1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/NoFolder.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ValueMapper.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <climits>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <map>
73 #include <set>
74 #include <utility>
75 #include <vector>
76 
77 using namespace llvm;
78 using namespace PatternMatch;
79 
80 #define DEBUG_TYPE "simplifycfg"
81 
82 // Chosen as 2 so as to be cheap, but still to have enough power to fold
83 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
84 // To catch this, we need to fold a compare and a select, hence '2' being the
85 // minimum reasonable default.
86 static cl::opt<unsigned> PHINodeFoldingThreshold(
87     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
88     cl::desc(
89         "Control the amount of phi node folding to perform (default = 2)"));
90 
91 static cl::opt<bool> DupRet(
92     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
93     cl::desc("Duplicate return instructions into unconditional branches"));
94 
95 static cl::opt<bool>
96     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
97                cl::desc("Sink common instructions down to the end block"));
98 
99 static cl::opt<bool> HoistCondStores(
100     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
101     cl::desc("Hoist conditional stores if an unconditional store precedes"));
102 
103 static cl::opt<bool> MergeCondStores(
104     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
105     cl::desc("Hoist conditional stores even if an unconditional store does not "
106              "precede - hoist multiple conditional stores into a single "
107              "predicated store"));
108 
109 static cl::opt<bool> MergeCondStoresAggressively(
110     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
111     cl::desc("When merging conditional stores, do so even if the resultant "
112              "basic blocks are unlikely to be if-converted as a result"));
113 
114 static cl::opt<bool> SpeculateOneExpensiveInst(
115     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
116     cl::desc("Allow exactly one expensive instruction to be speculatively "
117              "executed"));
118 
119 static cl::opt<unsigned> MaxSpeculationDepth(
120     "max-speculation-depth", cl::Hidden, cl::init(10),
121     cl::desc("Limit maximum recursion depth when calculating costs of "
122              "speculatively executed instructions"));
123 
124 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
125 STATISTIC(NumLinearMaps,
126           "Number of switch instructions turned into linear mapping");
127 STATISTIC(NumLookupTables,
128           "Number of switch instructions turned into lookup tables");
129 STATISTIC(
130     NumLookupTablesHoles,
131     "Number of switch instructions turned into lookup tables (holes checked)");
132 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
133 STATISTIC(NumSinkCommons,
134           "Number of common instructions sunk down to the end block");
135 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
136 
137 namespace {
138 
139 // The first field contains the value that the switch produces when a certain
140 // case group is selected, and the second field is a vector containing the
141 // cases composing the case group.
142 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
143     SwitchCaseResultVectorTy;
144 // The first field contains the phi node that generates a result of the switch
145 // and the second field contains the value generated for a certain case in the
146 // switch for that PHI.
147 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
148 
149 /// ValueEqualityComparisonCase - Represents a case of a switch.
150 struct ValueEqualityComparisonCase {
151   ConstantInt *Value;
152   BasicBlock *Dest;
153 
154   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
155       : Value(Value), Dest(Dest) {}
156 
157   bool operator<(ValueEqualityComparisonCase RHS) const {
158     // Comparing pointers is ok as we only rely on the order for uniquing.
159     return Value < RHS.Value;
160   }
161 
162   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
163 };
164 
165 class SimplifyCFGOpt {
166   const TargetTransformInfo &TTI;
167   const DataLayout &DL;
168   unsigned BonusInstThreshold;
169   AssumptionCache *AC;
170   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
171   Value *isValueEqualityComparison(TerminatorInst *TI);
172   BasicBlock *GetValueEqualityComparisonCases(
173       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
174   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
175                                                      BasicBlock *Pred,
176                                                      IRBuilder<> &Builder);
177   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
178                                            IRBuilder<> &Builder);
179 
180   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
181   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
182   bool SimplifySingleResume(ResumeInst *RI);
183   bool SimplifyCommonResume(ResumeInst *RI);
184   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
185   bool SimplifyUnreachable(UnreachableInst *UI);
186   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
187   bool SimplifyIndirectBr(IndirectBrInst *IBI);
188   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
189   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
190 
191 public:
192   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
193                  unsigned BonusInstThreshold, AssumptionCache *AC,
194                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
195       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
196         LoopHeaders(LoopHeaders) {}
197 
198   bool run(BasicBlock *BB);
199 };
200 
201 } // end anonymous namespace
202 
203 /// Return true if it is safe to merge these two
204 /// terminator instructions together.
205 static bool
206 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
207                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
208   if (SI1 == SI2)
209     return false; // Can't merge with self!
210 
211   // It is not safe to merge these two switch instructions if they have a common
212   // successor, and if that successor has a PHI node, and if *that* PHI node has
213   // conflicting incoming values from the two switch blocks.
214   BasicBlock *SI1BB = SI1->getParent();
215   BasicBlock *SI2BB = SI2->getParent();
216 
217   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
218   bool Fail = false;
219   for (BasicBlock *Succ : successors(SI2BB))
220     if (SI1Succs.count(Succ))
221       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
222         PHINode *PN = cast<PHINode>(BBI);
223         if (PN->getIncomingValueForBlock(SI1BB) !=
224             PN->getIncomingValueForBlock(SI2BB)) {
225           if (FailBlocks)
226             FailBlocks->insert(Succ);
227           Fail = true;
228         }
229       }
230 
231   return !Fail;
232 }
233 
234 /// Return true if it is safe and profitable to merge these two terminator
235 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
236 /// store all PHI nodes in common successors.
237 static bool
238 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
239                                 Instruction *Cond,
240                                 SmallVectorImpl<PHINode *> &PhiNodes) {
241   if (SI1 == SI2)
242     return false; // Can't merge with self!
243   assert(SI1->isUnconditional() && SI2->isConditional());
244 
245   // We fold the unconditional branch if we can easily update all PHI nodes in
246   // common successors:
247   // 1> We have a constant incoming value for the conditional branch;
248   // 2> We have "Cond" as the incoming value for the unconditional branch;
249   // 3> SI2->getCondition() and Cond have same operands.
250   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
251   if (!Ci2)
252     return false;
253   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
254         Cond->getOperand(1) == Ci2->getOperand(1)) &&
255       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
256         Cond->getOperand(1) == Ci2->getOperand(0)))
257     return false;
258 
259   BasicBlock *SI1BB = SI1->getParent();
260   BasicBlock *SI2BB = SI2->getParent();
261   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
262   for (BasicBlock *Succ : successors(SI2BB))
263     if (SI1Succs.count(Succ))
264       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
265         PHINode *PN = cast<PHINode>(BBI);
266         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
267             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
268           return false;
269         PhiNodes.push_back(PN);
270       }
271   return true;
272 }
273 
274 /// Update PHI nodes in Succ to indicate that there will now be entries in it
275 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
276 /// will be the same as those coming in from ExistPred, an existing predecessor
277 /// of Succ.
278 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
279                                   BasicBlock *ExistPred) {
280   if (!isa<PHINode>(Succ->begin()))
281     return; // Quick exit if nothing to do
282 
283   PHINode *PN;
284   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
285     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
286 }
287 
288 /// Compute an abstract "cost" of speculating the given instruction,
289 /// which is assumed to be safe to speculate. TCC_Free means cheap,
290 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
291 /// expensive.
292 static unsigned ComputeSpeculationCost(const User *I,
293                                        const TargetTransformInfo &TTI) {
294   assert(isSafeToSpeculativelyExecute(I) &&
295          "Instruction is not safe to speculatively execute!");
296   return TTI.getUserCost(I);
297 }
298 
299 /// If we have a merge point of an "if condition" as accepted above,
300 /// return true if the specified value dominates the block.  We
301 /// don't handle the true generality of domination here, just a special case
302 /// which works well enough for us.
303 ///
304 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
305 /// see if V (which must be an instruction) and its recursive operands
306 /// that do not dominate BB have a combined cost lower than CostRemaining and
307 /// are non-trapping.  If both are true, the instruction is inserted into the
308 /// set and true is returned.
309 ///
310 /// The cost for most non-trapping instructions is defined as 1 except for
311 /// Select whose cost is 2.
312 ///
313 /// After this function returns, CostRemaining is decreased by the cost of
314 /// V plus its non-dominating operands.  If that cost is greater than
315 /// CostRemaining, false is returned and CostRemaining is undefined.
316 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
317                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
318                                 unsigned &CostRemaining,
319                                 const TargetTransformInfo &TTI,
320                                 unsigned Depth = 0) {
321   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
322   // so limit the recursion depth.
323   // TODO: While this recursion limit does prevent pathological behavior, it
324   // would be better to track visited instructions to avoid cycles.
325   if (Depth == MaxSpeculationDepth)
326     return false;
327 
328   Instruction *I = dyn_cast<Instruction>(V);
329   if (!I) {
330     // Non-instructions all dominate instructions, but not all constantexprs
331     // can be executed unconditionally.
332     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
333       if (C->canTrap())
334         return false;
335     return true;
336   }
337   BasicBlock *PBB = I->getParent();
338 
339   // We don't want to allow weird loops that might have the "if condition" in
340   // the bottom of this block.
341   if (PBB == BB)
342     return false;
343 
344   // If this instruction is defined in a block that contains an unconditional
345   // branch to BB, then it must be in the 'conditional' part of the "if
346   // statement".  If not, it definitely dominates the region.
347   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
348   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
349     return true;
350 
351   // If we aren't allowing aggressive promotion anymore, then don't consider
352   // instructions in the 'if region'.
353   if (!AggressiveInsts)
354     return false;
355 
356   // If we have seen this instruction before, don't count it again.
357   if (AggressiveInsts->count(I))
358     return true;
359 
360   // Okay, it looks like the instruction IS in the "condition".  Check to
361   // see if it's a cheap instruction to unconditionally compute, and if it
362   // only uses stuff defined outside of the condition.  If so, hoist it out.
363   if (!isSafeToSpeculativelyExecute(I))
364     return false;
365 
366   unsigned Cost = ComputeSpeculationCost(I, TTI);
367 
368   // Allow exactly one instruction to be speculated regardless of its cost
369   // (as long as it is safe to do so).
370   // This is intended to flatten the CFG even if the instruction is a division
371   // or other expensive operation. The speculation of an expensive instruction
372   // is expected to be undone in CodeGenPrepare if the speculation has not
373   // enabled further IR optimizations.
374   if (Cost > CostRemaining &&
375       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
376     return false;
377 
378   // Avoid unsigned wrap.
379   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
380 
381   // Okay, we can only really hoist these out if their operands do
382   // not take us over the cost threshold.
383   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
384     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
385                              Depth + 1))
386       return false;
387   // Okay, it's safe to do this!  Remember this instruction.
388   AggressiveInsts->insert(I);
389   return true;
390 }
391 
392 /// Extract ConstantInt from value, looking through IntToPtr
393 /// and PointerNullValue. Return NULL if value is not a constant int.
394 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
395   // Normal constant int.
396   ConstantInt *CI = dyn_cast<ConstantInt>(V);
397   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
398     return CI;
399 
400   // This is some kind of pointer constant. Turn it into a pointer-sized
401   // ConstantInt if possible.
402   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
403 
404   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
405   if (isa<ConstantPointerNull>(V))
406     return ConstantInt::get(PtrTy, 0);
407 
408   // IntToPtr const int.
409   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
410     if (CE->getOpcode() == Instruction::IntToPtr)
411       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
412         // The constant is very likely to have the right type already.
413         if (CI->getType() == PtrTy)
414           return CI;
415         else
416           return cast<ConstantInt>(
417               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
418       }
419   return nullptr;
420 }
421 
422 namespace {
423 
424 /// Given a chain of or (||) or and (&&) comparison of a value against a
425 /// constant, this will try to recover the information required for a switch
426 /// structure.
427 /// It will depth-first traverse the chain of comparison, seeking for patterns
428 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
429 /// representing the different cases for the switch.
430 /// Note that if the chain is composed of '||' it will build the set of elements
431 /// that matches the comparisons (i.e. any of this value validate the chain)
432 /// while for a chain of '&&' it will build the set elements that make the test
433 /// fail.
434 struct ConstantComparesGatherer {
435   const DataLayout &DL;
436   Value *CompValue; /// Value found for the switch comparison
437   Value *Extra;     /// Extra clause to be checked before the switch
438   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
439   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
440 
441   /// Construct and compute the result for the comparison instruction Cond
442   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
443       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
444     gather(Cond);
445   }
446 
447   /// Prevent copy
448   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
449   ConstantComparesGatherer &
450   operator=(const ConstantComparesGatherer &) = delete;
451 
452 private:
453   /// Try to set the current value used for the comparison, it succeeds only if
454   /// it wasn't set before or if the new value is the same as the old one
455   bool setValueOnce(Value *NewVal) {
456     if (CompValue && CompValue != NewVal)
457       return false;
458     CompValue = NewVal;
459     return (CompValue != nullptr);
460   }
461 
462   /// Try to match Instruction "I" as a comparison against a constant and
463   /// populates the array Vals with the set of values that match (or do not
464   /// match depending on isEQ).
465   /// Return false on failure. On success, the Value the comparison matched
466   /// against is placed in CompValue.
467   /// If CompValue is already set, the function is expected to fail if a match
468   /// is found but the value compared to is different.
469   bool matchInstruction(Instruction *I, bool isEQ) {
470     // If this is an icmp against a constant, handle this as one of the cases.
471     ICmpInst *ICI;
472     ConstantInt *C;
473     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
474           (C = GetConstantInt(I->getOperand(1), DL)))) {
475       return false;
476     }
477 
478     Value *RHSVal;
479     const APInt *RHSC;
480 
481     // Pattern match a special case
482     // (x & ~2^z) == y --> x == y || x == y|2^z
483     // This undoes a transformation done by instcombine to fuse 2 compares.
