3261 BIOp = 1; 3262 } else { 3263 return false; 3264 } 3265 3266 // Check to make sure that the other destination of this branch 3267 // isn't BB itself. If so, this is an infinite loop that will 3268 // keep getting unwound. 3269 if (PBI->getSuccessor(PBIOp) == BB) 3270 return false; 3271 3272 // Do not perform this transformation if it would require 3273 // insertion of a large number of select instructions. For targets 3274 // without predication/cmovs, this is a big pessimization. 3275 3276 // Also do not perform this transformation if any phi node in the common 3277 // destination block can trap when reached by BB or PBB (PR17073). In that 3278 // case, it would be unsafe to hoist the operation into a select instruction. 3279 3280 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3281 unsigned NumPhis = 0; 3282 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3283 ++II, ++NumPhis) { 3284 if (NumPhis > 2) // Disable this xform. 3285 return false; 3286 3287 PHINode *PN = cast<PHINode>(II); 3288 Value *BIV = PN->getIncomingValueForBlock(BB); 3289 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3290 if (CE->canTrap()) 3291 return false; 3292 3293 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3294 Value *PBIV = PN->getIncomingValue(PBBIdx); 3295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3296 if (CE->canTrap()) 3297 return false; 3298 } 3299 3300 // Finally, if everything is ok, fold the branches to logical ops. 3301 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3302 3303 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3304 << "AND: " << *BI->getParent()); 3305 3306 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3307 // branch in it, where one edge (OtherDest) goes back to itself but the other 3308 // exits. We don't *know* that the program avoids the infinite loop 3309 // (even though that seems likely). If we do this xform naively, we'll end up 3310 // recursively unpeeling the loop. Since we know that (after the xform is 3311 // done) that the block *is* infinite if reached, we just make it an obviously 3312 // infinite loop with no cond branch. 3313 if (OtherDest == BB) { 3314 // Insert it at the end of the function, because it's either code, 3315 // or it won't matter if it's hot. :) 3316 BasicBlock *InfLoopBlock = 3317 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3318 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3319 OtherDest = InfLoopBlock; 3320 } 3321 3322 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3323 3324 // BI may have other predecessors. Because of this, we leave 3325 // it alone, but modify PBI. 3326 3327 // Make sure we get to CommonDest on True&True directions. 3328 Value *PBICond = PBI->getCondition(); 3329 IRBuilder<NoFolder> Builder(PBI); 3330 if (PBIOp) 3331 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3332 3333 Value *BICond = BI->getCondition(); 3334 if (BIOp) 3335 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3336 3337 // Merge the conditions. 3338 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3339 3340 // Modify PBI to branch on the new condition to the new dests. 3341 PBI->setCondition(Cond); 3342 PBI->setSuccessor(0, CommonDest); 3343 PBI->setSuccessor(1, OtherDest); 3344 3345 // Update branch weight for PBI. 3346 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3347 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3348 bool HasWeights = 3349 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3350 SuccTrueWeight, SuccFalseWeight); 3351 if (HasWeights) { 3352 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3353 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3354 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3355 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3356 // The weight to CommonDest should be PredCommon * SuccTotal + 3357 // PredOther * SuccCommon. 3358 // The weight to OtherDest should be PredOther * SuccOther. 3359 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3360 PredOther * SuccCommon, 3361 PredOther * SuccOther}; 3362 // Halve the weights if any of them cannot fit in an uint32_t 3363 FitWeights(NewWeights); 3364 3365 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3366 } 3367 3368 // OtherDest may have phi nodes. If so, add an entry from PBI's 3369 // block that are identical to the entries for BI's block. 3370 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3371 3372 // We know that the CommonDest already had an edge from PBI to 3373 // it. If it has PHIs though, the PHIs may have different 3374 // entries for BB and PBI's BB. If so, insert a select to make 3375 // them agree. 3376 for (PHINode &PN : CommonDest->phis()) { 3377 Value *BIV = PN.getIncomingValueForBlock(BB); 3378 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3379 Value *PBIV = PN.getIncomingValue(PBBIdx); 3380 if (BIV != PBIV) { 3381 // Insert a select in PBI to pick the right value. 3382 SelectInst *NV = cast<SelectInst>( 3383 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3384 PN.setIncomingValue(PBBIdx, NV); 3385 // Although the select has the same condition as PBI, the original branch 3386 // weights for PBI do not apply to the new select because the select's 3387 // 'logical' edges are incoming edges of the phi that is eliminated, not 3388 // the outgoing edges of PBI. 3389 if (HasWeights) { 3390 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3391 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3392 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3393 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3394 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3395 // The weight to PredOtherDest should be PredOther * SuccCommon. 3396 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3397 PredOther * SuccCommon}; 3398 3399 FitWeights(NewWeights); 3400 3401 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3402 } 3403 } 3404 } 3405 3406 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3407 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3408 3409 // This basic block is probably dead. We know it has at least 3410 // one fewer predecessor. 3411 return true; 3412 } 3413 3414 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3415 // true or to FalseBB if Cond is false. 3416 // Takes care of updating the successors and removing the old terminator. 3417 // Also makes sure not to introduce new successors by assuming that edges to 3418 // non-successor TrueBBs and FalseBBs aren't reachable. 3419 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3420 BasicBlock *TrueBB, BasicBlock *FalseBB, 3421 uint32_t TrueWeight, 3422 uint32_t FalseWeight) { 3423 // Remove any superfluous successor edges from the CFG. 3424 // First, figure out which successors to preserve. 3425 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3426 // successor. 3427 BasicBlock *KeepEdge1 = TrueBB; 3428 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3429 3430 // Then remove the rest. 3431 for (BasicBlock *Succ : successors(OldTerm)) { 3432 // Make sure only to keep exactly one copy of each edge. 3433 if (Succ == KeepEdge1) 3434 KeepEdge1 = nullptr; 3435 else if (Succ == KeepEdge2) 3436 KeepEdge2 = nullptr; 3437 else 3438 Succ->removePredecessor(OldTerm->getParent(), 3439 /*KeepOneInputPHIs=*/true); 3440 } 3441 3442 IRBuilder<> Builder(OldTerm); 3443 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3444 3445 // Insert an appropriate new terminator. 3446 if (!KeepEdge1 && !KeepEdge2) { 3447 if (TrueBB == FalseBB) 3448 // We were only looking for one successor, and it was present. 3449 // Create an unconditional branch to it. 3450 Builder.CreateBr(TrueBB); 3451 else { 3452 // We found both of the successors we were looking for. 3453 // Create a conditional branch sharing the condition of the select. 3454 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3455 if (TrueWeight != FalseWeight) 3456 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3457 } 3458 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3459 // Neither of the selected blocks were successors, so this 3460 // terminator must be unreachable. 3461 new UnreachableInst(OldTerm->getContext(), OldTerm); 3462 } else { 3463 // One of the selected values was a successor, but the other wasn't. 3464 // Insert an unconditional branch to the one that was found; 3465 // the edge to the one that wasn't must be unreachable. 3466 if (!KeepEdge1) 3467 // Only TrueBB was found. 3468 Builder.CreateBr(TrueBB); 3469 else 3470 // Only FalseBB was found. 3471 Builder.CreateBr(FalseBB); 3472 } 3473 3474 EraseTerminatorAndDCECond(OldTerm); 3475 return true; 3476 } 3477 3478 // Replaces 3479 // (switch (select cond, X, Y)) on constant X, Y 3480 // with a branch - conditional if X and Y lead to distinct BBs, 3481 // unconditional otherwise. 3482 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3483 // Check for constant integer values in the select. 3484 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3485 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3486 if (!TrueVal || !FalseVal) 3487 return false; 3488 3489 // Find the relevant condition and destinations. 3490 Value *Condition = Select->getCondition(); 3491 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3492 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3493 3494 // Get weight for TrueBB and FalseBB. 3495 uint32_t TrueWeight = 0, FalseWeight = 0; 3496 SmallVector<uint64_t, 8> Weights; 3497 bool HasWeights = HasBranchWeights(SI); 3498 if (HasWeights) { 3499 GetBranchWeights(SI, Weights); 3500 if (Weights.size() == 1 + SI->getNumCases()) { 3501 TrueWeight = 3502 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3503 FalseWeight = 3504 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3505 } 3506 } 3507 3508 // Perform the actual simplification. 3509 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3510 FalseWeight); 3511 } 3512 3513 // Replaces 3514 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3515 // blockaddress(@fn, BlockB))) 3516 // with 3517 // (br cond, BlockA, BlockB). 3518 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3519 // Check that both operands of the select are block addresses. 3520 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3521 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3522 if (!TBA || !FBA) 3523 return false; 3524 3525 // Extract the actual blocks. 3526 BasicBlock *TrueBB = TBA->getBasicBlock(); 3527 BasicBlock *FalseBB = FBA->getBasicBlock(); 3528 3529 // Perform the actual simplification. 3530 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3531 0); 3532 } 3533 3534 /// This is called when we find an icmp instruction 3535 /// (a seteq/setne with a constant) as the only instruction in a 3536 /// block that ends with an uncond branch. We are looking for a very specific 3537 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3538 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3539 /// default value goes to an uncond block with a seteq in it, we get something 3540 /// like: 3541 /// 3542 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3543 /// DEFAULT: 3544 /// %tmp = icmp eq i8 %A, 92 3545 /// br label %end 3546 /// end: 3547 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3548 /// 3549 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3550 /// the PHI, merging the third icmp into the switch. 3551 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3552 ICmpInst *ICI, IRBuilder<> &Builder) { 3553 BasicBlock *BB = ICI->getParent(); 3554 3555 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3556 // complex. 3557 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3558 return false; 3559 3560 Value *V = ICI->getOperand(0); 3561 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3562 3563 // The pattern we're looking for is where our only predecessor is a switch on 3564 // 'V' and this block is the default case for the switch. In this case we can 3565 // fold the compared value into the switch to simplify things. 3566 BasicBlock *Pred = BB->getSinglePredecessor(); 3567 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3568 return false; 3569 3570 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3571 if (SI->getCondition() != V) 3572 return false; 3573 3574 // If BB is reachable on a non-default case, then we simply know the value of 3575 // V in this block. Substitute it and constant fold the icmp instruction 3576 // away. 3577 if (SI->getDefaultDest() != BB) { 3578 ConstantInt *VVal = SI->findCaseDest(BB); 3579 assert(VVal && "Should have a unique destination value"); 3580 ICI->setOperand(0, VVal); 3581 3582 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3583 ICI->replaceAllUsesWith(V); 3584 ICI->eraseFromParent(); 3585 } 3586 // BB is now empty, so it is likely to simplify away. 3587 return requestResimplify(); 3588 } 3589 3590 // Ok, the block is reachable from the default dest. If the constant we're 3591 // comparing exists in one of the other edges, then we can constant fold ICI 3592 // and zap it. 3593 if (SI->findCaseValue(Cst) != SI->case_default()) { 3594 Value *V; 3595 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3596 V = ConstantInt::getFalse(BB->getContext()); 3597 else 3598 V = ConstantInt::getTrue(BB->getContext()); 3599 3600 ICI->replaceAllUsesWith(V); 3601 ICI->eraseFromParent(); 3602 // BB is now empty, so it is likely to simplify away. 3603 return requestResimplify(); 3604 } 3605 3606 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3607 // the block. 