1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/NoFolder.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <climits> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <map> 76 #include <set> 77 #include <tuple> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 #define DEBUG_TYPE "simplifycfg" 85 86 // Chosen as 2 so as to be cheap, but still to have enough power to fold 87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 88 // To catch this, we need to fold a compare and a select, hence '2' being the 89 // minimum reasonable default. 90 static cl::opt<unsigned> PHINodeFoldingThreshold( 91 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 92 cl::desc( 93 "Control the amount of phi node folding to perform (default = 2)")); 94 95 static cl::opt<bool> DupRet( 96 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 97 cl::desc("Duplicate return instructions into unconditional branches")); 98 99 static cl::opt<bool> 100 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 101 cl::desc("Sink common instructions down to the end block")); 102 103 static cl::opt<bool> HoistCondStores( 104 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 105 cl::desc("Hoist conditional stores if an unconditional store precedes")); 106 107 static cl::opt<bool> MergeCondStores( 108 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 109 cl::desc("Hoist conditional stores even if an unconditional store does not " 110 "precede - hoist multiple conditional stores into a single " 111 "predicated store")); 112 113 static cl::opt<bool> MergeCondStoresAggressively( 114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 115 cl::desc("When merging conditional stores, do so even if the resultant " 116 "basic blocks are unlikely to be if-converted as a result")); 117 118 static cl::opt<bool> SpeculateOneExpensiveInst( 119 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 120 cl::desc("Allow exactly one expensive instruction to be speculatively " 121 "executed")); 122 123 static cl::opt<unsigned> MaxSpeculationDepth( 124 "max-speculation-depth", cl::Hidden, cl::init(10), 125 cl::desc("Limit maximum recursion depth when calculating costs of " 126 "speculatively executed instructions")); 127 128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 129 STATISTIC(NumLinearMaps, 130 "Number of switch instructions turned into linear mapping"); 131 STATISTIC(NumLookupTables, 132 "Number of switch instructions turned into lookup tables"); 133 STATISTIC( 134 NumLookupTablesHoles, 135 "Number of switch instructions turned into lookup tables (holes checked)"); 136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 137 STATISTIC(NumSinkCommons, 138 "Number of common instructions sunk down to the end block"); 139 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 140 141 namespace { 142 143 // The first field contains the value that the switch produces when a certain 144 // case group is selected, and the second field is a vector containing the 145 // cases composing the case group. 146 using SwitchCaseResultVectorTy = 147 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 148 149 // The first field contains the phi node that generates a result of the switch 150 // and the second field contains the value generated for a certain case in the 151 // switch for that PHI. 152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 153 154 /// ValueEqualityComparisonCase - Represents a case of a switch. 155 struct ValueEqualityComparisonCase { 156 ConstantInt *Value; 157 BasicBlock *Dest; 158 159 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 160 : Value(Value), Dest(Dest) {} 161 162 bool operator<(ValueEqualityComparisonCase RHS) const { 163 // Comparing pointers is ok as we only rely on the order for uniquing. 164 return Value < RHS.Value; 165 } 166 167 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 168 }; 169 170 class SimplifyCFGOpt { 171 const TargetTransformInfo &TTI; 172 const DataLayout &DL; 173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 174 const SimplifyCFGOptions &Options; 175 bool Resimplify; 176 177 Value *isValueEqualityComparison(Instruction *TI); 178 BasicBlock *GetValueEqualityComparisonCases( 179 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 181 BasicBlock *Pred, 182 IRBuilder<> &Builder); 183 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 184 IRBuilder<> &Builder); 185 186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 188 bool SimplifySingleResume(ResumeInst *RI); 189 bool SimplifyCommonResume(ResumeInst *RI); 190 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 191 bool SimplifyUnreachable(UnreachableInst *UI); 192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 193 bool SimplifyIndirectBr(IndirectBrInst *IBI); 194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 198 IRBuilder<> &Builder); 199 200 public: 201 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 202 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 203 const SimplifyCFGOptions &Opts) 204 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 205 206 bool run(BasicBlock *BB); 207 bool simplifyOnce(BasicBlock *BB); 208 209 // Helper to set Resimplify and return change indication. 210 bool requestResimplify() { 211 Resimplify = true; 212 return true; 213 } 214 }; 215 216 } // end anonymous namespace 217 218 /// Return true if it is safe to merge these two 219 /// terminator instructions together. 220 static bool 221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 222 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 223 if (SI1 == SI2) 224 return false; // Can't merge with self! 225 226 // It is not safe to merge these two switch instructions if they have a common 227 // successor, and if that successor has a PHI node, and if *that* PHI node has 228 // conflicting incoming values from the two switch blocks. 229 BasicBlock *SI1BB = SI1->getParent(); 230 BasicBlock *SI2BB = SI2->getParent(); 231 232 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 233 bool Fail = false; 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != 239 PN->getIncomingValueForBlock(SI2BB)) { 240 if (FailBlocks) 241 FailBlocks->insert(Succ); 242 Fail = true; 243 } 244 } 245 246 return !Fail; 247 } 248 249 /// Return true if it is safe and profitable to merge these two terminator 250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 251 /// store all PHI nodes in common successors. 252 static bool 253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 254 Instruction *Cond, 255 SmallVectorImpl<PHINode *> &PhiNodes) { 256 if (SI1 == SI2) 257 return false; // Can't merge with self! 258 assert(SI1->isUnconditional() && SI2->isConditional()); 259 260 // We fold the unconditional branch if we can easily update all PHI nodes in 261 // common successors: 262 // 1> We have a constant incoming value for the conditional branch; 263 // 2> We have "Cond" as the incoming value for the unconditional branch; 264 // 3> SI2->getCondition() and Cond have same operands. 265 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 266 if (!Ci2) 267 return false; 268 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 269 Cond->getOperand(1) == Ci2->getOperand(1)) && 270 !(Cond->getOperand(0) == Ci2->getOperand(1) && 271 Cond->getOperand(1) == Ci2->getOperand(0))) 272 return false; 273 274 BasicBlock *SI1BB = SI1->getParent(); 275 BasicBlock *SI2BB = SI2->getParent(); 276 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 277 for (BasicBlock *Succ : successors(SI2BB)) 278 if (SI1Succs.count(Succ)) 279 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 280 PHINode *PN = cast<PHINode>(BBI); 281 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 282 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 283 return false; 284 PhiNodes.push_back(PN); 285 } 286 return true; 287 } 288 289 /// Update PHI nodes in Succ to indicate that there will now be entries in it 290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 291 /// will be the same as those coming in from ExistPred, an existing predecessor 292 /// of Succ. 293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 294 BasicBlock *ExistPred) { 295 for (PHINode &PN : Succ->phis()) 296 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 297 } 298 299 /// Compute an abstract "cost" of speculating the given instruction, 300 /// which is assumed to be safe to speculate. TCC_Free means cheap, 301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 302 /// expensive. 303 static unsigned ComputeSpeculationCost(const User *I, 304 const TargetTransformInfo &TTI) { 305 assert(isSafeToSpeculativelyExecute(I) && 306 "Instruction is not safe to speculatively execute!"); 307 return TTI.getUserCost(I); 308 } 309 310 /// If we have a merge point of an "if condition" as accepted above, 311 /// return true if the specified value dominates the block. We 312 /// don't handle the true generality of domination here, just a special case 313 /// which works well enough for us. 314 /// 315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 316 /// see if V (which must be an instruction) and its recursive operands 317 /// that do not dominate BB have a combined cost lower than CostRemaining and 318 /// are non-trapping. If both are true, the instruction is inserted into the 319 /// set and true is returned. 320 /// 321 /// The cost for most non-trapping instructions is defined as 1 except for 322 /// Select whose cost is 2. 323 /// 324 /// After this function returns, CostRemaining is decreased by the cost of 325 /// V plus its non-dominating operands. If that cost is greater than 326 /// CostRemaining, false is returned and CostRemaining is undefined. 327 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 328 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 329 unsigned &CostRemaining, 330 const TargetTransformInfo &TTI, 331 unsigned Depth = 0) { 332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 333 // so limit the recursion depth. 334 // TODO: While this recursion limit does prevent pathological behavior, it 335 // would be better to track visited instructions to avoid cycles. 336 if (Depth == MaxSpeculationDepth) 337 return false; 338 339 Instruction *I = dyn_cast<Instruction>(V); 340 if (!I) { 341 // Non-instructions all dominate instructions, but not all constantexprs 342 // can be executed unconditionally. 343 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 344 if (C->canTrap()) 345 return false; 346 return true; 347 } 348 BasicBlock *PBB = I->getParent(); 349 350 // We don't want to allow weird loops that might have the "if condition" in 351 // the bottom of this block. 352 if (PBB == BB) 353 return false; 354 355 // If this instruction is defined in a block that contains an unconditional 356 // branch to BB, then it must be in the 'conditional' part of the "if 357 // statement". If not, it definitely dominates the region. 358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 359 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 360 return true; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts.count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts.insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 443 /// Value found for the switch comparison 444 Value *CompValue = nullptr; 445 446 /// Extra clause to be checked before the switch 447 Value *Extra = nullptr; 448 449 /// Set of integers to match in switch 450 SmallVector<ConstantInt *, 8> Vals; 451 452 /// Number of comparisons matched in the and/or chain 453 unsigned UsedICmps = 0; 454 455 /// Construct and compute the result for the comparison instruction Cond 456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 457 gather(Cond); 458 } 459 460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 461 ConstantComparesGatherer & 462 operator=(const ConstantComparesGatherer &) = delete; 463 464 private: 465 /// Try to set the current value used for the comparison, it succeeds only if 466 /// it wasn't set before or if the new value is the same as the old one 467 bool setValueOnce(Value *NewVal) { 468 if (CompValue && CompValue != NewVal) 469 return false; 470 CompValue = NewVal; 471 return (CompValue != nullptr); 472 } 473 474 /// Try to match Instruction "I" as a comparison against a constant and 475 /// populates the array Vals with the set of values that match (or do not 476 /// match depending on isEQ). 477 /// Return false on failure. On success, the Value the comparison matched 478 /// against is placed in CompValue. 479 /// If CompValue is already set, the function is expected to fail if a match 480 /// is found but the value compared to is different. 481 bool matchInstruction(Instruction *I, bool isEQ) { 482 // If this is an icmp against a constant, handle this as one of the cases. 483 ICmpInst *ICI; 484 ConstantInt *C; 485 if (!((ICI = dyn_cast<ICmpInst>(I)) && 486 (C = GetConstantInt(I->getOperand(1), DL)))) { 487 return false; 488 } 489 490 Value *RHSVal; 491 const APInt *RHSC; 492 493 // Pattern match a special case 494 // (x & ~2^z) == y --> x == y || x == y|2^z 495 // This undoes a transformation done by instcombine to fuse 2 compares. 496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 497 // It's a little bit hard to see why the following transformations are 498 // correct. Here is a CVC3 program to verify them for 64-bit values: 499 500 /* 501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 502 x : BITVECTOR(64); 503 y : BITVECTOR(64); 504 z : BITVECTOR(64); 505 mask : BITVECTOR(64) = BVSHL(ONE, z); 506 QUERY( (y & ~mask = y) => 507 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 508 ); 509 QUERY( (y | mask = y) => 510 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 511 ); 512 */ 513 514 // Please note that each pattern must be a dual implication (<--> or 515 // iff). One directional implication can create spurious matches. If the 516 // implication is only one-way, an unsatisfiable condition on the left 517 // side can imply a satisfiable condition on the right side. Dual 518 // implication ensures that satisfiable conditions are transformed to 519 // other satisfiable conditions and unsatisfiable conditions are 520 // transformed to other unsatisfiable conditions. 521 522 // Here is a concrete example of a unsatisfiable condition on the left 523 // implying a satisfiable condition on the right: 524 // 525 // mask = (1 << z) 526 // (x & ~mask) == y --> (x == y || x == (y | mask)) 527 // 528 // Substituting y = 3, z = 0 yields: 529 // (x & -2) == 3 --> (x == 3 || x == 2) 530 531 // Pattern match a special case: 532 /* 533 QUERY( (y & ~mask = y) => 534 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 535 ); 536 */ 537 if (match(ICI->getOperand(0), 538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 539 APInt Mask = ~*RHSC; 540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 541 // If we already have a value for the switch, it has to match! 542 if (!setValueOnce(RHSVal)) 543 return false; 544 545 Vals.push_back(C); 546 Vals.push_back( 547 ConstantInt::get(C->getContext(), 548 C->getValue() | Mask)); 549 UsedICmps++; 550 return true; 551 } 552 } 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y | mask = y) => 557 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = *RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back(ConstantInt::get(C->getContext(), 570 C->getValue() & ~Mask)); 571 UsedICmps++; 572 return true; 573 } 574 } 575 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(ICI->getOperand(0))) 578 return false; 579 580 UsedICmps++; 581 Vals.push_back(C); 582 return ICI->getOperand(0); 583 } 584 585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 587 ICI->getPredicate(), C->getValue()); 588 589 // Shift the range if the compare is fed by an add. This is the range 590 // compare idiom as emitted by instcombine. 591 Value *CandidateVal = I->getOperand(0); 592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 593 Span = Span.subtract(*RHSC); 594 CandidateVal = RHSVal; 595 } 596 597 // If this is an and/!= check, then we are looking to build the set of 598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 599 // x != 0 && x != 1. 600 if (!isEQ) 601 Span = Span.inverse(); 602 603 // If there are a ton of values, we don't want to make a ginormous switch. 604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 605 return false; 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(CandidateVal)) 610 return false; 611 612 // Add all values from the range to the set 613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 615 616 UsedICmps++; 617 return true; 618 } 619 620 /// Given a potentially 'or'd or 'and'd together collection of icmp 621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 622 /// the value being compared, and stick the list constants into the Vals 623 /// vector. 624 /// One "Extra" case is allowed to differ from the other. 625 void gather(Value *V) { 626 Instruction *I = dyn_cast<Instruction>(V); 627 bool isEQ = (I->getOpcode() == Instruction::Or); 628 629 // Keep a stack (SmallVector for efficiency) for depth-first traversal 630 SmallVector<Value *, 8> DFT; 631 SmallPtrSet<Value *, 8> Visited; 632 633 // Initialize 634 Visited.insert(V); 635 DFT.push_back(V); 636 637 while (!DFT.empty()) { 638 V = DFT.pop_back_val(); 639 640 if (Instruction *I = dyn_cast<Instruction>(V)) { 641 // If it is a || (or && depending on isEQ), process the operands. 642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 643 if (Visited.insert(I->getOperand(1)).second) 644 DFT.push_back(I->getOperand(1)); 645 if (Visited.insert(I->getOperand(0)).second) 646 DFT.push_back(I->getOperand(0)); 647 continue; 648 } 649 650 // Try to match the current instruction 651 if (matchInstruction(I, isEQ)) 652 // Match succeed, continue the loop 653 continue; 654 } 655 656 // One element of the sequence of || (or &&) could not be match as a 657 // comparison against the same value as the others. 658 // We allow only one "Extra" case to be checked before the switch 659 if (!Extra) { 660 Extra = V; 661 continue; 662 } 663 // Failed to parse a proper sequence, abort now 664 CompValue = nullptr; 665 break; 666 } 667 } 668 }; 669 670 } // end anonymous namespace 671 672 static void EraseTerminatorAndDCECond(Instruction *TI) { 673 Instruction *Cond = nullptr; 674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 675 Cond = dyn_cast<Instruction>(SI->getCondition()); 676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 677 if (BI->isConditional()) 678 Cond = dyn_cast<Instruction>(BI->getCondition()); 679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 680 Cond = dyn_cast<Instruction>(IBI->getAddress()); 681 } 682 683 TI->eraseFromParent(); 684 if (Cond) 685 RecursivelyDeleteTriviallyDeadInstructions(Cond); 686 } 687 688 /// Return true if the specified terminator checks 689 /// to see if a value is equal to constant integer value. 690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 691 Value *CV = nullptr; 692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 693 // Do not permit merging of large switch instructions into their 694 // predecessors unless there is only one predecessor. 695 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 696 CV = SI->getCondition(); 697 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 698 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 699 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 700 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 701 CV = ICI->getOperand(0); 702 } 703 704 // Unwrap any lossless ptrtoint cast. 705 if (CV) { 706 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 707 Value *Ptr = PTII->getPointerOperand(); 708 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 709 CV = Ptr; 710 } 711 } 712 return CV; 713 } 714 715 /// Given a value comparison instruction, 716 /// decode all of the 'cases' that it represents and return the 'default' block. 717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 718 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 719 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 720 Cases.reserve(SI->getNumCases()); 721 for (auto Case : SI->cases()) 722 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 723 Case.getCaseSuccessor())); 724 return SI->getDefaultDest(); 725 } 726 727 BranchInst *BI = cast<BranchInst>(TI); 728 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 729 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 730 Cases.push_back(ValueEqualityComparisonCase( 731 GetConstantInt(ICI->getOperand(1), DL), Succ)); 732 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 733 } 734 735 /// Given a vector of bb/value pairs, remove any entries 736 /// in the list that match the specified block. 737 static void 738 EliminateBlockCases(BasicBlock *BB, 739 std::vector<ValueEqualityComparisonCase> &Cases) { 740 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 741 } 742 743 /// Return true if there are any keys in C1 that exist in C2 as well. 744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 745 std::vector<ValueEqualityComparisonCase> &C2) { 746 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 747 748 // Make V1 be smaller than V2. 749 if (V1->size() > V2->size()) 750 std::swap(V1, V2); 751 752 if (V1->empty()) 753 return false; 754 if (V1->size() == 1) { 755 // Just scan V2. 756 ConstantInt *TheVal = (*V1)[0].Value; 757 for (unsigned i = 0, e = V2->size(); i != e; ++i) 758 if (TheVal == (*V2)[i].Value) 759 return true; 760 } 761 762 // Otherwise, just sort both lists and compare element by element. 763 array_pod_sort(V1->begin(), V1->end()); 764 array_pod_sort(V2->begin(), V2->end()); 765 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 766 while (i1 != e1 && i2 != e2) { 767 if ((*V1)[i1].Value == (*V2)[i2].Value) 768 return true; 769 if ((*V1)[i1].Value < (*V2)[i2].Value) 770 ++i1; 771 else 772 ++i2; 773 } 774 return false; 775 } 776 777 // Set branch weights on SwitchInst. This sets the metadata if there is at 778 // least one non-zero weight. 779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 780 // Check that there is at least one non-zero weight. Otherwise, pass 781 // nullptr to setMetadata which will erase the existing metadata. 782 MDNode *N = nullptr; 783 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 784 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 785 SI->setMetadata(LLVMContext::MD_prof, N); 786 } 787 788 // Similar to the above, but for branch and select instructions that take 789 // exactly 2 weights. 790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 791 uint32_t FalseWeight) { 792 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 793 // Check that there is at least one non-zero weight. Otherwise, pass 794 // nullptr to setMetadata which will erase the existing metadata. 795 MDNode *N = nullptr; 796 if (TrueWeight || FalseWeight) 797 N = MDBuilder(I->getParent()->getContext()) 798 .createBranchWeights(TrueWeight, FalseWeight); 799 I->setMetadata(LLVMContext::MD_prof, N); 800 } 801 802 /// If TI is known to be a terminator instruction and its block is known to 803 /// only have a single predecessor block, check to see if that predecessor is 804 /// also a value comparison with the same value, and if that comparison 805 /// determines the outcome of this comparison. If so, simplify TI. This does a 806 /// very limited form of jump threading. 807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 808 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 809 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 810 if (!PredVal) 811 return false; // Not a value comparison in predecessor. 812 813 Value *ThisVal = isValueEqualityComparison(TI); 814 assert(ThisVal && "This isn't a value comparison!!"); 815 if (ThisVal != PredVal) 816 return false; // Different predicates. 817 818 // TODO: Preserve branch weight metadata, similarly to how 819 // FoldValueComparisonIntoPredecessors preserves it. 820 821 // Find out information about when control will move from Pred to TI's block. 822 std::vector<ValueEqualityComparisonCase> PredCases; 823 BasicBlock *PredDef = 824 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 825 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 826 827 // Find information about how control leaves this block. 828 std::vector<ValueEqualityComparisonCase> ThisCases; 829 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 830 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 831 832 // If TI's block is the default block from Pred's comparison, potentially 833 // simplify TI based on this knowledge. 834 if (PredDef == TI->getParent()) { 835 // If we are here, we know that the value is none of those cases listed in 836 // PredCases. If there are any cases in ThisCases that are in PredCases, we 837 // can simplify TI. 838 if (!ValuesOverlap(PredCases, ThisCases)) 839 return false; 840 841 if (isa<BranchInst>(TI)) { 842 // Okay, one of the successors of this condbr is dead. Convert it to a 843 // uncond br. 844 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 845 // Insert the new branch. 846 Instruction *NI = Builder.CreateBr(ThisDef); 847 (void)NI; 848 849 // Remove PHI node entries for the dead edge. 850 ThisCases[0].Dest->removePredecessor(TI->getParent()); 851 852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 853 << "Through successor TI: " << *TI << "Leaving: " << *NI 854 << "\n"); 855 856 EraseTerminatorAndDCECond(TI); 857 return true; 858 } 859 860 SwitchInst *SI = cast<SwitchInst>(TI); 861 // Okay, TI has cases that are statically dead, prune them away. 862 SmallPtrSet<Constant *, 16> DeadCases; 863 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 864 DeadCases.insert(PredCases[i].Value); 865 866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 867 << "Through successor TI: " << *TI); 868 869 // Collect branch weights into a vector. 870 SmallVector<uint32_t, 8> Weights; 871 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 872 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 873 if (HasWeight) 874 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 875 ++MD_i) { 876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 877 Weights.push_back(CI->getValue().getZExtValue()); 878 } 879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 880 --i; 881 if (DeadCases.count(i->getCaseValue())) { 882 if (HasWeight) { 883 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 884 Weights.pop_back(); 885 } 886 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 887 SI->removeCase(i); 888 } 889 } 890 if (HasWeight && Weights.size() >= 2) 891 setBranchWeights(SI, Weights); 892 893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 894 return true; 895 } 896 897 // Otherwise, TI's block must correspond to some matched value. Find out 898 // which value (or set of values) this is. 899 ConstantInt *TIV = nullptr; 900 BasicBlock *TIBB = TI->getParent(); 901 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 902 if (PredCases[i].Dest == TIBB) { 903 if (TIV) 904 return false; // Cannot handle multiple values coming to this block. 905 TIV = PredCases[i].Value; 906 } 907 assert(TIV && "No edge from pred to succ?"); 908 909 // Okay, we found the one constant that our value can be if we get into TI's 910 // BB. Find out which successor will unconditionally be branched to. 911 BasicBlock *TheRealDest = nullptr; 912 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 913 if (ThisCases[i].Value == TIV) { 914 TheRealDest = ThisCases[i].Dest; 915 break; 916 } 917 918 // If not handled by any explicit cases, it is handled by the default case. 919 if (!TheRealDest) 920 TheRealDest = ThisDef; 921 922 // Remove PHI node entries for dead edges. 