1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176   bool Resimplify;
177 
178   Value *isValueEqualityComparison(Instruction *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
199                                              IRBuilder<> &Builder);
200 
201 public:
202   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
203                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
204                  const SimplifyCFGOptions &Opts)
205       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
206 
207   bool run(BasicBlock *BB);
208   bool simplifyOnce(BasicBlock *BB);
209 
210   // Helper to set Resimplify and return change indication.
211   bool requestResimplify() {
212     Resimplify = true;
213     return true;
214   }
215 };
216 
217 } // end anonymous namespace
218 
219 /// Return true if it is safe to merge these two
220 /// terminator instructions together.
221 static bool
222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
223                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
224   if (SI1 == SI2)
225     return false; // Can't merge with self!
226 
227   // It is not safe to merge these two switch instructions if they have a common
228   // successor, and if that successor has a PHI node, and if *that* PHI node has
229   // conflicting incoming values from the two switch blocks.
230   BasicBlock *SI1BB = SI1->getParent();
231   BasicBlock *SI2BB = SI2->getParent();
232 
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   bool Fail = false;
235   for (BasicBlock *Succ : successors(SI2BB))
236     if (SI1Succs.count(Succ))
237       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
238         PHINode *PN = cast<PHINode>(BBI);
239         if (PN->getIncomingValueForBlock(SI1BB) !=
240             PN->getIncomingValueForBlock(SI2BB)) {
241           if (FailBlocks)
242             FailBlocks->insert(Succ);
243           Fail = true;
244         }
245       }
246 
247   return !Fail;
248 }
249 
250 /// Return true if it is safe and profitable to merge these two terminator
251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
252 /// store all PHI nodes in common successors.
253 static bool
254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
255                                 Instruction *Cond,
256                                 SmallVectorImpl<PHINode *> &PhiNodes) {
257   if (SI1 == SI2)
258     return false; // Can't merge with self!
259   assert(SI1->isUnconditional() && SI2->isConditional());
260 
261   // We fold the unconditional branch if we can easily update all PHI nodes in
262   // common successors:
263   // 1> We have a constant incoming value for the conditional branch;
264   // 2> We have "Cond" as the incoming value for the unconditional branch;
265   // 3> SI2->getCondition() and Cond have same operands.
266   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
267   if (!Ci2)
268     return false;
269   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
270         Cond->getOperand(1) == Ci2->getOperand(1)) &&
271       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
272         Cond->getOperand(1) == Ci2->getOperand(0)))
273     return false;
274 
275   BasicBlock *SI1BB = SI1->getParent();
276   BasicBlock *SI2BB = SI2->getParent();
277   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
278   for (BasicBlock *Succ : successors(SI2BB))
279     if (SI1Succs.count(Succ))
280       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
281         PHINode *PN = cast<PHINode>(BBI);
282         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
283             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
284           return false;
285         PhiNodes.push_back(PN);
286       }
287   return true;
288 }
289 
290 /// Update PHI nodes in Succ to indicate that there will now be entries in it
291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
292 /// will be the same as those coming in from ExistPred, an existing predecessor
293 /// of Succ.
294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
295                                   BasicBlock *ExistPred) {
296   for (PHINode &PN : Succ->phis())
297     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
298 }
299 
300 /// Compute an abstract "cost" of speculating the given instruction,
301 /// which is assumed to be safe to speculate. TCC_Free means cheap,
302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
303 /// expensive.
304 static unsigned ComputeSpeculationCost(const User *I,
305                                        const TargetTransformInfo &TTI) {
306   assert(isSafeToSpeculativelyExecute(I) &&
307          "Instruction is not safe to speculatively execute!");
308   return TTI.getUserCost(I);
309 }
310 
311 /// If we have a merge point of an "if condition" as accepted above,
312 /// return true if the specified value dominates the block.  We
313 /// don't handle the true generality of domination here, just a special case
314 /// which works well enough for us.
315 ///
316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
317 /// see if V (which must be an instruction) and its recursive operands
318 /// that do not dominate BB have a combined cost lower than CostRemaining and
319 /// are non-trapping.  If both are true, the instruction is inserted into the
320 /// set and true is returned.
321 ///
322 /// The cost for most non-trapping instructions is defined as 1 except for
323 /// Select whose cost is 2.
324 ///
325 /// After this function returns, CostRemaining is decreased by the cost of
326 /// V plus its non-dominating operands.  If that cost is greater than
327 /// CostRemaining, false is returned and CostRemaining is undefined.
328 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
329                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
330                                 unsigned &CostRemaining,
331                                 const TargetTransformInfo &TTI,
332                                 unsigned Depth = 0) {
333   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
334   // so limit the recursion depth.
335   // TODO: While this recursion limit does prevent pathological behavior, it
336   // would be better to track visited instructions to avoid cycles.
337   if (Depth == MaxSpeculationDepth)
338     return false;
339 
340   Instruction *I = dyn_cast<Instruction>(V);
341   if (!I) {
342     // Non-instructions all dominate instructions, but not all constantexprs
343     // can be executed unconditionally.
344     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345       if (C->canTrap())
346         return false;
347     return true;
348   }
349   BasicBlock *PBB = I->getParent();
350 
351   // We don't want to allow weird loops that might have the "if condition" in
352   // the bottom of this block.
353   if (PBB == BB)
354     return false;
355 
356   // If this instruction is defined in a block that contains an unconditional
357   // branch to BB, then it must be in the 'conditional' part of the "if
358   // statement".  If not, it definitely dominates the region.
359   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
360   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
361     return true;
362 
363   // If we have seen this instruction before, don't count it again.
364   if (AggressiveInsts.count(I))
365     return true;
366 
367   // Okay, it looks like the instruction IS in the "condition".  Check to
368   // see if it's a cheap instruction to unconditionally compute, and if it
369   // only uses stuff defined outside of the condition.  If so, hoist it out.
370   if (!isSafeToSpeculativelyExecute(I))
371     return false;
372 
373   unsigned Cost = ComputeSpeculationCost(I, TTI);
374 
375   // Allow exactly one instruction to be speculated regardless of its cost
376   // (as long as it is safe to do so).
377   // This is intended to flatten the CFG even if the instruction is a division
378   // or other expensive operation. The speculation of an expensive instruction
379   // is expected to be undone in CodeGenPrepare if the speculation has not
380   // enabled further IR optimizations.
381   if (Cost > CostRemaining &&
382       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
383     return false;
384 
385   // Avoid unsigned wrap.
386   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
387 
388   // Okay, we can only really hoist these out if their operands do
389   // not take us over the cost threshold.
390   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
391     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
392                              Depth + 1))
393       return false;
394   // Okay, it's safe to do this!  Remember this instruction.
395   AggressiveInsts.insert(I);
396   return true;
397 }
398 
399 /// Extract ConstantInt from value, looking through IntToPtr
400 /// and PointerNullValue. Return NULL if value is not a constant int.
401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
402   // Normal constant int.
403   ConstantInt *CI = dyn_cast<ConstantInt>(V);
404   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
405     return CI;
406 
407   // This is some kind of pointer constant. Turn it into a pointer-sized
408   // ConstantInt if possible.
409   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
410 
411   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
412   if (isa<ConstantPointerNull>(V))
413     return ConstantInt::get(PtrTy, 0);
414 
415   // IntToPtr const int.
416   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
417     if (CE->getOpcode() == Instruction::IntToPtr)
418       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
419         // The constant is very likely to have the right type already.
420         if (CI->getType() == PtrTy)
421           return CI;
422         else
423           return cast<ConstantInt>(
424               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
425       }
426   return nullptr;
427 }
428 
429 namespace {
430 
431 /// Given a chain of or (||) or and (&&) comparison of a value against a
432 /// constant, this will try to recover the information required for a switch
433 /// structure.
434 /// It will depth-first traverse the chain of comparison, seeking for patterns
435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
436 /// representing the different cases for the switch.
437 /// Note that if the chain is composed of '||' it will build the set of elements
438 /// that matches the comparisons (i.e. any of this value validate the chain)
439 /// while for a chain of '&&' it will build the set elements that make the test
440 /// fail.
441 struct ConstantComparesGatherer {
442   const DataLayout &DL;
443 
444   /// Value found for the switch comparison
445   Value *CompValue = nullptr;
446 
447   /// Extra clause to be checked before the switch
448   Value *Extra = nullptr;
449 
450   /// Set of integers to match in switch
451   SmallVector<ConstantInt *, 8> Vals;
452 
453   /// Number of comparisons matched in the and/or chain
454   unsigned UsedICmps = 0;
455 
456   /// Construct and compute the result for the comparison instruction Cond
457   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
458     gather(Cond);
459   }
460 
461   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
462   ConstantComparesGatherer &
463   operator=(const ConstantComparesGatherer &) = delete;
464 
465 private:
466   /// Try to set the current value used for the comparison, it succeeds only if
467   /// it wasn't set before or if the new value is the same as the old one
468   bool setValueOnce(Value *NewVal) {
469     if (CompValue && CompValue != NewVal)
470       return false;
471     CompValue = NewVal;
472     return (CompValue != nullptr);
473   }
474 
475   /// Try to match Instruction "I" as a comparison against a constant and
476   /// populates the array Vals with the set of values that match (or do not
477   /// match depending on isEQ).
478   /// Return false on failure. On success, the Value the comparison matched
479   /// against is placed in CompValue.
480   /// If CompValue is already set, the function is expected to fail if a match
481   /// is found but the value compared to is different.
482   bool matchInstruction(Instruction *I, bool isEQ) {
483     // If this is an icmp against a constant, handle this as one of the cases.
484     ICmpInst *ICI;
485     ConstantInt *C;
486     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
487           (C = GetConstantInt(I->getOperand(1), DL)))) {
488       return false;
489     }
490 
491     Value *RHSVal;
492     const APInt *RHSC;
493 
494     // Pattern match a special case
495     // (x & ~2^z) == y --> x == y || x == y|2^z
496     // This undoes a transformation done by instcombine to fuse 2 compares.
497     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
498       // It's a little bit hard to see why the following transformations are
499       // correct. Here is a CVC3 program to verify them for 64-bit values:
500 
501       /*
502          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
503          x    : BITVECTOR(64);
504          y    : BITVECTOR(64);
505          z    : BITVECTOR(64);
506          mask : BITVECTOR(64) = BVSHL(ONE, z);
507          QUERY( (y & ~mask = y) =>
508                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
509          );
510          QUERY( (y |  mask = y) =>
511                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
512          );
513       */
514 
515       // Please note that each pattern must be a dual implication (<--> or
516       // iff). One directional implication can create spurious matches. If the
517       // implication is only one-way, an unsatisfiable condition on the left
518       // side can imply a satisfiable condition on the right side. Dual
519       // implication ensures that satisfiable conditions are transformed to
520       // other satisfiable conditions and unsatisfiable conditions are
521       // transformed to other unsatisfiable conditions.
522 
523       // Here is a concrete example of a unsatisfiable condition on the left
524       // implying a satisfiable condition on the right:
525       //
526       // mask = (1 << z)
527       // (x & ~mask) == y  --> (x == y || x == (y | mask))
528       //
529       // Substituting y = 3, z = 0 yields:
530       // (x & -2) == 3 --> (x == 3 || x == 2)
531 
532       // Pattern match a special case:
533       /*
534         QUERY( (y & ~mask = y) =>
535                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
536         );
537       */
538       if (match(ICI->getOperand(0),
539                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
540         APInt Mask = ~*RHSC;
541         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
542           // If we already have a value for the switch, it has to match!
543           if (!setValueOnce(RHSVal))
544             return false;
545 
546           Vals.push_back(C);
547           Vals.push_back(
548               ConstantInt::get(C->getContext(),
549                                C->getValue() | Mask));
550           UsedICmps++;
551           return true;
552         }
553       }
554 
555       // Pattern match a special case:
556       /*
557         QUERY( (y |  mask = y) =>
558                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
559         );
560       */
561       if (match(ICI->getOperand(0),
562                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
563         APInt Mask = *RHSC;
564         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
565           // If we already have a value for the switch, it has to match!
566           if (!setValueOnce(RHSVal))
567             return false;
568 
569           Vals.push_back(C);
570           Vals.push_back(ConstantInt::get(C->getContext(),
571                                           C->getValue() & ~Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // If we already have a value for the switch, it has to match!
578       if (!setValueOnce(ICI->getOperand(0)))
579         return false;
580 
581       UsedICmps++;
582       Vals.push_back(C);
583       return ICI->getOperand(0);
584     }
585 
586     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
587     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
588         ICI->getPredicate(), C->getValue());
589 
590     // Shift the range if the compare is fed by an add. This is the range
591     // compare idiom as emitted by instcombine.
592     Value *CandidateVal = I->getOperand(0);
593     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
594       Span = Span.subtract(*RHSC);
595       CandidateVal = RHSVal;
596     }
597 
598     // If this is an and/!= check, then we are looking to build the set of
599     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
600     // x != 0 && x != 1.
601     if (!isEQ)
602       Span = Span.inverse();
603 
604     // If there are a ton of values, we don't want to make a ginormous switch.
605     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
606       return false;
607     }
608 
609     // If we already have a value for the switch, it has to match!
610     if (!setValueOnce(CandidateVal))
611       return false;
612 
613     // Add all values from the range to the set
614     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
615       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
616 
617     UsedICmps++;
618     return true;
619   }
620 
621   /// Given a potentially 'or'd or 'and'd together collection of icmp
622   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
623   /// the value being compared, and stick the list constants into the Vals
624   /// vector.
625   /// One "Extra" case is allowed to differ from the other.
626   void gather(Value *V) {
627     Instruction *I = dyn_cast<Instruction>(V);
628     bool isEQ = (I->getOpcode() == Instruction::Or);
629 
630     // Keep a stack (SmallVector for efficiency) for depth-first traversal
631     SmallVector<Value *, 8> DFT;
632     SmallPtrSet<Value *, 8> Visited;
633 
634     // Initialize
635     Visited.insert(V);
636     DFT.push_back(V);
637 
638     while (!DFT.empty()) {
639       V = DFT.pop_back_val();
640 
641       if (Instruction *I = dyn_cast<Instruction>(V)) {
642         // If it is a || (or && depending on isEQ), process the operands.
643         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
644           if (Visited.insert(I->getOperand(1)).second)
645             DFT.push_back(I->getOperand(1));
646           if (Visited.insert(I->getOperand(0)).second)
647             DFT.push_back(I->getOperand(0));
648           continue;
649         }
650 
651         // Try to match the current instruction
652         if (matchInstruction(I, isEQ))
653           // Match succeed, continue the loop
654           continue;
655       }
656 
657       // One element of the sequence of || (or &&) could not be match as a
658       // comparison against the same value as the others.
659       // We allow only one "Extra" case to be checked before the switch
660       if (!Extra) {
661         Extra = V;
662         continue;
663       }
664       // Failed to parse a proper sequence, abort now
665       CompValue = nullptr;
666       break;
667     }
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 static void EraseTerminatorAndDCECond(Instruction *TI) {
674   Instruction *Cond = nullptr;
675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676     Cond = dyn_cast<Instruction>(SI->getCondition());
677   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
678     if (BI->isConditional())
679       Cond = dyn_cast<Instruction>(BI->getCondition());
680   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
681     Cond = dyn_cast<Instruction>(IBI->getAddress());
682   }
683 
684   TI->eraseFromParent();
685   if (Cond)
686     RecursivelyDeleteTriviallyDeadInstructions(Cond);
687 }
688 
689 /// Return true if the specified terminator checks
690 /// to see if a value is equal to constant integer value.
691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
692   Value *CV = nullptr;
693   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
694     // Do not permit merging of large switch instructions into their
695     // predecessors unless there is only one predecessor.
696     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
697       CV = SI->getCondition();
698   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
699     if (BI->isConditional() && BI->getCondition()->hasOneUse())
700       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
701         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
702           CV = ICI->getOperand(0);
703       }
704 
705   // Unwrap any lossless ptrtoint cast.
706   if (CV) {
707     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
708       Value *Ptr = PTII->getPointerOperand();
709       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
710         CV = Ptr;
711     }
712   }
713   return CV;
714 }
715 
716 /// Given a value comparison instruction,
717 /// decode all of the 'cases' that it represents and return the 'default' block.
718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
719     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
720   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
721     Cases.reserve(SI->getNumCases());
722     for (auto Case : SI->cases())
723       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
724                                                   Case.getCaseSuccessor()));
725     return SI->getDefaultDest();
726   }
727 
728   BranchInst *BI = cast<BranchInst>(TI);
729   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
730   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
731   Cases.push_back(ValueEqualityComparisonCase(
732       GetConstantInt(ICI->getOperand(1), DL), Succ));
733   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
734 }
735 
736 /// Given a vector of bb/value pairs, remove any entries
737 /// in the list that match the specified block.
738 static void
739 EliminateBlockCases(BasicBlock *BB,
740                     std::vector<ValueEqualityComparisonCase> &Cases) {
741   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
742 }
743 
744 /// Return true if there are any keys in C1 that exist in C2 as well.
745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
746                           std::vector<ValueEqualityComparisonCase> &C2) {
747   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
748 
749   // Make V1 be smaller than V2.
750   if (V1->size() > V2->size())
751     std::swap(V1, V2);
752 
753   if (V1->empty())
754     return false;
755   if (V1->size() == 1) {
756     // Just scan V2.
757     ConstantInt *TheVal = (*V1)[0].Value;
758     for (unsigned i = 0, e = V2->size(); i != e; ++i)
759       if (TheVal == (*V2)[i].Value)
760         return true;
761   }
762 
763   // Otherwise, just sort both lists and compare element by element.
764   array_pod_sort(V1->begin(), V1->end());
765   array_pod_sort(V2->begin(), V2->end());
766   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
767   while (i1 != e1 && i2 != e2) {
768     if ((*V1)[i1].Value == (*V2)[i2].Value)
769       return true;
770     if ((*V1)[i1].Value < (*V2)[i2].Value)
771       ++i1;
772     else
773       ++i2;
774   }
775   return false;
776 }
777 
778 // Set branch weights on SwitchInst. This sets the metadata if there is at
779 // least one non-zero weight.
780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
781   // Check that there is at least one non-zero weight. Otherwise, pass
782   // nullptr to setMetadata which will erase the existing metadata.
783   MDNode *N = nullptr;
784   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
785     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
786   SI->setMetadata(LLVMContext::MD_prof, N);
787 }
788 
789 // Similar to the above, but for branch and select instructions that take
790 // exactly 2 weights.
791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
792                              uint32_t FalseWeight) {
793   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
794   // Check that there is at least one non-zero weight. Otherwise, pass
795   // nullptr to setMetadata which will erase the existing metadata.
796   MDNode *N = nullptr;
797   if (TrueWeight || FalseWeight)
798     N = MDBuilder(I->getParent()->getContext())
799             .createBranchWeights(TrueWeight, FalseWeight);
800   I->setMetadata(LLVMContext::MD_prof, N);
801 }
802 
803 /// If TI is known to be a terminator instruction and its block is known to
804 /// only have a single predecessor block, check to see if that predecessor is
805 /// also a value comparison with the same value, and if that comparison
806 /// determines the outcome of this comparison. If so, simplify TI. This does a
807 /// very limited form of jump threading.
808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
809     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
810   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
811   if (!PredVal)
812     return false; // Not a value comparison in predecessor.
813 
814   Value *ThisVal = isValueEqualityComparison(TI);
815   assert(ThisVal && "This isn't a value comparison!!");
816   if (ThisVal != PredVal)
817     return false; // Different predicates.
818 
819   // TODO: Preserve branch weight metadata, similarly to how
820   // FoldValueComparisonIntoPredecessors preserves it.
821 
822   // Find out information about when control will move from Pred to TI's block.
823   std::vector<ValueEqualityComparisonCase> PredCases;
824   BasicBlock *PredDef =
825       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
826   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
827 
828   // Find information about how control leaves this block.
829   std::vector<ValueEqualityComparisonCase> ThisCases;
830   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
831   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
832 
833   // If TI's block is the default block from Pred's comparison, potentially
834   // simplify TI based on this knowledge.
835   if (PredDef == TI->getParent()) {
836     // If we are here, we know that the value is none of those cases listed in
837     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
838     // can simplify TI.
839     if (!ValuesOverlap(PredCases, ThisCases))
840       return false;
841 
842     if (isa<BranchInst>(TI)) {
843       // Okay, one of the successors of this condbr is dead.  Convert it to a
844       // uncond br.
845       assert(ThisCases.size() == 1 && "Branch can only have one case!");
846       // Insert the new branch.
847       Instruction *NI = Builder.CreateBr(ThisDef);
848       (void)NI;
849 
850       // Remove PHI node entries for the dead edge.
851       ThisCases[0].Dest->removePredecessor(TI->getParent());
852 
853       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
854                         << "Through successor TI: " << *TI << "Leaving: " << *NI
855                         << "\n");
856 
857       EraseTerminatorAndDCECond(TI);
858       return true;
859     }
860 
861     SwitchInst *SI = cast<SwitchInst>(TI);
862     // Okay, TI has cases that are statically dead, prune them away.
863     SmallPtrSet<Constant *, 16> DeadCases;
864     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
865       DeadCases.insert(PredCases[i].Value);
866 
867     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
868                       << "Through successor TI: " << *TI);
869 
870     // Collect branch weights into a vector.
871     SmallVector<uint32_t, 8> Weights;
872     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
873     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
874     if (HasWeight)
875       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
876            ++MD_i) {
877         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
878         Weights.push_back(CI->getValue().getZExtValue());
879       }
880     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
881       --i;
882       if (DeadCases.count(i->getCaseValue())) {
883         if (HasWeight) {
884           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
885           Weights.pop_back();
886         }
887         i->getCaseSuccessor()->removePredecessor(TI->getParent());
888         SI->removeCase(i);
889       }
890     }
891     if (HasWeight && Weights.size() >= 2)
892       setBranchWeights(SI, Weights);
893 
894     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
895     return true;
896   }
897 
898   // Otherwise, TI's block must correspond to some matched value.  Find out
899   // which value (or set of values) this is.
900   ConstantInt *TIV = nullptr;
901   BasicBlock *TIBB = TI->getParent();
902   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
903     if (PredCases[i].Dest == TIBB) {
904       if (TIV)
905         return false; // Cannot handle multiple values coming to this block.
906       TIV = PredCases[i].Value;
907     }
908   assert(TIV && "No edge from pred to succ?");
909 
910   // Okay, we found the one constant that our value can be if we get into TI's
911   // BB.  Find out which successor will unconditionally be branched to.
912   BasicBlock *TheRealDest = nullptr;
913   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
914     if (ThisCases[i].Value == TIV) {
915       TheRealDest = ThisCases[i].Dest;
916       break;
917     }
918 
919   // If not handled by any explicit cases, it is handled by the default case.
920   if (!TheRealDest)
921     TheRealDest = ThisDef;
922 
923   // Remove PHI node entries for dead edges.
924   BasicBlock *CheckEdge = TheRealDest;
925   for (BasicBlock *Succ : successors(TIBB))
926     if (Succ != CheckEdge)
927       Succ->removePredecessor(TIBB);
928     else
929       CheckEdge = nullptr;
930 
931   // Insert the new branch.
932   Instruction *NI = Builder.CreateBr(TheRealDest);
933   (void)NI;
934 
935   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
936                     << "Through successor TI: " << *TI << "Leaving: " << *NI
937                     << "\n");
938 
939   EraseTerminatorAndDCECond(TI);
940   return true;
941 }
942 
943 namespace {
944 
945 /// This class implements a stable ordering of constant
946 /// integers that does not depend on their address.  This is important for
947 /// applications that sort ConstantInt's to ensure uniqueness.
948 struct ConstantIntOrdering {
949   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
950     return LHS->getValue().ult(RHS->getValue());
951   }
952 };
953 
954 } // end anonymous namespace
955 
956 static int ConstantIntSortPredicate(ConstantInt *const *P1,
957                                     ConstantInt *const *P2) {
958   const ConstantInt *LHS = *P1;
959   const ConstantInt *RHS = *P2;
960   if (LHS == RHS)
961     return 0;
962   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
963 }
964 
965 static inline bool HasBranchWeights(const Instruction *I) {
966   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
967   if (ProfMD && ProfMD->getOperand(0))
968     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
969       return MDS->getString().equals("branch_weights");
970 
971   return false;
972 }
973 
974 /// Get Weights of a given terminator, the default weight is at the front
975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
976 /// metadata.