484     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
485 
486       // It's a little bit hard to see why the following transformations are
487       // correct. Here is a CVC3 program to verify them for 64-bit values:
488 
489       /*
490          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
491          x    : BITVECTOR(64);
492          y    : BITVECTOR(64);
493          z    : BITVECTOR(64);
494          mask : BITVECTOR(64) = BVSHL(ONE, z);
495          QUERY( (y & ~mask = y) =>
496                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
497          );
498          QUERY( (y |  mask = y) =>
499                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
500          );
501       */
502 
503       // Please note that each pattern must be a dual implication (<--> or
504       // iff). One directional implication can create spurious matches. If the
505       // implication is only one-way, an unsatisfiable condition on the left
506       // side can imply a satisfiable condition on the right side. Dual
507       // implication ensures that satisfiable conditions are transformed to
508       // other satisfiable conditions and unsatisfiable conditions are
509       // transformed to other unsatisfiable conditions.
510 
511       // Here is a concrete example of a unsatisfiable condition on the left
512       // implying a satisfiable condition on the right:
513       //
514       // mask = (1 << z)
515       // (x & ~mask) == y  --> (x == y || x == (y | mask))
516       //
517       // Substituting y = 3, z = 0 yields:
518       // (x & -2) == 3 --> (x == 3 || x == 2)
519 
520       // Pattern match a special case:
521       /*
522         QUERY( (y & ~mask = y) =>
523                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
524         );
525       */
526       if (match(ICI->getOperand(0),
527                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
528         APInt Mask = ~*RHSC;
529         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
530           // If we already have a value for the switch, it has to match!
531           if (!setValueOnce(RHSVal))
532             return false;
533 
534           Vals.push_back(C);
535           Vals.push_back(
536               ConstantInt::get(C->getContext(),
537                                C->getValue() | Mask));
538           UsedICmps++;
539           return true;
540         }
541       }
542 
543       // Pattern match a special case:
544       /*
545         QUERY( (y |  mask = y) =>
546                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
547         );
548       */
549       if (match(ICI->getOperand(0),
550                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
551         APInt Mask = *RHSC;
552         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
553           // If we already have a value for the switch, it has to match!
554           if (!setValueOnce(RHSVal))
555             return false;
556 
557           Vals.push_back(C);
558           Vals.push_back(ConstantInt::get(C->getContext(),
559                                           C->getValue() & ~Mask));
560           UsedICmps++;
561           return true;
562         }
563       }
564 
565       // If we already have a value for the switch, it has to match!
566       if (!setValueOnce(ICI->getOperand(0)))
567         return false;
568 
569       UsedICmps++;
570       Vals.push_back(C);
571       return ICI->getOperand(0);
572     }
573 
574     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
575     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
576         ICI->getPredicate(), C->getValue());
577 
578     // Shift the range if the compare is fed by an add. This is the range
579     // compare idiom as emitted by instcombine.
580     Value *CandidateVal = I->getOperand(0);
581     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
582       Span = Span.subtract(*RHSC);
583       CandidateVal = RHSVal;
584     }
585 
586     // If this is an and/!= check, then we are looking to build the set of
587     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
588     // x != 0 && x != 1.
589     if (!isEQ)
590       Span = Span.inverse();
591 
592     // If there are a ton of values, we don't want to make a ginormous switch.
593     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
594       return false;
595     }
596 
597     // If we already have a value for the switch, it has to match!
598     if (!setValueOnce(CandidateVal))
599       return false;
600 
601     // Add all values from the range to the set
602     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
603       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
604 
605     UsedICmps++;
606     return true;
607   }
608 
609   /// Given a potentially 'or'd or 'and'd together collection of icmp
610   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
611   /// the value being compared, and stick the list constants into the Vals
612   /// vector.
613   /// One "Extra" case is allowed to differ from the other.
614   void gather(Value *V) {
615     Instruction *I = dyn_cast<Instruction>(V);
616     bool isEQ = (I->getOpcode() == Instruction::Or);
617 
618     // Keep a stack (SmallVector for efficiency) for depth-first traversal
619     SmallVector<Value *, 8> DFT;
620     SmallPtrSet<Value *, 8> Visited;
621 
622     // Initialize
623     Visited.insert(V);
624     DFT.push_back(V);
625 
626     while (!DFT.empty()) {
627       V = DFT.pop_back_val();
628 
629       if (Instruction *I = dyn_cast<Instruction>(V)) {
630         // If it is a || (or && depending on isEQ), process the operands.
631         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
632           if (Visited.insert(I->getOperand(1)).second)
633             DFT.push_back(I->getOperand(1));
634           if (Visited.insert(I->getOperand(0)).second)
635             DFT.push_back(I->getOperand(0));
636           continue;
637         }
638 
639         // Try to match the current instruction
640         if (matchInstruction(I, isEQ))
641           // Match succeed, continue the loop
642           continue;
643       }
644 
645       // One element of the sequence of || (or &&) could not be match as a
646       // comparison against the same value as the others.
647       // We allow only one "Extra" case to be checked before the switch
648       if (!Extra) {
649         Extra = V;
650         continue;
651       }
652       // Failed to parse a proper sequence, abort now
653       CompValue = nullptr;
654       break;
655     }
656   }
657 };
658 
659 } // end anonymous namespace
660 
661 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
662   Instruction *Cond = nullptr;
663   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
664     Cond = dyn_cast<Instruction>(SI->getCondition());
665   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
666     if (BI->isConditional())
667       Cond = dyn_cast<Instruction>(BI->getCondition());
668   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
669     Cond = dyn_cast<Instruction>(IBI->getAddress());
670   }
671 
672   TI->eraseFromParent();
673   if (Cond)
674     RecursivelyDeleteTriviallyDeadInstructions(Cond);
675 }
676 
677 /// Return true if the specified terminator checks
678 /// to see if a value is equal to constant integer value.
679 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
680   Value *CV = nullptr;
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     // Do not permit merging of large switch instructions into their
683     // predecessors unless there is only one predecessor.
684     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
685                                                pred_end(SI->getParent())) <=
686         128)
687       CV = SI->getCondition();
688   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
689     if (BI->isConditional() && BI->getCondition()->hasOneUse())
690       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
691         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
692           CV = ICI->getOperand(0);
693       }
694 
695   // Unwrap any lossless ptrtoint cast.
696   if (CV) {
697     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
698       Value *Ptr = PTII->getPointerOperand();
699       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
700         CV = Ptr;
701     }
702   }
703   return CV;
704 }
705 
706 /// Given a value comparison instruction,
707 /// decode all of the 'cases' that it represents and return the 'default' block.
708 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
709     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
710   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
711     Cases.reserve(SI->getNumCases());
712     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
713          ++i)
714       Cases.push_back(
715           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
716     return SI->getDefaultDest();
717   }
718 
719   BranchInst *BI = cast<BranchInst>(TI);
720   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
721   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
722   Cases.push_back(ValueEqualityComparisonCase(
723       GetConstantInt(ICI->getOperand(1), DL), Succ));
724   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
725 }
726 
727 /// Given a vector of bb/value pairs, remove any entries
728 /// in the list that match the specified block.
729 static void
730 EliminateBlockCases(BasicBlock *BB,
731                     std::vector<ValueEqualityComparisonCase> &Cases) {
732   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
733 }
734 
735 /// Return true if there are any keys in C1 that exist in C2 as well.
736 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
737                           std::vector<ValueEqualityComparisonCase> &C2) {
738   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
739 
740   // Make V1 be smaller than V2.
741   if (V1->size() > V2->size())
742     std::swap(V1, V2);
743 
744   if (V1->empty())
745     return false;
746   if (V1->size() == 1) {
747     // Just scan V2.
748     ConstantInt *TheVal = (*V1)[0].Value;
749     for (unsigned i = 0, e = V2->size(); i != e; ++i)
750       if (TheVal == (*V2)[i].Value)
751         return true;
752   }
753 
754   // Otherwise, just sort both lists and compare element by element.
755   array_pod_sort(V1->begin(), V1->end());
756   array_pod_sort(V2->begin(), V2->end());
757   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
758   while (i1 != e1 && i2 != e2) {
759     if ((*V1)[i1].Value == (*V2)[i2].Value)
760       return true;
761     if ((*V1)[i1].Value < (*V2)[i2].Value)
762       ++i1;
763     else
764       ++i2;
765   }
766   return false;
767 }
768 
769 /// If TI is known to be a terminator instruction and its block is known to
770 /// only have a single predecessor block, check to see if that predecessor is
771 /// also a value comparison with the same value, and if that comparison
772 /// determines the outcome of this comparison. If so, simplify TI. This does a
773 /// very limited form of jump threading.
774 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
775     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
776   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
777   if (!PredVal)
778     return false; // Not a value comparison in predecessor.
779 
780   Value *ThisVal = isValueEqualityComparison(TI);
781   assert(ThisVal && "This isn't a value comparison!!");
782   if (ThisVal != PredVal)
783     return false; // Different predicates.
784 
785   // TODO: Preserve branch weight metadata, similarly to how
786   // FoldValueComparisonIntoPredecessors preserves it.
787 
788   // Find out information about when control will move from Pred to TI's block.
789   std::vector<ValueEqualityComparisonCase> PredCases;
790   BasicBlock *PredDef =
791       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
792   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
793 
794   // Find information about how control leaves this block.
795   std::vector<ValueEqualityComparisonCase> ThisCases;
796   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
797   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
798 
799   // If TI's block is the default block from Pred's comparison, potentially
800   // simplify TI based on this knowledge.
801   if (PredDef == TI->getParent()) {
802     // If we are here, we know that the value is none of those cases listed in
803     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
804     // can simplify TI.
805     if (!ValuesOverlap(PredCases, ThisCases))
806       return false;
807 
808     if (isa<BranchInst>(TI)) {
809       // Okay, one of the successors of this condbr is dead.  Convert it to a
810       // uncond br.
811       assert(ThisCases.size() == 1 && "Branch can only have one case!");
812       // Insert the new branch.
813       Instruction *NI = Builder.CreateBr(ThisDef);
814       (void)NI;
815 
816       // Remove PHI node entries for the dead edge.
817       ThisCases[0].Dest->removePredecessor(TI->getParent());
818 
819       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
820                    << "Through successor TI: " << *TI << "Leaving: " << *NI
821                    << "\n");
822 
823       EraseTerminatorInstAndDCECond(TI);
824       return true;
825     }
826 
827     SwitchInst *SI = cast<SwitchInst>(TI);
828     // Okay, TI has cases that are statically dead, prune them away.
829     SmallPtrSet<Constant *, 16> DeadCases;
830     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
831       DeadCases.insert(PredCases[i].Value);
832 
833     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
834                  << "Through successor TI: " << *TI);
835 
836     // Collect branch weights into a vector.
837     SmallVector<uint32_t, 8> Weights;
838     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
839     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
840     if (HasWeight)
841       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
842            ++MD_i) {
843         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
844         Weights.push_back(CI->getValue().getZExtValue());
845       }
846     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
847       --i;
848       if (DeadCases.count(i.getCaseValue())) {
849         if (HasWeight) {
850           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
851           Weights.pop_back();
852         }
853         i.getCaseSuccessor()->removePredecessor(TI->getParent());
854         SI->removeCase(i);
855       }
856     }
857     if (HasWeight && Weights.size() >= 2)
858       SI->setMetadata(LLVMContext::MD_prof,
859                       MDBuilder(SI->getParent()->getContext())
860                           .createBranchWeights(Weights));
861 
862     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
863     return true;
864   }
865 
866   // Otherwise, TI's block must correspond to some matched value.  Find out
867   // which value (or set of values) this is.
868   ConstantInt *TIV = nullptr;
869   BasicBlock *TIBB = TI->getParent();
870   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
871     if (PredCases[i].Dest == TIBB) {
872       if (TIV)
873         return false; // Cannot handle multiple values coming to this block.
874       TIV = PredCases[i].Value;
875     }
876   assert(TIV && "No edge from pred to succ?");
877 
878   // Okay, we found the one constant that our value can be if we get into TI's
879   // BB.  Find out which successor will unconditionally be branched to.
880   BasicBlock *TheRealDest = nullptr;
881   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
882     if (ThisCases[i].Value == TIV) {
883       TheRealDest = ThisCases[i].Dest;
884       break;
885     }
886 
887   // If not handled by any explicit cases, it is handled by the default case.
888   if (!TheRealDest)
889     TheRealDest = ThisDef;
890 
891   // Remove PHI node entries for dead edges.
892   BasicBlock *CheckEdge = TheRealDest;
893   for (BasicBlock *Succ : successors(TIBB))
894     if (Succ != CheckEdge)
895       Succ->removePredecessor(TIBB);
896     else
897       CheckEdge = nullptr;
898 
899   // Insert the new branch.
900   Instruction *NI = Builder.CreateBr(TheRealDest);
901   (void)NI;
902 
903   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
904                << "Through successor TI: " << *TI << "Leaving: " << *NI
905                << "\n");
906 
907   EraseTerminatorInstAndDCECond(TI);
908   return true;
909 }
910 
911 namespace {
912 
913 /// This class implements a stable ordering of constant
914 /// integers that does not depend on their address.  This is important for
915 /// applications that sort ConstantInt's to ensure uniqueness.
916 struct ConstantIntOrdering {
917   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
918     return LHS->getValue().ult(RHS->getValue());
919   }
920 };
921 
922 } // end anonymous namespace
923 
924 static int ConstantIntSortPredicate(ConstantInt *const *P1,
925                                     ConstantInt *const *P2) {
926   const ConstantInt *LHS = *P1;
927   const ConstantInt *RHS = *P2;
928   if (LHS == RHS)
929     return 0;
930   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
931 }
932 
933 static inline bool HasBranchWeights(const Instruction *I) {
934   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
935   if (ProfMD && ProfMD->getOperand(0))
936     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
937       return MDS->getString().equals("branch_weights");
938 
939   return false;
940 }
941 
942 /// Get Weights of a given TerminatorInst, the default weight is at the front
943 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
944 /// metadata.