923 BasicBlock *CheckEdge = TheRealDest; 924 for (BasicBlock *Succ : successors(TIBB)) 925 if (Succ != CheckEdge) 926 Succ->removePredecessor(TIBB); 927 else 928 CheckEdge = nullptr; 929 930 // Insert the new branch. 931 Instruction *NI = Builder.CreateBr(TheRealDest); 932 (void)NI; 933 934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 935 << "Through successor TI: " << *TI << "Leaving: " << *NI 936 << "\n"); 937 938 EraseTerminatorAndDCECond(TI); 939 return true; 940 } 941 942 namespace { 943 944 /// This class implements a stable ordering of constant 945 /// integers that does not depend on their address. This is important for 946 /// applications that sort ConstantInt's to ensure uniqueness. 947 struct ConstantIntOrdering { 948 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 949 return LHS->getValue().ult(RHS->getValue()); 950 } 951 }; 952 953 } // end anonymous namespace 954 955 static int ConstantIntSortPredicate(ConstantInt *const *P1, 956 ConstantInt *const *P2) { 957 const ConstantInt *LHS = *P1; 958 const ConstantInt *RHS = *P2; 959 if (LHS == RHS) 960 return 0; 961 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 962 } 963 964 static inline bool HasBranchWeights(const Instruction *I) { 965 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 966 if (ProfMD && ProfMD->getOperand(0)) 967 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 968 return MDS->getString().equals("branch_weights"); 969 970 return false; 971 } 972 973 /// Get Weights of a given terminator, the default weight is at the front 974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 975 /// metadata. 976 static void GetBranchWeights(Instruction *TI, 977 SmallVectorImpl<uint64_t> &Weights) { 978 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 979 assert(MD); 980 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 982 Weights.push_back(CI->getValue().getZExtValue()); 983 } 984 985 // If TI is a conditional eq, the default case is the false case, 986 // and the corresponding branch-weight data is at index 2. We swap the 987 // default weight to be the first entry. 988 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 989 assert(Weights.size() == 2); 990 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 991 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 992 std::swap(Weights.front(), Weights.back()); 993 } 994 } 995 996 /// Keep halving the weights until all can fit in uint32_t. 997 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 998 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 999 if (Max > UINT_MAX) { 1000 unsigned Offset = 32 - countLeadingZeros(Max); 1001 for (uint64_t &I : Weights) 1002 I >>= Offset; 1003 } 1004 } 1005 1006 /// The specified terminator is a value equality comparison instruction 1007 /// (either a switch or a branch on "X == c"). 1008 /// See if any of the predecessors of the terminator block are value comparisons 1009 /// on the same value. If so, and if safe to do so, fold them together. 1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1011 IRBuilder<> &Builder) { 1012 BasicBlock *BB = TI->getParent(); 1013 Value *CV = isValueEqualityComparison(TI); // CondVal 1014 assert(CV && "Not a comparison?"); 1015 bool Changed = false; 1016 1017 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1018 while (!Preds.empty()) { 1019 BasicBlock *Pred = Preds.pop_back_val(); 1020 1021 // See if the predecessor is a comparison with the same value. 1022 Instruction *PTI = Pred->getTerminator(); 1023 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1024 1025 if (PCV == CV && TI != PTI) { 1026 SmallSetVector<BasicBlock*, 4> FailBlocks; 1027 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1028 for (auto *Succ : FailBlocks) { 1029 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1030 return false; 1031 } 1032 } 1033 1034 // Figure out which 'cases' to copy from SI to PSI. 1035 std::vector<ValueEqualityComparisonCase> BBCases; 1036 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1037 1038 std::vector<ValueEqualityComparisonCase> PredCases; 1039 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1040 1041 // Based on whether the default edge from PTI goes to BB or not, fill in 1042 // PredCases and PredDefault with the new switch cases we would like to 1043 // build. 1044 SmallVector<BasicBlock *, 8> NewSuccessors; 1045 1046 // Update the branch weight metadata along the way 1047 SmallVector<uint64_t, 8> Weights; 1048 bool PredHasWeights = HasBranchWeights(PTI); 1049 bool SuccHasWeights = HasBranchWeights(TI); 1050 1051 if (PredHasWeights) { 1052 GetBranchWeights(PTI, Weights); 1053 // branch-weight metadata is inconsistent here. 1054 if (Weights.size() != 1 + PredCases.size()) 1055 PredHasWeights = SuccHasWeights = false; 1056 } else if (SuccHasWeights) 1057 // If there are no predecessor weights but there are successor weights, 1058 // populate Weights with 1, which will later be scaled to the sum of 1059 // successor's weights 1060 Weights.assign(1 + PredCases.size(), 1); 1061 1062 SmallVector<uint64_t, 8> SuccWeights; 1063 if (SuccHasWeights) { 1064 GetBranchWeights(TI, SuccWeights); 1065 // branch-weight metadata is inconsistent here. 1066 if (SuccWeights.size() != 1 + BBCases.size()) 1067 PredHasWeights = SuccHasWeights = false; 1068 } else if (PredHasWeights) 1069 SuccWeights.assign(1 + BBCases.size(), 1); 1070 1071 if (PredDefault == BB) { 1072 // If this is the default destination from PTI, only the edges in TI 1073 // that don't occur in PTI, or that branch to BB will be activated. 1074 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1075 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1076 if (PredCases[i].Dest != BB) 1077 PTIHandled.insert(PredCases[i].Value); 1078 else { 1079 // The default destination is BB, we don't need explicit targets. 1080 std::swap(PredCases[i], PredCases.back()); 1081 1082 if (PredHasWeights || SuccHasWeights) { 1083 // Increase weight for the default case. 1084 Weights[0] += Weights[i + 1]; 1085 std::swap(Weights[i + 1], Weights.back()); 1086 Weights.pop_back(); 1087 } 1088 1089 PredCases.pop_back(); 1090 --i; 1091 --e; 1092 } 1093 1094 // Reconstruct the new switch statement we will be building. 1095 if (PredDefault != BBDefault) { 1096 PredDefault->removePredecessor(Pred); 1097 PredDefault = BBDefault; 1098 NewSuccessors.push_back(BBDefault); 1099 } 1100 1101 unsigned CasesFromPred = Weights.size(); 1102 uint64_t ValidTotalSuccWeight = 0; 1103 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1104 if (!PTIHandled.count(BBCases[i].Value) && 1105 BBCases[i].Dest != BBDefault) { 1106 PredCases.push_back(BBCases[i]); 1107 NewSuccessors.push_back(BBCases[i].Dest); 1108 if (SuccHasWeights || PredHasWeights) { 1109 // The default weight is at index 0, so weight for the ith case 1110 // should be at index i+1. Scale the cases from successor by 1111 // PredDefaultWeight (Weights[0]). 1112 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1113 ValidTotalSuccWeight += SuccWeights[i + 1]; 1114 } 1115 } 1116 1117 if (SuccHasWeights || PredHasWeights) { 1118 ValidTotalSuccWeight += SuccWeights[0]; 1119 // Scale the cases from predecessor by ValidTotalSuccWeight. 1120 for (unsigned i = 1; i < CasesFromPred; ++i) 1121 Weights[i] *= ValidTotalSuccWeight; 1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1123 Weights[0] *= SuccWeights[0]; 1124 } 1125 } else { 1126 // If this is not the default destination from PSI, only the edges 1127 // in SI that occur in PSI with a destination of BB will be 1128 // activated. 1129 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1130 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1131 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1132 if (PredCases[i].Dest == BB) { 1133 PTIHandled.insert(PredCases[i].Value); 1134 1135 if (PredHasWeights || SuccHasWeights) { 1136 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1137 std::swap(Weights[i + 1], Weights.back()); 1138 Weights.pop_back(); 1139 } 1140 1141 std::swap(PredCases[i], PredCases.back()); 1142 PredCases.pop_back(); 1143 --i; 1144 --e; 1145 } 1146 1147 // Okay, now we know which constants were sent to BB from the 1148 // predecessor. Figure out where they will all go now. 1149 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1150 if (PTIHandled.count(BBCases[i].Value)) { 1151 // If this is one we are capable of getting... 1152 if (PredHasWeights || SuccHasWeights) 1153 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1154 PredCases.push_back(BBCases[i]); 1155 NewSuccessors.push_back(BBCases[i].Dest); 1156 PTIHandled.erase( 1157 BBCases[i].Value); // This constant is taken care of 1158 } 1159 1160 // If there are any constants vectored to BB that TI doesn't handle, 1161 // they must go to the default destination of TI. 1162 for (ConstantInt *I : PTIHandled) { 1163 if (PredHasWeights || SuccHasWeights) 1164 Weights.push_back(WeightsForHandled[I]); 1165 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1166 NewSuccessors.push_back(BBDefault); 1167 } 1168 } 1169 1170 // Okay, at this point, we know which new successor Pred will get. Make 1171 // sure we update the number of entries in the PHI nodes for these 1172 // successors. 1173 for (BasicBlock *NewSuccessor : NewSuccessors) 1174 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1175 1176 Builder.SetInsertPoint(PTI); 1177 // Convert pointer to int before we switch. 1178 if (CV->getType()->isPointerTy()) { 1179 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1180 "magicptr"); 1181 } 1182 1183 // Now that the successors are updated, create the new Switch instruction. 1184 SwitchInst *NewSI = 1185 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1186 NewSI->setDebugLoc(PTI->getDebugLoc()); 1187 for (ValueEqualityComparisonCase &V : PredCases) 1188 NewSI->addCase(V.Value, V.Dest); 1189 1190 if (PredHasWeights || SuccHasWeights) { 1191 // Halve the weights if any of them cannot fit in an uint32_t 1192 FitWeights(Weights); 1193 1194 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1195 1196 setBranchWeights(NewSI, MDWeights); 1197 } 1198 1199 EraseTerminatorAndDCECond(PTI); 1200 1201 // Okay, last check. If BB is still a successor of PSI, then we must 1202 // have an infinite loop case. If so, add an infinitely looping block 1203 // to handle the case to preserve the behavior of the code. 1204 BasicBlock *InfLoopBlock = nullptr; 1205 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1206 if (NewSI->getSuccessor(i) == BB) { 1207 if (!InfLoopBlock) { 1208 // Insert it at the end of the function, because it's either code, 1209 // or it won't matter if it's hot. :) 1210 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1211 BB->getParent()); 1212 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1213 } 1214 NewSI->setSuccessor(i, InfLoopBlock); 1215 } 1216 1217 Changed = true; 1218 } 1219 } 1220 return Changed; 1221 } 1222 1223 // If we would need to insert a select that uses the value of this invoke 1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1225 // can't hoist the invoke, as there is nowhere to put the select in this case. 1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1227 Instruction *I1, Instruction *I2) { 1228 for (BasicBlock *Succ : successors(BB1)) { 1229 for (const PHINode &PN : Succ->phis()) { 1230 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1231 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1232 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1233 return false; 1234 } 1235 } 1236 } 1237 return true; 1238 } 1239 1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1241 1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1243 /// in the two blocks up into the branch block. The caller of this function 1244 /// guarantees that BI's block dominates BB1 and BB2. 1245 static bool HoistThenElseCodeToIf(BranchInst *BI, 1246 const TargetTransformInfo &TTI) { 1247 // This does very trivial matching, with limited scanning, to find identical 1248 // instructions in the two blocks. In particular, we don't want to get into 1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1250 // such, we currently just scan for obviously identical instructions in an 1251 // identical order. 1252 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1253 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1254 1255 BasicBlock::iterator BB1_Itr = BB1->begin(); 1256 BasicBlock::iterator BB2_Itr = BB2->begin(); 1257 1258 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1259 // Skip debug info if it is not identical. 1260 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1261 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1262 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1263 while (isa<DbgInfoIntrinsic>(I1)) 1264 I1 = &*BB1_Itr++; 1265 while (isa<DbgInfoIntrinsic>(I2)) 1266 I2 = &*BB2_Itr++; 1267 } 1268 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1269 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1270 return false; 1271 1272 BasicBlock *BIParent = BI->getParent(); 1273 1274 bool Changed = false; 1275 do { 1276 // If we are hoisting the terminator instruction, don't move one (making a 1277 // broken BB), instead clone it, and remove BI. 1278 if (I1->isTerminator()) 1279 goto HoistTerminator; 1280 1281 // If we're going to hoist a call, make sure that the two instructions we're 1282 // commoning/hoisting are both marked with musttail, or neither of them is 1283 // marked as such. Otherwise, we might end up in a situation where we hoist 1284 // from a block where the terminator is a `ret` to a block where the terminator 1285 // is a `br`, and `musttail` calls expect to be followed by a return. 1286 auto *C1 = dyn_cast<CallInst>(I1); 1287 auto *C2 = dyn_cast<CallInst>(I2); 1288 if (C1 && C2) 1289 if (C1->isMustTailCall() != C2->isMustTailCall()) 1290 return Changed; 1291 1292 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1293 return Changed; 1294 1295 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1296 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1297 // The debug location is an integral part of a debug info intrinsic 1298 // and can't be separated from it or replaced. Instead of attempting 1299 // to merge locations, simply hoist both copies of the intrinsic. 1300 BIParent->getInstList().splice(BI->getIterator(), 1301 BB1->getInstList(), I1); 1302 BIParent->getInstList().splice(BI->getIterator(), 1303 BB2->getInstList(), I2); 1304 Changed = true; 1305 } else { 1306 // For a normal instruction, we just move one to right before the branch, 1307 // then replace all uses of the other with the first. Finally, we remove 1308 // the now redundant second instruction. 1309 BIParent->getInstList().splice(BI->getIterator(), 1310 BB1->getInstList(), I1); 1311 if (!I2->use_empty()) 1312 I2->replaceAllUsesWith(I1); 1313 I1->andIRFlags(I2); 1314 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1315 LLVMContext::MD_range, 1316 LLVMContext::MD_fpmath, 1317 LLVMContext::MD_invariant_load, 1318 LLVMContext::MD_nonnull, 1319 LLVMContext::MD_invariant_group, 1320 LLVMContext::MD_align, 1321 LLVMContext::MD_dereferenceable, 1322 LLVMContext::MD_dereferenceable_or_null, 1323 LLVMContext::MD_mem_parallel_loop_access, 1324 LLVMContext::MD_access_group}; 1325 combineMetadata(I1, I2, KnownIDs, true); 1326 1327 // I1 and I2 are being combined into a single instruction. Its debug 1328 // location is the merged locations of the original instructions. 1329 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1330 1331 I2->eraseFromParent(); 1332 Changed = true; 1333 } 1334 1335 I1 = &*BB1_Itr++; 1336 I2 = &*BB2_Itr++; 1337 // Skip debug info if it is not identical. 1338 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1339 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1340 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1341 while (isa<DbgInfoIntrinsic>(I1)) 1342 I1 = &*BB1_Itr++; 1343 while (isa<DbgInfoIntrinsic>(I2)) 1344 I2 = &*BB2_Itr++; 1345 } 1346 } while (I1->isIdenticalToWhenDefined(I2)); 1347 1348 return true; 1349 1350 HoistTerminator: 1351 // It may not be possible to hoist an invoke. 1352 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1353 return Changed; 1354 1355 for (BasicBlock *Succ : successors(BB1)) { 1356 for (PHINode &PN : Succ->phis()) { 1357 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1358 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1359 if (BB1V == BB2V) 1360 continue; 1361 1362 // Check for passingValueIsAlwaysUndefined here because we would rather 1363 // eliminate undefined control flow then converting it to a select. 1364 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1365 passingValueIsAlwaysUndefined(BB2V, &PN)) 1366 return Changed; 1367 1368 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1369 return Changed; 1370 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1371 return Changed; 1372 } 1373 } 1374 1375 // Okay, it is safe to hoist the terminator. 1376 Instruction *NT = I1->clone(); 1377 BIParent->getInstList().insert(BI->getIterator(), NT); 1378 if (!NT->getType()->isVoidTy()) { 1379 I1->replaceAllUsesWith(NT); 1380 I2->replaceAllUsesWith(NT); 1381 NT->takeName(I1); 1382 } 1383 1384 // Ensure terminator gets a debug location, even an unknown one, in case 1385 // it involves inlinable calls. 1386 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1387 1388 // PHIs created below will adopt NT's merged DebugLoc. 1389 IRBuilder<NoFolder> Builder(NT); 1390 1391 // Hoisting one of the terminators from our successor is a great thing. 1392 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1393 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1394 // nodes, so we insert select instruction to compute the final result. 1395 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1396 for (BasicBlock *Succ : successors(BB1)) { 1397 for (PHINode &PN : Succ->phis()) { 1398 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1399 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1400 if (BB1V == BB2V) 1401 continue; 1402 1403 // These values do not agree. Insert a select instruction before NT 1404 // that determines the right value. 1405 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1406 if (!SI) 1407 SI = cast<SelectInst>( 1408 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1409 BB1V->getName() + "." + BB2V->getName(), BI)); 1410 1411 // Make the PHI node use the select for all incoming values for BB1/BB2 1412 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1413 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1414 PN.setIncomingValue(i, SI); 1415 } 1416 } 1417 1418 // Update any PHI nodes in our new successors. 1419 for (BasicBlock *Succ : successors(BB1)) 1420 AddPredecessorToBlock(Succ, BIParent, BB1); 1421 1422 EraseTerminatorAndDCECond(BI); 1423 return true; 1424 } 1425 1426 // All instructions in Insts belong to different blocks that all unconditionally 1427 // branch to a common successor. Analyze each instruction and return true if it 1428 // would be possible to sink them into their successor, creating one common 1429 // instruction instead. For every value that would be required to be provided by 1430 // PHI node (because an operand varies in each input block), add to PHIOperands. 1431 static bool canSinkInstructions( 1432 ArrayRef<Instruction *> Insts, 1433 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1434 // Prune out obviously bad instructions to move. Any non-store instruction 1435 // must have exactly one use, and we check later that use is by a single, 1436 // common PHI instruction in the successor. 1437 for (auto *I : Insts) { 1438 // These instructions may change or break semantics if moved. 1439 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1440 I->getType()->isTokenTy()) 1441 return false; 1442 1443 // Conservatively return false if I is an inline-asm instruction. Sinking 1444 // and merging inline-asm instructions can potentially create arguments 1445 // that cannot satisfy the inline-asm constraints. 1446 if (const auto *C = dyn_cast<CallInst>(I)) 1447 if (C->isInlineAsm()) 1448 return false; 1449 1450 // Everything must have only one use too, apart from stores which 1451 // have no uses. 1452 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1453 return false; 1454 } 1455 1456 const Instruction *I0 = Insts.front(); 1457 for (auto *I : Insts) 1458 if (!I->isSameOperationAs(I0)) 1459 return false; 1460 1461 // All instructions in Insts are known to be the same opcode. If they aren't 1462 // stores, check the only user of each is a PHI or in the same block as the 1463 // instruction, because if a user is in the same block as an instruction 1464 // we're contemplating sinking, it must already be determined to be sinkable. 1465 if (!isa<StoreInst>(I0)) { 1466 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1467 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1468 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1469 auto *U = cast<Instruction>(*I->user_begin()); 1470 return (PNUse && 1471 PNUse->getParent() == Succ && 1472 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1473 U->getParent() == I->getParent(); 1474 })) 1475 return false; 1476 } 1477 1478 // Because SROA can't handle speculating stores of selects, try not 1479 // to sink loads or stores of allocas when we'd have to create a PHI for 1480 // the address operand. Also, because it is likely that loads or stores 1481 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1482 // This can cause code churn which can have unintended consequences down 1483 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1484 // FIXME: This is a workaround for a deficiency in SROA - see 1485 // https://llvm.org/bugs/show_bug.cgi?id=30188 1486 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1487 return isa<AllocaInst>(I->getOperand(1)); 1488 })) 1489 return false; 1490 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1491 return isa<AllocaInst>(I->getOperand(0)); 1492 })) 1493 return false; 1494 1495 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1496 if (I0->getOperand(OI)->getType()->isTokenTy()) 1497 // Don't touch any operand of token type. 1498 return false; 1499 1500 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1501 assert(I->getNumOperands() == I0->getNumOperands()); 1502 return I->getOperand(OI) == I0->getOperand(OI); 1503 }; 1504 if (!all_of(Insts, SameAsI0)) { 1505 if (!canReplaceOperandWithVariable(I0, OI)) 1506 // We can't create a PHI from this GEP. 1507 return false; 1508 // Don't create indirect calls! The called value is the final operand. 1509 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1510 // FIXME: if the call was *already* indirect, we should do this. 1511 return false; 1512 } 1513 for (auto *I : Insts) 1514 PHIOperands[I].push_back(I->getOperand(OI)); 1515 } 1516 } 1517 return true; 1518 } 1519 1520 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1521 // instruction of every block in Blocks to their common successor, commoning 1522 // into one instruction. 1523 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1524 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1525 1526 // canSinkLastInstruction returning true guarantees that every block has at 1527 // least one non-terminator instruction. 1528 SmallVector<Instruction*,4> Insts; 1529 for (auto *BB : Blocks) { 1530 Instruction *I = BB->getTerminator(); 1531 do { 1532 I = I->getPrevNode(); 1533 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1534 if (!isa<DbgInfoIntrinsic>(I)) 1535 Insts.push_back(I); 1536 } 1537 1538 // The only checking we need to do now is that all users of all instructions 1539 // are the same PHI node. canSinkLastInstruction should have checked this but 1540 // it is slightly over-aggressive - it gets confused by commutative instructions 1541 // so double-check it here. 1542 Instruction *I0 = Insts.front(); 1543 if (!isa<StoreInst>(I0)) { 1544 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1545 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1546 auto *U = cast<Instruction>(*I->user_begin()); 1547 return U == PNUse; 1548 })) 1549 return false; 1550 } 1551 1552 // We don't need to do any more checking here; canSinkLastInstruction should 1553 // have done it all for us. 1554 SmallVector<Value*, 4> NewOperands; 1555 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1556 // This check is different to that in canSinkLastInstruction. There, we 1557 // cared about the global view once simplifycfg (and instcombine) have 1558 // completed - it takes into account PHIs that become trivially 1559 // simplifiable. However here we need a more local view; if an operand 1560 // differs we create a PHI and rely on instcombine to clean up the very 1561 // small mess we may make. 1562 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1563 return I->getOperand(O) != I0->getOperand(O); 1564 }); 1565 if (!NeedPHI) { 1566 NewOperands.push_back(I0->getOperand(O)); 1567 continue; 1568 } 1569 1570 // Create a new PHI in the successor block and populate it. 1571 auto *Op = I0->getOperand(O); 1572 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1573 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1574 Op->getName() + ".sink", &BBEnd->front()); 1575 for (auto *I : Insts) 1576 PN->addIncoming(I->getOperand(O), I->getParent()); 1577 NewOperands.push_back(PN); 1578 } 1579 1580 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1581 // and move it to the start of the successor block. 1582 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1583 I0->getOperandUse(O).set(NewOperands[O]); 1584 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1585 1586 // Update metadata and IR flags, and merge debug locations. 1587 for (auto *I : Insts) 1588 if (I != I0) { 1589 // The debug location for the "common" instruction is the merged locations 1590 // of all the commoned instructions. We start with the original location 1591 // of the "common" instruction and iteratively merge each location in the 1592 // loop below. 1593 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1594 // However, as N-way merge for CallInst is rare, so we use simplified API 1595 // instead of using complex API for N-way merge. 1596 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1597 combineMetadataForCSE(I0, I, true); 1598 I0->andIRFlags(I); 1599 } 1600 1601 if (!isa<StoreInst>(I0)) { 1602 // canSinkLastInstruction checked that all instructions were used by 1603 // one and only one PHI node. Find that now, RAUW it to our common 1604 // instruction and nuke it. 1605 assert(I0->hasOneUse()); 1606 auto *PN = cast<PHINode>(*I0->user_begin()); 1607 PN->replaceAllUsesWith(I0); 1608 PN->eraseFromParent(); 1609 } 1610 1611 // Finally nuke all instructions apart from the common instruction. 1612 for (auto *I : Insts) 1613 if (I != I0) 1614 I->eraseFromParent(); 1615 1616 return true; 1617 } 1618 1619 namespace { 1620 1621 // LockstepReverseIterator - Iterates through instructions 1622 // in a set of blocks in reverse order from the first non-terminator. 1623 // For example (assume all blocks have size n): 1624 // LockstepReverseIterator I([B1, B2, B3]); 1625 // *I-- = [B1[n], B2[n], B3[n]]; 1626 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1627 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1628 // ... 1629 class LockstepReverseIterator { 1630 ArrayRef<BasicBlock*> Blocks; 1631 SmallVector<Instruction*,4> Insts; 1632 bool Fail; 1633 1634 public: 1635 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1636 reset(); 1637 } 1638 1639 void reset() { 1640 Fail = false; 1641 Insts.clear(); 1642 for (auto *BB : Blocks) { 1643 Instruction *Inst = BB->getTerminator(); 1644 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1645 Inst = Inst->getPrevNode(); 1646 if (!Inst) { 1647 // Block wasn't big enough. 