3608 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3609 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3610 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3611 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3612 return false; 3613 3614 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3615 // true in the PHI. 3616 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3617 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3618 3619 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3620 std::swap(DefaultCst, NewCst); 3621 3622 // Replace ICI (which is used by the PHI for the default value) with true or 3623 // false depending on if it is EQ or NE. 3624 ICI->replaceAllUsesWith(DefaultCst); 3625 ICI->eraseFromParent(); 3626 3627 // Okay, the switch goes to this block on a default value. Add an edge from 3628 // the switch to the merge point on the compared value. 3629 BasicBlock *NewBB = 3630 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3631 SmallVector<uint64_t, 8> Weights; 3632 bool HasWeights = HasBranchWeights(SI); 3633 if (HasWeights) { 3634 GetBranchWeights(SI, Weights); 3635 if (Weights.size() == 1 + SI->getNumCases()) { 3636 // Split weight for default case to case for "Cst". 3637 Weights[0] = (Weights[0] + 1) >> 1; 3638 Weights.push_back(Weights[0]); 3639 3640 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3641 setBranchWeights(SI, MDWeights); 3642 } 3643 } 3644 SI->addCase(Cst, NewBB); 3645 3646 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3647 Builder.SetInsertPoint(NewBB); 3648 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3649 Builder.CreateBr(SuccBlock); 3650 PHIUse->addIncoming(NewCst, NewBB); 3651 return true; 3652 } 3653 3654 /// The specified branch is a conditional branch. 3655 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3656 /// fold it into a switch instruction if so. 3657 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3658 const DataLayout &DL) { 3659 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3660 if (!Cond) 3661 return false; 3662 3663 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3664 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3665 // 'setne's and'ed together, collect them. 3666 3667 // Try to gather values from a chain of and/or to be turned into a switch 3668 ConstantComparesGatherer ConstantCompare(Cond, DL); 3669 // Unpack the result 3670 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3671 Value *CompVal = ConstantCompare.CompValue; 3672 unsigned UsedICmps = ConstantCompare.UsedICmps; 3673 Value *ExtraCase = ConstantCompare.Extra; 3674 3675 // If we didn't have a multiply compared value, fail. 3676 if (!CompVal) 3677 return false; 3678 3679 // Avoid turning single icmps into a switch. 3680 if (UsedICmps <= 1) 3681 return false; 3682 3683 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3684 3685 // There might be duplicate constants in the list, which the switch 3686 // instruction can't handle, remove them now. 3687 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3688 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3689 3690 // If Extra was used, we require at least two switch values to do the 3691 // transformation. A switch with one value is just a conditional branch. 3692 if (ExtraCase && Values.size() < 2) 3693 return false; 3694 3695 // TODO: Preserve branch weight metadata, similarly to how 3696 // FoldValueComparisonIntoPredecessors preserves it. 3697 3698 // Figure out which block is which destination. 3699 BasicBlock *DefaultBB = BI->getSuccessor(1); 3700 BasicBlock *EdgeBB = BI->getSuccessor(0); 3701 if (!TrueWhenEqual) 3702 std::swap(DefaultBB, EdgeBB); 3703 3704 BasicBlock *BB = BI->getParent(); 3705 3706 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3707 << " cases into SWITCH. BB is:\n" 3708 << *BB); 3709 3710 // If there are any extra values that couldn't be folded into the switch 3711 // then we evaluate them with an explicit branch first. Split the block 3712 // right before the condbr to handle it. 3713 if (ExtraCase) { 3714 BasicBlock *NewBB = 3715 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3716 // Remove the uncond branch added to the old block. 3717 Instruction *OldTI = BB->getTerminator(); 3718 Builder.SetInsertPoint(OldTI); 3719 3720 if (TrueWhenEqual) 3721 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3722 else 3723 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3724 3725 OldTI->eraseFromParent(); 3726 3727 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3728 // for the edge we just added. 3729 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3730 3731 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3732 << "\nEXTRABB = " << *BB); 3733 BB = NewBB; 3734 } 3735 3736 Builder.SetInsertPoint(BI); 3737 // Convert pointer to int before we switch. 3738 if (CompVal->getType()->isPointerTy()) { 3739 CompVal = Builder.CreatePtrToInt( 3740 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3741 } 3742 3743 // Create the new switch instruction now. 3744 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3745 3746 // Add all of the 'cases' to the switch instruction. 3747 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3748 New->addCase(Values[i], EdgeBB); 3749 3750 // We added edges from PI to the EdgeBB. As such, if there were any 3751 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3752 // the number of edges added. 3753 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3754 PHINode *PN = cast<PHINode>(BBI); 3755 Value *InVal = PN->getIncomingValueForBlock(BB); 3756 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3757 PN->addIncoming(InVal, BB); 3758 } 3759 3760 // Erase the old branch instruction. 3761 EraseTerminatorAndDCECond(BI); 3762 3763 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3764 return true; 3765 } 3766 3767 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3768 if (isa<PHINode>(RI->getValue())) 3769 return SimplifyCommonResume(RI); 3770 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3771 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3772 // The resume must unwind the exception that caused control to branch here. 3773 return SimplifySingleResume(RI); 3774 3775 return false; 3776 } 3777 3778 // Simplify resume that is shared by several landing pads (phi of landing pad). 3779 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3780 BasicBlock *BB = RI->getParent(); 3781 3782 // Check that there are no other instructions except for debug intrinsics 3783 // between the phi of landing pads (RI->getValue()) and resume instruction. 3784 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3785 E = RI->getIterator(); 3786 while (++I != E) 3787 if (!isa<DbgInfoIntrinsic>(I)) 3788 return false; 3789 3790 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3791 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3792 3793 // Check incoming blocks to see if any of them are trivial. 3794 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3795 Idx++) { 3796 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3797 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3798 3799 // If the block has other successors, we can not delete it because 3800 // it has other dependents. 3801 if (IncomingBB->getUniqueSuccessor() != BB) 3802 continue; 3803 3804 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3805 // Not the landing pad that caused the control to branch here. 3806 if (IncomingValue != LandingPad) 3807 continue; 3808 3809 bool isTrivial = true; 3810 3811 I = IncomingBB->getFirstNonPHI()->getIterator(); 3812 E = IncomingBB->getTerminator()->getIterator(); 3813 while (++I != E) 3814 if (!isa<DbgInfoIntrinsic>(I)) { 3815 isTrivial = false; 3816 break; 3817 } 3818 3819 if (isTrivial) 3820 TrivialUnwindBlocks.insert(IncomingBB); 3821 } 3822 3823 // If no trivial unwind blocks, don't do any simplifications. 3824 if (TrivialUnwindBlocks.empty()) 3825 return false; 3826 3827 // Turn all invokes that unwind here into calls. 3828 for (auto *TrivialBB : TrivialUnwindBlocks) { 3829 // Blocks that will be simplified should be removed from the phi node. 3830 // Note there could be multiple edges to the resume block, and we need 3831 // to remove them all. 3832 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3833 BB->removePredecessor(TrivialBB, true); 3834 3835 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3836 PI != PE;) { 3837 BasicBlock *Pred = *PI++; 3838 removeUnwindEdge(Pred); 3839 } 3840 3841 // In each SimplifyCFG run, only the current processed block can be erased. 3842 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3843 // of erasing TrivialBB, we only remove the branch to the common resume 3844 // block so that we can later erase the resume block since it has no 3845 // predecessors. 3846 TrivialBB->getTerminator()->eraseFromParent(); 3847 new UnreachableInst(RI->getContext(), TrivialBB); 3848 } 3849 3850 // Delete the resume block if all its predecessors have been removed. 3851 if (pred_empty(BB)) 3852 BB->eraseFromParent(); 3853 3854 return !TrivialUnwindBlocks.empty(); 3855 } 3856 3857 // Simplify resume that is only used by a single (non-phi) landing pad. 3858 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3859 BasicBlock *BB = RI->getParent(); 3860 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3861 assert(RI->getValue() == LPInst && 3862 "Resume must unwind the exception that caused control to here"); 3863 3864 // Check that there are no other instructions except for debug intrinsics. 3865 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3866 while (++I != E) 3867 if (!isa<DbgInfoIntrinsic>(I)) 3868 return false; 3869 3870 // Turn all invokes that unwind here into calls and delete the basic block. 3871 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3872 BasicBlock *Pred = *PI++; 3873 removeUnwindEdge(Pred); 3874 } 3875 3876 // The landingpad is now unreachable. Zap it. 3877 if (LoopHeaders) 3878 LoopHeaders->erase(BB); 3879 BB->eraseFromParent(); 3880 return true; 3881 } 3882 3883 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3884 // If this is a trivial cleanup pad that executes no instructions, it can be 3885 // eliminated. If the cleanup pad continues to the caller, any predecessor 3886 // that is an EH pad will be updated to continue to the caller and any 3887 // predecessor that terminates with an invoke instruction will have its invoke 3888 // instruction converted to a call instruction. If the cleanup pad being 3889 // simplified does not continue to the caller, each predecessor will be 3890 // updated to continue to the unwind destination of the cleanup pad being 3891 // simplified. 3892 BasicBlock *BB = RI->getParent(); 3893 CleanupPadInst *CPInst = RI->getCleanupPad(); 3894 if (CPInst->getParent() != BB) 3895 // This isn't an empty cleanup. 3896 return false; 3897 3898 // We cannot kill the pad if it has multiple uses. This typically arises 3899 // from unreachable basic blocks. 3900 if (!CPInst->hasOneUse()) 3901 return false; 3902 3903 // Check that there are no other instructions except for benign intrinsics. 3904 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3905 while (++I != E) { 3906 auto *II = dyn_cast<IntrinsicInst>(I); 3907 if (!II) 3908 return false; 3909 3910 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3911 switch (IntrinsicID) { 3912 case Intrinsic::dbg_declare: 3913 case Intrinsic::dbg_value: 3914 case Intrinsic::dbg_label: 3915 case Intrinsic::lifetime_end: 3916 break; 3917 default: 3918 return false; 3919 } 3920 } 3921 3922 // If the cleanup return we are simplifying unwinds to the caller, this will 3923 // set UnwindDest to nullptr. 3924 BasicBlock *UnwindDest = RI->getUnwindDest(); 3925 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3926 3927 // We're about to remove BB from the control flow. Before we do, sink any 3928 // PHINodes into the unwind destination. Doing this before changing the 3929 // control flow avoids some potentially slow checks, since we can currently 3930 // be certain that UnwindDest and BB have no common predecessors (since they 3931 // are both EH pads). 3932 if (UnwindDest) { 3933 // First, go through the PHI nodes in UnwindDest and update any nodes that 3934 // reference the block we are removing 3935 for (BasicBlock::iterator I = UnwindDest->begin(), 3936 IE = DestEHPad->getIterator(); 3937 I != IE; ++I) { 3938 PHINode *DestPN = cast<PHINode>(I); 3939 3940 int Idx = DestPN->getBasicBlockIndex(BB); 3941 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3942 assert(Idx != -1); 3943 // This PHI node has an incoming value that corresponds to a control 3944 // path through the cleanup pad we are removing. If the incoming 3945 // value is in the cleanup pad, it must be a PHINode (because we 3946 // verified above that the block is otherwise empty). Otherwise, the 3947 // value is either a constant or a value that dominates the cleanup 3948 // pad being removed. 