945 static void GetBranchWeights(TerminatorInst *TI,
946                              SmallVectorImpl<uint64_t> &Weights) {
947   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
948   assert(MD);
949   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
950     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
951     Weights.push_back(CI->getValue().getZExtValue());
952   }
953 
954   // If TI is a conditional eq, the default case is the false case,
955   // and the corresponding branch-weight data is at index 2. We swap the
956   // default weight to be the first entry.
957   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
958     assert(Weights.size() == 2);
959     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
960     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
961       std::swap(Weights.front(), Weights.back());
962   }
963 }
964 
965 /// Keep halving the weights until all can fit in uint32_t.
966 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
967   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
968   if (Max > UINT_MAX) {
969     unsigned Offset = 32 - countLeadingZeros(Max);
970     for (uint64_t &I : Weights)
971       I >>= Offset;
972   }
973 }
974 
975 /// The specified terminator is a value equality comparison instruction
976 /// (either a switch or a branch on "X == c").
977 /// See if any of the predecessors of the terminator block are value comparisons
978 /// on the same value.  If so, and if safe to do so, fold them together.
979 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
980                                                          IRBuilder<> &Builder) {
981   BasicBlock *BB = TI->getParent();
982   Value *CV = isValueEqualityComparison(TI); // CondVal
983   assert(CV && "Not a comparison?");
984   bool Changed = false;
985 
986   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
987   while (!Preds.empty()) {
988     BasicBlock *Pred = Preds.pop_back_val();
989 
990     // See if the predecessor is a comparison with the same value.
991     TerminatorInst *PTI = Pred->getTerminator();
992     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
993 
994     if (PCV == CV && TI != PTI) {
995       SmallSetVector<BasicBlock*, 4> FailBlocks;
996       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
997         for (auto *Succ : FailBlocks) {
998           std::vector<BasicBlock*> Blocks = { TI->getParent() };
999           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
1000             return false;
1001         }
1002       }
1003 
1004       // Figure out which 'cases' to copy from SI to PSI.
1005       std::vector<ValueEqualityComparisonCase> BBCases;
1006       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1007 
1008       std::vector<ValueEqualityComparisonCase> PredCases;
1009       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1010 
1011       // Based on whether the default edge from PTI goes to BB or not, fill in
1012       // PredCases and PredDefault with the new switch cases we would like to
1013       // build.
1014       SmallVector<BasicBlock *, 8> NewSuccessors;
1015 
1016       // Update the branch weight metadata along the way
1017       SmallVector<uint64_t, 8> Weights;
1018       bool PredHasWeights = HasBranchWeights(PTI);
1019       bool SuccHasWeights = HasBranchWeights(TI);
1020 
1021       if (PredHasWeights) {
1022         GetBranchWeights(PTI, Weights);
1023         // branch-weight metadata is inconsistent here.
1024         if (Weights.size() != 1 + PredCases.size())
1025           PredHasWeights = SuccHasWeights = false;
1026       } else if (SuccHasWeights)
1027         // If there are no predecessor weights but there are successor weights,
1028         // populate Weights with 1, which will later be scaled to the sum of
1029         // successor's weights
1030         Weights.assign(1 + PredCases.size(), 1);
1031 
1032       SmallVector<uint64_t, 8> SuccWeights;
1033       if (SuccHasWeights) {
1034         GetBranchWeights(TI, SuccWeights);
1035         // branch-weight metadata is inconsistent here.
1036         if (SuccWeights.size() != 1 + BBCases.size())
1037           PredHasWeights = SuccHasWeights = false;
1038       } else if (PredHasWeights)
1039         SuccWeights.assign(1 + BBCases.size(), 1);
1040 
1041       if (PredDefault == BB) {
1042         // If this is the default destination from PTI, only the edges in TI
1043         // that don't occur in PTI, or that branch to BB will be activated.
1044         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1045         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1046           if (PredCases[i].Dest != BB)
1047             PTIHandled.insert(PredCases[i].Value);
1048           else {
1049             // The default destination is BB, we don't need explicit targets.
1050             std::swap(PredCases[i], PredCases.back());
1051 
1052             if (PredHasWeights || SuccHasWeights) {
1053               // Increase weight for the default case.
1054               Weights[0] += Weights[i + 1];
1055               std::swap(Weights[i + 1], Weights.back());
1056               Weights.pop_back();
1057             }
1058 
1059             PredCases.pop_back();
1060             --i;
1061             --e;
1062           }
1063 
1064         // Reconstruct the new switch statement we will be building.
1065         if (PredDefault != BBDefault) {
1066           PredDefault->removePredecessor(Pred);
1067           PredDefault = BBDefault;
1068           NewSuccessors.push_back(BBDefault);
1069         }
1070 
1071         unsigned CasesFromPred = Weights.size();
1072         uint64_t ValidTotalSuccWeight = 0;
1073         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1074           if (!PTIHandled.count(BBCases[i].Value) &&
1075               BBCases[i].Dest != BBDefault) {
1076             PredCases.push_back(BBCases[i]);
1077             NewSuccessors.push_back(BBCases[i].Dest);
1078             if (SuccHasWeights || PredHasWeights) {
1079               // The default weight is at index 0, so weight for the ith case
1080               // should be at index i+1. Scale the cases from successor by
1081               // PredDefaultWeight (Weights[0]).
1082               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1083               ValidTotalSuccWeight += SuccWeights[i + 1];
1084             }
1085           }
1086 
1087         if (SuccHasWeights || PredHasWeights) {
1088           ValidTotalSuccWeight += SuccWeights[0];
1089           // Scale the cases from predecessor by ValidTotalSuccWeight.
1090           for (unsigned i = 1; i < CasesFromPred; ++i)
1091             Weights[i] *= ValidTotalSuccWeight;
1092           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1093           Weights[0] *= SuccWeights[0];
1094         }
1095       } else {
1096         // If this is not the default destination from PSI, only the edges
1097         // in SI that occur in PSI with a destination of BB will be
1098         // activated.
1099         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1100         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1101         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1102           if (PredCases[i].Dest == BB) {
1103             PTIHandled.insert(PredCases[i].Value);
1104 
1105             if (PredHasWeights || SuccHasWeights) {
1106               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1107               std::swap(Weights[i + 1], Weights.back());
1108               Weights.pop_back();
1109             }
1110 
1111             std::swap(PredCases[i], PredCases.back());
1112             PredCases.pop_back();
1113             --i;
1114             --e;
1115           }
1116 
1117         // Okay, now we know which constants were sent to BB from the
1118         // predecessor.  Figure out where they will all go now.
1119         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1120           if (PTIHandled.count(BBCases[i].Value)) {
1121             // If this is one we are capable of getting...
1122             if (PredHasWeights || SuccHasWeights)
1123               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1124             PredCases.push_back(BBCases[i]);
1125             NewSuccessors.push_back(BBCases[i].Dest);
1126             PTIHandled.erase(
1127                 BBCases[i].Value); // This constant is taken care of
1128           }
1129 
1130         // If there are any constants vectored to BB that TI doesn't handle,
1131         // they must go to the default destination of TI.
1132         for (ConstantInt *I : PTIHandled) {
1133           if (PredHasWeights || SuccHasWeights)
1134             Weights.push_back(WeightsForHandled[I]);
1135           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1136           NewSuccessors.push_back(BBDefault);
1137         }
1138       }
1139 
1140       // Okay, at this point, we know which new successor Pred will get.  Make
1141       // sure we update the number of entries in the PHI nodes for these
1142       // successors.
1143       for (BasicBlock *NewSuccessor : NewSuccessors)
1144         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1145 
1146       Builder.SetInsertPoint(PTI);
1147       // Convert pointer to int before we switch.
1148       if (CV->getType()->isPointerTy()) {
1149         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1150                                     "magicptr");
1151       }
1152 
1153       // Now that the successors are updated, create the new Switch instruction.
1154       SwitchInst *NewSI =
1155           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1156       NewSI->setDebugLoc(PTI->getDebugLoc());
1157       for (ValueEqualityComparisonCase &V : PredCases)
1158         NewSI->addCase(V.Value, V.Dest);
1159 
1160       if (PredHasWeights || SuccHasWeights) {
1161         // Halve the weights if any of them cannot fit in an uint32_t
1162         FitWeights(Weights);
1163 
1164         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1165 
1166         NewSI->setMetadata(
1167             LLVMContext::MD_prof,
1168             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1169       }
1170 
1171       EraseTerminatorInstAndDCECond(PTI);
1172 
1173       // Okay, last check.  If BB is still a successor of PSI, then we must
1174       // have an infinite loop case.  If so, add an infinitely looping block
1175       // to handle the case to preserve the behavior of the code.
1176       BasicBlock *InfLoopBlock = nullptr;
1177       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1178         if (NewSI->getSuccessor(i) == BB) {
1179           if (!InfLoopBlock) {
1180             // Insert it at the end of the function, because it's either code,
1181             // or it won't matter if it's hot. :)
1182             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1183                                               BB->getParent());
1184             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1185           }
1186           NewSI->setSuccessor(i, InfLoopBlock);
1187         }
1188 
1189       Changed = true;
1190     }
1191   }
1192   return Changed;
1193 }
1194 
1195 // If we would need to insert a select that uses the value of this invoke
1196 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1197 // can't hoist the invoke, as there is nowhere to put the select in this case.
1198 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1199                                 Instruction *I1, Instruction *I2) {
1200   for (BasicBlock *Succ : successors(BB1)) {
1201     PHINode *PN;
1202     for (BasicBlock::iterator BBI = Succ->begin();
1203          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1204       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1205       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1206       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1207         return false;
1208       }
1209     }
1210   }
1211   return true;
1212 }
1213 
1214 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1215 
1216 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1217 /// in the two blocks up into the branch block. The caller of this function
1218 /// guarantees that BI's block dominates BB1 and BB2.
1219 static bool HoistThenElseCodeToIf(BranchInst *BI,
1220                                   const TargetTransformInfo &TTI) {
1221   // This does very trivial matching, with limited scanning, to find identical
1222   // instructions in the two blocks.  In particular, we don't want to get into
1223   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1224   // such, we currently just scan for obviously identical instructions in an
1225   // identical order.
1226   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1227   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1228 
1229   BasicBlock::iterator BB1_Itr = BB1->begin();
1230   BasicBlock::iterator BB2_Itr = BB2->begin();
1231 
1232   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1233   // Skip debug info if it is not identical.
1234   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1235   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1236   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1237     while (isa<DbgInfoIntrinsic>(I1))
1238       I1 = &*BB1_Itr++;
1239     while (isa<DbgInfoIntrinsic>(I2))
1240       I2 = &*BB2_Itr++;
1241   }
1242   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1243       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1244     return false;
1245 
1246   BasicBlock *BIParent = BI->getParent();
1247 
1248   bool Changed = false;
1249   do {
1250     // If we are hoisting the terminator instruction, don't move one (making a
1251     // broken BB), instead clone it, and remove BI.
1252     if (isa<TerminatorInst>(I1))
1253       goto HoistTerminator;
1254 
1255     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1256       return Changed;
1257 
1258     // For a normal instruction, we just move one to right before the branch,
1259     // then replace all uses of the other with the first.  Finally, we remove
1260     // the now redundant second instruction.
1261     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1262     if (!I2->use_empty())
1263       I2->replaceAllUsesWith(I1);
1264     I1->andIRFlags(I2);
1265     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1266                            LLVMContext::MD_range,
1267                            LLVMContext::MD_fpmath,
1268                            LLVMContext::MD_invariant_load,
1269                            LLVMContext::MD_nonnull,
1270                            LLVMContext::MD_invariant_group,
1271                            LLVMContext::MD_align,
1272                            LLVMContext::MD_dereferenceable,
1273                            LLVMContext::MD_dereferenceable_or_null,
1274                            LLVMContext::MD_mem_parallel_loop_access};
1275     combineMetadata(I1, I2, KnownIDs);
1276 
1277     // If the debug loc for I1 and I2 are different, as we are combining them
1278     // into one instruction, we do not want to select debug loc randomly from
1279     // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not
1280     // know the debug loc of the hoisted instruction.
1281     if (!isa<CallInst>(I1) &&  I1->getDebugLoc() != I2->getDebugLoc())
1282       I1->setDebugLoc(DebugLoc());
1283 
1284     I2->eraseFromParent();
1285     Changed = true;
1286 
1287     I1 = &*BB1_Itr++;
1288     I2 = &*BB2_Itr++;
1289     // Skip debug info if it is not identical.
1290     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1291     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1292     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1293       while (isa<DbgInfoIntrinsic>(I1))
1294         I1 = &*BB1_Itr++;
1295       while (isa<DbgInfoIntrinsic>(I2))
1296         I2 = &*BB2_Itr++;
1297     }
1298   } while (I1->isIdenticalToWhenDefined(I2));
1299 
1300   return true;
1301 
1302 HoistTerminator:
1303   // It may not be possible to hoist an invoke.
1304   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1305     return Changed;
1306 
1307   for (BasicBlock *Succ : successors(BB1)) {
1308     PHINode *PN;
1309     for (BasicBlock::iterator BBI = Succ->begin();
1310          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1311       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1312       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1313       if (BB1V == BB2V)
1314         continue;
1315 
1316       // Check for passingValueIsAlwaysUndefined here because we would rather
1317       // eliminate undefined control flow then converting it to a select.
1318       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1319           passingValueIsAlwaysUndefined(BB2V, PN))
1320         return Changed;
1321 
1322       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1323         return Changed;
1324       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1325         return Changed;
1326     }
1327   }
1328 
1329   // Okay, it is safe to hoist the terminator.