977 static void GetBranchWeights(Instruction *TI,
978                              SmallVectorImpl<uint64_t> &Weights) {
979   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
980   assert(MD);
981   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
982     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
983     Weights.push_back(CI->getValue().getZExtValue());
984   }
985 
986   // If TI is a conditional eq, the default case is the false case,
987   // and the corresponding branch-weight data is at index 2. We swap the
988   // default weight to be the first entry.
989   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
990     assert(Weights.size() == 2);
991     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
992     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
993       std::swap(Weights.front(), Weights.back());
994   }
995 }
996 
997 /// Keep halving the weights until all can fit in uint32_t.
998 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
999   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1000   if (Max > UINT_MAX) {
1001     unsigned Offset = 32 - countLeadingZeros(Max);
1002     for (uint64_t &I : Weights)
1003       I >>= Offset;
1004   }
1005 }
1006 
1007 /// The specified terminator is a value equality comparison instruction
1008 /// (either a switch or a branch on "X == c").
1009 /// See if any of the predecessors of the terminator block are value comparisons
1010 /// on the same value.  If so, and if safe to do so, fold them together.
1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1012                                                          IRBuilder<> &Builder) {
1013   BasicBlock *BB = TI->getParent();
1014   Value *CV = isValueEqualityComparison(TI); // CondVal
1015   assert(CV && "Not a comparison?");
1016   bool Changed = false;
1017 
1018   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1019   while (!Preds.empty()) {
1020     BasicBlock *Pred = Preds.pop_back_val();
1021 
1022     // See if the predecessor is a comparison with the same value.
1023     Instruction *PTI = Pred->getTerminator();
1024     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1025 
1026     if (PCV == CV && TI != PTI) {
1027       SmallSetVector<BasicBlock*, 4> FailBlocks;
1028       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1029         for (auto *Succ : FailBlocks) {
1030           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1031             return false;
1032         }
1033       }
1034 
1035       // Figure out which 'cases' to copy from SI to PSI.
1036       std::vector<ValueEqualityComparisonCase> BBCases;
1037       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1038 
1039       std::vector<ValueEqualityComparisonCase> PredCases;
1040       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1041 
1042       // Based on whether the default edge from PTI goes to BB or not, fill in
1043       // PredCases and PredDefault with the new switch cases we would like to
1044       // build.
1045       SmallVector<BasicBlock *, 8> NewSuccessors;
1046 
1047       // Update the branch weight metadata along the way
1048       SmallVector<uint64_t, 8> Weights;
1049       bool PredHasWeights = HasBranchWeights(PTI);
1050       bool SuccHasWeights = HasBranchWeights(TI);
1051 
1052       if (PredHasWeights) {
1053         GetBranchWeights(PTI, Weights);
1054         // branch-weight metadata is inconsistent here.
1055         if (Weights.size() != 1 + PredCases.size())
1056           PredHasWeights = SuccHasWeights = false;
1057       } else if (SuccHasWeights)
1058         // If there are no predecessor weights but there are successor weights,
1059         // populate Weights with 1, which will later be scaled to the sum of
1060         // successor's weights
1061         Weights.assign(1 + PredCases.size(), 1);
1062 
1063       SmallVector<uint64_t, 8> SuccWeights;
1064       if (SuccHasWeights) {
1065         GetBranchWeights(TI, SuccWeights);
1066         // branch-weight metadata is inconsistent here.
1067         if (SuccWeights.size() != 1 + BBCases.size())
1068           PredHasWeights = SuccHasWeights = false;
1069       } else if (PredHasWeights)
1070         SuccWeights.assign(1 + BBCases.size(), 1);
1071 
1072       if (PredDefault == BB) {
1073         // If this is the default destination from PTI, only the edges in TI
1074         // that don't occur in PTI, or that branch to BB will be activated.
1075         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1076         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1077           if (PredCases[i].Dest != BB)
1078             PTIHandled.insert(PredCases[i].Value);
1079           else {
1080             // The default destination is BB, we don't need explicit targets.
1081             std::swap(PredCases[i], PredCases.back());
1082 
1083             if (PredHasWeights || SuccHasWeights) {
1084               // Increase weight for the default case.
1085               Weights[0] += Weights[i + 1];
1086               std::swap(Weights[i + 1], Weights.back());
1087               Weights.pop_back();
1088             }
1089 
1090             PredCases.pop_back();
1091             --i;
1092             --e;
1093           }
1094 
1095         // Reconstruct the new switch statement we will be building.
1096         if (PredDefault != BBDefault) {
1097           PredDefault->removePredecessor(Pred);
1098           PredDefault = BBDefault;
1099           NewSuccessors.push_back(BBDefault);
1100         }
1101 
1102         unsigned CasesFromPred = Weights.size();
1103         uint64_t ValidTotalSuccWeight = 0;
1104         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1105           if (!PTIHandled.count(BBCases[i].Value) &&
1106               BBCases[i].Dest != BBDefault) {
1107             PredCases.push_back(BBCases[i]);
1108             NewSuccessors.push_back(BBCases[i].Dest);
1109             if (SuccHasWeights || PredHasWeights) {
1110               // The default weight is at index 0, so weight for the ith case
1111               // should be at index i+1. Scale the cases from successor by
1112               // PredDefaultWeight (Weights[0]).
1113               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1114               ValidTotalSuccWeight += SuccWeights[i + 1];
1115             }
1116           }
1117 
1118         if (SuccHasWeights || PredHasWeights) {
1119           ValidTotalSuccWeight += SuccWeights[0];
1120           // Scale the cases from predecessor by ValidTotalSuccWeight.
1121           for (unsigned i = 1; i < CasesFromPred; ++i)
1122             Weights[i] *= ValidTotalSuccWeight;
1123           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1124           Weights[0] *= SuccWeights[0];
1125         }
1126       } else {
1127         // If this is not the default destination from PSI, only the edges
1128         // in SI that occur in PSI with a destination of BB will be
1129         // activated.
1130         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1131         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1132         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1133           if (PredCases[i].Dest == BB) {
1134             PTIHandled.insert(PredCases[i].Value);
1135 
1136             if (PredHasWeights || SuccHasWeights) {
1137               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1138               std::swap(Weights[i + 1], Weights.back());
1139               Weights.pop_back();
1140             }
1141 
1142             std::swap(PredCases[i], PredCases.back());
1143             PredCases.pop_back();
1144             --i;
1145             --e;
1146           }
1147 
1148         // Okay, now we know which constants were sent to BB from the
1149         // predecessor.  Figure out where they will all go now.
1150         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1151           if (PTIHandled.count(BBCases[i].Value)) {
1152             // If this is one we are capable of getting...
1153             if (PredHasWeights || SuccHasWeights)
1154               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1155             PredCases.push_back(BBCases[i]);
1156             NewSuccessors.push_back(BBCases[i].Dest);
1157             PTIHandled.erase(
1158                 BBCases[i].Value); // This constant is taken care of
1159           }
1160 
1161         // If there are any constants vectored to BB that TI doesn't handle,
1162         // they must go to the default destination of TI.
1163         for (ConstantInt *I : PTIHandled) {
1164           if (PredHasWeights || SuccHasWeights)
1165             Weights.push_back(WeightsForHandled[I]);
1166           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1167           NewSuccessors.push_back(BBDefault);
1168         }
1169       }
1170 
1171       // Okay, at this point, we know which new successor Pred will get.  Make
1172       // sure we update the number of entries in the PHI nodes for these
1173       // successors.
1174       for (BasicBlock *NewSuccessor : NewSuccessors)
1175         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1176 
1177       Builder.SetInsertPoint(PTI);
1178       // Convert pointer to int before we switch.
1179       if (CV->getType()->isPointerTy()) {
1180         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1181                                     "magicptr");
1182       }
1183 
1184       // Now that the successors are updated, create the new Switch instruction.
1185       SwitchInst *NewSI =
1186           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1187       NewSI->setDebugLoc(PTI->getDebugLoc());
1188       for (ValueEqualityComparisonCase &V : PredCases)
1189         NewSI->addCase(V.Value, V.Dest);
1190 
1191       if (PredHasWeights || SuccHasWeights) {
1192         // Halve the weights if any of them cannot fit in an uint32_t
1193         FitWeights(Weights);
1194 
1195         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1196 
1197         setBranchWeights(NewSI, MDWeights);
1198       }
1199 
1200       EraseTerminatorAndDCECond(PTI);
1201 
1202       // Okay, last check.  If BB is still a successor of PSI, then we must
1203       // have an infinite loop case.  If so, add an infinitely looping block
1204       // to handle the case to preserve the behavior of the code.
1205       BasicBlock *InfLoopBlock = nullptr;
1206       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1207         if (NewSI->getSuccessor(i) == BB) {
1208           if (!InfLoopBlock) {
1209             // Insert it at the end of the function, because it's either code,
1210             // or it won't matter if it's hot. :)
1211             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1212                                               BB->getParent());
1213             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1214           }
1215           NewSI->setSuccessor(i, InfLoopBlock);
1216         }
1217 
1218       Changed = true;
1219     }
1220   }
1221   return Changed;
1222 }
1223 
1224 // If we would need to insert a select that uses the value of this invoke
1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1226 // can't hoist the invoke, as there is nowhere to put the select in this case.
1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1228                                 Instruction *I1, Instruction *I2) {
1229   for (BasicBlock *Succ : successors(BB1)) {
1230     for (const PHINode &PN : Succ->phis()) {
1231       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1232       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1233       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1234         return false;
1235       }
1236     }
1237   }
1238   return true;
1239 }
1240 
1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1242 
1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1244 /// in the two blocks up into the branch block. The caller of this function
1245 /// guarantees that BI's block dominates BB1 and BB2.
1246 static bool HoistThenElseCodeToIf(BranchInst *BI,
1247                                   const TargetTransformInfo &TTI) {
1248   // This does very trivial matching, with limited scanning, to find identical
1249   // instructions in the two blocks.  In particular, we don't want to get into
1250   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1251   // such, we currently just scan for obviously identical instructions in an
1252   // identical order.
1253   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1254   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1255 
1256   BasicBlock::iterator BB1_Itr = BB1->begin();
1257   BasicBlock::iterator BB2_Itr = BB2->begin();
1258 
1259   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1260   // Skip debug info if it is not identical.
1261   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1262   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1263   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1264     while (isa<DbgInfoIntrinsic>(I1))
1265       I1 = &*BB1_Itr++;
1266     while (isa<DbgInfoIntrinsic>(I2))
1267       I2 = &*BB2_Itr++;
1268   }
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1271     return false;
1272 
1273   BasicBlock *BIParent = BI->getParent();
1274 
1275   bool Changed = false;
1276   do {
1277     // If we are hoisting the terminator instruction, don't move one (making a
1278     // broken BB), instead clone it, and remove BI.
1279     if (I1->isTerminator())
1280       goto HoistTerminator;
1281 
1282     // If we're going to hoist a call, make sure that the two instructions we're
1283     // commoning/hoisting are both marked with musttail, or neither of them is
1284     // marked as such. Otherwise, we might end up in a situation where we hoist
1285     // from a block where the terminator is a `ret` to a block where the terminator
1286     // is a `br`, and `musttail` calls expect to be followed by a return.
1287     auto *C1 = dyn_cast<CallInst>(I1);
1288     auto *C2 = dyn_cast<CallInst>(I2);
1289     if (C1 && C2)
1290       if (C1->isMustTailCall() != C2->isMustTailCall())
1291         return Changed;
1292 
1293     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1294       return Changed;
1295 
1296     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1297       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1298       // The debug location is an integral part of a debug info intrinsic
1299       // and can't be separated from it or replaced.  Instead of attempting
1300       // to merge locations, simply hoist both copies of the intrinsic.
1301       BIParent->getInstList().splice(BI->getIterator(),
1302                                      BB1->getInstList(), I1);
1303       BIParent->getInstList().splice(BI->getIterator(),
1304                                      BB2->getInstList(), I2);
1305       Changed = true;
1306     } else {
1307       // For a normal instruction, we just move one to right before the branch,
1308       // then replace all uses of the other with the first.  Finally, we remove
1309       // the now redundant second instruction.
1310       BIParent->getInstList().splice(BI->getIterator(),
1311                                      BB1->getInstList(), I1);
1312       if (!I2->use_empty())
1313         I2->replaceAllUsesWith(I1);
1314       I1->andIRFlags(I2);
1315       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1316                              LLVMContext::MD_range,
1317                              LLVMContext::MD_fpmath,
1318                              LLVMContext::MD_invariant_load,
1319                              LLVMContext::MD_nonnull,
1320                              LLVMContext::MD_invariant_group,
1321                              LLVMContext::MD_align,
1322                              LLVMContext::MD_dereferenceable,
1323                              LLVMContext::MD_dereferenceable_or_null,
1324                              LLVMContext::MD_mem_parallel_loop_access};
1325       combineMetadata(I1, I2, KnownIDs, true);
1326 
1327       // I1 and I2 are being combined into a single instruction.  Its debug
1328       // location is the merged locations of the original instructions.
1329       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1330 
1331       I2->eraseFromParent();
1332       Changed = true;
1333     }
1334 
1335     I1 = &*BB1_Itr++;
1336     I2 = &*BB2_Itr++;
1337     // Skip debug info if it is not identical.
1338     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1339     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1340     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1341       while (isa<DbgInfoIntrinsic>(I1))
1342         I1 = &*BB1_Itr++;
1343       while (isa<DbgInfoIntrinsic>(I2))
1344         I2 = &*BB2_Itr++;
1345     }
1346   } while (I1->isIdenticalToWhenDefined(I2));
1347 
1348   return true;
1349 
1350 HoistTerminator:
1351   // It may not be possible to hoist an invoke.
1352   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1353     return Changed;
1354 
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V == BB2V)
1360         continue;
1361 
1362       // Check for passingValueIsAlwaysUndefined here because we would rather
1363       // eliminate undefined control flow then converting it to a select.
1364       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1365           passingValueIsAlwaysUndefined(BB2V, &PN))
1366         return Changed;
1367 
1368       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1369         return Changed;
1370       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1371         return Changed;
1372     }
1373   }
1374 
1375   // As the parent basic block terminator is a branch instruction which is
1376   // removed at the end of the current transformation, use its previous
1377   // non-debug instruction, as the reference insertion point, which will
1378   // provide the debug location for the instruction being hoisted. For BBs
1379   // with only debug instructions, use an empty debug location.
1380   Instruction *InsertPt =
1381       BIParent->getTerminator()->getPrevNonDebugInstruction();
1382 
1383   // Okay, it is safe to hoist the terminator.
1384   Instruction *NT = I1->clone();
1385   BIParent->getInstList().insert(BI->getIterator(), NT);
1386   if (!NT->getType()->isVoidTy()) {
1387     I1->replaceAllUsesWith(NT);
1388     I2->replaceAllUsesWith(NT);
1389     NT->takeName(I1);
1390   }
1391 
1392   // The instruction NT being hoisted, is the terminator for the true branch,
1393   // with debug location (DILocation) within that branch. We can't retain
1394   // its original debug location value, otherwise 'select' instructions that
1395   // are created from any PHI nodes, will take its debug location, giving
1396   // the impression that those 'select' instructions are in the true branch,
1397   // causing incorrect stepping, affecting the debug experience.
1398   NT->setDebugLoc(InsertPt ? InsertPt->getDebugLoc() : DebugLoc());
1399 
1400   IRBuilder<NoFolder> Builder(NT);
1401   // Hoisting one of the terminators from our successor is a great thing.
1402   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1403   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1404   // nodes, so we insert select instruction to compute the final result.
1405   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1406   for (BasicBlock *Succ : successors(BB1)) {
1407     for (PHINode &PN : Succ->phis()) {
1408       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1409       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1410       if (BB1V == BB2V)
1411         continue;
1412 
1413       // These values do not agree.  Insert a select instruction before NT
1414       // that determines the right value.
1415       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1416       if (!SI)
1417         SI = cast<SelectInst>(
1418             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1419                                  BB1V->getName() + "." + BB2V->getName(), BI));
1420 
1421       // Make the PHI node use the select for all incoming values for BB1/BB2
1422       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1423         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1424           PN.setIncomingValue(i, SI);
1425     }
1426   }
1427 
1428   // Update any PHI nodes in our new successors.
1429   for (BasicBlock *Succ : successors(BB1))
1430     AddPredecessorToBlock(Succ, BIParent, BB1);
1431 
1432   EraseTerminatorAndDCECond(BI);
1433   return true;
1434 }
1435 
1436 // All instructions in Insts belong to different blocks that all unconditionally
1437 // branch to a common successor. Analyze each instruction and return true if it
1438 // would be possible to sink them into their successor, creating one common
1439 // instruction instead. For every value that would be required to be provided by
1440 // PHI node (because an operand varies in each input block), add to PHIOperands.
1441 static bool canSinkInstructions(
1442     ArrayRef<Instruction *> Insts,
1443     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1444   // Prune out obviously bad instructions to move. Any non-store instruction
1445   // must have exactly one use, and we check later that use is by a single,
1446   // common PHI instruction in the successor.
1447   for (auto *I : Insts) {
1448     // These instructions may change or break semantics if moved.
1449     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1450         I->getType()->isTokenTy())
1451       return false;
1452 
1453     // Conservatively return false if I is an inline-asm instruction. Sinking
1454     // and merging inline-asm instructions can potentially create arguments
1455     // that cannot satisfy the inline-asm constraints.
1456     if (const auto *C = dyn_cast<CallInst>(I))
1457       if (C->isInlineAsm())
1458         return false;
1459 
1460     // Everything must have only one use too, apart from stores which
1461     // have no uses.
1462     if (!isa<StoreInst>(I) && !I->hasOneUse())
1463       return false;
1464   }
1465 
1466   const Instruction *I0 = Insts.front();
1467   for (auto *I : Insts)
1468     if (!I->isSameOperationAs(I0))
1469       return false;
1470 
1471   // All instructions in Insts are known to be the same opcode. If they aren't
1472   // stores, check the only user of each is a PHI or in the same block as the
1473   // instruction, because if a user is in the same block as an instruction
1474   // we're contemplating sinking, it must already be determined to be sinkable.
1475   if (!isa<StoreInst>(I0)) {
1476     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1477     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1478     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1479           auto *U = cast<Instruction>(*I->user_begin());
1480           return (PNUse &&
1481                   PNUse->getParent() == Succ &&
1482                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1483                  U->getParent() == I->getParent();
1484         }))
1485       return false;
1486   }
1487 
1488   // Because SROA can't handle speculating stores of selects, try not
1489   // to sink loads or stores of allocas when we'd have to create a PHI for
1490   // the address operand. Also, because it is likely that loads or stores
1491   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1492   // This can cause code churn which can have unintended consequences down
1493   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1494   // FIXME: This is a workaround for a deficiency in SROA - see
1495   // https://llvm.org/bugs/show_bug.cgi?id=30188
1496   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1497         return isa<AllocaInst>(I->getOperand(1));
1498       }))
1499     return false;
1500   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1501         return isa<AllocaInst>(I->getOperand(0));
1502       }))
1503     return false;
1504 
1505   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1506     if (I0->getOperand(OI)->getType()->isTokenTy())
1507       // Don't touch any operand of token type.
1508       return false;
1509 
1510     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1511       assert(I->getNumOperands() == I0->getNumOperands());
1512       return I->getOperand(OI) == I0->getOperand(OI);
1513     };
1514     if (!all_of(Insts, SameAsI0)) {
1515       if (!canReplaceOperandWithVariable(I0, OI))
1516         // We can't create a PHI from this GEP.
1517         return false;
1518       // Don't create indirect calls! The called value is the final operand.
1519       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1520         // FIXME: if the call was *already* indirect, we should do this.
1521         return false;
1522       }
1523       for (auto *I : Insts)
1524         PHIOperands[I].push_back(I->getOperand(OI));
1525     }
1526   }
1527   return true;
1528 }
1529 
1530 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1531 // instruction of every block in Blocks to their common successor, commoning
1532 // into one instruction.
1533 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1534   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1535 
1536   // canSinkLastInstruction returning true guarantees that every block has at
1537   // least one non-terminator instruction.
1538   SmallVector<Instruction*,4> Insts;
1539   for (auto *BB : Blocks) {
1540     Instruction *I = BB->getTerminator();
1541     do {
1542       I = I->getPrevNode();
1543     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1544     if (!isa<DbgInfoIntrinsic>(I))
1545       Insts.push_back(I);
1546   }
1547 
1548   // The only checking we need to do now is that all users of all instructions
1549   // are the same PHI node. canSinkLastInstruction should have checked this but
1550   // it is slightly over-aggressive - it gets confused by commutative instructions
1551   // so double-check it here.
1552   Instruction *I0 = Insts.front();
1553   if (!isa<StoreInst>(I0)) {
1554     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1555     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1556           auto *U = cast<Instruction>(*I->user_begin());
1557           return U == PNUse;
1558         }))
1559       return false;
1560   }
1561 
1562   // We don't need to do any more checking here; canSinkLastInstruction should
1563   // have done it all for us.
1564   SmallVector<Value*, 4> NewOperands;
1565   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1566     // This check is different to that in canSinkLastInstruction. There, we
1567     // cared about the global view once simplifycfg (and instcombine) have
1568     // completed - it takes into account PHIs that become trivially
1569     // simplifiable.  However here we need a more local view; if an operand
1570     // differs we create a PHI and rely on instcombine to clean up the very
1571     // small mess we may make.
1572     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1573       return I->getOperand(O) != I0->getOperand(O);
1574     });
1575     if (!NeedPHI) {
1576       NewOperands.push_back(I0->getOperand(O));
1577       continue;
1578     }
1579 
1580     // Create a new PHI in the successor block and populate it.
1581     auto *Op = I0->getOperand(O);
1582     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1583     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1584                                Op->getName() + ".sink", &BBEnd->front());
1585     for (auto *I : Insts)
1586       PN->addIncoming(I->getOperand(O), I->getParent());
1587     NewOperands.push_back(PN);
1588   }
1589 
1590   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1591   // and move it to the start of the successor block.
1592   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1593     I0->getOperandUse(O).set(NewOperands[O]);
1594   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1595 
1596   // Update metadata and IR flags, and merge debug locations.
1597   for (auto *I : Insts)
1598     if (I != I0) {
1599       // The debug location for the "common" instruction is the merged locations
1600       // of all the commoned instructions.  We start with the original location
1601       // of the "common" instruction and iteratively merge each location in the
1602       // loop below.
1603       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1604       // However, as N-way merge for CallInst is rare, so we use simplified API
1605       // instead of using complex API for N-way merge.
1606       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1607       combineMetadataForCSE(I0, I, true);
1608       I0->andIRFlags(I);
1609     }
1610 
1611   if (!isa<StoreInst>(I0)) {
1612     // canSinkLastInstruction checked that all instructions were used by
1613     // one and only one PHI node. Find that now, RAUW it to our common
1614     // instruction and nuke it.
1615     assert(I0->hasOneUse());
1616     auto *PN = cast<PHINode>(*I0->user_begin());
1617     PN->replaceAllUsesWith(I0);
1618     PN->eraseFromParent();
1619   }
1620 
1621   // Finally nuke all instructions apart from the common instruction.
1622   for (auto *I : Insts)
1623     if (I != I0)
1624       I->eraseFromParent();
1625 
1626   return true;
1627 }
1628 
1629 namespace {
1630 
1631   // LockstepReverseIterator - Iterates through instructions
1632   // in a set of blocks in reverse order from the first non-terminator.
1633   // For example (assume all blocks have size n):
1634   //   LockstepReverseIterator I([B1, B2, B3]);
1635   //   *I-- = [B1[n], B2[n], B3[n]];
1636   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1637   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1638   //   ...