1648 Fail = true; 1649 return; 1650 } 1651 Insts.push_back(Inst); 1652 } 1653 } 1654 1655 bool isValid() const { 1656 return !Fail; 1657 } 1658 1659 void operator--() { 1660 if (Fail) 1661 return; 1662 for (auto *&Inst : Insts) { 1663 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1664 Inst = Inst->getPrevNode(); 1665 // Already at beginning of block. 1666 if (!Inst) { 1667 Fail = true; 1668 return; 1669 } 1670 } 1671 } 1672 1673 ArrayRef<Instruction*> operator * () const { 1674 return Insts; 1675 } 1676 }; 1677 1678 } // end anonymous namespace 1679 1680 /// Check whether BB's predecessors end with unconditional branches. If it is 1681 /// true, sink any common code from the predecessors to BB. 1682 /// We also allow one predecessor to end with conditional branch (but no more 1683 /// than one). 1684 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1685 // We support two situations: 1686 // (1) all incoming arcs are unconditional 1687 // (2) one incoming arc is conditional 1688 // 1689 // (2) is very common in switch defaults and 1690 // else-if patterns; 1691 // 1692 // if (a) f(1); 1693 // else if (b) f(2); 1694 // 1695 // produces: 1696 // 1697 // [if] 1698 // / \ 1699 // [f(1)] [if] 1700 // | | \ 1701 // | | | 1702 // | [f(2)]| 1703 // \ | / 1704 // [ end ] 1705 // 1706 // [end] has two unconditional predecessor arcs and one conditional. The 1707 // conditional refers to the implicit empty 'else' arc. This conditional 1708 // arc can also be caused by an empty default block in a switch. 1709 // 1710 // In this case, we attempt to sink code from all *unconditional* arcs. 1711 // If we can sink instructions from these arcs (determined during the scan 1712 // phase below) we insert a common successor for all unconditional arcs and 1713 // connect that to [end], to enable sinking: 1714 // 1715 // [if] 1716 // / \ 1717 // [x(1)] [if] 1718 // | | \ 1719 // | | \ 1720 // | [x(2)] | 1721 // \ / | 1722 // [sink.split] | 1723 // \ / 1724 // [ end ] 1725 // 1726 SmallVector<BasicBlock*,4> UnconditionalPreds; 1727 Instruction *Cond = nullptr; 1728 for (auto *B : predecessors(BB)) { 1729 auto *T = B->getTerminator(); 1730 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1731 UnconditionalPreds.push_back(B); 1732 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1733 Cond = T; 1734 else 1735 return false; 1736 } 1737 if (UnconditionalPreds.size() < 2) 1738 return false; 1739 1740 bool Changed = false; 1741 // We take a two-step approach to tail sinking. First we scan from the end of 1742 // each block upwards in lockstep. If the n'th instruction from the end of each 1743 // block can be sunk, those instructions are added to ValuesToSink and we 1744 // carry on. If we can sink an instruction but need to PHI-merge some operands 1745 // (because they're not identical in each instruction) we add these to 1746 // PHIOperands. 1747 unsigned ScanIdx = 0; 1748 SmallPtrSet<Value*,4> InstructionsToSink; 1749 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1750 LockstepReverseIterator LRI(UnconditionalPreds); 1751 while (LRI.isValid() && 1752 canSinkInstructions(*LRI, PHIOperands)) { 1753 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1754 << "\n"); 1755 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1756 ++ScanIdx; 1757 --LRI; 1758 } 1759 1760 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1761 unsigned NumPHIdValues = 0; 1762 for (auto *I : *LRI) 1763 for (auto *V : PHIOperands[I]) 1764 if (InstructionsToSink.count(V) == 0) 1765 ++NumPHIdValues; 1766 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1767 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1768 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1769 NumPHIInsts++; 1770 1771 return NumPHIInsts <= 1; 1772 }; 1773 1774 if (ScanIdx > 0 && Cond) { 1775 // Check if we would actually sink anything first! This mutates the CFG and 1776 // adds an extra block. The goal in doing this is to allow instructions that 1777 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1778 // (such as trunc, add) can be sunk and predicated already. So we check that 1779 // we're going to sink at least one non-speculatable instruction. 1780 LRI.reset(); 1781 unsigned Idx = 0; 1782 bool Profitable = false; 1783 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1784 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1785 Profitable = true; 1786 break; 1787 } 1788 --LRI; 1789 ++Idx; 1790 } 1791 if (!Profitable) 1792 return false; 1793 1794 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1795 // We have a conditional edge and we're going to sink some instructions. 1796 // Insert a new block postdominating all blocks we're going to sink from. 1797 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1798 // Edges couldn't be split. 1799 return false; 1800 Changed = true; 1801 } 1802 1803 // Now that we've analyzed all potential sinking candidates, perform the 1804 // actual sink. We iteratively sink the last non-terminator of the source 1805 // blocks into their common successor unless doing so would require too 1806 // many PHI instructions to be generated (currently only one PHI is allowed 1807 // per sunk instruction). 1808 // 1809 // We can use InstructionsToSink to discount values needing PHI-merging that will 1810 // actually be sunk in a later iteration. This allows us to be more 1811 // aggressive in what we sink. This does allow a false positive where we 1812 // sink presuming a later value will also be sunk, but stop half way through 1813 // and never actually sink it which means we produce more PHIs than intended. 1814 // This is unlikely in practice though. 1815 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1816 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1817 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1818 << "\n"); 1819 1820 // Because we've sunk every instruction in turn, the current instruction to 1821 // sink is always at index 0. 1822 LRI.reset(); 1823 if (!ProfitableToSinkInstruction(LRI)) { 1824 // Too many PHIs would be created. 1825 LLVM_DEBUG( 1826 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1827 break; 1828 } 1829 1830 if (!sinkLastInstruction(UnconditionalPreds)) 1831 return Changed; 1832 NumSinkCommons++; 1833 Changed = true; 1834 } 1835 return Changed; 1836 } 1837 1838 /// Determine if we can hoist sink a sole store instruction out of a 1839 /// conditional block. 1840 /// 1841 /// We are looking for code like the following: 1842 /// BrBB: 1843 /// store i32 %add, i32* %arrayidx2 1844 /// ... // No other stores or function calls (we could be calling a memory 1845 /// ... // function). 1846 /// %cmp = icmp ult %x, %y 1847 /// br i1 %cmp, label %EndBB, label %ThenBB 1848 /// ThenBB: 1849 /// store i32 %add5, i32* %arrayidx2 1850 /// br label EndBB 1851 /// EndBB: 1852 /// ... 1853 /// We are going to transform this into: 1854 /// BrBB: 1855 /// store i32 %add, i32* %arrayidx2 1856 /// ... // 1857 /// %cmp = icmp ult %x, %y 1858 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1859 /// store i32 %add.add5, i32* %arrayidx2 1860 /// ... 1861 /// 1862 /// \return The pointer to the value of the previous store if the store can be 1863 /// hoisted into the predecessor block. 0 otherwise. 1864 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1865 BasicBlock *StoreBB, BasicBlock *EndBB) { 1866 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1867 if (!StoreToHoist) 1868 return nullptr; 1869 1870 // Volatile or atomic. 1871 if (!StoreToHoist->isSimple()) 1872 return nullptr; 1873 1874 Value *StorePtr = StoreToHoist->getPointerOperand(); 1875 1876 // Look for a store to the same pointer in BrBB. 1877 unsigned MaxNumInstToLookAt = 9; 1878 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1879 if (!MaxNumInstToLookAt) 1880 break; 1881 --MaxNumInstToLookAt; 1882 1883 // Could be calling an instruction that affects memory like free(). 1884 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1885 return nullptr; 1886 1887 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1888 // Found the previous store make sure it stores to the same location. 1889 if (SI->getPointerOperand() == StorePtr) 1890 // Found the previous store, return its value operand. 1891 return SI->getValueOperand(); 1892 return nullptr; // Unknown store. 1893 } 1894 } 1895 1896 return nullptr; 1897 } 1898 1899 /// Speculate a conditional basic block flattening the CFG. 1900 /// 1901 /// Note that this is a very risky transform currently. Speculating 1902 /// instructions like this is most often not desirable. Instead, there is an MI 1903 /// pass which can do it with full awareness of the resource constraints. 1904 /// However, some cases are "obvious" and we should do directly. An example of 1905 /// this is speculating a single, reasonably cheap instruction. 1906 /// 1907 /// There is only one distinct advantage to flattening the CFG at the IR level: 1908 /// it makes very common but simplistic optimizations such as are common in 1909 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1910 /// modeling their effects with easier to reason about SSA value graphs. 1911 /// 1912 /// 1913 /// An illustration of this transform is turning this IR: 1914 /// \code 1915 /// BB: 1916 /// %cmp = icmp ult %x, %y 1917 /// br i1 %cmp, label %EndBB, label %ThenBB 1918 /// ThenBB: 1919 /// %sub = sub %x, %y 1920 /// br label BB2 1921 /// EndBB: 1922 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1923 /// ... 1924 /// \endcode 1925 /// 1926 /// Into this IR: 1927 /// \code 1928 /// BB: 1929 /// %cmp = icmp ult %x, %y 1930 /// %sub = sub %x, %y 1931 /// %cond = select i1 %cmp, 0, %sub 1932 /// ... 1933 /// \endcode 1934 /// 1935 /// \returns true if the conditional block is removed. 1936 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1937 const TargetTransformInfo &TTI) { 1938 // Be conservative for now. FP select instruction can often be expensive. 1939 Value *BrCond = BI->getCondition(); 1940 if (isa<FCmpInst>(BrCond)) 1941 return false; 1942 1943 BasicBlock *BB = BI->getParent(); 1944 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1945 1946 // If ThenBB is actually on the false edge of the conditional branch, remember 1947 // to swap the select operands later. 1948 bool Invert = false; 1949 if (ThenBB != BI->getSuccessor(0)) { 1950 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1951 Invert = true; 1952 } 1953 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1954 1955 // Keep a count of how many times instructions are used within ThenBB when 1956 // they are candidates for sinking into ThenBB. Specifically: 1957 // - They are defined in BB, and 1958 // - They have no side effects, and 1959 // - All of their uses are in ThenBB. 1960 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1961 1962 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1963 1964 unsigned SpeculationCost = 0; 1965 Value *SpeculatedStoreValue = nullptr; 1966 StoreInst *SpeculatedStore = nullptr; 1967 for (BasicBlock::iterator BBI = ThenBB->begin(), 1968 BBE = std::prev(ThenBB->end()); 1969 BBI != BBE; ++BBI) { 1970 Instruction *I = &*BBI; 1971 // Skip debug info. 1972 if (isa<DbgInfoIntrinsic>(I)) { 1973 SpeculatedDbgIntrinsics.push_back(I); 1974 continue; 1975 } 1976 1977 // Only speculatively execute a single instruction (not counting the 1978 // terminator) for now. 1979 ++SpeculationCost; 1980 if (SpeculationCost > 1) 1981 return false; 1982 1983 // Don't hoist the instruction if it's unsafe or expensive. 1984 if (!isSafeToSpeculativelyExecute(I) && 1985 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1986 I, BB, ThenBB, EndBB)))) 1987 return false; 1988 if (!SpeculatedStoreValue && 1989 ComputeSpeculationCost(I, TTI) > 1990 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1991 return false; 1992 1993 // Store the store speculation candidate. 1994 if (SpeculatedStoreValue) 1995 SpeculatedStore = cast<StoreInst>(I); 1996 1997 // Do not hoist the instruction if any of its operands are defined but not 1998 // used in BB. The transformation will prevent the operand from 1999 // being sunk into the use block. 2000 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2001 Instruction *OpI = dyn_cast<Instruction>(*i); 2002 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2003 continue; // Not a candidate for sinking. 2004 2005 ++SinkCandidateUseCounts[OpI]; 2006 } 2007 } 2008 2009 // Consider any sink candidates which are only used in ThenBB as costs for 2010 // speculation. Note, while we iterate over a DenseMap here, we are summing 2011 // and so iteration order isn't significant. 2012 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2013 I = SinkCandidateUseCounts.begin(), 2014 E = SinkCandidateUseCounts.end(); 2015 I != E; ++I) 2016 if (I->first->hasNUses(I->second)) { 2017 ++SpeculationCost; 2018 if (SpeculationCost > 1) 2019 return false; 2020 } 2021 2022 // Check that the PHI nodes can be converted to selects. 2023 bool HaveRewritablePHIs = false; 2024 for (PHINode &PN : EndBB->phis()) { 2025 Value *OrigV = PN.getIncomingValueForBlock(BB); 2026 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2027 2028 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2029 // Skip PHIs which are trivial. 2030 if (ThenV == OrigV) 2031 continue; 2032 2033 // Don't convert to selects if we could remove undefined behavior instead. 2034 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2035 passingValueIsAlwaysUndefined(ThenV, &PN)) 2036 return false; 2037 2038 HaveRewritablePHIs = true; 2039 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2040 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2041 if (!OrigCE && !ThenCE) 2042 continue; // Known safe and cheap. 2043 2044 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2045 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2046 return false; 2047 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2048 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2049 unsigned MaxCost = 2050 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2051 if (OrigCost + ThenCost > MaxCost) 2052 return false; 2053 2054 // Account for the cost of an unfolded ConstantExpr which could end up 2055 // getting expanded into Instructions. 2056 // FIXME: This doesn't account for how many operations are combined in the 2057 // constant expression. 2058 ++SpeculationCost; 2059 if (SpeculationCost > 1) 2060 return false; 2061 } 2062 2063 // If there are no PHIs to process, bail early. This helps ensure idempotence 2064 // as well. 2065 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2066 return false; 2067 2068 // If we get here, we can hoist the instruction and if-convert. 2069 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2070 2071 // Insert a select of the value of the speculated store. 2072 if (SpeculatedStoreValue) { 2073 IRBuilder<NoFolder> Builder(BI); 2074 Value *TrueV = SpeculatedStore->getValueOperand(); 2075 Value *FalseV = SpeculatedStoreValue; 2076 if (Invert) 2077 std::swap(TrueV, FalseV); 2078 Value *S = Builder.CreateSelect( 2079 BrCond, TrueV, FalseV, "spec.store.select", BI); 2080 SpeculatedStore->setOperand(0, S); 2081 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2082 SpeculatedStore->getDebugLoc()); 2083 } 2084 2085 // Metadata can be dependent on the condition we are hoisting above. 2086 // Conservatively strip all metadata on the instruction. 2087 for (auto &I : *ThenBB) 2088 I.dropUnknownNonDebugMetadata(); 2089 2090 // Hoist the instructions. 2091 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2092 ThenBB->begin(), std::prev(ThenBB->end())); 2093 2094 // Insert selects and rewrite the PHI operands. 2095 IRBuilder<NoFolder> Builder(BI); 2096 for (PHINode &PN : EndBB->phis()) { 2097 unsigned OrigI = PN.getBasicBlockIndex(BB); 2098 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2099 Value *OrigV = PN.getIncomingValue(OrigI); 2100 Value *ThenV = PN.getIncomingValue(ThenI); 2101 2102 // Skip PHIs which are trivial. 2103 if (OrigV == ThenV) 2104 continue; 2105 2106 // Create a select whose true value is the speculatively executed value and 2107 // false value is the preexisting value. Swap them if the branch 2108 // destinations were inverted. 2109 Value *TrueV = ThenV, *FalseV = OrigV; 2110 if (Invert) 2111 std::swap(TrueV, FalseV); 2112 Value *V = Builder.CreateSelect( 2113 BrCond, TrueV, FalseV, "spec.select", BI); 2114 PN.setIncomingValue(OrigI, V); 2115 PN.setIncomingValue(ThenI, V); 2116 } 2117 2118 // Remove speculated dbg intrinsics. 2119 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2120 // dbg value for the different flows and inserting it after the select. 2121 for (Instruction *I : SpeculatedDbgIntrinsics) 2122 I->eraseFromParent(); 2123 2124 ++NumSpeculations; 2125 return true; 2126 } 2127 2128 /// Return true if we can thread a branch across this block. 2129 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2130 unsigned Size = 0; 2131 2132 for (Instruction &I : BB->instructionsWithoutDebug()) { 2133 if (Size > 10) 2134 return false; // Don't clone large BB's. 2135 ++Size; 2136 2137 // We can only support instructions that do not define values that are 2138 // live outside of the current basic block. 2139 for (User *U : I.users()) { 2140 Instruction *UI = cast<Instruction>(U); 2141 if (UI->getParent() != BB || isa<PHINode>(UI)) 2142 return false; 2143 } 2144 2145 // Looks ok, continue checking. 2146 } 2147 2148 return true; 2149 } 2150 2151 /// If we have a conditional branch on a PHI node value that is defined in the 2152 /// same block as the branch and if any PHI entries are constants, thread edges 2153 /// corresponding to that entry to be branches to their ultimate destination. 2154 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2155 AssumptionCache *AC) { 2156 BasicBlock *BB = BI->getParent(); 2157 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2158 // NOTE: we currently cannot transform this case if the PHI node is used 2159 // outside of the block. 2160 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2161 return false; 2162 2163 // Degenerate case of a single entry PHI. 2164 if (PN->getNumIncomingValues() == 1) { 2165 FoldSingleEntryPHINodes(PN->getParent()); 2166 return true; 2167 } 2168 2169 // Now we know that this block has multiple preds and two succs. 2170 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2171 return false; 2172 2173 // Can't fold blocks that contain noduplicate or convergent calls. 2174 if (any_of(*BB, [](const Instruction &I) { 2175 const CallInst *CI = dyn_cast<CallInst>(&I); 2176 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2177 })) 2178 return false; 2179 2180 // Okay, this is a simple enough basic block. See if any phi values are 2181 // constants. 2182 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2183 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2184 if (!CB || !CB->getType()->isIntegerTy(1)) 2185 continue; 2186 2187 // Okay, we now know that all edges from PredBB should be revectored to 2188 // branch to RealDest. 2189 BasicBlock *PredBB = PN->getIncomingBlock(i); 2190 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2191 2192 if (RealDest == BB) 2193 continue; // Skip self loops. 2194 // Skip if the predecessor's terminator is an indirect branch. 2195 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2196 continue; 2197 2198 // The dest block might have PHI nodes, other predecessors and other 2199 // difficult cases. Instead of being smart about this, just insert a new 2200 // block that jumps to the destination block, effectively splitting 2201 // the edge we are about to create. 2202 BasicBlock *EdgeBB = 2203 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2204 RealDest->getParent(), RealDest); 2205 BranchInst::Create(RealDest, EdgeBB); 2206 2207 // Update PHI nodes. 2208 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2209 2210 // BB may have instructions that are being threaded over. Clone these 2211 // instructions into EdgeBB. We know that there will be no uses of the 2212 // cloned instructions outside of EdgeBB. 2213 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2214 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2215 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2216 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2217 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2218 continue; 2219 } 2220 // Clone the instruction. 2221 Instruction *N = BBI->clone(); 2222 if (BBI->hasName()) 2223 N->setName(BBI->getName() + ".c"); 2224 2225 // Update operands due to translation. 2226 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2227 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2228 if (PI != TranslateMap.end()) 2229 *i = PI->second; 2230 } 2231 2232 // Check for trivial simplification. 2233 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2234 if (!BBI->use_empty()) 2235 TranslateMap[&*BBI] = V; 2236 if (!N->mayHaveSideEffects()) { 2237 N->deleteValue(); // Instruction folded away, don't need actual inst 2238 N = nullptr; 2239 } 2240 } else { 2241 if (!BBI->use_empty()) 2242 TranslateMap[&*BBI] = N; 2243 } 2244 // Insert the new instruction into its new home. 2245 if (N) 2246 EdgeBB->getInstList().insert(InsertPt, N); 2247 2248 // Register the new instruction with the assumption cache if necessary. 2249 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2250 if (II->getIntrinsicID() == Intrinsic::assume) 2251 AC->registerAssumption(II); 2252 } 2253 2254 // Loop over all of the edges from PredBB to BB, changing them to branch 2255 // to EdgeBB instead. 2256 Instruction *PredBBTI = PredBB->getTerminator(); 2257 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2258 if (PredBBTI->getSuccessor(i) == BB) { 2259 BB->removePredecessor(PredBB); 2260 PredBBTI->setSuccessor(i, EdgeBB); 2261 } 2262 2263 // Recurse, simplifying any other constants. 2264 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2265 } 2266 2267 return false; 2268 } 2269 2270 /// Given a BB that starts with the specified two-entry PHI node, 2271 /// see if we can eliminate it. 2272 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2273 const DataLayout &DL) { 2274 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2275 // statement", which has a very simple dominance structure. Basically, we 2276 // are trying to find the condition that is being branched on, which 2277 // subsequently causes this merge to happen. We really want control 2278 // dependence information for this check, but simplifycfg can't keep it up 2279 // to date, and this catches most of the cases we care about anyway. 2280 BasicBlock *BB = PN->getParent(); 2281 const Function *Fn = BB->getParent(); 2282 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2283 return false; 2284 2285 BasicBlock *IfTrue, *IfFalse; 2286 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2287 if (!IfCond || 2288 // Don't bother if the branch will be constant folded trivially. 2289 isa<ConstantInt>(IfCond)) 2290 return false; 2291 2292 // Okay, we found that we can merge this two-entry phi node into a select. 2293 // Doing so would require us to fold *all* two entry phi nodes in this block. 2294 // At some point this becomes non-profitable (particularly if the target 2295 // doesn't support cmov's). Only do this transformation if there are two or 2296 // fewer PHI nodes in this block. 2297 unsigned NumPhis = 0; 2298 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2299 if (NumPhis > 2) 2300 return false; 2301 2302 // Loop over the PHI's seeing if we can promote them all to select 2303 // instructions. While we are at it, keep track of the instructions 2304 // that need to be moved to the dominating block. 2305 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2306 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2307 MaxCostVal1 = PHINodeFoldingThreshold; 2308 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2309 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2310 2311 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2312 PHINode *PN = cast<PHINode>(II++); 2313 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2314 PN->replaceAllUsesWith(V); 2315 PN->eraseFromParent(); 2316 continue; 2317 } 2318 2319 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2320 MaxCostVal0, TTI) || 2321 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2322 MaxCostVal1, TTI)) 2323 return false; 2324 } 2325 2326 // If we folded the first phi, PN dangles at this point. Refresh it. If 2327 // we ran out of PHIs then we simplified them all. 2328 PN = dyn_cast<PHINode>(BB->begin()); 2329 if (!PN) 2330 return true; 2331 2332 // Don't fold i1 branches on PHIs which contain binary operators. These can 2333 // often be turned into switches and other things. 2334 if (PN->getType()->isIntegerTy(1) && 2335 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2336 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2337 isa<BinaryOperator>(IfCond))) 2338 return false; 2339 2340 // If all PHI nodes are promotable, check to make sure that all instructions 2341 // in the predecessor blocks can be promoted as well. If not, we won't be able 2342 // to get rid of the control flow, so it's not worth promoting to select 2343 // instructions. 2344 BasicBlock *DomBlock = nullptr; 2345 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2346 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2347 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2348 IfBlock1 = nullptr; 2349 } else { 2350 DomBlock = *pred_begin(IfBlock1); 2351 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2352 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2353 // This is not an aggressive instruction that we can promote. 2354 // Because of this, we won't be able to get rid of the control flow, so 2355 // the xform is not worth it. 2356 return false; 2357 } 2358 } 2359 2360 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2361 IfBlock2 = nullptr; 2362 } else { 2363 DomBlock = *pred_begin(IfBlock2); 2364 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2365 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2366 // This is not an aggressive instruction that we can promote. 2367 // Because of this, we won't be able to get rid of the control flow, so 2368 // the xform is not worth it. 2369 return false; 2370 } 2371 } 2372 2373 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2374 << " T: " << IfTrue->getName() 2375 << " F: " << IfFalse->getName() << "\n"); 2376 2377 // If we can still promote the PHI nodes after this gauntlet of tests, 2378 // do all of the PHI's now. 2379 Instruction *InsertPt = DomBlock->getTerminator(); 2380 IRBuilder<NoFolder> Builder(InsertPt); 2381 2382 // Move all 'aggressive' instructions, which are defined in the 2383 // conditional parts of the if's up to the dominating block. 2384 if (IfBlock1) 2385 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2386 if (IfBlock2) 2387 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2388 2389 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2390 // Change the PHI node into a select instruction. 2391 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2392 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2393 2394 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2395 PN->replaceAllUsesWith(Sel); 2396 Sel->takeName(PN); 2397 PN->eraseFromParent(); 2398 } 2399 2400 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2401 // has been flattened. Change DomBlock to jump directly to our new block to 2402 // avoid other simplifycfg's kicking in on the diamond. 