1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 bool Resimplify; 177 178 Value *isValueEqualityComparison(Instruction *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 199 IRBuilder<> &Builder); 200 201 public: 202 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 203 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 204 const SimplifyCFGOptions &Opts) 205 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 206 207 bool run(BasicBlock *BB); 208 bool simplifyOnce(BasicBlock *BB); 209 210 // Helper to set Resimplify and return change indication. 211 bool requestResimplify() { 212 Resimplify = true; 213 return true; 214 } 215 }; 216 217 } // end anonymous namespace 218 219 /// Return true if it is safe to merge these two 220 /// terminator instructions together. 221 static bool 222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 223 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 224 if (SI1 == SI2) 225 return false; // Can't merge with self! 226 227 // It is not safe to merge these two switch instructions if they have a common 228 // successor, and if that successor has a PHI node, and if *that* PHI node has 229 // conflicting incoming values from the two switch blocks. 230 BasicBlock *SI1BB = SI1->getParent(); 231 BasicBlock *SI2BB = SI2->getParent(); 232 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 bool Fail = false; 235 for (BasicBlock *Succ : successors(SI2BB)) 236 if (SI1Succs.count(Succ)) 237 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 238 PHINode *PN = cast<PHINode>(BBI); 239 if (PN->getIncomingValueForBlock(SI1BB) != 240 PN->getIncomingValueForBlock(SI2BB)) { 241 if (FailBlocks) 242 FailBlocks->insert(Succ); 243 Fail = true; 244 } 245 } 246 247 return !Fail; 248 } 249 250 /// Return true if it is safe and profitable to merge these two terminator 251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 252 /// store all PHI nodes in common successors. 253 static bool 254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 255 Instruction *Cond, 256 SmallVectorImpl<PHINode *> &PhiNodes) { 257 if (SI1 == SI2) 258 return false; // Can't merge with self! 259 assert(SI1->isUnconditional() && SI2->isConditional()); 260 261 // We fold the unconditional branch if we can easily update all PHI nodes in 262 // common successors: 263 // 1> We have a constant incoming value for the conditional branch; 264 // 2> We have "Cond" as the incoming value for the unconditional branch; 265 // 3> SI2->getCondition() and Cond have same operands. 266 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 267 if (!Ci2) 268 return false; 269 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 270 Cond->getOperand(1) == Ci2->getOperand(1)) && 271 !(Cond->getOperand(0) == Ci2->getOperand(1) && 272 Cond->getOperand(1) == Ci2->getOperand(0))) 273 return false; 274 275 BasicBlock *SI1BB = SI1->getParent(); 276 BasicBlock *SI2BB = SI2->getParent(); 277 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 278 for (BasicBlock *Succ : successors(SI2BB)) 279 if (SI1Succs.count(Succ)) 280 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 281 PHINode *PN = cast<PHINode>(BBI); 282 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 283 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 284 return false; 285 PhiNodes.push_back(PN); 286 } 287 return true; 288 } 289 290 /// Update PHI nodes in Succ to indicate that there will now be entries in it 291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 292 /// will be the same as those coming in from ExistPred, an existing predecessor 293 /// of Succ. 294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 295 BasicBlock *ExistPred) { 296 for (PHINode &PN : Succ->phis()) 297 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 298 } 299 300 /// Compute an abstract "cost" of speculating the given instruction, 301 /// which is assumed to be safe to speculate. TCC_Free means cheap, 302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 303 /// expensive. 304 static unsigned ComputeSpeculationCost(const User *I, 305 const TargetTransformInfo &TTI) { 306 assert(isSafeToSpeculativelyExecute(I) && 307 "Instruction is not safe to speculatively execute!"); 308 return TTI.getUserCost(I); 309 } 310 311 /// If we have a merge point of an "if condition" as accepted above, 312 /// return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 330 unsigned &CostRemaining, 331 const TargetTransformInfo &TTI, 332 unsigned Depth = 0) { 333 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 334 // so limit the recursion depth. 335 // TODO: While this recursion limit does prevent pathological behavior, it 336 // would be better to track visited instructions to avoid cycles. 337 if (Depth == MaxSpeculationDepth) 338 return false; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) 354 return false; 355 356 // If this instruction is defined in a block that contains an unconditional 357 // branch to BB, then it must be in the 'conditional' part of the "if 358 // statement". If not, it definitely dominates the region. 359 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 360 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 361 return true; 362 363 // If we have seen this instruction before, don't count it again. 364 if (AggressiveInsts.count(I)) 365 return true; 366 367 // Okay, it looks like the instruction IS in the "condition". Check to 368 // see if it's a cheap instruction to unconditionally compute, and if it 369 // only uses stuff defined outside of the condition. If so, hoist it out. 370 if (!isSafeToSpeculativelyExecute(I)) 371 return false; 372 373 unsigned Cost = ComputeSpeculationCost(I, TTI); 374 375 // Allow exactly one instruction to be speculated regardless of its cost 376 // (as long as it is safe to do so). 377 // This is intended to flatten the CFG even if the instruction is a division 378 // or other expensive operation. The speculation of an expensive instruction 379 // is expected to be undone in CodeGenPrepare if the speculation has not 380 // enabled further IR optimizations. 381 if (Cost > CostRemaining && 382 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 383 return false; 384 385 // Avoid unsigned wrap. 386 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 387 388 // Okay, we can only really hoist these out if their operands do 389 // not take us over the cost threshold. 390 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 391 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 392 Depth + 1)) 393 return false; 394 // Okay, it's safe to do this! Remember this instruction. 395 AggressiveInsts.insert(I); 396 return true; 397 } 398 399 /// Extract ConstantInt from value, looking through IntToPtr 400 /// and PointerNullValue. Return NULL if value is not a constant int. 401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 402 // Normal constant int. 403 ConstantInt *CI = dyn_cast<ConstantInt>(V); 404 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 405 return CI; 406 407 // This is some kind of pointer constant. Turn it into a pointer-sized 408 // ConstantInt if possible. 409 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 410 411 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 412 if (isa<ConstantPointerNull>(V)) 413 return ConstantInt::get(PtrTy, 0); 414 415 // IntToPtr const int. 416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 417 if (CE->getOpcode() == Instruction::IntToPtr) 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 419 // The constant is very likely to have the right type already. 420 if (CI->getType() == PtrTy) 421 return CI; 422 else 423 return cast<ConstantInt>( 424 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 425 } 426 return nullptr; 427 } 428 429 namespace { 430 431 /// Given a chain of or (||) or and (&&) comparison of a value against a 432 /// constant, this will try to recover the information required for a switch 433 /// structure. 434 /// It will depth-first traverse the chain of comparison, seeking for patterns 435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 436 /// representing the different cases for the switch. 437 /// Note that if the chain is composed of '||' it will build the set of elements 438 /// that matches the comparisons (i.e. any of this value validate the chain) 439 /// while for a chain of '&&' it will build the set elements that make the test 440 /// fail. 441 struct ConstantComparesGatherer { 442 const DataLayout &DL; 443 444 /// Value found for the switch comparison 445 Value *CompValue = nullptr; 446 447 /// Extra clause to be checked before the switch 448 Value *Extra = nullptr; 449 450 /// Set of integers to match in switch 451 SmallVector<ConstantInt *, 8> Vals; 452 453 /// Number of comparisons matched in the and/or chain 454 unsigned UsedICmps = 0; 455 456 /// Construct and compute the result for the comparison instruction Cond 457 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 458 gather(Cond); 459 } 460 461 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 462 ConstantComparesGatherer & 463 operator=(const ConstantComparesGatherer &) = delete; 464 465 private: 466 /// Try to set the current value used for the comparison, it succeeds only if 467 /// it wasn't set before or if the new value is the same as the old one 468 bool setValueOnce(Value *NewVal) { 469 if (CompValue && CompValue != NewVal) 470 return false; 471 CompValue = NewVal; 472 return (CompValue != nullptr); 473 } 474 475 /// Try to match Instruction "I" as a comparison against a constant and 476 /// populates the array Vals with the set of values that match (or do not 477 /// match depending on isEQ). 478 /// Return false on failure. On success, the Value the comparison matched 479 /// against is placed in CompValue. 480 /// If CompValue is already set, the function is expected to fail if a match 481 /// is found but the value compared to is different. 482 bool matchInstruction(Instruction *I, bool isEQ) { 483 // If this is an icmp against a constant, handle this as one of the cases. 484 ICmpInst *ICI; 485 ConstantInt *C; 486 if (!((ICI = dyn_cast<ICmpInst>(I)) && 487 (C = GetConstantInt(I->getOperand(1), DL)))) { 488 return false; 489 } 490 491 Value *RHSVal; 492 const APInt *RHSC; 493 494 // Pattern match a special case 495 // (x & ~2^z) == y --> x == y || x == y|2^z 496 // This undoes a transformation done by instcombine to fuse 2 compares. 497 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 498 // It's a little bit hard to see why the following transformations are 499 // correct. Here is a CVC3 program to verify them for 64-bit values: 500 501 /* 502 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 503 x : BITVECTOR(64); 504 y : BITVECTOR(64); 505 z : BITVECTOR(64); 506 mask : BITVECTOR(64) = BVSHL(ONE, z); 507 QUERY( (y & ~mask = y) => 508 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 509 ); 510 QUERY( (y | mask = y) => 511 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 512 ); 513 */ 514 515 // Please note that each pattern must be a dual implication (<--> or 516 // iff). One directional implication can create spurious matches. If the 517 // implication is only one-way, an unsatisfiable condition on the left 518 // side can imply a satisfiable condition on the right side. Dual 519 // implication ensures that satisfiable conditions are transformed to 520 // other satisfiable conditions and unsatisfiable conditions are 521 // transformed to other unsatisfiable conditions. 522 523 // Here is a concrete example of a unsatisfiable condition on the left 524 // implying a satisfiable condition on the right: 525 // 526 // mask = (1 << z) 527 // (x & ~mask) == y --> (x == y || x == (y | mask)) 528 // 529 // Substituting y = 3, z = 0 yields: 530 // (x & -2) == 3 --> (x == 3 || x == 2) 531 532 // Pattern match a special case: 533 /* 534 QUERY( (y & ~mask = y) => 535 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 536 ); 537 */ 538 if (match(ICI->getOperand(0), 539 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 540 APInt Mask = ~*RHSC; 541 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 542 // If we already have a value for the switch, it has to match! 543 if (!setValueOnce(RHSVal)) 544 return false; 545 546 Vals.push_back(C); 547 Vals.push_back( 548 ConstantInt::get(C->getContext(), 549 C->getValue() | Mask)); 550 UsedICmps++; 551 return true; 552 } 553 } 554 555 // Pattern match a special case: 556 /* 557 QUERY( (y | mask = y) => 558 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 559 ); 560 */ 561 if (match(ICI->getOperand(0), 562 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 563 APInt Mask = *RHSC; 564 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 565 // If we already have a value for the switch, it has to match! 566 if (!setValueOnce(RHSVal)) 567 return false; 568 569 Vals.push_back(C); 570 Vals.push_back(ConstantInt::get(C->getContext(), 571 C->getValue() & ~Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(ICI->getOperand(0))) 579 return false; 580 581 UsedICmps++; 582 Vals.push_back(C); 583 return ICI->getOperand(0); 584 } 585 586 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 587 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 588 ICI->getPredicate(), C->getValue()); 589 590 // Shift the range if the compare is fed by an add. This is the range 591 // compare idiom as emitted by instcombine. 592 Value *CandidateVal = I->getOperand(0); 593 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 594 Span = Span.subtract(*RHSC); 595 CandidateVal = RHSVal; 596 } 597 598 // If this is an and/!= check, then we are looking to build the set of 599 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 600 // x != 0 && x != 1. 601 if (!isEQ) 602 Span = Span.inverse(); 603 604 // If there are a ton of values, we don't want to make a ginormous switch. 605 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 606 return false; 607 } 608 609 // If we already have a value for the switch, it has to match! 610 if (!setValueOnce(CandidateVal)) 611 return false; 612 613 // Add all values from the range to the set 614 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 615 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 616 617 UsedICmps++; 618 return true; 619 } 620 621 /// Given a potentially 'or'd or 'and'd together collection of icmp 622 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 623 /// the value being compared, and stick the list constants into the Vals 624 /// vector. 625 /// One "Extra" case is allowed to differ from the other. 626 void gather(Value *V) { 627 Instruction *I = dyn_cast<Instruction>(V); 628 bool isEQ = (I->getOpcode() == Instruction::Or); 629 630 // Keep a stack (SmallVector for efficiency) for depth-first traversal 631 SmallVector<Value *, 8> DFT; 632 SmallPtrSet<Value *, 8> Visited; 633 634 // Initialize 635 Visited.insert(V); 636 DFT.push_back(V); 637 638 while (!DFT.empty()) { 639 V = DFT.pop_back_val(); 640 641 if (Instruction *I = dyn_cast<Instruction>(V)) { 642 // If it is a || (or && depending on isEQ), process the operands. 643 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 644 if (Visited.insert(I->getOperand(1)).second) 645 DFT.push_back(I->getOperand(1)); 646 if (Visited.insert(I->getOperand(0)).second) 647 DFT.push_back(I->getOperand(0)); 648 continue; 649 } 650 651 // Try to match the current instruction 652 if (matchInstruction(I, isEQ)) 653 // Match succeed, continue the loop 654 continue; 655 } 656 657 // One element of the sequence of || (or &&) could not be match as a 658 // comparison against the same value as the others. 659 // We allow only one "Extra" case to be checked before the switch 660 if (!Extra) { 661 Extra = V; 662 continue; 663 } 664 // Failed to parse a proper sequence, abort now 665 CompValue = nullptr; 666 break; 667 } 668 } 669 }; 670 671 } // end anonymous namespace 672 673 static void EraseTerminatorAndDCECond(Instruction *TI) { 674 Instruction *Cond = nullptr; 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cond = dyn_cast<Instruction>(SI->getCondition()); 677 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 678 if (BI->isConditional()) 679 Cond = dyn_cast<Instruction>(BI->getCondition()); 680 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 681 Cond = dyn_cast<Instruction>(IBI->getAddress()); 682 } 683 684 TI->eraseFromParent(); 685 if (Cond) 686 RecursivelyDeleteTriviallyDeadInstructions(Cond); 687 } 688 689 /// Return true if the specified terminator checks 690 /// to see if a value is equal to constant integer value. 691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 692 Value *CV = nullptr; 693 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 694 // Do not permit merging of large switch instructions into their 695 // predecessors unless there is only one predecessor. 696 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 697 CV = SI->getCondition(); 698 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 699 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 701 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 702 CV = ICI->getOperand(0); 703 } 704 705 // Unwrap any lossless ptrtoint cast. 706 if (CV) { 707 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 708 Value *Ptr = PTII->getPointerOperand(); 709 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 710 CV = Ptr; 711 } 712 } 713 return CV; 714 } 715 716 /// Given a value comparison instruction, 717 /// decode all of the 'cases' that it represents and return the 'default' block. 718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 719 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 720 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 721 Cases.reserve(SI->getNumCases()); 722 for (auto Case : SI->cases()) 723 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 724 Case.getCaseSuccessor())); 725 return SI->getDefaultDest(); 726 } 727 728 BranchInst *BI = cast<BranchInst>(TI); 729 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 730 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 731 Cases.push_back(ValueEqualityComparisonCase( 732 GetConstantInt(ICI->getOperand(1), DL), Succ)); 733 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 734 } 735 736 /// Given a vector of bb/value pairs, remove any entries 737 /// in the list that match the specified block. 738 static void 739 EliminateBlockCases(BasicBlock *BB, 740 std::vector<ValueEqualityComparisonCase> &Cases) { 741 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 742 } 743 744 /// Return true if there are any keys in C1 that exist in C2 as well. 745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 746 std::vector<ValueEqualityComparisonCase> &C2) { 747 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 748 749 // Make V1 be smaller than V2. 750 if (V1->size() > V2->size()) 751 std::swap(V1, V2); 752 753 if (V1->empty()) 754 return false; 755 if (V1->size() == 1) { 756 // Just scan V2. 757 ConstantInt *TheVal = (*V1)[0].Value; 758 for (unsigned i = 0, e = V2->size(); i != e; ++i) 759 if (TheVal == (*V2)[i].Value) 760 return true; 761 } 762 763 // Otherwise, just sort both lists and compare element by element. 764 array_pod_sort(V1->begin(), V1->end()); 765 array_pod_sort(V2->begin(), V2->end()); 766 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 767 while (i1 != e1 && i2 != e2) { 768 if ((*V1)[i1].Value == (*V2)[i2].Value) 769 return true; 770 if ((*V1)[i1].Value < (*V2)[i2].Value) 771 ++i1; 772 else 773 ++i2; 774 } 775 return false; 776 } 777 778 // Set branch weights on SwitchInst. This sets the metadata if there is at 779 // least one non-zero weight. 780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 781 // Check that there is at least one non-zero weight. Otherwise, pass 782 // nullptr to setMetadata which will erase the existing metadata. 783 MDNode *N = nullptr; 784 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 785 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 786 SI->setMetadata(LLVMContext::MD_prof, N); 787 } 788 789 // Similar to the above, but for branch and select instructions that take 790 // exactly 2 weights. 791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 792 uint32_t FalseWeight) { 793 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 794 // Check that there is at least one non-zero weight. Otherwise, pass 795 // nullptr to setMetadata which will erase the existing metadata. 796 MDNode *N = nullptr; 797 if (TrueWeight || FalseWeight) 798 N = MDBuilder(I->getParent()->getContext()) 799 .createBranchWeights(TrueWeight, FalseWeight); 800 I->setMetadata(LLVMContext::MD_prof, N); 801 } 802 803 /// If TI is known to be a terminator instruction and its block is known to 804 /// only have a single predecessor block, check to see if that predecessor is 805 /// also a value comparison with the same value, and if that comparison 806 /// determines the outcome of this comparison. If so, simplify TI. This does a 807 /// very limited form of jump threading. 808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 809 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 810 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 811 if (!PredVal) 812 return false; // Not a value comparison in predecessor. 813 814 Value *ThisVal = isValueEqualityComparison(TI); 815 assert(ThisVal && "This isn't a value comparison!!"); 816 if (ThisVal != PredVal) 817 return false; // Different predicates. 818 819 // TODO: Preserve branch weight metadata, similarly to how 820 // FoldValueComparisonIntoPredecessors preserves it. 821 822 // Find out information about when control will move from Pred to TI's block. 823 std::vector<ValueEqualityComparisonCase> PredCases; 824 BasicBlock *PredDef = 825 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 826 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 827 828 // Find information about how control leaves this block. 829 std::vector<ValueEqualityComparisonCase> ThisCases; 830 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 831 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 832 833 // If TI's block is the default block from Pred's comparison, potentially 834 // simplify TI based on this knowledge. 835 if (PredDef == TI->getParent()) { 836 // If we are here, we know that the value is none of those cases listed in 837 // PredCases. If there are any cases in ThisCases that are in PredCases, we 838 // can simplify TI. 839 if (!ValuesOverlap(PredCases, ThisCases)) 840 return false; 841 842 if (isa<BranchInst>(TI)) { 843 // Okay, one of the successors of this condbr is dead. Convert it to a 844 // uncond br. 845 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 846 // Insert the new branch. 847 Instruction *NI = Builder.CreateBr(ThisDef); 848 (void)NI; 849 850 // Remove PHI node entries for the dead edge. 851 ThisCases[0].Dest->removePredecessor(TI->getParent()); 852 853 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 854 << "Through successor TI: " << *TI << "Leaving: " << *NI 855 << "\n"); 856 857 EraseTerminatorAndDCECond(TI); 858 return true; 859 } 860 861 SwitchInst *SI = cast<SwitchInst>(TI); 862 // Okay, TI has cases that are statically dead, prune them away. 863 SmallPtrSet<Constant *, 16> DeadCases; 864 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 865 DeadCases.insert(PredCases[i].Value); 866 867 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 868 << "Through successor TI: " << *TI); 869 870 // Collect branch weights into a vector. 871 SmallVector<uint32_t, 8> Weights; 872 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 873 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 874 if (HasWeight) 875 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 876 ++MD_i) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 878 Weights.push_back(CI->getValue().getZExtValue()); 879 } 880 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 881 --i; 882 if (DeadCases.count(i->getCaseValue())) { 883 if (HasWeight) { 884 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 885 Weights.pop_back(); 886 } 887 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 888 SI->removeCase(i); 889 } 890 } 891 if (HasWeight && Weights.size() >= 2) 892 setBranchWeights(SI, Weights); 893 894 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 895 return true; 896 } 897 898 // Otherwise, TI's block must correspond to some matched value. Find out 899 // which value (or set of values) this is. 900 ConstantInt *TIV = nullptr; 901 BasicBlock *TIBB = TI->getParent(); 902 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 903 if (PredCases[i].Dest == TIBB) { 904 if (TIV) 905 return false; // Cannot handle multiple values coming to this block. 906 TIV = PredCases[i].Value; 907 } 908 assert(TIV && "No edge from pred to succ?"); 909 910 // Okay, we found the one constant that our value can be if we get into TI's 911 // BB. Find out which successor will unconditionally be branched to. 912 BasicBlock *TheRealDest = nullptr; 913 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 914 if (ThisCases[i].Value == TIV) { 915 TheRealDest = ThisCases[i].Dest; 916 break; 917 } 918 919 // If not handled by any explicit cases, it is handled by the default case. 920 if (!TheRealDest) 921 TheRealDest = ThisDef; 922 923 // Remove PHI node entries for dead edges. 924 BasicBlock *CheckEdge = TheRealDest; 925 for (BasicBlock *Succ : successors(TIBB)) 926 if (Succ != CheckEdge) 927 Succ->removePredecessor(TIBB); 928 else 929 CheckEdge = nullptr; 930 931 // Insert the new branch. 932 Instruction *NI = Builder.CreateBr(TheRealDest); 933 (void)NI; 934 935 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 936 << "Through successor TI: " << *TI << "Leaving: " << *NI 937 << "\n"); 938 939 EraseTerminatorAndDCECond(TI); 940 return true; 941 } 942 943 namespace { 944 945 /// This class implements a stable ordering of constant 946 /// integers that does not depend on their address. This is important for 947 /// applications that sort ConstantInt's to ensure uniqueness. 948 struct ConstantIntOrdering { 949 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 950 return LHS->getValue().ult(RHS->getValue()); 951 } 952 }; 953 954 } // end anonymous namespace 955 956 static int ConstantIntSortPredicate(ConstantInt *const *P1, 957 ConstantInt *const *P2) { 958 const ConstantInt *LHS = *P1; 959 const ConstantInt *RHS = *P2; 960 if (LHS == RHS) 961 return 0; 962 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 963 } 964 965 static inline bool HasBranchWeights(const Instruction *I) { 966 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 967 if (ProfMD && ProfMD->getOperand(0)) 968 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 969 return MDS->getString().equals("branch_weights"); 970 971 return false; 972 } 973 974 /// Get Weights of a given terminator, the default weight is at the front 975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 976 /// metadata. 977 static void GetBranchWeights(Instruction *TI, 978 SmallVectorImpl<uint64_t> &Weights) { 979 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 980 assert(MD); 981 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 983 Weights.push_back(CI->getValue().getZExtValue()); 984 } 985 986 // If TI is a conditional eq, the default case is the false case, 987 // and the corresponding branch-weight data is at index 2. We swap the 988 // default weight to be the first entry. 