1639   class LockstepReverseIterator {
1640     ArrayRef<BasicBlock*> Blocks;
1641     SmallVector<Instruction*,4> Insts;
1642     bool Fail;
1643 
1644   public:
1645     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1646       reset();
1647     }
1648 
1649     void reset() {
1650       Fail = false;
1651       Insts.clear();
1652       for (auto *BB : Blocks) {
1653         Instruction *Inst = BB->getTerminator();
1654         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1655           Inst = Inst->getPrevNode();
1656         if (!Inst) {
1657           // Block wasn't big enough.
1658           Fail = true;
1659           return;
1660         }
1661         Insts.push_back(Inst);
1662       }
1663     }
1664 
1665     bool isValid() const {
1666       return !Fail;
1667     }
1668 
1669     void operator--() {
1670       if (Fail)
1671         return;
1672       for (auto *&Inst : Insts) {
1673         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1674           Inst = Inst->getPrevNode();
1675         // Already at beginning of block.
1676         if (!Inst) {
1677           Fail = true;
1678           return;
1679         }
1680       }
1681     }
1682 
1683     ArrayRef<Instruction*> operator * () const {
1684       return Insts;
1685     }
1686   };
1687 
1688 } // end anonymous namespace
1689 
1690 /// Check whether BB's predecessors end with unconditional branches. If it is
1691 /// true, sink any common code from the predecessors to BB.
1692 /// We also allow one predecessor to end with conditional branch (but no more
1693 /// than one).
1694 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1695   // We support two situations:
1696   //   (1) all incoming arcs are unconditional
1697   //   (2) one incoming arc is conditional
1698   //
1699   // (2) is very common in switch defaults and
1700   // else-if patterns;
1701   //
1702   //   if (a) f(1);
1703   //   else if (b) f(2);
1704   //
1705   // produces:
1706   //
1707   //       [if]
1708   //      /    \
1709   //    [f(1)] [if]
1710   //      |     | \
1711   //      |     |  |
1712   //      |  [f(2)]|
1713   //       \    | /
1714   //        [ end ]
1715   //
1716   // [end] has two unconditional predecessor arcs and one conditional. The
1717   // conditional refers to the implicit empty 'else' arc. This conditional
1718   // arc can also be caused by an empty default block in a switch.
1719   //
1720   // In this case, we attempt to sink code from all *unconditional* arcs.
1721   // If we can sink instructions from these arcs (determined during the scan
1722   // phase below) we insert a common successor for all unconditional arcs and
1723   // connect that to [end], to enable sinking:
1724   //
1725   //       [if]
1726   //      /    \
1727   //    [x(1)] [if]
1728   //      |     | \
1729   //      |     |  \
1730   //      |  [x(2)] |
1731   //       \   /    |
1732   //   [sink.split] |
1733   //         \     /
1734   //         [ end ]
1735   //
1736   SmallVector<BasicBlock*,4> UnconditionalPreds;
1737   Instruction *Cond = nullptr;
1738   for (auto *B : predecessors(BB)) {
1739     auto *T = B->getTerminator();
1740     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1741       UnconditionalPreds.push_back(B);
1742     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1743       Cond = T;
1744     else
1745       return false;
1746   }
1747   if (UnconditionalPreds.size() < 2)
1748     return false;
1749 
1750   bool Changed = false;
1751   // We take a two-step approach to tail sinking. First we scan from the end of
1752   // each block upwards in lockstep. If the n'th instruction from the end of each
1753   // block can be sunk, those instructions are added to ValuesToSink and we
1754   // carry on. If we can sink an instruction but need to PHI-merge some operands
1755   // (because they're not identical in each instruction) we add these to
1756   // PHIOperands.
1757   unsigned ScanIdx = 0;
1758   SmallPtrSet<Value*,4> InstructionsToSink;
1759   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1760   LockstepReverseIterator LRI(UnconditionalPreds);
1761   while (LRI.isValid() &&
1762          canSinkInstructions(*LRI, PHIOperands)) {
1763     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1764                       << "\n");
1765     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1766     ++ScanIdx;
1767     --LRI;
1768   }
1769 
1770   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1771     unsigned NumPHIdValues = 0;
1772     for (auto *I : *LRI)
1773       for (auto *V : PHIOperands[I])
1774         if (InstructionsToSink.count(V) == 0)
1775           ++NumPHIdValues;
1776     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1777     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1778     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1779         NumPHIInsts++;
1780 
1781     return NumPHIInsts <= 1;
1782   };
1783 
1784   if (ScanIdx > 0 && Cond) {
1785     // Check if we would actually sink anything first! This mutates the CFG and
1786     // adds an extra block. The goal in doing this is to allow instructions that
1787     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1788     // (such as trunc, add) can be sunk and predicated already. So we check that
1789     // we're going to sink at least one non-speculatable instruction.
1790     LRI.reset();
1791     unsigned Idx = 0;
1792     bool Profitable = false;
1793     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1794       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1795         Profitable = true;
1796         break;
1797       }
1798       --LRI;
1799       ++Idx;
1800     }
1801     if (!Profitable)
1802       return false;
1803 
1804     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1805     // We have a conditional edge and we're going to sink some instructions.
1806     // Insert a new block postdominating all blocks we're going to sink from.
1807     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1808       // Edges couldn't be split.
1809       return false;
1810     Changed = true;
1811   }
1812 
1813   // Now that we've analyzed all potential sinking candidates, perform the
1814   // actual sink. We iteratively sink the last non-terminator of the source
1815   // blocks into their common successor unless doing so would require too
1816   // many PHI instructions to be generated (currently only one PHI is allowed
1817   // per sunk instruction).
1818   //
1819   // We can use InstructionsToSink to discount values needing PHI-merging that will
1820   // actually be sunk in a later iteration. This allows us to be more
1821   // aggressive in what we sink. This does allow a false positive where we
1822   // sink presuming a later value will also be sunk, but stop half way through
1823   // and never actually sink it which means we produce more PHIs than intended.
1824   // This is unlikely in practice though.
1825   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1826     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1827                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1828                       << "\n");
1829 
1830     // Because we've sunk every instruction in turn, the current instruction to
1831     // sink is always at index 0.
1832     LRI.reset();
1833     if (!ProfitableToSinkInstruction(LRI)) {
1834       // Too many PHIs would be created.
1835       LLVM_DEBUG(
1836           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1837       break;
1838     }
1839 
1840     if (!sinkLastInstruction(UnconditionalPreds))
1841       return Changed;
1842     NumSinkCommons++;
1843     Changed = true;
1844   }
1845   return Changed;
1846 }
1847 
1848 /// Determine if we can hoist sink a sole store instruction out of a
1849 /// conditional block.
1850 ///
1851 /// We are looking for code like the following:
1852 ///   BrBB:
1853 ///     store i32 %add, i32* %arrayidx2
1854 ///     ... // No other stores or function calls (we could be calling a memory
1855 ///     ... // function).
1856 ///     %cmp = icmp ult %x, %y
1857 ///     br i1 %cmp, label %EndBB, label %ThenBB
1858 ///   ThenBB:
1859 ///     store i32 %add5, i32* %arrayidx2
1860 ///     br label EndBB
1861 ///   EndBB:
1862 ///     ...
1863 ///   We are going to transform this into:
1864 ///   BrBB:
1865 ///     store i32 %add, i32* %arrayidx2
1866 ///     ... //
1867 ///     %cmp = icmp ult %x, %y
1868 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1869 ///     store i32 %add.add5, i32* %arrayidx2
1870 ///     ...
1871 ///
1872 /// \return The pointer to the value of the previous store if the store can be
1873 ///         hoisted into the predecessor block. 0 otherwise.
1874 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1875                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1876   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1877   if (!StoreToHoist)
1878     return nullptr;
1879 
1880   // Volatile or atomic.
1881   if (!StoreToHoist->isSimple())
1882     return nullptr;
1883 
1884   Value *StorePtr = StoreToHoist->getPointerOperand();
1885 
1886   // Look for a store to the same pointer in BrBB.
1887   unsigned MaxNumInstToLookAt = 9;
1888   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1889     if (!MaxNumInstToLookAt)
1890       break;
1891     --MaxNumInstToLookAt;
1892 
1893     // Could be calling an instruction that affects memory like free().
1894     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1895       return nullptr;
1896 
1897     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1898       // Found the previous store make sure it stores to the same location.
1899       if (SI->getPointerOperand() == StorePtr)
1900         // Found the previous store, return its value operand.
1901         return SI->getValueOperand();
1902       return nullptr; // Unknown store.
1903     }
1904   }
1905 
1906   return nullptr;
1907 }
1908 
1909 /// Speculate a conditional basic block flattening the CFG.
1910 ///
1911 /// Note that this is a very risky transform currently. Speculating
1912 /// instructions like this is most often not desirable. Instead, there is an MI
1913 /// pass which can do it with full awareness of the resource constraints.
1914 /// However, some cases are "obvious" and we should do directly. An example of
1915 /// this is speculating a single, reasonably cheap instruction.
1916 ///
1917 /// There is only one distinct advantage to flattening the CFG at the IR level:
1918 /// it makes very common but simplistic optimizations such as are common in
1919 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1920 /// modeling their effects with easier to reason about SSA value graphs.
1921 ///
1922 ///
1923 /// An illustration of this transform is turning this IR:
1924 /// \code
1925 ///   BB:
1926 ///     %cmp = icmp ult %x, %y
1927 ///     br i1 %cmp, label %EndBB, label %ThenBB
1928 ///   ThenBB:
1929 ///     %sub = sub %x, %y
1930 ///     br label BB2
1931 ///   EndBB:
1932 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1933 ///     ...
1934 /// \endcode
1935 ///
1936 /// Into this IR:
1937 /// \code
1938 ///   BB:
1939 ///     %cmp = icmp ult %x, %y
1940 ///     %sub = sub %x, %y
1941 ///     %cond = select i1 %cmp, 0, %sub
1942 ///     ...
1943 /// \endcode
1944 ///
1945 /// \returns true if the conditional block is removed.
1946 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1947                                    const TargetTransformInfo &TTI) {
1948   // Be conservative for now. FP select instruction can often be expensive.
1949   Value *BrCond = BI->getCondition();
1950   if (isa<FCmpInst>(BrCond))
1951     return false;
1952 
1953   BasicBlock *BB = BI->getParent();
1954   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1955 
1956   // If ThenBB is actually on the false edge of the conditional branch, remember
1957   // to swap the select operands later.
1958   bool Invert = false;
1959   if (ThenBB != BI->getSuccessor(0)) {
1960     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1961     Invert = true;
1962   }
1963   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1964 
1965   // Keep a count of how many times instructions are used within ThenBB when
1966   // they are candidates for sinking into ThenBB. Specifically:
1967   // - They are defined in BB, and
1968   // - They have no side effects, and
1969   // - All of their uses are in ThenBB.
1970   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1971 
1972   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1973 
1974   unsigned SpeculationCost = 0;
1975   Value *SpeculatedStoreValue = nullptr;
1976   StoreInst *SpeculatedStore = nullptr;
1977   for (BasicBlock::iterator BBI = ThenBB->begin(),
1978                             BBE = std::prev(ThenBB->end());
1979        BBI != BBE; ++BBI) {
1980     Instruction *I = &*BBI;
1981     // Skip debug info.
1982     if (isa<DbgInfoIntrinsic>(I)) {
1983       SpeculatedDbgIntrinsics.push_back(I);
1984       continue;
1985     }
1986 
1987     // Only speculatively execute a single instruction (not counting the
1988     // terminator) for now.
1989     ++SpeculationCost;
1990     if (SpeculationCost > 1)
1991       return false;
1992 
1993     // Don't hoist the instruction if it's unsafe or expensive.
1994     if (!isSafeToSpeculativelyExecute(I) &&
1995         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1996                                   I, BB, ThenBB, EndBB))))
1997       return false;
1998     if (!SpeculatedStoreValue &&
1999         ComputeSpeculationCost(I, TTI) >
2000             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2001       return false;
2002 
2003     // Store the store speculation candidate.
2004     if (SpeculatedStoreValue)
2005       SpeculatedStore = cast<StoreInst>(I);
2006 
2007     // Do not hoist the instruction if any of its operands are defined but not
2008     // used in BB. The transformation will prevent the operand from
2009     // being sunk into the use block.
2010     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2011       Instruction *OpI = dyn_cast<Instruction>(*i);
2012       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2013         continue; // Not a candidate for sinking.
2014 
2015       ++SinkCandidateUseCounts[OpI];
2016     }
2017   }
2018 
2019   // Consider any sink candidates which are only used in ThenBB as costs for
2020   // speculation. Note, while we iterate over a DenseMap here, we are summing
2021   // and so iteration order isn't significant.
2022   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2023            I = SinkCandidateUseCounts.begin(),
2024            E = SinkCandidateUseCounts.end();
2025        I != E; ++I)
2026     if (I->first->hasNUses(I->second)) {
2027       ++SpeculationCost;
2028       if (SpeculationCost > 1)
2029         return false;
2030     }
2031 
2032   // Check that the PHI nodes can be converted to selects.
2033   bool HaveRewritablePHIs = false;
2034   for (PHINode &PN : EndBB->phis()) {
2035     Value *OrigV = PN.getIncomingValueForBlock(BB);
2036     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2037 
2038     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2039     // Skip PHIs which are trivial.
2040     if (ThenV == OrigV)
2041       continue;
2042 
2043     // Don't convert to selects if we could remove undefined behavior instead.
2044     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2045         passingValueIsAlwaysUndefined(ThenV, &PN))
2046       return false;
2047 
2048     HaveRewritablePHIs = true;
2049     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2050     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2051     if (!OrigCE && !ThenCE)
2052       continue; // Known safe and cheap.
2053 
2054     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2055         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2056       return false;
2057     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2058     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2059     unsigned MaxCost =
2060         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2061     if (OrigCost + ThenCost > MaxCost)
2062       return false;
2063 
2064     // Account for the cost of an unfolded ConstantExpr which could end up
2065     // getting expanded into Instructions.
2066     // FIXME: This doesn't account for how many operations are combined in the
2067     // constant expression.
2068     ++SpeculationCost;
2069     if (SpeculationCost > 1)
2070       return false;
2071   }
2072 
2073   // If there are no PHIs to process, bail early. This helps ensure idempotence
2074   // as well.
2075   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2076     return false;
2077 
2078   // If we get here, we can hoist the instruction and if-convert.
2079   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2080 
2081   // Insert a select of the value of the speculated store.
2082   if (SpeculatedStoreValue) {
2083     IRBuilder<NoFolder> Builder(BI);
2084     Value *TrueV = SpeculatedStore->getValueOperand();
2085     Value *FalseV = SpeculatedStoreValue;
2086     if (Invert)
2087       std::swap(TrueV, FalseV);
2088     Value *S = Builder.CreateSelect(
2089         BrCond, TrueV, FalseV, "spec.store.select", BI);
2090     SpeculatedStore->setOperand(0, S);
2091     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2092                                          SpeculatedStore->getDebugLoc());
2093   }
2094 
2095   // Metadata can be dependent on the condition we are hoisting above.
2096   // Conservatively strip all metadata on the instruction.
2097   for (auto &I : *ThenBB)
2098     I.dropUnknownNonDebugMetadata();
2099 
2100   // Hoist the instructions.
2101   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2102                            ThenBB->begin(), std::prev(ThenBB->end()));
2103 
2104   // Insert selects and rewrite the PHI operands.
2105   IRBuilder<NoFolder> Builder(BI);
2106   for (PHINode &PN : EndBB->phis()) {
2107     unsigned OrigI = PN.getBasicBlockIndex(BB);
2108     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2109     Value *OrigV = PN.getIncomingValue(OrigI);
2110     Value *ThenV = PN.getIncomingValue(ThenI);
2111 
2112     // Skip PHIs which are trivial.
2113     if (OrigV == ThenV)
2114       continue;
2115 
2116     // Create a select whose true value is the speculatively executed value and
2117     // false value is the preexisting value. Swap them if the branch
2118     // destinations were inverted.
2119     Value *TrueV = ThenV, *FalseV = OrigV;
2120     if (Invert)
2121       std::swap(TrueV, FalseV);
2122     Value *V = Builder.CreateSelect(
2123         BrCond, TrueV, FalseV, "spec.select", BI);
2124     PN.setIncomingValue(OrigI, V);
2125     PN.setIncomingValue(ThenI, V);
2126   }
2127 
2128   // Remove speculated dbg intrinsics.
2129   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2130   // dbg value for the different flows and inserting it after the select.
2131   for (Instruction *I : SpeculatedDbgIntrinsics)
2132     I->eraseFromParent();
2133 
2134   ++NumSpeculations;
2135   return true;
2136 }
2137 
2138 /// Return true if we can thread a branch across this block.
2139 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2140   unsigned Size = 0;
2141 
2142   for (Instruction &I : BB->instructionsWithoutDebug()) {
2143     if (Size > 10)
2144       return false; // Don't clone large BB's.
2145     ++Size;
2146 
2147     // We can only support instructions that do not define values that are
2148     // live outside of the current basic block.
2149     for (User *U : I.users()) {
2150       Instruction *UI = cast<Instruction>(U);
2151       if (UI->getParent() != BB || isa<PHINode>(UI))
2152         return false;
2153     }
2154 
2155     // Looks ok, continue checking.
2156   }
2157 
2158   return true;
2159 }
2160 
2161 /// If we have a conditional branch on a PHI node value that is defined in the
2162 /// same block as the branch and if any PHI entries are constants, thread edges
2163 /// corresponding to that entry to be branches to their ultimate destination.
2164 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2165                                 AssumptionCache *AC) {
2166   BasicBlock *BB = BI->getParent();
2167   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2168   // NOTE: we currently cannot transform this case if the PHI node is used
2169   // outside of the block.
2170   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2171     return false;
2172 
2173   // Degenerate case of a single entry PHI.
2174   if (PN->getNumIncomingValues() == 1) {
2175     FoldSingleEntryPHINodes(PN->getParent());
2176     return true;
2177   }
2178 
2179   // Now we know that this block has multiple preds and two succs.
2180   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2181     return false;
2182 
2183   // Can't fold blocks that contain noduplicate or convergent calls.
2184   if (any_of(*BB, [](const Instruction &I) {
2185         const CallInst *CI = dyn_cast<CallInst>(&I);
2186         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2187       }))
2188     return false;
2189 
2190   // Okay, this is a simple enough basic block.  See if any phi values are
2191   // constants.
2192   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2193     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2194     if (!CB || !CB->getType()->isIntegerTy(1))
2195       continue;
2196 
2197     // Okay, we now know that all edges from PredBB should be revectored to
2198     // branch to RealDest.
2199     BasicBlock *PredBB = PN->getIncomingBlock(i);
2200     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2201 
2202     if (RealDest == BB)
2203       continue; // Skip self loops.
2204     // Skip if the predecessor's terminator is an indirect branch.
2205     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2206       continue;
2207 
2208     // The dest block might have PHI nodes, other predecessors and other
2209     // difficult cases.  Instead of being smart about this, just insert a new
2210     // block that jumps to the destination block, effectively splitting
2211     // the edge we are about to create.
2212     BasicBlock *EdgeBB =
2213         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2214                            RealDest->getParent(), RealDest);
2215     BranchInst::Create(RealDest, EdgeBB);
2216 
2217     // Update PHI nodes.
2218     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2219 
2220     // BB may have instructions that are being threaded over.  Clone these
2221     // instructions into EdgeBB.  We know that there will be no uses of the
2222     // cloned instructions outside of EdgeBB.
2223     BasicBlock::iterator InsertPt = EdgeBB->begin();
2224     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2225     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2226       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2227         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2228         continue;
2229       }
2230       // Clone the instruction.
2231       Instruction *N = BBI->clone();
2232       if (BBI->hasName())
2233         N->setName(BBI->getName() + ".c");
2234 
2235       // Update operands due to translation.
2236       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2237         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2238         if (PI != TranslateMap.end())
2239           *i = PI->second;
2240       }
2241 
2242       // Check for trivial simplification.
2243       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2244         if (!BBI->use_empty())
2245           TranslateMap[&*BBI] = V;
2246         if (!N->mayHaveSideEffects()) {
2247           N->deleteValue(); // Instruction folded away, don't need actual inst
2248           N = nullptr;
2249         }
2250       } else {
2251         if (!BBI->use_empty())
2252           TranslateMap[&*BBI] = N;
2253       }
2254       // Insert the new instruction into its new home.
2255       if (N)
2256         EdgeBB->getInstList().insert(InsertPt, N);
2257 
2258       // Register the new instruction with the assumption cache if necessary.
2259       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2260         if (II->getIntrinsicID() == Intrinsic::assume)
2261           AC->registerAssumption(II);
2262     }
2263 
2264     // Loop over all of the edges from PredBB to BB, changing them to branch
2265     // to EdgeBB instead.
2266     Instruction *PredBBTI = PredBB->getTerminator();
2267     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2268       if (PredBBTI->getSuccessor(i) == BB) {
2269         BB->removePredecessor(PredBB);
2270         PredBBTI->setSuccessor(i, EdgeBB);
2271       }
2272 
2273     // Recurse, simplifying any other constants.
2274     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2275   }
2276 
2277   return false;
2278 }
2279 
2280 /// Given a BB that starts with the specified two-entry PHI node,
2281 /// see if we can eliminate it.
2282 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2283                                 const DataLayout &DL) {
2284   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2285   // statement", which has a very simple dominance structure.  Basically, we
2286   // are trying to find the condition that is being branched on, which
2287   // subsequently causes this merge to happen.  We really want control
2288   // dependence information for this check, but simplifycfg can't keep it up
2289   // to date, and this catches most of the cases we care about anyway.
2290   BasicBlock *BB = PN->getParent();
2291   const Function *Fn = BB->getParent();
2292   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2293     return false;
2294 
2295   BasicBlock *IfTrue, *IfFalse;
2296   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2297   if (!IfCond ||
2298       // Don't bother if the branch will be constant folded trivially.
2299       isa<ConstantInt>(IfCond))
2300     return false;
2301 
2302   // Okay, we found that we can merge this two-entry phi node into a select.
2303   // Doing so would require us to fold *all* two entry phi nodes in this block.
2304   // At some point this becomes non-profitable (particularly if the target
2305   // doesn't support cmov's).  Only do this transformation if there are two or
2306   // fewer PHI nodes in this block.
2307   unsigned NumPhis = 0;
2308   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2309     if (NumPhis > 2)
2310       return false;
2311 
2312   // Loop over the PHI's seeing if we can promote them all to select
2313   // instructions.  While we are at it, keep track of the instructions
2314   // that need to be moved to the dominating block.
2315   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2316   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2317            MaxCostVal1 = PHINodeFoldingThreshold;
2318   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2319   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2320 
2321   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2322     PHINode *PN = cast<PHINode>(II++);
2323     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2324       PN->replaceAllUsesWith(V);
2325       PN->eraseFromParent();
2326       continue;
2327     }
2328 
2329     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2330                              MaxCostVal0, TTI) ||
2331         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2332                              MaxCostVal1, TTI))
2333       return false;
2334   }
2335 
2336   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2337   // we ran out of PHIs then we simplified them all.
2338   PN = dyn_cast<PHINode>(BB->begin());
2339   if (!PN)
2340     return true;
2341 
2342   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2343   // often be turned into switches and other things.
2344   if (PN->getType()->isIntegerTy(1) &&
2345       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2346        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2347        isa<BinaryOperator>(IfCond)))
2348     return false;
2349 
2350   // If all PHI nodes are promotable, check to make sure that all instructions
2351   // in the predecessor blocks can be promoted as well. If not, we won't be able
2352   // to get rid of the control flow, so it's not worth promoting to select
2353   // instructions.
2354   BasicBlock *DomBlock = nullptr;
2355   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2356   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2357   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2358     IfBlock1 = nullptr;
2359   } else {
2360     DomBlock = *pred_begin(IfBlock1);
2361     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2362       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2363         // This is not an aggressive instruction that we can promote.
2364         // Because of this, we won't be able to get rid of the control flow, so
2365         // the xform is not worth it.