2403 Instruction *OldTI = DomBlock->getTerminator(); 2404 Builder.SetInsertPoint(OldTI); 2405 Builder.CreateBr(BB); 2406 OldTI->eraseFromParent(); 2407 return true; 2408 } 2409 2410 /// If we found a conditional branch that goes to two returning blocks, 2411 /// try to merge them together into one return, 2412 /// introducing a select if the return values disagree. 2413 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2414 IRBuilder<> &Builder) { 2415 assert(BI->isConditional() && "Must be a conditional branch"); 2416 BasicBlock *TrueSucc = BI->getSuccessor(0); 2417 BasicBlock *FalseSucc = BI->getSuccessor(1); 2418 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2419 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2420 2421 // Check to ensure both blocks are empty (just a return) or optionally empty 2422 // with PHI nodes. If there are other instructions, merging would cause extra 2423 // computation on one path or the other. 2424 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2425 return false; 2426 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2427 return false; 2428 2429 Builder.SetInsertPoint(BI); 2430 // Okay, we found a branch that is going to two return nodes. If 2431 // there is no return value for this function, just change the 2432 // branch into a return. 2433 if (FalseRet->getNumOperands() == 0) { 2434 TrueSucc->removePredecessor(BI->getParent()); 2435 FalseSucc->removePredecessor(BI->getParent()); 2436 Builder.CreateRetVoid(); 2437 EraseTerminatorAndDCECond(BI); 2438 return true; 2439 } 2440 2441 // Otherwise, figure out what the true and false return values are 2442 // so we can insert a new select instruction. 2443 Value *TrueValue = TrueRet->getReturnValue(); 2444 Value *FalseValue = FalseRet->getReturnValue(); 2445 2446 // Unwrap any PHI nodes in the return blocks. 2447 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2448 if (TVPN->getParent() == TrueSucc) 2449 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2450 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2451 if (FVPN->getParent() == FalseSucc) 2452 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2453 2454 // In order for this transformation to be safe, we must be able to 2455 // unconditionally execute both operands to the return. This is 2456 // normally the case, but we could have a potentially-trapping 2457 // constant expression that prevents this transformation from being 2458 // safe. 2459 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2460 if (TCV->canTrap()) 2461 return false; 2462 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2463 if (FCV->canTrap()) 2464 return false; 2465 2466 // Okay, we collected all the mapped values and checked them for sanity, and 2467 // defined to really do this transformation. First, update the CFG. 2468 TrueSucc->removePredecessor(BI->getParent()); 2469 FalseSucc->removePredecessor(BI->getParent()); 2470 2471 // Insert select instructions where needed. 2472 Value *BrCond = BI->getCondition(); 2473 if (TrueValue) { 2474 // Insert a select if the results differ. 2475 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2476 } else if (isa<UndefValue>(TrueValue)) { 2477 TrueValue = FalseValue; 2478 } else { 2479 TrueValue = 2480 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2481 } 2482 } 2483 2484 Value *RI = 2485 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2486 2487 (void)RI; 2488 2489 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2490 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2491 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2492 2493 EraseTerminatorAndDCECond(BI); 2494 2495 return true; 2496 } 2497 2498 /// Return true if the given instruction is available 2499 /// in its predecessor block. If yes, the instruction will be removed. 2500 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2501 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2502 return false; 2503 for (Instruction &I : *PB) { 2504 Instruction *PBI = &I; 2505 // Check whether Inst and PBI generate the same value. 2506 if (Inst->isIdenticalTo(PBI)) { 2507 Inst->replaceAllUsesWith(PBI); 2508 Inst->eraseFromParent(); 2509 return true; 2510 } 2511 } 2512 return false; 2513 } 2514 2515 /// Return true if either PBI or BI has branch weight available, and store 2516 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2517 /// not have branch weight, use 1:1 as its weight. 2518 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2519 uint64_t &PredTrueWeight, 2520 uint64_t &PredFalseWeight, 2521 uint64_t &SuccTrueWeight, 2522 uint64_t &SuccFalseWeight) { 2523 bool PredHasWeights = 2524 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2525 bool SuccHasWeights = 2526 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2527 if (PredHasWeights || SuccHasWeights) { 2528 if (!PredHasWeights) 2529 PredTrueWeight = PredFalseWeight = 1; 2530 if (!SuccHasWeights) 2531 SuccTrueWeight = SuccFalseWeight = 1; 2532 return true; 2533 } else { 2534 return false; 2535 } 2536 } 2537 2538 /// If this basic block is simple enough, and if a predecessor branches to us 2539 /// and one of our successors, fold the block into the predecessor and use 2540 /// logical operations to pick the right destination. 2541 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2542 BasicBlock *BB = BI->getParent(); 2543 2544 const unsigned PredCount = pred_size(BB); 2545 2546 Instruction *Cond = nullptr; 2547 if (BI->isConditional()) 2548 Cond = dyn_cast<Instruction>(BI->getCondition()); 2549 else { 2550 // For unconditional branch, check for a simple CFG pattern, where 2551 // BB has a single predecessor and BB's successor is also its predecessor's 2552 // successor. If such pattern exists, check for CSE between BB and its 2553 // predecessor. 2554 if (BasicBlock *PB = BB->getSinglePredecessor()) 2555 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2556 if (PBI->isConditional() && 2557 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2558 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2559 for (auto I = BB->instructionsWithoutDebug().begin(), 2560 E = BB->instructionsWithoutDebug().end(); 2561 I != E;) { 2562 Instruction *Curr = &*I++; 2563 if (isa<CmpInst>(Curr)) { 2564 Cond = Curr; 2565 break; 2566 } 2567 // Quit if we can't remove this instruction. 2568 if (!tryCSEWithPredecessor(Curr, PB)) 2569 return false; 2570 } 2571 } 2572 2573 if (!Cond) 2574 return false; 2575 } 2576 2577 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2578 Cond->getParent() != BB || !Cond->hasOneUse()) 2579 return false; 2580 2581 // Make sure the instruction after the condition is the cond branch. 2582 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2583 2584 // Ignore dbg intrinsics. 2585 while (isa<DbgInfoIntrinsic>(CondIt)) 2586 ++CondIt; 2587 2588 if (&*CondIt != BI) 2589 return false; 2590 2591 // Only allow this transformation if computing the condition doesn't involve 2592 // too many instructions and these involved instructions can be executed 2593 // unconditionally. We denote all involved instructions except the condition 2594 // as "bonus instructions", and only allow this transformation when the 2595 // number of the bonus instructions we'll need to create when cloning into 2596 // each predecessor does not exceed a certain threshold. 2597 unsigned NumBonusInsts = 0; 2598 for (auto I = BB->begin(); Cond != &*I; ++I) { 2599 // Ignore dbg intrinsics. 2600 if (isa<DbgInfoIntrinsic>(I)) 2601 continue; 2602 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2603 return false; 2604 // I has only one use and can be executed unconditionally. 2605 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2606 if (User == nullptr || User->getParent() != BB) 2607 return false; 2608 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2609 // to use any other instruction, User must be an instruction between next(I) 2610 // and Cond. 2611 2612 // Account for the cost of duplicating this instruction into each 2613 // predecessor. 2614 NumBonusInsts += PredCount; 2615 // Early exits once we reach the limit. 2616 if (NumBonusInsts > BonusInstThreshold) 2617 return false; 2618 } 2619 2620 // Cond is known to be a compare or binary operator. Check to make sure that 2621 // neither operand is a potentially-trapping constant expression. 2622 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2623 if (CE->canTrap()) 2624 return false; 2625 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2626 if (CE->canTrap()) 2627 return false; 2628 2629 // Finally, don't infinitely unroll conditional loops. 2630 BasicBlock *TrueDest = BI->getSuccessor(0); 2631 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2632 if (TrueDest == BB || FalseDest == BB) 2633 return false; 2634 2635 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2636 BasicBlock *PredBlock = *PI; 2637 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2638 2639 // Check that we have two conditional branches. If there is a PHI node in 2640 // the common successor, verify that the same value flows in from both 2641 // blocks. 2642 SmallVector<PHINode *, 4> PHIs; 2643 if (!PBI || PBI->isUnconditional() || 2644 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2645 (!BI->isConditional() && 2646 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2647 continue; 2648 2649 // Determine if the two branches share a common destination. 2650 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2651 bool InvertPredCond = false; 2652 2653 if (BI->isConditional()) { 2654 if (PBI->getSuccessor(0) == TrueDest) { 2655 Opc = Instruction::Or; 2656 } else if (PBI->getSuccessor(1) == FalseDest) { 2657 Opc = Instruction::And; 2658 } else if (PBI->getSuccessor(0) == FalseDest) { 2659 Opc = Instruction::And; 2660 InvertPredCond = true; 2661 } else if (PBI->getSuccessor(1) == TrueDest) { 2662 Opc = Instruction::Or; 2663 InvertPredCond = true; 2664 } else { 2665 continue; 2666 } 2667 } else { 2668 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2669 continue; 2670 } 2671 2672 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2673 IRBuilder<> Builder(PBI); 2674 2675 // If we need to invert the condition in the pred block to match, do so now. 2676 if (InvertPredCond) { 2677 Value *NewCond = PBI->getCondition(); 2678 2679 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2680 CmpInst *CI = cast<CmpInst>(NewCond); 2681 CI->setPredicate(CI->getInversePredicate()); 2682 } else { 2683 NewCond = 2684 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2685 } 2686 2687 PBI->setCondition(NewCond); 2688 PBI->swapSuccessors(); 2689 } 2690 2691 // If we have bonus instructions, clone them into the predecessor block. 2692 // Note that there may be multiple predecessor blocks, so we cannot move 2693 // bonus instructions to a predecessor block. 2694 ValueToValueMapTy VMap; // maps original values to cloned values 2695 // We already make sure Cond is the last instruction before BI. Therefore, 2696 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2697 // instructions. 2698 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2699 if (isa<DbgInfoIntrinsic>(BonusInst)) 2700 continue; 2701 Instruction *NewBonusInst = BonusInst->clone(); 2702 RemapInstruction(NewBonusInst, VMap, 2703 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2704 VMap[&*BonusInst] = NewBonusInst; 2705 2706 // If we moved a load, we cannot any longer claim any knowledge about 2707 // its potential value. The previous information might have been valid 2708 // only given the branch precondition. 2709 // For an analogous reason, we must also drop all the metadata whose 2710 // semantics we don't understand. 2711 NewBonusInst->dropUnknownNonDebugMetadata(); 2712 2713 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2714 NewBonusInst->takeName(&*BonusInst); 2715 BonusInst->setName(BonusInst->getName() + ".old"); 2716 } 2717 2718 // Clone Cond into the predecessor basic block, and or/and the 2719 // two conditions together. 2720 Instruction *CondInPred = Cond->clone(); 2721 RemapInstruction(CondInPred, VMap, 2722 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2723 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2724 CondInPred->takeName(Cond); 2725 Cond->setName(CondInPred->getName() + ".old"); 2726 2727 if (BI->isConditional()) { 2728 Instruction *NewCond = cast<Instruction>( 2729 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2730 PBI->setCondition(NewCond); 2731 2732 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2733 bool HasWeights = 2734 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2735 SuccTrueWeight, SuccFalseWeight); 2736 SmallVector<uint64_t, 8> NewWeights; 2737 2738 if (PBI->getSuccessor(0) == BB) { 2739 if (HasWeights) { 2740 // PBI: br i1 %x, BB, FalseDest 2741 // BI: br i1 %y, TrueDest, FalseDest 2742 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2743 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2744 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2745 // TrueWeight for PBI * FalseWeight for BI. 2746 // We assume that total weights of a BranchInst can fit into 32 bits. 2747 // Therefore, we will not have overflow using 64-bit arithmetic. 2748 NewWeights.push_back(PredFalseWeight * 2749 (SuccFalseWeight + SuccTrueWeight) + 2750 PredTrueWeight * SuccFalseWeight); 2751 } 2752 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2753 PBI->setSuccessor(0, TrueDest); 2754 } 2755 if (PBI->getSuccessor(1) == BB) { 2756 if (HasWeights) { 2757 // PBI: br i1 %x, TrueDest, BB 2758 // BI: br i1 %y, TrueDest, FalseDest 2759 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2760 // FalseWeight for PBI * TrueWeight for BI. 2761 NewWeights.push_back(PredTrueWeight * 2762 (SuccFalseWeight + SuccTrueWeight) + 2763 PredFalseWeight * SuccTrueWeight); 2764 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2765 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2766 } 2767 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2768 PBI->setSuccessor(1, FalseDest); 2769 } 2770 if (NewWeights.size() == 2) { 2771 // Halve the weights if any of them cannot fit in an uint32_t 2772 FitWeights(NewWeights); 2773 2774 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2775 NewWeights.end()); 2776 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2777 } else 2778 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2779 } else { 2780 // Update PHI nodes in the common successors. 2781 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2782 ConstantInt *PBI_C = cast<ConstantInt>( 2783 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2784 assert(PBI_C->getType()->isIntegerTy(1)); 2785 Instruction *MergedCond = nullptr; 2786 if (PBI->getSuccessor(0) == TrueDest) { 2787 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2788 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2789 // is false: !PBI_Cond and BI_Value 2790 Instruction *NotCond = cast<Instruction>( 2791 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2792 MergedCond = cast<Instruction>( 2793 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2794 "and.cond")); 2795 if (PBI_C->isOne()) 2796 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2797 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2798 } else { 2799 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2800 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2801 // is false: PBI_Cond and BI_Value 2802 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2803 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2804 if (PBI_C->isOne()) { 2805 Instruction *NotCond = cast<Instruction>( 2806 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2807 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2808 Instruction::Or, NotCond, MergedCond, "or.cond")); 2809 } 2810 } 2811 // Update PHI Node. 2812 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2813 MergedCond); 2814 } 2815 // Change PBI from Conditional to Unconditional. 2816 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2817 EraseTerminatorAndDCECond(PBI); 2818 PBI = New_PBI; 2819 } 2820 2821 // If BI was a loop latch, it may have had associated loop metadata. 2822 // We need to copy it to the new latch, that is, PBI. 2823 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2824 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2825 2826 // TODO: If BB is reachable from all paths through PredBlock, then we 2827 // could replace PBI's branch probabilities with BI's. 2828 2829 // Copy any debug value intrinsics into the end of PredBlock. 2830 for (Instruction &I : *BB) 2831 if (isa<DbgInfoIntrinsic>(I)) 2832 I.clone()->insertBefore(PBI); 2833 2834 return true; 2835 } 2836 return false; 2837 } 2838 2839 // If there is only one store in BB1 and BB2, return it, otherwise return 2840 // nullptr. 2841 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2842 StoreInst *S = nullptr; 2843 for (auto *BB : {BB1, BB2}) { 2844 if (!BB) 2845 continue; 2846 for (auto &I : *BB) 2847 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2848 if (S) 2849 // Multiple stores seen. 2850 return nullptr; 2851 else 2852 S = SI; 2853 } 2854 } 2855 return S; 2856 } 2857 2858 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2859 Value *AlternativeV = nullptr) { 2860 // PHI is going to be a PHI node that allows the value V that is defined in 2861 // BB to be referenced in BB's only successor. 2862 // 2863 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2864 // doesn't matter to us what the other operand is (it'll never get used). We 2865 // could just create a new PHI with an undef incoming value, but that could 2866 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2867 // other PHI. So here we directly look for some PHI in BB's successor with V 2868 // as an incoming operand. If we find one, we use it, else we create a new 2869 // one. 2870 // 2871 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2872 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2873 // where OtherBB is the single other predecessor of BB's only successor. 2874 PHINode *PHI = nullptr; 2875 BasicBlock *Succ = BB->getSingleSuccessor(); 2876 2877 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2878 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2879 PHI = cast<PHINode>(I); 2880 if (!AlternativeV) 2881 break; 2882 2883 assert(Succ->hasNPredecessors(2)); 2884 auto PredI = pred_begin(Succ); 2885 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2886 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2887 break; 2888 PHI = nullptr; 2889 } 2890 if (PHI) 2891 return PHI; 2892 2893 // If V is not an instruction defined in BB, just return it. 2894 if (!AlternativeV && 2895 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2896 return V; 2897 2898 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2899 PHI->addIncoming(V, BB); 2900 for (BasicBlock *PredBB : predecessors(Succ)) 2901 if (PredBB != BB) 2902 PHI->addIncoming( 2903 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2904 return PHI; 2905 } 2906 2907 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2908 BasicBlock *QTB, BasicBlock *QFB, 2909 BasicBlock *PostBB, Value *Address, 2910 bool InvertPCond, bool InvertQCond, 2911 const DataLayout &DL) { 2912 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2913 return Operator::getOpcode(&I) == Instruction::BitCast && 2914 I.getType()->isPointerTy(); 2915 }; 2916 2917 // If we're not in aggressive mode, we only optimize if we have some 2918 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2919 auto IsWorthwhile = [&](BasicBlock *BB) { 2920 if (!BB) 2921 return true; 2922 // Heuristic: if the block can be if-converted/phi-folded and the 2923 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2924 // thread this store. 2925 unsigned N = 0; 2926 for (auto &I : BB->instructionsWithoutDebug()) { 2927 // Cheap instructions viable for folding. 2928 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2929 isa<StoreInst>(I)) 2930 ++N; 2931 // Free instructions. 2932 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2933 continue; 2934 else 2935 return false; 2936 } 2937 // The store we want to merge is counted in N, so add 1 to make sure 2938 // we're counting the instructions that would be left. 2939 return N <= (PHINodeFoldingThreshold + 1); 2940 }; 2941 2942 if (!MergeCondStoresAggressively && 2943 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2944 !IsWorthwhile(QFB))) 2945 return false; 2946 2947 // For every pointer, there must be exactly two stores, one coming from 2948 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2949 // store (to any address) in PTB,PFB or QTB,QFB. 2950 // FIXME: We could relax this restriction with a bit more work and performance 2951 // testing. 2952 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2953 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2954 if (!PStore || !QStore) 2955 return false; 2956 2957 // Now check the stores are compatible. 2958 if (!QStore->isUnordered() || !PStore->isUnordered()) 2959 return false; 2960 2961 // Check that sinking the store won't cause program behavior changes. Sinking 2962 // the store out of the Q blocks won't change any behavior as we're sinking 2963 // from a block to its unconditional successor. But we're moving a store from 2964 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2965 // So we need to check that there are no aliasing loads or stores in 2966 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2967 // operations between PStore and the end of its parent block. 2968 // 2969 // The ideal way to do this is to query AliasAnalysis, but we don't 2970 // preserve AA currently so that is dangerous. Be super safe and just 2971 // check there are no other memory operations at all. 2972 for (auto &I : *QFB->getSinglePredecessor()) 2973 if (I.mayReadOrWriteMemory()) 2974 return false; 2975 for (auto &I : *QFB) 2976 if (&I != QStore && I.mayReadOrWriteMemory()) 2977 return false; 2978 if (QTB) 2979 for (auto &I : *QTB) 2980 if (&I != QStore && I.mayReadOrWriteMemory()) 2981 return false; 2982 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2983 I != E; ++I) 2984 if (&*I != PStore && I->mayReadOrWriteMemory()) 2985 return false; 2986 2987 // If PostBB has more than two predecessors, we need to split it so we can 2988 // sink the store. 2989 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2990 // We know that QFB's only successor is PostBB. And QFB has a single 2991 // predecessor. If QTB exists, then its only successor is also PostBB. 2992 // If QTB does not exist, then QFB's only predecessor has a conditional 2993 // branch to QFB and PostBB. 2994 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2995 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2996 "condstore.split"); 2997 if (!NewBB) 2998 return false; 2999 PostBB = NewBB; 3000 } 3001 3002 // OK, we're going to sink the stores to PostBB. The store has to be 3003 // conditional though, so first create the predicate. 3004 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3005 ->getCondition(); 3006 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3007 ->getCondition(); 3008 3009 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3010 PStore->getParent()); 3011 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3012 QStore->getParent(), PPHI); 3013 3014 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3015 3016 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3017 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3018 3019 if (InvertPCond) 3020 PPred = QB.CreateNot(PPred); 3021 if (InvertQCond) 3022 QPred = QB.CreateNot(QPred); 3023 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3024 3025 auto *T = 3026 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3027 QB.SetInsertPoint(T); 3028 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3029 AAMDNodes AAMD; 3030 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3031 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3032 SI->setAAMetadata(AAMD); 3033 unsigned PAlignment = PStore->getAlignment(); 3034 unsigned QAlignment = QStore->getAlignment(); 3035 unsigned TypeAlignment = 3036 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3037 unsigned MinAlignment; 3038 unsigned MaxAlignment; 3039 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3040 // Choose the minimum alignment. If we could prove both stores execute, we 3041 // could use biggest one. In this case, though, we only know that one of the 3042 // stores executes. And we don't know it's safe to take the alignment from a 3043 // store that doesn't execute. 3044 if (MinAlignment != 0) { 3045 // Choose the minimum of all non-zero alignments. 3046 SI->setAlignment(MinAlignment); 3047 } else if (MaxAlignment != 0) { 3048 // Choose the minimal alignment between the non-zero alignment and the ABI 3049 // default alignment for the type of the stored value. 3050 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3051 } else { 3052 // If both alignments are zero, use ABI default alignment for the type of 3053 // the stored value. 3054 SI->setAlignment(TypeAlignment); 3055 } 3056 3057 QStore->eraseFromParent(); 3058 PStore->eraseFromParent(); 3059 3060 return true; 3061 } 3062 3063 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3064 const DataLayout &DL) { 3065 // The intention here is to find diamonds or triangles (see below) where each 3066 // conditional block contains a store to the same address. Both of these 3067 // stores are conditional, so they can't be unconditionally sunk. But it may 3068 // be profitable to speculatively sink the stores into one merged store at the 3069 // end, and predicate the merged store on the union of the two conditions of 3070 // PBI and QBI. 3071 // 3072 // This can reduce the number of stores executed if both of the conditions are 3073 // true, and can allow the blocks to become small enough to be if-converted. 3074 // This optimization will also chain, so that ladders of test-and-set 3075 // sequences can be if-converted away. 3076 // 3077 // We only deal with simple diamonds or triangles: 3078 // 3079 // PBI or PBI or a combination of the two 3080 // / \ | \ 3081 // PTB PFB | PFB 3082 // \ / | / 3083 // QBI QBI 3084 // / \ | \ 3085 // QTB QFB | QFB 3086 // \ / | / 3087 // PostBB PostBB 3088 // 3089 // We model triangles as a type of diamond with a nullptr "true" block. 3090 // Triangles are canonicalized so that the fallthrough edge is represented by 3091 // a true condition, as in the diagram above. 3092 BasicBlock *PTB = PBI->getSuccessor(0); 3093 BasicBlock *PFB = PBI->getSuccessor(1); 3094 BasicBlock *QTB = QBI->getSuccessor(0); 3095 BasicBlock *QFB = QBI->getSuccessor(1); 3096 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3097 3098 // Make sure we have a good guess for PostBB. If QTB's only successor is 3099 // QFB, then QFB is a better PostBB. 3100 if (QTB->getSingleSuccessor() == QFB) 3101 PostBB = QFB; 3102 3103 // If we couldn't find a good PostBB, stop. 3104 if (!PostBB) 3105 return false; 3106 3107 bool InvertPCond = false, InvertQCond = false; 3108 // Canonicalize fallthroughs to the true branches. 3109 if (PFB == QBI->getParent()) { 3110 std::swap(PFB, PTB); 3111 InvertPCond = true; 3112 } 3113 if (QFB == PostBB) { 3114 std::swap(QFB, QTB); 3115 InvertQCond = true; 3116 } 3117 3118 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3119 // and QFB may not. Model fallthroughs as a nullptr block. 3120 if (PTB == QBI->getParent()) 3121 PTB = nullptr; 3122 if (QTB == PostBB) 3123 QTB = nullptr; 3124 3125 // Legality bailouts. We must have at least the non-fallthrough blocks and 3126 // the post-dominating block, and the non-fallthroughs must only have one 3127 // predecessor. 