1330   Instruction *NT = I1->clone();
1331   BIParent->getInstList().insert(BI->getIterator(), NT);
1332   if (!NT->getType()->isVoidTy()) {
1333     I1->replaceAllUsesWith(NT);
1334     I2->replaceAllUsesWith(NT);
1335     NT->takeName(I1);
1336   }
1337 
1338   IRBuilder<NoFolder> Builder(NT);
1339   // Hoisting one of the terminators from our successor is a great thing.
1340   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1341   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1342   // nodes, so we insert select instruction to compute the final result.
1343   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1344   for (BasicBlock *Succ : successors(BB1)) {
1345     PHINode *PN;
1346     for (BasicBlock::iterator BBI = Succ->begin();
1347          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1348       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1349       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1350       if (BB1V == BB2V)
1351         continue;
1352 
1353       // These values do not agree.  Insert a select instruction before NT
1354       // that determines the right value.
1355       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1356       if (!SI)
1357         SI = cast<SelectInst>(
1358             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1359                                  BB1V->getName() + "." + BB2V->getName(), BI));
1360 
1361       // Make the PHI node use the select for all incoming values for BB1/BB2
1362       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1363         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1364           PN->setIncomingValue(i, SI);
1365     }
1366   }
1367 
1368   // Update any PHI nodes in our new successors.
1369   for (BasicBlock *Succ : successors(BB1))
1370     AddPredecessorToBlock(Succ, BIParent, BB1);
1371 
1372   EraseTerminatorInstAndDCECond(BI);
1373   return true;
1374 }
1375 
1376 // Is it legal to place a variable in operand \c OpIdx of \c I?
1377 // FIXME: This should be promoted to Instruction.
1378 static bool canReplaceOperandWithVariable(const Instruction *I,
1379                                           unsigned OpIdx) {
1380   // We can't have a PHI with a metadata type.
1381   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1382     return false;
1383 
1384   // Early exit.
1385   if (!isa<Constant>(I->getOperand(OpIdx)))
1386     return true;
1387 
1388   switch (I->getOpcode()) {
1389   default:
1390     return true;
1391   case Instruction::Call:
1392   case Instruction::Invoke:
1393     // FIXME: many arithmetic intrinsics have no issue taking a
1394     // variable, however it's hard to distingish these from
1395     // specials such as @llvm.frameaddress that require a constant.
1396     if (isa<IntrinsicInst>(I))
1397       return false;
1398 
1399     // Constant bundle operands may need to retain their constant-ness for
1400     // correctness.
1401     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1402       return false;
1403 
1404     return true;
1405 
1406   case Instruction::ShuffleVector:
1407     // Shufflevector masks are constant.
1408     return OpIdx != 2;
1409   case Instruction::ExtractValue:
1410   case Instruction::InsertValue:
1411     // All operands apart from the first are constant.
1412     return OpIdx == 0;
1413   case Instruction::Alloca:
1414     return false;
1415   case Instruction::GetElementPtr:
1416     if (OpIdx == 0)
1417       return true;
1418     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1419     return It.isSequential();
1420   }
1421 }
1422 
1423 // All instructions in Insts belong to different blocks that all unconditionally
1424 // branch to a common successor. Analyze each instruction and return true if it
1425 // would be possible to sink them into their successor, creating one common
1426 // instruction instead. For every value that would be required to be provided by
1427 // PHI node (because an operand varies in each input block), add to PHIOperands.
1428 static bool canSinkInstructions(
1429     ArrayRef<Instruction *> Insts,
1430     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1431   // Prune out obviously bad instructions to move. Any non-store instruction
1432   // must have exactly one use, and we check later that use is by a single,
1433   // common PHI instruction in the successor.
1434   for (auto *I : Insts) {
1435     // These instructions may change or break semantics if moved.
1436     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1437         I->getType()->isTokenTy())
1438       return false;
1439     // Everything must have only one use too, apart from stores which
1440     // have no uses.
1441     if (!isa<StoreInst>(I) && !I->hasOneUse())
1442       return false;
1443   }
1444 
1445   const Instruction *I0 = Insts.front();
1446   for (auto *I : Insts)
1447     if (!I->isSameOperationAs(I0))
1448       return false;
1449 
1450   // All instructions in Insts are known to be the same opcode. If they aren't
1451   // stores, check the only user of each is a PHI or in the same block as the
1452   // instruction, because if a user is in the same block as an instruction
1453   // we're contemplating sinking, it must already be determined to be sinkable.
1454   if (!isa<StoreInst>(I0)) {
1455     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1456     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1457     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1458           auto *U = cast<Instruction>(*I->user_begin());
1459           return (PNUse &&
1460                   PNUse->getParent() == Succ &&
1461                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1462                  U->getParent() == I->getParent();
1463         }))
1464       return false;
1465   }
1466 
1467   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1468     if (I0->getOperand(OI)->getType()->isTokenTy())
1469       // Don't touch any operand of token type.
1470       return false;
1471 
1472     // Because SROA can't handle speculating stores of selects, try not
1473     // to sink loads or stores of allocas when we'd have to create a PHI for
1474     // the address operand. Also, because it is likely that loads or stores
1475     // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1476     // This can cause code churn which can have unintended consequences down
1477     // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1478     // FIXME: This is a workaround for a deficiency in SROA - see
1479     // https://llvm.org/bugs/show_bug.cgi?id=30188
1480     if (OI == 1 && isa<StoreInst>(I0) &&
1481         any_of(Insts, [](const Instruction *I) {
1482           return isa<AllocaInst>(I->getOperand(1));
1483         }))
1484       return false;
1485     if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1486           return isa<AllocaInst>(I->getOperand(0));
1487         }))
1488       return false;
1489 
1490     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1491       assert(I->getNumOperands() == I0->getNumOperands());
1492       return I->getOperand(OI) == I0->getOperand(OI);
1493     };
1494     if (!all_of(Insts, SameAsI0)) {
1495       if (!canReplaceOperandWithVariable(I0, OI))
1496         // We can't create a PHI from this GEP.
1497         return false;
1498       // Don't create indirect calls! The called value is the final operand.
1499       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1500         // FIXME: if the call was *already* indirect, we should do this.
1501         return false;
1502       }
1503       for (auto *I : Insts)
1504         PHIOperands[I].push_back(I->getOperand(OI));
1505     }
1506   }
1507   return true;
1508 }
1509 
1510 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1511 // instruction of every block in Blocks to their common successor, commoning
1512 // into one instruction.
1513 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1514   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1515 
1516   // canSinkLastInstruction returning true guarantees that every block has at
1517   // least one non-terminator instruction.
1518   SmallVector<Instruction*,4> Insts;
1519   for (auto *BB : Blocks) {
1520     Instruction *I = BB->getTerminator();
1521     do {
1522       I = I->getPrevNode();
1523     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1524     if (!isa<DbgInfoIntrinsic>(I))
1525       Insts.push_back(I);
1526   }
1527 
1528   // The only checking we need to do now is that all users of all instructions
1529   // are the same PHI node. canSinkLastInstruction should have checked this but
1530   // it is slightly over-aggressive - it gets confused by commutative instructions
1531   // so double-check it here.
1532   Instruction *I0 = Insts.front();
1533   if (!isa<StoreInst>(I0)) {
1534     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1535     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1536           auto *U = cast<Instruction>(*I->user_begin());
1537           return U == PNUse;
1538         }))
1539       return false;
1540   }
1541 
1542   // We don't need to do any more checking here; canSinkLastInstruction should
1543   // have done it all for us.
1544   SmallVector<Value*, 4> NewOperands;
1545   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1546     // This check is different to that in canSinkLastInstruction. There, we
1547     // cared about the global view once simplifycfg (and instcombine) have
1548     // completed - it takes into account PHIs that become trivially
1549     // simplifiable.  However here we need a more local view; if an operand
1550     // differs we create a PHI and rely on instcombine to clean up the very
1551     // small mess we may make.
1552     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1553       return I->getOperand(O) != I0->getOperand(O);
1554     });
1555     if (!NeedPHI) {
1556       NewOperands.push_back(I0->getOperand(O));
1557       continue;
1558     }
1559 
1560     // Create a new PHI in the successor block and populate it.
1561     auto *Op = I0->getOperand(O);
1562     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1563     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1564                                Op->getName() + ".sink", &BBEnd->front());
1565     for (auto *I : Insts)
1566       PN->addIncoming(I->getOperand(O), I->getParent());
1567     NewOperands.push_back(PN);
1568   }
1569 
1570   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1571   // and move it to the start of the successor block.
1572   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1573     I0->getOperandUse(O).set(NewOperands[O]);
1574   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1575 
1576   // Update metadata and IR flags.
1577   for (auto *I : Insts)
1578     if (I != I0) {
1579       combineMetadataForCSE(I0, I);
1580       I0->andIRFlags(I);
1581     }
1582 
1583   if (!isa<StoreInst>(I0)) {
1584     // canSinkLastInstruction checked that all instructions were used by
1585     // one and only one PHI node. Find that now, RAUW it to our common
1586     // instruction and nuke it.
1587     assert(I0->hasOneUse());
1588     auto *PN = cast<PHINode>(*I0->user_begin());
1589     PN->replaceAllUsesWith(I0);
1590     PN->eraseFromParent();
1591   }
1592 
1593   // Finally nuke all instructions apart from the common instruction.
1594   for (auto *I : Insts)
1595     if (I != I0)
1596       I->eraseFromParent();
1597 
1598   return true;
1599 }
1600 
1601 namespace {
1602 
1603   // LockstepReverseIterator - Iterates through instructions
1604   // in a set of blocks in reverse order from the first non-terminator.
1605   // For example (assume all blocks have size n):
1606   //   LockstepReverseIterator I([B1, B2, B3]);
1607   //   *I-- = [B1[n], B2[n], B3[n]];
1608   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1609   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1610   //   ...
1611   class LockstepReverseIterator {
1612     ArrayRef<BasicBlock*> Blocks;
1613     SmallVector<Instruction*,4> Insts;
1614     bool Fail;
1615   public:
1616     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1617       Blocks(Blocks) {
1618       reset();
1619     }
1620 
1621     void reset() {
1622       Fail = false;
1623       Insts.clear();
1624       for (auto *BB : Blocks) {
1625         Instruction *Inst = BB->getTerminator();
1626         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1627           Inst = Inst->getPrevNode();
1628         if (!Inst) {
1629           // Block wasn't big enough.
1630           Fail = true;
1631           return;
1632         }
1633         Insts.push_back(Inst);
1634       }
1635     }
1636 
1637     bool isValid() const {
1638       return !Fail;
1639     }
1640 
1641     void operator -- () {
1642       if (Fail)
1643         return;
1644       for (auto *&Inst : Insts) {
1645         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1646           Inst = Inst->getPrevNode();
1647         // Already at beginning of block.
1648         if (!Inst) {
1649           Fail = true;
1650           return;
1651         }
1652       }
1653     }
1654 
1655     ArrayRef<Instruction*> operator * () const {
1656       return Insts;
1657     }
1658   };
1659 
1660 } // end anonymous namespace
1661 
1662 /// Given an unconditional branch that goes to BBEnd,
1663 /// check whether BBEnd has only two predecessors and the other predecessor
1664 /// ends with an unconditional branch. If it is true, sink any common code
1665 /// in the two predecessors to BBEnd.
1666 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1667   assert(BI1->isUnconditional());
1668   BasicBlock *BBEnd = BI1->getSuccessor(0);
1669 
1670   // We support two situations:
1671   //   (1) all incoming arcs are unconditional
1672   //   (2) one incoming arc is conditional
1673   //
1674   // (2) is very common in switch defaults and
1675   // else-if patterns;
1676   //
1677   //   if (a) f(1);
1678   //   else if (b) f(2);
1679   //
1680   // produces:
1681   //
1682   //       [if]
1683   //      /    \
1684   //    [f(1)] [if]
1685   //      |     | \
1686   //      |     |  \
1687   //      |  [f(2)]|
1688   //       \    | /
1689   //        [ end ]
1690   //
1691   // [end] has two unconditional predecessor arcs and one conditional. The
1692   // conditional refers to the implicit empty 'else' arc. This conditional
1693   // arc can also be caused by an empty default block in a switch.
1694   //
1695   // In this case, we attempt to sink code from all *unconditional* arcs.
1696   // If we can sink instructions from these arcs (determined during the scan
1697   // phase below) we insert a common successor for all unconditional arcs and
1698   // connect that to [end], to enable sinking:
1699   //
1700   //       [if]
1701   //      /    \
1702   //    [x(1)] [if]
1703   //      |     | \
1704   //      |     |  \
1705   //      |  [x(2)] |
1706   //       \   /    |
1707   //   [sink.split] |
1708   //         \     /
1709   //         [ end ]
1710   //
1711   SmallVector<BasicBlock*,4> UnconditionalPreds;
1712   Instruction *Cond = nullptr;
1713   for (auto *B : predecessors(BBEnd)) {
1714     auto *T = B->getTerminator();
1715     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1716       UnconditionalPreds.push_back(B);
1717     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1718       Cond = T;
1719     else
1720       return false;
1721   }
1722   if (UnconditionalPreds.size() < 2)
1723     return false;
1724 
1725   bool Changed = false;
1726   // We take a two-step approach to tail sinking. First we scan from the end of
1727   // each block upwards in lockstep. If the n'th instruction from the end of each
1728   // block can be sunk, those instructions are added to ValuesToSink and we
1729   // carry on. If we can sink an instruction but need to PHI-merge some operands
1730   // (because they're not identical in each instruction) we add these to
1731   // PHIOperands.