989 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 990 assert(Weights.size() == 2); 991 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 992 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 993 std::swap(Weights.front(), Weights.back()); 994 } 995 } 996 997 /// Keep halving the weights until all can fit in uint32_t. 998 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 999 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1000 if (Max > UINT_MAX) { 1001 unsigned Offset = 32 - countLeadingZeros(Max); 1002 for (uint64_t &I : Weights) 1003 I >>= Offset; 1004 } 1005 } 1006 1007 /// The specified terminator is a value equality comparison instruction 1008 /// (either a switch or a branch on "X == c"). 1009 /// See if any of the predecessors of the terminator block are value comparisons 1010 /// on the same value. If so, and if safe to do so, fold them together. 1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1012 IRBuilder<> &Builder) { 1013 BasicBlock *BB = TI->getParent(); 1014 Value *CV = isValueEqualityComparison(TI); // CondVal 1015 assert(CV && "Not a comparison?"); 1016 bool Changed = false; 1017 1018 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1019 while (!Preds.empty()) { 1020 BasicBlock *Pred = Preds.pop_back_val(); 1021 1022 // See if the predecessor is a comparison with the same value. 1023 Instruction *PTI = Pred->getTerminator(); 1024 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1025 1026 if (PCV == CV && TI != PTI) { 1027 SmallSetVector<BasicBlock*, 4> FailBlocks; 1028 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1029 for (auto *Succ : FailBlocks) { 1030 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1031 return false; 1032 } 1033 } 1034 1035 // Figure out which 'cases' to copy from SI to PSI. 1036 std::vector<ValueEqualityComparisonCase> BBCases; 1037 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1038 1039 std::vector<ValueEqualityComparisonCase> PredCases; 1040 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1041 1042 // Based on whether the default edge from PTI goes to BB or not, fill in 1043 // PredCases and PredDefault with the new switch cases we would like to 1044 // build. 1045 SmallVector<BasicBlock *, 8> NewSuccessors; 1046 1047 // Update the branch weight metadata along the way 1048 SmallVector<uint64_t, 8> Weights; 1049 bool PredHasWeights = HasBranchWeights(PTI); 1050 bool SuccHasWeights = HasBranchWeights(TI); 1051 1052 if (PredHasWeights) { 1053 GetBranchWeights(PTI, Weights); 1054 // branch-weight metadata is inconsistent here. 1055 if (Weights.size() != 1 + PredCases.size()) 1056 PredHasWeights = SuccHasWeights = false; 1057 } else if (SuccHasWeights) 1058 // If there are no predecessor weights but there are successor weights, 1059 // populate Weights with 1, which will later be scaled to the sum of 1060 // successor's weights 1061 Weights.assign(1 + PredCases.size(), 1); 1062 1063 SmallVector<uint64_t, 8> SuccWeights; 1064 if (SuccHasWeights) { 1065 GetBranchWeights(TI, SuccWeights); 1066 // branch-weight metadata is inconsistent here. 1067 if (SuccWeights.size() != 1 + BBCases.size()) 1068 PredHasWeights = SuccHasWeights = false; 1069 } else if (PredHasWeights) 1070 SuccWeights.assign(1 + BBCases.size(), 1); 1071 1072 if (PredDefault == BB) { 1073 // If this is the default destination from PTI, only the edges in TI 1074 // that don't occur in PTI, or that branch to BB will be activated. 1075 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1076 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1077 if (PredCases[i].Dest != BB) 1078 PTIHandled.insert(PredCases[i].Value); 1079 else { 1080 // The default destination is BB, we don't need explicit targets. 1081 std::swap(PredCases[i], PredCases.back()); 1082 1083 if (PredHasWeights || SuccHasWeights) { 1084 // Increase weight for the default case. 1085 Weights[0] += Weights[i + 1]; 1086 std::swap(Weights[i + 1], Weights.back()); 1087 Weights.pop_back(); 1088 } 1089 1090 PredCases.pop_back(); 1091 --i; 1092 --e; 1093 } 1094 1095 // Reconstruct the new switch statement we will be building. 1096 if (PredDefault != BBDefault) { 1097 PredDefault->removePredecessor(Pred); 1098 PredDefault = BBDefault; 1099 NewSuccessors.push_back(BBDefault); 1100 } 1101 1102 unsigned CasesFromPred = Weights.size(); 1103 uint64_t ValidTotalSuccWeight = 0; 1104 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1105 if (!PTIHandled.count(BBCases[i].Value) && 1106 BBCases[i].Dest != BBDefault) { 1107 PredCases.push_back(BBCases[i]); 1108 NewSuccessors.push_back(BBCases[i].Dest); 1109 if (SuccHasWeights || PredHasWeights) { 1110 // The default weight is at index 0, so weight for the ith case 1111 // should be at index i+1. Scale the cases from successor by 1112 // PredDefaultWeight (Weights[0]). 1113 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1114 ValidTotalSuccWeight += SuccWeights[i + 1]; 1115 } 1116 } 1117 1118 if (SuccHasWeights || PredHasWeights) { 1119 ValidTotalSuccWeight += SuccWeights[0]; 1120 // Scale the cases from predecessor by ValidTotalSuccWeight. 1121 for (unsigned i = 1; i < CasesFromPred; ++i) 1122 Weights[i] *= ValidTotalSuccWeight; 1123 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1124 Weights[0] *= SuccWeights[0]; 1125 } 1126 } else { 1127 // If this is not the default destination from PSI, only the edges 1128 // in SI that occur in PSI with a destination of BB will be 1129 // activated. 1130 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1131 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1132 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1133 if (PredCases[i].Dest == BB) { 1134 PTIHandled.insert(PredCases[i].Value); 1135 1136 if (PredHasWeights || SuccHasWeights) { 1137 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1138 std::swap(Weights[i + 1], Weights.back()); 1139 Weights.pop_back(); 1140 } 1141 1142 std::swap(PredCases[i], PredCases.back()); 1143 PredCases.pop_back(); 1144 --i; 1145 --e; 1146 } 1147 1148 // Okay, now we know which constants were sent to BB from the 1149 // predecessor. Figure out where they will all go now. 1150 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1151 if (PTIHandled.count(BBCases[i].Value)) { 1152 // If this is one we are capable of getting... 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1155 PredCases.push_back(BBCases[i]); 1156 NewSuccessors.push_back(BBCases[i].Dest); 1157 PTIHandled.erase( 1158 BBCases[i].Value); // This constant is taken care of 1159 } 1160 1161 // If there are any constants vectored to BB that TI doesn't handle, 1162 // they must go to the default destination of TI. 1163 for (ConstantInt *I : PTIHandled) { 1164 if (PredHasWeights || SuccHasWeights) 1165 Weights.push_back(WeightsForHandled[I]); 1166 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1167 NewSuccessors.push_back(BBDefault); 1168 } 1169 } 1170 1171 // Okay, at this point, we know which new successor Pred will get. Make 1172 // sure we update the number of entries in the PHI nodes for these 1173 // successors. 1174 for (BasicBlock *NewSuccessor : NewSuccessors) 1175 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1176 1177 Builder.SetInsertPoint(PTI); 1178 // Convert pointer to int before we switch. 1179 if (CV->getType()->isPointerTy()) { 1180 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1181 "magicptr"); 1182 } 1183 1184 // Now that the successors are updated, create the new Switch instruction. 1185 SwitchInst *NewSI = 1186 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1187 NewSI->setDebugLoc(PTI->getDebugLoc()); 1188 for (ValueEqualityComparisonCase &V : PredCases) 1189 NewSI->addCase(V.Value, V.Dest); 1190 1191 if (PredHasWeights || SuccHasWeights) { 1192 // Halve the weights if any of them cannot fit in an uint32_t 1193 FitWeights(Weights); 1194 1195 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1196 1197 setBranchWeights(NewSI, MDWeights); 1198 } 1199 1200 EraseTerminatorAndDCECond(PTI); 1201 1202 // Okay, last check. If BB is still a successor of PSI, then we must 1203 // have an infinite loop case. If so, add an infinitely looping block 1204 // to handle the case to preserve the behavior of the code. 1205 BasicBlock *InfLoopBlock = nullptr; 1206 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1207 if (NewSI->getSuccessor(i) == BB) { 1208 if (!InfLoopBlock) { 1209 // Insert it at the end of the function, because it's either code, 1210 // or it won't matter if it's hot. :) 1211 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1212 BB->getParent()); 1213 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1214 } 1215 NewSI->setSuccessor(i, InfLoopBlock); 1216 } 1217 1218 Changed = true; 1219 } 1220 } 1221 return Changed; 1222 } 1223 1224 // If we would need to insert a select that uses the value of this invoke 1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1226 // can't hoist the invoke, as there is nowhere to put the select in this case. 1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1228 Instruction *I1, Instruction *I2) { 1229 for (BasicBlock *Succ : successors(BB1)) { 1230 for (const PHINode &PN : Succ->phis()) { 1231 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1232 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1233 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1234 return false; 1235 } 1236 } 1237 } 1238 return true; 1239 } 1240 1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1242 1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1244 /// in the two blocks up into the branch block. The caller of this function 1245 /// guarantees that BI's block dominates BB1 and BB2. 1246 static bool HoistThenElseCodeToIf(BranchInst *BI, 1247 const TargetTransformInfo &TTI) { 1248 // This does very trivial matching, with limited scanning, to find identical 1249 // instructions in the two blocks. In particular, we don't want to get into 1250 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1251 // such, we currently just scan for obviously identical instructions in an 1252 // identical order. 1253 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1254 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1255 1256 BasicBlock::iterator BB1_Itr = BB1->begin(); 1257 BasicBlock::iterator BB2_Itr = BB2->begin(); 1258 1259 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1260 // Skip debug info if it is not identical. 1261 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1262 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1263 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1264 while (isa<DbgInfoIntrinsic>(I1)) 1265 I1 = &*BB1_Itr++; 1266 while (isa<DbgInfoIntrinsic>(I2)) 1267 I2 = &*BB2_Itr++; 1268 } 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1271 return false; 1272 1273 BasicBlock *BIParent = BI->getParent(); 1274 1275 bool Changed = false; 1276 do { 1277 // If we are hoisting the terminator instruction, don't move one (making a 1278 // broken BB), instead clone it, and remove BI. 1279 if (I1->isTerminator()) 1280 goto HoistTerminator; 1281 1282 // If we're going to hoist a call, make sure that the two instructions we're 1283 // commoning/hoisting are both marked with musttail, or neither of them is 1284 // marked as such. Otherwise, we might end up in a situation where we hoist 1285 // from a block where the terminator is a `ret` to a block where the terminator 1286 // is a `br`, and `musttail` calls expect to be followed by a return. 1287 auto *C1 = dyn_cast<CallInst>(I1); 1288 auto *C2 = dyn_cast<CallInst>(I2); 1289 if (C1 && C2) 1290 if (C1->isMustTailCall() != C2->isMustTailCall()) 1291 return Changed; 1292 1293 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1294 return Changed; 1295 1296 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1297 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1298 // The debug location is an integral part of a debug info intrinsic 1299 // and can't be separated from it or replaced. Instead of attempting 1300 // to merge locations, simply hoist both copies of the intrinsic. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 BIParent->getInstList().splice(BI->getIterator(), 1304 BB2->getInstList(), I2); 1305 Changed = true; 1306 } else { 1307 // For a normal instruction, we just move one to right before the branch, 1308 // then replace all uses of the other with the first. Finally, we remove 1309 // the now redundant second instruction. 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB1->getInstList(), I1); 1312 if (!I2->use_empty()) 1313 I2->replaceAllUsesWith(I1); 1314 I1->andIRFlags(I2); 1315 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1316 LLVMContext::MD_range, 1317 LLVMContext::MD_fpmath, 1318 LLVMContext::MD_invariant_load, 1319 LLVMContext::MD_nonnull, 1320 LLVMContext::MD_invariant_group, 1321 LLVMContext::MD_align, 1322 LLVMContext::MD_dereferenceable, 1323 LLVMContext::MD_dereferenceable_or_null, 1324 LLVMContext::MD_mem_parallel_loop_access}; 1325 combineMetadata(I1, I2, KnownIDs, true); 1326 1327 // I1 and I2 are being combined into a single instruction. Its debug 1328 // location is the merged locations of the original instructions. 1329 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1330 1331 I2->eraseFromParent(); 1332 Changed = true; 1333 } 1334 1335 I1 = &*BB1_Itr++; 1336 I2 = &*BB2_Itr++; 1337 // Skip debug info if it is not identical. 1338 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1339 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1340 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1341 while (isa<DbgInfoIntrinsic>(I1)) 1342 I1 = &*BB1_Itr++; 1343 while (isa<DbgInfoIntrinsic>(I2)) 1344 I2 = &*BB2_Itr++; 1345 } 1346 } while (I1->isIdenticalToWhenDefined(I2)); 1347 1348 return true; 1349 1350 HoistTerminator: 1351 // It may not be possible to hoist an invoke. 1352 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1353 return Changed; 1354 1355 for (BasicBlock *Succ : successors(BB1)) { 1356 for (PHINode &PN : Succ->phis()) { 1357 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1358 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1359 if (BB1V == BB2V) 1360 continue; 1361 1362 // Check for passingValueIsAlwaysUndefined here because we would rather 1363 // eliminate undefined control flow then converting it to a select. 1364 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1365 passingValueIsAlwaysUndefined(BB2V, &PN)) 1366 return Changed; 1367 1368 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1369 return Changed; 1370 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1371 return Changed; 1372 } 1373 } 1374 1375 // As the parent basic block terminator is a branch instruction which is 1376 // removed at the end of the current transformation, use its previous 1377 // non-debug instruction, as the reference insertion point, which will 1378 // provide the debug location for the instruction being hoisted. For BBs 1379 // with only debug instructions, use an empty debug location. 1380 Instruction *InsertPt = 1381 BIParent->getTerminator()->getPrevNonDebugInstruction(); 1382 1383 // Okay, it is safe to hoist the terminator. 1384 Instruction *NT = I1->clone(); 1385 BIParent->getInstList().insert(BI->getIterator(), NT); 1386 if (!NT->getType()->isVoidTy()) { 1387 I1->replaceAllUsesWith(NT); 1388 I2->replaceAllUsesWith(NT); 1389 NT->takeName(I1); 1390 } 1391 1392 // The instruction NT being hoisted, is the terminator for the true branch, 1393 // with debug location (DILocation) within that branch. We can't retain 1394 // its original debug location value, otherwise 'select' instructions that 1395 // are created from any PHI nodes, will take its debug location, giving 1396 // the impression that those 'select' instructions are in the true branch, 1397 // causing incorrect stepping, affecting the debug experience. 1398 NT->setDebugLoc(InsertPt ? InsertPt->getDebugLoc() : DebugLoc()); 1399 1400 IRBuilder<NoFolder> Builder(NT); 1401 // Hoisting one of the terminators from our successor is a great thing. 1402 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1403 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1404 // nodes, so we insert select instruction to compute the final result. 1405 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1406 for (BasicBlock *Succ : successors(BB1)) { 1407 for (PHINode &PN : Succ->phis()) { 1408 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1409 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1410 if (BB1V == BB2V) 1411 continue; 1412 1413 // These values do not agree. Insert a select instruction before NT 1414 // that determines the right value. 1415 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1416 if (!SI) 1417 SI = cast<SelectInst>( 1418 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1419 BB1V->getName() + "." + BB2V->getName(), BI)); 1420 1421 // Make the PHI node use the select for all incoming values for BB1/BB2 1422 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1423 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1424 PN.setIncomingValue(i, SI); 1425 } 1426 } 1427 1428 // Update any PHI nodes in our new successors. 1429 for (BasicBlock *Succ : successors(BB1)) 1430 AddPredecessorToBlock(Succ, BIParent, BB1); 1431 1432 EraseTerminatorAndDCECond(BI); 1433 return true; 1434 } 1435 1436 // All instructions in Insts belong to different blocks that all unconditionally 1437 // branch to a common successor. Analyze each instruction and return true if it 1438 // would be possible to sink them into their successor, creating one common 1439 // instruction instead. For every value that would be required to be provided by 1440 // PHI node (because an operand varies in each input block), add to PHIOperands. 1441 static bool canSinkInstructions( 1442 ArrayRef<Instruction *> Insts, 1443 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1444 // Prune out obviously bad instructions to move. Any non-store instruction 1445 // must have exactly one use, and we check later that use is by a single, 1446 // common PHI instruction in the successor. 1447 for (auto *I : Insts) { 1448 // These instructions may change or break semantics if moved. 1449 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1450 I->getType()->isTokenTy()) 1451 return false; 1452 1453 // Conservatively return false if I is an inline-asm instruction. Sinking 1454 // and merging inline-asm instructions can potentially create arguments 1455 // that cannot satisfy the inline-asm constraints. 1456 if (const auto *C = dyn_cast<CallInst>(I)) 1457 if (C->isInlineAsm()) 1458 return false; 1459 1460 // Everything must have only one use too, apart from stores which 1461 // have no uses. 1462 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1463 return false; 1464 } 1465 1466 const Instruction *I0 = Insts.front(); 1467 for (auto *I : Insts) 1468 if (!I->isSameOperationAs(I0)) 1469 return false; 1470 1471 // All instructions in Insts are known to be the same opcode. If they aren't 1472 // stores, check the only user of each is a PHI or in the same block as the 1473 // instruction, because if a user is in the same block as an instruction 1474 // we're contemplating sinking, it must already be determined to be sinkable. 1475 if (!isa<StoreInst>(I0)) { 1476 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1477 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1478 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1479 auto *U = cast<Instruction>(*I->user_begin()); 1480 return (PNUse && 1481 PNUse->getParent() == Succ && 1482 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1483 U->getParent() == I->getParent(); 1484 })) 1485 return false; 1486 } 1487 1488 // Because SROA can't handle speculating stores of selects, try not 1489 // to sink loads or stores of allocas when we'd have to create a PHI for 1490 // the address operand. Also, because it is likely that loads or stores 1491 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1492 // This can cause code churn which can have unintended consequences down 1493 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1494 // FIXME: This is a workaround for a deficiency in SROA - see 1495 // https://llvm.org/bugs/show_bug.cgi?id=30188 1496 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1497 return isa<AllocaInst>(I->getOperand(1)); 1498 })) 1499 return false; 1500 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1501 return isa<AllocaInst>(I->getOperand(0)); 1502 })) 1503 return false; 1504 1505 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1506 if (I0->getOperand(OI)->getType()->isTokenTy()) 1507 // Don't touch any operand of token type. 1508 return false; 1509 1510 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1511 assert(I->getNumOperands() == I0->getNumOperands()); 1512 return I->getOperand(OI) == I0->getOperand(OI); 1513 }; 1514 if (!all_of(Insts, SameAsI0)) { 1515 if (!canReplaceOperandWithVariable(I0, OI)) 1516 // We can't create a PHI from this GEP. 1517 return false; 1518 // Don't create indirect calls! The called value is the final operand. 1519 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1520 // FIXME: if the call was *already* indirect, we should do this. 1521 return false; 1522 } 1523 for (auto *I : Insts) 1524 PHIOperands[I].push_back(I->getOperand(OI)); 1525 } 1526 } 1527 return true; 1528 } 1529 1530 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1531 // instruction of every block in Blocks to their common successor, commoning 1532 // into one instruction. 1533 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1534 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1535 1536 // canSinkLastInstruction returning true guarantees that every block has at 1537 // least one non-terminator instruction. 1538 SmallVector<Instruction*,4> Insts; 1539 for (auto *BB : Blocks) { 1540 Instruction *I = BB->getTerminator(); 1541 do { 1542 I = I->getPrevNode(); 1543 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1544 if (!isa<DbgInfoIntrinsic>(I)) 1545 Insts.push_back(I); 1546 } 1547 1548 // The only checking we need to do now is that all users of all instructions 1549 // are the same PHI node. canSinkLastInstruction should have checked this but 1550 // it is slightly over-aggressive - it gets confused by commutative instructions 1551 // so double-check it here. 1552 Instruction *I0 = Insts.front(); 1553 if (!isa<StoreInst>(I0)) { 1554 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1555 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1556 auto *U = cast<Instruction>(*I->user_begin()); 1557 return U == PNUse; 1558 })) 1559 return false; 1560 } 1561 1562 // We don't need to do any more checking here; canSinkLastInstruction should 1563 // have done it all for us. 1564 SmallVector<Value*, 4> NewOperands; 1565 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1566 // This check is different to that in canSinkLastInstruction. There, we 1567 // cared about the global view once simplifycfg (and instcombine) have 1568 // completed - it takes into account PHIs that become trivially 1569 // simplifiable. However here we need a more local view; if an operand 1570 // differs we create a PHI and rely on instcombine to clean up the very 1571 // small mess we may make. 1572 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1573 return I->getOperand(O) != I0->getOperand(O); 1574 }); 1575 if (!NeedPHI) { 1576 NewOperands.push_back(I0->getOperand(O)); 1577 continue; 1578 } 1579 1580 // Create a new PHI in the successor block and populate it. 1581 auto *Op = I0->getOperand(O); 1582 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1583 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1584 Op->getName() + ".sink", &BBEnd->front()); 1585 for (auto *I : Insts) 1586 PN->addIncoming(I->getOperand(O), I->getParent()); 1587 NewOperands.push_back(PN); 1588 } 1589 1590 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1591 // and move it to the start of the successor block. 1592 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1593 I0->getOperandUse(O).set(NewOperands[O]); 1594 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1595 1596 // Update metadata and IR flags, and merge debug locations. 1597 for (auto *I : Insts) 1598 if (I != I0) { 1599 // The debug location for the "common" instruction is the merged locations 1600 // of all the commoned instructions. We start with the original location 1601 // of the "common" instruction and iteratively merge each location in the 1602 // loop below. 1603 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1604 // However, as N-way merge for CallInst is rare, so we use simplified API 1605 // instead of using complex API for N-way merge. 1606 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1607 combineMetadataForCSE(I0, I, true); 1608 I0->andIRFlags(I); 1609 } 1610 1611 if (!isa<StoreInst>(I0)) { 1612 // canSinkLastInstruction checked that all instructions were used by 1613 // one and only one PHI node. Find that now, RAUW it to our common 1614 // instruction and nuke it. 1615 assert(I0->hasOneUse()); 1616 auto *PN = cast<PHINode>(*I0->user_begin()); 1617 PN->replaceAllUsesWith(I0); 1618 PN->eraseFromParent(); 1619 } 1620 1621 // Finally nuke all instructions apart from the common instruction. 1622 for (auto *I : Insts) 1623 if (I != I0) 1624 I->eraseFromParent(); 1625 1626 return true; 1627 } 1628 1629 namespace { 1630 1631 // LockstepReverseIterator - Iterates through instructions 1632 // in a set of blocks in reverse order from the first non-terminator. 1633 // For example (assume all blocks have size n): 1634 // LockstepReverseIterator I([B1, B2, B3]); 1635 // *I-- = [B1[n], B2[n], B3[n]]; 1636 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1637 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1638 // ... 1639 class LockstepReverseIterator { 1640 ArrayRef<BasicBlock*> Blocks; 1641 SmallVector<Instruction*,4> Insts; 1642 bool Fail; 1643 1644 public: 1645 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1646 reset(); 1647 } 1648 1649 void reset() { 1650 Fail = false; 1651 Insts.clear(); 1652 for (auto *BB : Blocks) { 1653 Instruction *Inst = BB->getTerminator(); 1654 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1655 Inst = Inst->getPrevNode(); 1656 if (!Inst) { 1657 // Block wasn't big enough. 1658 Fail = true; 1659 return; 1660 } 1661 Insts.push_back(Inst); 1662 } 1663 } 1664 1665 bool isValid() const { 1666 return !Fail; 1667 } 1668 1669 void operator--() { 1670 if (Fail) 1671 return; 1672 for (auto *&Inst : Insts) { 1673 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1674 Inst = Inst->getPrevNode(); 1675 // Already at beginning of block. 1676 if (!Inst) { 1677 Fail = true; 1678 return; 1679 } 1680 } 1681 } 1682 1683 ArrayRef<Instruction*> operator * () const { 1684 return Insts; 1685 } 1686 }; 1687 1688 } // end anonymous namespace 1689 1690 /// Check whether BB's predecessors end with unconditional branches. If it is 1691 /// true, sink any common code from the predecessors to BB. 1692 /// We also allow one predecessor to end with conditional branch (but no more 1693 /// than one). 1694 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1695 // We support two situations: 1696 // (1) all incoming arcs are unconditional 1697 // (2) one incoming arc is conditional 1698 // 1699 // (2) is very common in switch defaults and 1700 // else-if patterns; 1701 // 1702 // if (a) f(1); 1703 // else if (b) f(2); 1704 // 1705 // produces: 1706 // 1707 // [if] 1708 // / \ 1709 // [f(1)] [if] 1710 // | | \ 1711 // | | | 1712 // | [f(2)]| 1713 // \ | / 1714 // [ end ] 1715 // 1716 // [end] has two unconditional predecessor arcs and one conditional. The 1717 // conditional refers to the implicit empty 'else' arc. This conditional 1718 // arc can also be caused by an empty default block in a switch. 