2366         return false;
2367       }
2368   }
2369 
2370   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2371     IfBlock2 = nullptr;
2372   } else {
2373     DomBlock = *pred_begin(IfBlock2);
2374     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2375       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2376         // This is not an aggressive instruction that we can promote.
2377         // Because of this, we won't be able to get rid of the control flow, so
2378         // the xform is not worth it.
2379         return false;
2380       }
2381   }
2382 
2383   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2384                     << "  T: " << IfTrue->getName()
2385                     << "  F: " << IfFalse->getName() << "\n");
2386 
2387   // If we can still promote the PHI nodes after this gauntlet of tests,
2388   // do all of the PHI's now.
2389   Instruction *InsertPt = DomBlock->getTerminator();
2390   IRBuilder<NoFolder> Builder(InsertPt);
2391 
2392   // Move all 'aggressive' instructions, which are defined in the
2393   // conditional parts of the if's up to the dominating block.
2394   if (IfBlock1)
2395     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2396   if (IfBlock2)
2397     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2398 
2399   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2400     // Change the PHI node into a select instruction.
2401     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2402     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2403 
2404     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2405     PN->replaceAllUsesWith(Sel);
2406     Sel->takeName(PN);
2407     PN->eraseFromParent();
2408   }
2409 
2410   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2411   // has been flattened.  Change DomBlock to jump directly to our new block to
2412   // avoid other simplifycfg's kicking in on the diamond.
2413   Instruction *OldTI = DomBlock->getTerminator();
2414   Builder.SetInsertPoint(OldTI);
2415   Builder.CreateBr(BB);
2416   OldTI->eraseFromParent();
2417   return true;
2418 }
2419 
2420 /// If we found a conditional branch that goes to two returning blocks,
2421 /// try to merge them together into one return,
2422 /// introducing a select if the return values disagree.
2423 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2424                                            IRBuilder<> &Builder) {
2425   assert(BI->isConditional() && "Must be a conditional branch");
2426   BasicBlock *TrueSucc = BI->getSuccessor(0);
2427   BasicBlock *FalseSucc = BI->getSuccessor(1);
2428   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2429   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2430 
2431   // Check to ensure both blocks are empty (just a return) or optionally empty
2432   // with PHI nodes.  If there are other instructions, merging would cause extra
2433   // computation on one path or the other.
2434   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2435     return false;
2436   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2437     return false;
2438 
2439   Builder.SetInsertPoint(BI);
2440   // Okay, we found a branch that is going to two return nodes.  If
2441   // there is no return value for this function, just change the
2442   // branch into a return.
2443   if (FalseRet->getNumOperands() == 0) {
2444     TrueSucc->removePredecessor(BI->getParent());
2445     FalseSucc->removePredecessor(BI->getParent());
2446     Builder.CreateRetVoid();
2447     EraseTerminatorAndDCECond(BI);
2448     return true;
2449   }
2450 
2451   // Otherwise, figure out what the true and false return values are
2452   // so we can insert a new select instruction.
2453   Value *TrueValue = TrueRet->getReturnValue();
2454   Value *FalseValue = FalseRet->getReturnValue();
2455 
2456   // Unwrap any PHI nodes in the return blocks.
2457   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2458     if (TVPN->getParent() == TrueSucc)
2459       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2460   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2461     if (FVPN->getParent() == FalseSucc)
2462       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2463 
2464   // In order for this transformation to be safe, we must be able to
2465   // unconditionally execute both operands to the return.  This is
2466   // normally the case, but we could have a potentially-trapping
2467   // constant expression that prevents this transformation from being
2468   // safe.
2469   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2470     if (TCV->canTrap())
2471       return false;
2472   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2473     if (FCV->canTrap())
2474       return false;
2475 
2476   // Okay, we collected all the mapped values and checked them for sanity, and
2477   // defined to really do this transformation.  First, update the CFG.
2478   TrueSucc->removePredecessor(BI->getParent());
2479   FalseSucc->removePredecessor(BI->getParent());
2480 
2481   // Insert select instructions where needed.
2482   Value *BrCond = BI->getCondition();
2483   if (TrueValue) {
2484     // Insert a select if the results differ.
2485     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2486     } else if (isa<UndefValue>(TrueValue)) {
2487       TrueValue = FalseValue;
2488     } else {
2489       TrueValue =
2490           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2491     }
2492   }
2493 
2494   Value *RI =
2495       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2496 
2497   (void)RI;
2498 
2499   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2500                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2501                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2502 
2503   EraseTerminatorAndDCECond(BI);
2504 
2505   return true;
2506 }
2507 
2508 /// Return true if the given instruction is available
2509 /// in its predecessor block. If yes, the instruction will be removed.
2510 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2511   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2512     return false;
2513   for (Instruction &I : *PB) {
2514     Instruction *PBI = &I;
2515     // Check whether Inst and PBI generate the same value.
2516     if (Inst->isIdenticalTo(PBI)) {
2517       Inst->replaceAllUsesWith(PBI);
2518       Inst->eraseFromParent();
2519       return true;
2520     }
2521   }
2522   return false;
2523 }
2524 
2525 /// Return true if either PBI or BI has branch weight available, and store
2526 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2527 /// not have branch weight, use 1:1 as its weight.
2528 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2529                                    uint64_t &PredTrueWeight,
2530                                    uint64_t &PredFalseWeight,
2531                                    uint64_t &SuccTrueWeight,
2532                                    uint64_t &SuccFalseWeight) {
2533   bool PredHasWeights =
2534       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2535   bool SuccHasWeights =
2536       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2537   if (PredHasWeights || SuccHasWeights) {
2538     if (!PredHasWeights)
2539       PredTrueWeight = PredFalseWeight = 1;
2540     if (!SuccHasWeights)
2541       SuccTrueWeight = SuccFalseWeight = 1;
2542     return true;
2543   } else {
2544     return false;
2545   }
2546 }
2547 
2548 /// If this basic block is simple enough, and if a predecessor branches to us
2549 /// and one of our successors, fold the block into the predecessor and use
2550 /// logical operations to pick the right destination.
2551 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2552   BasicBlock *BB = BI->getParent();
2553 
2554   const unsigned PredCount = pred_size(BB);
2555 
2556   Instruction *Cond = nullptr;
2557   if (BI->isConditional())
2558     Cond = dyn_cast<Instruction>(BI->getCondition());
2559   else {
2560     // For unconditional branch, check for a simple CFG pattern, where
2561     // BB has a single predecessor and BB's successor is also its predecessor's
2562     // successor. If such pattern exists, check for CSE between BB and its
2563     // predecessor.
2564     if (BasicBlock *PB = BB->getSinglePredecessor())
2565       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2566         if (PBI->isConditional() &&
2567             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2568              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2569           for (auto I = BB->instructionsWithoutDebug().begin(),
2570                     E = BB->instructionsWithoutDebug().end();
2571                I != E;) {
2572             Instruction *Curr = &*I++;
2573             if (isa<CmpInst>(Curr)) {
2574               Cond = Curr;
2575               break;
2576             }
2577             // Quit if we can't remove this instruction.
2578             if (!tryCSEWithPredecessor(Curr, PB))
2579               return false;
2580           }
2581         }
2582 
2583     if (!Cond)
2584       return false;
2585   }
2586 
2587   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2588       Cond->getParent() != BB || !Cond->hasOneUse())
2589     return false;
2590 
2591   // Make sure the instruction after the condition is the cond branch.
2592   BasicBlock::iterator CondIt = ++Cond->getIterator();
2593 
2594   // Ignore dbg intrinsics.
2595   while (isa<DbgInfoIntrinsic>(CondIt))
2596     ++CondIt;
2597 
2598   if (&*CondIt != BI)
2599     return false;
2600 
2601   // Only allow this transformation if computing the condition doesn't involve
2602   // too many instructions and these involved instructions can be executed
2603   // unconditionally. We denote all involved instructions except the condition
2604   // as "bonus instructions", and only allow this transformation when the
2605   // number of the bonus instructions we'll need to create when cloning into
2606   // each predecessor does not exceed a certain threshold.
2607   unsigned NumBonusInsts = 0;
2608   for (auto I = BB->begin(); Cond != &*I; ++I) {
2609     // Ignore dbg intrinsics.
2610     if (isa<DbgInfoIntrinsic>(I))
2611       continue;
2612     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2613       return false;
2614     // I has only one use and can be executed unconditionally.
2615     Instruction *User = dyn_cast<Instruction>(I->user_back());
2616     if (User == nullptr || User->getParent() != BB)
2617       return false;
2618     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2619     // to use any other instruction, User must be an instruction between next(I)
2620     // and Cond.
2621 
2622     // Account for the cost of duplicating this instruction into each
2623     // predecessor.
2624     NumBonusInsts += PredCount;
2625     // Early exits once we reach the limit.
2626     if (NumBonusInsts > BonusInstThreshold)
2627       return false;
2628   }
2629 
2630   // Cond is known to be a compare or binary operator.  Check to make sure that
2631   // neither operand is a potentially-trapping constant expression.
2632   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2633     if (CE->canTrap())
2634       return false;
2635   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2636     if (CE->canTrap())
2637       return false;
2638 
2639   // Finally, don't infinitely unroll conditional loops.
2640   BasicBlock *TrueDest = BI->getSuccessor(0);
2641   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2642   if (TrueDest == BB || FalseDest == BB)
2643     return false;
2644 
2645   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2646     BasicBlock *PredBlock = *PI;
2647     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2648 
2649     // Check that we have two conditional branches.  If there is a PHI node in
2650     // the common successor, verify that the same value flows in from both
2651     // blocks.
2652     SmallVector<PHINode *, 4> PHIs;
2653     if (!PBI || PBI->isUnconditional() ||
2654         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2655         (!BI->isConditional() &&
2656          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2657       continue;
2658 
2659     // Determine if the two branches share a common destination.
2660     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2661     bool InvertPredCond = false;
2662 
2663     if (BI->isConditional()) {
2664       if (PBI->getSuccessor(0) == TrueDest) {
2665         Opc = Instruction::Or;
2666       } else if (PBI->getSuccessor(1) == FalseDest) {
2667         Opc = Instruction::And;
2668       } else if (PBI->getSuccessor(0) == FalseDest) {
2669         Opc = Instruction::And;
2670         InvertPredCond = true;
2671       } else if (PBI->getSuccessor(1) == TrueDest) {
2672         Opc = Instruction::Or;
2673         InvertPredCond = true;
2674       } else {
2675         continue;
2676       }
2677     } else {
2678       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2679         continue;
2680     }
2681 
2682     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2683     IRBuilder<> Builder(PBI);
2684 
2685     // If we need to invert the condition in the pred block to match, do so now.
2686     if (InvertPredCond) {
2687       Value *NewCond = PBI->getCondition();
2688 
2689       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2690         CmpInst *CI = cast<CmpInst>(NewCond);
2691         CI->setPredicate(CI->getInversePredicate());
2692       } else {
2693         NewCond =
2694             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2695       }
2696 
2697       PBI->setCondition(NewCond);
2698       PBI->swapSuccessors();
2699     }
2700 
2701     // If we have bonus instructions, clone them into the predecessor block.
2702     // Note that there may be multiple predecessor blocks, so we cannot move
2703     // bonus instructions to a predecessor block.
2704     ValueToValueMapTy VMap; // maps original values to cloned values
2705     // We already make sure Cond is the last instruction before BI. Therefore,
2706     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2707     // instructions.
2708     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2709       if (isa<DbgInfoIntrinsic>(BonusInst))
2710         continue;
2711       Instruction *NewBonusInst = BonusInst->clone();
2712       RemapInstruction(NewBonusInst, VMap,
2713                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2714       VMap[&*BonusInst] = NewBonusInst;
2715 
2716       // If we moved a load, we cannot any longer claim any knowledge about
2717       // its potential value. The previous information might have been valid
2718       // only given the branch precondition.
2719       // For an analogous reason, we must also drop all the metadata whose
2720       // semantics we don't understand.
2721       NewBonusInst->dropUnknownNonDebugMetadata();
2722 
2723       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2724       NewBonusInst->takeName(&*BonusInst);
2725       BonusInst->setName(BonusInst->getName() + ".old");
2726     }
2727 
2728     // Clone Cond into the predecessor basic block, and or/and the
2729     // two conditions together.
2730     Instruction *CondInPred = Cond->clone();
2731     RemapInstruction(CondInPred, VMap,
2732                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2733     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2734     CondInPred->takeName(Cond);
2735     Cond->setName(CondInPred->getName() + ".old");
2736 
2737     if (BI->isConditional()) {
2738       Instruction *NewCond = cast<Instruction>(
2739           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2740       PBI->setCondition(NewCond);
2741 
2742       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2743       bool HasWeights =
2744           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2745                                  SuccTrueWeight, SuccFalseWeight);
2746       SmallVector<uint64_t, 8> NewWeights;
2747 
2748       if (PBI->getSuccessor(0) == BB) {
2749         if (HasWeights) {
2750           // PBI: br i1 %x, BB, FalseDest
2751           // BI:  br i1 %y, TrueDest, FalseDest
2752           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2753           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2754           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2755           //               TrueWeight for PBI * FalseWeight for BI.
2756           // We assume that total weights of a BranchInst can fit into 32 bits.
2757           // Therefore, we will not have overflow using 64-bit arithmetic.
2758           NewWeights.push_back(PredFalseWeight *
2759                                    (SuccFalseWeight + SuccTrueWeight) +
2760                                PredTrueWeight * SuccFalseWeight);
2761         }
2762         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2763         PBI->setSuccessor(0, TrueDest);
2764       }
2765       if (PBI->getSuccessor(1) == BB) {
2766         if (HasWeights) {
2767           // PBI: br i1 %x, TrueDest, BB
2768           // BI:  br i1 %y, TrueDest, FalseDest
2769           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2770           //              FalseWeight for PBI * TrueWeight for BI.
2771           NewWeights.push_back(PredTrueWeight *
2772                                    (SuccFalseWeight + SuccTrueWeight) +
2773                                PredFalseWeight * SuccTrueWeight);
2774           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2775           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2776         }
2777         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2778         PBI->setSuccessor(1, FalseDest);
2779       }
2780       if (NewWeights.size() == 2) {
2781         // Halve the weights if any of them cannot fit in an uint32_t
2782         FitWeights(NewWeights);
2783 
2784         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2785                                            NewWeights.end());
2786         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2787       } else
2788         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2789     } else {
2790       // Update PHI nodes in the common successors.
2791       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2792         ConstantInt *PBI_C = cast<ConstantInt>(
2793             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2794         assert(PBI_C->getType()->isIntegerTy(1));
2795         Instruction *MergedCond = nullptr;
2796         if (PBI->getSuccessor(0) == TrueDest) {
2797           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2798           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2799           //       is false: !PBI_Cond and BI_Value
2800           Instruction *NotCond = cast<Instruction>(
2801               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2802           MergedCond = cast<Instruction>(
2803                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2804                                    "and.cond"));
2805           if (PBI_C->isOne())
2806             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2807                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2808         } else {
2809           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2810           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2811           //       is false: PBI_Cond and BI_Value
2812           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2813               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2814           if (PBI_C->isOne()) {
2815             Instruction *NotCond = cast<Instruction>(
2816                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2817             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2818                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2819           }
2820         }
2821         // Update PHI Node.
2822         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2823                                   MergedCond);
2824       }
2825       // Change PBI from Conditional to Unconditional.
2826       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2827       EraseTerminatorAndDCECond(PBI);
2828       PBI = New_PBI;
2829     }
2830 
2831     // If BI was a loop latch, it may have had associated loop metadata.
2832     // We need to copy it to the new latch, that is, PBI.
2833     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2834       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2835 
2836     // TODO: If BB is reachable from all paths through PredBlock, then we
2837     // could replace PBI's branch probabilities with BI's.
2838 
2839     // Copy any debug value intrinsics into the end of PredBlock.
2840     for (Instruction &I : *BB)
2841       if (isa<DbgInfoIntrinsic>(I))
2842         I.clone()->insertBefore(PBI);
2843 
2844     return true;
2845   }
2846   return false;
2847 }
2848 
2849 // If there is only one store in BB1 and BB2, return it, otherwise return
2850 // nullptr.
2851 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2852   StoreInst *S = nullptr;
2853   for (auto *BB : {BB1, BB2}) {
2854     if (!BB)
2855       continue;
2856     for (auto &I : *BB)
2857       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2858         if (S)
2859           // Multiple stores seen.
2860           return nullptr;
2861         else
2862           S = SI;
2863       }
2864   }
2865   return S;
2866 }
2867 
2868 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2869                                               Value *AlternativeV = nullptr) {
2870   // PHI is going to be a PHI node that allows the value V that is defined in
2871   // BB to be referenced in BB's only successor.
2872   //
2873   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2874   // doesn't matter to us what the other operand is (it'll never get used). We
2875   // could just create a new PHI with an undef incoming value, but that could
2876   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2877   // other PHI. So here we directly look for some PHI in BB's successor with V
2878   // as an incoming operand. If we find one, we use it, else we create a new
2879   // one.
2880   //
2881   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2882   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2883   // where OtherBB is the single other predecessor of BB's only successor.
2884   PHINode *PHI = nullptr;
2885   BasicBlock *Succ = BB->getSingleSuccessor();
2886 
2887   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2888     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2889       PHI = cast<PHINode>(I);
2890       if (!AlternativeV)
2891         break;
2892 
2893       assert(Succ->hasNPredecessors(2));
2894       auto PredI = pred_begin(Succ);
2895       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2896       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2897         break;
2898       PHI = nullptr;
2899     }
2900   if (PHI)
2901     return PHI;
2902 
2903   // If V is not an instruction defined in BB, just return it.
2904   if (!AlternativeV &&
2905       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2906     return V;
2907 
2908   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2909   PHI->addIncoming(V, BB);
2910   for (BasicBlock *PredBB : predecessors(Succ))
2911     if (PredBB != BB)
2912       PHI->addIncoming(
2913           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2914   return PHI;
2915 }
2916 
2917 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2918                                            BasicBlock *QTB, BasicBlock *QFB,
2919                                            BasicBlock *PostBB, Value *Address,
2920                                            bool InvertPCond, bool InvertQCond,
2921                                            const DataLayout &DL) {
2922   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2923     return Operator::getOpcode(&I) == Instruction::BitCast &&
2924            I.getType()->isPointerTy();
2925   };
2926 
2927   // If we're not in aggressive mode, we only optimize if we have some
2928   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2929   auto IsWorthwhile = [&](BasicBlock *BB) {
2930     if (!BB)
2931       return true;
2932     // Heuristic: if the block can be if-converted/phi-folded and the
2933     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2934     // thread this store.
2935     unsigned N = 0;
2936     for (auto &I : BB->instructionsWithoutDebug()) {
2937       // Cheap instructions viable for folding.
2938       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2939           isa<StoreInst>(I))
2940         ++N;
2941       // Free instructions.
2942       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2943         continue;
2944       else
2945         return false;
2946     }
2947     // The store we want to merge is counted in N, so add 1 to make sure
2948     // we're counting the instructions that would be left.
2949     return N <= (PHINodeFoldingThreshold + 1);
2950   };
2951 
2952   if (!MergeCondStoresAggressively &&
2953       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2954        !IsWorthwhile(QFB)))
2955     return false;
2956 
2957   // For every pointer, there must be exactly two stores, one coming from
2958   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2959   // store (to any address) in PTB,PFB or QTB,QFB.
2960   // FIXME: We could relax this restriction with a bit more work and performance
2961   // testing.
2962   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2963   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2964   if (!PStore || !QStore)
2965     return false;
2966 
2967   // Now check the stores are compatible.
2968   if (!QStore->isUnordered() || !PStore->isUnordered())
2969     return false;
2970 
2971   // Check that sinking the store won't cause program behavior changes. Sinking
2972   // the store out of the Q blocks won't change any behavior as we're sinking
2973   // from a block to its unconditional successor. But we're moving a store from
2974   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2975   // So we need to check that there are no aliasing loads or stores in
2976   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2977   // operations between PStore and the end of its parent block.
2978   //
2979   // The ideal way to do this is to query AliasAnalysis, but we don't
2980   // preserve AA currently so that is dangerous. Be super safe and just
2981   // check there are no other memory operations at all.
2982   for (auto &I : *QFB->getSinglePredecessor())
2983     if (I.mayReadOrWriteMemory())
2984       return false;
2985   for (auto &I : *QFB)
2986     if (&I != QStore && I.mayReadOrWriteMemory())
2987       return false;
2988   if (QTB)
2989     for (auto &I : *QTB)
2990       if (&I != QStore && I.mayReadOrWriteMemory())
2991         return false;
2992   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2993        I != E; ++I)
2994     if (&*I != PStore && I->mayReadOrWriteMemory())
2995       return false;
2996 
2997   // If PostBB has more than two predecessors, we need to split it so we can
2998   // sink the store.
2999   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3000     // We know that QFB's only successor is PostBB. And QFB has a single
3001     // predecessor. If QTB exists, then its only successor is also PostBB.
3002     // If QTB does not exist, then QFB's only predecessor has a conditional
3003     // branch to QFB and PostBB.
3004     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3005     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3006                                                "condstore.split");
3007     if (!NewBB)
3008       return false;
3009     PostBB = NewBB;
3010   }
3011 
3012   // OK, we're going to sink the stores to PostBB. The store has to be
3013   // conditional though, so first create the predicate.
3014   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3015                      ->getCondition();
3016   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3017                      ->getCondition();
3018 
3019   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3020                                                 PStore->getParent());
3021   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3022                                                 QStore->getParent(), PPHI);
3023 
3024   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3025 
3026   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3027   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3028 
3029   if (InvertPCond)
3030     PPred = QB.CreateNot(PPred);
3031   if (InvertQCond)
3032     QPred = QB.CreateNot(QPred);
3033   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3034 
3035   auto *T =
3036       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3037   QB.SetInsertPoint(T);
3038   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3039   AAMDNodes AAMD;
3040   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3041   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3042   SI->setAAMetadata(AAMD);
3043   unsigned PAlignment = PStore->getAlignment();
3044   unsigned QAlignment = QStore->getAlignment();
3045   unsigned TypeAlignment =
3046       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3047   unsigned MinAlignment;
3048   unsigned MaxAlignment;
3049   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3050   // Choose the minimum alignment. If we could prove both stores execute, we
3051   // could use biggest one.  In this case, though, we only know that one of the
3052   // stores executes.  And we don't know it's safe to take the alignment from a
3053   // store that doesn't execute.
3054   if (MinAlignment != 0) {
3055     // Choose the minimum of all non-zero alignments.
3056     SI->setAlignment(MinAlignment);
3057   } else if (MaxAlignment != 0) {
3058     // Choose the minimal alignment between the non-zero alignment and the ABI
3059     // default alignment for the type of the stored value.
3060     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3061   } else {
3062     // If both alignments are zero, use ABI default alignment for the type of
3063     // the stored value.
3064     SI->setAlignment(TypeAlignment);
3065   }
3066 
3067   QStore->eraseFromParent();
3068   PStore->eraseFromParent();
3069 
3070   return true;
3071 }
3072 
3073 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3074                                    const DataLayout &DL) {
3075   // The intention here is to find diamonds or triangles (see below) where each
3076   // conditional block contains a store to the same address. Both of these
3077   // stores are conditional, so they can't be unconditionally sunk. But it may
3078   // be profitable to speculatively sink the stores into one merged store at the
3079   // end, and predicate the merged store on the union of the two conditions of
3080   // PBI and QBI.
3081   //
3082   // This can reduce the number of stores executed if both of the conditions are
3083   // true, and can allow the blocks to become small enough to be if-converted.
3084   // This optimization will also chain, so that ladders of test-and-set
3085   // sequences can be if-converted away.
3086   //
3087   // We only deal with simple diamonds or triangles:
3088   //
3089   //     PBI       or      PBI        or a combination of the two
3090   //    /   \               | \
3091   //   PTB  PFB             |  PFB
3092   //    \   /               | /
3093   //     QBI                QBI
3094   //    /  \                | \
3095   //   QTB  QFB             |  QFB
3096   //    \  /                | /
3097   //    PostBB            PostBB
3098   //
3099   // We model triangles as a type of diamond with a nullptr "true" block.