1732   unsigned ScanIdx = 0;
1733   SmallPtrSet<Value*,4> InstructionsToSink;
1734   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1735   LockstepReverseIterator LRI(UnconditionalPreds);
1736   while (LRI.isValid() &&
1737          canSinkInstructions(*LRI, PHIOperands)) {
1738     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1739     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1740     ++ScanIdx;
1741     --LRI;
1742   }
1743 
1744   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1745     unsigned NumPHIdValues = 0;
1746     for (auto *I : *LRI)
1747       for (auto *V : PHIOperands[I])
1748         if (InstructionsToSink.count(V) == 0)
1749           ++NumPHIdValues;
1750     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1751     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1752     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1753         NumPHIInsts++;
1754 
1755     return NumPHIInsts <= 1;
1756   };
1757 
1758   if (ScanIdx > 0 && Cond) {
1759     // Check if we would actually sink anything first! This mutates the CFG and
1760     // adds an extra block. The goal in doing this is to allow instructions that
1761     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1762     // (such as trunc, add) can be sunk and predicated already. So we check that
1763     // we're going to sink at least one non-speculatable instruction.
1764     LRI.reset();
1765     unsigned Idx = 0;
1766     bool Profitable = false;
1767     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1768       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1769         Profitable = true;
1770         break;
1771       }
1772       --LRI;
1773       ++Idx;
1774     }
1775     if (!Profitable)
1776       return false;
1777 
1778     DEBUG(dbgs() << "SINK: Splitting edge\n");
1779     // We have a conditional edge and we're going to sink some instructions.
1780     // Insert a new block postdominating all blocks we're going to sink from.
1781     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1782                                 ".sink.split"))
1783       // Edges couldn't be split.
1784       return false;
1785     Changed = true;
1786   }
1787 
1788   // Now that we've analyzed all potential sinking candidates, perform the
1789   // actual sink. We iteratively sink the last non-terminator of the source
1790   // blocks into their common successor unless doing so would require too
1791   // many PHI instructions to be generated (currently only one PHI is allowed
1792   // per sunk instruction).
1793   //
1794   // We can use InstructionsToSink to discount values needing PHI-merging that will
1795   // actually be sunk in a later iteration. This allows us to be more
1796   // aggressive in what we sink. This does allow a false positive where we
1797   // sink presuming a later value will also be sunk, but stop half way through
1798   // and never actually sink it which means we produce more PHIs than intended.
1799   // This is unlikely in practice though.
1800   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1801     DEBUG(dbgs() << "SINK: Sink: "
1802                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1803                  << "\n");
1804 
1805     // Because we've sunk every instruction in turn, the current instruction to
1806     // sink is always at index 0.
1807     LRI.reset();
1808     if (!ProfitableToSinkInstruction(LRI)) {
1809       // Too many PHIs would be created.
1810       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1811       break;
1812     }
1813 
1814     if (!sinkLastInstruction(UnconditionalPreds))
1815       return Changed;
1816     NumSinkCommons++;
1817     Changed = true;
1818   }
1819   return Changed;
1820 }
1821 
1822 /// \brief Determine if we can hoist sink a sole store instruction out of a
1823 /// conditional block.
1824 ///
1825 /// We are looking for code like the following:
1826 ///   BrBB:
1827 ///     store i32 %add, i32* %arrayidx2
1828 ///     ... // No other stores or function calls (we could be calling a memory
1829 ///     ... // function).
1830 ///     %cmp = icmp ult %x, %y
1831 ///     br i1 %cmp, label %EndBB, label %ThenBB
1832 ///   ThenBB:
1833 ///     store i32 %add5, i32* %arrayidx2
1834 ///     br label EndBB
1835 ///   EndBB:
1836 ///     ...
1837 ///   We are going to transform this into:
1838 ///   BrBB:
1839 ///     store i32 %add, i32* %arrayidx2
1840 ///     ... //
1841 ///     %cmp = icmp ult %x, %y
1842 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1843 ///     store i32 %add.add5, i32* %arrayidx2
1844 ///     ...
1845 ///
1846 /// \return The pointer to the value of the previous store if the store can be
1847 ///         hoisted into the predecessor block. 0 otherwise.
1848 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1849                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1850   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1851   if (!StoreToHoist)
1852     return nullptr;
1853 
1854   // Volatile or atomic.
1855   if (!StoreToHoist->isSimple())
1856     return nullptr;
1857 
1858   Value *StorePtr = StoreToHoist->getPointerOperand();
1859 
1860   // Look for a store to the same pointer in BrBB.
1861   unsigned MaxNumInstToLookAt = 9;
1862   for (Instruction &CurI : reverse(*BrBB)) {
1863     if (!MaxNumInstToLookAt)
1864       break;
1865     // Skip debug info.
1866     if (isa<DbgInfoIntrinsic>(CurI))
1867       continue;
1868     --MaxNumInstToLookAt;
1869 
1870     // Could be calling an instruction that affects memory like free().
1871     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1872       return nullptr;
1873 
1874     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1875       // Found the previous store make sure it stores to the same location.
1876       if (SI->getPointerOperand() == StorePtr)
1877         // Found the previous store, return its value operand.
1878         return SI->getValueOperand();
1879       return nullptr; // Unknown store.
1880     }
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 /// \brief Speculate a conditional basic block flattening the CFG.
1887 ///
1888 /// Note that this is a very risky transform currently. Speculating
1889 /// instructions like this is most often not desirable. Instead, there is an MI
1890 /// pass which can do it with full awareness of the resource constraints.
1891 /// However, some cases are "obvious" and we should do directly. An example of
1892 /// this is speculating a single, reasonably cheap instruction.
1893 ///
1894 /// There is only one distinct advantage to flattening the CFG at the IR level:
1895 /// it makes very common but simplistic optimizations such as are common in
1896 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1897 /// modeling their effects with easier to reason about SSA value graphs.
1898 ///
1899 ///
1900 /// An illustration of this transform is turning this IR:
1901 /// \code
1902 ///   BB:
1903 ///     %cmp = icmp ult %x, %y
1904 ///     br i1 %cmp, label %EndBB, label %ThenBB
1905 ///   ThenBB:
1906 ///     %sub = sub %x, %y
1907 ///     br label BB2
1908 ///   EndBB:
1909 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1910 ///     ...
1911 /// \endcode
1912 ///
1913 /// Into this IR:
1914 /// \code
1915 ///   BB:
1916 ///     %cmp = icmp ult %x, %y
1917 ///     %sub = sub %x, %y
1918 ///     %cond = select i1 %cmp, 0, %sub
1919 ///     ...
1920 /// \endcode
1921 ///
1922 /// \returns true if the conditional block is removed.
1923 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1924                                    const TargetTransformInfo &TTI) {
1925   // Be conservative for now. FP select instruction can often be expensive.
1926   Value *BrCond = BI->getCondition();
1927   if (isa<FCmpInst>(BrCond))
1928     return false;
1929 
1930   BasicBlock *BB = BI->getParent();
1931   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1932 
1933   // If ThenBB is actually on the false edge of the conditional branch, remember
1934   // to swap the select operands later.
1935   bool Invert = false;
1936   if (ThenBB != BI->getSuccessor(0)) {
1937     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1938     Invert = true;
1939   }
1940   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1941 
1942   // Keep a count of how many times instructions are used within CondBB when
1943   // they are candidates for sinking into CondBB. Specifically:
1944   // - They are defined in BB, and
1945   // - They have no side effects, and
1946   // - All of their uses are in CondBB.
1947   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1948 
1949   unsigned SpeculationCost = 0;
1950   Value *SpeculatedStoreValue = nullptr;
1951   StoreInst *SpeculatedStore = nullptr;
1952   for (BasicBlock::iterator BBI = ThenBB->begin(),
1953                             BBE = std::prev(ThenBB->end());
1954        BBI != BBE; ++BBI) {
1955     Instruction *I = &*BBI;
1956     // Skip debug info.
1957     if (isa<DbgInfoIntrinsic>(I))
1958       continue;
1959 
1960     // Only speculatively execute a single instruction (not counting the
1961     // terminator) for now.
1962     ++SpeculationCost;
1963     if (SpeculationCost > 1)
1964       return false;
1965 
1966     // Don't hoist the instruction if it's unsafe or expensive.
1967     if (!isSafeToSpeculativelyExecute(I) &&
1968         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1969                                   I, BB, ThenBB, EndBB))))
1970       return false;
1971     if (!SpeculatedStoreValue &&
1972         ComputeSpeculationCost(I, TTI) >
1973             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1974       return false;
1975 
1976     // Store the store speculation candidate.
1977     if (SpeculatedStoreValue)
1978       SpeculatedStore = cast<StoreInst>(I);
1979 
1980     // Do not hoist the instruction if any of its operands are defined but not
1981     // used in BB. The transformation will prevent the operand from
1982     // being sunk into the use block.
1983     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1984       Instruction *OpI = dyn_cast<Instruction>(*i);
1985       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1986         continue; // Not a candidate for sinking.
1987 
1988       ++SinkCandidateUseCounts[OpI];
1989     }
1990   }
1991 
1992   // Consider any sink candidates which are only used in CondBB as costs for
1993   // speculation. Note, while we iterate over a DenseMap here, we are summing
1994   // and so iteration order isn't significant.
1995   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1996            I = SinkCandidateUseCounts.begin(),
1997            E = SinkCandidateUseCounts.end();
1998        I != E; ++I)
1999     if (I->first->getNumUses() == I->second) {
2000       ++SpeculationCost;
2001       if (SpeculationCost > 1)
2002         return false;
2003     }
2004 
2005   // Check that the PHI nodes can be converted to selects.
2006   bool HaveRewritablePHIs = false;
2007   for (BasicBlock::iterator I = EndBB->begin();
2008        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2009     Value *OrigV = PN->getIncomingValueForBlock(BB);
2010     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2011 
2012     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2013     // Skip PHIs which are trivial.
2014     if (ThenV == OrigV)
2015       continue;
2016 
2017     // Don't convert to selects if we could remove undefined behavior instead.
2018     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2019         passingValueIsAlwaysUndefined(ThenV, PN))
2020       return false;
2021 
2022     HaveRewritablePHIs = true;
2023     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2024     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2025     if (!OrigCE && !ThenCE)
2026       continue; // Known safe and cheap.
2027 
2028     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2029         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2030       return false;
2031     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2032     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2033     unsigned MaxCost =
2034         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2035     if (OrigCost + ThenCost > MaxCost)
2036       return false;
2037 
2038     // Account for the cost of an unfolded ConstantExpr which could end up
2039     // getting expanded into Instructions.
2040     // FIXME: This doesn't account for how many operations are combined in the
2041     // constant expression.
2042     ++SpeculationCost;
2043     if (SpeculationCost > 1)
2044       return false;
2045   }
2046 
2047   // If there are no PHIs to process, bail early. This helps ensure idempotence
2048   // as well.
2049   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2050     return false;
2051 
2052   // If we get here, we can hoist the instruction and if-convert.
2053   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2054 
2055   // Insert a select of the value of the speculated store.
2056   if (SpeculatedStoreValue) {
2057     IRBuilder<NoFolder> Builder(BI);
2058     Value *TrueV = SpeculatedStore->getValueOperand();
2059     Value *FalseV = SpeculatedStoreValue;
2060     if (Invert)
2061       std::swap(TrueV, FalseV);
2062     Value *S = Builder.CreateSelect(
2063         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2064     SpeculatedStore->setOperand(0, S);
2065   }
2066 
2067   // Metadata can be dependent on the condition we are hoisting above.
2068   // Conservatively strip all metadata on the instruction.
2069   for (auto &I : *ThenBB)
2070     I.dropUnknownNonDebugMetadata();
2071 
2072   // Hoist the instructions.
2073   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2074                            ThenBB->begin(), std::prev(ThenBB->end()));
2075 
2076   // Insert selects and rewrite the PHI operands.
2077   IRBuilder<NoFolder> Builder(BI);
2078   for (BasicBlock::iterator I = EndBB->begin();
2079        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2080     unsigned OrigI = PN->getBasicBlockIndex(BB);
2081     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2082     Value *OrigV = PN->getIncomingValue(OrigI);
2083     Value *ThenV = PN->getIncomingValue(ThenI);
2084 
2085     // Skip PHIs which are trivial.
2086     if (OrigV == ThenV)
2087       continue;
2088 
2089     // Create a select whose true value is the speculatively executed value and
2090     // false value is the preexisting value. Swap them if the branch
2091     // destinations were inverted.
2092     Value *TrueV = ThenV, *FalseV = OrigV;
2093     if (Invert)
2094       std::swap(TrueV, FalseV);
2095     Value *V = Builder.CreateSelect(
2096         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2097     PN->setIncomingValue(OrigI, V);
2098     PN->setIncomingValue(ThenI, V);
2099   }
2100 
2101   ++NumSpeculations;
2102   return true;
2103 }
2104 
2105 /// Return true if we can thread a branch across this block.
2106 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2107   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2108   unsigned Size = 0;
2109 
2110   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2111     if (isa<DbgInfoIntrinsic>(BBI))
2112       continue;
2113     if (Size > 10)
2114       return false; // Don't clone large BB's.
2115     ++Size;
2116 
2117     // We can only support instructions that do not define values that are
2118     // live outside of the current basic block.
2119     for (User *U : BBI->users()) {
2120       Instruction *UI = cast<Instruction>(U);
2121       if (UI->getParent() != BB || isa<PHINode>(UI))
2122         return false;
2123     }
2124 
2125     // Looks ok, continue checking.
2126   }
2127 
2128   return true;
2129 }
2130 
2131 /// If we have a conditional branch on a PHI node value that is defined in the
2132 /// same block as the branch and if any PHI entries are constants, thread edges
2133 /// corresponding to that entry to be branches to their ultimate destination.
2134 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2135   BasicBlock *BB = BI->getParent();
2136   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2137   // NOTE: we currently cannot transform this case if the PHI node is used
2138   // outside of the block.