1719 // 1720 // In this case, we attempt to sink code from all *unconditional* arcs. 1721 // If we can sink instructions from these arcs (determined during the scan 1722 // phase below) we insert a common successor for all unconditional arcs and 1723 // connect that to [end], to enable sinking: 1724 // 1725 // [if] 1726 // / \ 1727 // [x(1)] [if] 1728 // | | \ 1729 // | | \ 1730 // | [x(2)] | 1731 // \ / | 1732 // [sink.split] | 1733 // \ / 1734 // [ end ] 1735 // 1736 SmallVector<BasicBlock*,4> UnconditionalPreds; 1737 Instruction *Cond = nullptr; 1738 for (auto *B : predecessors(BB)) { 1739 auto *T = B->getTerminator(); 1740 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1741 UnconditionalPreds.push_back(B); 1742 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1743 Cond = T; 1744 else 1745 return false; 1746 } 1747 if (UnconditionalPreds.size() < 2) 1748 return false; 1749 1750 bool Changed = false; 1751 // We take a two-step approach to tail sinking. First we scan from the end of 1752 // each block upwards in lockstep. If the n'th instruction from the end of each 1753 // block can be sunk, those instructions are added to ValuesToSink and we 1754 // carry on. If we can sink an instruction but need to PHI-merge some operands 1755 // (because they're not identical in each instruction) we add these to 1756 // PHIOperands. 1757 unsigned ScanIdx = 0; 1758 SmallPtrSet<Value*,4> InstructionsToSink; 1759 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1760 LockstepReverseIterator LRI(UnconditionalPreds); 1761 while (LRI.isValid() && 1762 canSinkInstructions(*LRI, PHIOperands)) { 1763 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1764 << "\n"); 1765 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1766 ++ScanIdx; 1767 --LRI; 1768 } 1769 1770 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1771 unsigned NumPHIdValues = 0; 1772 for (auto *I : *LRI) 1773 for (auto *V : PHIOperands[I]) 1774 if (InstructionsToSink.count(V) == 0) 1775 ++NumPHIdValues; 1776 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1777 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1778 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1779 NumPHIInsts++; 1780 1781 return NumPHIInsts <= 1; 1782 }; 1783 1784 if (ScanIdx > 0 && Cond) { 1785 // Check if we would actually sink anything first! This mutates the CFG and 1786 // adds an extra block. The goal in doing this is to allow instructions that 1787 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1788 // (such as trunc, add) can be sunk and predicated already. So we check that 1789 // we're going to sink at least one non-speculatable instruction. 1790 LRI.reset(); 1791 unsigned Idx = 0; 1792 bool Profitable = false; 1793 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1794 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1795 Profitable = true; 1796 break; 1797 } 1798 --LRI; 1799 ++Idx; 1800 } 1801 if (!Profitable) 1802 return false; 1803 1804 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1805 // We have a conditional edge and we're going to sink some instructions. 1806 // Insert a new block postdominating all blocks we're going to sink from. 1807 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1808 // Edges couldn't be split. 1809 return false; 1810 Changed = true; 1811 } 1812 1813 // Now that we've analyzed all potential sinking candidates, perform the 1814 // actual sink. We iteratively sink the last non-terminator of the source 1815 // blocks into their common successor unless doing so would require too 1816 // many PHI instructions to be generated (currently only one PHI is allowed 1817 // per sunk instruction). 1818 // 1819 // We can use InstructionsToSink to discount values needing PHI-merging that will 1820 // actually be sunk in a later iteration. This allows us to be more 1821 // aggressive in what we sink. This does allow a false positive where we 1822 // sink presuming a later value will also be sunk, but stop half way through 1823 // and never actually sink it which means we produce more PHIs than intended. 1824 // This is unlikely in practice though. 1825 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1826 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1827 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1828 << "\n"); 1829 1830 // Because we've sunk every instruction in turn, the current instruction to 1831 // sink is always at index 0. 1832 LRI.reset(); 1833 if (!ProfitableToSinkInstruction(LRI)) { 1834 // Too many PHIs would be created. 1835 LLVM_DEBUG( 1836 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1837 break; 1838 } 1839 1840 if (!sinkLastInstruction(UnconditionalPreds)) 1841 return Changed; 1842 NumSinkCommons++; 1843 Changed = true; 1844 } 1845 return Changed; 1846 } 1847 1848 /// Determine if we can hoist sink a sole store instruction out of a 1849 /// conditional block. 1850 /// 1851 /// We are looking for code like the following: 1852 /// BrBB: 1853 /// store i32 %add, i32* %arrayidx2 1854 /// ... // No other stores or function calls (we could be calling a memory 1855 /// ... // function). 1856 /// %cmp = icmp ult %x, %y 1857 /// br i1 %cmp, label %EndBB, label %ThenBB 1858 /// ThenBB: 1859 /// store i32 %add5, i32* %arrayidx2 1860 /// br label EndBB 1861 /// EndBB: 1862 /// ... 1863 /// We are going to transform this into: 1864 /// BrBB: 1865 /// store i32 %add, i32* %arrayidx2 1866 /// ... // 1867 /// %cmp = icmp ult %x, %y 1868 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1869 /// store i32 %add.add5, i32* %arrayidx2 1870 /// ... 1871 /// 1872 /// \return The pointer to the value of the previous store if the store can be 1873 /// hoisted into the predecessor block. 0 otherwise. 1874 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1875 BasicBlock *StoreBB, BasicBlock *EndBB) { 1876 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1877 if (!StoreToHoist) 1878 return nullptr; 1879 1880 // Volatile or atomic. 1881 if (!StoreToHoist->isSimple()) 1882 return nullptr; 1883 1884 Value *StorePtr = StoreToHoist->getPointerOperand(); 1885 1886 // Look for a store to the same pointer in BrBB. 1887 unsigned MaxNumInstToLookAt = 9; 1888 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1889 if (!MaxNumInstToLookAt) 1890 break; 1891 --MaxNumInstToLookAt; 1892 1893 // Could be calling an instruction that affects memory like free(). 1894 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1895 return nullptr; 1896 1897 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1898 // Found the previous store make sure it stores to the same location. 1899 if (SI->getPointerOperand() == StorePtr) 1900 // Found the previous store, return its value operand. 1901 return SI->getValueOperand(); 1902 return nullptr; // Unknown store. 1903 } 1904 } 1905 1906 return nullptr; 1907 } 1908 1909 /// Speculate a conditional basic block flattening the CFG. 1910 /// 1911 /// Note that this is a very risky transform currently. Speculating 1912 /// instructions like this is most often not desirable. Instead, there is an MI 1913 /// pass which can do it with full awareness of the resource constraints. 1914 /// However, some cases are "obvious" and we should do directly. An example of 1915 /// this is speculating a single, reasonably cheap instruction. 1916 /// 1917 /// There is only one distinct advantage to flattening the CFG at the IR level: 1918 /// it makes very common but simplistic optimizations such as are common in 1919 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1920 /// modeling their effects with easier to reason about SSA value graphs. 1921 /// 1922 /// 1923 /// An illustration of this transform is turning this IR: 1924 /// \code 1925 /// BB: 1926 /// %cmp = icmp ult %x, %y 1927 /// br i1 %cmp, label %EndBB, label %ThenBB 1928 /// ThenBB: 1929 /// %sub = sub %x, %y 1930 /// br label BB2 1931 /// EndBB: 1932 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1933 /// ... 1934 /// \endcode 1935 /// 1936 /// Into this IR: 1937 /// \code 1938 /// BB: 1939 /// %cmp = icmp ult %x, %y 1940 /// %sub = sub %x, %y 1941 /// %cond = select i1 %cmp, 0, %sub 1942 /// ... 1943 /// \endcode 1944 /// 1945 /// \returns true if the conditional block is removed. 1946 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1947 const TargetTransformInfo &TTI) { 1948 // Be conservative for now. FP select instruction can often be expensive. 1949 Value *BrCond = BI->getCondition(); 1950 if (isa<FCmpInst>(BrCond)) 1951 return false; 1952 1953 BasicBlock *BB = BI->getParent(); 1954 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1955 1956 // If ThenBB is actually on the false edge of the conditional branch, remember 1957 // to swap the select operands later. 1958 bool Invert = false; 1959 if (ThenBB != BI->getSuccessor(0)) { 1960 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1961 Invert = true; 1962 } 1963 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1964 1965 // Keep a count of how many times instructions are used within ThenBB when 1966 // they are candidates for sinking into ThenBB. Specifically: 1967 // - They are defined in BB, and 1968 // - They have no side effects, and 1969 // - All of their uses are in ThenBB. 1970 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1971 1972 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1973 1974 unsigned SpeculationCost = 0; 1975 Value *SpeculatedStoreValue = nullptr; 1976 StoreInst *SpeculatedStore = nullptr; 1977 for (BasicBlock::iterator BBI = ThenBB->begin(), 1978 BBE = std::prev(ThenBB->end()); 1979 BBI != BBE; ++BBI) { 1980 Instruction *I = &*BBI; 1981 // Skip debug info. 1982 if (isa<DbgInfoIntrinsic>(I)) { 1983 SpeculatedDbgIntrinsics.push_back(I); 1984 continue; 1985 } 1986 1987 // Only speculatively execute a single instruction (not counting the 1988 // terminator) for now. 1989 ++SpeculationCost; 1990 if (SpeculationCost > 1) 1991 return false; 1992 1993 // Don't hoist the instruction if it's unsafe or expensive. 1994 if (!isSafeToSpeculativelyExecute(I) && 1995 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1996 I, BB, ThenBB, EndBB)))) 1997 return false; 1998 if (!SpeculatedStoreValue && 1999 ComputeSpeculationCost(I, TTI) > 2000 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2001 return false; 2002 2003 // Store the store speculation candidate. 2004 if (SpeculatedStoreValue) 2005 SpeculatedStore = cast<StoreInst>(I); 2006 2007 // Do not hoist the instruction if any of its operands are defined but not 2008 // used in BB. The transformation will prevent the operand from 2009 // being sunk into the use block. 2010 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2011 Instruction *OpI = dyn_cast<Instruction>(*i); 2012 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2013 continue; // Not a candidate for sinking. 2014 2015 ++SinkCandidateUseCounts[OpI]; 2016 } 2017 } 2018 2019 // Consider any sink candidates which are only used in ThenBB as costs for 2020 // speculation. Note, while we iterate over a DenseMap here, we are summing 2021 // and so iteration order isn't significant. 2022 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2023 I = SinkCandidateUseCounts.begin(), 2024 E = SinkCandidateUseCounts.end(); 2025 I != E; ++I) 2026 if (I->first->hasNUses(I->second)) { 2027 ++SpeculationCost; 2028 if (SpeculationCost > 1) 2029 return false; 2030 } 2031 2032 // Check that the PHI nodes can be converted to selects. 2033 bool HaveRewritablePHIs = false; 2034 for (PHINode &PN : EndBB->phis()) { 2035 Value *OrigV = PN.getIncomingValueForBlock(BB); 2036 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2037 2038 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2039 // Skip PHIs which are trivial. 2040 if (ThenV == OrigV) 2041 continue; 2042 2043 // Don't convert to selects if we could remove undefined behavior instead. 2044 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2045 passingValueIsAlwaysUndefined(ThenV, &PN)) 2046 return false; 2047 2048 HaveRewritablePHIs = true; 2049 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2050 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2051 if (!OrigCE && !ThenCE) 2052 continue; // Known safe and cheap. 2053 2054 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2055 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2056 return false; 2057 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2058 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2059 unsigned MaxCost = 2060 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2061 if (OrigCost + ThenCost > MaxCost) 2062 return false; 2063 2064 // Account for the cost of an unfolded ConstantExpr which could end up 2065 // getting expanded into Instructions. 2066 // FIXME: This doesn't account for how many operations are combined in the 2067 // constant expression. 2068 ++SpeculationCost; 2069 if (SpeculationCost > 1) 2070 return false; 2071 } 2072 2073 // If there are no PHIs to process, bail early. This helps ensure idempotence 2074 // as well. 2075 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2076 return false; 2077 2078 // If we get here, we can hoist the instruction and if-convert. 2079 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2080 2081 // Insert a select of the value of the speculated store. 2082 if (SpeculatedStoreValue) { 2083 IRBuilder<NoFolder> Builder(BI); 2084 Value *TrueV = SpeculatedStore->getValueOperand(); 2085 Value *FalseV = SpeculatedStoreValue; 2086 if (Invert) 2087 std::swap(TrueV, FalseV); 2088 Value *S = Builder.CreateSelect( 2089 BrCond, TrueV, FalseV, "spec.store.select", BI); 2090 SpeculatedStore->setOperand(0, S); 2091 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2092 SpeculatedStore->getDebugLoc()); 2093 } 2094 2095 // Metadata can be dependent on the condition we are hoisting above. 2096 // Conservatively strip all metadata on the instruction. 2097 for (auto &I : *ThenBB) 2098 I.dropUnknownNonDebugMetadata(); 2099 2100 // Hoist the instructions. 2101 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2102 ThenBB->begin(), std::prev(ThenBB->end())); 2103 2104 // Insert selects and rewrite the PHI operands. 2105 IRBuilder<NoFolder> Builder(BI); 2106 for (PHINode &PN : EndBB->phis()) { 2107 unsigned OrigI = PN.getBasicBlockIndex(BB); 2108 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2109 Value *OrigV = PN.getIncomingValue(OrigI); 2110 Value *ThenV = PN.getIncomingValue(ThenI); 2111 2112 // Skip PHIs which are trivial. 2113 if (OrigV == ThenV) 2114 continue; 2115 2116 // Create a select whose true value is the speculatively executed value and 2117 // false value is the preexisting value. Swap them if the branch 2118 // destinations were inverted. 2119 Value *TrueV = ThenV, *FalseV = OrigV; 2120 if (Invert) 2121 std::swap(TrueV, FalseV); 2122 Value *V = Builder.CreateSelect( 2123 BrCond, TrueV, FalseV, "spec.select", BI); 2124 PN.setIncomingValue(OrigI, V); 2125 PN.setIncomingValue(ThenI, V); 2126 } 2127 2128 // Remove speculated dbg intrinsics. 2129 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2130 // dbg value for the different flows and inserting it after the select. 2131 for (Instruction *I : SpeculatedDbgIntrinsics) 2132 I->eraseFromParent(); 2133 2134 ++NumSpeculations; 2135 return true; 2136 } 2137 2138 /// Return true if we can thread a branch across this block. 2139 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2140 unsigned Size = 0; 2141 2142 for (Instruction &I : BB->instructionsWithoutDebug()) { 2143 if (Size > 10) 2144 return false; // Don't clone large BB's. 2145 ++Size; 2146 2147 // We can only support instructions that do not define values that are 2148 // live outside of the current basic block. 2149 for (User *U : I.users()) { 2150 Instruction *UI = cast<Instruction>(U); 2151 if (UI->getParent() != BB || isa<PHINode>(UI)) 2152 return false; 2153 } 2154 2155 // Looks ok, continue checking. 2156 } 2157 2158 return true; 2159 } 2160 2161 /// If we have a conditional branch on a PHI node value that is defined in the 2162 /// same block as the branch and if any PHI entries are constants, thread edges 2163 /// corresponding to that entry to be branches to their ultimate destination. 2164 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2165 AssumptionCache *AC) { 2166 BasicBlock *BB = BI->getParent(); 2167 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2168 // NOTE: we currently cannot transform this case if the PHI node is used 2169 // outside of the block. 2170 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2171 return false; 2172 2173 // Degenerate case of a single entry PHI. 2174 if (PN->getNumIncomingValues() == 1) { 2175 FoldSingleEntryPHINodes(PN->getParent()); 2176 return true; 2177 } 2178 2179 // Now we know that this block has multiple preds and two succs. 2180 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2181 return false; 2182 2183 // Can't fold blocks that contain noduplicate or convergent calls. 2184 if (any_of(*BB, [](const Instruction &I) { 2185 const CallInst *CI = dyn_cast<CallInst>(&I); 2186 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2187 })) 2188 return false; 2189 2190 // Okay, this is a simple enough basic block. See if any phi values are 2191 // constants. 2192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2193 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2194 if (!CB || !CB->getType()->isIntegerTy(1)) 2195 continue; 2196 2197 // Okay, we now know that all edges from PredBB should be revectored to 2198 // branch to RealDest. 2199 BasicBlock *PredBB = PN->getIncomingBlock(i); 2200 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2201 2202 if (RealDest == BB) 2203 continue; // Skip self loops. 2204 // Skip if the predecessor's terminator is an indirect branch. 2205 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2206 continue; 2207 2208 // The dest block might have PHI nodes, other predecessors and other 2209 // difficult cases. Instead of being smart about this, just insert a new 2210 // block that jumps to the destination block, effectively splitting 2211 // the edge we are about to create. 2212 BasicBlock *EdgeBB = 2213 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2214 RealDest->getParent(), RealDest); 2215 BranchInst::Create(RealDest, EdgeBB); 2216 2217 // Update PHI nodes. 2218 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2219 2220 // BB may have instructions that are being threaded over. Clone these 2221 // instructions into EdgeBB. We know that there will be no uses of the 2222 // cloned instructions outside of EdgeBB. 2223 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2224 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2225 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2226 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2227 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2228 continue; 2229 } 2230 // Clone the instruction. 2231 Instruction *N = BBI->clone(); 2232 if (BBI->hasName()) 2233 N->setName(BBI->getName() + ".c"); 2234 2235 // Update operands due to translation. 2236 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2237 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2238 if (PI != TranslateMap.end()) 2239 *i = PI->second; 2240 } 2241 2242 // Check for trivial simplification. 2243 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2244 if (!BBI->use_empty()) 2245 TranslateMap[&*BBI] = V; 2246 if (!N->mayHaveSideEffects()) { 2247 N->deleteValue(); // Instruction folded away, don't need actual inst 2248 N = nullptr; 2249 } 2250 } else { 2251 if (!BBI->use_empty()) 2252 TranslateMap[&*BBI] = N; 2253 } 2254 // Insert the new instruction into its new home. 2255 if (N) 2256 EdgeBB->getInstList().insert(InsertPt, N); 2257 2258 // Register the new instruction with the assumption cache if necessary. 2259 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2260 if (II->getIntrinsicID() == Intrinsic::assume) 2261 AC->registerAssumption(II); 2262 } 2263 2264 // Loop over all of the edges from PredBB to BB, changing them to branch 2265 // to EdgeBB instead. 2266 Instruction *PredBBTI = PredBB->getTerminator(); 2267 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2268 if (PredBBTI->getSuccessor(i) == BB) { 2269 BB->removePredecessor(PredBB); 2270 PredBBTI->setSuccessor(i, EdgeBB); 2271 } 2272 2273 // Recurse, simplifying any other constants. 2274 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2275 } 2276 2277 return false; 2278 } 2279 2280 /// Given a BB that starts with the specified two-entry PHI node, 2281 /// see if we can eliminate it. 2282 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2283 const DataLayout &DL) { 2284 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2285 // statement", which has a very simple dominance structure. Basically, we 2286 // are trying to find the condition that is being branched on, which 2287 // subsequently causes this merge to happen. We really want control 2288 // dependence information for this check, but simplifycfg can't keep it up 2289 // to date, and this catches most of the cases we care about anyway. 2290 BasicBlock *BB = PN->getParent(); 2291 const Function *Fn = BB->getParent(); 2292 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2293 return false; 2294 2295 BasicBlock *IfTrue, *IfFalse; 2296 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2297 if (!IfCond || 2298 // Don't bother if the branch will be constant folded trivially. 2299 isa<ConstantInt>(IfCond)) 2300 return false; 2301 2302 // Okay, we found that we can merge this two-entry phi node into a select. 2303 // Doing so would require us to fold *all* two entry phi nodes in this block. 2304 // At some point this becomes non-profitable (particularly if the target 2305 // doesn't support cmov's). Only do this transformation if there are two or 2306 // fewer PHI nodes in this block. 2307 unsigned NumPhis = 0; 2308 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2309 if (NumPhis > 2) 2310 return false; 2311 2312 // Loop over the PHI's seeing if we can promote them all to select 2313 // instructions. While we are at it, keep track of the instructions 2314 // that need to be moved to the dominating block. 2315 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2316 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2317 MaxCostVal1 = PHINodeFoldingThreshold; 2318 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2319 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2320 2321 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2322 PHINode *PN = cast<PHINode>(II++); 2323 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2324 PN->replaceAllUsesWith(V); 2325 PN->eraseFromParent(); 2326 continue; 2327 } 2328 2329 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2330 MaxCostVal0, TTI) || 2331 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2332 MaxCostVal1, TTI)) 2333 return false; 2334 } 2335 2336 // If we folded the first phi, PN dangles at this point. Refresh it. If 2337 // we ran out of PHIs then we simplified them all. 2338 PN = dyn_cast<PHINode>(BB->begin()); 2339 if (!PN) 2340 return true; 2341 2342 // Don't fold i1 branches on PHIs which contain binary operators. These can 2343 // often be turned into switches and other things. 2344 if (PN->getType()->isIntegerTy(1) && 2345 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2346 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2347 isa<BinaryOperator>(IfCond))) 2348 return false; 2349 2350 // If all PHI nodes are promotable, check to make sure that all instructions 2351 // in the predecessor blocks can be promoted as well. If not, we won't be able 2352 // to get rid of the control flow, so it's not worth promoting to select 2353 // instructions. 2354 BasicBlock *DomBlock = nullptr; 2355 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2356 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2357 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2358 IfBlock1 = nullptr; 2359 } else { 2360 DomBlock = *pred_begin(IfBlock1); 2361 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2362 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2363 // This is not an aggressive instruction that we can promote. 2364 // Because of this, we won't be able to get rid of the control flow, so 2365 // the xform is not worth it. 2366 return false; 2367 } 2368 } 2369 2370 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2371 IfBlock2 = nullptr; 2372 } else { 2373 DomBlock = *pred_begin(IfBlock2); 2374 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2375 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2376 // This is not an aggressive instruction that we can promote. 2377 // Because of this, we won't be able to get rid of the control flow, so 2378 // the xform is not worth it. 2379 return false; 2380 } 2381 } 2382 2383 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2384 << " T: " << IfTrue->getName() 2385 << " F: " << IfFalse->getName() << "\n"); 2386 2387 // If we can still promote the PHI nodes after this gauntlet of tests, 2388 // do all of the PHI's now. 2389 Instruction *InsertPt = DomBlock->getTerminator(); 2390 IRBuilder<NoFolder> Builder(InsertPt); 2391 2392 // Move all 'aggressive' instructions, which are defined in the 2393 // conditional parts of the if's up to the dominating block. 2394 if (IfBlock1) 2395 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2396 if (IfBlock2) 2397 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2398 2399 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2400 // Change the PHI node into a select instruction. 2401 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2402 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2403 2404 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2405 PN->replaceAllUsesWith(Sel); 2406 Sel->takeName(PN); 2407 PN->eraseFromParent(); 2408 } 2409 2410 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2411 // has been flattened. Change DomBlock to jump directly to our new block to 2412 // avoid other simplifycfg's kicking in on the diamond. 2413 Instruction *OldTI = DomBlock->getTerminator(); 2414 Builder.SetInsertPoint(OldTI); 2415 Builder.CreateBr(BB); 2416 OldTI->eraseFromParent(); 2417 return true; 2418 } 2419 2420 /// If we found a conditional branch that goes to two returning blocks, 2421 /// try to merge them together into one return, 2422 /// introducing a select if the return values disagree. 2423 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2424 IRBuilder<> &Builder) { 2425 assert(BI->isConditional() && "Must be a conditional branch"); 2426 BasicBlock *TrueSucc = BI->getSuccessor(0); 2427 BasicBlock *FalseSucc = BI->getSuccessor(1); 2428 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2429 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2430 2431 // Check to ensure both blocks are empty (just a return) or optionally empty 2432 // with PHI nodes. If there are other instructions, merging would cause extra 2433 // computation on one path or the other. 2434 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2435 return false; 2436 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2437 return false; 2438 2439 Builder.SetInsertPoint(BI); 2440 // Okay, we found a branch that is going to two return nodes. If 2441 // there is no return value for this function, just change the 2442 // branch into a return. 