3100   // Triangles are canonicalized so that the fallthrough edge is represented by
3101   // a true condition, as in the diagram above.
3102   BasicBlock *PTB = PBI->getSuccessor(0);
3103   BasicBlock *PFB = PBI->getSuccessor(1);
3104   BasicBlock *QTB = QBI->getSuccessor(0);
3105   BasicBlock *QFB = QBI->getSuccessor(1);
3106   BasicBlock *PostBB = QFB->getSingleSuccessor();
3107 
3108   // Make sure we have a good guess for PostBB. If QTB's only successor is
3109   // QFB, then QFB is a better PostBB.
3110   if (QTB->getSingleSuccessor() == QFB)
3111     PostBB = QFB;
3112 
3113   // If we couldn't find a good PostBB, stop.
3114   if (!PostBB)
3115     return false;
3116 
3117   bool InvertPCond = false, InvertQCond = false;
3118   // Canonicalize fallthroughs to the true branches.
3119   if (PFB == QBI->getParent()) {
3120     std::swap(PFB, PTB);
3121     InvertPCond = true;
3122   }
3123   if (QFB == PostBB) {
3124     std::swap(QFB, QTB);
3125     InvertQCond = true;
3126   }
3127 
3128   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3129   // and QFB may not. Model fallthroughs as a nullptr block.
3130   if (PTB == QBI->getParent())
3131     PTB = nullptr;
3132   if (QTB == PostBB)
3133     QTB = nullptr;
3134 
3135   // Legality bailouts. We must have at least the non-fallthrough blocks and
3136   // the post-dominating block, and the non-fallthroughs must only have one
3137   // predecessor.
3138   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3139     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3140   };
3141   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3142       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3143     return false;
3144   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3145       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3146     return false;
3147   if (!QBI->getParent()->hasNUses(2))
3148     return false;
3149 
3150   // OK, this is a sequence of two diamonds or triangles.
3151   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3152   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3153   for (auto *BB : {PTB, PFB}) {
3154     if (!BB)
3155       continue;
3156     for (auto &I : *BB)
3157       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3158         PStoreAddresses.insert(SI->getPointerOperand());
3159   }
3160   for (auto *BB : {QTB, QFB}) {
3161     if (!BB)
3162       continue;
3163     for (auto &I : *BB)
3164       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3165         QStoreAddresses.insert(SI->getPointerOperand());
3166   }
3167 
3168   set_intersect(PStoreAddresses, QStoreAddresses);
3169   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3170   // clear what it contains.
3171   auto &CommonAddresses = PStoreAddresses;
3172 
3173   bool Changed = false;
3174   for (auto *Address : CommonAddresses)
3175     Changed |= mergeConditionalStoreToAddress(
3176         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3177   return Changed;
3178 }
3179 
3180 /// If we have a conditional branch as a predecessor of another block,
3181 /// this function tries to simplify it.  We know
3182 /// that PBI and BI are both conditional branches, and BI is in one of the
3183 /// successor blocks of PBI - PBI branches to BI.
3184 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3185                                            const DataLayout &DL) {
3186   assert(PBI->isConditional() && BI->isConditional());
3187   BasicBlock *BB = BI->getParent();
3188 
3189   // If this block ends with a branch instruction, and if there is a
3190   // predecessor that ends on a branch of the same condition, make
3191   // this conditional branch redundant.
3192   if (PBI->getCondition() == BI->getCondition() &&
3193       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3194     // Okay, the outcome of this conditional branch is statically
3195     // knowable.  If this block had a single pred, handle specially.
3196     if (BB->getSinglePredecessor()) {
3197       // Turn this into a branch on constant.
3198       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3199       BI->setCondition(
3200           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3201       return true; // Nuke the branch on constant.
3202     }
3203 
3204     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3205     // in the constant and simplify the block result.  Subsequent passes of
3206     // simplifycfg will thread the block.
3207     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3208       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3209       PHINode *NewPN = PHINode::Create(
3210           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3211           BI->getCondition()->getName() + ".pr", &BB->front());
3212       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3213       // predecessor, compute the PHI'd conditional value for all of the preds.
3214       // Any predecessor where the condition is not computable we keep symbolic.
3215       for (pred_iterator PI = PB; PI != PE; ++PI) {
3216         BasicBlock *P = *PI;
3217         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3218             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3219             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3220           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3221           NewPN->addIncoming(
3222               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3223               P);
3224         } else {
3225           NewPN->addIncoming(BI->getCondition(), P);
3226         }
3227       }
3228 
3229       BI->setCondition(NewPN);
3230       return true;
3231     }
3232   }
3233 
3234   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3235     if (CE->canTrap())
3236       return false;
3237 
3238   // If both branches are conditional and both contain stores to the same
3239   // address, remove the stores from the conditionals and create a conditional
3240   // merged store at the end.
3241   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3242     return true;
3243 
3244   // If this is a conditional branch in an empty block, and if any
3245   // predecessors are a conditional branch to one of our destinations,
3246   // fold the conditions into logical ops and one cond br.
3247 
3248   // Ignore dbg intrinsics.
3249   if (&*BB->instructionsWithoutDebug().begin() != BI)
3250     return false;
3251 
3252   int PBIOp, BIOp;
3253   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3254     PBIOp = 0;
3255     BIOp = 0;
3256   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3257     PBIOp = 0;
3258     BIOp = 1;
3259   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3260     PBIOp = 1;
3261     BIOp = 0;
3262   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3263     PBIOp = 1;
3264     BIOp = 1;
3265   } else {
3266     return false;
3267   }
3268 
3269   // Check to make sure that the other destination of this branch
3270   // isn't BB itself.  If so, this is an infinite loop that will
3271   // keep getting unwound.
3272   if (PBI->getSuccessor(PBIOp) == BB)
3273     return false;
3274 
3275   // Do not perform this transformation if it would require
3276   // insertion of a large number of select instructions. For targets
3277   // without predication/cmovs, this is a big pessimization.
3278 
3279   // Also do not perform this transformation if any phi node in the common
3280   // destination block can trap when reached by BB or PBB (PR17073). In that
3281   // case, it would be unsafe to hoist the operation into a select instruction.
3282 
3283   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3284   unsigned NumPhis = 0;
3285   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3286        ++II, ++NumPhis) {
3287     if (NumPhis > 2) // Disable this xform.
3288       return false;
3289 
3290     PHINode *PN = cast<PHINode>(II);
3291     Value *BIV = PN->getIncomingValueForBlock(BB);
3292     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3293       if (CE->canTrap())
3294         return false;
3295 
3296     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3297     Value *PBIV = PN->getIncomingValue(PBBIdx);
3298     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3299       if (CE->canTrap())
3300         return false;
3301   }
3302 
3303   // Finally, if everything is ok, fold the branches to logical ops.
3304   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3305 
3306   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3307                     << "AND: " << *BI->getParent());
3308 
3309   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3310   // branch in it, where one edge (OtherDest) goes back to itself but the other
3311   // exits.  We don't *know* that the program avoids the infinite loop
3312   // (even though that seems likely).  If we do this xform naively, we'll end up
3313   // recursively unpeeling the loop.  Since we know that (after the xform is
3314   // done) that the block *is* infinite if reached, we just make it an obviously
3315   // infinite loop with no cond branch.
3316   if (OtherDest == BB) {
3317     // Insert it at the end of the function, because it's either code,
3318     // or it won't matter if it's hot. :)
3319     BasicBlock *InfLoopBlock =
3320         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3321     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3322     OtherDest = InfLoopBlock;
3323   }
3324 
3325   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3326 
3327   // BI may have other predecessors.  Because of this, we leave
3328   // it alone, but modify PBI.
3329 
3330   // Make sure we get to CommonDest on True&True directions.
3331   Value *PBICond = PBI->getCondition();
3332   IRBuilder<NoFolder> Builder(PBI);
3333   if (PBIOp)
3334     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3335 
3336   Value *BICond = BI->getCondition();
3337   if (BIOp)
3338     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3339 
3340   // Merge the conditions.
3341   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3342 
3343   // Modify PBI to branch on the new condition to the new dests.
3344   PBI->setCondition(Cond);
3345   PBI->setSuccessor(0, CommonDest);
3346   PBI->setSuccessor(1, OtherDest);
3347 
3348   // Update branch weight for PBI.
3349   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3350   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3351   bool HasWeights =
3352       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3353                              SuccTrueWeight, SuccFalseWeight);
3354   if (HasWeights) {
3355     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3356     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3357     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3358     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3359     // The weight to CommonDest should be PredCommon * SuccTotal +
3360     //                                    PredOther * SuccCommon.
3361     // The weight to OtherDest should be PredOther * SuccOther.
3362     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3363                                   PredOther * SuccCommon,
3364                               PredOther * SuccOther};
3365     // Halve the weights if any of them cannot fit in an uint32_t
3366     FitWeights(NewWeights);
3367 
3368     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3369   }
3370 
3371   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3372   // block that are identical to the entries for BI's block.
3373   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3374 
3375   // We know that the CommonDest already had an edge from PBI to
3376   // it.  If it has PHIs though, the PHIs may have different
3377   // entries for BB and PBI's BB.  If so, insert a select to make
3378   // them agree.
3379   for (PHINode &PN : CommonDest->phis()) {
3380     Value *BIV = PN.getIncomingValueForBlock(BB);
3381     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3382     Value *PBIV = PN.getIncomingValue(PBBIdx);
3383     if (BIV != PBIV) {
3384       // Insert a select in PBI to pick the right value.
3385       SelectInst *NV = cast<SelectInst>(
3386           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3387       PN.setIncomingValue(PBBIdx, NV);
3388       // Although the select has the same condition as PBI, the original branch
3389       // weights for PBI do not apply to the new select because the select's
3390       // 'logical' edges are incoming edges of the phi that is eliminated, not
3391       // the outgoing edges of PBI.
3392       if (HasWeights) {
3393         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3394         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3395         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3396         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3397         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3398         // The weight to PredOtherDest should be PredOther * SuccCommon.
3399         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3400                                   PredOther * SuccCommon};
3401 
3402         FitWeights(NewWeights);
3403 
3404         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3405       }
3406     }
3407   }
3408 
3409   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3410   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3411 
3412   // This basic block is probably dead.  We know it has at least
3413   // one fewer predecessor.
3414   return true;
3415 }
3416 
3417 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3418 // true or to FalseBB if Cond is false.
3419 // Takes care of updating the successors and removing the old terminator.
3420 // Also makes sure not to introduce new successors by assuming that edges to
3421 // non-successor TrueBBs and FalseBBs aren't reachable.
3422 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3423                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3424                                        uint32_t TrueWeight,
3425                                        uint32_t FalseWeight) {
3426   // Remove any superfluous successor edges from the CFG.
3427   // First, figure out which successors to preserve.
3428   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3429   // successor.
3430   BasicBlock *KeepEdge1 = TrueBB;
3431   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3432 
3433   // Then remove the rest.
3434   for (BasicBlock *Succ : successors(OldTerm)) {
3435     // Make sure only to keep exactly one copy of each edge.
3436     if (Succ == KeepEdge1)
3437       KeepEdge1 = nullptr;
3438     else if (Succ == KeepEdge2)
3439       KeepEdge2 = nullptr;
3440     else
3441       Succ->removePredecessor(OldTerm->getParent(),
3442                               /*DontDeleteUselessPHIs=*/true);
3443   }
3444 
3445   IRBuilder<> Builder(OldTerm);
3446   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3447 
3448   // Insert an appropriate new terminator.
3449   if (!KeepEdge1 && !KeepEdge2) {
3450     if (TrueBB == FalseBB)
3451       // We were only looking for one successor, and it was present.
3452       // Create an unconditional branch to it.
3453       Builder.CreateBr(TrueBB);
3454     else {
3455       // We found both of the successors we were looking for.
3456       // Create a conditional branch sharing the condition of the select.
3457       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3458       if (TrueWeight != FalseWeight)
3459         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3460     }
3461   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3462     // Neither of the selected blocks were successors, so this
3463     // terminator must be unreachable.
3464     new UnreachableInst(OldTerm->getContext(), OldTerm);
3465   } else {
3466     // One of the selected values was a successor, but the other wasn't.
3467     // Insert an unconditional branch to the one that was found;
3468     // the edge to the one that wasn't must be unreachable.
3469     if (!KeepEdge1)
3470       // Only TrueBB was found.
3471       Builder.CreateBr(TrueBB);
3472     else
3473       // Only FalseBB was found.
3474       Builder.CreateBr(FalseBB);
3475   }
3476 
3477   EraseTerminatorAndDCECond(OldTerm);
3478   return true;
3479 }
3480 
3481 // Replaces
3482 //   (switch (select cond, X, Y)) on constant X, Y
3483 // with a branch - conditional if X and Y lead to distinct BBs,
3484 // unconditional otherwise.
3485 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3486   // Check for constant integer values in the select.
3487   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3488   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3489   if (!TrueVal || !FalseVal)
3490     return false;
3491 
3492   // Find the relevant condition and destinations.
3493   Value *Condition = Select->getCondition();
3494   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3495   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3496 
3497   // Get weight for TrueBB and FalseBB.
3498   uint32_t TrueWeight = 0, FalseWeight = 0;
3499   SmallVector<uint64_t, 8> Weights;
3500   bool HasWeights = HasBranchWeights(SI);
3501   if (HasWeights) {
3502     GetBranchWeights(SI, Weights);
3503     if (Weights.size() == 1 + SI->getNumCases()) {
3504       TrueWeight =
3505           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3506       FalseWeight =
3507           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3508     }
3509   }
3510 
3511   // Perform the actual simplification.
3512   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3513                                     FalseWeight);
3514 }
3515 
3516 // Replaces
3517 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3518 //                             blockaddress(@fn, BlockB)))
3519 // with
3520 //   (br cond, BlockA, BlockB).
3521 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3522   // Check that both operands of the select are block addresses.
3523   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3524   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3525   if (!TBA || !FBA)
3526     return false;
3527 
3528   // Extract the actual blocks.
3529   BasicBlock *TrueBB = TBA->getBasicBlock();
3530   BasicBlock *FalseBB = FBA->getBasicBlock();
3531 
3532   // Perform the actual simplification.
3533   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3534                                     0);
3535 }
3536 
3537 /// This is called when we find an icmp instruction
3538 /// (a seteq/setne with a constant) as the only instruction in a
3539 /// block that ends with an uncond branch.  We are looking for a very specific
3540 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3541 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3542 /// default value goes to an uncond block with a seteq in it, we get something
3543 /// like:
3544 ///
3545 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3546 /// DEFAULT:
3547 ///   %tmp = icmp eq i8 %A, 92
3548 ///   br label %end
3549 /// end:
3550 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3551 ///
3552 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3553 /// the PHI, merging the third icmp into the switch.
3554 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3555     ICmpInst *ICI, IRBuilder<> &Builder) {
3556   BasicBlock *BB = ICI->getParent();
3557 
3558   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3559   // complex.
3560   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3561     return false;
3562 
3563   Value *V = ICI->getOperand(0);
3564   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3565 
3566   // The pattern we're looking for is where our only predecessor is a switch on
3567   // 'V' and this block is the default case for the switch.  In this case we can
3568   // fold the compared value into the switch to simplify things.
3569   BasicBlock *Pred = BB->getSinglePredecessor();
3570   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3571     return false;
3572 
3573   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3574   if (SI->getCondition() != V)
3575     return false;
3576 
3577   // If BB is reachable on a non-default case, then we simply know the value of
3578   // V in this block.  Substitute it and constant fold the icmp instruction
3579   // away.
3580   if (SI->getDefaultDest() != BB) {
3581     ConstantInt *VVal = SI->findCaseDest(BB);
3582     assert(VVal && "Should have a unique destination value");
3583     ICI->setOperand(0, VVal);
3584 
3585     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3586       ICI->replaceAllUsesWith(V);
3587       ICI->eraseFromParent();
3588     }
3589     // BB is now empty, so it is likely to simplify away.
3590     return requestResimplify();
3591   }
3592 
3593   // Ok, the block is reachable from the default dest.  If the constant we're
3594   // comparing exists in one of the other edges, then we can constant fold ICI
3595   // and zap it.
3596   if (SI->findCaseValue(Cst) != SI->case_default()) {
3597     Value *V;
3598     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3599       V = ConstantInt::getFalse(BB->getContext());
3600     else
3601       V = ConstantInt::getTrue(BB->getContext());
3602 
3603     ICI->replaceAllUsesWith(V);
3604     ICI->eraseFromParent();
3605     // BB is now empty, so it is likely to simplify away.
3606     return requestResimplify();
3607   }
3608 
3609   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3610   // the block.
3611   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3612   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3613   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3614       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3615     return false;
3616 
3617   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3618   // true in the PHI.
3619   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3620   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3621 
3622   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3623     std::swap(DefaultCst, NewCst);
3624 
3625   // Replace ICI (which is used by the PHI for the default value) with true or
3626   // false depending on if it is EQ or NE.
3627   ICI->replaceAllUsesWith(DefaultCst);
3628   ICI->eraseFromParent();
3629 
3630   // Okay, the switch goes to this block on a default value.  Add an edge from
3631   // the switch to the merge point on the compared value.
3632   BasicBlock *NewBB =
3633       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3634   SmallVector<uint64_t, 8> Weights;
3635   bool HasWeights = HasBranchWeights(SI);
3636   if (HasWeights) {
3637     GetBranchWeights(SI, Weights);
3638     if (Weights.size() == 1 + SI->getNumCases()) {
3639       // Split weight for default case to case for "Cst".
3640       Weights[0] = (Weights[0] + 1) >> 1;
3641       Weights.push_back(Weights[0]);
3642 
3643       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3644       setBranchWeights(SI, MDWeights);
3645     }
3646   }
3647   SI->addCase(Cst, NewBB);
3648 
3649   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3650   Builder.SetInsertPoint(NewBB);
3651   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3652   Builder.CreateBr(SuccBlock);
3653   PHIUse->addIncoming(NewCst, NewBB);
3654   return true;
3655 }
3656 
3657 /// The specified branch is a conditional branch.
3658 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3659 /// fold it into a switch instruction if so.
3660 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3661                                       const DataLayout &DL) {
3662   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3663   if (!Cond)
3664     return false;
3665 
3666   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3667   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3668   // 'setne's and'ed together, collect them.
3669 
3670   // Try to gather values from a chain of and/or to be turned into a switch
3671   ConstantComparesGatherer ConstantCompare(Cond, DL);
3672   // Unpack the result
3673   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3674   Value *CompVal = ConstantCompare.CompValue;
3675   unsigned UsedICmps = ConstantCompare.UsedICmps;
3676   Value *ExtraCase = ConstantCompare.Extra;
3677 
3678   // If we didn't have a multiply compared value, fail.
3679   if (!CompVal)
3680     return false;
3681 
3682   // Avoid turning single icmps into a switch.
3683   if (UsedICmps <= 1)
3684     return false;
3685 
3686   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3687 
3688   // There might be duplicate constants in the list, which the switch
3689   // instruction can't handle, remove them now.
3690   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3691   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3692 
3693   // If Extra was used, we require at least two switch values to do the
3694   // transformation.  A switch with one value is just a conditional branch.
3695   if (ExtraCase && Values.size() < 2)
3696     return false;
3697 
3698   // TODO: Preserve branch weight metadata, similarly to how
3699   // FoldValueComparisonIntoPredecessors preserves it.
3700 
3701   // Figure out which block is which destination.
3702   BasicBlock *DefaultBB = BI->getSuccessor(1);
3703   BasicBlock *EdgeBB = BI->getSuccessor(0);
3704   if (!TrueWhenEqual)
3705     std::swap(DefaultBB, EdgeBB);
3706 
3707   BasicBlock *BB = BI->getParent();
3708 
3709   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3710                     << " cases into SWITCH.  BB is:\n"
3711                     << *BB);
3712 
3713   // If there are any extra values that couldn't be folded into the switch
3714   // then we evaluate them with an explicit branch first.  Split the block
3715   // right before the condbr to handle it.
3716   if (ExtraCase) {
3717     BasicBlock *NewBB =
3718         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3719     // Remove the uncond branch added to the old block.
3720     Instruction *OldTI = BB->getTerminator();
3721     Builder.SetInsertPoint(OldTI);
3722 
3723     if (TrueWhenEqual)
3724       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3725     else
3726       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3727 
3728     OldTI->eraseFromParent();
3729 
3730     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3731     // for the edge we just added.
3732     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3733 
3734     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3735                       << "\nEXTRABB = " << *BB);
3736     BB = NewBB;
3737   }
3738 
3739   Builder.SetInsertPoint(BI);
3740   // Convert pointer to int before we switch.
3741   if (CompVal->getType()->isPointerTy()) {
3742     CompVal = Builder.CreatePtrToInt(
3743         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3744   }
3745 
3746   // Create the new switch instruction now.
3747   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3748 
3749   // Add all of the 'cases' to the switch instruction.
3750   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3751     New->addCase(Values[i], EdgeBB);
3752 
3753   // We added edges from PI to the EdgeBB.  As such, if there were any
3754   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3755   // the number of edges added.
3756   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3757     PHINode *PN = cast<PHINode>(BBI);
3758     Value *InVal = PN->getIncomingValueForBlock(BB);
3759     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3760       PN->addIncoming(InVal, BB);
3761   }
3762 
3763   // Erase the old branch instruction.
3764   EraseTerminatorAndDCECond(BI);
3765 
3766   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3767   return true;
3768 }
3769 
3770 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3771   if (isa<PHINode>(RI->getValue()))
3772     return SimplifyCommonResume(RI);
3773   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3774            RI->getValue() == RI->getParent()->getFirstNonPHI())
3775     // The resume must unwind the exception that caused control to branch here.
3776     return SimplifySingleResume(RI);
3777 
3778   return false;
3779 }
3780 
3781 // Simplify resume that is shared by several landing pads (phi of landing pad).
3782 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3783   BasicBlock *BB = RI->getParent();
3784 
3785   // Check that there are no other instructions except for debug intrinsics
3786   // between the phi of landing pads (RI->getValue()) and resume instruction.
3787   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3788                        E = RI->getIterator();
3789   while (++I != E)
3790     if (!isa<DbgInfoIntrinsic>(I))
3791       return false;
3792 
3793   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3794   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3795 
3796   // Check incoming blocks to see if any of them are trivial.
3797   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3798        Idx++) {
3799     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3800     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3801 
3802     // If the block has other successors, we can not delete it because
3803     // it has other dependents.
3804     if (IncomingBB->getUniqueSuccessor() != BB)
3805       continue;
3806 
3807     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3808     // Not the landing pad that caused the control to branch here.
3809     if (IncomingValue != LandingPad)
3810       continue;
3811 
3812     bool isTrivial = true;
3813 
3814     I = IncomingBB->getFirstNonPHI()->getIterator();
3815     E = IncomingBB->getTerminator()->getIterator();
3816     while (++I != E)
3817       if (!isa<DbgInfoIntrinsic>(I)) {
3818         isTrivial = false;
3819         break;
3820       }
3821 
3822     if (isTrivial)
3823       TrivialUnwindBlocks.insert(IncomingBB);
3824   }
3825 
3826   // If no trivial unwind blocks, don't do any simplifications.
3827   if (TrivialUnwindBlocks.empty())
3828     return false;
3829 
3830   // Turn all invokes that unwind here into calls.
3831   for (auto *TrivialBB : TrivialUnwindBlocks) {
3832     // Blocks that will be simplified should be removed from the phi node.
3833     // Note there could be multiple edges to the resume block, and we need
3834     // to remove them all.
3835     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3836       BB->removePredecessor(TrivialBB, true);
3837 
3838     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3839          PI != PE;) {
3840       BasicBlock *Pred = *PI++;
3841       removeUnwindEdge(Pred);
3842     }
3843 
3844     // In each SimplifyCFG run, only the current processed block can be erased.
3845     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3846     // of erasing TrivialBB, we only remove the branch to the common resume
3847     // block so that we can later erase the resume block since it has no
3848     // predecessors.