3949 // 3950 // Because BB and UnwindDest are both EH pads, all of their 3951 // predecessors must unwind to these blocks, and since no instruction 3952 // can have multiple unwind destinations, there will be no overlap in 3953 // incoming blocks between SrcPN and DestPN. 3954 Value *SrcVal = DestPN->getIncomingValue(Idx); 3955 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3956 3957 // Remove the entry for the block we are deleting. 3958 DestPN->removeIncomingValue(Idx, false); 3959 3960 if (SrcPN && SrcPN->getParent() == BB) { 3961 // If the incoming value was a PHI node in the cleanup pad we are 3962 // removing, we need to merge that PHI node's incoming values into 3963 // DestPN. 3964 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3965 SrcIdx != SrcE; ++SrcIdx) { 3966 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3967 SrcPN->getIncomingBlock(SrcIdx)); 3968 } 3969 } else { 3970 // Otherwise, the incoming value came from above BB and 3971 // so we can just reuse it. We must associate all of BB's 3972 // predecessors with this value. 3973 for (auto *pred : predecessors(BB)) { 3974 DestPN->addIncoming(SrcVal, pred); 3975 } 3976 } 3977 } 3978 3979 // Sink any remaining PHI nodes directly into UnwindDest. 3980 Instruction *InsertPt = DestEHPad; 3981 for (BasicBlock::iterator I = BB->begin(), 3982 IE = BB->getFirstNonPHI()->getIterator(); 3983 I != IE;) { 3984 // The iterator must be incremented here because the instructions are 3985 // being moved to another block. 3986 PHINode *PN = cast<PHINode>(I++); 3987 if (PN->use_empty()) 3988 // If the PHI node has no uses, just leave it. It will be erased 3989 // when we erase BB below. 3990 continue; 3991 3992 // Otherwise, sink this PHI node into UnwindDest. 3993 // Any predecessors to UnwindDest which are not already represented 3994 // must be back edges which inherit the value from the path through 3995 // BB. In this case, the PHI value must reference itself. 3996 for (auto *pred : predecessors(UnwindDest)) 3997 if (pred != BB) 3998 PN->addIncoming(PN, pred); 3999 PN->moveBefore(InsertPt); 4000 } 4001 } 4002 4003 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4004 // The iterator must be updated here because we are removing this pred. 4005 BasicBlock *PredBB = *PI++; 4006 if (UnwindDest == nullptr) { 4007 removeUnwindEdge(PredBB); 4008 } else { 4009 Instruction *TI = PredBB->getTerminator(); 4010 TI->replaceUsesOfWith(BB, UnwindDest); 4011 } 4012 } 4013 4014 // The cleanup pad is now unreachable. Zap it. 4015 BB->eraseFromParent(); 4016 return true; 4017 } 4018 4019 // Try to merge two cleanuppads together. 4020 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4021 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4022 // with. 4023 BasicBlock *UnwindDest = RI->getUnwindDest(); 4024 if (!UnwindDest) 4025 return false; 4026 4027 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4028 // be safe to merge without code duplication. 4029 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4030 return false; 4031 4032 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4033 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4034 if (!SuccessorCleanupPad) 4035 return false; 4036 4037 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4038 // Replace any uses of the successor cleanupad with the predecessor pad 4039 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4040 // funclet bundle operands. 4041 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4042 // Remove the old cleanuppad. 4043 SuccessorCleanupPad->eraseFromParent(); 4044 // Now, we simply replace the cleanupret with a branch to the unwind 4045 // destination. 4046 BranchInst::Create(UnwindDest, RI->getParent()); 4047 RI->eraseFromParent(); 4048 4049 return true; 4050 } 4051 4052 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4053 // It is possible to transiantly have an undef cleanuppad operand because we 4054 // have deleted some, but not all, dead blocks. 4055 // Eventually, this block will be deleted. 4056 if (isa<UndefValue>(RI->getOperand(0))) 4057 return false; 4058 4059 if (mergeCleanupPad(RI)) 4060 return true; 4061 4062 if (removeEmptyCleanup(RI)) 4063 return true; 4064 4065 return false; 4066 } 4067 4068 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4069 BasicBlock *BB = RI->getParent(); 4070 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4071 return false; 4072 4073 // Find predecessors that end with branches. 4074 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4075 SmallVector<BranchInst *, 8> CondBranchPreds; 4076 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4077 BasicBlock *P = *PI; 4078 Instruction *PTI = P->getTerminator(); 4079 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4080 if (BI->isUnconditional()) 4081 UncondBranchPreds.push_back(P); 4082 else 4083 CondBranchPreds.push_back(BI); 4084 } 4085 } 4086 4087 // If we found some, do the transformation! 4088 if (!UncondBranchPreds.empty() && DupRet) { 4089 while (!UncondBranchPreds.empty()) { 4090 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4091 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4092 << "INTO UNCOND BRANCH PRED: " << *Pred); 4093 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4094 } 4095 4096 // If we eliminated all predecessors of the block, delete the block now. 4097 if (pred_empty(BB)) { 4098 // We know there are no successors, so just nuke the block. 4099 if (LoopHeaders) 4100 LoopHeaders->erase(BB); 4101 BB->eraseFromParent(); 4102 } 4103 4104 return true; 4105 } 4106 4107 // Check out all of the conditional branches going to this return 4108 // instruction. If any of them just select between returns, change the 4109 // branch itself into a select/return pair. 4110 while (!CondBranchPreds.empty()) { 4111 BranchInst *BI = CondBranchPreds.pop_back_val(); 4112 4113 // Check to see if the non-BB successor is also a return block. 4114 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4115 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4116 SimplifyCondBranchToTwoReturns(BI, Builder)) 4117 return true; 4118 } 4119 return false; 4120 } 4121 4122 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4123 BasicBlock *BB = UI->getParent(); 4124 4125 bool Changed = false; 4126 4127 // If there are any instructions immediately before the unreachable that can 4128 // be removed, do so. 4129 while (UI->getIterator() != BB->begin()) { 4130 BasicBlock::iterator BBI = UI->getIterator(); 4131 --BBI; 4132 // Do not delete instructions that can have side effects which might cause 4133 // the unreachable to not be reachable; specifically, calls and volatile 4134 // operations may have this effect. 4135 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4136 break; 4137 4138 if (BBI->mayHaveSideEffects()) { 4139 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4140 if (SI->isVolatile()) 4141 break; 4142 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4143 if (LI->isVolatile()) 4144 break; 4145 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4146 if (RMWI->isVolatile()) 4147 break; 4148 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4149 if (CXI->isVolatile()) 4150 break; 4151 } else if (isa<CatchPadInst>(BBI)) { 4152 // A catchpad may invoke exception object constructors and such, which 4153 // in some languages can be arbitrary code, so be conservative by 4154 // default. 4155 // For CoreCLR, it just involves a type test, so can be removed. 4156 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4157 EHPersonality::CoreCLR) 4158 break; 4159 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4160 !isa<LandingPadInst>(BBI)) { 4161 break; 4162 } 4163 // Note that deleting LandingPad's here is in fact okay, although it 4164 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4165 // all the predecessors of this block will be the unwind edges of Invokes, 4166 // and we can therefore guarantee this block will be erased. 4167 } 4168 4169 // Delete this instruction (any uses are guaranteed to be dead) 4170 if (!BBI->use_empty()) 4171 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4172 BBI->eraseFromParent(); 4173 Changed = true; 4174 } 4175 4176 // If the unreachable instruction is the first in the block, take a gander 4177 // at all of the predecessors of this instruction, and simplify them. 4178 if (&BB->front() != UI) 4179 return Changed; 4180 4181 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4182 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4183 Instruction *TI = Preds[i]->getTerminator(); 4184 IRBuilder<> Builder(TI); 4185 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4186 if (BI->isUnconditional()) { 4187 if (BI->getSuccessor(0) == BB) { 4188 new UnreachableInst(TI->getContext(), TI); 4189 TI->eraseFromParent(); 4190 Changed = true; 4191 } 4192 } else { 4193 if (BI->getSuccessor(0) == BB) { 4194 Builder.CreateBr(BI->getSuccessor(1)); 4195 EraseTerminatorAndDCECond(BI); 4196 } else if (BI->getSuccessor(1) == BB) { 4197 Builder.CreateBr(BI->getSuccessor(0)); 4198 EraseTerminatorAndDCECond(BI); 4199 Changed = true; 4200 } 4201 } 4202 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4203 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4204 if (i->getCaseSuccessor() != BB) { 4205 ++i; 4206 continue; 4207 } 4208 BB->removePredecessor(SI->getParent()); 4209 i = SI->removeCase(i); 4210 e = SI->case_end(); 4211 Changed = true; 4212 } 4213 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4214 if (II->getUnwindDest() == BB) { 4215 removeUnwindEdge(TI->getParent()); 4216 Changed = true; 4217 } 4218 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4219 if (CSI->getUnwindDest() == BB) { 4220 removeUnwindEdge(TI->getParent()); 4221 Changed = true; 4222 continue; 4223 } 4224 4225 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4226 E = CSI->handler_end(); 4227 I != E; ++I) { 4228 if (*I == BB) { 4229 CSI->removeHandler(I); 4230 --I; 4231 --E; 4232 Changed = true; 4233 } 4234 } 4235 if (CSI->getNumHandlers() == 0) { 4236 BasicBlock *CatchSwitchBB = CSI->getParent(); 4237 if (CSI->hasUnwindDest()) { 4238 // Redirect preds to the unwind dest 4239 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4240 } else { 4241 // Rewrite all preds to unwind to caller (or from invoke to call). 4242 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4243 for (BasicBlock *EHPred : EHPreds) 4244 removeUnwindEdge(EHPred); 4245 } 4246 // The catchswitch is no longer reachable. 4247 new UnreachableInst(CSI->getContext(), CSI); 4248 CSI->eraseFromParent(); 4249 Changed = true; 4250 } 4251 } else if (isa<CleanupReturnInst>(TI)) { 4252 new UnreachableInst(TI->getContext(), TI); 4253 TI->eraseFromParent(); 4254 Changed = true; 4255 } 4256 } 4257 4258 // If this block is now dead, remove it. 4259 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4260 // We know there are no successors, so just nuke the block. 4261 if (LoopHeaders) 4262 LoopHeaders->erase(BB); 4263 BB->eraseFromParent(); 4264 return true; 4265 } 4266 4267 return Changed; 4268 } 4269 4270 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4271 assert(Cases.size() >= 1); 4272 4273 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4274 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4275 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4276 return false; 4277 } 4278 return true; 4279 } 4280 4281 /// Turn a switch with two reachable destinations into an integer range 4282 /// comparison and branch. 4283 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4284 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4285 4286 bool HasDefault = 4287 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4288 4289 // Partition the cases into two sets with different destinations. 4290 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4291 BasicBlock *DestB = nullptr; 4292 SmallVector<ConstantInt *, 16> CasesA; 4293 SmallVector<ConstantInt *, 16> CasesB; 4294 4295 for (auto Case : SI->cases()) { 4296 BasicBlock *Dest = Case.getCaseSuccessor(); 4297 if (!DestA) 4298 DestA = Dest; 4299 if (Dest == DestA) { 4300 CasesA.push_back(Case.getCaseValue()); 4301 continue; 4302 } 4303 if (!DestB) 4304 DestB = Dest; 4305 if (Dest == DestB) { 4306 CasesB.push_back(Case.getCaseValue()); 4307 continue; 4308 } 4309 return false; // More than two destinations. 4310 } 4311 4312 assert(DestA && DestB && 4313 "Single-destination switch should have been folded."); 4314 assert(DestA != DestB); 4315 assert(DestB != SI->getDefaultDest()); 4316 assert(!CasesB.empty() && "There must be non-default cases."); 4317 assert(!CasesA.empty() || HasDefault); 4318 4319 // Figure out if one of the sets of cases form a contiguous range. 4320 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4321 BasicBlock *ContiguousDest = nullptr; 4322 BasicBlock *OtherDest = nullptr; 4323 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4324 ContiguousCases = &CasesA; 4325 ContiguousDest = DestA; 4326 OtherDest = DestB; 4327 } else if (CasesAreContiguous(CasesB)) { 4328 ContiguousCases = &CasesB; 4329 ContiguousDest = DestB; 4330 OtherDest = DestA; 4331 } else 4332 return false; 4333 4334 // Start building the compare and branch. 