2443 if (FalseRet->getNumOperands() == 0) { 2444 TrueSucc->removePredecessor(BI->getParent()); 2445 FalseSucc->removePredecessor(BI->getParent()); 2446 Builder.CreateRetVoid(); 2447 EraseTerminatorAndDCECond(BI); 2448 return true; 2449 } 2450 2451 // Otherwise, figure out what the true and false return values are 2452 // so we can insert a new select instruction. 2453 Value *TrueValue = TrueRet->getReturnValue(); 2454 Value *FalseValue = FalseRet->getReturnValue(); 2455 2456 // Unwrap any PHI nodes in the return blocks. 2457 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2458 if (TVPN->getParent() == TrueSucc) 2459 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2460 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2461 if (FVPN->getParent() == FalseSucc) 2462 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2463 2464 // In order for this transformation to be safe, we must be able to 2465 // unconditionally execute both operands to the return. This is 2466 // normally the case, but we could have a potentially-trapping 2467 // constant expression that prevents this transformation from being 2468 // safe. 2469 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2470 if (TCV->canTrap()) 2471 return false; 2472 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2473 if (FCV->canTrap()) 2474 return false; 2475 2476 // Okay, we collected all the mapped values and checked them for sanity, and 2477 // defined to really do this transformation. First, update the CFG. 2478 TrueSucc->removePredecessor(BI->getParent()); 2479 FalseSucc->removePredecessor(BI->getParent()); 2480 2481 // Insert select instructions where needed. 2482 Value *BrCond = BI->getCondition(); 2483 if (TrueValue) { 2484 // Insert a select if the results differ. 2485 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2486 } else if (isa<UndefValue>(TrueValue)) { 2487 TrueValue = FalseValue; 2488 } else { 2489 TrueValue = 2490 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2491 } 2492 } 2493 2494 Value *RI = 2495 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2496 2497 (void)RI; 2498 2499 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2500 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2501 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2502 2503 EraseTerminatorAndDCECond(BI); 2504 2505 return true; 2506 } 2507 2508 /// Return true if the given instruction is available 2509 /// in its predecessor block. If yes, the instruction will be removed. 2510 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2511 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2512 return false; 2513 for (Instruction &I : *PB) { 2514 Instruction *PBI = &I; 2515 // Check whether Inst and PBI generate the same value. 2516 if (Inst->isIdenticalTo(PBI)) { 2517 Inst->replaceAllUsesWith(PBI); 2518 Inst->eraseFromParent(); 2519 return true; 2520 } 2521 } 2522 return false; 2523 } 2524 2525 /// Return true if either PBI or BI has branch weight available, and store 2526 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2527 /// not have branch weight, use 1:1 as its weight. 2528 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2529 uint64_t &PredTrueWeight, 2530 uint64_t &PredFalseWeight, 2531 uint64_t &SuccTrueWeight, 2532 uint64_t &SuccFalseWeight) { 2533 bool PredHasWeights = 2534 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2535 bool SuccHasWeights = 2536 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2537 if (PredHasWeights || SuccHasWeights) { 2538 if (!PredHasWeights) 2539 PredTrueWeight = PredFalseWeight = 1; 2540 if (!SuccHasWeights) 2541 SuccTrueWeight = SuccFalseWeight = 1; 2542 return true; 2543 } else { 2544 return false; 2545 } 2546 } 2547 2548 /// If this basic block is simple enough, and if a predecessor branches to us 2549 /// and one of our successors, fold the block into the predecessor and use 2550 /// logical operations to pick the right destination. 2551 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2552 BasicBlock *BB = BI->getParent(); 2553 2554 const unsigned PredCount = pred_size(BB); 2555 2556 Instruction *Cond = nullptr; 2557 if (BI->isConditional()) 2558 Cond = dyn_cast<Instruction>(BI->getCondition()); 2559 else { 2560 // For unconditional branch, check for a simple CFG pattern, where 2561 // BB has a single predecessor and BB's successor is also its predecessor's 2562 // successor. If such pattern exists, check for CSE between BB and its 2563 // predecessor. 2564 if (BasicBlock *PB = BB->getSinglePredecessor()) 2565 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2566 if (PBI->isConditional() && 2567 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2568 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2569 for (auto I = BB->instructionsWithoutDebug().begin(), 2570 E = BB->instructionsWithoutDebug().end(); 2571 I != E;) { 2572 Instruction *Curr = &*I++; 2573 if (isa<CmpInst>(Curr)) { 2574 Cond = Curr; 2575 break; 2576 } 2577 // Quit if we can't remove this instruction. 2578 if (!tryCSEWithPredecessor(Curr, PB)) 2579 return false; 2580 } 2581 } 2582 2583 if (!Cond) 2584 return false; 2585 } 2586 2587 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2588 Cond->getParent() != BB || !Cond->hasOneUse()) 2589 return false; 2590 2591 // Make sure the instruction after the condition is the cond branch. 2592 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2593 2594 // Ignore dbg intrinsics. 2595 while (isa<DbgInfoIntrinsic>(CondIt)) 2596 ++CondIt; 2597 2598 if (&*CondIt != BI) 2599 return false; 2600 2601 // Only allow this transformation if computing the condition doesn't involve 2602 // too many instructions and these involved instructions can be executed 2603 // unconditionally. We denote all involved instructions except the condition 2604 // as "bonus instructions", and only allow this transformation when the 2605 // number of the bonus instructions we'll need to create when cloning into 2606 // each predecessor does not exceed a certain threshold. 2607 unsigned NumBonusInsts = 0; 2608 for (auto I = BB->begin(); Cond != &*I; ++I) { 2609 // Ignore dbg intrinsics. 2610 if (isa<DbgInfoIntrinsic>(I)) 2611 continue; 2612 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2613 return false; 2614 // I has only one use and can be executed unconditionally. 2615 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2616 if (User == nullptr || User->getParent() != BB) 2617 return false; 2618 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2619 // to use any other instruction, User must be an instruction between next(I) 2620 // and Cond. 2621 2622 // Account for the cost of duplicating this instruction into each 2623 // predecessor. 2624 NumBonusInsts += PredCount; 2625 // Early exits once we reach the limit. 2626 if (NumBonusInsts > BonusInstThreshold) 2627 return false; 2628 } 2629 2630 // Cond is known to be a compare or binary operator. Check to make sure that 2631 // neither operand is a potentially-trapping constant expression. 2632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2633 if (CE->canTrap()) 2634 return false; 2635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2636 if (CE->canTrap()) 2637 return false; 2638 2639 // Finally, don't infinitely unroll conditional loops. 2640 BasicBlock *TrueDest = BI->getSuccessor(0); 2641 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2642 if (TrueDest == BB || FalseDest == BB) 2643 return false; 2644 2645 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2646 BasicBlock *PredBlock = *PI; 2647 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2648 2649 // Check that we have two conditional branches. If there is a PHI node in 2650 // the common successor, verify that the same value flows in from both 2651 // blocks. 2652 SmallVector<PHINode *, 4> PHIs; 2653 if (!PBI || PBI->isUnconditional() || 2654 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2655 (!BI->isConditional() && 2656 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2657 continue; 2658 2659 // Determine if the two branches share a common destination. 2660 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2661 bool InvertPredCond = false; 2662 2663 if (BI->isConditional()) { 2664 if (PBI->getSuccessor(0) == TrueDest) { 2665 Opc = Instruction::Or; 2666 } else if (PBI->getSuccessor(1) == FalseDest) { 2667 Opc = Instruction::And; 2668 } else if (PBI->getSuccessor(0) == FalseDest) { 2669 Opc = Instruction::And; 2670 InvertPredCond = true; 2671 } else if (PBI->getSuccessor(1) == TrueDest) { 2672 Opc = Instruction::Or; 2673 InvertPredCond = true; 2674 } else { 2675 continue; 2676 } 2677 } else { 2678 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2679 continue; 2680 } 2681 2682 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2683 IRBuilder<> Builder(PBI); 2684 2685 // If we need to invert the condition in the pred block to match, do so now. 2686 if (InvertPredCond) { 2687 Value *NewCond = PBI->getCondition(); 2688 2689 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2690 CmpInst *CI = cast<CmpInst>(NewCond); 2691 CI->setPredicate(CI->getInversePredicate()); 2692 } else { 2693 NewCond = 2694 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2695 } 2696 2697 PBI->setCondition(NewCond); 2698 PBI->swapSuccessors(); 2699 } 2700 2701 // If we have bonus instructions, clone them into the predecessor block. 2702 // Note that there may be multiple predecessor blocks, so we cannot move 2703 // bonus instructions to a predecessor block. 2704 ValueToValueMapTy VMap; // maps original values to cloned values 2705 // We already make sure Cond is the last instruction before BI. Therefore, 2706 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2707 // instructions. 2708 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2709 if (isa<DbgInfoIntrinsic>(BonusInst)) 2710 continue; 2711 Instruction *NewBonusInst = BonusInst->clone(); 2712 RemapInstruction(NewBonusInst, VMap, 2713 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2714 VMap[&*BonusInst] = NewBonusInst; 2715 2716 // If we moved a load, we cannot any longer claim any knowledge about 2717 // its potential value. The previous information might have been valid 2718 // only given the branch precondition. 2719 // For an analogous reason, we must also drop all the metadata whose 2720 // semantics we don't understand. 2721 NewBonusInst->dropUnknownNonDebugMetadata(); 2722 2723 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2724 NewBonusInst->takeName(&*BonusInst); 2725 BonusInst->setName(BonusInst->getName() + ".old"); 2726 } 2727 2728 // Clone Cond into the predecessor basic block, and or/and the 2729 // two conditions together. 2730 Instruction *CondInPred = Cond->clone(); 2731 RemapInstruction(CondInPred, VMap, 2732 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2733 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2734 CondInPred->takeName(Cond); 2735 Cond->setName(CondInPred->getName() + ".old"); 2736 2737 if (BI->isConditional()) { 2738 Instruction *NewCond = cast<Instruction>( 2739 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2740 PBI->setCondition(NewCond); 2741 2742 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2743 bool HasWeights = 2744 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2745 SuccTrueWeight, SuccFalseWeight); 2746 SmallVector<uint64_t, 8> NewWeights; 2747 2748 if (PBI->getSuccessor(0) == BB) { 2749 if (HasWeights) { 2750 // PBI: br i1 %x, BB, FalseDest 2751 // BI: br i1 %y, TrueDest, FalseDest 2752 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2753 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2754 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2755 // TrueWeight for PBI * FalseWeight for BI. 2756 // We assume that total weights of a BranchInst can fit into 32 bits. 2757 // Therefore, we will not have overflow using 64-bit arithmetic. 2758 NewWeights.push_back(PredFalseWeight * 2759 (SuccFalseWeight + SuccTrueWeight) + 2760 PredTrueWeight * SuccFalseWeight); 2761 } 2762 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2763 PBI->setSuccessor(0, TrueDest); 2764 } 2765 if (PBI->getSuccessor(1) == BB) { 2766 if (HasWeights) { 2767 // PBI: br i1 %x, TrueDest, BB 2768 // BI: br i1 %y, TrueDest, FalseDest 2769 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2770 // FalseWeight for PBI * TrueWeight for BI. 2771 NewWeights.push_back(PredTrueWeight * 2772 (SuccFalseWeight + SuccTrueWeight) + 2773 PredFalseWeight * SuccTrueWeight); 2774 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2775 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2776 } 2777 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2778 PBI->setSuccessor(1, FalseDest); 2779 } 2780 if (NewWeights.size() == 2) { 2781 // Halve the weights if any of them cannot fit in an uint32_t 2782 FitWeights(NewWeights); 2783 2784 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2785 NewWeights.end()); 2786 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2787 } else 2788 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2789 } else { 2790 // Update PHI nodes in the common successors. 2791 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2792 ConstantInt *PBI_C = cast<ConstantInt>( 2793 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2794 assert(PBI_C->getType()->isIntegerTy(1)); 2795 Instruction *MergedCond = nullptr; 2796 if (PBI->getSuccessor(0) == TrueDest) { 2797 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2798 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2799 // is false: !PBI_Cond and BI_Value 2800 Instruction *NotCond = cast<Instruction>( 2801 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2802 MergedCond = cast<Instruction>( 2803 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2804 "and.cond")); 2805 if (PBI_C->isOne()) 2806 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2807 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2808 } else { 2809 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2810 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2811 // is false: PBI_Cond and BI_Value 2812 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2813 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2814 if (PBI_C->isOne()) { 2815 Instruction *NotCond = cast<Instruction>( 2816 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2817 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2818 Instruction::Or, NotCond, MergedCond, "or.cond")); 2819 } 2820 } 2821 // Update PHI Node. 2822 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2823 MergedCond); 2824 } 2825 // Change PBI from Conditional to Unconditional. 2826 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2827 EraseTerminatorAndDCECond(PBI); 2828 PBI = New_PBI; 2829 } 2830 2831 // If BI was a loop latch, it may have had associated loop metadata. 2832 // We need to copy it to the new latch, that is, PBI. 2833 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2834 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2835 2836 // TODO: If BB is reachable from all paths through PredBlock, then we 2837 // could replace PBI's branch probabilities with BI's. 2838 2839 // Copy any debug value intrinsics into the end of PredBlock. 2840 for (Instruction &I : *BB) 2841 if (isa<DbgInfoIntrinsic>(I)) 2842 I.clone()->insertBefore(PBI); 2843 2844 return true; 2845 } 2846 return false; 2847 } 2848 2849 // If there is only one store in BB1 and BB2, return it, otherwise return 2850 // nullptr. 2851 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2852 StoreInst *S = nullptr; 2853 for (auto *BB : {BB1, BB2}) { 2854 if (!BB) 2855 continue; 2856 for (auto &I : *BB) 2857 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2858 if (S) 2859 // Multiple stores seen. 2860 return nullptr; 2861 else 2862 S = SI; 2863 } 2864 } 2865 return S; 2866 } 2867 2868 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2869 Value *AlternativeV = nullptr) { 2870 // PHI is going to be a PHI node that allows the value V that is defined in 2871 // BB to be referenced in BB's only successor. 2872 // 2873 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2874 // doesn't matter to us what the other operand is (it'll never get used). We 2875 // could just create a new PHI with an undef incoming value, but that could 2876 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2877 // other PHI. So here we directly look for some PHI in BB's successor with V 2878 // as an incoming operand. If we find one, we use it, else we create a new 2879 // one. 2880 // 2881 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2882 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2883 // where OtherBB is the single other predecessor of BB's only successor. 2884 PHINode *PHI = nullptr; 2885 BasicBlock *Succ = BB->getSingleSuccessor(); 2886 2887 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2888 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2889 PHI = cast<PHINode>(I); 2890 if (!AlternativeV) 2891 break; 2892 2893 assert(Succ->hasNPredecessors(2)); 2894 auto PredI = pred_begin(Succ); 2895 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2896 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2897 break; 2898 PHI = nullptr; 2899 } 2900 if (PHI) 2901 return PHI; 2902 2903 // If V is not an instruction defined in BB, just return it. 2904 if (!AlternativeV && 2905 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2906 return V; 2907 2908 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2909 PHI->addIncoming(V, BB); 2910 for (BasicBlock *PredBB : predecessors(Succ)) 2911 if (PredBB != BB) 2912 PHI->addIncoming( 2913 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2914 return PHI; 2915 } 2916 2917 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2918 BasicBlock *QTB, BasicBlock *QFB, 2919 BasicBlock *PostBB, Value *Address, 2920 bool InvertPCond, bool InvertQCond, 2921 const DataLayout &DL) { 2922 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2923 return Operator::getOpcode(&I) == Instruction::BitCast && 2924 I.getType()->isPointerTy(); 2925 }; 2926 2927 // If we're not in aggressive mode, we only optimize if we have some 2928 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2929 auto IsWorthwhile = [&](BasicBlock *BB) { 2930 if (!BB) 2931 return true; 2932 // Heuristic: if the block can be if-converted/phi-folded and the 2933 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2934 // thread this store. 2935 unsigned N = 0; 2936 for (auto &I : BB->instructionsWithoutDebug()) { 2937 // Cheap instructions viable for folding. 2938 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2939 isa<StoreInst>(I)) 2940 ++N; 2941 // Free instructions. 2942 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2943 continue; 2944 else 2945 return false; 2946 } 2947 // The store we want to merge is counted in N, so add 1 to make sure 2948 // we're counting the instructions that would be left. 2949 return N <= (PHINodeFoldingThreshold + 1); 2950 }; 2951 2952 if (!MergeCondStoresAggressively && 2953 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2954 !IsWorthwhile(QFB))) 2955 return false; 2956 2957 // For every pointer, there must be exactly two stores, one coming from 2958 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2959 // store (to any address) in PTB,PFB or QTB,QFB. 2960 // FIXME: We could relax this restriction with a bit more work and performance 2961 // testing. 2962 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2963 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2964 if (!PStore || !QStore) 2965 return false; 2966 2967 // Now check the stores are compatible. 2968 if (!QStore->isUnordered() || !PStore->isUnordered()) 2969 return false; 2970 2971 // Check that sinking the store won't cause program behavior changes. Sinking 2972 // the store out of the Q blocks won't change any behavior as we're sinking 2973 // from a block to its unconditional successor. But we're moving a store from 2974 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2975 // So we need to check that there are no aliasing loads or stores in 2976 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2977 // operations between PStore and the end of its parent block. 2978 // 2979 // The ideal way to do this is to query AliasAnalysis, but we don't 2980 // preserve AA currently so that is dangerous. Be super safe and just 2981 // check there are no other memory operations at all. 2982 for (auto &I : *QFB->getSinglePredecessor()) 2983 if (I.mayReadOrWriteMemory()) 2984 return false; 2985 for (auto &I : *QFB) 2986 if (&I != QStore && I.mayReadOrWriteMemory()) 2987 return false; 2988 if (QTB) 2989 for (auto &I : *QTB) 2990 if (&I != QStore && I.mayReadOrWriteMemory()) 2991 return false; 2992 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2993 I != E; ++I) 2994 if (&*I != PStore && I->mayReadOrWriteMemory()) 2995 return false; 2996 2997 // If PostBB has more than two predecessors, we need to split it so we can 2998 // sink the store. 2999 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3000 // We know that QFB's only successor is PostBB. And QFB has a single 3001 // predecessor. If QTB exists, then its only successor is also PostBB. 3002 // If QTB does not exist, then QFB's only predecessor has a conditional 3003 // branch to QFB and PostBB. 3004 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3005 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3006 "condstore.split"); 3007 if (!NewBB) 3008 return false; 3009 PostBB = NewBB; 3010 } 3011 3012 // OK, we're going to sink the stores to PostBB. The store has to be 3013 // conditional though, so first create the predicate. 3014 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3015 ->getCondition(); 3016 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3017 ->getCondition(); 3018 3019 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3020 PStore->getParent()); 3021 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3022 QStore->getParent(), PPHI); 3023 3024 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3025 3026 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3027 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3028 3029 if (InvertPCond) 3030 PPred = QB.CreateNot(PPred); 3031 if (InvertQCond) 3032 QPred = QB.CreateNot(QPred); 3033 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3034 3035 auto *T = 3036 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3037 QB.SetInsertPoint(T); 3038 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3039 AAMDNodes AAMD; 3040 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3041 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3042 SI->setAAMetadata(AAMD); 3043 unsigned PAlignment = PStore->getAlignment(); 3044 unsigned QAlignment = QStore->getAlignment(); 3045 unsigned TypeAlignment = 3046 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3047 unsigned MinAlignment; 3048 unsigned MaxAlignment; 3049 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3050 // Choose the minimum alignment. If we could prove both stores execute, we 3051 // could use biggest one. In this case, though, we only know that one of the 3052 // stores executes. And we don't know it's safe to take the alignment from a 3053 // store that doesn't execute. 3054 if (MinAlignment != 0) { 3055 // Choose the minimum of all non-zero alignments. 3056 SI->setAlignment(MinAlignment); 3057 } else if (MaxAlignment != 0) { 3058 // Choose the minimal alignment between the non-zero alignment and the ABI 3059 // default alignment for the type of the stored value. 3060 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3061 } else { 3062 // If both alignments are zero, use ABI default alignment for the type of 3063 // the stored value. 3064 SI->setAlignment(TypeAlignment); 3065 } 3066 3067 QStore->eraseFromParent(); 3068 PStore->eraseFromParent(); 3069 3070 return true; 3071 } 3072 3073 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3074 const DataLayout &DL) { 3075 // The intention here is to find diamonds or triangles (see below) where each 3076 // conditional block contains a store to the same address. Both of these 3077 // stores are conditional, so they can't be unconditionally sunk. But it may 3078 // be profitable to speculatively sink the stores into one merged store at the 3079 // end, and predicate the merged store on the union of the two conditions of 3080 // PBI and QBI. 3081 // 3082 // This can reduce the number of stores executed if both of the conditions are 3083 // true, and can allow the blocks to become small enough to be if-converted. 3084 // This optimization will also chain, so that ladders of test-and-set 3085 // sequences can be if-converted away. 3086 // 3087 // We only deal with simple diamonds or triangles: 3088 // 3089 // PBI or PBI or a combination of the two 3090 // / \ | \ 3091 // PTB PFB | PFB 3092 // \ / | / 3093 // QBI QBI 3094 // / \ | \ 3095 // QTB QFB | QFB 3096 // \ / | / 3097 // PostBB PostBB 3098 // 3099 // We model triangles as a type of diamond with a nullptr "true" block. 3100 // Triangles are canonicalized so that the fallthrough edge is represented by 3101 // a true condition, as in the diagram above. 3102 BasicBlock *PTB = PBI->getSuccessor(0); 3103 BasicBlock *PFB = PBI->getSuccessor(1); 3104 BasicBlock *QTB = QBI->getSuccessor(0); 3105 BasicBlock *QFB = QBI->getSuccessor(1); 3106 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3107 3108 // Make sure we have a good guess for PostBB. If QTB's only successor is 3109 // QFB, then QFB is a better PostBB. 3110 if (QTB->getSingleSuccessor() == QFB) 3111 PostBB = QFB; 3112 3113 // If we couldn't find a good PostBB, stop. 3114 if (!PostBB) 3115 return false; 3116 3117 bool InvertPCond = false, InvertQCond = false; 3118 // Canonicalize fallthroughs to the true branches. 3119 if (PFB == QBI->getParent()) { 3120 std::swap(PFB, PTB); 3121 InvertPCond = true; 3122 } 3123 if (QFB == PostBB) { 3124 std::swap(QFB, QTB); 3125 InvertQCond = true; 3126 } 3127 3128 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3129 // and QFB may not. Model fallthroughs as a nullptr block. 3130 if (PTB == QBI->getParent()) 3131 PTB = nullptr; 3132 if (QTB == PostBB) 3133 QTB = nullptr; 3134 3135 // Legality bailouts. We must have at least the non-fallthrough blocks and 3136 // the post-dominating block, and the non-fallthroughs must only have one 3137 // predecessor. 3138 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3139 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3140 }; 3141 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3142 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3143 return false; 3144 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3145 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3146 return false; 3147 if (!QBI->getParent()->hasNUses(2)) 3148 return false; 3149 3150 // OK, this is a sequence of two diamonds or triangles. 3151 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3152 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3153 for (auto *BB : {PTB, PFB}) { 3154 if (!BB) 3155 continue; 3156 for (auto &I : *BB) 3157 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3158 PStoreAddresses.insert(SI->getPointerOperand()); 3159 } 3160 for (auto *BB : {QTB, QFB}) { 3161 if (!BB) 3162 continue; 3163 for (auto &I : *BB) 3164 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3165 QStoreAddresses.insert(SI->getPointerOperand()); 3166 } 3167 3168 set_intersect(PStoreAddresses, QStoreAddresses); 3169 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3170 // clear what it contains. 