3849     TrivialBB->getTerminator()->eraseFromParent();
3850     new UnreachableInst(RI->getContext(), TrivialBB);
3851   }
3852 
3853   // Delete the resume block if all its predecessors have been removed.
3854   if (pred_empty(BB))
3855     BB->eraseFromParent();
3856 
3857   return !TrivialUnwindBlocks.empty();
3858 }
3859 
3860 // Simplify resume that is only used by a single (non-phi) landing pad.
3861 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3862   BasicBlock *BB = RI->getParent();
3863   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3864   assert(RI->getValue() == LPInst &&
3865          "Resume must unwind the exception that caused control to here");
3866 
3867   // Check that there are no other instructions except for debug intrinsics.
3868   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3869   while (++I != E)
3870     if (!isa<DbgInfoIntrinsic>(I))
3871       return false;
3872 
3873   // Turn all invokes that unwind here into calls and delete the basic block.
3874   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3875     BasicBlock *Pred = *PI++;
3876     removeUnwindEdge(Pred);
3877   }
3878 
3879   // The landingpad is now unreachable.  Zap it.
3880   if (LoopHeaders)
3881     LoopHeaders->erase(BB);
3882   BB->eraseFromParent();
3883   return true;
3884 }
3885 
3886 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3887   // If this is a trivial cleanup pad that executes no instructions, it can be
3888   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3889   // that is an EH pad will be updated to continue to the caller and any
3890   // predecessor that terminates with an invoke instruction will have its invoke
3891   // instruction converted to a call instruction.  If the cleanup pad being
3892   // simplified does not continue to the caller, each predecessor will be
3893   // updated to continue to the unwind destination of the cleanup pad being
3894   // simplified.
3895   BasicBlock *BB = RI->getParent();
3896   CleanupPadInst *CPInst = RI->getCleanupPad();
3897   if (CPInst->getParent() != BB)
3898     // This isn't an empty cleanup.
3899     return false;
3900 
3901   // We cannot kill the pad if it has multiple uses.  This typically arises
3902   // from unreachable basic blocks.
3903   if (!CPInst->hasOneUse())
3904     return false;
3905 
3906   // Check that there are no other instructions except for benign intrinsics.
3907   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3908   while (++I != E) {
3909     auto *II = dyn_cast<IntrinsicInst>(I);
3910     if (!II)
3911       return false;
3912 
3913     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3914     switch (IntrinsicID) {
3915     case Intrinsic::dbg_declare:
3916     case Intrinsic::dbg_value:
3917     case Intrinsic::dbg_label:
3918     case Intrinsic::lifetime_end:
3919       break;
3920     default:
3921       return false;
3922     }
3923   }
3924 
3925   // If the cleanup return we are simplifying unwinds to the caller, this will
3926   // set UnwindDest to nullptr.
3927   BasicBlock *UnwindDest = RI->getUnwindDest();
3928   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3929 
3930   // We're about to remove BB from the control flow.  Before we do, sink any
3931   // PHINodes into the unwind destination.  Doing this before changing the
3932   // control flow avoids some potentially slow checks, since we can currently
3933   // be certain that UnwindDest and BB have no common predecessors (since they
3934   // are both EH pads).
3935   if (UnwindDest) {
3936     // First, go through the PHI nodes in UnwindDest and update any nodes that
3937     // reference the block we are removing
3938     for (BasicBlock::iterator I = UnwindDest->begin(),
3939                               IE = DestEHPad->getIterator();
3940          I != IE; ++I) {
3941       PHINode *DestPN = cast<PHINode>(I);
3942 
3943       int Idx = DestPN->getBasicBlockIndex(BB);
3944       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3945       assert(Idx != -1);
3946       // This PHI node has an incoming value that corresponds to a control
3947       // path through the cleanup pad we are removing.  If the incoming
3948       // value is in the cleanup pad, it must be a PHINode (because we
3949       // verified above that the block is otherwise empty).  Otherwise, the
3950       // value is either a constant or a value that dominates the cleanup
3951       // pad being removed.
3952       //
3953       // Because BB and UnwindDest are both EH pads, all of their
3954       // predecessors must unwind to these blocks, and since no instruction
3955       // can have multiple unwind destinations, there will be no overlap in
3956       // incoming blocks between SrcPN and DestPN.
3957       Value *SrcVal = DestPN->getIncomingValue(Idx);
3958       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3959 
3960       // Remove the entry for the block we are deleting.
3961       DestPN->removeIncomingValue(Idx, false);
3962 
3963       if (SrcPN && SrcPN->getParent() == BB) {
3964         // If the incoming value was a PHI node in the cleanup pad we are
3965         // removing, we need to merge that PHI node's incoming values into
3966         // DestPN.
3967         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3968              SrcIdx != SrcE; ++SrcIdx) {
3969           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3970                               SrcPN->getIncomingBlock(SrcIdx));
3971         }
3972       } else {
3973         // Otherwise, the incoming value came from above BB and
3974         // so we can just reuse it.  We must associate all of BB's
3975         // predecessors with this value.
3976         for (auto *pred : predecessors(BB)) {
3977           DestPN->addIncoming(SrcVal, pred);
3978         }
3979       }
3980     }
3981 
3982     // Sink any remaining PHI nodes directly into UnwindDest.
3983     Instruction *InsertPt = DestEHPad;
3984     for (BasicBlock::iterator I = BB->begin(),
3985                               IE = BB->getFirstNonPHI()->getIterator();
3986          I != IE;) {
3987       // The iterator must be incremented here because the instructions are
3988       // being moved to another block.
3989       PHINode *PN = cast<PHINode>(I++);
3990       if (PN->use_empty())
3991         // If the PHI node has no uses, just leave it.  It will be erased
3992         // when we erase BB below.
3993         continue;
3994 
3995       // Otherwise, sink this PHI node into UnwindDest.
3996       // Any predecessors to UnwindDest which are not already represented
3997       // must be back edges which inherit the value from the path through
3998       // BB.  In this case, the PHI value must reference itself.
3999       for (auto *pred : predecessors(UnwindDest))
4000         if (pred != BB)
4001           PN->addIncoming(PN, pred);
4002       PN->moveBefore(InsertPt);
4003     }
4004   }
4005 
4006   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4007     // The iterator must be updated here because we are removing this pred.
4008     BasicBlock *PredBB = *PI++;
4009     if (UnwindDest == nullptr) {
4010       removeUnwindEdge(PredBB);
4011     } else {
4012       Instruction *TI = PredBB->getTerminator();
4013       TI->replaceUsesOfWith(BB, UnwindDest);
4014     }
4015   }
4016 
4017   // The cleanup pad is now unreachable.  Zap it.
4018   BB->eraseFromParent();
4019   return true;
4020 }
4021 
4022 // Try to merge two cleanuppads together.
4023 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4024   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4025   // with.
4026   BasicBlock *UnwindDest = RI->getUnwindDest();
4027   if (!UnwindDest)
4028     return false;
4029 
4030   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4031   // be safe to merge without code duplication.
4032   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4033     return false;
4034 
4035   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4036   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4037   if (!SuccessorCleanupPad)
4038     return false;
4039 
4040   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4041   // Replace any uses of the successor cleanupad with the predecessor pad
4042   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4043   // funclet bundle operands.
4044   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4045   // Remove the old cleanuppad.
4046   SuccessorCleanupPad->eraseFromParent();
4047   // Now, we simply replace the cleanupret with a branch to the unwind
4048   // destination.
4049   BranchInst::Create(UnwindDest, RI->getParent());
4050   RI->eraseFromParent();
4051 
4052   return true;
4053 }
4054 
4055 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4056   // It is possible to transiantly have an undef cleanuppad operand because we
4057   // have deleted some, but not all, dead blocks.
4058   // Eventually, this block will be deleted.
4059   if (isa<UndefValue>(RI->getOperand(0)))
4060     return false;
4061 
4062   if (mergeCleanupPad(RI))
4063     return true;
4064 
4065   if (removeEmptyCleanup(RI))
4066     return true;
4067 
4068   return false;
4069 }
4070 
4071 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4072   BasicBlock *BB = RI->getParent();
4073   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4074     return false;
4075 
4076   // Find predecessors that end with branches.
4077   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4078   SmallVector<BranchInst *, 8> CondBranchPreds;
4079   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4080     BasicBlock *P = *PI;
4081     Instruction *PTI = P->getTerminator();
4082     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4083       if (BI->isUnconditional())
4084         UncondBranchPreds.push_back(P);
4085       else
4086         CondBranchPreds.push_back(BI);
4087     }
4088   }
4089 
4090   // If we found some, do the transformation!
4091   if (!UncondBranchPreds.empty() && DupRet) {
4092     while (!UncondBranchPreds.empty()) {
4093       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4094       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4095                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4096       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4097     }
4098 
4099     // If we eliminated all predecessors of the block, delete the block now.
4100     if (pred_empty(BB)) {
4101       // We know there are no successors, so just nuke the block.
4102       if (LoopHeaders)
4103         LoopHeaders->erase(BB);
4104       BB->eraseFromParent();
4105     }
4106 
4107     return true;
4108   }
4109 
4110   // Check out all of the conditional branches going to this return
4111   // instruction.  If any of them just select between returns, change the
4112   // branch itself into a select/return pair.
4113   while (!CondBranchPreds.empty()) {
4114     BranchInst *BI = CondBranchPreds.pop_back_val();
4115 
4116     // Check to see if the non-BB successor is also a return block.
4117     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4118         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4119         SimplifyCondBranchToTwoReturns(BI, Builder))
4120       return true;
4121   }
4122   return false;
4123 }
4124 
4125 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4126   BasicBlock *BB = UI->getParent();
4127 
4128   bool Changed = false;
4129 
4130   // If there are any instructions immediately before the unreachable that can
4131   // be removed, do so.
4132   while (UI->getIterator() != BB->begin()) {
4133     BasicBlock::iterator BBI = UI->getIterator();
4134     --BBI;
4135     // Do not delete instructions that can have side effects which might cause
4136     // the unreachable to not be reachable; specifically, calls and volatile
4137     // operations may have this effect.
4138     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4139       break;
4140 
4141     if (BBI->mayHaveSideEffects()) {
4142       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4143         if (SI->isVolatile())
4144           break;
4145       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4146         if (LI->isVolatile())
4147           break;
4148       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4149         if (RMWI->isVolatile())
4150           break;
4151       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4152         if (CXI->isVolatile())
4153           break;
4154       } else if (isa<CatchPadInst>(BBI)) {
4155         // A catchpad may invoke exception object constructors and such, which
4156         // in some languages can be arbitrary code, so be conservative by
4157         // default.
4158         // For CoreCLR, it just involves a type test, so can be removed.
4159         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4160             EHPersonality::CoreCLR)
4161           break;
4162       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4163                  !isa<LandingPadInst>(BBI)) {
4164         break;
4165       }
4166       // Note that deleting LandingPad's here is in fact okay, although it
4167       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4168       // all the predecessors of this block will be the unwind edges of Invokes,
4169       // and we can therefore guarantee this block will be erased.
4170     }
4171 
4172     // Delete this instruction (any uses are guaranteed to be dead)
4173     if (!BBI->use_empty())
4174       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4175     BBI->eraseFromParent();
4176     Changed = true;
4177   }
4178 
4179   // If the unreachable instruction is the first in the block, take a gander
4180   // at all of the predecessors of this instruction, and simplify them.
4181   if (&BB->front() != UI)
4182     return Changed;
4183 
4184   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4185   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4186     Instruction *TI = Preds[i]->getTerminator();
4187     IRBuilder<> Builder(TI);
4188     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4189       if (BI->isUnconditional()) {
4190         if (BI->getSuccessor(0) == BB) {
4191           new UnreachableInst(TI->getContext(), TI);
4192           TI->eraseFromParent();
4193           Changed = true;
4194         }
4195       } else {
4196         if (BI->getSuccessor(0) == BB) {
4197           Builder.CreateBr(BI->getSuccessor(1));
4198           EraseTerminatorAndDCECond(BI);
4199         } else if (BI->getSuccessor(1) == BB) {
4200           Builder.CreateBr(BI->getSuccessor(0));
4201           EraseTerminatorAndDCECond(BI);
4202           Changed = true;
4203         }
4204       }
4205     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4206       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4207         if (i->getCaseSuccessor() != BB) {
4208           ++i;
4209           continue;
4210         }
4211         BB->removePredecessor(SI->getParent());
4212         i = SI->removeCase(i);
4213         e = SI->case_end();
4214         Changed = true;
4215       }
4216     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4217       if (II->getUnwindDest() == BB) {
4218         removeUnwindEdge(TI->getParent());
4219         Changed = true;
4220       }
4221     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4222       if (CSI->getUnwindDest() == BB) {
4223         removeUnwindEdge(TI->getParent());
4224         Changed = true;
4225         continue;
4226       }
4227 
4228       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4229                                              E = CSI->handler_end();
4230            I != E; ++I) {
4231         if (*I == BB) {
4232           CSI->removeHandler(I);
4233           --I;
4234           --E;
4235           Changed = true;
4236         }
4237       }
4238       if (CSI->getNumHandlers() == 0) {
4239         BasicBlock *CatchSwitchBB = CSI->getParent();
4240         if (CSI->hasUnwindDest()) {
4241           // Redirect preds to the unwind dest
4242           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4243         } else {
4244           // Rewrite all preds to unwind to caller (or from invoke to call).
4245           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4246           for (BasicBlock *EHPred : EHPreds)
4247             removeUnwindEdge(EHPred);
4248         }
4249         // The catchswitch is no longer reachable.
4250         new UnreachableInst(CSI->getContext(), CSI);
4251         CSI->eraseFromParent();
4252         Changed = true;
4253       }
4254     } else if (isa<CleanupReturnInst>(TI)) {
4255       new UnreachableInst(TI->getContext(), TI);
4256       TI->eraseFromParent();
4257       Changed = true;
4258     }
4259   }
4260 
4261   // If this block is now dead, remove it.
4262   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4263     // We know there are no successors, so just nuke the block.
4264     if (LoopHeaders)
4265       LoopHeaders->erase(BB);
4266     BB->eraseFromParent();
4267     return true;
4268   }
4269 
4270   return Changed;
4271 }
4272 
4273 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4274   assert(Cases.size() >= 1);
4275 
4276   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4277   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4278     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4279       return false;
4280   }
4281   return true;
4282 }
4283 
4284 /// Turn a switch with two reachable destinations into an integer range
4285 /// comparison and branch.
4286 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4287   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4288 
4289   bool HasDefault =
4290       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4291 
4292   // Partition the cases into two sets with different destinations.
4293   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4294   BasicBlock *DestB = nullptr;
4295   SmallVector<ConstantInt *, 16> CasesA;
4296   SmallVector<ConstantInt *, 16> CasesB;
4297 
4298   for (auto Case : SI->cases()) {
4299     BasicBlock *Dest = Case.getCaseSuccessor();
4300     if (!DestA)
4301       DestA = Dest;
4302     if (Dest == DestA) {
4303       CasesA.push_back(Case.getCaseValue());
4304       continue;
4305     }
4306     if (!DestB)
4307       DestB = Dest;
4308     if (Dest == DestB) {
4309       CasesB.push_back(Case.getCaseValue());
4310       continue;
4311     }
4312     return false; // More than two destinations.
4313   }
4314 
4315   assert(DestA && DestB &&
4316          "Single-destination switch should have been folded.");
4317   assert(DestA != DestB);
4318   assert(DestB != SI->getDefaultDest());
4319   assert(!CasesB.empty() && "There must be non-default cases.");
4320   assert(!CasesA.empty() || HasDefault);
4321 
4322   // Figure out if one of the sets of cases form a contiguous range.
4323   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4324   BasicBlock *ContiguousDest = nullptr;
4325   BasicBlock *OtherDest = nullptr;
4326   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4327     ContiguousCases = &CasesA;
4328     ContiguousDest = DestA;
4329     OtherDest = DestB;
4330   } else if (CasesAreContiguous(CasesB)) {
4331     ContiguousCases = &CasesB;
4332     ContiguousDest = DestB;
4333     OtherDest = DestA;
4334   } else
4335     return false;
4336 
4337   // Start building the compare and branch.
4338 
4339   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4340   Constant *NumCases =
4341       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4342 
4343   Value *Sub = SI->getCondition();
4344   if (!Offset->isNullValue())
4345     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4346 
4347   Value *Cmp;
4348   // If NumCases overflowed, then all possible values jump to the successor.
4349   if (NumCases->isNullValue() && !ContiguousCases->empty())
4350     Cmp = ConstantInt::getTrue(SI->getContext());
4351   else
4352     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4353   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4354 
4355   // Update weight for the newly-created conditional branch.
4356   if (HasBranchWeights(SI)) {
4357     SmallVector<uint64_t, 8> Weights;
4358     GetBranchWeights(SI, Weights);
4359     if (Weights.size() == 1 + SI->getNumCases()) {
4360       uint64_t TrueWeight = 0;
4361       uint64_t FalseWeight = 0;
4362       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4363         if (SI->getSuccessor(I) == ContiguousDest)
4364           TrueWeight += Weights[I];
4365         else
4366           FalseWeight += Weights[I];
4367       }
4368       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4369         TrueWeight /= 2;
4370         FalseWeight /= 2;
4371       }
4372       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4373     }
4374   }
4375 
4376   // Prune obsolete incoming values off the successors' PHI nodes.
4377   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4378     unsigned PreviousEdges = ContiguousCases->size();
4379     if (ContiguousDest == SI->getDefaultDest())
4380       ++PreviousEdges;
4381     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4382       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4383   }
4384   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4385     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4386     if (OtherDest == SI->getDefaultDest())
4387       ++PreviousEdges;
4388     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4389       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4390   }
4391 
4392   // Drop the switch.
4393   SI->eraseFromParent();
4394 
4395   return true;
4396 }
4397 
4398 /// Compute masked bits for the condition of a switch
4399 /// and use it to remove dead cases.
4400 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4401                                      const DataLayout &DL) {
4402   Value *Cond = SI->getCondition();
4403   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4404   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4405 
4406   // We can also eliminate cases by determining that their values are outside of
4407   // the limited range of the condition based on how many significant (non-sign)
4408   // bits are in the condition value.
4409   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4410   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4411 
4412   // Gather dead cases.
4413   SmallVector<ConstantInt *, 8> DeadCases;
4414   for (auto &Case : SI->cases()) {
4415     const APInt &CaseVal = Case.getCaseValue()->getValue();
4416     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4417         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4418       DeadCases.push_back(Case.getCaseValue());
4419       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4420                         << " is dead.\n");
4421     }
4422   }
4423 
4424   // If we can prove that the cases must cover all possible values, the
4425   // default destination becomes dead and we can remove it.  If we know some
4426   // of the bits in the value, we can use that to more precisely compute the
4427   // number of possible unique case values.
4428   bool HasDefault =
4429       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4430   const unsigned NumUnknownBits =
4431       Bits - (Known.Zero | Known.One).countPopulation();
4432   assert(NumUnknownBits <= Bits);
4433   if (HasDefault && DeadCases.empty() &&
4434       NumUnknownBits < 64 /* avoid overflow */ &&
4435       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4436     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4437     BasicBlock *NewDefault =
4438         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4439     SI->setDefaultDest(&*NewDefault);
4440     SplitBlock(&*NewDefault, &NewDefault->front());
4441     auto *OldTI = NewDefault->getTerminator();
4442     new UnreachableInst(SI->getContext(), OldTI);
4443     EraseTerminatorAndDCECond(OldTI);
4444     return true;
4445   }
4446 
4447   SmallVector<uint64_t, 8> Weights;
4448   bool HasWeight = HasBranchWeights(SI);
4449   if (HasWeight) {
4450     GetBranchWeights(SI, Weights);
4451     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4452   }
4453 
4454   // Remove dead cases from the switch.
4455   for (ConstantInt *DeadCase : DeadCases) {
4456     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4457     assert(CaseI != SI->case_default() &&
4458            "Case was not found. Probably mistake in DeadCases forming.");
4459     if (HasWeight) {
4460       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4461       Weights.pop_back();
4462     }
4463 
4464     // Prune unused values from PHI nodes.
4465     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4466     SI->removeCase(CaseI);
4467   }
4468   if (HasWeight && Weights.size() >= 2) {
4469     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4470     setBranchWeights(SI, MDWeights);
4471   }
4472 
4473   return !DeadCases.empty();
4474 }
4475 
4476 /// If BB would be eligible for simplification by
4477 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4478 /// by an unconditional branch), look at the phi node for BB in the successor
4479 /// block and see if the incoming value is equal to CaseValue. If so, return
4480 /// the phi node, and set PhiIndex to BB's index in the phi node.
4481 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4482                                               BasicBlock *BB, int *PhiIndex) {
4483   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4484     return nullptr; // BB must be empty to be a candidate for simplification.
4485   if (!BB->getSinglePredecessor())
4486     return nullptr; // BB must be dominated by the switch.
4487 
4488   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4489   if (!Branch || !Branch->isUnconditional())
4490     return nullptr; // Terminator must be unconditional branch.
4491 
4492   BasicBlock *Succ = Branch->getSuccessor(0);
4493 
4494   for (PHINode &PHI : Succ->phis()) {
4495     int Idx = PHI.getBasicBlockIndex(BB);
4496     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4497 
4498     Value *InValue = PHI.getIncomingValue(Idx);
4499     if (InValue != CaseValue)
4500       continue;
4501 
4502     *PhiIndex = Idx;
4503     return &PHI;
4504   }
4505 
4506   return nullptr;
4507 }
4508 
4509 /// Try to forward the condition of a switch instruction to a phi node
4510 /// dominated by the switch, if that would mean that some of the destination
4511 /// blocks of the switch can be folded away. Return true if a change is made.
4512 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4513   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4514 
4515   ForwardingNodesMap ForwardingNodes;
4516   BasicBlock *SwitchBlock = SI->getParent();
4517   bool Changed = false;
4518   for (auto &Case : SI->cases()) {
4519     ConstantInt *CaseValue = Case.getCaseValue();
4520     BasicBlock *CaseDest = Case.getCaseSuccessor();
4521 
4522     // Replace phi operands in successor blocks that are using the constant case
4523     // value rather than the switch condition variable:
4524     //   switchbb:
4525     //   switch i32 %x, label %default [
4526     //     i32 17, label %succ
4527     //   ...
4528     //   succ:
4529     //     %r = phi i32 ... [ 17, %switchbb ] ...
4530     // -->
4531     //     %r = phi i32 ... [ %x, %switchbb ] ...
4532 
4533     for (PHINode &Phi : CaseDest->phis()) {
4534       // This only works if there is exactly 1 incoming edge from the switch to
4535       // a phi. If there is >1, that means multiple cases of the switch map to 1
4536       // value in the phi, and that phi value is not the switch condition. Thus,
4537       // this transform would not make sense (the phi would be invalid because
4538       // a phi can't have different incoming values from the same block).
4539       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4540       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4541           count(Phi.blocks(), SwitchBlock) == 1) {
4542         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4543         Changed = true;
4544       }
4545     }
4546 
4547     // Collect phi nodes that are indirectly using this switch's case constants.
4548     int PhiIdx;
4549     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4550       ForwardingNodes[Phi].push_back(PhiIdx);
4551   }
4552 
4553   for (auto &ForwardingNode : ForwardingNodes) {
4554     PHINode *Phi = ForwardingNode.first;
4555     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4556     if (Indexes.size() < 2)
4557       continue;
4558 
4559     for (int Index : Indexes)
4560       Phi->setIncomingValue(Index, SI->getCondition());
4561     Changed = true;
4562   }
4563 
4564   return Changed;
4565 }
4566 
4567 /// Return true if the backend will be able to handle
4568 /// initializing an array of constants like C.
4569 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4570   if (C->isThreadDependent())
4571     return false;
4572   if (C->isDLLImportDependent())
4573     return false;
4574 
4575   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4576       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4577       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4578     return false;
4579 
4580   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4581     if (!CE->isGEPWithNoNotionalOverIndexing())
4582       return false;
4583     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4584       return false;
4585   }
4586 
4587   if (!TTI.shouldBuildLookupTablesForConstant(C))
4588     return false;
4589 
4590   return true;
4591 }
4592 
4593 /// If V is a Constant, return it. Otherwise, try to look up
4594 /// its constant value in ConstantPool, returning 0 if it's not there.