2139   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2140     return false;
2141 
2142   // Degenerate case of a single entry PHI.
2143   if (PN->getNumIncomingValues() == 1) {
2144     FoldSingleEntryPHINodes(PN->getParent());
2145     return true;
2146   }
2147 
2148   // Now we know that this block has multiple preds and two succs.
2149   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2150     return false;
2151 
2152   // Can't fold blocks that contain noduplicate or convergent calls.
2153   if (any_of(*BB, [](const Instruction &I) {
2154         const CallInst *CI = dyn_cast<CallInst>(&I);
2155         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2156       }))
2157     return false;
2158 
2159   // Okay, this is a simple enough basic block.  See if any phi values are
2160   // constants.
2161   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2162     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2163     if (!CB || !CB->getType()->isIntegerTy(1))
2164       continue;
2165 
2166     // Okay, we now know that all edges from PredBB should be revectored to
2167     // branch to RealDest.
2168     BasicBlock *PredBB = PN->getIncomingBlock(i);
2169     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2170 
2171     if (RealDest == BB)
2172       continue; // Skip self loops.
2173     // Skip if the predecessor's terminator is an indirect branch.
2174     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2175       continue;
2176 
2177     // The dest block might have PHI nodes, other predecessors and other
2178     // difficult cases.  Instead of being smart about this, just insert a new
2179     // block that jumps to the destination block, effectively splitting
2180     // the edge we are about to create.
2181     BasicBlock *EdgeBB =
2182         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2183                            RealDest->getParent(), RealDest);
2184     BranchInst::Create(RealDest, EdgeBB);
2185 
2186     // Update PHI nodes.
2187     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2188 
2189     // BB may have instructions that are being threaded over.  Clone these
2190     // instructions into EdgeBB.  We know that there will be no uses of the
2191     // cloned instructions outside of EdgeBB.
2192     BasicBlock::iterator InsertPt = EdgeBB->begin();
2193     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2194     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2195       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2196         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2197         continue;
2198       }
2199       // Clone the instruction.
2200       Instruction *N = BBI->clone();
2201       if (BBI->hasName())
2202         N->setName(BBI->getName() + ".c");
2203 
2204       // Update operands due to translation.
2205       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2206         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2207         if (PI != TranslateMap.end())
2208           *i = PI->second;
2209       }
2210 
2211       // Check for trivial simplification.
2212       if (Value *V = SimplifyInstruction(N, DL)) {
2213         if (!BBI->use_empty())
2214           TranslateMap[&*BBI] = V;
2215         if (!N->mayHaveSideEffects()) {
2216           delete N; // Instruction folded away, don't need actual inst
2217           N = nullptr;
2218         }
2219       } else {
2220         if (!BBI->use_empty())
2221           TranslateMap[&*BBI] = N;
2222       }
2223       // Insert the new instruction into its new home.
2224       if (N)
2225         EdgeBB->getInstList().insert(InsertPt, N);
2226     }
2227 
2228     // Loop over all of the edges from PredBB to BB, changing them to branch
2229     // to EdgeBB instead.
2230     TerminatorInst *PredBBTI = PredBB->getTerminator();
2231     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2232       if (PredBBTI->getSuccessor(i) == BB) {
2233         BB->removePredecessor(PredBB);
2234         PredBBTI->setSuccessor(i, EdgeBB);
2235       }
2236 
2237     // Recurse, simplifying any other constants.
2238     return FoldCondBranchOnPHI(BI, DL) | true;
2239   }
2240 
2241   return false;
2242 }
2243 
2244 /// Given a BB that starts with the specified two-entry PHI node,
2245 /// see if we can eliminate it.
2246 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2247                                 const DataLayout &DL) {
2248   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2249   // statement", which has a very simple dominance structure.  Basically, we
2250   // are trying to find the condition that is being branched on, which
2251   // subsequently causes this merge to happen.  We really want control
2252   // dependence information for this check, but simplifycfg can't keep it up
2253   // to date, and this catches most of the cases we care about anyway.
2254   BasicBlock *BB = PN->getParent();
2255   BasicBlock *IfTrue, *IfFalse;
2256   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2257   if (!IfCond ||
2258       // Don't bother if the branch will be constant folded trivially.
2259       isa<ConstantInt>(IfCond))
2260     return false;
2261 
2262   // Okay, we found that we can merge this two-entry phi node into a select.
2263   // Doing so would require us to fold *all* two entry phi nodes in this block.
2264   // At some point this becomes non-profitable (particularly if the target
2265   // doesn't support cmov's).  Only do this transformation if there are two or
2266   // fewer PHI nodes in this block.
2267   unsigned NumPhis = 0;
2268   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2269     if (NumPhis > 2)
2270       return false;
2271 
2272   // Loop over the PHI's seeing if we can promote them all to select
2273   // instructions.  While we are at it, keep track of the instructions
2274   // that need to be moved to the dominating block.
2275   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2276   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2277            MaxCostVal1 = PHINodeFoldingThreshold;
2278   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2279   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2280 
2281   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2282     PHINode *PN = cast<PHINode>(II++);
2283     if (Value *V = SimplifyInstruction(PN, DL)) {
2284       PN->replaceAllUsesWith(V);
2285       PN->eraseFromParent();
2286       continue;
2287     }
2288 
2289     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2290                              MaxCostVal0, TTI) ||
2291         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2292                              MaxCostVal1, TTI))
2293       return false;
2294   }
2295 
2296   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2297   // we ran out of PHIs then we simplified them all.
2298   PN = dyn_cast<PHINode>(BB->begin());
2299   if (!PN)
2300     return true;
2301 
2302   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2303   // often be turned into switches and other things.
2304   if (PN->getType()->isIntegerTy(1) &&
2305       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2306        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2307        isa<BinaryOperator>(IfCond)))
2308     return false;
2309 
2310   // If all PHI nodes are promotable, check to make sure that all instructions
2311   // in the predecessor blocks can be promoted as well. If not, we won't be able
2312   // to get rid of the control flow, so it's not worth promoting to select
2313   // instructions.
2314   BasicBlock *DomBlock = nullptr;
2315   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2316   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2317   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2318     IfBlock1 = nullptr;
2319   } else {
2320     DomBlock = *pred_begin(IfBlock1);
2321     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2322          ++I)
2323       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2324         // This is not an aggressive instruction that we can promote.
2325         // Because of this, we won't be able to get rid of the control flow, so
2326         // the xform is not worth it.
2327         return false;
2328       }
2329   }
2330 
2331   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2332     IfBlock2 = nullptr;
2333   } else {
2334     DomBlock = *pred_begin(IfBlock2);
2335     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2336          ++I)
2337       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2338         // This is not an aggressive instruction that we can promote.
2339         // Because of this, we won't be able to get rid of the control flow, so
2340         // the xform is not worth it.
2341         return false;
2342       }
2343   }
2344 
2345   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2346                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2347 
2348   // If we can still promote the PHI nodes after this gauntlet of tests,
2349   // do all of the PHI's now.
2350   Instruction *InsertPt = DomBlock->getTerminator();
2351   IRBuilder<NoFolder> Builder(InsertPt);
2352 
2353   // Move all 'aggressive' instructions, which are defined in the
2354   // conditional parts of the if's up to the dominating block.
2355   if (IfBlock1) {
2356     for (auto &I : *IfBlock1)
2357       I.dropUnknownNonDebugMetadata();
2358     DomBlock->getInstList().splice(InsertPt->getIterator(),
2359                                    IfBlock1->getInstList(), IfBlock1->begin(),
2360                                    IfBlock1->getTerminator()->getIterator());
2361   }
2362   if (IfBlock2) {
2363     for (auto &I : *IfBlock2)
2364       I.dropUnknownNonDebugMetadata();
2365     DomBlock->getInstList().splice(InsertPt->getIterator(),
2366                                    IfBlock2->getInstList(), IfBlock2->begin(),
2367                                    IfBlock2->getTerminator()->getIterator());
2368   }
2369 
2370   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2371     // Change the PHI node into a select instruction.
2372     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2373     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2374 
2375     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2376     PN->replaceAllUsesWith(Sel);
2377     Sel->takeName(PN);
2378     PN->eraseFromParent();
2379   }
2380 
2381   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2382   // has been flattened.  Change DomBlock to jump directly to our new block to
2383   // avoid other simplifycfg's kicking in on the diamond.
2384   TerminatorInst *OldTI = DomBlock->getTerminator();
2385   Builder.SetInsertPoint(OldTI);
2386   Builder.CreateBr(BB);
2387   OldTI->eraseFromParent();
2388   return true;
2389 }
2390 
2391 /// If we found a conditional branch that goes to two returning blocks,
2392 /// try to merge them together into one return,
2393 /// introducing a select if the return values disagree.
2394 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2395                                            IRBuilder<> &Builder) {
2396   assert(BI->isConditional() && "Must be a conditional branch");
2397   BasicBlock *TrueSucc = BI->getSuccessor(0);
2398   BasicBlock *FalseSucc = BI->getSuccessor(1);
2399   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2400   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2401 
2402   // Check to ensure both blocks are empty (just a return) or optionally empty
2403   // with PHI nodes.  If there are other instructions, merging would cause extra
2404   // computation on one path or the other.
2405   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2406     return false;
2407   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2408     return false;
2409 
2410   Builder.SetInsertPoint(BI);
2411   // Okay, we found a branch that is going to two return nodes.  If
2412   // there is no return value for this function, just change the
2413   // branch into a return.
2414   if (FalseRet->getNumOperands() == 0) {
2415     TrueSucc->removePredecessor(BI->getParent());
2416     FalseSucc->removePredecessor(BI->getParent());
2417     Builder.CreateRetVoid();
2418     EraseTerminatorInstAndDCECond(BI);
2419     return true;
2420   }
2421 
2422   // Otherwise, figure out what the true and false return values are
2423   // so we can insert a new select instruction.
2424   Value *TrueValue = TrueRet->getReturnValue();
2425   Value *FalseValue = FalseRet->getReturnValue();
2426 
2427   // Unwrap any PHI nodes in the return blocks.
2428   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2429     if (TVPN->getParent() == TrueSucc)
2430       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2431   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2432     if (FVPN->getParent() == FalseSucc)
2433       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2434 
2435   // In order for this transformation to be safe, we must be able to
2436   // unconditionally execute both operands to the return.  This is
2437   // normally the case, but we could have a potentially-trapping
2438   // constant expression that prevents this transformation from being
2439   // safe.
2440   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2441     if (TCV->canTrap())
2442       return false;
2443   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2444     if (FCV->canTrap())
2445       return false;
2446 
2447   // Okay, we collected all the mapped values and checked them for sanity, and
2448   // defined to really do this transformation.  First, update the CFG.
2449   TrueSucc->removePredecessor(BI->getParent());
2450   FalseSucc->removePredecessor(BI->getParent());
2451 
2452   // Insert select instructions where needed.
2453   Value *BrCond = BI->getCondition();
2454   if (TrueValue) {
2455     // Insert a select if the results differ.
2456     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2457     } else if (isa<UndefValue>(TrueValue)) {
2458       TrueValue = FalseValue;
2459     } else {
2460       TrueValue =
2461           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2462     }
2463   }
2464 
2465   Value *RI =
2466       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2467 
2468   (void)RI;
2469 
2470   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2471                << "\n  " << *BI << "NewRet = " << *RI
2472                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2473 
2474   EraseTerminatorInstAndDCECond(BI);
2475 
2476   return true;
2477 }
2478 
2479 /// Return true if the given instruction is available
2480 /// in its predecessor block. If yes, the instruction will be removed.
2481 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2482   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2483     return false;
2484   for (Instruction &I : *PB) {
2485     Instruction *PBI = &I;
2486     // Check whether Inst and PBI generate the same value.
2487     if (Inst->isIdenticalTo(PBI)) {
2488       Inst->replaceAllUsesWith(PBI);
2489       Inst->eraseFromParent();
2490       return true;
2491     }
2492   }
2493   return false;
2494 }
2495 
2496 /// Return true if either PBI or BI has branch weight available, and store
2497 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2498 /// not have branch weight, use 1:1 as its weight.
2499 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2500                                    uint64_t &PredTrueWeight,
2501                                    uint64_t &PredFalseWeight,
2502                                    uint64_t &SuccTrueWeight,
2503                                    uint64_t &SuccFalseWeight) {
2504   bool PredHasWeights =
2505       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2506   bool SuccHasWeights =
2507       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2508   if (PredHasWeights || SuccHasWeights) {
2509     if (!PredHasWeights)
2510       PredTrueWeight = PredFalseWeight = 1;
2511     if (!SuccHasWeights)
2512       SuccTrueWeight = SuccFalseWeight = 1;
2513     return true;
2514   } else {
2515     return false;
2516   }
2517 }
2518 
2519 /// If this basic block is simple enough, and if a predecessor branches to us
2520 /// and one of our successors, fold the block into the predecessor and use
2521 /// logical operations to pick the right destination.
2522 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2523   BasicBlock *BB = BI->getParent();
2524 
2525   Instruction *Cond = nullptr;
2526   if (BI->isConditional())
2527     Cond = dyn_cast<Instruction>(BI->getCondition());
2528   else {
2529     // For unconditional branch, check for a simple CFG pattern, where
2530     // BB has a single predecessor and BB's successor is also its predecessor's
2531     // successor. If such pattern exisits, check for CSE between BB and its
2532     // predecessor.
2533     if (BasicBlock *PB = BB->getSinglePredecessor())
2534       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2535         if (PBI->isConditional() &&
2536             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2537              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2538           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2539             Instruction *Curr = &*I++;
2540             if (isa<CmpInst>(Curr)) {
2541               Cond = Curr;
2542               break;
2543             }
2544             // Quit if we can't remove this instruction.