3171 auto &CommonAddresses = PStoreAddresses; 3172 3173 bool Changed = false; 3174 for (auto *Address : CommonAddresses) 3175 Changed |= mergeConditionalStoreToAddress( 3176 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3177 return Changed; 3178 } 3179 3180 /// If we have a conditional branch as a predecessor of another block, 3181 /// this function tries to simplify it. We know 3182 /// that PBI and BI are both conditional branches, and BI is in one of the 3183 /// successor blocks of PBI - PBI branches to BI. 3184 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3185 const DataLayout &DL) { 3186 assert(PBI->isConditional() && BI->isConditional()); 3187 BasicBlock *BB = BI->getParent(); 3188 3189 // If this block ends with a branch instruction, and if there is a 3190 // predecessor that ends on a branch of the same condition, make 3191 // this conditional branch redundant. 3192 if (PBI->getCondition() == BI->getCondition() && 3193 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3194 // Okay, the outcome of this conditional branch is statically 3195 // knowable. If this block had a single pred, handle specially. 3196 if (BB->getSinglePredecessor()) { 3197 // Turn this into a branch on constant. 3198 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3199 BI->setCondition( 3200 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3201 return true; // Nuke the branch on constant. 3202 } 3203 3204 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3205 // in the constant and simplify the block result. Subsequent passes of 3206 // simplifycfg will thread the block. 3207 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3208 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3209 PHINode *NewPN = PHINode::Create( 3210 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3211 BI->getCondition()->getName() + ".pr", &BB->front()); 3212 // Okay, we're going to insert the PHI node. Since PBI is not the only 3213 // predecessor, compute the PHI'd conditional value for all of the preds. 3214 // Any predecessor where the condition is not computable we keep symbolic. 3215 for (pred_iterator PI = PB; PI != PE; ++PI) { 3216 BasicBlock *P = *PI; 3217 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3218 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3219 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3220 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3221 NewPN->addIncoming( 3222 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3223 P); 3224 } else { 3225 NewPN->addIncoming(BI->getCondition(), P); 3226 } 3227 } 3228 3229 BI->setCondition(NewPN); 3230 return true; 3231 } 3232 } 3233 3234 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3235 if (CE->canTrap()) 3236 return false; 3237 3238 // If both branches are conditional and both contain stores to the same 3239 // address, remove the stores from the conditionals and create a conditional 3240 // merged store at the end. 3241 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3242 return true; 3243 3244 // If this is a conditional branch in an empty block, and if any 3245 // predecessors are a conditional branch to one of our destinations, 3246 // fold the conditions into logical ops and one cond br. 3247 3248 // Ignore dbg intrinsics. 3249 if (&*BB->instructionsWithoutDebug().begin() != BI) 3250 return false; 3251 3252 int PBIOp, BIOp; 3253 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3254 PBIOp = 0; 3255 BIOp = 0; 3256 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3257 PBIOp = 0; 3258 BIOp = 1; 3259 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3260 PBIOp = 1; 3261 BIOp = 0; 3262 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3263 PBIOp = 1; 3264 BIOp = 1; 3265 } else { 3266 return false; 3267 } 3268 3269 // Check to make sure that the other destination of this branch 3270 // isn't BB itself. If so, this is an infinite loop that will 3271 // keep getting unwound. 3272 if (PBI->getSuccessor(PBIOp) == BB) 3273 return false; 3274 3275 // Do not perform this transformation if it would require 3276 // insertion of a large number of select instructions. For targets 3277 // without predication/cmovs, this is a big pessimization. 3278 3279 // Also do not perform this transformation if any phi node in the common 3280 // destination block can trap when reached by BB or PBB (PR17073). In that 3281 // case, it would be unsafe to hoist the operation into a select instruction. 3282 3283 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3284 unsigned NumPhis = 0; 3285 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3286 ++II, ++NumPhis) { 3287 if (NumPhis > 2) // Disable this xform. 3288 return false; 3289 3290 PHINode *PN = cast<PHINode>(II); 3291 Value *BIV = PN->getIncomingValueForBlock(BB); 3292 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3293 if (CE->canTrap()) 3294 return false; 3295 3296 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3297 Value *PBIV = PN->getIncomingValue(PBBIdx); 3298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3299 if (CE->canTrap()) 3300 return false; 3301 } 3302 3303 // Finally, if everything is ok, fold the branches to logical ops. 3304 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3305 3306 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3307 << "AND: " << *BI->getParent()); 3308 3309 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3310 // branch in it, where one edge (OtherDest) goes back to itself but the other 3311 // exits. We don't *know* that the program avoids the infinite loop 3312 // (even though that seems likely). If we do this xform naively, we'll end up 3313 // recursively unpeeling the loop. Since we know that (after the xform is 3314 // done) that the block *is* infinite if reached, we just make it an obviously 3315 // infinite loop with no cond branch. 3316 if (OtherDest == BB) { 3317 // Insert it at the end of the function, because it's either code, 3318 // or it won't matter if it's hot. :) 3319 BasicBlock *InfLoopBlock = 3320 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3321 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3322 OtherDest = InfLoopBlock; 3323 } 3324 3325 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3326 3327 // BI may have other predecessors. Because of this, we leave 3328 // it alone, but modify PBI. 3329 3330 // Make sure we get to CommonDest on True&True directions. 3331 Value *PBICond = PBI->getCondition(); 3332 IRBuilder<NoFolder> Builder(PBI); 3333 if (PBIOp) 3334 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3335 3336 Value *BICond = BI->getCondition(); 3337 if (BIOp) 3338 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3339 3340 // Merge the conditions. 3341 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3342 3343 // Modify PBI to branch on the new condition to the new dests. 3344 PBI->setCondition(Cond); 3345 PBI->setSuccessor(0, CommonDest); 3346 PBI->setSuccessor(1, OtherDest); 3347 3348 // Update branch weight for PBI. 3349 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3350 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3351 bool HasWeights = 3352 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3353 SuccTrueWeight, SuccFalseWeight); 3354 if (HasWeights) { 3355 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3356 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3357 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3358 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3359 // The weight to CommonDest should be PredCommon * SuccTotal + 3360 // PredOther * SuccCommon. 3361 // The weight to OtherDest should be PredOther * SuccOther. 3362 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3363 PredOther * SuccCommon, 3364 PredOther * SuccOther}; 3365 // Halve the weights if any of them cannot fit in an uint32_t 3366 FitWeights(NewWeights); 3367 3368 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3369 } 3370 3371 // OtherDest may have phi nodes. If so, add an entry from PBI's 3372 // block that are identical to the entries for BI's block. 3373 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3374 3375 // We know that the CommonDest already had an edge from PBI to 3376 // it. If it has PHIs though, the PHIs may have different 3377 // entries for BB and PBI's BB. If so, insert a select to make 3378 // them agree. 3379 for (PHINode &PN : CommonDest->phis()) { 3380 Value *BIV = PN.getIncomingValueForBlock(BB); 3381 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3382 Value *PBIV = PN.getIncomingValue(PBBIdx); 3383 if (BIV != PBIV) { 3384 // Insert a select in PBI to pick the right value. 3385 SelectInst *NV = cast<SelectInst>( 3386 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3387 PN.setIncomingValue(PBBIdx, NV); 3388 // Although the select has the same condition as PBI, the original branch 3389 // weights for PBI do not apply to the new select because the select's 3390 // 'logical' edges are incoming edges of the phi that is eliminated, not 3391 // the outgoing edges of PBI. 3392 if (HasWeights) { 3393 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3394 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3395 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3396 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3397 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3398 // The weight to PredOtherDest should be PredOther * SuccCommon. 3399 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3400 PredOther * SuccCommon}; 3401 3402 FitWeights(NewWeights); 3403 3404 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3405 } 3406 } 3407 } 3408 3409 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3410 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3411 3412 // This basic block is probably dead. We know it has at least 3413 // one fewer predecessor. 3414 return true; 3415 } 3416 3417 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3418 // true or to FalseBB if Cond is false. 3419 // Takes care of updating the successors and removing the old terminator. 3420 // Also makes sure not to introduce new successors by assuming that edges to 3421 // non-successor TrueBBs and FalseBBs aren't reachable. 3422 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3423 BasicBlock *TrueBB, BasicBlock *FalseBB, 3424 uint32_t TrueWeight, 3425 uint32_t FalseWeight) { 3426 // Remove any superfluous successor edges from the CFG. 3427 // First, figure out which successors to preserve. 3428 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3429 // successor. 3430 BasicBlock *KeepEdge1 = TrueBB; 3431 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3432 3433 // Then remove the rest. 3434 for (BasicBlock *Succ : successors(OldTerm)) { 3435 // Make sure only to keep exactly one copy of each edge. 3436 if (Succ == KeepEdge1) 3437 KeepEdge1 = nullptr; 3438 else if (Succ == KeepEdge2) 3439 KeepEdge2 = nullptr; 3440 else 3441 Succ->removePredecessor(OldTerm->getParent(), 3442 /*DontDeleteUselessPHIs=*/true); 3443 } 3444 3445 IRBuilder<> Builder(OldTerm); 3446 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3447 3448 // Insert an appropriate new terminator. 3449 if (!KeepEdge1 && !KeepEdge2) { 3450 if (TrueBB == FalseBB) 3451 // We were only looking for one successor, and it was present. 3452 // Create an unconditional branch to it. 3453 Builder.CreateBr(TrueBB); 3454 else { 3455 // We found both of the successors we were looking for. 3456 // Create a conditional branch sharing the condition of the select. 3457 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3458 if (TrueWeight != FalseWeight) 3459 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3460 } 3461 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3462 // Neither of the selected blocks were successors, so this 3463 // terminator must be unreachable. 3464 new UnreachableInst(OldTerm->getContext(), OldTerm); 3465 } else { 3466 // One of the selected values was a successor, but the other wasn't. 3467 // Insert an unconditional branch to the one that was found; 3468 // the edge to the one that wasn't must be unreachable. 3469 if (!KeepEdge1) 3470 // Only TrueBB was found. 3471 Builder.CreateBr(TrueBB); 3472 else 3473 // Only FalseBB was found. 3474 Builder.CreateBr(FalseBB); 3475 } 3476 3477 EraseTerminatorAndDCECond(OldTerm); 3478 return true; 3479 } 3480 3481 // Replaces 3482 // (switch (select cond, X, Y)) on constant X, Y 3483 // with a branch - conditional if X and Y lead to distinct BBs, 3484 // unconditional otherwise. 3485 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3486 // Check for constant integer values in the select. 3487 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3488 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3489 if (!TrueVal || !FalseVal) 3490 return false; 3491 3492 // Find the relevant condition and destinations. 3493 Value *Condition = Select->getCondition(); 3494 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3495 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3496 3497 // Get weight for TrueBB and FalseBB. 3498 uint32_t TrueWeight = 0, FalseWeight = 0; 3499 SmallVector<uint64_t, 8> Weights; 3500 bool HasWeights = HasBranchWeights(SI); 3501 if (HasWeights) { 3502 GetBranchWeights(SI, Weights); 3503 if (Weights.size() == 1 + SI->getNumCases()) { 3504 TrueWeight = 3505 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3506 FalseWeight = 3507 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3508 } 3509 } 3510 3511 // Perform the actual simplification. 3512 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3513 FalseWeight); 3514 } 3515 3516 // Replaces 3517 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3518 // blockaddress(@fn, BlockB))) 3519 // with 3520 // (br cond, BlockA, BlockB). 3521 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3522 // Check that both operands of the select are block addresses. 3523 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3524 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3525 if (!TBA || !FBA) 3526 return false; 3527 3528 // Extract the actual blocks. 3529 BasicBlock *TrueBB = TBA->getBasicBlock(); 3530 BasicBlock *FalseBB = FBA->getBasicBlock(); 3531 3532 // Perform the actual simplification. 3533 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3534 0); 3535 } 3536 3537 /// This is called when we find an icmp instruction 3538 /// (a seteq/setne with a constant) as the only instruction in a 3539 /// block that ends with an uncond branch. We are looking for a very specific 3540 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3541 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3542 /// default value goes to an uncond block with a seteq in it, we get something 3543 /// like: 3544 /// 3545 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3546 /// DEFAULT: 3547 /// %tmp = icmp eq i8 %A, 92 3548 /// br label %end 3549 /// end: 3550 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3551 /// 3552 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3553 /// the PHI, merging the third icmp into the switch. 3554 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3555 ICmpInst *ICI, IRBuilder<> &Builder) { 3556 BasicBlock *BB = ICI->getParent(); 3557 3558 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3559 // complex. 3560 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3561 return false; 3562 3563 Value *V = ICI->getOperand(0); 3564 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3565 3566 // The pattern we're looking for is where our only predecessor is a switch on 3567 // 'V' and this block is the default case for the switch. In this case we can 3568 // fold the compared value into the switch to simplify things. 3569 BasicBlock *Pred = BB->getSinglePredecessor(); 3570 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3571 return false; 3572 3573 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3574 if (SI->getCondition() != V) 3575 return false; 3576 3577 // If BB is reachable on a non-default case, then we simply know the value of 3578 // V in this block. Substitute it and constant fold the icmp instruction 3579 // away. 3580 if (SI->getDefaultDest() != BB) { 3581 ConstantInt *VVal = SI->findCaseDest(BB); 3582 assert(VVal && "Should have a unique destination value"); 3583 ICI->setOperand(0, VVal); 3584 3585 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3586 ICI->replaceAllUsesWith(V); 3587 ICI->eraseFromParent(); 3588 } 3589 // BB is now empty, so it is likely to simplify away. 3590 return requestResimplify(); 3591 } 3592 3593 // Ok, the block is reachable from the default dest. If the constant we're 3594 // comparing exists in one of the other edges, then we can constant fold ICI 3595 // and zap it. 3596 if (SI->findCaseValue(Cst) != SI->case_default()) { 3597 Value *V; 3598 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3599 V = ConstantInt::getFalse(BB->getContext()); 3600 else 3601 V = ConstantInt::getTrue(BB->getContext()); 3602 3603 ICI->replaceAllUsesWith(V); 3604 ICI->eraseFromParent(); 3605 // BB is now empty, so it is likely to simplify away. 3606 return requestResimplify(); 3607 } 3608 3609 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3610 // the block. 3611 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3612 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3613 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3614 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3615 return false; 3616 3617 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3618 // true in the PHI. 3619 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3620 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3621 3622 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3623 std::swap(DefaultCst, NewCst); 3624 3625 // Replace ICI (which is used by the PHI for the default value) with true or 3626 // false depending on if it is EQ or NE. 3627 ICI->replaceAllUsesWith(DefaultCst); 3628 ICI->eraseFromParent(); 3629 3630 // Okay, the switch goes to this block on a default value. Add an edge from 3631 // the switch to the merge point on the compared value. 3632 BasicBlock *NewBB = 3633 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3634 SmallVector<uint64_t, 8> Weights; 3635 bool HasWeights = HasBranchWeights(SI); 3636 if (HasWeights) { 3637 GetBranchWeights(SI, Weights); 3638 if (Weights.size() == 1 + SI->getNumCases()) { 3639 // Split weight for default case to case for "Cst". 3640 Weights[0] = (Weights[0] + 1) >> 1; 3641 Weights.push_back(Weights[0]); 3642 3643 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3644 setBranchWeights(SI, MDWeights); 3645 } 3646 } 3647 SI->addCase(Cst, NewBB); 3648 3649 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3650 Builder.SetInsertPoint(NewBB); 3651 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3652 Builder.CreateBr(SuccBlock); 3653 PHIUse->addIncoming(NewCst, NewBB); 3654 return true; 3655 } 3656 3657 /// The specified branch is a conditional branch. 3658 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3659 /// fold it into a switch instruction if so. 3660 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3661 const DataLayout &DL) { 3662 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3663 if (!Cond) 3664 return false; 3665 3666 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3667 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3668 // 'setne's and'ed together, collect them. 3669 3670 // Try to gather values from a chain of and/or to be turned into a switch 3671 ConstantComparesGatherer ConstantCompare(Cond, DL); 3672 // Unpack the result 3673 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3674 Value *CompVal = ConstantCompare.CompValue; 3675 unsigned UsedICmps = ConstantCompare.UsedICmps; 3676 Value *ExtraCase = ConstantCompare.Extra; 3677 3678 // If we didn't have a multiply compared value, fail. 3679 if (!CompVal) 3680 return false; 3681 3682 // Avoid turning single icmps into a switch. 3683 if (UsedICmps <= 1) 3684 return false; 3685 3686 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3687 3688 // There might be duplicate constants in the list, which the switch 3689 // instruction can't handle, remove them now. 3690 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3691 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3692 3693 // If Extra was used, we require at least two switch values to do the 3694 // transformation. A switch with one value is just a conditional branch. 3695 if (ExtraCase && Values.size() < 2) 3696 return false; 3697 3698 // TODO: Preserve branch weight metadata, similarly to how 3699 // FoldValueComparisonIntoPredecessors preserves it. 3700 3701 // Figure out which block is which destination. 3702 BasicBlock *DefaultBB = BI->getSuccessor(1); 3703 BasicBlock *EdgeBB = BI->getSuccessor(0); 3704 if (!TrueWhenEqual) 3705 std::swap(DefaultBB, EdgeBB); 3706 3707 BasicBlock *BB = BI->getParent(); 3708 3709 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3710 << " cases into SWITCH. BB is:\n" 3711 << *BB); 3712 3713 // If there are any extra values that couldn't be folded into the switch 3714 // then we evaluate them with an explicit branch first. Split the block 3715 // right before the condbr to handle it. 3716 if (ExtraCase) { 3717 BasicBlock *NewBB = 3718 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3719 // Remove the uncond branch added to the old block. 3720 Instruction *OldTI = BB->getTerminator(); 3721 Builder.SetInsertPoint(OldTI); 3722 3723 if (TrueWhenEqual) 3724 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3725 else 3726 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3727 3728 OldTI->eraseFromParent(); 3729 3730 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3731 // for the edge we just added. 3732 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3733 3734 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3735 << "\nEXTRABB = " << *BB); 3736 BB = NewBB; 3737 } 3738 3739 Builder.SetInsertPoint(BI); 3740 // Convert pointer to int before we switch. 3741 if (CompVal->getType()->isPointerTy()) { 3742 CompVal = Builder.CreatePtrToInt( 3743 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3744 } 3745 3746 // Create the new switch instruction now. 3747 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3748 3749 // Add all of the 'cases' to the switch instruction. 3750 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3751 New->addCase(Values[i], EdgeBB); 3752 3753 // We added edges from PI to the EdgeBB. As such, if there were any 3754 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3755 // the number of edges added. 3756 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3757 PHINode *PN = cast<PHINode>(BBI); 3758 Value *InVal = PN->getIncomingValueForBlock(BB); 3759 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3760 PN->addIncoming(InVal, BB); 3761 } 3762 3763 // Erase the old branch instruction. 3764 EraseTerminatorAndDCECond(BI); 3765 3766 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3767 return true; 3768 } 3769 3770 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3771 if (isa<PHINode>(RI->getValue())) 3772 return SimplifyCommonResume(RI); 3773 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3774 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3775 // The resume must unwind the exception that caused control to branch here. 3776 return SimplifySingleResume(RI); 3777 3778 return false; 3779 } 3780 3781 // Simplify resume that is shared by several landing pads (phi of landing pad). 3782 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3783 BasicBlock *BB = RI->getParent(); 3784 3785 // Check that there are no other instructions except for debug intrinsics 3786 // between the phi of landing pads (RI->getValue()) and resume instruction. 3787 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3788 E = RI->getIterator(); 3789 while (++I != E) 3790 if (!isa<DbgInfoIntrinsic>(I)) 3791 return false; 3792 3793 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3794 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3795 3796 // Check incoming blocks to see if any of them are trivial. 3797 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3798 Idx++) { 3799 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3800 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3801 3802 // If the block has other successors, we can not delete it because 3803 // it has other dependents. 3804 if (IncomingBB->getUniqueSuccessor() != BB) 3805 continue; 3806 3807 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3808 // Not the landing pad that caused the control to branch here. 3809 if (IncomingValue != LandingPad) 3810 continue; 3811 3812 bool isTrivial = true; 3813 3814 I = IncomingBB->getFirstNonPHI()->getIterator(); 3815 E = IncomingBB->getTerminator()->getIterator(); 3816 while (++I != E) 3817 if (!isa<DbgInfoIntrinsic>(I)) { 3818 isTrivial = false; 3819 break; 3820 } 3821 3822 if (isTrivial) 3823 TrivialUnwindBlocks.insert(IncomingBB); 3824 } 3825 3826 // If no trivial unwind blocks, don't do any simplifications. 3827 if (TrivialUnwindBlocks.empty()) 3828 return false; 3829 3830 // Turn all invokes that unwind here into calls. 3831 for (auto *TrivialBB : TrivialUnwindBlocks) { 3832 // Blocks that will be simplified should be removed from the phi node. 3833 // Note there could be multiple edges to the resume block, and we need 3834 // to remove them all. 3835 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3836 BB->removePredecessor(TrivialBB, true); 3837 3838 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3839 PI != PE;) { 3840 BasicBlock *Pred = *PI++; 3841 removeUnwindEdge(Pred); 3842 } 3843 3844 // In each SimplifyCFG run, only the current processed block can be erased. 3845 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3846 // of erasing TrivialBB, we only remove the branch to the common resume 3847 // block so that we can later erase the resume block since it has no 3848 // predecessors. 3849 TrivialBB->getTerminator()->eraseFromParent(); 3850 new UnreachableInst(RI->getContext(), TrivialBB); 3851 } 3852 3853 // Delete the resume block if all its predecessors have been removed. 3854 if (pred_empty(BB)) 3855 BB->eraseFromParent(); 3856 3857 return !TrivialUnwindBlocks.empty(); 3858 } 3859 3860 // Simplify resume that is only used by a single (non-phi) landing pad. 3861 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3862 BasicBlock *BB = RI->getParent(); 3863 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3864 assert(RI->getValue() == LPInst && 3865 "Resume must unwind the exception that caused control to here"); 3866 3867 // Check that there are no other instructions except for debug intrinsics. 3868 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3869 while (++I != E) 3870 if (!isa<DbgInfoIntrinsic>(I)) 3871 return false; 3872 3873 // Turn all invokes that unwind here into calls and delete the basic block. 3874 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3875 BasicBlock *Pred = *PI++; 3876 removeUnwindEdge(Pred); 3877 } 3878 3879 // The landingpad is now unreachable. Zap it. 3880 if (LoopHeaders) 3881 LoopHeaders->erase(BB); 3882 BB->eraseFromParent(); 3883 return true; 3884 } 3885 3886 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3887 // If this is a trivial cleanup pad that executes no instructions, it can be 3888 // eliminated. If the cleanup pad continues to the caller, any predecessor 3889 // that is an EH pad will be updated to continue to the caller and any 3890 // predecessor that terminates with an invoke instruction will have its invoke 3891 // instruction converted to a call instruction. If the cleanup pad being 3892 // simplified does not continue to the caller, each predecessor will be 3893 // updated to continue to the unwind destination of the cleanup pad being 3894 // simplified. 