4595 static Constant *
4596 LookupConstant(Value *V,
4597                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4598   if (Constant *C = dyn_cast<Constant>(V))
4599     return C;
4600   return ConstantPool.lookup(V);
4601 }
4602 
4603 /// Try to fold instruction I into a constant. This works for
4604 /// simple instructions such as binary operations where both operands are
4605 /// constant or can be replaced by constants from the ConstantPool. Returns the
4606 /// resulting constant on success, 0 otherwise.
4607 static Constant *
4608 ConstantFold(Instruction *I, const DataLayout &DL,
4609              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4610   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4611     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4612     if (!A)
4613       return nullptr;
4614     if (A->isAllOnesValue())
4615       return LookupConstant(Select->getTrueValue(), ConstantPool);
4616     if (A->isNullValue())
4617       return LookupConstant(Select->getFalseValue(), ConstantPool);
4618     return nullptr;
4619   }
4620 
4621   SmallVector<Constant *, 4> COps;
4622   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4623     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4624       COps.push_back(A);
4625     else
4626       return nullptr;
4627   }
4628 
4629   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4630     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4631                                            COps[1], DL);
4632   }
4633 
4634   return ConstantFoldInstOperands(I, COps, DL);
4635 }
4636 
4637 /// Try to determine the resulting constant values in phi nodes
4638 /// at the common destination basic block, *CommonDest, for one of the case
4639 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4640 /// case), of a switch instruction SI.
4641 static bool
4642 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4643                BasicBlock **CommonDest,
4644                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4645                const DataLayout &DL, const TargetTransformInfo &TTI) {
4646   // The block from which we enter the common destination.
4647   BasicBlock *Pred = SI->getParent();
4648 
4649   // If CaseDest is empty except for some side-effect free instructions through
4650   // which we can constant-propagate the CaseVal, continue to its successor.
4651   SmallDenseMap<Value *, Constant *> ConstantPool;
4652   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4653   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4654     if (I.isTerminator()) {
4655       // If the terminator is a simple branch, continue to the next block.
4656       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4657         return false;
4658       Pred = CaseDest;
4659       CaseDest = I.getSuccessor(0);
4660     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4661       // Instruction is side-effect free and constant.
4662 
4663       // If the instruction has uses outside this block or a phi node slot for
4664       // the block, it is not safe to bypass the instruction since it would then
4665       // no longer dominate all its uses.
4666       for (auto &Use : I.uses()) {
4667         User *User = Use.getUser();
4668         if (Instruction *I = dyn_cast<Instruction>(User))
4669           if (I->getParent() == CaseDest)
4670             continue;
4671         if (PHINode *Phi = dyn_cast<PHINode>(User))
4672           if (Phi->getIncomingBlock(Use) == CaseDest)
4673             continue;
4674         return false;
4675       }
4676 
4677       ConstantPool.insert(std::make_pair(&I, C));
4678     } else {
4679       break;
4680     }
4681   }
4682 
4683   // If we did not have a CommonDest before, use the current one.
4684   if (!*CommonDest)
4685     *CommonDest = CaseDest;
4686   // If the destination isn't the common one, abort.
4687   if (CaseDest != *CommonDest)
4688     return false;
4689 
4690   // Get the values for this case from phi nodes in the destination block.
4691   for (PHINode &PHI : (*CommonDest)->phis()) {
4692     int Idx = PHI.getBasicBlockIndex(Pred);
4693     if (Idx == -1)
4694       continue;
4695 
4696     Constant *ConstVal =
4697         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4698     if (!ConstVal)
4699       return false;
4700 
4701     // Be conservative about which kinds of constants we support.
4702     if (!ValidLookupTableConstant(ConstVal, TTI))
4703       return false;
4704 
4705     Res.push_back(std::make_pair(&PHI, ConstVal));
4706   }
4707 
4708   return Res.size() > 0;
4709 }
4710 
4711 // Helper function used to add CaseVal to the list of cases that generate
4712 // Result. Returns the updated number of cases that generate this result.
4713 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4714                                  SwitchCaseResultVectorTy &UniqueResults,
4715                                  Constant *Result) {
4716   for (auto &I : UniqueResults) {
4717     if (I.first == Result) {
4718       I.second.push_back(CaseVal);
4719       return I.second.size();
4720     }
4721   }
4722   UniqueResults.push_back(
4723       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4724   return 1;
4725 }
4726 
4727 // Helper function that initializes a map containing
4728 // results for the PHI node of the common destination block for a switch
4729 // instruction. Returns false if multiple PHI nodes have been found or if
4730 // there is not a common destination block for the switch.
4731 static bool
4732 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4733                       SwitchCaseResultVectorTy &UniqueResults,
4734                       Constant *&DefaultResult, const DataLayout &DL,
4735                       const TargetTransformInfo &TTI,
4736                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4737   for (auto &I : SI->cases()) {
4738     ConstantInt *CaseVal = I.getCaseValue();
4739 
4740     // Resulting value at phi nodes for this case value.
4741     SwitchCaseResultsTy Results;
4742     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4743                         DL, TTI))
4744       return false;
4745 
4746     // Only one value per case is permitted.
4747     if (Results.size() > 1)
4748       return false;
4749 
4750     // Add the case->result mapping to UniqueResults.
4751     const uintptr_t NumCasesForResult =
4752         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4753 
4754     // Early out if there are too many cases for this result.
4755     if (NumCasesForResult > MaxCasesPerResult)
4756       return false;
4757 
4758     // Early out if there are too many unique results.
4759     if (UniqueResults.size() > MaxUniqueResults)
4760       return false;
4761 
4762     // Check the PHI consistency.
4763     if (!PHI)
4764       PHI = Results[0].first;
4765     else if (PHI != Results[0].first)
4766       return false;
4767   }
4768   // Find the default result value.
4769   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4770   BasicBlock *DefaultDest = SI->getDefaultDest();
4771   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4772                  DL, TTI);
4773   // If the default value is not found abort unless the default destination
4774   // is unreachable.
4775   DefaultResult =
4776       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4777   if ((!DefaultResult &&
4778        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4779     return false;
4780 
4781   return true;
4782 }
4783 
4784 // Helper function that checks if it is possible to transform a switch with only
4785 // two cases (or two cases + default) that produces a result into a select.
4786 // Example:
4787 // switch (a) {
4788 //   case 10:                %0 = icmp eq i32 %a, 10
4789 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4790 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4791 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4792 //   default:
4793 //     return 4;
4794 // }
4795 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4796                                    Constant *DefaultResult, Value *Condition,
4797                                    IRBuilder<> &Builder) {
4798   assert(ResultVector.size() == 2 &&
4799          "We should have exactly two unique results at this point");
4800   // If we are selecting between only two cases transform into a simple
4801   // select or a two-way select if default is possible.
4802   if (ResultVector[0].second.size() == 1 &&
4803       ResultVector[1].second.size() == 1) {
4804     ConstantInt *const FirstCase = ResultVector[0].second[0];
4805     ConstantInt *const SecondCase = ResultVector[1].second[0];
4806 
4807     bool DefaultCanTrigger = DefaultResult;
4808     Value *SelectValue = ResultVector[1].first;
4809     if (DefaultCanTrigger) {
4810       Value *const ValueCompare =
4811           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4812       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4813                                          DefaultResult, "switch.select");
4814     }
4815     Value *const ValueCompare =
4816         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4817     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4818                                 SelectValue, "switch.select");
4819   }
4820 
4821   return nullptr;
4822 }
4823 
4824 // Helper function to cleanup a switch instruction that has been converted into
4825 // a select, fixing up PHI nodes and basic blocks.
4826 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4827                                               Value *SelectValue,
4828                                               IRBuilder<> &Builder) {
4829   BasicBlock *SelectBB = SI->getParent();
4830   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4831     PHI->removeIncomingValue(SelectBB);
4832   PHI->addIncoming(SelectValue, SelectBB);
4833 
4834   Builder.CreateBr(PHI->getParent());
4835 
4836   // Remove the switch.
4837   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4838     BasicBlock *Succ = SI->getSuccessor(i);
4839 
4840     if (Succ == PHI->getParent())
4841       continue;
4842     Succ->removePredecessor(SelectBB);
4843   }
4844   SI->eraseFromParent();
4845 }
4846 
4847 /// If the switch is only used to initialize one or more
4848 /// phi nodes in a common successor block with only two different
4849 /// constant values, replace the switch with select.
4850 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4851                            const DataLayout &DL,
4852                            const TargetTransformInfo &TTI) {
4853   Value *const Cond = SI->getCondition();
4854   PHINode *PHI = nullptr;
4855   BasicBlock *CommonDest = nullptr;
4856   Constant *DefaultResult;
4857   SwitchCaseResultVectorTy UniqueResults;
4858   // Collect all the cases that will deliver the same value from the switch.
4859   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4860                              DL, TTI, 2, 1))
4861     return false;
4862   // Selects choose between maximum two values.
4863   if (UniqueResults.size() != 2)
4864     return false;
4865   assert(PHI != nullptr && "PHI for value select not found");
4866 
4867   Builder.SetInsertPoint(SI);
4868   Value *SelectValue =
4869       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4870   if (SelectValue) {
4871     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4872     return true;
4873   }
4874   // The switch couldn't be converted into a select.
4875   return false;
4876 }
4877 
4878 namespace {
4879 
4880 /// This class represents a lookup table that can be used to replace a switch.
4881 class SwitchLookupTable {
4882 public:
4883   /// Create a lookup table to use as a switch replacement with the contents
4884   /// of Values, using DefaultValue to fill any holes in the table.
4885   SwitchLookupTable(
4886       Module &M, uint64_t TableSize, ConstantInt *Offset,
4887       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4888       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4889 
4890   /// Build instructions with Builder to retrieve the value at
4891   /// the position given by Index in the lookup table.
4892   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4893 
4894   /// Return true if a table with TableSize elements of
4895   /// type ElementType would fit in a target-legal register.
4896   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4897                                  Type *ElementType);
4898 
4899 private:
4900   // Depending on the contents of the table, it can be represented in
4901   // different ways.
4902   enum {
4903     // For tables where each element contains the same value, we just have to
4904     // store that single value and return it for each lookup.
4905     SingleValueKind,
4906 
4907     // For tables where there is a linear relationship between table index
4908     // and values. We calculate the result with a simple multiplication
4909     // and addition instead of a table lookup.
4910     LinearMapKind,
4911 
4912     // For small tables with integer elements, we can pack them into a bitmap
4913     // that fits into a target-legal register. Values are retrieved by
4914     // shift and mask operations.
4915     BitMapKind,
4916 
4917     // The table is stored as an array of values. Values are retrieved by load
4918     // instructions from the table.
4919     ArrayKind
4920   } Kind;
4921 
4922   // For SingleValueKind, this is the single value.
4923   Constant *SingleValue = nullptr;
4924 
4925   // For BitMapKind, this is the bitmap.
4926   ConstantInt *BitMap = nullptr;
4927   IntegerType *BitMapElementTy = nullptr;
4928 
4929   // For LinearMapKind, these are the constants used to derive the value.
4930   ConstantInt *LinearOffset = nullptr;
4931   ConstantInt *LinearMultiplier = nullptr;
4932 
4933   // For ArrayKind, this is the array.
4934   GlobalVariable *Array = nullptr;
4935 };
4936 
4937 } // end anonymous namespace
4938 
4939 SwitchLookupTable::SwitchLookupTable(
4940     Module &M, uint64_t TableSize, ConstantInt *Offset,
4941     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4942     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4943   assert(Values.size() && "Can't build lookup table without values!");
4944   assert(TableSize >= Values.size() && "Can't fit values in table!");
4945 
4946   // If all values in the table are equal, this is that value.
4947   SingleValue = Values.begin()->second;
4948 
4949   Type *ValueType = Values.begin()->second->getType();
4950 
4951   // Build up the table contents.
4952   SmallVector<Constant *, 64> TableContents(TableSize);
4953   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4954     ConstantInt *CaseVal = Values[I].first;
4955     Constant *CaseRes = Values[I].second;
4956     assert(CaseRes->getType() == ValueType);
4957 
4958     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4959     TableContents[Idx] = CaseRes;
4960 
4961     if (CaseRes != SingleValue)
4962       SingleValue = nullptr;
4963   }
4964 
4965   // Fill in any holes in the table with the default result.
4966   if (Values.size() < TableSize) {
4967     assert(DefaultValue &&
4968            "Need a default value to fill the lookup table holes.");
4969     assert(DefaultValue->getType() == ValueType);
4970     for (uint64_t I = 0; I < TableSize; ++I) {
4971       if (!TableContents[I])
4972         TableContents[I] = DefaultValue;
4973     }
4974 
4975     if (DefaultValue != SingleValue)
4976       SingleValue = nullptr;
4977   }
4978 
4979   // If each element in the table contains the same value, we only need to store
4980   // that single value.
4981   if (SingleValue) {
4982     Kind = SingleValueKind;
4983     return;
4984   }
4985 
4986   // Check if we can derive the value with a linear transformation from the
4987   // table index.
4988   if (isa<IntegerType>(ValueType)) {
4989     bool LinearMappingPossible = true;
4990     APInt PrevVal;
4991     APInt DistToPrev;
4992     assert(TableSize >= 2 && "Should be a SingleValue table.");
4993     // Check if there is the same distance between two consecutive values.
4994     for (uint64_t I = 0; I < TableSize; ++I) {
4995       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4996       if (!ConstVal) {
4997         // This is an undef. We could deal with it, but undefs in lookup tables
4998         // are very seldom. It's probably not worth the additional complexity.
4999         LinearMappingPossible = false;
5000         break;
5001       }
5002       const APInt &Val = ConstVal->getValue();
5003       if (I != 0) {
5004         APInt Dist = Val - PrevVal;
5005         if (I == 1) {
5006           DistToPrev = Dist;
5007         } else if (Dist != DistToPrev) {
5008           LinearMappingPossible = false;
5009           break;
5010         }
5011       }
5012       PrevVal = Val;
5013     }
5014     if (LinearMappingPossible) {
5015       LinearOffset = cast<ConstantInt>(TableContents[0]);
5016       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5017       Kind = LinearMapKind;
5018       ++NumLinearMaps;
5019       return;
5020     }
5021   }
5022 
5023   // If the type is integer and the table fits in a register, build a bitmap.
5024   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5025     IntegerType *IT = cast<IntegerType>(ValueType);
5026     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5027     for (uint64_t I = TableSize; I > 0; --I) {
5028       TableInt <<= IT->getBitWidth();
5029       // Insert values into the bitmap. Undef values are set to zero.
5030       if (!isa<UndefValue>(TableContents[I - 1])) {
5031         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5032         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5033       }
5034     }
5035     BitMap = ConstantInt::get(M.getContext(), TableInt);
5036     BitMapElementTy = IT;
5037     Kind = BitMapKind;
5038     ++NumBitMaps;
5039     return;
5040   }
5041 
5042   // Store the table in an array.
5043   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5044   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5045 
5046   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5047                              GlobalVariable::PrivateLinkage, Initializer,
5048                              "switch.table." + FuncName);
5049   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5050   // Set the alignment to that of an array items. We will be only loading one
5051   // value out of it.
5052   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5053   Kind = ArrayKind;
5054 }
5055 
5056 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5057   switch (Kind) {
5058   case SingleValueKind:
5059     return SingleValue;
5060   case LinearMapKind: {
5061     // Derive the result value from the input value.
5062     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5063                                           false, "switch.idx.cast");
5064     if (!LinearMultiplier->isOne())
5065       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5066     if (!LinearOffset->isZero())
5067       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5068     return Result;
5069   }
5070   case BitMapKind: {
5071     // Type of the bitmap (e.g. i59).
5072     IntegerType *MapTy = BitMap->getType();
5073 
5074     // Cast Index to the same type as the bitmap.
5075     // Note: The Index is <= the number of elements in the table, so
5076     // truncating it to the width of the bitmask is safe.
5077     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5078 
5079     // Multiply the shift amount by the element width.
5080     ShiftAmt = Builder.CreateMul(
5081         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5082         "switch.shiftamt");
5083 
5084     // Shift down.
5085     Value *DownShifted =
5086         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5087     // Mask off.
5088     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5089   }
5090   case ArrayKind: {
5091     // Make sure the table index will not overflow when treated as signed.
5092     IntegerType *IT = cast<IntegerType>(Index->getType());
5093     uint64_t TableSize =
5094         Array->getInitializer()->getType()->getArrayNumElements();
5095     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5096       Index = Builder.CreateZExt(
5097           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5098           "switch.tableidx.zext");
5099 
5100     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5101     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5102                                            GEPIndices, "switch.gep");
5103     return Builder.CreateLoad(GEP, "switch.load");
5104   }
5105   }
5106   llvm_unreachable("Unknown lookup table kind!");
5107 }
5108 
5109 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5110                                            uint64_t TableSize,
5111                                            Type *ElementType) {
5112   auto *IT = dyn_cast<IntegerType>(ElementType);
5113   if (!IT)
5114     return false;
5115   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5116   // are <= 15, we could try to narrow the type.
5117 
5118   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5119   if (TableSize >= UINT_MAX / IT->getBitWidth())
5120     return false;
5121   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5122 }
5123 
5124 /// Determine whether a lookup table should be built for this switch, based on
5125 /// the number of cases, size of the table, and the types of the results.
5126 static bool
5127 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5128                        const TargetTransformInfo &TTI, const DataLayout &DL,
5129                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5130   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5131     return false; // TableSize overflowed, or mul below might overflow.
5132 
5133   bool AllTablesFitInRegister = true;
5134   bool HasIllegalType = false;
5135   for (const auto &I : ResultTypes) {
5136     Type *Ty = I.second;
5137 
5138     // Saturate this flag to true.
5139     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5140 
5141     // Saturate this flag to false.
5142     AllTablesFitInRegister =
5143         AllTablesFitInRegister &&
5144         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5145 
5146     // If both flags saturate, we're done. NOTE: This *only* works with
5147     // saturating flags, and all flags have to saturate first due to the
5148     // non-deterministic behavior of iterating over a dense map.
5149     if (HasIllegalType && !AllTablesFitInRegister)
5150       break;
5151   }
5152 
5153   // If each table would fit in a register, we should build it anyway.
5154   if (AllTablesFitInRegister)
5155     return true;
5156 
5157   // Don't build a table that doesn't fit in-register if it has illegal types.
5158   if (HasIllegalType)
5159     return false;
5160 
5161   // The table density should be at least 40%. This is the same criterion as for
5162   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5163   // FIXME: Find the best cut-off.
5164   return SI->getNumCases() * 10 >= TableSize * 4;
5165 }
5166 
5167 /// Try to reuse the switch table index compare. Following pattern:
5168 /// \code
5169 ///     if (idx < tablesize)
5170 ///        r = table[idx]; // table does not contain default_value
5171 ///     else
5172 ///        r = default_value;
5173 ///     if (r != default_value)
5174 ///        ...
5175 /// \endcode
5176 /// Is optimized to:
5177 /// \code
5178 ///     cond = idx < tablesize;
5179 ///     if (cond)
5180 ///        r = table[idx];
5181 ///     else
5182 ///        r = default_value;
5183 ///     if (cond)
5184 ///        ...
5185 /// \endcode
5186 /// Jump threading will then eliminate the second if(cond).
5187 static void reuseTableCompare(
5188     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5189     Constant *DefaultValue,
5190     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5191   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5192   if (!CmpInst)
5193     return;
5194 
5195   // We require that the compare is in the same block as the phi so that jump
5196   // threading can do its work afterwards.
5197   if (CmpInst->getParent() != PhiBlock)
5198     return;
5199 
5200   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5201   if (!CmpOp1)
5202     return;
5203 
5204   Value *RangeCmp = RangeCheckBranch->getCondition();
5205   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5206   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5207 
5208   // Check if the compare with the default value is constant true or false.
5209   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5210                                                  DefaultValue, CmpOp1, true);
5211   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5212     return;
5213 
5214   // Check if the compare with the case values is distinct from the default
5215   // compare result.
5216   for (auto ValuePair : Values) {
5217     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5218                                                 ValuePair.second, CmpOp1, true);
5219     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5220       return;
5221     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5222            "Expect true or false as compare result.");
5223   }
5224 
5225   // Check if the branch instruction dominates the phi node. It's a simple
5226   // dominance check, but sufficient for our needs.
5227   // Although this check is invariant in the calling loops, it's better to do it
5228   // at this late stage. Practically we do it at most once for a switch.
5229   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5230   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5231     BasicBlock *Pred = *PI;
5232     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5233       return;
5234   }
5235 
5236   if (DefaultConst == FalseConst) {
5237     // The compare yields the same result. We can replace it.
5238     CmpInst->replaceAllUsesWith(RangeCmp);
5239     ++NumTableCmpReuses;
5240   } else {
5241     // The compare yields the same result, just inverted. We can replace it.
5242     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5243         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5244         RangeCheckBranch);
5245     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5246     ++NumTableCmpReuses;
5247   }
5248 }
5249 
5250 /// If the switch is only used to initialize one or more phi nodes in a common
5251 /// successor block with different constant values, replace the switch with
5252 /// lookup tables.
5253 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5254                                 const DataLayout &DL,
5255                                 const TargetTransformInfo &TTI) {
5256   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5257 
5258   Function *Fn = SI->getParent()->getParent();
5259   // Only build lookup table when we have a target that supports it or the
5260   // attribute is not set.
5261   if (!TTI.shouldBuildLookupTables() ||
5262       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5263     return false;
5264 
5265   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5266   // split off a dense part and build a lookup table for that.
5267 
5268   // FIXME: This creates arrays of GEPs to constant strings, which means each
5269   // GEP needs a runtime relocation in PIC code. We should just build one big
5270   // string and lookup indices into that.
5271 
5272   // Ignore switches with less than three cases. Lookup tables will not make
5273   // them faster, so we don't analyze them.
5274   if (SI->getNumCases() < 3)
5275     return false;
5276 
5277   // Figure out the corresponding result for each case value and phi node in the
5278   // common destination, as well as the min and max case values.
5279   assert(!empty(SI->cases()));
5280   SwitchInst::CaseIt CI = SI->case_begin();
5281   ConstantInt *MinCaseVal = CI->getCaseValue();
5282   ConstantInt *MaxCaseVal = CI->getCaseValue();
5283 
5284   BasicBlock *CommonDest = nullptr;
5285 
5286   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5287   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5288 
5289   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5290   SmallDenseMap<PHINode *, Type *> ResultTypes;
5291   SmallVector<PHINode *, 4> PHIs;
5292 
5293   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5294     ConstantInt *CaseVal = CI->getCaseValue();
5295     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5296       MinCaseVal = CaseVal;
5297     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5298       MaxCaseVal = CaseVal;
5299 
5300     // Resulting value at phi nodes for this case value.
5301     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5302     ResultsTy Results;
5303     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5304                         Results, DL, TTI))
5305       return false;
5306 
5307     // Append the result from this case to the list for each phi.
5308     for (const auto &I : Results) {
5309       PHINode *PHI = I.first;
5310       Constant *Value = I.second;
5311       if (!ResultLists.count(PHI))
5312         PHIs.push_back(PHI);
5313       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5314     }
5315   }
5316 
5317   // Keep track of the result types.
5318   for (PHINode *PHI : PHIs) {
5319     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5320   }
5321 
5322   uint64_t NumResults = ResultLists[PHIs[0]].size();
5323   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5324   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5325   bool TableHasHoles = (NumResults < TableSize);
5326 
5327   // If the table has holes, we need a constant result for the default case
5328   // or a bitmask that fits in a register.
5329   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5330   bool HasDefaultResults =
5331       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5332                      DefaultResultsList, DL, TTI);
5333 
5334   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5335   if (NeedMask) {
5336     // As an extra penalty for the validity test we require more cases.