3128 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3129 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3130 }; 3131 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3132 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3133 return false; 3134 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3135 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3136 return false; 3137 if (!QBI->getParent()->hasNUses(2)) 3138 return false; 3139 3140 // OK, this is a sequence of two diamonds or triangles. 3141 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3142 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3143 for (auto *BB : {PTB, PFB}) { 3144 if (!BB) 3145 continue; 3146 for (auto &I : *BB) 3147 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3148 PStoreAddresses.insert(SI->getPointerOperand()); 3149 } 3150 for (auto *BB : {QTB, QFB}) { 3151 if (!BB) 3152 continue; 3153 for (auto &I : *BB) 3154 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3155 QStoreAddresses.insert(SI->getPointerOperand()); 3156 } 3157 3158 set_intersect(PStoreAddresses, QStoreAddresses); 3159 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3160 // clear what it contains. 3161 auto &CommonAddresses = PStoreAddresses; 3162 3163 bool Changed = false; 3164 for (auto *Address : CommonAddresses) 3165 Changed |= mergeConditionalStoreToAddress( 3166 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3167 return Changed; 3168 } 3169 3170 /// If we have a conditional branch as a predecessor of another block, 3171 /// this function tries to simplify it. We know 3172 /// that PBI and BI are both conditional branches, and BI is in one of the 3173 /// successor blocks of PBI - PBI branches to BI. 3174 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3175 const DataLayout &DL) { 3176 assert(PBI->isConditional() && BI->isConditional()); 3177 BasicBlock *BB = BI->getParent(); 3178 3179 // If this block ends with a branch instruction, and if there is a 3180 // predecessor that ends on a branch of the same condition, make 3181 // this conditional branch redundant. 3182 if (PBI->getCondition() == BI->getCondition() && 3183 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3184 // Okay, the outcome of this conditional branch is statically 3185 // knowable. If this block had a single pred, handle specially. 3186 if (BB->getSinglePredecessor()) { 3187 // Turn this into a branch on constant. 3188 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3189 BI->setCondition( 3190 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3191 return true; // Nuke the branch on constant. 3192 } 3193 3194 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3195 // in the constant and simplify the block result. Subsequent passes of 3196 // simplifycfg will thread the block. 3197 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3198 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3199 PHINode *NewPN = PHINode::Create( 3200 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3201 BI->getCondition()->getName() + ".pr", &BB->front()); 3202 // Okay, we're going to insert the PHI node. Since PBI is not the only 3203 // predecessor, compute the PHI'd conditional value for all of the preds. 3204 // Any predecessor where the condition is not computable we keep symbolic. 3205 for (pred_iterator PI = PB; PI != PE; ++PI) { 3206 BasicBlock *P = *PI; 3207 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3208 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3209 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3210 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3211 NewPN->addIncoming( 3212 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3213 P); 3214 } else { 3215 NewPN->addIncoming(BI->getCondition(), P); 3216 } 3217 } 3218 3219 BI->setCondition(NewPN); 3220 return true; 3221 } 3222 } 3223 3224 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3225 if (CE->canTrap()) 3226 return false; 3227 3228 // If both branches are conditional and both contain stores to the same 3229 // address, remove the stores from the conditionals and create a conditional 3230 // merged store at the end. 3231 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3232 return true; 3233 3234 // If this is a conditional branch in an empty block, and if any 3235 // predecessors are a conditional branch to one of our destinations, 3236 // fold the conditions into logical ops and one cond br. 3237 3238 // Ignore dbg intrinsics. 3239 if (&*BB->instructionsWithoutDebug().begin() != BI) 3240 return false; 3241 3242 int PBIOp, BIOp; 3243 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3244 PBIOp = 0; 3245 BIOp = 0; 3246 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3247 PBIOp = 0; 3248 BIOp = 1; 3249 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3250 PBIOp = 1; 3251 BIOp = 0; 3252 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3253 PBIOp = 1; 3254 BIOp = 1; 3255 } else { 3256 return false; 3257 } 3258 3259 // Check to make sure that the other destination of this branch 3260 // isn't BB itself. If so, this is an infinite loop that will 3261 // keep getting unwound. 3262 if (PBI->getSuccessor(PBIOp) == BB) 3263 return false; 3264 3265 // Do not perform this transformation if it would require 3266 // insertion of a large number of select instructions. For targets 3267 // without predication/cmovs, this is a big pessimization. 3268 3269 // Also do not perform this transformation if any phi node in the common 3270 // destination block can trap when reached by BB or PBB (PR17073). In that 3271 // case, it would be unsafe to hoist the operation into a select instruction. 3272 3273 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3274 unsigned NumPhis = 0; 3275 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3276 ++II, ++NumPhis) { 3277 if (NumPhis > 2) // Disable this xform. 3278 return false; 3279 3280 PHINode *PN = cast<PHINode>(II); 3281 Value *BIV = PN->getIncomingValueForBlock(BB); 3282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3283 if (CE->canTrap()) 3284 return false; 3285 3286 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3287 Value *PBIV = PN->getIncomingValue(PBBIdx); 3288 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3289 if (CE->canTrap()) 3290 return false; 3291 } 3292 3293 // Finally, if everything is ok, fold the branches to logical ops. 3294 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3295 3296 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3297 << "AND: " << *BI->getParent()); 3298 3299 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3300 // branch in it, where one edge (OtherDest) goes back to itself but the other 3301 // exits. We don't *know* that the program avoids the infinite loop 3302 // (even though that seems likely). If we do this xform naively, we'll end up 3303 // recursively unpeeling the loop. Since we know that (after the xform is 3304 // done) that the block *is* infinite if reached, we just make it an obviously 3305 // infinite loop with no cond branch. 3306 if (OtherDest == BB) { 3307 // Insert it at the end of the function, because it's either code, 3308 // or it won't matter if it's hot. :) 3309 BasicBlock *InfLoopBlock = 3310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3312 OtherDest = InfLoopBlock; 3313 } 3314 3315 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3316 3317 // BI may have other predecessors. Because of this, we leave 3318 // it alone, but modify PBI. 3319 3320 // Make sure we get to CommonDest on True&True directions. 3321 Value *PBICond = PBI->getCondition(); 3322 IRBuilder<NoFolder> Builder(PBI); 3323 if (PBIOp) 3324 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3325 3326 Value *BICond = BI->getCondition(); 3327 if (BIOp) 3328 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3329 3330 // Merge the conditions. 3331 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3332 3333 // Modify PBI to branch on the new condition to the new dests. 3334 PBI->setCondition(Cond); 3335 PBI->setSuccessor(0, CommonDest); 3336 PBI->setSuccessor(1, OtherDest); 3337 3338 // Update branch weight for PBI. 3339 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3340 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3341 bool HasWeights = 3342 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3343 SuccTrueWeight, SuccFalseWeight); 3344 if (HasWeights) { 3345 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3346 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3347 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3348 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3349 // The weight to CommonDest should be PredCommon * SuccTotal + 3350 // PredOther * SuccCommon. 3351 // The weight to OtherDest should be PredOther * SuccOther. 3352 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3353 PredOther * SuccCommon, 3354 PredOther * SuccOther}; 3355 // Halve the weights if any of them cannot fit in an uint32_t 3356 FitWeights(NewWeights); 3357 3358 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3359 } 3360 3361 // OtherDest may have phi nodes. If so, add an entry from PBI's 3362 // block that are identical to the entries for BI's block. 3363 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3364 3365 // We know that the CommonDest already had an edge from PBI to 3366 // it. If it has PHIs though, the PHIs may have different 3367 // entries for BB and PBI's BB. If so, insert a select to make 3368 // them agree. 3369 for (PHINode &PN : CommonDest->phis()) { 3370 Value *BIV = PN.getIncomingValueForBlock(BB); 3371 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3372 Value *PBIV = PN.getIncomingValue(PBBIdx); 3373 if (BIV != PBIV) { 3374 // Insert a select in PBI to pick the right value. 3375 SelectInst *NV = cast<SelectInst>( 3376 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3377 PN.setIncomingValue(PBBIdx, NV); 3378 // Although the select has the same condition as PBI, the original branch 3379 // weights for PBI do not apply to the new select because the select's 3380 // 'logical' edges are incoming edges of the phi that is eliminated, not 3381 // the outgoing edges of PBI. 3382 if (HasWeights) { 3383 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3384 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3385 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3386 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3387 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3388 // The weight to PredOtherDest should be PredOther * SuccCommon. 3389 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3390 PredOther * SuccCommon}; 3391 3392 FitWeights(NewWeights); 3393 3394 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3395 } 3396 } 3397 } 3398 3399 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3400 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3401 3402 // This basic block is probably dead. We know it has at least 3403 // one fewer predecessor. 3404 return true; 3405 } 3406 3407 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3408 // true or to FalseBB if Cond is false. 3409 // Takes care of updating the successors and removing the old terminator. 3410 // Also makes sure not to introduce new successors by assuming that edges to 3411 // non-successor TrueBBs and FalseBBs aren't reachable. 3412 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3413 BasicBlock *TrueBB, BasicBlock *FalseBB, 3414 uint32_t TrueWeight, 3415 uint32_t FalseWeight) { 3416 // Remove any superfluous successor edges from the CFG. 3417 // First, figure out which successors to preserve. 3418 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3419 // successor. 3420 BasicBlock *KeepEdge1 = TrueBB; 3421 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3422 3423 // Then remove the rest. 3424 for (BasicBlock *Succ : successors(OldTerm)) { 3425 // Make sure only to keep exactly one copy of each edge. 3426 if (Succ == KeepEdge1) 3427 KeepEdge1 = nullptr; 3428 else if (Succ == KeepEdge2) 3429 KeepEdge2 = nullptr; 3430 else 3431 Succ->removePredecessor(OldTerm->getParent(), 3432 /*DontDeleteUselessPHIs=*/true); 3433 } 3434 3435 IRBuilder<> Builder(OldTerm); 3436 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3437 3438 // Insert an appropriate new terminator. 3439 if (!KeepEdge1 && !KeepEdge2) { 3440 if (TrueBB == FalseBB) 3441 // We were only looking for one successor, and it was present. 3442 // Create an unconditional branch to it. 3443 Builder.CreateBr(TrueBB); 3444 else { 3445 // We found both of the successors we were looking for. 3446 // Create a conditional branch sharing the condition of the select. 3447 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3448 if (TrueWeight != FalseWeight) 3449 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3450 } 3451 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3452 // Neither of the selected blocks were successors, so this 3453 // terminator must be unreachable. 3454 new UnreachableInst(OldTerm->getContext(), OldTerm); 3455 } else { 3456 // One of the selected values was a successor, but the other wasn't. 3457 // Insert an unconditional branch to the one that was found; 3458 // the edge to the one that wasn't must be unreachable. 3459 if (!KeepEdge1) 3460 // Only TrueBB was found. 3461 Builder.CreateBr(TrueBB); 3462 else 3463 // Only FalseBB was found. 3464 Builder.CreateBr(FalseBB); 3465 } 3466 3467 EraseTerminatorAndDCECond(OldTerm); 3468 return true; 3469 } 3470 3471 // Replaces 3472 // (switch (select cond, X, Y)) on constant X, Y 3473 // with a branch - conditional if X and Y lead to distinct BBs, 3474 // unconditional otherwise. 3475 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3476 // Check for constant integer values in the select. 3477 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3478 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3479 if (!TrueVal || !FalseVal) 3480 return false; 3481 3482 // Find the relevant condition and destinations. 3483 Value *Condition = Select->getCondition(); 3484 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3485 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3486 3487 // Get weight for TrueBB and FalseBB. 3488 uint32_t TrueWeight = 0, FalseWeight = 0; 3489 SmallVector<uint64_t, 8> Weights; 3490 bool HasWeights = HasBranchWeights(SI); 3491 if (HasWeights) { 3492 GetBranchWeights(SI, Weights); 3493 if (Weights.size() == 1 + SI->getNumCases()) { 3494 TrueWeight = 3495 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3496 FalseWeight = 3497 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3498 } 3499 } 3500 3501 // Perform the actual simplification. 3502 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3503 FalseWeight); 3504 } 3505 3506 // Replaces 3507 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3508 // blockaddress(@fn, BlockB))) 3509 // with 3510 // (br cond, BlockA, BlockB). 3511 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3512 // Check that both operands of the select are block addresses. 3513 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3514 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3515 if (!TBA || !FBA) 3516 return false; 3517 3518 // Extract the actual blocks. 3519 BasicBlock *TrueBB = TBA->getBasicBlock(); 3520 BasicBlock *FalseBB = FBA->getBasicBlock(); 3521 3522 // Perform the actual simplification. 3523 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3524 0); 3525 } 3526 3527 /// This is called when we find an icmp instruction 3528 /// (a seteq/setne with a constant) as the only instruction in a 3529 /// block that ends with an uncond branch. We are looking for a very specific 3530 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3531 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3532 /// default value goes to an uncond block with a seteq in it, we get something 3533 /// like: 3534 /// 3535 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3536 /// DEFAULT: 3537 /// %tmp = icmp eq i8 %A, 92 3538 /// br label %end 3539 /// end: 3540 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3541 /// 3542 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3543 /// the PHI, merging the third icmp into the switch. 3544 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3545 ICmpInst *ICI, IRBuilder<> &Builder) { 3546 BasicBlock *BB = ICI->getParent(); 3547 3548 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3549 // complex. 3550 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3551 return false; 3552 3553 Value *V = ICI->getOperand(0); 3554 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3555 3556 // The pattern we're looking for is where our only predecessor is a switch on 3557 // 'V' and this block is the default case for the switch. In this case we can 3558 // fold the compared value into the switch to simplify things. 3559 BasicBlock *Pred = BB->getSinglePredecessor(); 3560 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3561 return false; 3562 3563 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3564 if (SI->getCondition() != V) 3565 return false; 3566 3567 // If BB is reachable on a non-default case, then we simply know the value of 3568 // V in this block. Substitute it and constant fold the icmp instruction 3569 // away. 3570 if (SI->getDefaultDest() != BB) { 3571 ConstantInt *VVal = SI->findCaseDest(BB); 3572 assert(VVal && "Should have a unique destination value"); 3573 ICI->setOperand(0, VVal); 3574 3575 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3576 ICI->replaceAllUsesWith(V); 3577 ICI->eraseFromParent(); 3578 } 3579 // BB is now empty, so it is likely to simplify away. 3580 return requestResimplify(); 3581 } 3582 3583 // Ok, the block is reachable from the default dest. If the constant we're 3584 // comparing exists in one of the other edges, then we can constant fold ICI 3585 // and zap it. 3586 if (SI->findCaseValue(Cst) != SI->case_default()) { 3587 Value *V; 3588 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3589 V = ConstantInt::getFalse(BB->getContext()); 3590 else 3591 V = ConstantInt::getTrue(BB->getContext()); 3592 3593 ICI->replaceAllUsesWith(V); 3594 ICI->eraseFromParent(); 3595 // BB is now empty, so it is likely to simplify away. 3596 return requestResimplify(); 3597 } 3598 3599 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3600 // the block. 3601 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3602 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3603 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3604 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3605 return false; 3606 3607 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3608 // true in the PHI. 3609 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3610 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3611 3612 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3613 std::swap(DefaultCst, NewCst); 3614 3615 // Replace ICI (which is used by the PHI for the default value) with true or 3616 // false depending on if it is EQ or NE. 3617 ICI->replaceAllUsesWith(DefaultCst); 3618 ICI->eraseFromParent(); 3619 3620 // Okay, the switch goes to this block on a default value. Add an edge from 3621 // the switch to the merge point on the compared value. 3622 BasicBlock *NewBB = 3623 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3624 SmallVector<uint64_t, 8> Weights; 3625 bool HasWeights = HasBranchWeights(SI); 3626 if (HasWeights) { 3627 GetBranchWeights(SI, Weights); 3628 if (Weights.size() == 1 + SI->getNumCases()) { 3629 // Split weight for default case to case for "Cst". 3630 Weights[0] = (Weights[0] + 1) >> 1; 3631 Weights.push_back(Weights[0]); 3632 3633 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3634 setBranchWeights(SI, MDWeights); 3635 } 3636 } 3637 SI->addCase(Cst, NewBB); 3638 3639 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3640 Builder.SetInsertPoint(NewBB); 3641 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3642 Builder.CreateBr(SuccBlock); 3643 PHIUse->addIncoming(NewCst, NewBB); 3644 return true; 3645 } 3646 3647 /// The specified branch is a conditional branch. 3648 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3649 /// fold it into a switch instruction if so. 3650 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3651 const DataLayout &DL) { 3652 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3653 if (!Cond) 3654 return false; 3655 3656 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3657 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3658 // 'setne's and'ed together, collect them. 3659 3660 // Try to gather values from a chain of and/or to be turned into a switch 3661 ConstantComparesGatherer ConstantCompare(Cond, DL); 3662 // Unpack the result 3663 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3664 Value *CompVal = ConstantCompare.CompValue; 3665 unsigned UsedICmps = ConstantCompare.UsedICmps; 3666 Value *ExtraCase = ConstantCompare.Extra; 3667 3668 // If we didn't have a multiply compared value, fail. 3669 if (!CompVal) 3670 return false; 3671 3672 // Avoid turning single icmps into a switch. 3673 if (UsedICmps <= 1) 3674 return false; 3675 3676 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3677 3678 // There might be duplicate constants in the list, which the switch 3679 // instruction can't handle, remove them now. 3680 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3681 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3682 3683 // If Extra was used, we require at least two switch values to do the 3684 // transformation. A switch with one value is just a conditional branch. 3685 if (ExtraCase && Values.size() < 2) 3686 return false; 3687 3688 // TODO: Preserve branch weight metadata, similarly to how 3689 // FoldValueComparisonIntoPredecessors preserves it. 3690 3691 // Figure out which block is which destination. 3692 BasicBlock *DefaultBB = BI->getSuccessor(1); 3693 BasicBlock *EdgeBB = BI->getSuccessor(0); 3694 if (!TrueWhenEqual) 3695 std::swap(DefaultBB, EdgeBB); 3696 3697 BasicBlock *BB = BI->getParent(); 3698 3699 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3700 << " cases into SWITCH. BB is:\n" 3701 << *BB); 3702 3703 // If there are any extra values that couldn't be folded into the switch 3704 // then we evaluate them with an explicit branch first. Split the block 3705 // right before the condbr to handle it. 3706 if (ExtraCase) { 3707 BasicBlock *NewBB = 3708 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3709 // Remove the uncond branch added to the old block. 3710 Instruction *OldTI = BB->getTerminator(); 3711 Builder.SetInsertPoint(OldTI); 3712 3713 if (TrueWhenEqual) 3714 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3715 else 3716 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3717 3718 OldTI->eraseFromParent(); 3719 3720 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3721 // for the edge we just added. 3722 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3723 3724 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3725 << "\nEXTRABB = " << *BB); 3726 BB = NewBB; 3727 } 3728 3729 Builder.SetInsertPoint(BI); 3730 // Convert pointer to int before we switch. 3731 if (CompVal->getType()->isPointerTy()) { 3732 CompVal = Builder.CreatePtrToInt( 3733 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3734 } 3735 3736 // Create the new switch instruction now. 3737 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3738 3739 // Add all of the 'cases' to the switch instruction. 3740 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3741 New->addCase(Values[i], EdgeBB); 3742 3743 // We added edges from PI to the EdgeBB. As such, if there were any 3744 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3745 // the number of edges added. 3746 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3747 PHINode *PN = cast<PHINode>(BBI); 3748 Value *InVal = PN->getIncomingValueForBlock(BB); 3749 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3750 PN->addIncoming(InVal, BB); 3751 } 3752 3753 // Erase the old branch instruction. 3754 EraseTerminatorAndDCECond(BI); 3755 3756 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3757 return true; 3758 } 3759 3760 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3761 if (isa<PHINode>(RI->getValue())) 3762 return SimplifyCommonResume(RI); 3763 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3764 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3765 // The resume must unwind the exception that caused control to branch here. 3766 return SimplifySingleResume(RI); 3767 3768 return false; 3769 } 3770 3771 // Simplify resume that is shared by several landing pads (phi of landing pad). 3772 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3773 BasicBlock *BB = RI->getParent(); 3774 3775 // Check that there are no other instructions except for debug intrinsics 3776 // between the phi of landing pads (RI->getValue()) and resume instruction. 3777 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3778 E = RI->getIterator(); 3779 while (++I != E) 3780 if (!isa<DbgInfoIntrinsic>(I)) 3781 return false; 3782 3783 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3784 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3785 3786 // Check incoming blocks to see if any of them are trivial. 3787 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3788 Idx++) { 3789 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3790 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3791 3792 // If the block has other successors, we can not delete it because 3793 // it has other dependents. 3794 if (IncomingBB->getUniqueSuccessor() != BB) 3795 continue; 3796 3797 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3798 // Not the landing pad that caused the control to branch here. 3799 if (IncomingValue != LandingPad) 3800 continue; 3801 3802 bool isTrivial = true; 3803 3804 I = IncomingBB->getFirstNonPHI()->getIterator(); 3805 E = IncomingBB->getTerminator()->getIterator(); 3806 while (++I != E) 3807 if (!isa<DbgInfoIntrinsic>(I)) { 3808 isTrivial = false; 3809 break; 3810 } 3811 3812 if (isTrivial) 3813 TrivialUnwindBlocks.insert(IncomingBB); 3814 } 3815 3816 // If no trivial unwind blocks, don't do any simplifications. 3817 if (TrivialUnwindBlocks.empty()) 3818 return false; 3819 3820 // Turn all invokes that unwind here into calls. 3821 for (auto *TrivialBB : TrivialUnwindBlocks) { 3822 // Blocks that will be simplified should be removed from the phi node. 3823 // Note there could be multiple edges to the resume block, and we need 3824 // to remove them all. 3825 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3826 BB->removePredecessor(TrivialBB, true); 3827 3828 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3829 PI != PE;) { 3830 BasicBlock *Pred = *PI++; 3831 removeUnwindEdge(Pred); 3832 } 3833 3834 // In each SimplifyCFG run, only the current processed block can be erased. 3835 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3836 // of erasing TrivialBB, we only remove the branch to the common resume 3837 // block so that we can later erase the resume block since it has no 3838 // predecessors. 3839 TrivialBB->getTerminator()->eraseFromParent(); 3840 new UnreachableInst(RI->getContext(), TrivialBB); 3841 } 3842 3843 // Delete the resume block if all its predecessors have been removed. 3844 if (pred_empty(BB)) 3845 BB->eraseFromParent(); 3846 3847 return !TrivialUnwindBlocks.empty(); 3848 } 3849 3850 // Simplify resume that is only used by a single (non-phi) landing pad. 3851 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3852 BasicBlock *BB = RI->getParent(); 3853 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3854 assert(RI->getValue() == LPInst && 3855 "Resume must unwind the exception that caused control to here"); 3856 3857 // Check that there are no other instructions except for debug intrinsics. 