3895 BasicBlock *BB = RI->getParent(); 3896 CleanupPadInst *CPInst = RI->getCleanupPad(); 3897 if (CPInst->getParent() != BB) 3898 // This isn't an empty cleanup. 3899 return false; 3900 3901 // We cannot kill the pad if it has multiple uses. This typically arises 3902 // from unreachable basic blocks. 3903 if (!CPInst->hasOneUse()) 3904 return false; 3905 3906 // Check that there are no other instructions except for benign intrinsics. 3907 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3908 while (++I != E) { 3909 auto *II = dyn_cast<IntrinsicInst>(I); 3910 if (!II) 3911 return false; 3912 3913 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3914 switch (IntrinsicID) { 3915 case Intrinsic::dbg_declare: 3916 case Intrinsic::dbg_value: 3917 case Intrinsic::dbg_label: 3918 case Intrinsic::lifetime_end: 3919 break; 3920 default: 3921 return false; 3922 } 3923 } 3924 3925 // If the cleanup return we are simplifying unwinds to the caller, this will 3926 // set UnwindDest to nullptr. 3927 BasicBlock *UnwindDest = RI->getUnwindDest(); 3928 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3929 3930 // We're about to remove BB from the control flow. Before we do, sink any 3931 // PHINodes into the unwind destination. Doing this before changing the 3932 // control flow avoids some potentially slow checks, since we can currently 3933 // be certain that UnwindDest and BB have no common predecessors (since they 3934 // are both EH pads). 3935 if (UnwindDest) { 3936 // First, go through the PHI nodes in UnwindDest and update any nodes that 3937 // reference the block we are removing 3938 for (BasicBlock::iterator I = UnwindDest->begin(), 3939 IE = DestEHPad->getIterator(); 3940 I != IE; ++I) { 3941 PHINode *DestPN = cast<PHINode>(I); 3942 3943 int Idx = DestPN->getBasicBlockIndex(BB); 3944 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3945 assert(Idx != -1); 3946 // This PHI node has an incoming value that corresponds to a control 3947 // path through the cleanup pad we are removing. If the incoming 3948 // value is in the cleanup pad, it must be a PHINode (because we 3949 // verified above that the block is otherwise empty). Otherwise, the 3950 // value is either a constant or a value that dominates the cleanup 3951 // pad being removed. 3952 // 3953 // Because BB and UnwindDest are both EH pads, all of their 3954 // predecessors must unwind to these blocks, and since no instruction 3955 // can have multiple unwind destinations, there will be no overlap in 3956 // incoming blocks between SrcPN and DestPN. 3957 Value *SrcVal = DestPN->getIncomingValue(Idx); 3958 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3959 3960 // Remove the entry for the block we are deleting. 3961 DestPN->removeIncomingValue(Idx, false); 3962 3963 if (SrcPN && SrcPN->getParent() == BB) { 3964 // If the incoming value was a PHI node in the cleanup pad we are 3965 // removing, we need to merge that PHI node's incoming values into 3966 // DestPN. 3967 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3968 SrcIdx != SrcE; ++SrcIdx) { 3969 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3970 SrcPN->getIncomingBlock(SrcIdx)); 3971 } 3972 } else { 3973 // Otherwise, the incoming value came from above BB and 3974 // so we can just reuse it. We must associate all of BB's 3975 // predecessors with this value. 3976 for (auto *pred : predecessors(BB)) { 3977 DestPN->addIncoming(SrcVal, pred); 3978 } 3979 } 3980 } 3981 3982 // Sink any remaining PHI nodes directly into UnwindDest. 3983 Instruction *InsertPt = DestEHPad; 3984 for (BasicBlock::iterator I = BB->begin(), 3985 IE = BB->getFirstNonPHI()->getIterator(); 3986 I != IE;) { 3987 // The iterator must be incremented here because the instructions are 3988 // being moved to another block. 3989 PHINode *PN = cast<PHINode>(I++); 3990 if (PN->use_empty()) 3991 // If the PHI node has no uses, just leave it. It will be erased 3992 // when we erase BB below. 3993 continue; 3994 3995 // Otherwise, sink this PHI node into UnwindDest. 3996 // Any predecessors to UnwindDest which are not already represented 3997 // must be back edges which inherit the value from the path through 3998 // BB. In this case, the PHI value must reference itself. 3999 for (auto *pred : predecessors(UnwindDest)) 4000 if (pred != BB) 4001 PN->addIncoming(PN, pred); 4002 PN->moveBefore(InsertPt); 4003 } 4004 } 4005 4006 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4007 // The iterator must be updated here because we are removing this pred. 4008 BasicBlock *PredBB = *PI++; 4009 if (UnwindDest == nullptr) { 4010 removeUnwindEdge(PredBB); 4011 } else { 4012 Instruction *TI = PredBB->getTerminator(); 4013 TI->replaceUsesOfWith(BB, UnwindDest); 4014 } 4015 } 4016 4017 // The cleanup pad is now unreachable. Zap it. 4018 BB->eraseFromParent(); 4019 return true; 4020 } 4021 4022 // Try to merge two cleanuppads together. 4023 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4024 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4025 // with. 4026 BasicBlock *UnwindDest = RI->getUnwindDest(); 4027 if (!UnwindDest) 4028 return false; 4029 4030 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4031 // be safe to merge without code duplication. 4032 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4033 return false; 4034 4035 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4036 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4037 if (!SuccessorCleanupPad) 4038 return false; 4039 4040 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4041 // Replace any uses of the successor cleanupad with the predecessor pad 4042 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4043 // funclet bundle operands. 4044 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4045 // Remove the old cleanuppad. 4046 SuccessorCleanupPad->eraseFromParent(); 4047 // Now, we simply replace the cleanupret with a branch to the unwind 4048 // destination. 4049 BranchInst::Create(UnwindDest, RI->getParent()); 4050 RI->eraseFromParent(); 4051 4052 return true; 4053 } 4054 4055 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4056 // It is possible to transiantly have an undef cleanuppad operand because we 4057 // have deleted some, but not all, dead blocks. 4058 // Eventually, this block will be deleted. 4059 if (isa<UndefValue>(RI->getOperand(0))) 4060 return false; 4061 4062 if (mergeCleanupPad(RI)) 4063 return true; 4064 4065 if (removeEmptyCleanup(RI)) 4066 return true; 4067 4068 return false; 4069 } 4070 4071 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4072 BasicBlock *BB = RI->getParent(); 4073 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4074 return false; 4075 4076 // Find predecessors that end with branches. 4077 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4078 SmallVector<BranchInst *, 8> CondBranchPreds; 4079 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4080 BasicBlock *P = *PI; 4081 Instruction *PTI = P->getTerminator(); 4082 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4083 if (BI->isUnconditional()) 4084 UncondBranchPreds.push_back(P); 4085 else 4086 CondBranchPreds.push_back(BI); 4087 } 4088 } 4089 4090 // If we found some, do the transformation! 4091 if (!UncondBranchPreds.empty() && DupRet) { 4092 while (!UncondBranchPreds.empty()) { 4093 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4094 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4095 << "INTO UNCOND BRANCH PRED: " << *Pred); 4096 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4097 } 4098 4099 // If we eliminated all predecessors of the block, delete the block now. 4100 if (pred_empty(BB)) { 4101 // We know there are no successors, so just nuke the block. 4102 if (LoopHeaders) 4103 LoopHeaders->erase(BB); 4104 BB->eraseFromParent(); 4105 } 4106 4107 return true; 4108 } 4109 4110 // Check out all of the conditional branches going to this return 4111 // instruction. If any of them just select between returns, change the 4112 // branch itself into a select/return pair. 4113 while (!CondBranchPreds.empty()) { 4114 BranchInst *BI = CondBranchPreds.pop_back_val(); 4115 4116 // Check to see if the non-BB successor is also a return block. 4117 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4118 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4119 SimplifyCondBranchToTwoReturns(BI, Builder)) 4120 return true; 4121 } 4122 return false; 4123 } 4124 4125 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4126 BasicBlock *BB = UI->getParent(); 4127 4128 bool Changed = false; 4129 4130 // If there are any instructions immediately before the unreachable that can 4131 // be removed, do so. 4132 while (UI->getIterator() != BB->begin()) { 4133 BasicBlock::iterator BBI = UI->getIterator(); 4134 --BBI; 4135 // Do not delete instructions that can have side effects which might cause 4136 // the unreachable to not be reachable; specifically, calls and volatile 4137 // operations may have this effect. 4138 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4139 break; 4140 4141 if (BBI->mayHaveSideEffects()) { 4142 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4143 if (SI->isVolatile()) 4144 break; 4145 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4146 if (LI->isVolatile()) 4147 break; 4148 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4149 if (RMWI->isVolatile()) 4150 break; 4151 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4152 if (CXI->isVolatile()) 4153 break; 4154 } else if (isa<CatchPadInst>(BBI)) { 4155 // A catchpad may invoke exception object constructors and such, which 4156 // in some languages can be arbitrary code, so be conservative by 4157 // default. 4158 // For CoreCLR, it just involves a type test, so can be removed. 4159 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4160 EHPersonality::CoreCLR) 4161 break; 4162 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4163 !isa<LandingPadInst>(BBI)) { 4164 break; 4165 } 4166 // Note that deleting LandingPad's here is in fact okay, although it 4167 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4168 // all the predecessors of this block will be the unwind edges of Invokes, 4169 // and we can therefore guarantee this block will be erased. 4170 } 4171 4172 // Delete this instruction (any uses are guaranteed to be dead) 4173 if (!BBI->use_empty()) 4174 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4175 BBI->eraseFromParent(); 4176 Changed = true; 4177 } 4178 4179 // If the unreachable instruction is the first in the block, take a gander 4180 // at all of the predecessors of this instruction, and simplify them. 4181 if (&BB->front() != UI) 4182 return Changed; 4183 4184 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4185 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4186 Instruction *TI = Preds[i]->getTerminator(); 4187 IRBuilder<> Builder(TI); 4188 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4189 if (BI->isUnconditional()) { 4190 if (BI->getSuccessor(0) == BB) { 4191 new UnreachableInst(TI->getContext(), TI); 4192 TI->eraseFromParent(); 4193 Changed = true; 4194 } 4195 } else { 4196 if (BI->getSuccessor(0) == BB) { 4197 Builder.CreateBr(BI->getSuccessor(1)); 4198 EraseTerminatorAndDCECond(BI); 4199 } else if (BI->getSuccessor(1) == BB) { 4200 Builder.CreateBr(BI->getSuccessor(0)); 4201 EraseTerminatorAndDCECond(BI); 4202 Changed = true; 4203 } 4204 } 4205 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4206 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4207 if (i->getCaseSuccessor() != BB) { 4208 ++i; 4209 continue; 4210 } 4211 BB->removePredecessor(SI->getParent()); 4212 i = SI->removeCase(i); 4213 e = SI->case_end(); 4214 Changed = true; 4215 } 4216 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4217 if (II->getUnwindDest() == BB) { 4218 removeUnwindEdge(TI->getParent()); 4219 Changed = true; 4220 } 4221 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4222 if (CSI->getUnwindDest() == BB) { 4223 removeUnwindEdge(TI->getParent()); 4224 Changed = true; 4225 continue; 4226 } 4227 4228 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4229 E = CSI->handler_end(); 4230 I != E; ++I) { 4231 if (*I == BB) { 4232 CSI->removeHandler(I); 4233 --I; 4234 --E; 4235 Changed = true; 4236 } 4237 } 4238 if (CSI->getNumHandlers() == 0) { 4239 BasicBlock *CatchSwitchBB = CSI->getParent(); 4240 if (CSI->hasUnwindDest()) { 4241 // Redirect preds to the unwind dest 4242 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4243 } else { 4244 // Rewrite all preds to unwind to caller (or from invoke to call). 4245 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4246 for (BasicBlock *EHPred : EHPreds) 4247 removeUnwindEdge(EHPred); 4248 } 4249 // The catchswitch is no longer reachable. 4250 new UnreachableInst(CSI->getContext(), CSI); 4251 CSI->eraseFromParent(); 4252 Changed = true; 4253 } 4254 } else if (isa<CleanupReturnInst>(TI)) { 4255 new UnreachableInst(TI->getContext(), TI); 4256 TI->eraseFromParent(); 4257 Changed = true; 4258 } 4259 } 4260 4261 // If this block is now dead, remove it. 4262 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4263 // We know there are no successors, so just nuke the block. 4264 if (LoopHeaders) 4265 LoopHeaders->erase(BB); 4266 BB->eraseFromParent(); 4267 return true; 4268 } 4269 4270 return Changed; 4271 } 4272 4273 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4274 assert(Cases.size() >= 1); 4275 4276 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4277 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4278 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4279 return false; 4280 } 4281 return true; 4282 } 4283 4284 /// Turn a switch with two reachable destinations into an integer range 4285 /// comparison and branch. 4286 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4287 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4288 4289 bool HasDefault = 4290 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4291 4292 // Partition the cases into two sets with different destinations. 4293 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4294 BasicBlock *DestB = nullptr; 4295 SmallVector<ConstantInt *, 16> CasesA; 4296 SmallVector<ConstantInt *, 16> CasesB; 4297 4298 for (auto Case : SI->cases()) { 4299 BasicBlock *Dest = Case.getCaseSuccessor(); 4300 if (!DestA) 4301 DestA = Dest; 4302 if (Dest == DestA) { 4303 CasesA.push_back(Case.getCaseValue()); 4304 continue; 4305 } 4306 if (!DestB) 4307 DestB = Dest; 4308 if (Dest == DestB) { 4309 CasesB.push_back(Case.getCaseValue()); 4310 continue; 4311 } 4312 return false; // More than two destinations. 4313 } 4314 4315 assert(DestA && DestB && 4316 "Single-destination switch should have been folded."); 4317 assert(DestA != DestB); 4318 assert(DestB != SI->getDefaultDest()); 4319 assert(!CasesB.empty() && "There must be non-default cases."); 4320 assert(!CasesA.empty() || HasDefault); 4321 4322 // Figure out if one of the sets of cases form a contiguous range. 4323 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4324 BasicBlock *ContiguousDest = nullptr; 4325 BasicBlock *OtherDest = nullptr; 4326 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4327 ContiguousCases = &CasesA; 4328 ContiguousDest = DestA; 4329 OtherDest = DestB; 4330 } else if (CasesAreContiguous(CasesB)) { 4331 ContiguousCases = &CasesB; 4332 ContiguousDest = DestB; 4333 OtherDest = DestA; 4334 } else 4335 return false; 4336 4337 // Start building the compare and branch. 4338 4339 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4340 Constant *NumCases = 4341 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4342 4343 Value *Sub = SI->getCondition(); 4344 if (!Offset->isNullValue()) 4345 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4346 4347 Value *Cmp; 4348 // If NumCases overflowed, then all possible values jump to the successor. 4349 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4350 Cmp = ConstantInt::getTrue(SI->getContext()); 4351 else 4352 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4353 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4354 4355 // Update weight for the newly-created conditional branch. 4356 if (HasBranchWeights(SI)) { 4357 SmallVector<uint64_t, 8> Weights; 4358 GetBranchWeights(SI, Weights); 4359 if (Weights.size() == 1 + SI->getNumCases()) { 4360 uint64_t TrueWeight = 0; 4361 uint64_t FalseWeight = 0; 4362 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4363 if (SI->getSuccessor(I) == ContiguousDest) 4364 TrueWeight += Weights[I]; 4365 else 4366 FalseWeight += Weights[I]; 4367 } 4368 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4369 TrueWeight /= 2; 4370 FalseWeight /= 2; 4371 } 4372 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4373 } 4374 } 4375 4376 // Prune obsolete incoming values off the successors' PHI nodes. 4377 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4378 unsigned PreviousEdges = ContiguousCases->size(); 4379 if (ContiguousDest == SI->getDefaultDest()) 4380 ++PreviousEdges; 4381 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4382 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4383 } 4384 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4385 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4386 if (OtherDest == SI->getDefaultDest()) 4387 ++PreviousEdges; 4388 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4389 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4390 } 4391 4392 // Drop the switch. 4393 SI->eraseFromParent(); 4394 4395 return true; 4396 } 4397 4398 /// Compute masked bits for the condition of a switch 4399 /// and use it to remove dead cases. 4400 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4401 const DataLayout &DL) { 4402 Value *Cond = SI->getCondition(); 4403 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4404 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4405 4406 // We can also eliminate cases by determining that their values are outside of 4407 // the limited range of the condition based on how many significant (non-sign) 4408 // bits are in the condition value. 4409 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4410 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4411 4412 // Gather dead cases. 4413 SmallVector<ConstantInt *, 8> DeadCases; 4414 for (auto &Case : SI->cases()) { 4415 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4416 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4417 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4418 DeadCases.push_back(Case.getCaseValue()); 4419 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4420 << " is dead.\n"); 4421 } 4422 } 4423 4424 // If we can prove that the cases must cover all possible values, the 4425 // default destination becomes dead and we can remove it. If we know some 4426 // of the bits in the value, we can use that to more precisely compute the 4427 // number of possible unique case values. 4428 bool HasDefault = 4429 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4430 const unsigned NumUnknownBits = 4431 Bits - (Known.Zero | Known.One).countPopulation(); 4432 assert(NumUnknownBits <= Bits); 4433 if (HasDefault && DeadCases.empty() && 4434 NumUnknownBits < 64 /* avoid overflow */ && 4435 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4436 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4437 BasicBlock *NewDefault = 4438 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4439 SI->setDefaultDest(&*NewDefault); 4440 SplitBlock(&*NewDefault, &NewDefault->front()); 4441 auto *OldTI = NewDefault->getTerminator(); 4442 new UnreachableInst(SI->getContext(), OldTI); 4443 EraseTerminatorAndDCECond(OldTI); 4444 return true; 4445 } 4446 4447 SmallVector<uint64_t, 8> Weights; 4448 bool HasWeight = HasBranchWeights(SI); 4449 if (HasWeight) { 4450 GetBranchWeights(SI, Weights); 4451 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4452 } 4453 4454 // Remove dead cases from the switch. 4455 for (ConstantInt *DeadCase : DeadCases) { 4456 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4457 assert(CaseI != SI->case_default() && 4458 "Case was not found. Probably mistake in DeadCases forming."); 4459 if (HasWeight) { 4460 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4461 Weights.pop_back(); 4462 } 4463 4464 // Prune unused values from PHI nodes. 4465 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4466 SI->removeCase(CaseI); 4467 } 4468 if (HasWeight && Weights.size() >= 2) { 4469 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4470 setBranchWeights(SI, MDWeights); 4471 } 4472 4473 return !DeadCases.empty(); 4474 } 4475 4476 /// If BB would be eligible for simplification by 4477 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4478 /// by an unconditional branch), look at the phi node for BB in the successor 4479 /// block and see if the incoming value is equal to CaseValue. If so, return 4480 /// the phi node, and set PhiIndex to BB's index in the phi node. 4481 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4482 BasicBlock *BB, int *PhiIndex) { 4483 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4484 return nullptr; // BB must be empty to be a candidate for simplification. 4485 if (!BB->getSinglePredecessor()) 4486 return nullptr; // BB must be dominated by the switch. 4487 4488 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4489 if (!Branch || !Branch->isUnconditional()) 4490 return nullptr; // Terminator must be unconditional branch. 4491 4492 BasicBlock *Succ = Branch->getSuccessor(0); 4493 4494 for (PHINode &PHI : Succ->phis()) { 4495 int Idx = PHI.getBasicBlockIndex(BB); 4496 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4497 4498 Value *InValue = PHI.getIncomingValue(Idx); 4499 if (InValue != CaseValue) 4500 continue; 4501 4502 *PhiIndex = Idx; 4503 return &PHI; 4504 } 4505 4506 return nullptr; 4507 } 4508 4509 /// Try to forward the condition of a switch instruction to a phi node 4510 /// dominated by the switch, if that would mean that some of the destination 4511 /// blocks of the switch can be folded away. Return true if a change is made. 4512 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4513 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4514 4515 ForwardingNodesMap ForwardingNodes; 4516 BasicBlock *SwitchBlock = SI->getParent(); 4517 bool Changed = false; 4518 for (auto &Case : SI->cases()) { 4519 ConstantInt *CaseValue = Case.getCaseValue(); 4520 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4521 4522 // Replace phi operands in successor blocks that are using the constant case 4523 // value rather than the switch condition variable: 4524 // switchbb: 4525 // switch i32 %x, label %default [ 4526 // i32 17, label %succ 4527 // ... 4528 // succ: 4529 // %r = phi i32 ... [ 17, %switchbb ] ... 4530 // --> 4531 // %r = phi i32 ... [ %x, %switchbb ] ... 4532 4533 for (PHINode &Phi : CaseDest->phis()) { 4534 // This only works if there is exactly 1 incoming edge from the switch to 4535 // a phi. If there is >1, that means multiple cases of the switch map to 1 4536 // value in the phi, and that phi value is not the switch condition. Thus, 4537 // this transform would not make sense (the phi would be invalid because 4538 // a phi can't have different incoming values from the same block). 4539 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4540 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4541 count(Phi.blocks(), SwitchBlock) == 1) { 4542 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4543 Changed = true; 4544 } 4545 } 4546 4547 // Collect phi nodes that are indirectly using this switch's case constants. 4548 int PhiIdx; 4549 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4550 ForwardingNodes[Phi].push_back(PhiIdx); 4551 } 4552 4553 for (auto &ForwardingNode : ForwardingNodes) { 4554 PHINode *Phi = ForwardingNode.first; 4555 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4556 if (Indexes.size() < 2) 4557 continue; 4558 4559 for (int Index : Indexes) 4560 Phi->setIncomingValue(Index, SI->getCondition()); 4561 Changed = true; 4562 } 4563 4564 return Changed; 4565 } 4566 4567 /// Return true if the backend will be able to handle 4568 /// initializing an array of constants like C. 4569 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4570 if (C->isThreadDependent()) 4571 return false; 4572 if (C->isDLLImportDependent()) 4573 return false; 4574 4575 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4576 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4577 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4578 return false; 4579 4580 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4581 if (!CE->isGEPWithNoNotionalOverIndexing()) 4582 return false; 4583 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4584 return false; 4585 } 4586 4587 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4588 return false; 4589 4590 return true; 4591 } 4592 4593 /// If V is a Constant, return it. Otherwise, try to look up 4594 /// its constant value in ConstantPool, returning 0 if it's not there. 4595 static Constant * 4596 LookupConstant(Value *V, 4597 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4598 if (Constant *C = dyn_cast<Constant>(V)) 4599 return C; 4600 return ConstantPool.lookup(V); 4601 } 4602 4603 /// Try to fold instruction I into a constant. This works for 4604 /// simple instructions such as binary operations where both operands are 4605 /// constant or can be replaced by constants from the ConstantPool. Returns the 4606 /// resulting constant on success, 0 otherwise. 4607 static Constant * 4608 ConstantFold(Instruction *I, const DataLayout &DL, 4609 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4610 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4611 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4612 if (!A) 4613 return nullptr; 4614 if (A->isAllOnesValue()) 4615 return LookupConstant(Select->getTrueValue(), ConstantPool); 4616 if (A->isNullValue()) 4617 return LookupConstant(Select->getFalseValue(), ConstantPool); 4618 return nullptr; 4619 } 4620 4621 SmallVector<Constant *, 4> COps; 4622 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4623 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4624 COps.push_back(A); 4625 else 4626 return nullptr; 4627 } 4628 4629 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4630 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4631 COps[1], DL); 4632 } 4633 4634 return ConstantFoldInstOperands(I, COps, DL); 4635 } 4636 4637 /// Try to determine the resulting constant values in phi nodes 4638 /// at the common destination basic block, *CommonDest, for one of the case 4639 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4640 /// case), of a switch instruction SI. 4641 static bool 4642 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4643 BasicBlock **CommonDest, 4644 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4645 const DataLayout &DL, const TargetTransformInfo &TTI) { 4646 // The block from which we enter the common destination. 4647 BasicBlock *Pred = SI->getParent(); 4648 4649 // If CaseDest is empty except for some side-effect free instructions through 4650 // which we can constant-propagate the CaseVal, continue to its successor. 