4335 4336 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4337 Constant *NumCases = 4338 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4339 4340 Value *Sub = SI->getCondition(); 4341 if (!Offset->isNullValue()) 4342 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4343 4344 Value *Cmp; 4345 // If NumCases overflowed, then all possible values jump to the successor. 4346 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4347 Cmp = ConstantInt::getTrue(SI->getContext()); 4348 else 4349 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4350 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4351 4352 // Update weight for the newly-created conditional branch. 4353 if (HasBranchWeights(SI)) { 4354 SmallVector<uint64_t, 8> Weights; 4355 GetBranchWeights(SI, Weights); 4356 if (Weights.size() == 1 + SI->getNumCases()) { 4357 uint64_t TrueWeight = 0; 4358 uint64_t FalseWeight = 0; 4359 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4360 if (SI->getSuccessor(I) == ContiguousDest) 4361 TrueWeight += Weights[I]; 4362 else 4363 FalseWeight += Weights[I]; 4364 } 4365 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4366 TrueWeight /= 2; 4367 FalseWeight /= 2; 4368 } 4369 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4370 } 4371 } 4372 4373 // Prune obsolete incoming values off the successors' PHI nodes. 4374 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4375 unsigned PreviousEdges = ContiguousCases->size(); 4376 if (ContiguousDest == SI->getDefaultDest()) 4377 ++PreviousEdges; 4378 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4380 } 4381 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4382 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4383 if (OtherDest == SI->getDefaultDest()) 4384 ++PreviousEdges; 4385 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4386 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4387 } 4388 4389 // Drop the switch. 4390 SI->eraseFromParent(); 4391 4392 return true; 4393 } 4394 4395 /// Compute masked bits for the condition of a switch 4396 /// and use it to remove dead cases. 4397 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4398 const DataLayout &DL) { 4399 Value *Cond = SI->getCondition(); 4400 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4401 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4402 4403 // We can also eliminate cases by determining that their values are outside of 4404 // the limited range of the condition based on how many significant (non-sign) 4405 // bits are in the condition value. 4406 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4407 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4408 4409 // Gather dead cases. 4410 SmallVector<ConstantInt *, 8> DeadCases; 4411 for (auto &Case : SI->cases()) { 4412 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4413 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4414 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4415 DeadCases.push_back(Case.getCaseValue()); 4416 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4417 << " is dead.\n"); 4418 } 4419 } 4420 4421 // If we can prove that the cases must cover all possible values, the 4422 // default destination becomes dead and we can remove it. If we know some 4423 // of the bits in the value, we can use that to more precisely compute the 4424 // number of possible unique case values. 4425 bool HasDefault = 4426 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4427 const unsigned NumUnknownBits = 4428 Bits - (Known.Zero | Known.One).countPopulation(); 4429 assert(NumUnknownBits <= Bits); 4430 if (HasDefault && DeadCases.empty() && 4431 NumUnknownBits < 64 /* avoid overflow */ && 4432 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4433 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4434 BasicBlock *NewDefault = 4435 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4436 SI->setDefaultDest(&*NewDefault); 4437 SplitBlock(&*NewDefault, &NewDefault->front()); 4438 auto *OldTI = NewDefault->getTerminator(); 4439 new UnreachableInst(SI->getContext(), OldTI); 4440 EraseTerminatorAndDCECond(OldTI); 4441 return true; 4442 } 4443 4444 SmallVector<uint64_t, 8> Weights; 4445 bool HasWeight = HasBranchWeights(SI); 4446 if (HasWeight) { 4447 GetBranchWeights(SI, Weights); 4448 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4449 } 4450 4451 // Remove dead cases from the switch. 4452 for (ConstantInt *DeadCase : DeadCases) { 4453 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4454 assert(CaseI != SI->case_default() && 4455 "Case was not found. Probably mistake in DeadCases forming."); 4456 if (HasWeight) { 4457 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4458 Weights.pop_back(); 4459 } 4460 4461 // Prune unused values from PHI nodes. 4462 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4463 SI->removeCase(CaseI); 4464 } 4465 if (HasWeight && Weights.size() >= 2) { 4466 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4467 setBranchWeights(SI, MDWeights); 4468 } 4469 4470 return !DeadCases.empty(); 4471 } 4472 4473 /// If BB would be eligible for simplification by 4474 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4475 /// by an unconditional branch), look at the phi node for BB in the successor 4476 /// block and see if the incoming value is equal to CaseValue. If so, return 4477 /// the phi node, and set PhiIndex to BB's index in the phi node. 4478 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4479 BasicBlock *BB, int *PhiIndex) { 4480 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4481 return nullptr; // BB must be empty to be a candidate for simplification. 4482 if (!BB->getSinglePredecessor()) 4483 return nullptr; // BB must be dominated by the switch. 4484 4485 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4486 if (!Branch || !Branch->isUnconditional()) 4487 return nullptr; // Terminator must be unconditional branch. 4488 4489 BasicBlock *Succ = Branch->getSuccessor(0); 4490 4491 for (PHINode &PHI : Succ->phis()) { 4492 int Idx = PHI.getBasicBlockIndex(BB); 4493 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4494 4495 Value *InValue = PHI.getIncomingValue(Idx); 4496 if (InValue != CaseValue) 4497 continue; 4498 4499 *PhiIndex = Idx; 4500 return &PHI; 4501 } 4502 4503 return nullptr; 4504 } 4505 4506 /// Try to forward the condition of a switch instruction to a phi node 4507 /// dominated by the switch, if that would mean that some of the destination 4508 /// blocks of the switch can be folded away. Return true if a change is made. 4509 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4510 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4511 4512 ForwardingNodesMap ForwardingNodes; 4513 BasicBlock *SwitchBlock = SI->getParent(); 4514 bool Changed = false; 4515 for (auto &Case : SI->cases()) { 4516 ConstantInt *CaseValue = Case.getCaseValue(); 4517 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4518 4519 // Replace phi operands in successor blocks that are using the constant case 4520 // value rather than the switch condition variable: 4521 // switchbb: 4522 // switch i32 %x, label %default [ 4523 // i32 17, label %succ 4524 // ... 4525 // succ: 4526 // %r = phi i32 ... [ 17, %switchbb ] ... 4527 // --> 4528 // %r = phi i32 ... [ %x, %switchbb ] ... 4529 4530 for (PHINode &Phi : CaseDest->phis()) { 4531 // This only works if there is exactly 1 incoming edge from the switch to 4532 // a phi. If there is >1, that means multiple cases of the switch map to 1 4533 // value in the phi, and that phi value is not the switch condition. Thus, 4534 // this transform would not make sense (the phi would be invalid because 4535 // a phi can't have different incoming values from the same block). 4536 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4537 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4538 count(Phi.blocks(), SwitchBlock) == 1) { 4539 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4540 Changed = true; 4541 } 4542 } 4543 4544 // Collect phi nodes that are indirectly using this switch's case constants. 4545 int PhiIdx; 4546 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4547 ForwardingNodes[Phi].push_back(PhiIdx); 4548 } 4549 4550 for (auto &ForwardingNode : ForwardingNodes) { 4551 PHINode *Phi = ForwardingNode.first; 4552 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4553 if (Indexes.size() < 2) 4554 continue; 4555 4556 for (int Index : Indexes) 4557 Phi->setIncomingValue(Index, SI->getCondition()); 4558 Changed = true; 4559 } 4560 4561 return Changed; 4562 } 4563 4564 /// Return true if the backend will be able to handle 4565 /// initializing an array of constants like C. 4566 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4567 if (C->isThreadDependent()) 4568 return false; 4569 if (C->isDLLImportDependent()) 4570 return false; 4571 4572 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4573 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4574 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4575 return false; 4576 4577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4578 if (!CE->isGEPWithNoNotionalOverIndexing()) 4579 return false; 4580 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4581 return false; 4582 } 4583 4584 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4585 return false; 4586 4587 return true; 4588 } 4589 4590 /// If V is a Constant, return it. Otherwise, try to look up 4591 /// its constant value in ConstantPool, returning 0 if it's not there. 4592 static Constant * 4593 LookupConstant(Value *V, 4594 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4595 if (Constant *C = dyn_cast<Constant>(V)) 4596 return C; 4597 return ConstantPool.lookup(V); 4598 } 4599 4600 /// Try to fold instruction I into a constant. This works for 4601 /// simple instructions such as binary operations where both operands are 4602 /// constant or can be replaced by constants from the ConstantPool. Returns the 4603 /// resulting constant on success, 0 otherwise. 4604 static Constant * 4605 ConstantFold(Instruction *I, const DataLayout &DL, 4606 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4607 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4608 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4609 if (!A) 4610 return nullptr; 4611 if (A->isAllOnesValue()) 4612 return LookupConstant(Select->getTrueValue(), ConstantPool); 4613 if (A->isNullValue()) 4614 return LookupConstant(Select->getFalseValue(), ConstantPool); 4615 return nullptr; 4616 } 4617 4618 SmallVector<Constant *, 4> COps; 4619 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4620 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4621 COps.push_back(A); 4622 else 4623 return nullptr; 4624 } 4625 4626 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4627 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4628 COps[1], DL); 4629 } 4630 4631 return ConstantFoldInstOperands(I, COps, DL); 4632 } 4633 4634 /// Try to determine the resulting constant values in phi nodes 4635 /// at the common destination basic block, *CommonDest, for one of the case 4636 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4637 /// case), of a switch instruction SI. 4638 static bool 4639 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4640 BasicBlock **CommonDest, 4641 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4642 const DataLayout &DL, const TargetTransformInfo &TTI) { 4643 // The block from which we enter the common destination. 4644 BasicBlock *Pred = SI->getParent(); 4645 4646 // If CaseDest is empty except for some side-effect free instructions through 4647 // which we can constant-propagate the CaseVal, continue to its successor. 4648 SmallDenseMap<Value *, Constant *> ConstantPool; 4649 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4650 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4651 if (I.isTerminator()) { 4652 // If the terminator is a simple branch, continue to the next block. 4653 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4654 return false; 4655 Pred = CaseDest; 4656 CaseDest = I.getSuccessor(0); 4657 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4658 // Instruction is side-effect free and constant. 4659 4660 // If the instruction has uses outside this block or a phi node slot for 4661 // the block, it is not safe to bypass the instruction since it would then 4662 // no longer dominate all its uses. 4663 for (auto &Use : I.uses()) { 4664 User *User = Use.getUser(); 4665 if (Instruction *I = dyn_cast<Instruction>(User)) 4666 if (I->getParent() == CaseDest) 4667 continue; 4668 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4669 if (Phi->getIncomingBlock(Use) == CaseDest) 4670 continue; 4671 return false; 4672 } 4673 4674 ConstantPool.insert(std::make_pair(&I, C)); 4675 } else { 4676 break; 4677 } 4678 } 4679 4680 // If we did not have a CommonDest before, use the current one. 4681 if (!*CommonDest) 4682 *CommonDest = CaseDest; 4683 // If the destination isn't the common one, abort. 4684 if (CaseDest != *CommonDest) 4685 return false; 4686 4687 // Get the values for this case from phi nodes in the destination block. 