3858 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3859 while (++I != E) 3860 if (!isa<DbgInfoIntrinsic>(I)) 3861 return false; 3862 3863 // Turn all invokes that unwind here into calls and delete the basic block. 3864 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3865 BasicBlock *Pred = *PI++; 3866 removeUnwindEdge(Pred); 3867 } 3868 3869 // The landingpad is now unreachable. Zap it. 3870 if (LoopHeaders) 3871 LoopHeaders->erase(BB); 3872 BB->eraseFromParent(); 3873 return true; 3874 } 3875 3876 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3877 // If this is a trivial cleanup pad that executes no instructions, it can be 3878 // eliminated. If the cleanup pad continues to the caller, any predecessor 3879 // that is an EH pad will be updated to continue to the caller and any 3880 // predecessor that terminates with an invoke instruction will have its invoke 3881 // instruction converted to a call instruction. If the cleanup pad being 3882 // simplified does not continue to the caller, each predecessor will be 3883 // updated to continue to the unwind destination of the cleanup pad being 3884 // simplified. 3885 BasicBlock *BB = RI->getParent(); 3886 CleanupPadInst *CPInst = RI->getCleanupPad(); 3887 if (CPInst->getParent() != BB) 3888 // This isn't an empty cleanup. 3889 return false; 3890 3891 // We cannot kill the pad if it has multiple uses. This typically arises 3892 // from unreachable basic blocks. 3893 if (!CPInst->hasOneUse()) 3894 return false; 3895 3896 // Check that there are no other instructions except for benign intrinsics. 3897 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3898 while (++I != E) { 3899 auto *II = dyn_cast<IntrinsicInst>(I); 3900 if (!II) 3901 return false; 3902 3903 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3904 switch (IntrinsicID) { 3905 case Intrinsic::dbg_declare: 3906 case Intrinsic::dbg_value: 3907 case Intrinsic::dbg_label: 3908 case Intrinsic::lifetime_end: 3909 break; 3910 default: 3911 return false; 3912 } 3913 } 3914 3915 // If the cleanup return we are simplifying unwinds to the caller, this will 3916 // set UnwindDest to nullptr. 3917 BasicBlock *UnwindDest = RI->getUnwindDest(); 3918 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3919 3920 // We're about to remove BB from the control flow. Before we do, sink any 3921 // PHINodes into the unwind destination. Doing this before changing the 3922 // control flow avoids some potentially slow checks, since we can currently 3923 // be certain that UnwindDest and BB have no common predecessors (since they 3924 // are both EH pads). 3925 if (UnwindDest) { 3926 // First, go through the PHI nodes in UnwindDest and update any nodes that 3927 // reference the block we are removing 3928 for (BasicBlock::iterator I = UnwindDest->begin(), 3929 IE = DestEHPad->getIterator(); 3930 I != IE; ++I) { 3931 PHINode *DestPN = cast<PHINode>(I); 3932 3933 int Idx = DestPN->getBasicBlockIndex(BB); 3934 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3935 assert(Idx != -1); 3936 // This PHI node has an incoming value that corresponds to a control 3937 // path through the cleanup pad we are removing. If the incoming 3938 // value is in the cleanup pad, it must be a PHINode (because we 3939 // verified above that the block is otherwise empty). Otherwise, the 3940 // value is either a constant or a value that dominates the cleanup 3941 // pad being removed. 3942 // 3943 // Because BB and UnwindDest are both EH pads, all of their 3944 // predecessors must unwind to these blocks, and since no instruction 3945 // can have multiple unwind destinations, there will be no overlap in 3946 // incoming blocks between SrcPN and DestPN. 3947 Value *SrcVal = DestPN->getIncomingValue(Idx); 3948 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3949 3950 // Remove the entry for the block we are deleting. 3951 DestPN->removeIncomingValue(Idx, false); 3952 3953 if (SrcPN && SrcPN->getParent() == BB) { 3954 // If the incoming value was a PHI node in the cleanup pad we are 3955 // removing, we need to merge that PHI node's incoming values into 3956 // DestPN. 3957 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3958 SrcIdx != SrcE; ++SrcIdx) { 3959 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3960 SrcPN->getIncomingBlock(SrcIdx)); 3961 } 3962 } else { 3963 // Otherwise, the incoming value came from above BB and 3964 // so we can just reuse it. We must associate all of BB's 3965 // predecessors with this value. 3966 for (auto *pred : predecessors(BB)) { 3967 DestPN->addIncoming(SrcVal, pred); 3968 } 3969 } 3970 } 3971 3972 // Sink any remaining PHI nodes directly into UnwindDest. 3973 Instruction *InsertPt = DestEHPad; 3974 for (BasicBlock::iterator I = BB->begin(), 3975 IE = BB->getFirstNonPHI()->getIterator(); 3976 I != IE;) { 3977 // The iterator must be incremented here because the instructions are 3978 // being moved to another block. 3979 PHINode *PN = cast<PHINode>(I++); 3980 if (PN->use_empty()) 3981 // If the PHI node has no uses, just leave it. It will be erased 3982 // when we erase BB below. 3983 continue; 3984 3985 // Otherwise, sink this PHI node into UnwindDest. 3986 // Any predecessors to UnwindDest which are not already represented 3987 // must be back edges which inherit the value from the path through 3988 // BB. In this case, the PHI value must reference itself. 3989 for (auto *pred : predecessors(UnwindDest)) 3990 if (pred != BB) 3991 PN->addIncoming(PN, pred); 3992 PN->moveBefore(InsertPt); 3993 } 3994 } 3995 3996 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3997 // The iterator must be updated here because we are removing this pred. 3998 BasicBlock *PredBB = *PI++; 3999 if (UnwindDest == nullptr) { 4000 removeUnwindEdge(PredBB); 4001 } else { 4002 Instruction *TI = PredBB->getTerminator(); 4003 TI->replaceUsesOfWith(BB, UnwindDest); 4004 } 4005 } 4006 4007 // The cleanup pad is now unreachable. Zap it. 4008 BB->eraseFromParent(); 4009 return true; 4010 } 4011 4012 // Try to merge two cleanuppads together. 4013 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4014 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4015 // with. 4016 BasicBlock *UnwindDest = RI->getUnwindDest(); 4017 if (!UnwindDest) 4018 return false; 4019 4020 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4021 // be safe to merge without code duplication. 4022 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4023 return false; 4024 4025 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4026 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4027 if (!SuccessorCleanupPad) 4028 return false; 4029 4030 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4031 // Replace any uses of the successor cleanupad with the predecessor pad 4032 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4033 // funclet bundle operands. 4034 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4035 // Remove the old cleanuppad. 4036 SuccessorCleanupPad->eraseFromParent(); 4037 // Now, we simply replace the cleanupret with a branch to the unwind 4038 // destination. 4039 BranchInst::Create(UnwindDest, RI->getParent()); 4040 RI->eraseFromParent(); 4041 4042 return true; 4043 } 4044 4045 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4046 // It is possible to transiantly have an undef cleanuppad operand because we 4047 // have deleted some, but not all, dead blocks. 4048 // Eventually, this block will be deleted. 4049 if (isa<UndefValue>(RI->getOperand(0))) 4050 return false; 4051 4052 if (mergeCleanupPad(RI)) 4053 return true; 4054 4055 if (removeEmptyCleanup(RI)) 4056 return true; 4057 4058 return false; 4059 } 4060 4061 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4062 BasicBlock *BB = RI->getParent(); 4063 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4064 return false; 4065 4066 // Find predecessors that end with branches. 4067 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4068 SmallVector<BranchInst *, 8> CondBranchPreds; 4069 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4070 BasicBlock *P = *PI; 4071 Instruction *PTI = P->getTerminator(); 4072 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4073 if (BI->isUnconditional()) 4074 UncondBranchPreds.push_back(P); 4075 else 4076 CondBranchPreds.push_back(BI); 4077 } 4078 } 4079 4080 // If we found some, do the transformation! 4081 if (!UncondBranchPreds.empty() && DupRet) { 4082 while (!UncondBranchPreds.empty()) { 4083 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4084 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4085 << "INTO UNCOND BRANCH PRED: " << *Pred); 4086 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4087 } 4088 4089 // If we eliminated all predecessors of the block, delete the block now. 4090 if (pred_empty(BB)) { 4091 // We know there are no successors, so just nuke the block. 4092 if (LoopHeaders) 4093 LoopHeaders->erase(BB); 4094 BB->eraseFromParent(); 4095 } 4096 4097 return true; 4098 } 4099 4100 // Check out all of the conditional branches going to this return 4101 // instruction. If any of them just select between returns, change the 4102 // branch itself into a select/return pair. 4103 while (!CondBranchPreds.empty()) { 4104 BranchInst *BI = CondBranchPreds.pop_back_val(); 4105 4106 // Check to see if the non-BB successor is also a return block. 4107 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4108 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4109 SimplifyCondBranchToTwoReturns(BI, Builder)) 4110 return true; 4111 } 4112 return false; 4113 } 4114 4115 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4116 BasicBlock *BB = UI->getParent(); 4117 4118 bool Changed = false; 4119 4120 // If there are any instructions immediately before the unreachable that can 4121 // be removed, do so. 4122 while (UI->getIterator() != BB->begin()) { 4123 BasicBlock::iterator BBI = UI->getIterator(); 4124 --BBI; 4125 // Do not delete instructions that can have side effects which might cause 4126 // the unreachable to not be reachable; specifically, calls and volatile 4127 // operations may have this effect. 4128 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4129 break; 4130 4131 if (BBI->mayHaveSideEffects()) { 4132 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4133 if (SI->isVolatile()) 4134 break; 4135 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4136 if (LI->isVolatile()) 4137 break; 4138 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4139 if (RMWI->isVolatile()) 4140 break; 4141 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4142 if (CXI->isVolatile()) 4143 break; 4144 } else if (isa<CatchPadInst>(BBI)) { 4145 // A catchpad may invoke exception object constructors and such, which 4146 // in some languages can be arbitrary code, so be conservative by 4147 // default. 4148 // For CoreCLR, it just involves a type test, so can be removed. 4149 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4150 EHPersonality::CoreCLR) 4151 break; 4152 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4153 !isa<LandingPadInst>(BBI)) { 4154 break; 4155 } 4156 // Note that deleting LandingPad's here is in fact okay, although it 4157 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4158 // all the predecessors of this block will be the unwind edges of Invokes, 4159 // and we can therefore guarantee this block will be erased. 4160 } 4161 4162 // Delete this instruction (any uses are guaranteed to be dead) 4163 if (!BBI->use_empty()) 4164 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4165 BBI->eraseFromParent(); 4166 Changed = true; 4167 } 4168 4169 // If the unreachable instruction is the first in the block, take a gander 4170 // at all of the predecessors of this instruction, and simplify them. 4171 if (&BB->front() != UI) 4172 return Changed; 4173 4174 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4175 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4176 Instruction *TI = Preds[i]->getTerminator(); 4177 IRBuilder<> Builder(TI); 4178 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4179 if (BI->isUnconditional()) { 4180 if (BI->getSuccessor(0) == BB) { 4181 new UnreachableInst(TI->getContext(), TI); 4182 TI->eraseFromParent(); 4183 Changed = true; 4184 } 4185 } else { 4186 if (BI->getSuccessor(0) == BB) { 4187 Builder.CreateBr(BI->getSuccessor(1)); 4188 EraseTerminatorAndDCECond(BI); 4189 } else if (BI->getSuccessor(1) == BB) { 4190 Builder.CreateBr(BI->getSuccessor(0)); 4191 EraseTerminatorAndDCECond(BI); 4192 Changed = true; 4193 } 4194 } 4195 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4196 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4197 if (i->getCaseSuccessor() != BB) { 4198 ++i; 4199 continue; 4200 } 4201 BB->removePredecessor(SI->getParent()); 4202 i = SI->removeCase(i); 4203 e = SI->case_end(); 4204 Changed = true; 4205 } 4206 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4207 if (II->getUnwindDest() == BB) { 4208 removeUnwindEdge(TI->getParent()); 4209 Changed = true; 4210 } 4211 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4212 if (CSI->getUnwindDest() == BB) { 4213 removeUnwindEdge(TI->getParent()); 4214 Changed = true; 4215 continue; 4216 } 4217 4218 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4219 E = CSI->handler_end(); 4220 I != E; ++I) { 4221 if (*I == BB) { 4222 CSI->removeHandler(I); 4223 --I; 4224 --E; 4225 Changed = true; 4226 } 4227 } 4228 if (CSI->getNumHandlers() == 0) { 4229 BasicBlock *CatchSwitchBB = CSI->getParent(); 4230 if (CSI->hasUnwindDest()) { 4231 // Redirect preds to the unwind dest 4232 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4233 } else { 4234 // Rewrite all preds to unwind to caller (or from invoke to call). 4235 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4236 for (BasicBlock *EHPred : EHPreds) 4237 removeUnwindEdge(EHPred); 4238 } 4239 // The catchswitch is no longer reachable. 4240 new UnreachableInst(CSI->getContext(), CSI); 4241 CSI->eraseFromParent(); 4242 Changed = true; 4243 } 4244 } else if (isa<CleanupReturnInst>(TI)) { 4245 new UnreachableInst(TI->getContext(), TI); 4246 TI->eraseFromParent(); 4247 Changed = true; 4248 } 4249 } 4250 4251 // If this block is now dead, remove it. 4252 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4253 // We know there are no successors, so just nuke the block. 4254 if (LoopHeaders) 4255 LoopHeaders->erase(BB); 4256 BB->eraseFromParent(); 4257 return true; 4258 } 4259 4260 return Changed; 4261 } 4262 4263 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4264 assert(Cases.size() >= 1); 4265 4266 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4267 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4268 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4269 return false; 4270 } 4271 return true; 4272 } 4273 4274 /// Turn a switch with two reachable destinations into an integer range 4275 /// comparison and branch. 4276 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4277 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4278 4279 bool HasDefault = 4280 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4281 4282 // Partition the cases into two sets with different destinations. 4283 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4284 BasicBlock *DestB = nullptr; 4285 SmallVector<ConstantInt *, 16> CasesA; 4286 SmallVector<ConstantInt *, 16> CasesB; 4287 4288 for (auto Case : SI->cases()) { 4289 BasicBlock *Dest = Case.getCaseSuccessor(); 4290 if (!DestA) 4291 DestA = Dest; 4292 if (Dest == DestA) { 4293 CasesA.push_back(Case.getCaseValue()); 4294 continue; 4295 } 4296 if (!DestB) 4297 DestB = Dest; 4298 if (Dest == DestB) { 4299 CasesB.push_back(Case.getCaseValue()); 4300 continue; 4301 } 4302 return false; // More than two destinations. 4303 } 4304 4305 assert(DestA && DestB && 4306 "Single-destination switch should have been folded."); 4307 assert(DestA != DestB); 4308 assert(DestB != SI->getDefaultDest()); 4309 assert(!CasesB.empty() && "There must be non-default cases."); 4310 assert(!CasesA.empty() || HasDefault); 4311 4312 // Figure out if one of the sets of cases form a contiguous range. 4313 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4314 BasicBlock *ContiguousDest = nullptr; 4315 BasicBlock *OtherDest = nullptr; 4316 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4317 ContiguousCases = &CasesA; 4318 ContiguousDest = DestA; 4319 OtherDest = DestB; 4320 } else if (CasesAreContiguous(CasesB)) { 4321 ContiguousCases = &CasesB; 4322 ContiguousDest = DestB; 4323 OtherDest = DestA; 4324 } else 4325 return false; 4326 4327 // Start building the compare and branch. 4328 4329 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4330 Constant *NumCases = 4331 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4332 4333 Value *Sub = SI->getCondition(); 4334 if (!Offset->isNullValue()) 4335 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4336 4337 Value *Cmp; 4338 // If NumCases overflowed, then all possible values jump to the successor. 4339 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4340 Cmp = ConstantInt::getTrue(SI->getContext()); 4341 else 4342 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4343 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4344 4345 // Update weight for the newly-created conditional branch. 4346 if (HasBranchWeights(SI)) { 4347 SmallVector<uint64_t, 8> Weights; 4348 GetBranchWeights(SI, Weights); 4349 if (Weights.size() == 1 + SI->getNumCases()) { 4350 uint64_t TrueWeight = 0; 4351 uint64_t FalseWeight = 0; 4352 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4353 if (SI->getSuccessor(I) == ContiguousDest) 4354 TrueWeight += Weights[I]; 4355 else 4356 FalseWeight += Weights[I]; 4357 } 4358 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4359 TrueWeight /= 2; 4360 FalseWeight /= 2; 4361 } 4362 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4363 } 4364 } 4365 4366 // Prune obsolete incoming values off the successors' PHI nodes. 4367 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4368 unsigned PreviousEdges = ContiguousCases->size(); 4369 if (ContiguousDest == SI->getDefaultDest()) 4370 ++PreviousEdges; 4371 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4372 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4373 } 4374 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4375 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4376 if (OtherDest == SI->getDefaultDest()) 4377 ++PreviousEdges; 4378 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4379 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4380 } 4381 4382 // Drop the switch. 4383 SI->eraseFromParent(); 4384 4385 return true; 4386 } 4387 4388 /// Compute masked bits for the condition of a switch 4389 /// and use it to remove dead cases. 4390 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4391 const DataLayout &DL) { 4392 Value *Cond = SI->getCondition(); 4393 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4394 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4395 4396 // We can also eliminate cases by determining that their values are outside of 4397 // the limited range of the condition based on how many significant (non-sign) 4398 // bits are in the condition value. 4399 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4400 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4401 4402 // Gather dead cases. 4403 SmallVector<ConstantInt *, 8> DeadCases; 4404 for (auto &Case : SI->cases()) { 4405 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4406 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4407 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4408 DeadCases.push_back(Case.getCaseValue()); 4409 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4410 << " is dead.\n"); 4411 } 4412 } 4413 4414 // If we can prove that the cases must cover all possible values, the 4415 // default destination becomes dead and we can remove it. If we know some 4416 // of the bits in the value, we can use that to more precisely compute the 4417 // number of possible unique case values. 4418 bool HasDefault = 4419 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4420 const unsigned NumUnknownBits = 4421 Bits - (Known.Zero | Known.One).countPopulation(); 4422 assert(NumUnknownBits <= Bits); 4423 if (HasDefault && DeadCases.empty() && 4424 NumUnknownBits < 64 /* avoid overflow */ && 4425 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4426 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4427 BasicBlock *NewDefault = 4428 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4429 SI->setDefaultDest(&*NewDefault); 4430 SplitBlock(&*NewDefault, &NewDefault->front()); 4431 auto *OldTI = NewDefault->getTerminator(); 4432 new UnreachableInst(SI->getContext(), OldTI); 4433 EraseTerminatorAndDCECond(OldTI); 4434 return true; 4435 } 4436 4437 SmallVector<uint64_t, 8> Weights; 4438 bool HasWeight = HasBranchWeights(SI); 4439 if (HasWeight) { 4440 GetBranchWeights(SI, Weights); 4441 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4442 } 4443 4444 // Remove dead cases from the switch. 4445 for (ConstantInt *DeadCase : DeadCases) { 4446 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4447 assert(CaseI != SI->case_default() && 4448 "Case was not found. Probably mistake in DeadCases forming."); 4449 if (HasWeight) { 4450 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4451 Weights.pop_back(); 4452 } 4453 4454 // Prune unused values from PHI nodes. 4455 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4456 SI->removeCase(CaseI); 4457 } 4458 if (HasWeight && Weights.size() >= 2) { 4459 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4460 setBranchWeights(SI, MDWeights); 4461 } 4462 4463 return !DeadCases.empty(); 4464 } 4465 4466 /// If BB would be eligible for simplification by 4467 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4468 /// by an unconditional branch), look at the phi node for BB in the successor 4469 /// block and see if the incoming value is equal to CaseValue. If so, return 4470 /// the phi node, and set PhiIndex to BB's index in the phi node. 4471 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4472 BasicBlock *BB, int *PhiIndex) { 4473 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4474 return nullptr; // BB must be empty to be a candidate for simplification. 4475 if (!BB->getSinglePredecessor()) 4476 return nullptr; // BB must be dominated by the switch. 4477 4478 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4479 if (!Branch || !Branch->isUnconditional()) 4480 return nullptr; // Terminator must be unconditional branch. 4481 4482 BasicBlock *Succ = Branch->getSuccessor(0); 4483 4484 for (PHINode &PHI : Succ->phis()) { 4485 int Idx = PHI.getBasicBlockIndex(BB); 4486 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4487 4488 Value *InValue = PHI.getIncomingValue(Idx); 4489 if (InValue != CaseValue) 4490 continue; 4491 4492 *PhiIndex = Idx; 4493 return &PHI; 4494 } 4495 4496 return nullptr; 4497 } 4498 4499 /// Try to forward the condition of a switch instruction to a phi node 4500 /// dominated by the switch, if that would mean that some of the destination 4501 /// blocks of the switch can be folded away. Return true if a change is made. 4502 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4503 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4504 4505 ForwardingNodesMap ForwardingNodes; 4506 BasicBlock *SwitchBlock = SI->getParent(); 4507 bool Changed = false; 4508 for (auto &Case : SI->cases()) { 4509 ConstantInt *CaseValue = Case.getCaseValue(); 4510 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4511 4512 // Replace phi operands in successor blocks that are using the constant case 4513 // value rather than the switch condition variable: 4514 // switchbb: 4515 // switch i32 %x, label %default [ 4516 // i32 17, label %succ 4517 // ... 4518 // succ: 4519 // %r = phi i32 ... [ 17, %switchbb ] ... 4520 // --> 4521 // %r = phi i32 ... [ %x, %switchbb ] ... 4522 4523 for (PHINode &Phi : CaseDest->phis()) { 4524 // This only works if there is exactly 1 incoming edge from the switch to 4525 // a phi. If there is >1, that means multiple cases of the switch map to 1 4526 // value in the phi, and that phi value is not the switch condition. Thus, 4527 // this transform would not make sense (the phi would be invalid because 4528 // a phi can't have different incoming values from the same block). 4529 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4530 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4531 count(Phi.blocks(), SwitchBlock) == 1) { 4532 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4533 Changed = true; 4534 } 4535 } 4536 4537 // Collect phi nodes that are indirectly using this switch's case constants. 4538 int PhiIdx; 4539 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4540 ForwardingNodes[Phi].push_back(PhiIdx); 4541 } 4542 4543 for (auto &ForwardingNode : ForwardingNodes) { 4544 PHINode *Phi = ForwardingNode.first; 4545 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4546 if (Indexes.size() < 2) 4547 continue; 4548 4549 for (int Index : Indexes) 4550 Phi->setIncomingValue(Index, SI->getCondition()); 4551 Changed = true; 4552 } 4553 4554 return Changed; 4555 } 4556 4557 /// Return true if the backend will be able to handle 4558 /// initializing an array of constants like C. 4559 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4560 if (C->isThreadDependent()) 4561 return false; 4562 if (C->isDLLImportDependent()) 4563 return false; 4564 4565 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4566 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4567 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4568 return false; 4569 4570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4571 if (!CE->isGEPWithNoNotionalOverIndexing()) 4572 return false; 4573 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4574 return false; 4575 } 4576 4577 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4578 return false; 4579 4580 return true; 4581 } 4582 4583 /// If V is a Constant, return it. Otherwise, try to look up 4584 /// its constant value in ConstantPool, returning 0 if it's not there. 4585 static Constant * 4586 LookupConstant(Value *V, 4587 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4588 if (Constant *C = dyn_cast<Constant>(V)) 4589 return C; 4590 return ConstantPool.lookup(V); 4591 } 4592 4593 /// Try to fold instruction I into a constant. This works for 4594 /// simple instructions such as binary operations where both operands are 4595 /// constant or can be replaced by constants from the ConstantPool. Returns the 4596 /// resulting constant on success, 0 otherwise. 4597 static Constant * 4598 ConstantFold(Instruction *I, const DataLayout &DL, 4599 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4600 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4601 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4602 if (!A) 4603 return nullptr; 4604 if (A->isAllOnesValue()) 4605 return LookupConstant(Select->getTrueValue(), ConstantPool); 4606 if (A->isNullValue()) 4607 return LookupConstant(Select->getFalseValue(), ConstantPool); 4608 return nullptr; 4609 } 4610 4611 SmallVector<Constant *, 4> COps; 4612 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4613 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4614 COps.push_back(A); 4615 else 4616 return nullptr; 4617 } 4618 4619 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4620 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4621 COps[1], DL); 4622 } 4623 4624 return ConstantFoldInstOperands(I, COps, DL); 4625 } 4626 4627 /// Try to determine the resulting constant values in phi nodes 4628 /// at the common destination basic block, *CommonDest, for one of the case 4629 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4630 /// case), of a switch instruction SI. 4631 static bool 4632 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4633 BasicBlock **CommonDest, 4634 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4635 const DataLayout &DL, const TargetTransformInfo &TTI) { 4636 // The block from which we enter the common destination. 