4651 SmallDenseMap<Value *, Constant *> ConstantPool; 4652 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4653 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4654 if (I.isTerminator()) { 4655 // If the terminator is a simple branch, continue to the next block. 4656 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4657 return false; 4658 Pred = CaseDest; 4659 CaseDest = I.getSuccessor(0); 4660 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4661 // Instruction is side-effect free and constant. 4662 4663 // If the instruction has uses outside this block or a phi node slot for 4664 // the block, it is not safe to bypass the instruction since it would then 4665 // no longer dominate all its uses. 4666 for (auto &Use : I.uses()) { 4667 User *User = Use.getUser(); 4668 if (Instruction *I = dyn_cast<Instruction>(User)) 4669 if (I->getParent() == CaseDest) 4670 continue; 4671 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4672 if (Phi->getIncomingBlock(Use) == CaseDest) 4673 continue; 4674 return false; 4675 } 4676 4677 ConstantPool.insert(std::make_pair(&I, C)); 4678 } else { 4679 break; 4680 } 4681 } 4682 4683 // If we did not have a CommonDest before, use the current one. 4684 if (!*CommonDest) 4685 *CommonDest = CaseDest; 4686 // If the destination isn't the common one, abort. 4687 if (CaseDest != *CommonDest) 4688 return false; 4689 4690 // Get the values for this case from phi nodes in the destination block. 4691 for (PHINode &PHI : (*CommonDest)->phis()) { 4692 int Idx = PHI.getBasicBlockIndex(Pred); 4693 if (Idx == -1) 4694 continue; 4695 4696 Constant *ConstVal = 4697 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4698 if (!ConstVal) 4699 return false; 4700 4701 // Be conservative about which kinds of constants we support. 4702 if (!ValidLookupTableConstant(ConstVal, TTI)) 4703 return false; 4704 4705 Res.push_back(std::make_pair(&PHI, ConstVal)); 4706 } 4707 4708 return Res.size() > 0; 4709 } 4710 4711 // Helper function used to add CaseVal to the list of cases that generate 4712 // Result. Returns the updated number of cases that generate this result. 4713 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4714 SwitchCaseResultVectorTy &UniqueResults, 4715 Constant *Result) { 4716 for (auto &I : UniqueResults) { 4717 if (I.first == Result) { 4718 I.second.push_back(CaseVal); 4719 return I.second.size(); 4720 } 4721 } 4722 UniqueResults.push_back( 4723 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4724 return 1; 4725 } 4726 4727 // Helper function that initializes a map containing 4728 // results for the PHI node of the common destination block for a switch 4729 // instruction. Returns false if multiple PHI nodes have been found or if 4730 // there is not a common destination block for the switch. 4731 static bool 4732 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4733 SwitchCaseResultVectorTy &UniqueResults, 4734 Constant *&DefaultResult, const DataLayout &DL, 4735 const TargetTransformInfo &TTI, 4736 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4737 for (auto &I : SI->cases()) { 4738 ConstantInt *CaseVal = I.getCaseValue(); 4739 4740 // Resulting value at phi nodes for this case value. 4741 SwitchCaseResultsTy Results; 4742 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4743 DL, TTI)) 4744 return false; 4745 4746 // Only one value per case is permitted. 4747 if (Results.size() > 1) 4748 return false; 4749 4750 // Add the case->result mapping to UniqueResults. 4751 const uintptr_t NumCasesForResult = 4752 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4753 4754 // Early out if there are too many cases for this result. 4755 if (NumCasesForResult > MaxCasesPerResult) 4756 return false; 4757 4758 // Early out if there are too many unique results. 4759 if (UniqueResults.size() > MaxUniqueResults) 4760 return false; 4761 4762 // Check the PHI consistency. 4763 if (!PHI) 4764 PHI = Results[0].first; 4765 else if (PHI != Results[0].first) 4766 return false; 4767 } 4768 // Find the default result value. 4769 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4770 BasicBlock *DefaultDest = SI->getDefaultDest(); 4771 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4772 DL, TTI); 4773 // If the default value is not found abort unless the default destination 4774 // is unreachable. 4775 DefaultResult = 4776 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4777 if ((!DefaultResult && 4778 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4779 return false; 4780 4781 return true; 4782 } 4783 4784 // Helper function that checks if it is possible to transform a switch with only 4785 // two cases (or two cases + default) that produces a result into a select. 4786 // Example: 4787 // switch (a) { 4788 // case 10: %0 = icmp eq i32 %a, 10 4789 // return 10; %1 = select i1 %0, i32 10, i32 4 4790 // case 20: ----> %2 = icmp eq i32 %a, 20 4791 // return 2; %3 = select i1 %2, i32 2, i32 %1 4792 // default: 4793 // return 4; 4794 // } 4795 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4796 Constant *DefaultResult, Value *Condition, 4797 IRBuilder<> &Builder) { 4798 assert(ResultVector.size() == 2 && 4799 "We should have exactly two unique results at this point"); 4800 // If we are selecting between only two cases transform into a simple 4801 // select or a two-way select if default is possible. 4802 if (ResultVector[0].second.size() == 1 && 4803 ResultVector[1].second.size() == 1) { 4804 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4805 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4806 4807 bool DefaultCanTrigger = DefaultResult; 4808 Value *SelectValue = ResultVector[1].first; 4809 if (DefaultCanTrigger) { 4810 Value *const ValueCompare = 4811 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4812 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4813 DefaultResult, "switch.select"); 4814 } 4815 Value *const ValueCompare = 4816 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4817 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4818 SelectValue, "switch.select"); 4819 } 4820 4821 return nullptr; 4822 } 4823 4824 // Helper function to cleanup a switch instruction that has been converted into 4825 // a select, fixing up PHI nodes and basic blocks. 4826 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4827 Value *SelectValue, 4828 IRBuilder<> &Builder) { 4829 BasicBlock *SelectBB = SI->getParent(); 4830 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4831 PHI->removeIncomingValue(SelectBB); 4832 PHI->addIncoming(SelectValue, SelectBB); 4833 4834 Builder.CreateBr(PHI->getParent()); 4835 4836 // Remove the switch. 4837 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4838 BasicBlock *Succ = SI->getSuccessor(i); 4839 4840 if (Succ == PHI->getParent()) 4841 continue; 4842 Succ->removePredecessor(SelectBB); 4843 } 4844 SI->eraseFromParent(); 4845 } 4846 4847 /// If the switch is only used to initialize one or more 4848 /// phi nodes in a common successor block with only two different 4849 /// constant values, replace the switch with select. 4850 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4851 const DataLayout &DL, 4852 const TargetTransformInfo &TTI) { 4853 Value *const Cond = SI->getCondition(); 4854 PHINode *PHI = nullptr; 4855 BasicBlock *CommonDest = nullptr; 4856 Constant *DefaultResult; 4857 SwitchCaseResultVectorTy UniqueResults; 4858 // Collect all the cases that will deliver the same value from the switch. 4859 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4860 DL, TTI, 2, 1)) 4861 return false; 4862 // Selects choose between maximum two values. 4863 if (UniqueResults.size() != 2) 4864 return false; 4865 assert(PHI != nullptr && "PHI for value select not found"); 4866 4867 Builder.SetInsertPoint(SI); 4868 Value *SelectValue = 4869 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4870 if (SelectValue) { 4871 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4872 return true; 4873 } 4874 // The switch couldn't be converted into a select. 4875 return false; 4876 } 4877 4878 namespace { 4879 4880 /// This class represents a lookup table that can be used to replace a switch. 4881 class SwitchLookupTable { 4882 public: 4883 /// Create a lookup table to use as a switch replacement with the contents 4884 /// of Values, using DefaultValue to fill any holes in the table. 4885 SwitchLookupTable( 4886 Module &M, uint64_t TableSize, ConstantInt *Offset, 4887 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4888 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4889 4890 /// Build instructions with Builder to retrieve the value at 4891 /// the position given by Index in the lookup table. 4892 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4893 4894 /// Return true if a table with TableSize elements of 4895 /// type ElementType would fit in a target-legal register. 4896 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4897 Type *ElementType); 4898 4899 private: 4900 // Depending on the contents of the table, it can be represented in 4901 // different ways. 4902 enum { 4903 // For tables where each element contains the same value, we just have to 4904 // store that single value and return it for each lookup. 4905 SingleValueKind, 4906 4907 // For tables where there is a linear relationship between table index 4908 // and values. We calculate the result with a simple multiplication 4909 // and addition instead of a table lookup. 4910 LinearMapKind, 4911 4912 // For small tables with integer elements, we can pack them into a bitmap 4913 // that fits into a target-legal register. Values are retrieved by 4914 // shift and mask operations. 4915 BitMapKind, 4916 4917 // The table is stored as an array of values. Values are retrieved by load 4918 // instructions from the table. 4919 ArrayKind 4920 } Kind; 4921 4922 // For SingleValueKind, this is the single value. 4923 Constant *SingleValue = nullptr; 4924 4925 // For BitMapKind, this is the bitmap. 4926 ConstantInt *BitMap = nullptr; 4927 IntegerType *BitMapElementTy = nullptr; 4928 4929 // For LinearMapKind, these are the constants used to derive the value. 4930 ConstantInt *LinearOffset = nullptr; 4931 ConstantInt *LinearMultiplier = nullptr; 4932 4933 // For ArrayKind, this is the array. 4934 GlobalVariable *Array = nullptr; 4935 }; 4936 4937 } // end anonymous namespace 4938 4939 SwitchLookupTable::SwitchLookupTable( 4940 Module &M, uint64_t TableSize, ConstantInt *Offset, 4941 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4942 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4943 assert(Values.size() && "Can't build lookup table without values!"); 4944 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4945 4946 // If all values in the table are equal, this is that value. 4947 SingleValue = Values.begin()->second; 4948 4949 Type *ValueType = Values.begin()->second->getType(); 4950 4951 // Build up the table contents. 4952 SmallVector<Constant *, 64> TableContents(TableSize); 4953 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4954 ConstantInt *CaseVal = Values[I].first; 4955 Constant *CaseRes = Values[I].second; 4956 assert(CaseRes->getType() == ValueType); 4957 4958 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4959 TableContents[Idx] = CaseRes; 4960 4961 if (CaseRes != SingleValue) 4962 SingleValue = nullptr; 4963 } 4964 4965 // Fill in any holes in the table with the default result. 4966 if (Values.size() < TableSize) { 4967 assert(DefaultValue && 4968 "Need a default value to fill the lookup table holes."); 4969 assert(DefaultValue->getType() == ValueType); 4970 for (uint64_t I = 0; I < TableSize; ++I) { 4971 if (!TableContents[I]) 4972 TableContents[I] = DefaultValue; 4973 } 4974 4975 if (DefaultValue != SingleValue) 4976 SingleValue = nullptr; 4977 } 4978 4979 // If each element in the table contains the same value, we only need to store 4980 // that single value. 4981 if (SingleValue) { 4982 Kind = SingleValueKind; 4983 return; 4984 } 4985 4986 // Check if we can derive the value with a linear transformation from the 4987 // table index. 4988 if (isa<IntegerType>(ValueType)) { 4989 bool LinearMappingPossible = true; 4990 APInt PrevVal; 4991 APInt DistToPrev; 4992 assert(TableSize >= 2 && "Should be a SingleValue table."); 4993 // Check if there is the same distance between two consecutive values. 4994 for (uint64_t I = 0; I < TableSize; ++I) { 4995 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4996 if (!ConstVal) { 4997 // This is an undef. We could deal with it, but undefs in lookup tables 4998 // are very seldom. It's probably not worth the additional complexity. 4999 LinearMappingPossible = false; 5000 break; 5001 } 5002 const APInt &Val = ConstVal->getValue(); 5003 if (I != 0) { 5004 APInt Dist = Val - PrevVal; 5005 if (I == 1) { 5006 DistToPrev = Dist; 5007 } else if (Dist != DistToPrev) { 5008 LinearMappingPossible = false; 5009 break; 5010 } 5011 } 5012 PrevVal = Val; 5013 } 5014 if (LinearMappingPossible) { 5015 LinearOffset = cast<ConstantInt>(TableContents[0]); 5016 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5017 Kind = LinearMapKind; 5018 ++NumLinearMaps; 5019 return; 5020 } 5021 } 5022 5023 // If the type is integer and the table fits in a register, build a bitmap. 5024 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5025 IntegerType *IT = cast<IntegerType>(ValueType); 5026 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5027 for (uint64_t I = TableSize; I > 0; --I) { 5028 TableInt <<= IT->getBitWidth(); 5029 // Insert values into the bitmap. Undef values are set to zero. 5030 if (!isa<UndefValue>(TableContents[I - 1])) { 5031 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5032 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5033 } 5034 } 5035 BitMap = ConstantInt::get(M.getContext(), TableInt); 5036 BitMapElementTy = IT; 5037 Kind = BitMapKind; 5038 ++NumBitMaps; 5039 return; 5040 } 5041 5042 // Store the table in an array. 5043 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5044 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5045 5046 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5047 GlobalVariable::PrivateLinkage, Initializer, 5048 "switch.table." + FuncName); 5049 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5050 // Set the alignment to that of an array items. We will be only loading one 5051 // value out of it. 5052 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5053 Kind = ArrayKind; 5054 } 5055 5056 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5057 switch (Kind) { 5058 case SingleValueKind: 5059 return SingleValue; 5060 case LinearMapKind: { 5061 // Derive the result value from the input value. 5062 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5063 false, "switch.idx.cast"); 5064 if (!LinearMultiplier->isOne()) 5065 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5066 if (!LinearOffset->isZero()) 5067 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5068 return Result; 5069 } 5070 case BitMapKind: { 5071 // Type of the bitmap (e.g. i59). 5072 IntegerType *MapTy = BitMap->getType(); 5073 5074 // Cast Index to the same type as the bitmap. 5075 // Note: The Index is <= the number of elements in the table, so 5076 // truncating it to the width of the bitmask is safe. 5077 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5078 5079 // Multiply the shift amount by the element width. 5080 ShiftAmt = Builder.CreateMul( 5081 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5082 "switch.shiftamt"); 5083 5084 // Shift down. 5085 Value *DownShifted = 5086 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5087 // Mask off. 5088 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5089 } 5090 case ArrayKind: { 5091 // Make sure the table index will not overflow when treated as signed. 5092 IntegerType *IT = cast<IntegerType>(Index->getType()); 5093 uint64_t TableSize = 5094 Array->getInitializer()->getType()->getArrayNumElements(); 5095 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5096 Index = Builder.CreateZExt( 5097 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5098 "switch.tableidx.zext"); 5099 5100 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5101 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5102 GEPIndices, "switch.gep"); 5103 return Builder.CreateLoad(GEP, "switch.load"); 5104 } 5105 } 5106 llvm_unreachable("Unknown lookup table kind!"); 5107 } 5108 5109 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5110 uint64_t TableSize, 5111 Type *ElementType) { 5112 auto *IT = dyn_cast<IntegerType>(ElementType); 5113 if (!IT) 5114 return false; 5115 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5116 // are <= 15, we could try to narrow the type. 5117 5118 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5119 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5120 return false; 5121 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5122 } 5123 5124 /// Determine whether a lookup table should be built for this switch, based on 5125 /// the number of cases, size of the table, and the types of the results. 5126 static bool 5127 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5128 const TargetTransformInfo &TTI, const DataLayout &DL, 5129 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5130 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5131 return false; // TableSize overflowed, or mul below might overflow. 5132 5133 bool AllTablesFitInRegister = true; 5134 bool HasIllegalType = false; 5135 for (const auto &I : ResultTypes) { 5136 Type *Ty = I.second; 5137 5138 // Saturate this flag to true. 5139 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5140 5141 // Saturate this flag to false. 5142 AllTablesFitInRegister = 5143 AllTablesFitInRegister && 5144 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5145 5146 // If both flags saturate, we're done. NOTE: This *only* works with 5147 // saturating flags, and all flags have to saturate first due to the 5148 // non-deterministic behavior of iterating over a dense map. 5149 if (HasIllegalType && !AllTablesFitInRegister) 5150 break; 5151 } 5152 5153 // If each table would fit in a register, we should build it anyway. 5154 if (AllTablesFitInRegister) 5155 return true; 5156 5157 // Don't build a table that doesn't fit in-register if it has illegal types. 5158 if (HasIllegalType) 5159 return false; 5160 5161 // The table density should be at least 40%. This is the same criterion as for 5162 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5163 // FIXME: Find the best cut-off. 5164 return SI->getNumCases() * 10 >= TableSize * 4; 5165 } 5166 5167 /// Try to reuse the switch table index compare. Following pattern: 5168 /// \code 5169 /// if (idx < tablesize) 5170 /// r = table[idx]; // table does not contain default_value 5171 /// else 5172 /// r = default_value; 5173 /// if (r != default_value) 5174 /// ... 5175 /// \endcode 5176 /// Is optimized to: 5177 /// \code 5178 /// cond = idx < tablesize; 5179 /// if (cond) 5180 /// r = table[idx]; 5181 /// else 5182 /// r = default_value; 5183 /// if (cond) 5184 /// ... 5185 /// \endcode 5186 /// Jump threading will then eliminate the second if(cond). 5187 static void reuseTableCompare( 5188 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5189 Constant *DefaultValue, 5190 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5191 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5192 if (!CmpInst) 5193 return; 5194 5195 // We require that the compare is in the same block as the phi so that jump 5196 // threading can do its work afterwards. 5197 if (CmpInst->getParent() != PhiBlock) 5198 return; 5199 5200 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5201 if (!CmpOp1) 5202 return; 5203 5204 Value *RangeCmp = RangeCheckBranch->getCondition(); 5205 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5206 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5207 5208 // Check if the compare with the default value is constant true or false. 5209 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5210 DefaultValue, CmpOp1, true); 5211 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5212 return; 5213 5214 // Check if the compare with the case values is distinct from the default 5215 // compare result. 5216 for (auto ValuePair : Values) { 5217 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5218 ValuePair.second, CmpOp1, true); 5219 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5220 return; 5221 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5222 "Expect true or false as compare result."); 5223 } 5224 5225 // Check if the branch instruction dominates the phi node. It's a simple 5226 // dominance check, but sufficient for our needs. 5227 // Although this check is invariant in the calling loops, it's better to do it 5228 // at this late stage. Practically we do it at most once for a switch. 5229 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5230 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5231 BasicBlock *Pred = *PI; 5232 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5233 return; 5234 } 5235 5236 if (DefaultConst == FalseConst) { 5237 // The compare yields the same result. We can replace it. 5238 CmpInst->replaceAllUsesWith(RangeCmp); 5239 ++NumTableCmpReuses; 5240 } else { 5241 // The compare yields the same result, just inverted. We can replace it. 5242 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5243 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5244 RangeCheckBranch); 5245 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5246 ++NumTableCmpReuses; 5247 } 5248 } 5249 5250 /// If the switch is only used to initialize one or more phi nodes in a common 5251 /// successor block with different constant values, replace the switch with 5252 /// lookup tables. 5253 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5254 const DataLayout &DL, 5255 const TargetTransformInfo &TTI) { 5256 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5257 5258 Function *Fn = SI->getParent()->getParent(); 5259 // Only build lookup table when we have a target that supports it or the 5260 // attribute is not set. 5261 if (!TTI.shouldBuildLookupTables() || 5262 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5263 return false; 5264 5265 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5266 // split off a dense part and build a lookup table for that. 5267 5268 // FIXME: This creates arrays of GEPs to constant strings, which means each 5269 // GEP needs a runtime relocation in PIC code. We should just build one big 5270 // string and lookup indices into that. 5271 5272 // Ignore switches with less than three cases. Lookup tables will not make 5273 // them faster, so we don't analyze them. 5274 if (SI->getNumCases() < 3) 5275 return false; 5276 5277 // Figure out the corresponding result for each case value and phi node in the 5278 // common destination, as well as the min and max case values. 5279 assert(!empty(SI->cases())); 5280 SwitchInst::CaseIt CI = SI->case_begin(); 5281 ConstantInt *MinCaseVal = CI->getCaseValue(); 5282 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5283 5284 BasicBlock *CommonDest = nullptr; 5285 5286 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5287 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5288 5289 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5290 SmallDenseMap<PHINode *, Type *> ResultTypes; 5291 SmallVector<PHINode *, 4> PHIs; 5292 5293 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5294 ConstantInt *CaseVal = CI->getCaseValue(); 5295 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5296 MinCaseVal = CaseVal; 5297 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5298 MaxCaseVal = CaseVal; 5299 5300 // Resulting value at phi nodes for this case value. 5301 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5302 ResultsTy Results; 5303 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5304 Results, DL, TTI)) 5305 return false; 5306 5307 // Append the result from this case to the list for each phi. 5308 for (const auto &I : Results) { 5309 PHINode *PHI = I.first; 5310 Constant *Value = I.second; 5311 if (!ResultLists.count(PHI)) 5312 PHIs.push_back(PHI); 5313 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5314 } 5315 } 5316 5317 // Keep track of the result types. 5318 for (PHINode *PHI : PHIs) { 5319 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5320 } 5321 5322 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5323 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5324 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5325 bool TableHasHoles = (NumResults < TableSize); 5326 5327 // If the table has holes, we need a constant result for the default case 5328 // or a bitmask that fits in a register. 5329 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5330 bool HasDefaultResults = 5331 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5332 DefaultResultsList, DL, TTI); 5333 5334 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5335 if (NeedMask) { 5336 // As an extra penalty for the validity test we require more cases. 5337 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5338 return false; 5339 if (!DL.fitsInLegalInteger(TableSize)) 5340 return false; 5341 } 5342 5343 for (const auto &I : DefaultResultsList) { 5344 PHINode *PHI = I.first; 5345 Constant *Result = I.second; 5346 DefaultResults[PHI] = Result; 5347 } 5348 5349 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5350 return false; 5351 5352 // Create the BB that does the lookups. 5353 Module &Mod = *CommonDest->getParent()->getParent(); 5354 BasicBlock *LookupBB = BasicBlock::Create( 5355 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5356 5357 // Compute the table index value. 5358 Builder.SetInsertPoint(SI); 5359 Value *TableIndex; 5360 if (MinCaseVal->isNullValue()) 5361 TableIndex = SI->getCondition(); 5362 else 5363 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5364 "switch.tableidx"); 5365 5366 // Compute the maximum table size representable by the integer type we are 5367 // switching upon. 5368 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5369 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5370 assert(MaxTableSize >= TableSize && 5371 "It is impossible for a switch to have more entries than the max " 5372 "representable value of its input integer type's size."); 5373 5374 // If the default destination is unreachable, or if the lookup table covers 5375 // all values of the conditional variable, branch directly to the lookup table 5376 // BB. Otherwise, check that the condition is within the case range. 5377 const bool DefaultIsReachable = 5378 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5379 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5380 BranchInst *RangeCheckBranch = nullptr; 5381 5382 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5383 Builder.CreateBr(LookupBB); 5384 // Note: We call removeProdecessor later since we need to be able to get the 5385 // PHI value for the default case in case we're using a bit mask. 5386 } else { 5387 Value *Cmp = Builder.CreateICmpULT( 5388 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5389 RangeCheckBranch = 5390 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5391 } 5392 5393 // Populate the BB that does the lookups. 5394 Builder.SetInsertPoint(LookupBB); 5395 5396 if (NeedMask) { 5397 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5398 // re-purposed to do the hole check, and we create a new LookupBB. 