2545             if (!checkCSEInPredecessor(Curr, PB))
2546               return false;
2547           }
2548         }
2549 
2550     if (!Cond)
2551       return false;
2552   }
2553 
2554   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2555       Cond->getParent() != BB || !Cond->hasOneUse())
2556     return false;
2557 
2558   // Make sure the instruction after the condition is the cond branch.
2559   BasicBlock::iterator CondIt = ++Cond->getIterator();
2560 
2561   // Ignore dbg intrinsics.
2562   while (isa<DbgInfoIntrinsic>(CondIt))
2563     ++CondIt;
2564 
2565   if (&*CondIt != BI)
2566     return false;
2567 
2568   // Only allow this transformation if computing the condition doesn't involve
2569   // too many instructions and these involved instructions can be executed
2570   // unconditionally. We denote all involved instructions except the condition
2571   // as "bonus instructions", and only allow this transformation when the
2572   // number of the bonus instructions does not exceed a certain threshold.
2573   unsigned NumBonusInsts = 0;
2574   for (auto I = BB->begin(); Cond != &*I; ++I) {
2575     // Ignore dbg intrinsics.
2576     if (isa<DbgInfoIntrinsic>(I))
2577       continue;
2578     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2579       return false;
2580     // I has only one use and can be executed unconditionally.
2581     Instruction *User = dyn_cast<Instruction>(I->user_back());
2582     if (User == nullptr || User->getParent() != BB)
2583       return false;
2584     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2585     // to use any other instruction, User must be an instruction between next(I)
2586     // and Cond.
2587     ++NumBonusInsts;
2588     // Early exits once we reach the limit.
2589     if (NumBonusInsts > BonusInstThreshold)
2590       return false;
2591   }
2592 
2593   // Cond is known to be a compare or binary operator.  Check to make sure that
2594   // neither operand is a potentially-trapping constant expression.
2595   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2596     if (CE->canTrap())
2597       return false;
2598   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2599     if (CE->canTrap())
2600       return false;
2601 
2602   // Finally, don't infinitely unroll conditional loops.
2603   BasicBlock *TrueDest = BI->getSuccessor(0);
2604   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2605   if (TrueDest == BB || FalseDest == BB)
2606     return false;
2607 
2608   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2609     BasicBlock *PredBlock = *PI;
2610     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2611 
2612     // Check that we have two conditional branches.  If there is a PHI node in
2613     // the common successor, verify that the same value flows in from both
2614     // blocks.
2615     SmallVector<PHINode *, 4> PHIs;
2616     if (!PBI || PBI->isUnconditional() ||
2617         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2618         (!BI->isConditional() &&
2619          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2620       continue;
2621 
2622     // Determine if the two branches share a common destination.
2623     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2624     bool InvertPredCond = false;
2625 
2626     if (BI->isConditional()) {
2627       if (PBI->getSuccessor(0) == TrueDest) {
2628         Opc = Instruction::Or;
2629       } else if (PBI->getSuccessor(1) == FalseDest) {
2630         Opc = Instruction::And;
2631       } else if (PBI->getSuccessor(0) == FalseDest) {
2632         Opc = Instruction::And;
2633         InvertPredCond = true;
2634       } else if (PBI->getSuccessor(1) == TrueDest) {
2635         Opc = Instruction::Or;
2636         InvertPredCond = true;
2637       } else {
2638         continue;
2639       }
2640     } else {
2641       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2642         continue;
2643     }
2644 
2645     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2646     IRBuilder<> Builder(PBI);
2647 
2648     // If we need to invert the condition in the pred block to match, do so now.
2649     if (InvertPredCond) {
2650       Value *NewCond = PBI->getCondition();
2651 
2652       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2653         CmpInst *CI = cast<CmpInst>(NewCond);
2654         CI->setPredicate(CI->getInversePredicate());
2655       } else {
2656         NewCond =
2657             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2658       }
2659 
2660       PBI->setCondition(NewCond);
2661       PBI->swapSuccessors();
2662     }
2663 
2664     // If we have bonus instructions, clone them into the predecessor block.
2665     // Note that there may be multiple predecessor blocks, so we cannot move
2666     // bonus instructions to a predecessor block.
2667     ValueToValueMapTy VMap; // maps original values to cloned values
2668     // We already make sure Cond is the last instruction before BI. Therefore,
2669     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2670     // instructions.
2671     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2672       if (isa<DbgInfoIntrinsic>(BonusInst))
2673         continue;
2674       Instruction *NewBonusInst = BonusInst->clone();
2675       RemapInstruction(NewBonusInst, VMap,
2676                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2677       VMap[&*BonusInst] = NewBonusInst;
2678 
2679       // If we moved a load, we cannot any longer claim any knowledge about
2680       // its potential value. The previous information might have been valid
2681       // only given the branch precondition.
2682       // For an analogous reason, we must also drop all the metadata whose
2683       // semantics we don't understand.
2684       NewBonusInst->dropUnknownNonDebugMetadata();
2685 
2686       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2687       NewBonusInst->takeName(&*BonusInst);
2688       BonusInst->setName(BonusInst->getName() + ".old");
2689     }
2690 
2691     // Clone Cond into the predecessor basic block, and or/and the
2692     // two conditions together.
2693     Instruction *New = Cond->clone();
2694     RemapInstruction(New, VMap,
2695                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2696     PredBlock->getInstList().insert(PBI->getIterator(), New);
2697     New->takeName(Cond);
2698     Cond->setName(New->getName() + ".old");
2699 
2700     if (BI->isConditional()) {
2701       Instruction *NewCond = cast<Instruction>(
2702           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2703       PBI->setCondition(NewCond);
2704 
2705       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2706       bool HasWeights =
2707           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2708                                  SuccTrueWeight, SuccFalseWeight);
2709       SmallVector<uint64_t, 8> NewWeights;
2710 
2711       if (PBI->getSuccessor(0) == BB) {
2712         if (HasWeights) {
2713           // PBI: br i1 %x, BB, FalseDest
2714           // BI:  br i1 %y, TrueDest, FalseDest
2715           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2716           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2717           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2718           //               TrueWeight for PBI * FalseWeight for BI.
2719           // We assume that total weights of a BranchInst can fit into 32 bits.
2720           // Therefore, we will not have overflow using 64-bit arithmetic.
2721           NewWeights.push_back(PredFalseWeight *
2722                                    (SuccFalseWeight + SuccTrueWeight) +
2723                                PredTrueWeight * SuccFalseWeight);
2724         }
2725         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2726         PBI->setSuccessor(0, TrueDest);
2727       }
2728       if (PBI->getSuccessor(1) == BB) {
2729         if (HasWeights) {
2730           // PBI: br i1 %x, TrueDest, BB
2731           // BI:  br i1 %y, TrueDest, FalseDest
2732           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2733           //              FalseWeight for PBI * TrueWeight for BI.
2734           NewWeights.push_back(PredTrueWeight *
2735                                    (SuccFalseWeight + SuccTrueWeight) +
2736                                PredFalseWeight * SuccTrueWeight);
2737           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2738           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2739         }
2740         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2741         PBI->setSuccessor(1, FalseDest);
2742       }
2743       if (NewWeights.size() == 2) {
2744         // Halve the weights if any of them cannot fit in an uint32_t
2745         FitWeights(NewWeights);
2746 
2747         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2748                                            NewWeights.end());
2749         PBI->setMetadata(
2750             LLVMContext::MD_prof,
2751             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2752       } else
2753         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2754     } else {
2755       // Update PHI nodes in the common successors.
2756       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2757         ConstantInt *PBI_C = cast<ConstantInt>(
2758             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2759         assert(PBI_C->getType()->isIntegerTy(1));
2760         Instruction *MergedCond = nullptr;
2761         if (PBI->getSuccessor(0) == TrueDest) {
2762           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2763           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2764           //       is false: !PBI_Cond and BI_Value
2765           Instruction *NotCond = cast<Instruction>(
2766               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2767           MergedCond = cast<Instruction>(
2768               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2769           if (PBI_C->isOne())
2770             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2771                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2772         } else {
2773           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2774           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2775           //       is false: PBI_Cond and BI_Value
2776           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2777               Instruction::And, PBI->getCondition(), New, "and.cond"));
2778           if (PBI_C->isOne()) {
2779             Instruction *NotCond = cast<Instruction>(
2780                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2781             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2782                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2783           }
2784         }
2785         // Update PHI Node.
2786         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2787                                   MergedCond);
2788       }
2789       // Change PBI from Conditional to Unconditional.
2790       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2791       EraseTerminatorInstAndDCECond(PBI);
2792       PBI = New_PBI;
2793     }
2794 
2795     // TODO: If BB is reachable from all paths through PredBlock, then we
2796     // could replace PBI's branch probabilities with BI's.
2797 
2798     // Copy any debug value intrinsics into the end of PredBlock.
2799     for (Instruction &I : *BB)
2800       if (isa<DbgInfoIntrinsic>(I))
2801         I.clone()->insertBefore(PBI);
2802 
2803     return true;
2804   }
2805   return false;
2806 }
2807 
2808 // If there is only one store in BB1 and BB2, return it, otherwise return
2809 // nullptr.
2810 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2811   StoreInst *S = nullptr;
2812   for (auto *BB : {BB1, BB2}) {
2813     if (!BB)
2814       continue;
2815     for (auto &I : *BB)
2816       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2817         if (S)
2818           // Multiple stores seen.
2819           return nullptr;
2820         else
2821           S = SI;
2822       }
2823   }
2824   return S;
2825 }
2826 
2827 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2828                                               Value *AlternativeV = nullptr) {
2829   // PHI is going to be a PHI node that allows the value V that is defined in
2830   // BB to be referenced in BB's only successor.
2831   //
2832   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2833   // doesn't matter to us what the other operand is (it'll never get used). We
2834   // could just create a new PHI with an undef incoming value, but that could
2835   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2836   // other PHI. So here we directly look for some PHI in BB's successor with V
2837   // as an incoming operand. If we find one, we use it, else we create a new
2838   // one.
2839   //
2840   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2841   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2842   // where OtherBB is the single other predecessor of BB's only successor.
2843   PHINode *PHI = nullptr;
2844   BasicBlock *Succ = BB->getSingleSuccessor();
2845 
2846   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2847     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2848       PHI = cast<PHINode>(I);
2849       if (!AlternativeV)
2850         break;
2851 
2852       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2853       auto PredI = pred_begin(Succ);
2854       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2855       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2856         break;
2857       PHI = nullptr;
2858     }
2859   if (PHI)
2860     return PHI;
2861 
2862   // If V is not an instruction defined in BB, just return it.
2863   if (!AlternativeV &&
2864       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2865     return V;
2866 
2867   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2868   PHI->addIncoming(V, BB);
2869   for (BasicBlock *PredBB : predecessors(Succ))
2870     if (PredBB != BB)
2871       PHI->addIncoming(
2872           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2873   return PHI;
2874 }
2875 
2876 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2877                                            BasicBlock *QTB, BasicBlock *QFB,
2878                                            BasicBlock *PostBB, Value *Address,
2879                                            bool InvertPCond, bool InvertQCond) {
2880   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2881     return Operator::getOpcode(&I) == Instruction::BitCast &&
2882            I.getType()->isPointerTy();
2883   };
2884 
2885   // If we're not in aggressive mode, we only optimize if we have some
2886   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2887   auto IsWorthwhile = [&](BasicBlock *BB) {
2888     if (!BB)
2889       return true;
2890     // Heuristic: if the block can be if-converted/phi-folded and the
2891     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2892     // thread this store.
2893     unsigned N = 0;
2894     for (auto &I : *BB) {
2895       // Cheap instructions viable for folding.
2896       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2897           isa<StoreInst>(I))
2898         ++N;
2899       // Free instructions.
2900       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2901                IsaBitcastOfPointerType(I))
2902         continue;
2903       else
2904         return false;
2905     }
2906     return N <= PHINodeFoldingThreshold;
2907   };
2908 
2909   if (!MergeCondStoresAggressively &&
2910       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2911        !IsWorthwhile(QFB)))
2912     return false;
2913 
2914   // For every pointer, there must be exactly two stores, one coming from
2915   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2916   // store (to any address) in PTB,PFB or QTB,QFB.
2917   // FIXME: We could relax this restriction with a bit more work and performance
2918   // testing.
2919   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2920   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2921   if (!PStore || !QStore)
2922     return false;
2923 
2924   // Now check the stores are compatible.
2925   if (!QStore->isUnordered() || !PStore->isUnordered())
2926     return false;
2927 
2928   // Check that sinking the store won't cause program behavior changes. Sinking
2929   // the store out of the Q blocks won't change any behavior as we're sinking
2930   // from a block to its unconditional successor. But we're moving a store from
2931   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2932   // So we need to check that there are no aliasing loads or stores in
2933   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2934   // operations between PStore and the end of its parent block.
2935   //
2936   // The ideal way to do this is to query AliasAnalysis, but we don't
2937   // preserve AA currently so that is dangerous. Be super safe and just
2938   // check there are no other memory operations at all.
2939   for (auto &I : *QFB->getSinglePredecessor())
2940     if (I.mayReadOrWriteMemory())
2941       return false;
2942   for (auto &I : *QFB)
2943     if (&I != QStore && I.mayReadOrWriteMemory())
2944       return false;
2945   if (QTB)
2946     for (auto &I : *QTB)
2947       if (&I != QStore && I.mayReadOrWriteMemory())
2948         return false;
2949   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2950        I != E; ++I)
2951     if (&*I != PStore && I->mayReadOrWriteMemory())
2952       return false;
2953 
2954   // OK, we're going to sink the stores to PostBB. The store has to be
2955   // conditional though, so first create the predicate.