4637 BasicBlock *Pred = SI->getParent(); 4638 4639 // If CaseDest is empty except for some side-effect free instructions through 4640 // which we can constant-propagate the CaseVal, continue to its successor. 4641 SmallDenseMap<Value *, Constant *> ConstantPool; 4642 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4643 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4644 if (I.isTerminator()) { 4645 // If the terminator is a simple branch, continue to the next block. 4646 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4647 return false; 4648 Pred = CaseDest; 4649 CaseDest = I.getSuccessor(0); 4650 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4651 // Instruction is side-effect free and constant. 4652 4653 // If the instruction has uses outside this block or a phi node slot for 4654 // the block, it is not safe to bypass the instruction since it would then 4655 // no longer dominate all its uses. 4656 for (auto &Use : I.uses()) { 4657 User *User = Use.getUser(); 4658 if (Instruction *I = dyn_cast<Instruction>(User)) 4659 if (I->getParent() == CaseDest) 4660 continue; 4661 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4662 if (Phi->getIncomingBlock(Use) == CaseDest) 4663 continue; 4664 return false; 4665 } 4666 4667 ConstantPool.insert(std::make_pair(&I, C)); 4668 } else { 4669 break; 4670 } 4671 } 4672 4673 // If we did not have a CommonDest before, use the current one. 4674 if (!*CommonDest) 4675 *CommonDest = CaseDest; 4676 // If the destination isn't the common one, abort. 4677 if (CaseDest != *CommonDest) 4678 return false; 4679 4680 // Get the values for this case from phi nodes in the destination block. 4681 for (PHINode &PHI : (*CommonDest)->phis()) { 4682 int Idx = PHI.getBasicBlockIndex(Pred); 4683 if (Idx == -1) 4684 continue; 4685 4686 Constant *ConstVal = 4687 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4688 if (!ConstVal) 4689 return false; 4690 4691 // Be conservative about which kinds of constants we support. 4692 if (!ValidLookupTableConstant(ConstVal, TTI)) 4693 return false; 4694 4695 Res.push_back(std::make_pair(&PHI, ConstVal)); 4696 } 4697 4698 return Res.size() > 0; 4699 } 4700 4701 // Helper function used to add CaseVal to the list of cases that generate 4702 // Result. Returns the updated number of cases that generate this result. 4703 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4704 SwitchCaseResultVectorTy &UniqueResults, 4705 Constant *Result) { 4706 for (auto &I : UniqueResults) { 4707 if (I.first == Result) { 4708 I.second.push_back(CaseVal); 4709 return I.second.size(); 4710 } 4711 } 4712 UniqueResults.push_back( 4713 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4714 return 1; 4715 } 4716 4717 // Helper function that initializes a map containing 4718 // results for the PHI node of the common destination block for a switch 4719 // instruction. Returns false if multiple PHI nodes have been found or if 4720 // there is not a common destination block for the switch. 4721 static bool 4722 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4723 SwitchCaseResultVectorTy &UniqueResults, 4724 Constant *&DefaultResult, const DataLayout &DL, 4725 const TargetTransformInfo &TTI, 4726 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4727 for (auto &I : SI->cases()) { 4728 ConstantInt *CaseVal = I.getCaseValue(); 4729 4730 // Resulting value at phi nodes for this case value. 4731 SwitchCaseResultsTy Results; 4732 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4733 DL, TTI)) 4734 return false; 4735 4736 // Only one value per case is permitted. 4737 if (Results.size() > 1) 4738 return false; 4739 4740 // Add the case->result mapping to UniqueResults. 4741 const uintptr_t NumCasesForResult = 4742 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4743 4744 // Early out if there are too many cases for this result. 4745 if (NumCasesForResult > MaxCasesPerResult) 4746 return false; 4747 4748 // Early out if there are too many unique results. 4749 if (UniqueResults.size() > MaxUniqueResults) 4750 return false; 4751 4752 // Check the PHI consistency. 4753 if (!PHI) 4754 PHI = Results[0].first; 4755 else if (PHI != Results[0].first) 4756 return false; 4757 } 4758 // Find the default result value. 4759 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4760 BasicBlock *DefaultDest = SI->getDefaultDest(); 4761 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4762 DL, TTI); 4763 // If the default value is not found abort unless the default destination 4764 // is unreachable. 4765 DefaultResult = 4766 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4767 if ((!DefaultResult && 4768 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4769 return false; 4770 4771 return true; 4772 } 4773 4774 // Helper function that checks if it is possible to transform a switch with only 4775 // two cases (or two cases + default) that produces a result into a select. 4776 // Example: 4777 // switch (a) { 4778 // case 10: %0 = icmp eq i32 %a, 10 4779 // return 10; %1 = select i1 %0, i32 10, i32 4 4780 // case 20: ----> %2 = icmp eq i32 %a, 20 4781 // return 2; %3 = select i1 %2, i32 2, i32 %1 4782 // default: 4783 // return 4; 4784 // } 4785 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4786 Constant *DefaultResult, Value *Condition, 4787 IRBuilder<> &Builder) { 4788 assert(ResultVector.size() == 2 && 4789 "We should have exactly two unique results at this point"); 4790 // If we are selecting between only two cases transform into a simple 4791 // select or a two-way select if default is possible. 4792 if (ResultVector[0].second.size() == 1 && 4793 ResultVector[1].second.size() == 1) { 4794 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4795 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4796 4797 bool DefaultCanTrigger = DefaultResult; 4798 Value *SelectValue = ResultVector[1].first; 4799 if (DefaultCanTrigger) { 4800 Value *const ValueCompare = 4801 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4802 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4803 DefaultResult, "switch.select"); 4804 } 4805 Value *const ValueCompare = 4806 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4807 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4808 SelectValue, "switch.select"); 4809 } 4810 4811 return nullptr; 4812 } 4813 4814 // Helper function to cleanup a switch instruction that has been converted into 4815 // a select, fixing up PHI nodes and basic blocks. 4816 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4817 Value *SelectValue, 4818 IRBuilder<> &Builder) { 4819 BasicBlock *SelectBB = SI->getParent(); 4820 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4821 PHI->removeIncomingValue(SelectBB); 4822 PHI->addIncoming(SelectValue, SelectBB); 4823 4824 Builder.CreateBr(PHI->getParent()); 4825 4826 // Remove the switch. 4827 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4828 BasicBlock *Succ = SI->getSuccessor(i); 4829 4830 if (Succ == PHI->getParent()) 4831 continue; 4832 Succ->removePredecessor(SelectBB); 4833 } 4834 SI->eraseFromParent(); 4835 } 4836 4837 /// If the switch is only used to initialize one or more 4838 /// phi nodes in a common successor block with only two different 4839 /// constant values, replace the switch with select. 4840 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4841 const DataLayout &DL, 4842 const TargetTransformInfo &TTI) { 4843 Value *const Cond = SI->getCondition(); 4844 PHINode *PHI = nullptr; 4845 BasicBlock *CommonDest = nullptr; 4846 Constant *DefaultResult; 4847 SwitchCaseResultVectorTy UniqueResults; 4848 // Collect all the cases that will deliver the same value from the switch. 4849 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4850 DL, TTI, 2, 1)) 4851 return false; 4852 // Selects choose between maximum two values. 4853 if (UniqueResults.size() != 2) 4854 return false; 4855 assert(PHI != nullptr && "PHI for value select not found"); 4856 4857 Builder.SetInsertPoint(SI); 4858 Value *SelectValue = 4859 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4860 if (SelectValue) { 4861 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4862 return true; 4863 } 4864 // The switch couldn't be converted into a select. 4865 return false; 4866 } 4867 4868 namespace { 4869 4870 /// This class represents a lookup table that can be used to replace a switch. 4871 class SwitchLookupTable { 4872 public: 4873 /// Create a lookup table to use as a switch replacement with the contents 4874 /// of Values, using DefaultValue to fill any holes in the table. 4875 SwitchLookupTable( 4876 Module &M, uint64_t TableSize, ConstantInt *Offset, 4877 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4878 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4879 4880 /// Build instructions with Builder to retrieve the value at 4881 /// the position given by Index in the lookup table. 4882 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4883 4884 /// Return true if a table with TableSize elements of 4885 /// type ElementType would fit in a target-legal register. 4886 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4887 Type *ElementType); 4888 4889 private: 4890 // Depending on the contents of the table, it can be represented in 4891 // different ways. 4892 enum { 4893 // For tables where each element contains the same value, we just have to 4894 // store that single value and return it for each lookup. 4895 SingleValueKind, 4896 4897 // For tables where there is a linear relationship between table index 4898 // and values. We calculate the result with a simple multiplication 4899 // and addition instead of a table lookup. 4900 LinearMapKind, 4901 4902 // For small tables with integer elements, we can pack them into a bitmap 4903 // that fits into a target-legal register. Values are retrieved by 4904 // shift and mask operations. 4905 BitMapKind, 4906 4907 // The table is stored as an array of values. Values are retrieved by load 4908 // instructions from the table. 4909 ArrayKind 4910 } Kind; 4911 4912 // For SingleValueKind, this is the single value. 4913 Constant *SingleValue = nullptr; 4914 4915 // For BitMapKind, this is the bitmap. 4916 ConstantInt *BitMap = nullptr; 4917 IntegerType *BitMapElementTy = nullptr; 4918 4919 // For LinearMapKind, these are the constants used to derive the value. 4920 ConstantInt *LinearOffset = nullptr; 4921 ConstantInt *LinearMultiplier = nullptr; 4922 4923 // For ArrayKind, this is the array. 4924 GlobalVariable *Array = nullptr; 4925 }; 4926 4927 } // end anonymous namespace 4928 4929 SwitchLookupTable::SwitchLookupTable( 4930 Module &M, uint64_t TableSize, ConstantInt *Offset, 4931 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4932 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4933 assert(Values.size() && "Can't build lookup table without values!"); 4934 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4935 4936 // If all values in the table are equal, this is that value. 4937 SingleValue = Values.begin()->second; 4938 4939 Type *ValueType = Values.begin()->second->getType(); 4940 4941 // Build up the table contents. 4942 SmallVector<Constant *, 64> TableContents(TableSize); 4943 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4944 ConstantInt *CaseVal = Values[I].first; 4945 Constant *CaseRes = Values[I].second; 4946 assert(CaseRes->getType() == ValueType); 4947 4948 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4949 TableContents[Idx] = CaseRes; 4950 4951 if (CaseRes != SingleValue) 4952 SingleValue = nullptr; 4953 } 4954 4955 // Fill in any holes in the table with the default result. 4956 if (Values.size() < TableSize) { 4957 assert(DefaultValue && 4958 "Need a default value to fill the lookup table holes."); 4959 assert(DefaultValue->getType() == ValueType); 4960 for (uint64_t I = 0; I < TableSize; ++I) { 4961 if (!TableContents[I]) 4962 TableContents[I] = DefaultValue; 4963 } 4964 4965 if (DefaultValue != SingleValue) 4966 SingleValue = nullptr; 4967 } 4968 4969 // If each element in the table contains the same value, we only need to store 4970 // that single value. 4971 if (SingleValue) { 4972 Kind = SingleValueKind; 4973 return; 4974 } 4975 4976 // Check if we can derive the value with a linear transformation from the 4977 // table index. 4978 if (isa<IntegerType>(ValueType)) { 4979 bool LinearMappingPossible = true; 4980 APInt PrevVal; 4981 APInt DistToPrev; 4982 assert(TableSize >= 2 && "Should be a SingleValue table."); 4983 // Check if there is the same distance between two consecutive values. 4984 for (uint64_t I = 0; I < TableSize; ++I) { 4985 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4986 if (!ConstVal) { 4987 // This is an undef. We could deal with it, but undefs in lookup tables 4988 // are very seldom. It's probably not worth the additional complexity. 4989 LinearMappingPossible = false; 4990 break; 4991 } 4992 const APInt &Val = ConstVal->getValue(); 4993 if (I != 0) { 4994 APInt Dist = Val - PrevVal; 4995 if (I == 1) { 4996 DistToPrev = Dist; 4997 } else if (Dist != DistToPrev) { 4998 LinearMappingPossible = false; 4999 break; 5000 } 5001 } 5002 PrevVal = Val; 5003 } 5004 if (LinearMappingPossible) { 5005 LinearOffset = cast<ConstantInt>(TableContents[0]); 5006 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5007 Kind = LinearMapKind; 5008 ++NumLinearMaps; 5009 return; 5010 } 5011 } 5012 5013 // If the type is integer and the table fits in a register, build a bitmap. 5014 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5015 IntegerType *IT = cast<IntegerType>(ValueType); 5016 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5017 for (uint64_t I = TableSize; I > 0; --I) { 5018 TableInt <<= IT->getBitWidth(); 5019 // Insert values into the bitmap. Undef values are set to zero. 5020 if (!isa<UndefValue>(TableContents[I - 1])) { 5021 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5022 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5023 } 5024 } 5025 BitMap = ConstantInt::get(M.getContext(), TableInt); 5026 BitMapElementTy = IT; 5027 Kind = BitMapKind; 5028 ++NumBitMaps; 5029 return; 5030 } 5031 5032 // Store the table in an array. 5033 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5034 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5035 5036 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5037 GlobalVariable::PrivateLinkage, Initializer, 5038 "switch.table." + FuncName); 5039 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5040 // Set the alignment to that of an array items. We will be only loading one 5041 // value out of it. 5042 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5043 Kind = ArrayKind; 5044 } 5045 5046 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5047 switch (Kind) { 5048 case SingleValueKind: 5049 return SingleValue; 5050 case LinearMapKind: { 5051 // Derive the result value from the input value. 5052 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5053 false, "switch.idx.cast"); 5054 if (!LinearMultiplier->isOne()) 5055 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5056 if (!LinearOffset->isZero()) 5057 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5058 return Result; 5059 } 5060 case BitMapKind: { 5061 // Type of the bitmap (e.g. i59). 5062 IntegerType *MapTy = BitMap->getType(); 5063 5064 // Cast Index to the same type as the bitmap. 5065 // Note: The Index is <= the number of elements in the table, so 5066 // truncating it to the width of the bitmask is safe. 5067 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5068 5069 // Multiply the shift amount by the element width. 5070 ShiftAmt = Builder.CreateMul( 5071 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5072 "switch.shiftamt"); 5073 5074 // Shift down. 5075 Value *DownShifted = 5076 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5077 // Mask off. 5078 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5079 } 5080 case ArrayKind: { 5081 // Make sure the table index will not overflow when treated as signed. 5082 IntegerType *IT = cast<IntegerType>(Index->getType()); 5083 uint64_t TableSize = 5084 Array->getInitializer()->getType()->getArrayNumElements(); 5085 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5086 Index = Builder.CreateZExt( 5087 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5088 "switch.tableidx.zext"); 5089 5090 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5091 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5092 GEPIndices, "switch.gep"); 5093 return Builder.CreateLoad( 5094 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5095 "switch.load"); 5096 } 5097 } 5098 llvm_unreachable("Unknown lookup table kind!"); 5099 } 5100 5101 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5102 uint64_t TableSize, 5103 Type *ElementType) { 5104 auto *IT = dyn_cast<IntegerType>(ElementType); 5105 if (!IT) 5106 return false; 5107 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5108 // are <= 15, we could try to narrow the type. 5109 5110 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5111 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5112 return false; 5113 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5114 } 5115 5116 /// Determine whether a lookup table should be built for this switch, based on 5117 /// the number of cases, size of the table, and the types of the results. 5118 static bool 5119 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5120 const TargetTransformInfo &TTI, const DataLayout &DL, 5121 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5122 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5123 return false; // TableSize overflowed, or mul below might overflow. 5124 5125 bool AllTablesFitInRegister = true; 5126 bool HasIllegalType = false; 5127 for (const auto &I : ResultTypes) { 5128 Type *Ty = I.second; 5129 5130 // Saturate this flag to true. 5131 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5132 5133 // Saturate this flag to false. 5134 AllTablesFitInRegister = 5135 AllTablesFitInRegister && 5136 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5137 5138 // If both flags saturate, we're done. NOTE: This *only* works with 5139 // saturating flags, and all flags have to saturate first due to the 5140 // non-deterministic behavior of iterating over a dense map. 5141 if (HasIllegalType && !AllTablesFitInRegister) 5142 break; 5143 } 5144 5145 // If each table would fit in a register, we should build it anyway. 5146 if (AllTablesFitInRegister) 5147 return true; 5148 5149 // Don't build a table that doesn't fit in-register if it has illegal types. 5150 if (HasIllegalType) 5151 return false; 5152 5153 // The table density should be at least 40%. This is the same criterion as for 5154 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5155 // FIXME: Find the best cut-off. 5156 return SI->getNumCases() * 10 >= TableSize * 4; 5157 } 5158 5159 /// Try to reuse the switch table index compare. Following pattern: 5160 /// \code 5161 /// if (idx < tablesize) 5162 /// r = table[idx]; // table does not contain default_value 5163 /// else 5164 /// r = default_value; 5165 /// if (r != default_value) 5166 /// ... 5167 /// \endcode 5168 /// Is optimized to: 5169 /// \code 5170 /// cond = idx < tablesize; 5171 /// if (cond) 5172 /// r = table[idx]; 5173 /// else 5174 /// r = default_value; 5175 /// if (cond) 5176 /// ... 5177 /// \endcode 5178 /// Jump threading will then eliminate the second if(cond). 5179 static void reuseTableCompare( 5180 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5181 Constant *DefaultValue, 5182 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5183 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5184 if (!CmpInst) 5185 return; 5186 5187 // We require that the compare is in the same block as the phi so that jump 5188 // threading can do its work afterwards. 5189 if (CmpInst->getParent() != PhiBlock) 5190 return; 5191 5192 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5193 if (!CmpOp1) 5194 return; 5195 5196 Value *RangeCmp = RangeCheckBranch->getCondition(); 5197 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5198 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5199 5200 // Check if the compare with the default value is constant true or false. 5201 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5202 DefaultValue, CmpOp1, true); 5203 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5204 return; 5205 5206 // Check if the compare with the case values is distinct from the default 5207 // compare result. 5208 for (auto ValuePair : Values) { 5209 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5210 ValuePair.second, CmpOp1, true); 5211 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5212 return; 5213 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5214 "Expect true or false as compare result."); 5215 } 5216 5217 // Check if the branch instruction dominates the phi node. It's a simple 5218 // dominance check, but sufficient for our needs. 5219 // Although this check is invariant in the calling loops, it's better to do it 5220 // at this late stage. Practically we do it at most once for a switch. 5221 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5222 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5223 BasicBlock *Pred = *PI; 5224 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5225 return; 5226 } 5227 5228 if (DefaultConst == FalseConst) { 5229 // The compare yields the same result. We can replace it. 5230 CmpInst->replaceAllUsesWith(RangeCmp); 5231 ++NumTableCmpReuses; 5232 } else { 5233 // The compare yields the same result, just inverted. We can replace it. 5234 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5235 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5236 RangeCheckBranch); 5237 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5238 ++NumTableCmpReuses; 5239 } 5240 } 5241 5242 /// If the switch is only used to initialize one or more phi nodes in a common 5243 /// successor block with different constant values, replace the switch with 5244 /// lookup tables. 5245 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5246 const DataLayout &DL, 5247 const TargetTransformInfo &TTI) { 5248 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5249 5250 Function *Fn = SI->getParent()->getParent(); 5251 // Only build lookup table when we have a target that supports it or the 5252 // attribute is not set. 5253 if (!TTI.shouldBuildLookupTables() || 5254 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5255 return false; 5256 5257 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5258 // split off a dense part and build a lookup table for that. 5259 5260 // FIXME: This creates arrays of GEPs to constant strings, which means each 5261 // GEP needs a runtime relocation in PIC code. We should just build one big 5262 // string and lookup indices into that. 5263 5264 // Ignore switches with less than three cases. Lookup tables will not make 5265 // them faster, so we don't analyze them. 5266 if (SI->getNumCases() < 3) 5267 return false; 5268 5269 // Figure out the corresponding result for each case value and phi node in the 5270 // common destination, as well as the min and max case values. 5271 assert(!empty(SI->cases())); 5272 SwitchInst::CaseIt CI = SI->case_begin(); 5273 ConstantInt *MinCaseVal = CI->getCaseValue(); 5274 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5275 5276 BasicBlock *CommonDest = nullptr; 5277 5278 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5279 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5280 5281 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5282 SmallDenseMap<PHINode *, Type *> ResultTypes; 5283 SmallVector<PHINode *, 4> PHIs; 5284 5285 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5286 ConstantInt *CaseVal = CI->getCaseValue(); 5287 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5288 MinCaseVal = CaseVal; 5289 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5290 MaxCaseVal = CaseVal; 5291 5292 // Resulting value at phi nodes for this case value. 5293 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5294 ResultsTy Results; 5295 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5296 Results, DL, TTI)) 5297 return false; 5298 5299 // Append the result from this case to the list for each phi. 5300 for (const auto &I : Results) { 5301 PHINode *PHI = I.first; 5302 Constant *Value = I.second; 5303 if (!ResultLists.count(PHI)) 5304 PHIs.push_back(PHI); 5305 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5306 } 5307 } 5308 5309 // Keep track of the result types. 5310 for (PHINode *PHI : PHIs) { 5311 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5312 } 5313 5314 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5315 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5316 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5317 bool TableHasHoles = (NumResults < TableSize); 5318 5319 // If the table has holes, we need a constant result for the default case 5320 // or a bitmask that fits in a register. 5321 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5322 bool HasDefaultResults = 5323 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5324 DefaultResultsList, DL, TTI); 5325 5326 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5327 if (NeedMask) { 5328 // As an extra penalty for the validity test we require more cases. 5329 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5330 return false; 5331 if (!DL.fitsInLegalInteger(TableSize)) 5332 return false; 5333 } 5334 5335 for (const auto &I : DefaultResultsList) { 5336 PHINode *PHI = I.first; 5337 Constant *Result = I.second; 5338 DefaultResults[PHI] = Result; 5339 } 5340 5341 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5342 return false; 5343 5344 // Create the BB that does the lookups. 5345 Module &Mod = *CommonDest->getParent()->getParent(); 5346 BasicBlock *LookupBB = BasicBlock::Create( 5347 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5348 5349 // Compute the table index value. 5350 Builder.SetInsertPoint(SI); 5351 Value *TableIndex; 5352 if (MinCaseVal->isNullValue()) 5353 TableIndex = SI->getCondition(); 5354 else 5355 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5356 "switch.tableidx"); 5357 5358 // Compute the maximum table size representable by the integer type we are 5359 // switching upon. 5360 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5361 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5362 assert(MaxTableSize >= TableSize && 5363 "It is impossible for a switch to have more entries than the max " 5364 "representable value of its input integer type's size."); 5365 5366 // If the default destination is unreachable, or if the lookup table covers 5367 // all values of the conditional variable, branch directly to the lookup table 5368 // BB. Otherwise, check that the condition is within the case range. 