4688 for (PHINode &PHI : (*CommonDest)->phis()) { 4689 int Idx = PHI.getBasicBlockIndex(Pred); 4690 if (Idx == -1) 4691 continue; 4692 4693 Constant *ConstVal = 4694 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4695 if (!ConstVal) 4696 return false; 4697 4698 // Be conservative about which kinds of constants we support. 4699 if (!ValidLookupTableConstant(ConstVal, TTI)) 4700 return false; 4701 4702 Res.push_back(std::make_pair(&PHI, ConstVal)); 4703 } 4704 4705 return Res.size() > 0; 4706 } 4707 4708 // Helper function used to add CaseVal to the list of cases that generate 4709 // Result. Returns the updated number of cases that generate this result. 4710 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4711 SwitchCaseResultVectorTy &UniqueResults, 4712 Constant *Result) { 4713 for (auto &I : UniqueResults) { 4714 if (I.first == Result) { 4715 I.second.push_back(CaseVal); 4716 return I.second.size(); 4717 } 4718 } 4719 UniqueResults.push_back( 4720 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4721 return 1; 4722 } 4723 4724 // Helper function that initializes a map containing 4725 // results for the PHI node of the common destination block for a switch 4726 // instruction. Returns false if multiple PHI nodes have been found or if 4727 // there is not a common destination block for the switch. 4728 static bool 4729 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4730 SwitchCaseResultVectorTy &UniqueResults, 4731 Constant *&DefaultResult, const DataLayout &DL, 4732 const TargetTransformInfo &TTI, 4733 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4734 for (auto &I : SI->cases()) { 4735 ConstantInt *CaseVal = I.getCaseValue(); 4736 4737 // Resulting value at phi nodes for this case value. 4738 SwitchCaseResultsTy Results; 4739 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4740 DL, TTI)) 4741 return false; 4742 4743 // Only one value per case is permitted. 4744 if (Results.size() > 1) 4745 return false; 4746 4747 // Add the case->result mapping to UniqueResults. 4748 const uintptr_t NumCasesForResult = 4749 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4750 4751 // Early out if there are too many cases for this result. 4752 if (NumCasesForResult > MaxCasesPerResult) 4753 return false; 4754 4755 // Early out if there are too many unique results. 4756 if (UniqueResults.size() > MaxUniqueResults) 4757 return false; 4758 4759 // Check the PHI consistency. 4760 if (!PHI) 4761 PHI = Results[0].first; 4762 else if (PHI != Results[0].first) 4763 return false; 4764 } 4765 // Find the default result value. 4766 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4767 BasicBlock *DefaultDest = SI->getDefaultDest(); 4768 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4769 DL, TTI); 4770 // If the default value is not found abort unless the default destination 4771 // is unreachable. 4772 DefaultResult = 4773 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4774 if ((!DefaultResult && 4775 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4776 return false; 4777 4778 return true; 4779 } 4780 4781 // Helper function that checks if it is possible to transform a switch with only 4782 // two cases (or two cases + default) that produces a result into a select. 4783 // Example: 4784 // switch (a) { 4785 // case 10: %0 = icmp eq i32 %a, 10 4786 // return 10; %1 = select i1 %0, i32 10, i32 4 4787 // case 20: ----> %2 = icmp eq i32 %a, 20 4788 // return 2; %3 = select i1 %2, i32 2, i32 %1 4789 // default: 4790 // return 4; 4791 // } 4792 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4793 Constant *DefaultResult, Value *Condition, 4794 IRBuilder<> &Builder) { 4795 assert(ResultVector.size() == 2 && 4796 "We should have exactly two unique results at this point"); 4797 // If we are selecting between only two cases transform into a simple 4798 // select or a two-way select if default is possible. 4799 if (ResultVector[0].second.size() == 1 && 4800 ResultVector[1].second.size() == 1) { 4801 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4802 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4803 4804 bool DefaultCanTrigger = DefaultResult; 4805 Value *SelectValue = ResultVector[1].first; 4806 if (DefaultCanTrigger) { 4807 Value *const ValueCompare = 4808 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4809 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4810 DefaultResult, "switch.select"); 4811 } 4812 Value *const ValueCompare = 4813 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4814 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4815 SelectValue, "switch.select"); 4816 } 4817 4818 return nullptr; 4819 } 4820 4821 // Helper function to cleanup a switch instruction that has been converted into 4822 // a select, fixing up PHI nodes and basic blocks. 4823 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4824 Value *SelectValue, 4825 IRBuilder<> &Builder) { 4826 BasicBlock *SelectBB = SI->getParent(); 4827 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4828 PHI->removeIncomingValue(SelectBB); 4829 PHI->addIncoming(SelectValue, SelectBB); 4830 4831 Builder.CreateBr(PHI->getParent()); 4832 4833 // Remove the switch. 4834 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4835 BasicBlock *Succ = SI->getSuccessor(i); 4836 4837 if (Succ == PHI->getParent()) 4838 continue; 4839 Succ->removePredecessor(SelectBB); 4840 } 4841 SI->eraseFromParent(); 4842 } 4843 4844 /// If the switch is only used to initialize one or more 4845 /// phi nodes in a common successor block with only two different 4846 /// constant values, replace the switch with select. 4847 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4848 const DataLayout &DL, 4849 const TargetTransformInfo &TTI) { 4850 Value *const Cond = SI->getCondition(); 4851 PHINode *PHI = nullptr; 4852 BasicBlock *CommonDest = nullptr; 4853 Constant *DefaultResult; 4854 SwitchCaseResultVectorTy UniqueResults; 4855 // Collect all the cases that will deliver the same value from the switch. 4856 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4857 DL, TTI, 2, 1)) 4858 return false; 4859 // Selects choose between maximum two values. 4860 if (UniqueResults.size() != 2) 4861 return false; 4862 assert(PHI != nullptr && "PHI for value select not found"); 4863 4864 Builder.SetInsertPoint(SI); 4865 Value *SelectValue = 4866 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4867 if (SelectValue) { 4868 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4869 return true; 4870 } 4871 // The switch couldn't be converted into a select. 4872 return false; 4873 } 4874 4875 namespace { 4876 4877 /// This class represents a lookup table that can be used to replace a switch. 4878 class SwitchLookupTable { 4879 public: 4880 /// Create a lookup table to use as a switch replacement with the contents 4881 /// of Values, using DefaultValue to fill any holes in the table. 4882 SwitchLookupTable( 4883 Module &M, uint64_t TableSize, ConstantInt *Offset, 4884 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4885 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4886 4887 /// Build instructions with Builder to retrieve the value at 4888 /// the position given by Index in the lookup table. 4889 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4890 4891 /// Return true if a table with TableSize elements of 4892 /// type ElementType would fit in a target-legal register. 4893 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4894 Type *ElementType); 4895 4896 private: 4897 // Depending on the contents of the table, it can be represented in 4898 // different ways. 4899 enum { 4900 // For tables where each element contains the same value, we just have to 4901 // store that single value and return it for each lookup. 4902 SingleValueKind, 4903 4904 // For tables where there is a linear relationship between table index 4905 // and values. We calculate the result with a simple multiplication 4906 // and addition instead of a table lookup. 4907 LinearMapKind, 4908 4909 // For small tables with integer elements, we can pack them into a bitmap 4910 // that fits into a target-legal register. Values are retrieved by 4911 // shift and mask operations. 4912 BitMapKind, 4913 4914 // The table is stored as an array of values. Values are retrieved by load 4915 // instructions from the table. 4916 ArrayKind 4917 } Kind; 4918 4919 // For SingleValueKind, this is the single value. 4920 Constant *SingleValue = nullptr; 4921 4922 // For BitMapKind, this is the bitmap. 4923 ConstantInt *BitMap = nullptr; 4924 IntegerType *BitMapElementTy = nullptr; 4925 4926 // For LinearMapKind, these are the constants used to derive the value. 4927 ConstantInt *LinearOffset = nullptr; 4928 ConstantInt *LinearMultiplier = nullptr; 4929 4930 // For ArrayKind, this is the array. 4931 GlobalVariable *Array = nullptr; 4932 }; 4933 4934 } // end anonymous namespace 4935 4936 SwitchLookupTable::SwitchLookupTable( 4937 Module &M, uint64_t TableSize, ConstantInt *Offset, 4938 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4939 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4940 assert(Values.size() && "Can't build lookup table without values!"); 4941 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4942 4943 // If all values in the table are equal, this is that value. 4944 SingleValue = Values.begin()->second; 4945 4946 Type *ValueType = Values.begin()->second->getType(); 4947 4948 // Build up the table contents. 4949 SmallVector<Constant *, 64> TableContents(TableSize); 4950 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4951 ConstantInt *CaseVal = Values[I].first; 4952 Constant *CaseRes = Values[I].second; 4953 assert(CaseRes->getType() == ValueType); 4954 4955 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4956 TableContents[Idx] = CaseRes; 4957 4958 if (CaseRes != SingleValue) 4959 SingleValue = nullptr; 4960 } 4961 4962 // Fill in any holes in the table with the default result. 4963 if (Values.size() < TableSize) { 4964 assert(DefaultValue && 4965 "Need a default value to fill the lookup table holes."); 4966 assert(DefaultValue->getType() == ValueType); 4967 for (uint64_t I = 0; I < TableSize; ++I) { 4968 if (!TableContents[I]) 4969 TableContents[I] = DefaultValue; 4970 } 4971 4972 if (DefaultValue != SingleValue) 4973 SingleValue = nullptr; 4974 } 4975 4976 // If each element in the table contains the same value, we only need to store 4977 // that single value. 4978 if (SingleValue) { 4979 Kind = SingleValueKind; 4980 return; 4981 } 4982 4983 // Check if we can derive the value with a linear transformation from the 4984 // table index. 4985 if (isa<IntegerType>(ValueType)) { 4986 bool LinearMappingPossible = true; 4987 APInt PrevVal; 4988 APInt DistToPrev; 4989 assert(TableSize >= 2 && "Should be a SingleValue table."); 4990 // Check if there is the same distance between two consecutive values. 4991 for (uint64_t I = 0; I < TableSize; ++I) { 4992 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4993 if (!ConstVal) { 4994 // This is an undef. We could deal with it, but undefs in lookup tables 4995 // are very seldom. It's probably not worth the additional complexity. 4996 LinearMappingPossible = false; 4997 break; 4998 } 4999 const APInt &Val = ConstVal->getValue(); 5000 if (I != 0) { 5001 APInt Dist = Val - PrevVal; 5002 if (I == 1) { 5003 DistToPrev = Dist; 5004 } else if (Dist != DistToPrev) { 5005 LinearMappingPossible = false; 5006 break; 5007 } 5008 } 5009 PrevVal = Val; 5010 } 5011 if (LinearMappingPossible) { 5012 LinearOffset = cast<ConstantInt>(TableContents[0]); 5013 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5014 Kind = LinearMapKind; 5015 ++NumLinearMaps; 5016 return; 5017 } 5018 } 5019 5020 // If the type is integer and the table fits in a register, build a bitmap. 5021 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5022 IntegerType *IT = cast<IntegerType>(ValueType); 5023 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5024 for (uint64_t I = TableSize; I > 0; --I) { 5025 TableInt <<= IT->getBitWidth(); 5026 // Insert values into the bitmap. Undef values are set to zero. 5027 if (!isa<UndefValue>(TableContents[I - 1])) { 5028 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5029 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5030 } 5031 } 5032 BitMap = ConstantInt::get(M.getContext(), TableInt); 5033 BitMapElementTy = IT; 5034 Kind = BitMapKind; 5035 ++NumBitMaps; 5036 return; 5037 } 5038 5039 // Store the table in an array. 5040 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5041 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5042 5043 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5044 GlobalVariable::PrivateLinkage, Initializer, 5045 "switch.table." + FuncName); 5046 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5047 // Set the alignment to that of an array items. We will be only loading one 5048 // value out of it. 5049 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5050 Kind = ArrayKind; 5051 } 5052 5053 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5054 switch (Kind) { 5055 case SingleValueKind: 5056 return SingleValue; 5057 case LinearMapKind: { 5058 // Derive the result value from the input value. 5059 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5060 false, "switch.idx.cast"); 5061 if (!LinearMultiplier->isOne()) 5062 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5063 if (!LinearOffset->isZero()) 5064 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5065 return Result; 5066 } 5067 case BitMapKind: { 5068 // Type of the bitmap (e.g. i59). 