5337     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5338       return false;
5339     if (!DL.fitsInLegalInteger(TableSize))
5340       return false;
5341   }
5342 
5343   for (const auto &I : DefaultResultsList) {
5344     PHINode *PHI = I.first;
5345     Constant *Result = I.second;
5346     DefaultResults[PHI] = Result;
5347   }
5348 
5349   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5350     return false;
5351 
5352   // Create the BB that does the lookups.
5353   Module &Mod = *CommonDest->getParent()->getParent();
5354   BasicBlock *LookupBB = BasicBlock::Create(
5355       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5356 
5357   // Compute the table index value.
5358   Builder.SetInsertPoint(SI);
5359   Value *TableIndex;
5360   if (MinCaseVal->isNullValue())
5361     TableIndex = SI->getCondition();
5362   else
5363     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5364                                    "switch.tableidx");
5365 
5366   // Compute the maximum table size representable by the integer type we are
5367   // switching upon.
5368   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5369   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5370   assert(MaxTableSize >= TableSize &&
5371          "It is impossible for a switch to have more entries than the max "
5372          "representable value of its input integer type's size.");
5373 
5374   // If the default destination is unreachable, or if the lookup table covers
5375   // all values of the conditional variable, branch directly to the lookup table
5376   // BB. Otherwise, check that the condition is within the case range.
5377   const bool DefaultIsReachable =
5378       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5379   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5380   BranchInst *RangeCheckBranch = nullptr;
5381 
5382   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5383     Builder.CreateBr(LookupBB);
5384     // Note: We call removeProdecessor later since we need to be able to get the
5385     // PHI value for the default case in case we're using a bit mask.
5386   } else {
5387     Value *Cmp = Builder.CreateICmpULT(
5388         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5389     RangeCheckBranch =
5390         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5391   }
5392 
5393   // Populate the BB that does the lookups.
5394   Builder.SetInsertPoint(LookupBB);
5395 
5396   if (NeedMask) {
5397     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5398     // re-purposed to do the hole check, and we create a new LookupBB.
5399     BasicBlock *MaskBB = LookupBB;
5400     MaskBB->setName("switch.hole_check");
5401     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5402                                   CommonDest->getParent(), CommonDest);
5403 
5404     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5405     // unnecessary illegal types.
5406     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5407     APInt MaskInt(TableSizePowOf2, 0);
5408     APInt One(TableSizePowOf2, 1);
5409     // Build bitmask; fill in a 1 bit for every case.
5410     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5411     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5412       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5413                          .getLimitedValue();
5414       MaskInt |= One << Idx;
5415     }
5416     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5417 
5418     // Get the TableIndex'th bit of the bitmask.
5419     // If this bit is 0 (meaning hole) jump to the default destination,
5420     // else continue with table lookup.
5421     IntegerType *MapTy = TableMask->getType();
5422     Value *MaskIndex =
5423         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5424     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5425     Value *LoBit = Builder.CreateTrunc(
5426         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5427     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5428 
5429     Builder.SetInsertPoint(LookupBB);
5430     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5431   }
5432 
5433   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5434     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5435     // do not delete PHINodes here.
5436     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5437                                             /*DontDeleteUselessPHIs=*/true);
5438   }
5439 
5440   bool ReturnedEarly = false;
5441   for (PHINode *PHI : PHIs) {
5442     const ResultListTy &ResultList = ResultLists[PHI];
5443 
5444     // If using a bitmask, use any value to fill the lookup table holes.
5445     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5446     StringRef FuncName = Fn->getName();
5447     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5448                             FuncName);
5449 
5450     Value *Result = Table.BuildLookup(TableIndex, Builder);
5451 
5452     // If the result is used to return immediately from the function, we want to
5453     // do that right here.
5454     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5455         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5456       Builder.CreateRet(Result);
5457       ReturnedEarly = true;
5458       break;
5459     }
5460 
5461     // Do a small peephole optimization: re-use the switch table compare if
5462     // possible.
5463     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5464       BasicBlock *PhiBlock = PHI->getParent();
5465       // Search for compare instructions which use the phi.
5466       for (auto *User : PHI->users()) {
5467         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5468       }
5469     }
5470 
5471     PHI->addIncoming(Result, LookupBB);
5472   }
5473 
5474   if (!ReturnedEarly)
5475     Builder.CreateBr(CommonDest);
5476 
5477   // Remove the switch.
5478   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5479     BasicBlock *Succ = SI->getSuccessor(i);
5480 
5481     if (Succ == SI->getDefaultDest())
5482       continue;
5483     Succ->removePredecessor(SI->getParent());
5484   }
5485   SI->eraseFromParent();
5486 
5487   ++NumLookupTables;
5488   if (NeedMask)
5489     ++NumLookupTablesHoles;
5490   return true;
5491 }
5492 
5493 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5494   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5495   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5496   uint64_t Range = Diff + 1;
5497   uint64_t NumCases = Values.size();
5498   // 40% is the default density for building a jump table in optsize/minsize mode.
5499   uint64_t MinDensity = 40;
5500 
5501   return NumCases * 100 >= Range * MinDensity;
5502 }
5503 
5504 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5505 /// of cases.
5506 ///
5507 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5508 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5509 ///
5510 /// This converts a sparse switch into a dense switch which allows better
5511 /// lowering and could also allow transforming into a lookup table.
5512 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5513                               const DataLayout &DL,
5514                               const TargetTransformInfo &TTI) {
5515   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5516   if (CondTy->getIntegerBitWidth() > 64 ||
5517       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5518     return false;
5519   // Only bother with this optimization if there are more than 3 switch cases;
5520   // SDAG will only bother creating jump tables for 4 or more cases.
5521   if (SI->getNumCases() < 4)
5522     return false;
5523 
5524   // This transform is agnostic to the signedness of the input or case values. We
5525   // can treat the case values as signed or unsigned. We can optimize more common
5526   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5527   // as signed.
5528   SmallVector<int64_t,4> Values;
5529   for (auto &C : SI->cases())
5530     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5531   llvm::sort(Values);
5532 
5533   // If the switch is already dense, there's nothing useful to do here.
5534   if (isSwitchDense(Values))
5535     return false;
5536 
5537   // First, transform the values such that they start at zero and ascend.
5538   int64_t Base = Values[0];
5539   for (auto &V : Values)
5540     V -= (uint64_t)(Base);
5541 
5542   // Now we have signed numbers that have been shifted so that, given enough
5543   // precision, there are no negative values. Since the rest of the transform
5544   // is bitwise only, we switch now to an unsigned representation.
5545   uint64_t GCD = 0;
5546   for (auto &V : Values)
5547     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5548 
5549   // This transform can be done speculatively because it is so cheap - it results
5550   // in a single rotate operation being inserted. This can only happen if the
5551   // factor extracted is a power of 2.
5552   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5553   // inverse of GCD and then perform this transform.
5554   // FIXME: It's possible that optimizing a switch on powers of two might also
5555   // be beneficial - flag values are often powers of two and we could use a CLZ
5556   // as the key function.
5557   if (GCD <= 1 || !isPowerOf2_64(GCD))
5558     // No common divisor found or too expensive to compute key function.
5559     return false;
5560 
5561   unsigned Shift = Log2_64(GCD);
5562   for (auto &V : Values)
5563     V = (int64_t)((uint64_t)V >> Shift);
5564 
5565   if (!isSwitchDense(Values))
5566     // Transform didn't create a dense switch.
5567     return false;
5568 
5569   // The obvious transform is to shift the switch condition right and emit a
5570   // check that the condition actually cleanly divided by GCD, i.e.
5571   //   C & (1 << Shift - 1) == 0
5572   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5573   //
5574   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5575   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5576   // are nonzero then the switch condition will be very large and will hit the
5577   // default case.
5578 
5579   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5580   Builder.SetInsertPoint(SI);
5581   auto *ShiftC = ConstantInt::get(Ty, Shift);
5582   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5583   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5584   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5585   auto *Rot = Builder.CreateOr(LShr, Shl);
5586   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5587 
5588   for (auto Case : SI->cases()) {
5589     auto *Orig = Case.getCaseValue();
5590     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5591     Case.setValue(
5592         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5593   }
5594   return true;
5595 }
5596 
5597 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5598   BasicBlock *BB = SI->getParent();
5599 
5600   if (isValueEqualityComparison(SI)) {
5601     // If we only have one predecessor, and if it is a branch on this value,
5602     // see if that predecessor totally determines the outcome of this switch.
5603     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5604       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5605         return requestResimplify();
5606 
5607     Value *Cond = SI->getCondition();
5608     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5609       if (SimplifySwitchOnSelect(SI, Select))
5610         return requestResimplify();
5611 
5612     // If the block only contains the switch, see if we can fold the block
5613     // away into any preds.
5614     if (SI == &*BB->instructionsWithoutDebug().begin())
5615       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5616         return requestResimplify();
5617   }
5618 
5619   // Try to transform the switch into an icmp and a branch.
5620   if (TurnSwitchRangeIntoICmp(SI, Builder))
5621     return requestResimplify();
5622 
5623   // Remove unreachable cases.
5624   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5625     return requestResimplify();
5626 
5627   if (switchToSelect(SI, Builder, DL, TTI))
5628     return requestResimplify();
5629 
5630   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5631     return requestResimplify();
5632 
5633   // The conversion from switch to lookup tables results in difficult-to-analyze
5634   // code and makes pruning branches much harder. This is a problem if the
5635   // switch expression itself can still be restricted as a result of inlining or
5636   // CVP. Therefore, only apply this transformation during late stages of the
5637   // optimisation pipeline.
5638   if (Options.ConvertSwitchToLookupTable &&
5639       SwitchToLookupTable(SI, Builder, DL, TTI))
5640     return requestResimplify();
5641 
5642   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5643     return requestResimplify();
5644 
5645   return false;
5646 }
5647 
5648 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5649   BasicBlock *BB = IBI->getParent();
5650   bool Changed = false;
5651 
5652   // Eliminate redundant destinations.
5653   SmallPtrSet<Value *, 8> Succs;
5654   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5655     BasicBlock *Dest = IBI->getDestination(i);
5656     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5657       Dest->removePredecessor(BB);
5658       IBI->removeDestination(i);
5659       --i;
5660       --e;
5661       Changed = true;
5662     }
5663   }
5664 
5665   if (IBI->getNumDestinations() == 0) {
5666     // If the indirectbr has no successors, change it to unreachable.
5667     new UnreachableInst(IBI->getContext(), IBI);
5668     EraseTerminatorAndDCECond(IBI);
5669     return true;
5670   }
5671 
5672   if (IBI->getNumDestinations() == 1) {
5673     // If the indirectbr has one successor, change it to a direct branch.
5674     BranchInst::Create(IBI->getDestination(0), IBI);
5675     EraseTerminatorAndDCECond(IBI);
5676     return true;
5677   }
5678 
5679   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5680     if (SimplifyIndirectBrOnSelect(IBI, SI))
5681       return requestResimplify();
5682   }
5683   return Changed;
5684 }
5685 
5686 /// Given an block with only a single landing pad and a unconditional branch
5687 /// try to find another basic block which this one can be merged with.  This
5688 /// handles cases where we have multiple invokes with unique landing pads, but
5689 /// a shared handler.
5690 ///
5691 /// We specifically choose to not worry about merging non-empty blocks
5692 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5693 /// practice, the optimizer produces empty landing pad blocks quite frequently
5694 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5695 /// sinking in this file)
5696 ///
5697 /// This is primarily a code size optimization.  We need to avoid performing
5698 /// any transform which might inhibit optimization (such as our ability to
5699 /// specialize a particular handler via tail commoning).  We do this by not
5700 /// merging any blocks which require us to introduce a phi.  Since the same
5701 /// values are flowing through both blocks, we don't lose any ability to
5702 /// specialize.  If anything, we make such specialization more likely.
5703 ///
5704 /// TODO - This transformation could remove entries from a phi in the target
5705 /// block when the inputs in the phi are the same for the two blocks being
5706 /// merged.  In some cases, this could result in removal of the PHI entirely.
5707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5708                                  BasicBlock *BB) {
5709   auto Succ = BB->getUniqueSuccessor();
5710   assert(Succ);
5711   // If there's a phi in the successor block, we'd likely have to introduce
5712   // a phi into the merged landing pad block.
5713   if (isa<PHINode>(*Succ->begin()))
5714     return false;
5715 
5716   for (BasicBlock *OtherPred : predecessors(Succ)) {
5717     if (BB == OtherPred)
5718       continue;
5719     BasicBlock::iterator I = OtherPred->begin();
5720     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5721     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5722       continue;
5723     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5724       ;
5725     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5726     if (!BI2 || !BI2->isIdenticalTo(BI))
5727       continue;
5728 
5729     // We've found an identical block.  Update our predecessors to take that
5730     // path instead and make ourselves dead.
5731     SmallPtrSet<BasicBlock *, 16> Preds;
5732     Preds.insert(pred_begin(BB), pred_end(BB));
5733     for (BasicBlock *Pred : Preds) {
5734       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5735       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5736              "unexpected successor");
5737       II->setUnwindDest(OtherPred);
5738     }
5739 
5740     // The debug info in OtherPred doesn't cover the merged control flow that
5741     // used to go through BB.  We need to delete it or update it.
5742     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5743       Instruction &Inst = *I;
5744       I++;
5745       if (isa<DbgInfoIntrinsic>(Inst))
5746         Inst.eraseFromParent();
5747     }
5748 
5749     SmallPtrSet<BasicBlock *, 16> Succs;
5750     Succs.insert(succ_begin(BB), succ_end(BB));
5751     for (BasicBlock *Succ : Succs) {
5752       Succ->removePredecessor(BB);
5753     }
5754 
5755     IRBuilder<> Builder(BI);
5756     Builder.CreateUnreachable();
5757     BI->eraseFromParent();
5758     return true;
5759   }
5760   return false;
5761 }
5762 
5763 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5764                                           IRBuilder<> &Builder) {
5765   BasicBlock *BB = BI->getParent();
5766   BasicBlock *Succ = BI->getSuccessor(0);
5767 
5768   // If the Terminator is the only non-phi instruction, simplify the block.
5769   // If LoopHeader is provided, check if the block or its successor is a loop
5770   // header. (This is for early invocations before loop simplify and
5771   // vectorization to keep canonical loop forms for nested loops. These blocks
5772   // can be eliminated when the pass is invoked later in the back-end.)
5773   // Note that if BB has only one predecessor then we do not introduce new
5774   // backedge, so we can eliminate BB.
5775   bool NeedCanonicalLoop =
5776       Options.NeedCanonicalLoop &&
5777       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5778        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5779   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5780   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5781       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5782     return true;
5783 
5784   // If the only instruction in the block is a seteq/setne comparison against a
5785   // constant, try to simplify the block.
5786   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5787     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5788       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5789         ;
5790       if (I->isTerminator() &&
5791           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5792         return true;
5793     }
5794 
5795   // See if we can merge an empty landing pad block with another which is
5796   // equivalent.
5797   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5798     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5799       ;
5800     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5801       return true;
5802   }
5803 
5804   // If this basic block is ONLY a compare and a branch, and if a predecessor
5805   // branches to us and our successor, fold the comparison into the
5806   // predecessor and use logical operations to update the incoming value
5807   // for PHI nodes in common successor.
5808   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5809     return requestResimplify();
5810   return false;
5811 }
5812 
5813 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5814   BasicBlock *PredPred = nullptr;
5815   for (auto *P : predecessors(BB)) {
5816     BasicBlock *PPred = P->getSinglePredecessor();
5817     if (!PPred || (PredPred && PredPred != PPred))
5818       return nullptr;
5819     PredPred = PPred;
5820   }
5821   return PredPred;
5822 }
5823 
5824 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5825   BasicBlock *BB = BI->getParent();
5826   const Function *Fn = BB->getParent();
5827   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5828     return false;
5829 
5830   // Conditional branch
5831   if (isValueEqualityComparison(BI)) {
5832     // If we only have one predecessor, and if it is a branch on this value,
5833     // see if that predecessor totally determines the outcome of this
5834     // switch.
5835     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5836       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5837         return requestResimplify();
5838 
5839     // This block must be empty, except for the setcond inst, if it exists.
5840     // Ignore dbg intrinsics.
5841     auto I = BB->instructionsWithoutDebug().begin();
5842     if (&*I == BI) {
5843       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5844         return requestResimplify();
5845     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5846       ++I;
5847       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5848         return requestResimplify();
5849     }
5850   }
5851 
5852   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5853   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5854     return true;
5855 
5856   // If this basic block has a single dominating predecessor block and the
5857   // dominating block's condition implies BI's condition, we know the direction
5858   // of the BI branch.
5859   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5860     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5861     if (PBI && PBI->isConditional() &&
5862         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5863       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5864       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5865       Optional<bool> Implication = isImpliedCondition(
5866           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5867       if (Implication) {
5868         // Turn this into a branch on constant.
5869         auto *OldCond = BI->getCondition();
5870         ConstantInt *CI = *Implication
5871                               ? ConstantInt::getTrue(BB->getContext())
5872                               : ConstantInt::getFalse(BB->getContext());
5873         BI->setCondition(CI);
5874         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5875         return requestResimplify();
5876       }
5877     }
5878   }
5879 
5880   // If this basic block is ONLY a compare and a branch, and if a predecessor
5881   // branches to us and one of our successors, fold the comparison into the
5882   // predecessor and use logical operations to pick the right destination.
5883   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5884     return requestResimplify();
5885 
5886   // We have a conditional branch to two blocks that are only reachable
5887   // from BI.  We know that the condbr dominates the two blocks, so see if
5888   // there is any identical code in the "then" and "else" blocks.  If so, we
5889   // can hoist it up to the branching block.
5890   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5891     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5892       if (HoistThenElseCodeToIf(BI, TTI))
5893         return requestResimplify();
5894     } else {
5895       // If Successor #1 has multiple preds, we may be able to conditionally
5896       // execute Successor #0 if it branches to Successor #1.
5897       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5898       if (Succ0TI->getNumSuccessors() == 1 &&
5899           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5900         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5901           return requestResimplify();
5902     }
5903   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5904     // If Successor #0 has multiple preds, we may be able to conditionally
5905     // execute Successor #1 if it branches to Successor #0.
5906     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5907     if (Succ1TI->getNumSuccessors() == 1 &&
5908         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5909       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5910         return requestResimplify();
5911   }
5912 
5913   // If this is a branch on a phi node in the current block, thread control
5914   // through this block if any PHI node entries are constants.
5915   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5916     if (PN->getParent() == BI->getParent())
5917       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5918         return requestResimplify();
5919 
5920   // Scan predecessor blocks for conditional branches.
5921   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5922     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5923       if (PBI != BI && PBI->isConditional())
5924         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5925           return requestResimplify();
5926 
5927   // Look for diamond patterns.
5928   if (MergeCondStores)
5929     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5930       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5931         if (PBI != BI && PBI->isConditional())
5932           if (mergeConditionalStores(PBI, BI, DL))
5933             return requestResimplify();
5934 
5935   return false;
5936 }
5937 
5938 /// Check if passing a value to an instruction will cause undefined behavior.
5939 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5940   Constant *C = dyn_cast<Constant>(V);
5941   if (!C)
5942     return false;
5943 
5944   if (I->use_empty())
5945     return false;
5946 
5947   if (C->isNullValue() || isa<UndefValue>(C)) {
5948     // Only look at the first use, avoid hurting compile time with long uselists
5949     User *Use = *I->user_begin();
5950 
5951     // Now make sure that there are no instructions in between that can alter
5952     // control flow (eg. calls)
5953     for (BasicBlock::iterator
5954              i = ++BasicBlock::iterator(I),
5955              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5956          i != UI; ++i)
5957       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5958         return false;
5959 
5960     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5961     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5962       if (GEP->getPointerOperand() == I)
5963         return passingValueIsAlwaysUndefined(V, GEP);
5964 
5965     // Look through bitcasts.
5966     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5967       return passingValueIsAlwaysUndefined(V, BC);
5968 
5969     // Load from null is undefined.
5970     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5971       if (!LI->isVolatile())
5972         return !NullPointerIsDefined(LI->getFunction(),
5973                                      LI->getPointerAddressSpace());
5974 
5975     // Store to null is undefined.
5976     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5977       if (!SI->isVolatile())
5978         return (!NullPointerIsDefined(SI->getFunction(),
5979                                       SI->getPointerAddressSpace())) &&
5980                SI->getPointerOperand() == I;
5981 
5982     // A call to null is undefined.
5983     if (auto CS = CallSite(Use))
5984       return !NullPointerIsDefined(CS->getFunction()) &&
5985              CS.getCalledValue() == I;
5986   }
5987   return false;
5988 }
5989 
5990 /// If BB has an incoming value that will always trigger undefined behavior
5991 /// (eg. null pointer dereference), remove the branch leading here.
5992 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5993   for (PHINode &PHI : BB->phis())
5994     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5995       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5996         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5997         IRBuilder<> Builder(T);
5998         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5999           BB->removePredecessor(PHI.getIncomingBlock(i));
6000           // Turn uncoditional branches into unreachables and remove the dead
6001           // destination from conditional branches.
6002           if (BI->isUnconditional())
6003             Builder.CreateUnreachable();
6004           else
6005             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6006                                                        : BI->getSuccessor(0));
6007           BI->eraseFromParent();
6008           return true;
6009         }
6010         // TODO: SwitchInst.
6011       }
6012 
6013   return false;
6014 }
6015 
6016 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6017   bool Changed = false;
6018 
6019   assert(BB && BB->getParent() && "Block not embedded in function!");
6020   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6021 
6022   // Remove basic blocks that have no predecessors (except the entry block)...
6023   // or that just have themself as a predecessor.  These are unreachable.
6024   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6025       BB->getSinglePredecessor() == BB) {
6026     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6027     DeleteDeadBlock(BB);
6028     return true;
6029   }
6030 
6031   // Check to see if we can constant propagate this terminator instruction
6032   // away...
6033   Changed |= ConstantFoldTerminator(BB, true);
6034 
6035   // Check for and eliminate duplicate PHI nodes in this block.
6036   Changed |= EliminateDuplicatePHINodes(BB);
6037 
6038   // Check for and remove branches that will always cause undefined behavior.
6039   Changed |= removeUndefIntroducingPredecessor(BB);
6040 
6041   // Merge basic blocks into their predecessor if there is only one distinct
6042   // pred, and if there is only one distinct successor of the predecessor, and
6043   // if there are no PHI nodes.
6044   if (MergeBlockIntoPredecessor(BB))
6045     return true;
6046 
6047   if (SinkCommon && Options.SinkCommonInsts)
6048     Changed |= SinkCommonCodeFromPredecessors(BB);
6049 
6050   IRBuilder<> Builder(BB);
6051 
6052   // If there is a trivial two-entry PHI node in this basic block, and we can
6053   // eliminate it, do so now.
6054   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6055     if (PN->getNumIncomingValues() == 2)
6056       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6057 
6058   Builder.SetInsertPoint(BB->getTerminator());
6059   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6060     if (BI->isUnconditional()) {
6061       if (SimplifyUncondBranch(BI, Builder))
6062         return true;
6063     } else {
6064       if (SimplifyCondBranch(BI, Builder))
6065         return true;
6066     }
6067   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6068     if (SimplifyReturn(RI, Builder))
6069       return true;
6070   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6071     if (SimplifyResume(RI, Builder))
6072       return true;
6073   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6074     if (SimplifyCleanupReturn(RI))
6075       return true;
6076   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6077     if (SimplifySwitch(SI, Builder))
6078       return true;
6079   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6080     if (SimplifyUnreachable(UI))
6081       return true;
6082   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6083     if (SimplifyIndirectBr(IBI))
6084       return true;
6085   }
6086 
6087   return Changed;
6088 }
6089 
6090 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6091   bool Changed = false;
6092 
6093   // Repeated simplify BB as long as resimplification is requested.
6094   do {
6095     Resimplify = false;
6096 
6097     // Perform one round of simplifcation. Resimplify flag will be set if
6098     // another iteration is requested.
6099     Changed |= simplifyOnce(BB);
6100   } while (Resimplify);
6101 
6102   return Changed;
6103 }
6104 
6105 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6106                        const SimplifyCFGOptions &Options,
6107                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6108   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6109                         Options)
6110       .run(BB);
6111 }
6112