5399 BasicBlock *MaskBB = LookupBB; 5400 MaskBB->setName("switch.hole_check"); 5401 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5402 CommonDest->getParent(), CommonDest); 5403 5404 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5405 // unnecessary illegal types. 5406 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5407 APInt MaskInt(TableSizePowOf2, 0); 5408 APInt One(TableSizePowOf2, 1); 5409 // Build bitmask; fill in a 1 bit for every case. 5410 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5411 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5412 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5413 .getLimitedValue(); 5414 MaskInt |= One << Idx; 5415 } 5416 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5417 5418 // Get the TableIndex'th bit of the bitmask. 5419 // If this bit is 0 (meaning hole) jump to the default destination, 5420 // else continue with table lookup. 5421 IntegerType *MapTy = TableMask->getType(); 5422 Value *MaskIndex = 5423 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5424 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5425 Value *LoBit = Builder.CreateTrunc( 5426 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5427 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5428 5429 Builder.SetInsertPoint(LookupBB); 5430 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5431 } 5432 5433 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5434 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5435 // do not delete PHINodes here. 5436 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5437 /*DontDeleteUselessPHIs=*/true); 5438 } 5439 5440 bool ReturnedEarly = false; 5441 for (PHINode *PHI : PHIs) { 5442 const ResultListTy &ResultList = ResultLists[PHI]; 5443 5444 // If using a bitmask, use any value to fill the lookup table holes. 5445 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5446 StringRef FuncName = Fn->getName(); 5447 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5448 FuncName); 5449 5450 Value *Result = Table.BuildLookup(TableIndex, Builder); 5451 5452 // If the result is used to return immediately from the function, we want to 5453 // do that right here. 5454 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5455 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5456 Builder.CreateRet(Result); 5457 ReturnedEarly = true; 5458 break; 5459 } 5460 5461 // Do a small peephole optimization: re-use the switch table compare if 5462 // possible. 5463 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5464 BasicBlock *PhiBlock = PHI->getParent(); 5465 // Search for compare instructions which use the phi. 5466 for (auto *User : PHI->users()) { 5467 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5468 } 5469 } 5470 5471 PHI->addIncoming(Result, LookupBB); 5472 } 5473 5474 if (!ReturnedEarly) 5475 Builder.CreateBr(CommonDest); 5476 5477 // Remove the switch. 5478 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5479 BasicBlock *Succ = SI->getSuccessor(i); 5480 5481 if (Succ == SI->getDefaultDest()) 5482 continue; 5483 Succ->removePredecessor(SI->getParent()); 5484 } 5485 SI->eraseFromParent(); 5486 5487 ++NumLookupTables; 5488 if (NeedMask) 5489 ++NumLookupTablesHoles; 5490 return true; 5491 } 5492 5493 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5494 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5495 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5496 uint64_t Range = Diff + 1; 5497 uint64_t NumCases = Values.size(); 5498 // 40% is the default density for building a jump table in optsize/minsize mode. 5499 uint64_t MinDensity = 40; 5500 5501 return NumCases * 100 >= Range * MinDensity; 5502 } 5503 5504 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5505 /// of cases. 5506 /// 5507 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5508 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5509 /// 5510 /// This converts a sparse switch into a dense switch which allows better 5511 /// lowering and could also allow transforming into a lookup table. 5512 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5513 const DataLayout &DL, 5514 const TargetTransformInfo &TTI) { 5515 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5516 if (CondTy->getIntegerBitWidth() > 64 || 5517 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5518 return false; 5519 // Only bother with this optimization if there are more than 3 switch cases; 5520 // SDAG will only bother creating jump tables for 4 or more cases. 5521 if (SI->getNumCases() < 4) 5522 return false; 5523 5524 // This transform is agnostic to the signedness of the input or case values. We 5525 // can treat the case values as signed or unsigned. We can optimize more common 5526 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5527 // as signed. 5528 SmallVector<int64_t,4> Values; 5529 for (auto &C : SI->cases()) 5530 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5531 llvm::sort(Values); 5532 5533 // If the switch is already dense, there's nothing useful to do here. 5534 if (isSwitchDense(Values)) 5535 return false; 5536 5537 // First, transform the values such that they start at zero and ascend. 5538 int64_t Base = Values[0]; 5539 for (auto &V : Values) 5540 V -= (uint64_t)(Base); 5541 5542 // Now we have signed numbers that have been shifted so that, given enough 5543 // precision, there are no negative values. Since the rest of the transform 5544 // is bitwise only, we switch now to an unsigned representation. 5545 uint64_t GCD = 0; 5546 for (auto &V : Values) 5547 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5548 5549 // This transform can be done speculatively because it is so cheap - it results 5550 // in a single rotate operation being inserted. This can only happen if the 5551 // factor extracted is a power of 2. 5552 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5553 // inverse of GCD and then perform this transform. 5554 // FIXME: It's possible that optimizing a switch on powers of two might also 5555 // be beneficial - flag values are often powers of two and we could use a CLZ 5556 // as the key function. 5557 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5558 // No common divisor found or too expensive to compute key function. 5559 return false; 5560 5561 unsigned Shift = Log2_64(GCD); 5562 for (auto &V : Values) 5563 V = (int64_t)((uint64_t)V >> Shift); 5564 5565 if (!isSwitchDense(Values)) 5566 // Transform didn't create a dense switch. 5567 return false; 5568 5569 // The obvious transform is to shift the switch condition right and emit a 5570 // check that the condition actually cleanly divided by GCD, i.e. 5571 // C & (1 << Shift - 1) == 0 5572 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5573 // 5574 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5575 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5576 // are nonzero then the switch condition will be very large and will hit the 5577 // default case. 5578 5579 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5580 Builder.SetInsertPoint(SI); 5581 auto *ShiftC = ConstantInt::get(Ty, Shift); 5582 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5583 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5584 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5585 auto *Rot = Builder.CreateOr(LShr, Shl); 5586 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5587 5588 for (auto Case : SI->cases()) { 5589 auto *Orig = Case.getCaseValue(); 5590 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5591 Case.setValue( 5592 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5593 } 5594 return true; 5595 } 5596 5597 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5598 BasicBlock *BB = SI->getParent(); 5599 5600 if (isValueEqualityComparison(SI)) { 5601 // If we only have one predecessor, and if it is a branch on this value, 5602 // see if that predecessor totally determines the outcome of this switch. 5603 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5604 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5605 return requestResimplify(); 5606 5607 Value *Cond = SI->getCondition(); 5608 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5609 if (SimplifySwitchOnSelect(SI, Select)) 5610 return requestResimplify(); 5611 5612 // If the block only contains the switch, see if we can fold the block 5613 // away into any preds. 5614 if (SI == &*BB->instructionsWithoutDebug().begin()) 5615 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5616 return requestResimplify(); 5617 } 5618 5619 // Try to transform the switch into an icmp and a branch. 5620 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5621 return requestResimplify(); 5622 5623 // Remove unreachable cases. 5624 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5625 return requestResimplify(); 5626 5627 if (switchToSelect(SI, Builder, DL, TTI)) 5628 return requestResimplify(); 5629 5630 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5631 return requestResimplify(); 5632 5633 // The conversion from switch to lookup tables results in difficult-to-analyze 5634 // code and makes pruning branches much harder. This is a problem if the 5635 // switch expression itself can still be restricted as a result of inlining or 5636 // CVP. Therefore, only apply this transformation during late stages of the 5637 // optimisation pipeline. 5638 if (Options.ConvertSwitchToLookupTable && 5639 SwitchToLookupTable(SI, Builder, DL, TTI)) 5640 return requestResimplify(); 5641 5642 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5643 return requestResimplify(); 5644 5645 return false; 5646 } 5647 5648 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5649 BasicBlock *BB = IBI->getParent(); 5650 bool Changed = false; 5651 5652 // Eliminate redundant destinations. 5653 SmallPtrSet<Value *, 8> Succs; 5654 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5655 BasicBlock *Dest = IBI->getDestination(i); 5656 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5657 Dest->removePredecessor(BB); 5658 IBI->removeDestination(i); 5659 --i; 5660 --e; 5661 Changed = true; 5662 } 5663 } 5664 5665 if (IBI->getNumDestinations() == 0) { 5666 // If the indirectbr has no successors, change it to unreachable. 5667 new UnreachableInst(IBI->getContext(), IBI); 5668 EraseTerminatorAndDCECond(IBI); 5669 return true; 5670 } 5671 5672 if (IBI->getNumDestinations() == 1) { 5673 // If the indirectbr has one successor, change it to a direct branch. 5674 BranchInst::Create(IBI->getDestination(0), IBI); 5675 EraseTerminatorAndDCECond(IBI); 5676 return true; 5677 } 5678 5679 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5680 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5681 return requestResimplify(); 5682 } 5683 return Changed; 5684 } 5685 5686 /// Given an block with only a single landing pad and a unconditional branch 5687 /// try to find another basic block which this one can be merged with. This 5688 /// handles cases where we have multiple invokes with unique landing pads, but 5689 /// a shared handler. 5690 /// 5691 /// We specifically choose to not worry about merging non-empty blocks 5692 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5693 /// practice, the optimizer produces empty landing pad blocks quite frequently 5694 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5695 /// sinking in this file) 5696 /// 5697 /// This is primarily a code size optimization. We need to avoid performing 5698 /// any transform which might inhibit optimization (such as our ability to 5699 /// specialize a particular handler via tail commoning). We do this by not 5700 /// merging any blocks which require us to introduce a phi. Since the same 5701 /// values are flowing through both blocks, we don't lose any ability to 5702 /// specialize. If anything, we make such specialization more likely. 5703 /// 5704 /// TODO - This transformation could remove entries from a phi in the target 5705 /// block when the inputs in the phi are the same for the two blocks being 5706 /// merged. In some cases, this could result in removal of the PHI entirely. 5707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5708 BasicBlock *BB) { 5709 auto Succ = BB->getUniqueSuccessor(); 5710 assert(Succ); 5711 // If there's a phi in the successor block, we'd likely have to introduce 5712 // a phi into the merged landing pad block. 5713 if (isa<PHINode>(*Succ->begin())) 5714 return false; 5715 5716 for (BasicBlock *OtherPred : predecessors(Succ)) { 5717 if (BB == OtherPred) 5718 continue; 5719 BasicBlock::iterator I = OtherPred->begin(); 5720 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5721 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5722 continue; 5723 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5724 ; 5725 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5726 if (!BI2 || !BI2->isIdenticalTo(BI)) 5727 continue; 5728 5729 // We've found an identical block. Update our predecessors to take that 5730 // path instead and make ourselves dead. 5731 SmallPtrSet<BasicBlock *, 16> Preds; 5732 Preds.insert(pred_begin(BB), pred_end(BB)); 5733 for (BasicBlock *Pred : Preds) { 5734 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5735 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5736 "unexpected successor"); 5737 II->setUnwindDest(OtherPred); 5738 } 5739 5740 // The debug info in OtherPred doesn't cover the merged control flow that 5741 // used to go through BB. We need to delete it or update it. 5742 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5743 Instruction &Inst = *I; 5744 I++; 5745 if (isa<DbgInfoIntrinsic>(Inst)) 5746 Inst.eraseFromParent(); 5747 } 5748 5749 SmallPtrSet<BasicBlock *, 16> Succs; 5750 Succs.insert(succ_begin(BB), succ_end(BB)); 5751 for (BasicBlock *Succ : Succs) { 5752 Succ->removePredecessor(BB); 5753 } 5754 5755 IRBuilder<> Builder(BI); 5756 Builder.CreateUnreachable(); 5757 BI->eraseFromParent(); 5758 return true; 5759 } 5760 return false; 5761 } 5762 5763 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5764 IRBuilder<> &Builder) { 5765 BasicBlock *BB = BI->getParent(); 5766 BasicBlock *Succ = BI->getSuccessor(0); 5767 5768 // If the Terminator is the only non-phi instruction, simplify the block. 5769 // If LoopHeader is provided, check if the block or its successor is a loop 5770 // header. (This is for early invocations before loop simplify and 5771 // vectorization to keep canonical loop forms for nested loops. These blocks 5772 // can be eliminated when the pass is invoked later in the back-end.) 5773 // Note that if BB has only one predecessor then we do not introduce new 5774 // backedge, so we can eliminate BB. 5775 bool NeedCanonicalLoop = 5776 Options.NeedCanonicalLoop && 5777 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5778 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5779 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5780 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5781 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5782 return true; 5783 5784 // If the only instruction in the block is a seteq/setne comparison against a 5785 // constant, try to simplify the block. 5786 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5787 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5788 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5789 ; 5790 if (I->isTerminator() && 5791 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5792 return true; 5793 } 5794 5795 // See if we can merge an empty landing pad block with another which is 5796 // equivalent. 5797 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5798 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5799 ; 5800 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5801 return true; 5802 } 5803 5804 // If this basic block is ONLY a compare and a branch, and if a predecessor 5805 // branches to us and our successor, fold the comparison into the 5806 // predecessor and use logical operations to update the incoming value 5807 // for PHI nodes in common successor. 5808 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5809 return requestResimplify(); 5810 return false; 5811 } 5812 5813 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5814 BasicBlock *PredPred = nullptr; 5815 for (auto *P : predecessors(BB)) { 5816 BasicBlock *PPred = P->getSinglePredecessor(); 5817 if (!PPred || (PredPred && PredPred != PPred)) 5818 return nullptr; 5819 PredPred = PPred; 5820 } 5821 return PredPred; 5822 } 5823 5824 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5825 BasicBlock *BB = BI->getParent(); 5826 const Function *Fn = BB->getParent(); 5827 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5828 return false; 5829 5830 // Conditional branch 5831 if (isValueEqualityComparison(BI)) { 5832 // If we only have one predecessor, and if it is a branch on this value, 5833 // see if that predecessor totally determines the outcome of this 5834 // switch. 5835 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5836 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5837 return requestResimplify(); 5838 5839 // This block must be empty, except for the setcond inst, if it exists. 5840 // Ignore dbg intrinsics. 5841 auto I = BB->instructionsWithoutDebug().begin(); 5842 if (&*I == BI) { 5843 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5844 return requestResimplify(); 5845 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5846 ++I; 5847 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5848 return requestResimplify(); 5849 } 5850 } 5851 5852 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5853 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5854 return true; 5855 5856 // If this basic block has a single dominating predecessor block and the 5857 // dominating block's condition implies BI's condition, we know the direction 5858 // of the BI branch. 5859 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5860 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5861 if (PBI && PBI->isConditional() && 5862 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5863 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5864 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5865 Optional<bool> Implication = isImpliedCondition( 5866 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5867 if (Implication) { 5868 // Turn this into a branch on constant. 5869 auto *OldCond = BI->getCondition(); 5870 ConstantInt *CI = *Implication 5871 ? ConstantInt::getTrue(BB->getContext()) 5872 : ConstantInt::getFalse(BB->getContext()); 5873 BI->setCondition(CI); 5874 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5875 return requestResimplify(); 5876 } 5877 } 5878 } 5879 5880 // If this basic block is ONLY a compare and a branch, and if a predecessor 5881 // branches to us and one of our successors, fold the comparison into the 5882 // predecessor and use logical operations to pick the right destination. 5883 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5884 return requestResimplify(); 5885 5886 // We have a conditional branch to two blocks that are only reachable 5887 // from BI. We know that the condbr dominates the two blocks, so see if 5888 // there is any identical code in the "then" and "else" blocks. If so, we 5889 // can hoist it up to the branching block. 5890 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5891 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5892 if (HoistThenElseCodeToIf(BI, TTI)) 5893 return requestResimplify(); 5894 } else { 5895 // If Successor #1 has multiple preds, we may be able to conditionally 5896 // execute Successor #0 if it branches to Successor #1. 5897 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5898 if (Succ0TI->getNumSuccessors() == 1 && 5899 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5900 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5901 return requestResimplify(); 5902 } 5903 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5904 // If Successor #0 has multiple preds, we may be able to conditionally 5905 // execute Successor #1 if it branches to Successor #0. 5906 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5907 if (Succ1TI->getNumSuccessors() == 1 && 5908 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5909 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5910 return requestResimplify(); 5911 } 5912 5913 // If this is a branch on a phi node in the current block, thread control 5914 // through this block if any PHI node entries are constants. 5915 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5916 if (PN->getParent() == BI->getParent()) 5917 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5918 return requestResimplify(); 5919 5920 // Scan predecessor blocks for conditional branches. 5921 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5922 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5923 if (PBI != BI && PBI->isConditional()) 5924 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5925 return requestResimplify(); 5926 5927 // Look for diamond patterns. 5928 if (MergeCondStores) 5929 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5930 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5931 if (PBI != BI && PBI->isConditional()) 5932 if (mergeConditionalStores(PBI, BI, DL)) 5933 return requestResimplify(); 5934 5935 return false; 5936 } 5937 5938 /// Check if passing a value to an instruction will cause undefined behavior. 5939 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5940 Constant *C = dyn_cast<Constant>(V); 5941 if (!C) 5942 return false; 5943 5944 if (I->use_empty()) 5945 return false; 5946 5947 if (C->isNullValue() || isa<UndefValue>(C)) { 5948 // Only look at the first use, avoid hurting compile time with long uselists 5949 User *Use = *I->user_begin(); 5950 5951 // Now make sure that there are no instructions in between that can alter 5952 // control flow (eg. calls) 5953 for (BasicBlock::iterator 5954 i = ++BasicBlock::iterator(I), 5955 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5956 i != UI; ++i) 5957 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5958 return false; 5959 5960 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5961 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5962 if (GEP->getPointerOperand() == I) 5963 return passingValueIsAlwaysUndefined(V, GEP); 5964 5965 // Look through bitcasts. 5966 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5967 return passingValueIsAlwaysUndefined(V, BC); 5968 5969 // Load from null is undefined. 5970 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5971 if (!LI->isVolatile()) 5972 return !NullPointerIsDefined(LI->getFunction(), 5973 LI->getPointerAddressSpace()); 5974 5975 // Store to null is undefined. 5976 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5977 if (!SI->isVolatile()) 5978 return (!NullPointerIsDefined(SI->getFunction(), 5979 SI->getPointerAddressSpace())) && 5980 SI->getPointerOperand() == I; 5981 5982 // A call to null is undefined. 5983 if (auto CS = CallSite(Use)) 5984 return !NullPointerIsDefined(CS->getFunction()) && 5985 CS.getCalledValue() == I; 5986 } 5987 return false; 5988 } 5989 5990 /// If BB has an incoming value that will always trigger undefined behavior 5991 /// (eg. null pointer dereference), remove the branch leading here. 5992 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5993 for (PHINode &PHI : BB->phis()) 5994 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5995 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5996 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5997 IRBuilder<> Builder(T); 5998 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5999 BB->removePredecessor(PHI.getIncomingBlock(i)); 6000 // Turn uncoditional branches into unreachables and remove the dead 6001 // destination from conditional branches. 6002 if (BI->isUnconditional()) 6003 Builder.CreateUnreachable(); 6004 else 6005 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6006 : BI->getSuccessor(0)); 6007 BI->eraseFromParent(); 6008 return true; 6009 } 6010 // TODO: SwitchInst. 6011 } 6012 6013 return false; 6014 } 6015 6016 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6017 bool Changed = false; 6018 6019 assert(BB && BB->getParent() && "Block not embedded in function!"); 6020 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6021 6022 // Remove basic blocks that have no predecessors (except the entry block)... 6023 // or that just have themself as a predecessor. These are unreachable. 6024 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6025 BB->getSinglePredecessor() == BB) { 6026 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6027 DeleteDeadBlock(BB); 6028 return true; 6029 } 6030 6031 // Check to see if we can constant propagate this terminator instruction 6032 // away... 6033 Changed |= ConstantFoldTerminator(BB, true); 6034 6035 // Check for and eliminate duplicate PHI nodes in this block. 6036 Changed |= EliminateDuplicatePHINodes(BB); 6037 6038 // Check for and remove branches that will always cause undefined behavior. 6039 Changed |= removeUndefIntroducingPredecessor(BB); 6040 6041 // Merge basic blocks into their predecessor if there is only one distinct 6042 // pred, and if there is only one distinct successor of the predecessor, and 6043 // if there are no PHI nodes. 6044 if (MergeBlockIntoPredecessor(BB)) 6045 return true; 6046 6047 if (SinkCommon && Options.SinkCommonInsts) 6048 Changed |= SinkCommonCodeFromPredecessors(BB); 6049 6050 IRBuilder<> Builder(BB); 6051 6052 // If there is a trivial two-entry PHI node in this basic block, and we can 6053 // eliminate it, do so now. 6054 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6055 if (PN->getNumIncomingValues() == 2) 6056 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6057 6058 Builder.SetInsertPoint(BB->getTerminator()); 6059 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6060 if (BI->isUnconditional()) { 6061 if (SimplifyUncondBranch(BI, Builder)) 6062 return true; 6063 } else { 6064 if (SimplifyCondBranch(BI, Builder)) 6065 return true; 6066 } 6067 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6068 if (SimplifyReturn(RI, Builder)) 6069 return true; 6070 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6071 if (SimplifyResume(RI, Builder)) 6072 return true; 6073 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6074 if (SimplifyCleanupReturn(RI)) 6075 return true; 6076 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6077 if (SimplifySwitch(SI, Builder)) 6078 return true; 6079 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6080 if (SimplifyUnreachable(UI)) 6081 return true; 6082 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6083 if (SimplifyIndirectBr(IBI)) 6084 return true; 6085 } 6086 6087 return Changed; 6088 } 6089 6090 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6091 bool Changed = false; 6092 6093 // Repeated simplify BB as long as resimplification is requested. 6094 do { 6095 Resimplify = false; 6096 6097 // Perform one round of simplifcation. Resimplify flag will be set if 6098 // another iteration is requested. 6099 Changed |= simplifyOnce(BB); 6100 } while (Resimplify); 6101 6102 return Changed; 6103 } 6104 6105 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6106 const SimplifyCFGOptions &Options, 6107 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6108 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6109 Options) 6110 .run(BB); 6111 } 6112