5069 IntegerType *MapTy = BitMap->getType(); 5070 5071 // Cast Index to the same type as the bitmap. 5072 // Note: The Index is <= the number of elements in the table, so 5073 // truncating it to the width of the bitmask is safe. 5074 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5075 5076 // Multiply the shift amount by the element width. 5077 ShiftAmt = Builder.CreateMul( 5078 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5079 "switch.shiftamt"); 5080 5081 // Shift down. 5082 Value *DownShifted = 5083 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5084 // Mask off. 5085 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5086 } 5087 case ArrayKind: { 5088 // Make sure the table index will not overflow when treated as signed. 5089 IntegerType *IT = cast<IntegerType>(Index->getType()); 5090 uint64_t TableSize = 5091 Array->getInitializer()->getType()->getArrayNumElements(); 5092 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5093 Index = Builder.CreateZExt( 5094 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5095 "switch.tableidx.zext"); 5096 5097 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5098 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5099 GEPIndices, "switch.gep"); 5100 return Builder.CreateLoad( 5101 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5102 "switch.load"); 5103 } 5104 } 5105 llvm_unreachable("Unknown lookup table kind!"); 5106 } 5107 5108 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5109 uint64_t TableSize, 5110 Type *ElementType) { 5111 auto *IT = dyn_cast<IntegerType>(ElementType); 5112 if (!IT) 5113 return false; 5114 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5115 // are <= 15, we could try to narrow the type. 5116 5117 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5118 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5119 return false; 5120 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5121 } 5122 5123 /// Determine whether a lookup table should be built for this switch, based on 5124 /// the number of cases, size of the table, and the types of the results. 5125 static bool 5126 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5127 const TargetTransformInfo &TTI, const DataLayout &DL, 5128 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5129 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5130 return false; // TableSize overflowed, or mul below might overflow. 5131 5132 bool AllTablesFitInRegister = true; 5133 bool HasIllegalType = false; 5134 for (const auto &I : ResultTypes) { 5135 Type *Ty = I.second; 5136 5137 // Saturate this flag to true. 5138 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5139 5140 // Saturate this flag to false. 5141 AllTablesFitInRegister = 5142 AllTablesFitInRegister && 5143 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5144 5145 // If both flags saturate, we're done. NOTE: This *only* works with 5146 // saturating flags, and all flags have to saturate first due to the 5147 // non-deterministic behavior of iterating over a dense map. 5148 if (HasIllegalType && !AllTablesFitInRegister) 5149 break; 5150 } 5151 5152 // If each table would fit in a register, we should build it anyway. 5153 if (AllTablesFitInRegister) 5154 return true; 5155 5156 // Don't build a table that doesn't fit in-register if it has illegal types. 5157 if (HasIllegalType) 5158 return false; 5159 5160 // The table density should be at least 40%. This is the same criterion as for 5161 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5162 // FIXME: Find the best cut-off. 5163 return SI->getNumCases() * 10 >= TableSize * 4; 5164 } 5165 5166 /// Try to reuse the switch table index compare. Following pattern: 5167 /// \code 5168 /// if (idx < tablesize) 5169 /// r = table[idx]; // table does not contain default_value 5170 /// else 5171 /// r = default_value; 5172 /// if (r != default_value) 5173 /// ... 5174 /// \endcode 5175 /// Is optimized to: 5176 /// \code 5177 /// cond = idx < tablesize; 5178 /// if (cond) 5179 /// r = table[idx]; 5180 /// else 5181 /// r = default_value; 5182 /// if (cond) 5183 /// ... 5184 /// \endcode 5185 /// Jump threading will then eliminate the second if(cond). 5186 static void reuseTableCompare( 5187 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5188 Constant *DefaultValue, 5189 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5190 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5191 if (!CmpInst) 5192 return; 5193 5194 // We require that the compare is in the same block as the phi so that jump 5195 // threading can do its work afterwards. 5196 if (CmpInst->getParent() != PhiBlock) 5197 return; 5198 5199 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5200 if (!CmpOp1) 5201 return; 5202 5203 Value *RangeCmp = RangeCheckBranch->getCondition(); 5204 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5205 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5206 5207 // Check if the compare with the default value is constant true or false. 5208 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5209 DefaultValue, CmpOp1, true); 5210 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5211 return; 5212 5213 // Check if the compare with the case values is distinct from the default 5214 // compare result. 5215 for (auto ValuePair : Values) { 5216 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5217 ValuePair.second, CmpOp1, true); 5218 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5219 return; 5220 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5221 "Expect true or false as compare result."); 5222 } 5223 5224 // Check if the branch instruction dominates the phi node. It's a simple 5225 // dominance check, but sufficient for our needs. 5226 // Although this check is invariant in the calling loops, it's better to do it 5227 // at this late stage. Practically we do it at most once for a switch. 5228 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5229 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5230 BasicBlock *Pred = *PI; 5231 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5232 return; 5233 } 5234 5235 if (DefaultConst == FalseConst) { 5236 // The compare yields the same result. We can replace it. 5237 CmpInst->replaceAllUsesWith(RangeCmp); 5238 ++NumTableCmpReuses; 5239 } else { 5240 // The compare yields the same result, just inverted. We can replace it. 5241 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5242 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5243 RangeCheckBranch); 5244 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5245 ++NumTableCmpReuses; 5246 } 5247 } 5248 5249 /// If the switch is only used to initialize one or more phi nodes in a common 5250 /// successor block with different constant values, replace the switch with 5251 /// lookup tables. 5252 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5253 const DataLayout &DL, 5254 const TargetTransformInfo &TTI) { 5255 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5256 5257 Function *Fn = SI->getParent()->getParent(); 5258 // Only build lookup table when we have a target that supports it or the 5259 // attribute is not set. 5260 if (!TTI.shouldBuildLookupTables() || 5261 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5262 return false; 5263 5264 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5265 // split off a dense part and build a lookup table for that. 5266 5267 // FIXME: This creates arrays of GEPs to constant strings, which means each 5268 // GEP needs a runtime relocation in PIC code. We should just build one big 5269 // string and lookup indices into that. 5270 5271 // Ignore switches with less than three cases. Lookup tables will not make 5272 // them faster, so we don't analyze them. 5273 if (SI->getNumCases() < 3) 5274 return false; 5275 5276 // Figure out the corresponding result for each case value and phi node in the 5277 // common destination, as well as the min and max case values. 5278 assert(!empty(SI->cases())); 5279 SwitchInst::CaseIt CI = SI->case_begin(); 5280 ConstantInt *MinCaseVal = CI->getCaseValue(); 5281 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5282 5283 BasicBlock *CommonDest = nullptr; 5284 5285 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5286 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5287 5288 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5289 SmallDenseMap<PHINode *, Type *> ResultTypes; 5290 SmallVector<PHINode *, 4> PHIs; 5291 5292 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5293 ConstantInt *CaseVal = CI->getCaseValue(); 5294 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5295 MinCaseVal = CaseVal; 5296 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5297 MaxCaseVal = CaseVal; 5298 5299 // Resulting value at phi nodes for this case value. 5300 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5301 ResultsTy Results; 5302 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5303 Results, DL, TTI)) 5304 return false; 5305 5306 // Append the result from this case to the list for each phi. 5307 for (const auto &I : Results) { 5308 PHINode *PHI = I.first; 5309 Constant *Value = I.second; 5310 if (!ResultLists.count(PHI)) 5311 PHIs.push_back(PHI); 5312 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5313 } 5314 } 5315 5316 // Keep track of the result types. 5317 for (PHINode *PHI : PHIs) { 5318 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5319 } 5320 5321 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5322 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5323 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5324 bool TableHasHoles = (NumResults < TableSize); 5325 5326 // If the table has holes, we need a constant result for the default case 5327 // or a bitmask that fits in a register. 5328 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5329 bool HasDefaultResults = 5330 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5331 DefaultResultsList, DL, TTI); 5332 5333 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5334 if (NeedMask) { 5335 // As an extra penalty for the validity test we require more cases. 5336 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5337 return false; 5338 if (!DL.fitsInLegalInteger(TableSize)) 5339 return false; 5340 } 5341 5342 for (const auto &I : DefaultResultsList) { 5343 PHINode *PHI = I.first; 5344 Constant *Result = I.second; 5345 DefaultResults[PHI] = Result; 5346 } 5347 5348 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5349 return false; 5350 5351 // Create the BB that does the lookups. 5352 Module &Mod = *CommonDest->getParent()->getParent(); 5353 BasicBlock *LookupBB = BasicBlock::Create( 5354 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5355 5356 // Compute the table index value. 5357 Builder.SetInsertPoint(SI); 5358 Value *TableIndex; 5359 if (MinCaseVal->isNullValue()) 5360 TableIndex = SI->getCondition(); 5361 else 5362 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5363 "switch.tableidx"); 5364 5365 // Compute the maximum table size representable by the integer type we are 5366 // switching upon. 5367 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5368 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5369 assert(MaxTableSize >= TableSize && 5370 "It is impossible for a switch to have more entries than the max " 5371 "representable value of its input integer type's size."); 5372 5373 // If the default destination is unreachable, or if the lookup table covers 5374 // all values of the conditional variable, branch directly to the lookup table 5375 // BB. Otherwise, check that the condition is within the case range. 5376 const bool DefaultIsReachable = 5377 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5378 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5379 BranchInst *RangeCheckBranch = nullptr; 5380 5381 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5382 Builder.CreateBr(LookupBB); 5383 // Note: We call removeProdecessor later since we need to be able to get the 5384 // PHI value for the default case in case we're using a bit mask. 5385 } else { 5386 Value *Cmp = Builder.CreateICmpULT( 5387 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5388 RangeCheckBranch = 5389 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5390 } 5391 5392 // Populate the BB that does the lookups. 5393 Builder.SetInsertPoint(LookupBB); 5394 5395 if (NeedMask) { 5396 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5397 // re-purposed to do the hole check, and we create a new LookupBB. 5398 BasicBlock *MaskBB = LookupBB; 5399 MaskBB->setName("switch.hole_check"); 5400 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5401 CommonDest->getParent(), CommonDest); 5402 5403 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5404 // unnecessary illegal types. 