5369 const bool DefaultIsReachable = 5370 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5371 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5372 BranchInst *RangeCheckBranch = nullptr; 5373 5374 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5375 Builder.CreateBr(LookupBB); 5376 // Note: We call removeProdecessor later since we need to be able to get the 5377 // PHI value for the default case in case we're using a bit mask. 5378 } else { 5379 Value *Cmp = Builder.CreateICmpULT( 5380 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5381 RangeCheckBranch = 5382 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5383 } 5384 5385 // Populate the BB that does the lookups. 5386 Builder.SetInsertPoint(LookupBB); 5387 5388 if (NeedMask) { 5389 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5390 // re-purposed to do the hole check, and we create a new LookupBB. 5391 BasicBlock *MaskBB = LookupBB; 5392 MaskBB->setName("switch.hole_check"); 5393 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5394 CommonDest->getParent(), CommonDest); 5395 5396 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5397 // unnecessary illegal types. 5398 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5399 APInt MaskInt(TableSizePowOf2, 0); 5400 APInt One(TableSizePowOf2, 1); 5401 // Build bitmask; fill in a 1 bit for every case. 5402 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5403 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5404 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5405 .getLimitedValue(); 5406 MaskInt |= One << Idx; 5407 } 5408 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5409 5410 // Get the TableIndex'th bit of the bitmask. 5411 // If this bit is 0 (meaning hole) jump to the default destination, 5412 // else continue with table lookup. 5413 IntegerType *MapTy = TableMask->getType(); 5414 Value *MaskIndex = 5415 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5416 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5417 Value *LoBit = Builder.CreateTrunc( 5418 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5419 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5420 5421 Builder.SetInsertPoint(LookupBB); 5422 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5423 } 5424 5425 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5426 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5427 // do not delete PHINodes here. 5428 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5429 /*DontDeleteUselessPHIs=*/true); 5430 } 5431 5432 bool ReturnedEarly = false; 5433 for (PHINode *PHI : PHIs) { 5434 const ResultListTy &ResultList = ResultLists[PHI]; 5435 5436 // If using a bitmask, use any value to fill the lookup table holes. 5437 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5438 StringRef FuncName = Fn->getName(); 5439 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5440 FuncName); 5441 5442 Value *Result = Table.BuildLookup(TableIndex, Builder); 5443 5444 // If the result is used to return immediately from the function, we want to 5445 // do that right here. 5446 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5447 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5448 Builder.CreateRet(Result); 5449 ReturnedEarly = true; 5450 break; 5451 } 5452 5453 // Do a small peephole optimization: re-use the switch table compare if 5454 // possible. 5455 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5456 BasicBlock *PhiBlock = PHI->getParent(); 5457 // Search for compare instructions which use the phi. 5458 for (auto *User : PHI->users()) { 5459 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5460 } 5461 } 5462 5463 PHI->addIncoming(Result, LookupBB); 5464 } 5465 5466 if (!ReturnedEarly) 5467 Builder.CreateBr(CommonDest); 5468 5469 // Remove the switch. 5470 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5471 BasicBlock *Succ = SI->getSuccessor(i); 5472 5473 if (Succ == SI->getDefaultDest()) 5474 continue; 5475 Succ->removePredecessor(SI->getParent()); 5476 } 5477 SI->eraseFromParent(); 5478 5479 ++NumLookupTables; 5480 if (NeedMask) 5481 ++NumLookupTablesHoles; 5482 return true; 5483 } 5484 5485 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5486 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5487 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5488 uint64_t Range = Diff + 1; 5489 uint64_t NumCases = Values.size(); 5490 // 40% is the default density for building a jump table in optsize/minsize mode. 5491 uint64_t MinDensity = 40; 5492 5493 return NumCases * 100 >= Range * MinDensity; 5494 } 5495 5496 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5497 /// of cases. 5498 /// 5499 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5500 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5501 /// 5502 /// This converts a sparse switch into a dense switch which allows better 5503 /// lowering and could also allow transforming into a lookup table. 5504 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5505 const DataLayout &DL, 5506 const TargetTransformInfo &TTI) { 5507 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5508 if (CondTy->getIntegerBitWidth() > 64 || 5509 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5510 return false; 5511 // Only bother with this optimization if there are more than 3 switch cases; 5512 // SDAG will only bother creating jump tables for 4 or more cases. 5513 if (SI->getNumCases() < 4) 5514 return false; 5515 5516 // This transform is agnostic to the signedness of the input or case values. We 5517 // can treat the case values as signed or unsigned. We can optimize more common 5518 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5519 // as signed. 5520 SmallVector<int64_t,4> Values; 5521 for (auto &C : SI->cases()) 5522 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5523 llvm::sort(Values); 5524 5525 // If the switch is already dense, there's nothing useful to do here. 5526 if (isSwitchDense(Values)) 5527 return false; 5528 5529 // First, transform the values such that they start at zero and ascend. 5530 int64_t Base = Values[0]; 5531 for (auto &V : Values) 5532 V -= (uint64_t)(Base); 5533 5534 // Now we have signed numbers that have been shifted so that, given enough 5535 // precision, there are no negative values. Since the rest of the transform 5536 // is bitwise only, we switch now to an unsigned representation. 5537 uint64_t GCD = 0; 5538 for (auto &V : Values) 5539 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5540 5541 // This transform can be done speculatively because it is so cheap - it results 5542 // in a single rotate operation being inserted. This can only happen if the 5543 // factor extracted is a power of 2. 5544 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5545 // inverse of GCD and then perform this transform. 5546 // FIXME: It's possible that optimizing a switch on powers of two might also 5547 // be beneficial - flag values are often powers of two and we could use a CLZ 5548 // as the key function. 5549 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5550 // No common divisor found or too expensive to compute key function. 5551 return false; 5552 5553 unsigned Shift = Log2_64(GCD); 5554 for (auto &V : Values) 5555 V = (int64_t)((uint64_t)V >> Shift); 5556 5557 if (!isSwitchDense(Values)) 5558 // Transform didn't create a dense switch. 5559 return false; 5560 5561 // The obvious transform is to shift the switch condition right and emit a 5562 // check that the condition actually cleanly divided by GCD, i.e. 5563 // C & (1 << Shift - 1) == 0 5564 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5565 // 5566 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5567 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5568 // are nonzero then the switch condition will be very large and will hit the 5569 // default case. 5570 5571 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5572 Builder.SetInsertPoint(SI); 5573 auto *ShiftC = ConstantInt::get(Ty, Shift); 5574 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5575 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5576 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5577 auto *Rot = Builder.CreateOr(LShr, Shl); 5578 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5579 5580 for (auto Case : SI->cases()) { 5581 auto *Orig = Case.getCaseValue(); 5582 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5583 Case.setValue( 5584 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5585 } 5586 return true; 5587 } 5588 5589 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5590 BasicBlock *BB = SI->getParent(); 5591 5592 if (isValueEqualityComparison(SI)) { 5593 // If we only have one predecessor, and if it is a branch on this value, 5594 // see if that predecessor totally determines the outcome of this switch. 5595 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5596 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5597 return requestResimplify(); 5598 5599 Value *Cond = SI->getCondition(); 5600 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5601 if (SimplifySwitchOnSelect(SI, Select)) 5602 return requestResimplify(); 5603 5604 // If the block only contains the switch, see if we can fold the block 5605 // away into any preds. 5606 if (SI == &*BB->instructionsWithoutDebug().begin()) 5607 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5608 return requestResimplify(); 5609 } 5610 5611 // Try to transform the switch into an icmp and a branch. 5612 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5613 return requestResimplify(); 5614 5615 // Remove unreachable cases. 5616 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5617 return requestResimplify(); 5618 5619 if (switchToSelect(SI, Builder, DL, TTI)) 5620 return requestResimplify(); 5621 5622 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5623 return requestResimplify(); 5624 5625 // The conversion from switch to lookup tables results in difficult-to-analyze 5626 // code and makes pruning branches much harder. This is a problem if the 5627 // switch expression itself can still be restricted as a result of inlining or 5628 // CVP. Therefore, only apply this transformation during late stages of the 5629 // optimisation pipeline. 5630 if (Options.ConvertSwitchToLookupTable && 5631 SwitchToLookupTable(SI, Builder, DL, TTI)) 5632 return requestResimplify(); 5633 5634 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5635 return requestResimplify(); 5636 5637 return false; 5638 } 5639 5640 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5641 BasicBlock *BB = IBI->getParent(); 5642 bool Changed = false; 5643 5644 // Eliminate redundant destinations. 5645 SmallPtrSet<Value *, 8> Succs; 5646 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5647 BasicBlock *Dest = IBI->getDestination(i); 5648 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5649 Dest->removePredecessor(BB); 5650 IBI->removeDestination(i); 5651 --i; 5652 --e; 5653 Changed = true; 5654 } 5655 } 5656 5657 if (IBI->getNumDestinations() == 0) { 5658 // If the indirectbr has no successors, change it to unreachable. 5659 new UnreachableInst(IBI->getContext(), IBI); 5660 EraseTerminatorAndDCECond(IBI); 5661 return true; 5662 } 5663 5664 if (IBI->getNumDestinations() == 1) { 5665 // If the indirectbr has one successor, change it to a direct branch. 5666 BranchInst::Create(IBI->getDestination(0), IBI); 5667 EraseTerminatorAndDCECond(IBI); 5668 return true; 5669 } 5670 5671 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5672 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5673 return requestResimplify(); 5674 } 5675 return Changed; 5676 } 5677 5678 /// Given an block with only a single landing pad and a unconditional branch 5679 /// try to find another basic block which this one can be merged with. This 5680 /// handles cases where we have multiple invokes with unique landing pads, but 5681 /// a shared handler. 5682 /// 5683 /// We specifically choose to not worry about merging non-empty blocks 5684 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5685 /// practice, the optimizer produces empty landing pad blocks quite frequently 5686 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5687 /// sinking in this file) 5688 /// 5689 /// This is primarily a code size optimization. We need to avoid performing 5690 /// any transform which might inhibit optimization (such as our ability to 5691 /// specialize a particular handler via tail commoning). We do this by not 5692 /// merging any blocks which require us to introduce a phi. Since the same 5693 /// values are flowing through both blocks, we don't lose any ability to 5694 /// specialize. If anything, we make such specialization more likely. 5695 /// 5696 /// TODO - This transformation could remove entries from a phi in the target 5697 /// block when the inputs in the phi are the same for the two blocks being 5698 /// merged. In some cases, this could result in removal of the PHI entirely. 5699 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5700 BasicBlock *BB) { 5701 auto Succ = BB->getUniqueSuccessor(); 5702 assert(Succ); 5703 // If there's a phi in the successor block, we'd likely have to introduce 5704 // a phi into the merged landing pad block. 5705 if (isa<PHINode>(*Succ->begin())) 5706 return false; 5707 5708 for (BasicBlock *OtherPred : predecessors(Succ)) { 5709 if (BB == OtherPred) 5710 continue; 5711 BasicBlock::iterator I = OtherPred->begin(); 5712 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5713 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5714 continue; 5715 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5716 ; 5717 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5718 if (!BI2 || !BI2->isIdenticalTo(BI)) 5719 continue; 5720 5721 // We've found an identical block. Update our predecessors to take that 5722 // path instead and make ourselves dead. 5723 SmallPtrSet<BasicBlock *, 16> Preds; 5724 Preds.insert(pred_begin(BB), pred_end(BB)); 5725 for (BasicBlock *Pred : Preds) { 5726 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5727 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5728 "unexpected successor"); 5729 II->setUnwindDest(OtherPred); 5730 } 5731 5732 // The debug info in OtherPred doesn't cover the merged control flow that 5733 // used to go through BB. We need to delete it or update it. 5734 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5735 Instruction &Inst = *I; 5736 I++; 5737 if (isa<DbgInfoIntrinsic>(Inst)) 5738 Inst.eraseFromParent(); 5739 } 5740 5741 SmallPtrSet<BasicBlock *, 16> Succs; 5742 Succs.insert(succ_begin(BB), succ_end(BB)); 5743 for (BasicBlock *Succ : Succs) { 5744 Succ->removePredecessor(BB); 5745 } 5746 5747 IRBuilder<> Builder(BI); 5748 Builder.CreateUnreachable(); 5749 BI->eraseFromParent(); 5750 return true; 5751 } 5752 return false; 5753 } 5754 5755 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5756 IRBuilder<> &Builder) { 5757 BasicBlock *BB = BI->getParent(); 5758 BasicBlock *Succ = BI->getSuccessor(0); 5759 5760 // If the Terminator is the only non-phi instruction, simplify the block. 5761 // If LoopHeader is provided, check if the block or its successor is a loop 5762 // header. (This is for early invocations before loop simplify and 5763 // vectorization to keep canonical loop forms for nested loops. These blocks 5764 // can be eliminated when the pass is invoked later in the back-end.) 5765 // Note that if BB has only one predecessor then we do not introduce new 5766 // backedge, so we can eliminate BB. 5767 bool NeedCanonicalLoop = 5768 Options.NeedCanonicalLoop && 5769 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5770 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5771 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5772 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5773 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5774 return true; 5775 5776 // If the only instruction in the block is a seteq/setne comparison against a 5777 // constant, try to simplify the block. 5778 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5779 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5780 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5781 ; 5782 if (I->isTerminator() && 5783 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5784 return true; 5785 } 5786 5787 // See if we can merge an empty landing pad block with another which is 5788 // equivalent. 5789 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5790 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5791 ; 5792 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5793 return true; 5794 } 5795 5796 // If this basic block is ONLY a compare and a branch, and if a predecessor 5797 // branches to us and our successor, fold the comparison into the 5798 // predecessor and use logical operations to update the incoming value 5799 // for PHI nodes in common successor. 5800 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5801 return requestResimplify(); 5802 return false; 5803 } 5804 5805 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5806 BasicBlock *PredPred = nullptr; 5807 for (auto *P : predecessors(BB)) { 5808 BasicBlock *PPred = P->getSinglePredecessor(); 5809 if (!PPred || (PredPred && PredPred != PPred)) 5810 return nullptr; 5811 PredPred = PPred; 5812 } 5813 return PredPred; 5814 } 5815 5816 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5817 BasicBlock *BB = BI->getParent(); 5818 const Function *Fn = BB->getParent(); 5819 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5820 return false; 5821 5822 // Conditional branch 5823 if (isValueEqualityComparison(BI)) { 5824 // If we only have one predecessor, and if it is a branch on this value, 5825 // see if that predecessor totally determines the outcome of this 5826 // switch. 5827 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5828 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5829 return requestResimplify(); 5830 5831 // This block must be empty, except for the setcond inst, if it exists. 5832 // Ignore dbg intrinsics. 5833 auto I = BB->instructionsWithoutDebug().begin(); 5834 if (&*I == BI) { 5835 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5836 return requestResimplify(); 5837 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5838 ++I; 5839 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5840 return requestResimplify(); 5841 } 5842 } 5843 5844 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5845 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5846 return true; 5847 5848 // If this basic block has dominating predecessor blocks and the dominating 5849 // blocks' conditions imply BI's condition, we know the direction of BI. 5850 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5851 if (Imp) { 5852 // Turn this into a branch on constant. 5853 auto *OldCond = BI->getCondition(); 5854 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5855 : ConstantInt::getFalse(BB->getContext()); 5856 BI->setCondition(TorF); 5857 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5858 return requestResimplify(); 5859 } 5860 5861 // If this basic block is ONLY a compare and a branch, and if a predecessor 5862 // branches to us and one of our successors, fold the comparison into the 5863 // predecessor and use logical operations to pick the right destination. 5864 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5865 return requestResimplify(); 5866 5867 // We have a conditional branch to two blocks that are only reachable 5868 // from BI. We know that the condbr dominates the two blocks, so see if 5869 // there is any identical code in the "then" and "else" blocks. If so, we 5870 // can hoist it up to the branching block. 5871 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5872 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5873 if (HoistThenElseCodeToIf(BI, TTI)) 5874 return requestResimplify(); 5875 } else { 5876 // If Successor #1 has multiple preds, we may be able to conditionally 5877 // execute Successor #0 if it branches to Successor #1. 5878 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5879 if (Succ0TI->getNumSuccessors() == 1 && 5880 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5881 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5882 return requestResimplify(); 5883 } 5884 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5885 // If Successor #0 has multiple preds, we may be able to conditionally 5886 // execute Successor #1 if it branches to Successor #0. 5887 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5888 if (Succ1TI->getNumSuccessors() == 1 && 5889 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5890 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5891 return requestResimplify(); 5892 } 5893 5894 // If this is a branch on a phi node in the current block, thread control 5895 // through this block if any PHI node entries are constants. 5896 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5897 if (PN->getParent() == BI->getParent()) 5898 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5899 return requestResimplify(); 5900 5901 // Scan predecessor blocks for conditional branches. 5902 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5903 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5904 if (PBI != BI && PBI->isConditional()) 5905 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5906 return requestResimplify(); 5907 5908 // Look for diamond patterns. 5909 if (MergeCondStores) 5910 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5911 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5912 if (PBI != BI && PBI->isConditional()) 5913 if (mergeConditionalStores(PBI, BI, DL)) 5914 return requestResimplify(); 5915 5916 return false; 5917 } 5918 5919 /// Check if passing a value to an instruction will cause undefined behavior. 5920 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5921 Constant *C = dyn_cast<Constant>(V); 5922 if (!C) 5923 return false; 5924 5925 if (I->use_empty()) 5926 return false; 5927 5928 if (C->isNullValue() || isa<UndefValue>(C)) { 5929 // Only look at the first use, avoid hurting compile time with long uselists 5930 User *Use = *I->user_begin(); 5931 5932 // Now make sure that there are no instructions in between that can alter 5933 // control flow (eg. calls) 5934 for (BasicBlock::iterator 5935 i = ++BasicBlock::iterator(I), 5936 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5937 i != UI; ++i) 5938 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5939 return false; 5940 5941 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5942 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5943 if (GEP->getPointerOperand() == I) 5944 return passingValueIsAlwaysUndefined(V, GEP); 5945 5946 // Look through bitcasts. 5947 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5948 return passingValueIsAlwaysUndefined(V, BC); 5949 5950 // Load from null is undefined. 5951 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5952 if (!LI->isVolatile()) 5953 return !NullPointerIsDefined(LI->getFunction(), 5954 LI->getPointerAddressSpace()); 5955 5956 // Store to null is undefined. 5957 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5958 if (!SI->isVolatile()) 5959 return (!NullPointerIsDefined(SI->getFunction(), 5960 SI->getPointerAddressSpace())) && 5961 SI->getPointerOperand() == I; 5962 5963 // A call to null is undefined. 5964 if (auto CS = CallSite(Use)) 5965 return !NullPointerIsDefined(CS->getFunction()) && 5966 CS.getCalledValue() == I; 5967 } 5968 return false; 5969 } 5970 5971 /// If BB has an incoming value that will always trigger undefined behavior 5972 /// (eg. null pointer dereference), remove the branch leading here. 5973 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5974 for (PHINode &PHI : BB->phis()) 5975 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5976 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5977 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5978 IRBuilder<> Builder(T); 5979 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5980 BB->removePredecessor(PHI.getIncomingBlock(i)); 5981 // Turn uncoditional branches into unreachables and remove the dead 5982 // destination from conditional branches. 5983 if (BI->isUnconditional()) 5984 Builder.CreateUnreachable(); 5985 else 5986 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5987 : BI->getSuccessor(0)); 5988 BI->eraseFromParent(); 5989 return true; 5990 } 5991 // TODO: SwitchInst. 5992 } 5993 5994 return false; 5995 } 5996 5997 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 5998 bool Changed = false; 5999 6000 assert(BB && BB->getParent() && "Block not embedded in function!"); 6001 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6002 6003 // Remove basic blocks that have no predecessors (except the entry block)... 6004 // or that just have themself as a predecessor. These are unreachable. 6005 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6006 BB->getSinglePredecessor() == BB) { 6007 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6008 DeleteDeadBlock(BB); 6009 return true; 6010 } 6011 6012 // Check to see if we can constant propagate this terminator instruction 6013 // away... 6014 Changed |= ConstantFoldTerminator(BB, true); 6015 6016 // Check for and eliminate duplicate PHI nodes in this block. 6017 Changed |= EliminateDuplicatePHINodes(BB); 6018 6019 // Check for and remove branches that will always cause undefined behavior. 6020 Changed |= removeUndefIntroducingPredecessor(BB); 6021 6022 // Merge basic blocks into their predecessor if there is only one distinct 6023 // pred, and if there is only one distinct successor of the predecessor, and 6024 // if there are no PHI nodes. 6025 if (MergeBlockIntoPredecessor(BB)) 6026 return true; 6027 6028 if (SinkCommon && Options.SinkCommonInsts) 6029 Changed |= SinkCommonCodeFromPredecessors(BB); 6030 6031 IRBuilder<> Builder(BB); 6032 6033 // If there is a trivial two-entry PHI node in this basic block, and we can 6034 // eliminate it, do so now. 6035 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6036 if (PN->getNumIncomingValues() == 2) 6037 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6038 6039 Builder.SetInsertPoint(BB->getTerminator()); 6040 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6041 if (BI->isUnconditional()) { 6042 if (SimplifyUncondBranch(BI, Builder)) 6043 return true; 6044 } else { 6045 if (SimplifyCondBranch(BI, Builder)) 6046 return true; 6047 } 6048 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6049 if (SimplifyReturn(RI, Builder)) 6050 return true; 6051 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6052 if (SimplifyResume(RI, Builder)) 6053 return true; 6054 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6055 if (SimplifyCleanupReturn(RI)) 6056 return true; 6057 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6058 if (SimplifySwitch(SI, Builder)) 6059 return true; 6060 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6061 if (SimplifyUnreachable(UI)) 6062 return true; 6063 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6064 if (SimplifyIndirectBr(IBI)) 6065 return true; 6066 } 6067 6068 return Changed; 6069 } 6070 6071 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6072 bool Changed = false; 6073 6074 // Repeated simplify BB as long as resimplification is requested. 6075 do { 6076 Resimplify = false; 6077 6078 // Perform one round of simplifcation. Resimplify flag will be set if 6079 // another iteration is requested. 6080 Changed |= simplifyOnce(BB); 6081 } while (Resimplify); 6082 6083 return Changed; 6084 } 6085 6086 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6087 const SimplifyCFGOptions &Options, 6088 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6089 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6090 Options) 6091 .run(BB); 6092 } 6093