5405 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5406 APInt MaskInt(TableSizePowOf2, 0); 5407 APInt One(TableSizePowOf2, 1); 5408 // Build bitmask; fill in a 1 bit for every case. 5409 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5410 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5411 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5412 .getLimitedValue(); 5413 MaskInt |= One << Idx; 5414 } 5415 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5416 5417 // Get the TableIndex'th bit of the bitmask. 5418 // If this bit is 0 (meaning hole) jump to the default destination, 5419 // else continue with table lookup. 5420 IntegerType *MapTy = TableMask->getType(); 5421 Value *MaskIndex = 5422 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5423 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5424 Value *LoBit = Builder.CreateTrunc( 5425 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5426 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5427 5428 Builder.SetInsertPoint(LookupBB); 5429 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5430 } 5431 5432 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5433 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5434 // do not delete PHINodes here. 5435 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5436 /*KeepOneInputPHIs=*/true); 5437 } 5438 5439 bool ReturnedEarly = false; 5440 for (PHINode *PHI : PHIs) { 5441 const ResultListTy &ResultList = ResultLists[PHI]; 5442 5443 // If using a bitmask, use any value to fill the lookup table holes. 5444 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5445 StringRef FuncName = Fn->getName(); 5446 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5447 FuncName); 5448 5449 Value *Result = Table.BuildLookup(TableIndex, Builder); 5450 5451 // If the result is used to return immediately from the function, we want to 5452 // do that right here. 5453 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5454 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5455 Builder.CreateRet(Result); 5456 ReturnedEarly = true; 5457 break; 5458 } 5459 5460 // Do a small peephole optimization: re-use the switch table compare if 5461 // possible. 5462 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5463 BasicBlock *PhiBlock = PHI->getParent(); 5464 // Search for compare instructions which use the phi. 5465 for (auto *User : PHI->users()) { 5466 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5467 } 5468 } 5469 5470 PHI->addIncoming(Result, LookupBB); 5471 } 5472 5473 if (!ReturnedEarly) 5474 Builder.CreateBr(CommonDest); 5475 5476 // Remove the switch. 5477 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5478 BasicBlock *Succ = SI->getSuccessor(i); 5479 5480 if (Succ == SI->getDefaultDest()) 5481 continue; 5482 Succ->removePredecessor(SI->getParent()); 5483 } 5484 SI->eraseFromParent(); 5485 5486 ++NumLookupTables; 5487 if (NeedMask) 5488 ++NumLookupTablesHoles; 5489 return true; 5490 } 5491 5492 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5493 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5494 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5495 uint64_t Range = Diff + 1; 5496 uint64_t NumCases = Values.size(); 5497 // 40% is the default density for building a jump table in optsize/minsize mode. 5498 uint64_t MinDensity = 40; 5499 5500 return NumCases * 100 >= Range * MinDensity; 5501 } 5502 5503 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5504 /// of cases. 5505 /// 5506 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5507 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5508 /// 5509 /// This converts a sparse switch into a dense switch which allows better 5510 /// lowering and could also allow transforming into a lookup table. 5511 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5512 const DataLayout &DL, 5513 const TargetTransformInfo &TTI) { 5514 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5515 if (CondTy->getIntegerBitWidth() > 64 || 5516 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5517 return false; 5518 // Only bother with this optimization if there are more than 3 switch cases; 5519 // SDAG will only bother creating jump tables for 4 or more cases. 5520 if (SI->getNumCases() < 4) 5521 return false; 5522 5523 // This transform is agnostic to the signedness of the input or case values. We 5524 // can treat the case values as signed or unsigned. We can optimize more common 5525 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5526 // as signed. 5527 SmallVector<int64_t,4> Values; 5528 for (auto &C : SI->cases()) 5529 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5530 llvm::sort(Values); 5531 5532 // If the switch is already dense, there's nothing useful to do here. 5533 if (isSwitchDense(Values)) 5534 return false; 5535 5536 // First, transform the values such that they start at zero and ascend. 5537 int64_t Base = Values[0]; 5538 for (auto &V : Values) 5539 V -= (uint64_t)(Base); 5540 5541 // Now we have signed numbers that have been shifted so that, given enough 5542 // precision, there are no negative values. Since the rest of the transform 5543 // is bitwise only, we switch now to an unsigned representation. 5544 uint64_t GCD = 0; 5545 for (auto &V : Values) 5546 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5547 5548 // This transform can be done speculatively because it is so cheap - it results 5549 // in a single rotate operation being inserted. This can only happen if the 5550 // factor extracted is a power of 2. 5551 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5552 // inverse of GCD and then perform this transform. 5553 // FIXME: It's possible that optimizing a switch on powers of two might also 5554 // be beneficial - flag values are often powers of two and we could use a CLZ 5555 // as the key function. 5556 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5557 // No common divisor found or too expensive to compute key function. 5558 return false; 5559 5560 unsigned Shift = Log2_64(GCD); 5561 for (auto &V : Values) 5562 V = (int64_t)((uint64_t)V >> Shift); 5563 5564 if (!isSwitchDense(Values)) 5565 // Transform didn't create a dense switch. 5566 return false; 5567 5568 // The obvious transform is to shift the switch condition right and emit a 5569 // check that the condition actually cleanly divided by GCD, i.e. 5570 // C & (1 << Shift - 1) == 0 5571 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5572 // 5573 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5574 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5575 // are nonzero then the switch condition will be very large and will hit the 5576 // default case. 5577 5578 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5579 Builder.SetInsertPoint(SI); 5580 auto *ShiftC = ConstantInt::get(Ty, Shift); 5581 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5582 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5583 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5584 auto *Rot = Builder.CreateOr(LShr, Shl); 5585 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5586 5587 for (auto Case : SI->cases()) { 5588 auto *Orig = Case.getCaseValue(); 5589 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5590 Case.setValue( 5591 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5592 } 5593 return true; 5594 } 5595 5596 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5597 BasicBlock *BB = SI->getParent(); 5598 5599 if (isValueEqualityComparison(SI)) { 5600 // If we only have one predecessor, and if it is a branch on this value, 5601 // see if that predecessor totally determines the outcome of this switch. 5602 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5603 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5604 return requestResimplify(); 5605 5606 Value *Cond = SI->getCondition(); 5607 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5608 if (SimplifySwitchOnSelect(SI, Select)) 5609 return requestResimplify(); 5610 5611 // If the block only contains the switch, see if we can fold the block 5612 // away into any preds. 5613 if (SI == &*BB->instructionsWithoutDebug().begin()) 5614 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5615 return requestResimplify(); 5616 } 5617 5618 // Try to transform the switch into an icmp and a branch. 5619 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5620 return requestResimplify(); 5621 5622 // Remove unreachable cases. 5623 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5624 return requestResimplify(); 5625 5626 if (switchToSelect(SI, Builder, DL, TTI)) 5627 return requestResimplify(); 5628 5629 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5630 return requestResimplify(); 5631 5632 // The conversion from switch to lookup tables results in difficult-to-analyze 5633 // code and makes pruning branches much harder. This is a problem if the 5634 // switch expression itself can still be restricted as a result of inlining or 5635 // CVP. Therefore, only apply this transformation during late stages of the 5636 // optimisation pipeline. 5637 if (Options.ConvertSwitchToLookupTable && 5638 SwitchToLookupTable(SI, Builder, DL, TTI)) 5639 return requestResimplify(); 5640 5641 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5642 return requestResimplify(); 5643 5644 return false; 5645 } 5646 5647 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5648 BasicBlock *BB = IBI->getParent(); 5649 bool Changed = false; 5650 5651 // Eliminate redundant destinations. 5652 SmallPtrSet<Value *, 8> Succs; 5653 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5654 BasicBlock *Dest = IBI->getDestination(i); 5655 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5656 Dest->removePredecessor(BB); 5657 IBI->removeDestination(i); 5658 --i; 5659 --e; 5660 Changed = true; 5661 } 5662 } 5663 5664 if (IBI->getNumDestinations() == 0) { 5665 // If the indirectbr has no successors, change it to unreachable. 5666 new UnreachableInst(IBI->getContext(), IBI); 5667 EraseTerminatorAndDCECond(IBI); 5668 return true; 5669 } 5670 5671 if (IBI->getNumDestinations() == 1) { 5672 // If the indirectbr has one successor, change it to a direct branch. 5673 BranchInst::Create(IBI->getDestination(0), IBI); 5674 EraseTerminatorAndDCECond(IBI); 5675 return true; 5676 } 5677 5678 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5679 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5680 return requestResimplify(); 5681 } 5682 return Changed; 5683 } 5684 5685 /// Given an block with only a single landing pad and a unconditional branch 5686 /// try to find another basic block which this one can be merged with. This 5687 /// handles cases where we have multiple invokes with unique landing pads, but 5688 /// a shared handler. 5689 /// 5690 /// We specifically choose to not worry about merging non-empty blocks 5691 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5692 /// practice, the optimizer produces empty landing pad blocks quite frequently 5693 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5694 /// sinking in this file) 5695 /// 5696 /// This is primarily a code size optimization. We need to avoid performing 5697 /// any transform which might inhibit optimization (such as our ability to 5698 /// specialize a particular handler via tail commoning). We do this by not 5699 /// merging any blocks which require us to introduce a phi. Since the same 5700 /// values are flowing through both blocks, we don't lose any ability to 5701 /// specialize. If anything, we make such specialization more likely. 5702 /// 5703 /// TODO - This transformation could remove entries from a phi in the target 5704 /// block when the inputs in the phi are the same for the two blocks being 5705 /// merged. In some cases, this could result in removal of the PHI entirely. 5706 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5707 BasicBlock *BB) { 5708 auto Succ = BB->getUniqueSuccessor(); 5709 assert(Succ); 5710 // If there's a phi in the successor block, we'd likely have to introduce 5711 // a phi into the merged landing pad block. 5712 if (isa<PHINode>(*Succ->begin())) 5713 return false; 5714 5715 for (BasicBlock *OtherPred : predecessors(Succ)) { 5716 if (BB == OtherPred) 5717 continue; 5718 BasicBlock::iterator I = OtherPred->begin(); 5719 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5720 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5721 continue; 5722 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5723 ; 5724 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5725 if (!BI2 || !BI2->isIdenticalTo(BI)) 5726 continue; 5727 5728 // We've found an identical block. Update our predecessors to take that 5729 // path instead and make ourselves dead. 5730 SmallPtrSet<BasicBlock *, 16> Preds; 5731 Preds.insert(pred_begin(BB), pred_end(BB)); 5732 for (BasicBlock *Pred : Preds) { 5733 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5734 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5735 "unexpected successor"); 5736 II->setUnwindDest(OtherPred); 5737 } 5738 5739 // The debug info in OtherPred doesn't cover the merged control flow that 5740 // used to go through BB. We need to delete it or update it. 5741 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5742 Instruction &Inst = *I; 5743 I++; 5744 if (isa<DbgInfoIntrinsic>(Inst)) 5745 Inst.eraseFromParent(); 5746 } 5747 5748 SmallPtrSet<BasicBlock *, 16> Succs; 5749 Succs.insert(succ_begin(BB), succ_end(BB)); 5750 for (BasicBlock *Succ : Succs) { 5751 Succ->removePredecessor(BB); 5752 } 5753 5754 IRBuilder<> Builder(BI); 5755 Builder.CreateUnreachable(); 5756 BI->eraseFromParent(); 5757 return true; 5758 } 5759 return false; 5760 } 5761 5762 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5763 IRBuilder<> &Builder) { 5764 BasicBlock *BB = BI->getParent(); 5765 BasicBlock *Succ = BI->getSuccessor(0); 5766 5767 // If the Terminator is the only non-phi instruction, simplify the block. 5768 // If LoopHeader is provided, check if the block or its successor is a loop 5769 // header. (This is for early invocations before loop simplify and 5770 // vectorization to keep canonical loop forms for nested loops. These blocks 5771 // can be eliminated when the pass is invoked later in the back-end.) 5772 // Note that if BB has only one predecessor then we do not introduce new 5773 // backedge, so we can eliminate BB. 5774 bool NeedCanonicalLoop = 5775 Options.NeedCanonicalLoop && 5776 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5777 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5778 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5779 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5780 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5781 return true; 5782 5783 // If the only instruction in the block is a seteq/setne comparison against a 5784 // constant, try to simplify the block. 5785 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5786 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5787 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5788 ; 5789 if (I->isTerminator() && 5790 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5791 return true; 5792 } 5793 5794 // See if we can merge an empty landing pad block with another which is 5795 // equivalent. 5796 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5797 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5798 ; 5799 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5800 return true; 5801 } 5802 5803 // If this basic block is ONLY a compare and a branch, and if a predecessor 5804 // branches to us and our successor, fold the comparison into the 5805 // predecessor and use logical operations to update the incoming value 5806 // for PHI nodes in common successor. 5807 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5808 return requestResimplify(); 5809 return false; 5810 } 5811 5812 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5813 BasicBlock *PredPred = nullptr; 5814 for (auto *P : predecessors(BB)) { 5815 BasicBlock *PPred = P->getSinglePredecessor(); 5816 if (!PPred || (PredPred && PredPred != PPred)) 5817 return nullptr; 5818 PredPred = PPred; 5819 } 5820 return PredPred; 5821 } 5822 5823 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5824 BasicBlock *BB = BI->getParent(); 5825 const Function *Fn = BB->getParent(); 5826 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5827 return false; 5828 5829 // Conditional branch 5830 if (isValueEqualityComparison(BI)) { 5831 // If we only have one predecessor, and if it is a branch on this value, 5832 // see if that predecessor totally determines the outcome of this 5833 // switch. 5834 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5835 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5836 return requestResimplify(); 5837 5838 // This block must be empty, except for the setcond inst, if it exists. 5839 // Ignore dbg intrinsics. 5840 auto I = BB->instructionsWithoutDebug().begin(); 5841 if (&*I == BI) { 5842 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5843 return requestResimplify(); 5844 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5845 ++I; 5846 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5847 return requestResimplify(); 5848 } 5849 } 5850 5851 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5852 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5853 return true; 5854 5855 // If this basic block has dominating predecessor blocks and the dominating 5856 // blocks' conditions imply BI's condition, we know the direction of BI. 5857 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5858 if (Imp) { 5859 // Turn this into a branch on constant. 5860 auto *OldCond = BI->getCondition(); 5861 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5862 : ConstantInt::getFalse(BB->getContext()); 5863 BI->setCondition(TorF); 5864 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5865 return requestResimplify(); 5866 } 5867 5868 // If this basic block is ONLY a compare and a branch, and if a predecessor 5869 // branches to us and one of our successors, fold the comparison into the 5870 // predecessor and use logical operations to pick the right destination. 5871 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5872 return requestResimplify(); 5873 5874 // We have a conditional branch to two blocks that are only reachable 5875 // from BI. We know that the condbr dominates the two blocks, so see if 5876 // there is any identical code in the "then" and "else" blocks. If so, we 5877 // can hoist it up to the branching block. 5878 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5879 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5880 if (HoistThenElseCodeToIf(BI, TTI)) 5881 return requestResimplify(); 5882 } else { 5883 // If Successor #1 has multiple preds, we may be able to conditionally 5884 // execute Successor #0 if it branches to Successor #1. 5885 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5886 if (Succ0TI->getNumSuccessors() == 1 && 5887 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5888 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5889 return requestResimplify(); 5890 } 5891 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5892 // If Successor #0 has multiple preds, we may be able to conditionally 5893 // execute Successor #1 if it branches to Successor #0. 5894 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5895 if (Succ1TI->getNumSuccessors() == 1 && 5896 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5897 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5898 return requestResimplify(); 5899 } 5900 5901 // If this is a branch on a phi node in the current block, thread control 5902 // through this block if any PHI node entries are constants. 5903 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5904 if (PN->getParent() == BI->getParent()) 5905 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5906 return requestResimplify(); 5907 5908 // Scan predecessor blocks for conditional branches. 5909 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5910 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5911 if (PBI != BI && PBI->isConditional()) 5912 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5913 return requestResimplify(); 5914 5915 // Look for diamond patterns. 5916 if (MergeCondStores) 5917 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5918 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5919 if (PBI != BI && PBI->isConditional()) 5920 if (mergeConditionalStores(PBI, BI, DL)) 5921 return requestResimplify(); 5922 5923 return false; 5924 } 5925 5926 /// Check if passing a value to an instruction will cause undefined behavior. 5927 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5928 Constant *C = dyn_cast<Constant>(V); 5929 if (!C) 5930 return false; 5931 5932 if (I->use_empty()) 5933 return false; 5934 5935 if (C->isNullValue() || isa<UndefValue>(C)) { 5936 // Only look at the first use, avoid hurting compile time with long uselists 5937 User *Use = *I->user_begin(); 5938 5939 // Now make sure that there are no instructions in between that can alter 5940 // control flow (eg. calls) 5941 for (BasicBlock::iterator 5942 i = ++BasicBlock::iterator(I), 5943 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5944 i != UI; ++i) 5945 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5946 return false; 5947 5948 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5949 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5950 if (GEP->getPointerOperand() == I) 5951 return passingValueIsAlwaysUndefined(V, GEP); 5952 5953 // Look through bitcasts. 5954 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5955 return passingValueIsAlwaysUndefined(V, BC); 5956 5957 // Load from null is undefined. 5958 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5959 if (!LI->isVolatile()) 5960 return !NullPointerIsDefined(LI->getFunction(), 5961 LI->getPointerAddressSpace()); 5962 5963 // Store to null is undefined. 5964 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5965 if (!SI->isVolatile()) 5966 return (!NullPointerIsDefined(SI->getFunction(), 5967 SI->getPointerAddressSpace())) && 5968 SI->getPointerOperand() == I; 5969 5970 // A call to null is undefined. 5971 if (auto CS = CallSite(Use)) 5972 return !NullPointerIsDefined(CS->getFunction()) && 5973 CS.getCalledValue() == I; 5974 } 5975 return false; 5976 } 5977 5978 /// If BB has an incoming value that will always trigger undefined behavior 5979 /// (eg. null pointer dereference), remove the branch leading here. 5980 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5981 for (PHINode &PHI : BB->phis()) 5982 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5983 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5984 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5985 IRBuilder<> Builder(T); 5986 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5987 BB->removePredecessor(PHI.getIncomingBlock(i)); 5988 // Turn uncoditional branches into unreachables and remove the dead 5989 // destination from conditional branches. 5990 if (BI->isUnconditional()) 5991 Builder.CreateUnreachable(); 5992 else 5993 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5994 : BI->getSuccessor(0)); 5995 BI->eraseFromParent(); 5996 return true; 5997 } 5998 // TODO: SwitchInst. 5999 } 6000 6001 return false; 6002 } 6003 6004 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6005 bool Changed = false; 6006 6007 assert(BB && BB->getParent() && "Block not embedded in function!"); 6008 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6009 6010 // Remove basic blocks that have no predecessors (except the entry block)... 6011 // or that just have themself as a predecessor. These are unreachable. 6012 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6013 BB->getSinglePredecessor() == BB) { 6014 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6015 DeleteDeadBlock(BB); 6016 return true; 6017 } 6018 6019 // Check to see if we can constant propagate this terminator instruction 6020 // away... 6021 Changed |= ConstantFoldTerminator(BB, true); 6022 6023 // Check for and eliminate duplicate PHI nodes in this block. 6024 Changed |= EliminateDuplicatePHINodes(BB); 6025 6026 // Check for and remove branches that will always cause undefined behavior. 6027 Changed |= removeUndefIntroducingPredecessor(BB); 6028 6029 // Merge basic blocks into their predecessor if there is only one distinct 6030 // pred, and if there is only one distinct successor of the predecessor, and 6031 // if there are no PHI nodes. 6032 if (MergeBlockIntoPredecessor(BB)) 6033 return true; 6034 6035 if (SinkCommon && Options.SinkCommonInsts) 6036 Changed |= SinkCommonCodeFromPredecessors(BB); 6037 6038 IRBuilder<> Builder(BB); 6039 6040 // If there is a trivial two-entry PHI node in this basic block, and we can 6041 // eliminate it, do so now. 6042 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6043 if (PN->getNumIncomingValues() == 2) 6044 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6045 6046 Builder.SetInsertPoint(BB->getTerminator()); 6047 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6048 if (BI->isUnconditional()) { 6049 if (SimplifyUncondBranch(BI, Builder)) 6050 return true; 6051 } else { 6052 if (SimplifyCondBranch(BI, Builder)) 6053 return true; 6054 } 6055 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6056 if (SimplifyReturn(RI, Builder)) 6057 return true; 6058 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6059 if (SimplifyResume(RI, Builder)) 6060 return true; 6061 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6062 if (SimplifyCleanupReturn(RI)) 6063 return true; 6064 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6065 if (SimplifySwitch(SI, Builder)) 6066 return true; 6067 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6068 if (SimplifyUnreachable(UI)) 6069 return true; 6070 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6071 if (SimplifyIndirectBr(IBI)) 6072 return true; 6073 } 6074 6075 return Changed; 6076 } 6077 6078 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6079 bool Changed = false; 6080 6081 // Repeated simplify BB as long as resimplification is requested. 6082 do { 6083 Resimplify = false; 6084 6085 // Perform one round of simplifcation. Resimplify flag will be set if 6086 // another iteration is requested. 6087 Changed |= simplifyOnce(BB); 6088 } while (Resimplify); 6089 6090 return Changed; 6091 } 6092 6093 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6094 const SimplifyCFGOptions &Options, 6095 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6096 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6097 Options) 6098 .run(BB); 6099 } 6100