2956   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2957                      ->getCondition();
2958   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2959                      ->getCondition();
2960 
2961   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2962                                                 PStore->getParent());
2963   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2964                                                 QStore->getParent(), PPHI);
2965 
2966   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2967 
2968   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2969   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2970 
2971   if (InvertPCond)
2972     PPred = QB.CreateNot(PPred);
2973   if (InvertQCond)
2974     QPred = QB.CreateNot(QPred);
2975   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2976 
2977   auto *T =
2978       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2979   QB.SetInsertPoint(T);
2980   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2981   AAMDNodes AAMD;
2982   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2983   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2984   SI->setAAMetadata(AAMD);
2985 
2986   QStore->eraseFromParent();
2987   PStore->eraseFromParent();
2988 
2989   return true;
2990 }
2991 
2992 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2993   // The intention here is to find diamonds or triangles (see below) where each
2994   // conditional block contains a store to the same address. Both of these
2995   // stores are conditional, so they can't be unconditionally sunk. But it may
2996   // be profitable to speculatively sink the stores into one merged store at the
2997   // end, and predicate the merged store on the union of the two conditions of
2998   // PBI and QBI.
2999   //
3000   // This can reduce the number of stores executed if both of the conditions are
3001   // true, and can allow the blocks to become small enough to be if-converted.
3002   // This optimization will also chain, so that ladders of test-and-set
3003   // sequences can be if-converted away.
3004   //
3005   // We only deal with simple diamonds or triangles:
3006   //
3007   //     PBI       or      PBI        or a combination of the two
3008   //    /   \               | \
3009   //   PTB  PFB             |  PFB
3010   //    \   /               | /
3011   //     QBI                QBI
3012   //    /  \                | \
3013   //   QTB  QFB             |  QFB
3014   //    \  /                | /
3015   //    PostBB            PostBB
3016   //
3017   // We model triangles as a type of diamond with a nullptr "true" block.
3018   // Triangles are canonicalized so that the fallthrough edge is represented by
3019   // a true condition, as in the diagram above.
3020   //
3021   BasicBlock *PTB = PBI->getSuccessor(0);
3022   BasicBlock *PFB = PBI->getSuccessor(1);
3023   BasicBlock *QTB = QBI->getSuccessor(0);
3024   BasicBlock *QFB = QBI->getSuccessor(1);
3025   BasicBlock *PostBB = QFB->getSingleSuccessor();
3026 
3027   bool InvertPCond = false, InvertQCond = false;
3028   // Canonicalize fallthroughs to the true branches.
3029   if (PFB == QBI->getParent()) {
3030     std::swap(PFB, PTB);
3031     InvertPCond = true;
3032   }
3033   if (QFB == PostBB) {
3034     std::swap(QFB, QTB);
3035     InvertQCond = true;
3036   }
3037 
3038   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3039   // and QFB may not. Model fallthroughs as a nullptr block.
3040   if (PTB == QBI->getParent())
3041     PTB = nullptr;
3042   if (QTB == PostBB)
3043     QTB = nullptr;
3044 
3045   // Legality bailouts. We must have at least the non-fallthrough blocks and
3046   // the post-dominating block, and the non-fallthroughs must only have one
3047   // predecessor.
3048   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3049     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3050   };
3051   if (!PostBB ||
3052       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3053       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3054     return false;
3055   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3056       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3057     return false;
3058   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3059     return false;
3060 
3061   // OK, this is a sequence of two diamonds or triangles.
3062   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3063   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3064   for (auto *BB : {PTB, PFB}) {
3065     if (!BB)
3066       continue;
3067     for (auto &I : *BB)
3068       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3069         PStoreAddresses.insert(SI->getPointerOperand());
3070   }
3071   for (auto *BB : {QTB, QFB}) {
3072     if (!BB)
3073       continue;
3074     for (auto &I : *BB)
3075       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3076         QStoreAddresses.insert(SI->getPointerOperand());
3077   }
3078 
3079   set_intersect(PStoreAddresses, QStoreAddresses);
3080   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3081   // clear what it contains.
3082   auto &CommonAddresses = PStoreAddresses;
3083 
3084   bool Changed = false;
3085   for (auto *Address : CommonAddresses)
3086     Changed |= mergeConditionalStoreToAddress(
3087         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3088   return Changed;
3089 }
3090 
3091 /// If we have a conditional branch as a predecessor of another block,
3092 /// this function tries to simplify it.  We know
3093 /// that PBI and BI are both conditional branches, and BI is in one of the
3094 /// successor blocks of PBI - PBI branches to BI.
3095 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3096                                            const DataLayout &DL) {
3097   assert(PBI->isConditional() && BI->isConditional());
3098   BasicBlock *BB = BI->getParent();
3099 
3100   // If this block ends with a branch instruction, and if there is a
3101   // predecessor that ends on a branch of the same condition, make
3102   // this conditional branch redundant.
3103   if (PBI->getCondition() == BI->getCondition() &&
3104       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3105     // Okay, the outcome of this conditional branch is statically
3106     // knowable.  If this block had a single pred, handle specially.
3107     if (BB->getSinglePredecessor()) {
3108       // Turn this into a branch on constant.
3109       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3110       BI->setCondition(
3111           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3112       return true; // Nuke the branch on constant.
3113     }
3114 
3115     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3116     // in the constant and simplify the block result.  Subsequent passes of
3117     // simplifycfg will thread the block.
3118     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3119       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3120       PHINode *NewPN = PHINode::Create(
3121           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3122           BI->getCondition()->getName() + ".pr", &BB->front());
3123       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3124       // predecessor, compute the PHI'd conditional value for all of the preds.
3125       // Any predecessor where the condition is not computable we keep symbolic.
3126       for (pred_iterator PI = PB; PI != PE; ++PI) {
3127         BasicBlock *P = *PI;
3128         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3129             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3130             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3131           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3132           NewPN->addIncoming(
3133               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3134               P);
3135         } else {
3136           NewPN->addIncoming(BI->getCondition(), P);
3137         }
3138       }
3139 
3140       BI->setCondition(NewPN);
3141       return true;
3142     }
3143   }
3144 
3145   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3146     if (CE->canTrap())
3147       return false;
3148 
3149   // If both branches are conditional and both contain stores to the same
3150   // address, remove the stores from the conditionals and create a conditional
3151   // merged store at the end.
3152   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3153     return true;
3154 
3155   // If this is a conditional branch in an empty block, and if any
3156   // predecessors are a conditional branch to one of our destinations,
3157   // fold the conditions into logical ops and one cond br.
3158   BasicBlock::iterator BBI = BB->begin();
3159   // Ignore dbg intrinsics.
3160   while (isa<DbgInfoIntrinsic>(BBI))
3161     ++BBI;
3162   if (&*BBI != BI)
3163     return false;
3164 
3165   int PBIOp, BIOp;
3166   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3167     PBIOp = 0;
3168     BIOp = 0;
3169   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3170     PBIOp = 0;
3171     BIOp = 1;
3172   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3173     PBIOp = 1;
3174     BIOp = 0;
3175   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3176     PBIOp = 1;
3177     BIOp = 1;
3178   } else {
3179     return false;
3180   }
3181 
3182   // Check to make sure that the other destination of this branch
3183   // isn't BB itself.  If so, this is an infinite loop that will
3184   // keep getting unwound.
3185   if (PBI->getSuccessor(PBIOp) == BB)
3186     return false;
3187 
3188   // Do not perform this transformation if it would require
3189   // insertion of a large number of select instructions. For targets
3190   // without predication/cmovs, this is a big pessimization.
3191 
3192   // Also do not perform this transformation if any phi node in the common
3193   // destination block can trap when reached by BB or PBB (PR17073). In that
3194   // case, it would be unsafe to hoist the operation into a select instruction.
3195 
3196   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3197   unsigned NumPhis = 0;
3198   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3199        ++II, ++NumPhis) {
3200     if (NumPhis > 2) // Disable this xform.
3201       return false;
3202 
3203     PHINode *PN = cast<PHINode>(II);
3204     Value *BIV = PN->getIncomingValueForBlock(BB);
3205     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3206       if (CE->canTrap())
3207         return false;
3208 
3209     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3210     Value *PBIV = PN->getIncomingValue(PBBIdx);
3211     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3212       if (CE->canTrap())
3213         return false;
3214   }
3215 
3216   // Finally, if everything is ok, fold the branches to logical ops.
3217   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3218 
3219   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3220                << "AND: " << *BI->getParent());
3221 
3222   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3223   // branch in it, where one edge (OtherDest) goes back to itself but the other
3224   // exits.  We don't *know* that the program avoids the infinite loop
3225   // (even though that seems likely).  If we do this xform naively, we'll end up
3226   // recursively unpeeling the loop.  Since we know that (after the xform is
3227   // done) that the block *is* infinite if reached, we just make it an obviously
3228   // infinite loop with no cond branch.
3229   if (OtherDest == BB) {
3230     // Insert it at the end of the function, because it's either code,
3231     // or it won't matter if it's hot. :)
3232     BasicBlock *InfLoopBlock =
3233         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3234     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3235     OtherDest = InfLoopBlock;
3236   }
3237 
3238   DEBUG(dbgs() << *PBI->getParent()->getParent());
3239 
3240   // BI may have other predecessors.  Because of this, we leave
3241   // it alone, but modify PBI.
3242 
3243   // Make sure we get to CommonDest on True&True directions.
3244   Value *PBICond = PBI->getCondition();
3245   IRBuilder<NoFolder> Builder(PBI);
3246   if (PBIOp)
3247     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3248 
3249   Value *BICond = BI->getCondition();
3250   if (BIOp)
3251     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3252 
3253   // Merge the conditions.
3254   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3255 
3256   // Modify PBI to branch on the new condition to the new dests.
3257   PBI->setCondition(Cond);
3258   PBI->setSuccessor(0, CommonDest);
3259   PBI->setSuccessor(1, OtherDest);
3260 
3261   // Update branch weight for PBI.
3262   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3263   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3264   bool HasWeights =
3265       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3266                              SuccTrueWeight, SuccFalseWeight);
3267   if (HasWeights) {
3268     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3269     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3270     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3271     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3272     // The weight to CommonDest should be PredCommon * SuccTotal +
3273     //                                    PredOther * SuccCommon.
3274     // The weight to OtherDest should be PredOther * SuccOther.
3275     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3276                                   PredOther * SuccCommon,
3277                               PredOther * SuccOther};
3278     // Halve the weights if any of them cannot fit in an uint32_t
3279     FitWeights(NewWeights);
3280 
3281     PBI->setMetadata(LLVMContext::MD_prof,
3282                      MDBuilder(BI->getContext())
3283                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3284   }
3285 
3286   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3287   // block that are identical to the entries for BI's block.
3288   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3289 
3290   // We know that the CommonDest already had an edge from PBI to
3291   // it.  If it has PHIs though, the PHIs may have different
3292   // entries for BB and PBI's BB.  If so, insert a select to make
3293   // them agree.
3294   PHINode *PN;
3295   for (BasicBlock::iterator II = CommonDest->begin();
3296        (PN = dyn_cast<PHINode>(II)); ++II) {
3297     Value *BIV = PN->getIncomingValueForBlock(BB);
3298     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3299     Value *PBIV = PN->getIncomingValue(PBBIdx);
3300     if (BIV != PBIV) {
3301       // Insert a select in PBI to pick the right value.
3302       SelectInst *NV = cast<SelectInst>(
3303           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3304       PN->setIncomingValue(PBBIdx, NV);
3305       // Although the select has the same condition as PBI, the original branch
3306       // weights for PBI do not apply to the new select because the select's
3307       // 'logical' edges are incoming edges of the phi that is eliminated, not
3308       // the outgoing edges of PBI.
3309       if (HasWeights) {
3310         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3311         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3312         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3313         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3314         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3315         // The weight to PredOtherDest should be PredOther * SuccCommon.
3316         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3317                                   PredOther * SuccCommon};
3318 
3319         FitWeights(NewWeights);
3320 
3321         NV->setMetadata(LLVMContext::MD_prof,
3322                         MDBuilder(BI->getContext())
3323                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3324       }
3325     }
3326   }
3327 
3328   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3329   DEBUG(dbgs() << *PBI->getParent()->getParent());
3330 
3331   // This basic block is probably dead.  We know it has at least
3332   // one fewer predecessor.
3333   return true;
3334 }
3335 
3336 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3337 // true or to FalseBB if Cond is false.
3338 // Takes care of updating the successors and removing the old terminator.
3339 // Also makes sure not to introduce new successors by assuming that edges to
3340 // non-successor TrueBBs and FalseBBs aren't reachable.
3341 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3342                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3343                                        uint32_t TrueWeight,
3344                                        uint32_t FalseWeight) {
3345   // Remove any superfluous successor edges from the CFG.
3346   // First, figure out which successors to preserve.
3347   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3348   // successor.
3349   BasicBlock *KeepEdge1 = TrueBB;
3350   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3351 
3352   // Then remove the rest.
3353   for (BasicBlock *Succ : OldTerm->successors()) {
3354     // Make sure only to keep exactly one copy of each edge.
3355     if (Succ == KeepEdge1)
3356       KeepEdge1 = nullptr;
3357     else if (Succ == KeepEdge2)
3358       KeepEdge2 = nullptr;
3359     else
3360       Succ->removePredecessor(OldTerm->getParent(),
3361                               /*DontDeleteUselessPHIs=*/true);
3362   }
3363 
3364   IRBuilder<> Builder(OldTerm);
3365   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3366 
3367   // Insert an appropriate new terminator.
3368   if (!KeepEdge1 && !KeepEdge2) {
3369     if (TrueBB == FalseBB)
3370       // We were only looking for one successor, and it was present.
3371       // Create an unconditional branch to it.
3372       Builder.CreateBr(TrueBB);
3373     else {
3374       // We found both of the successors we were looking for.
3375       // Create a conditional branch sharing the condition of the select.
3376       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3377       if (TrueWeight != FalseWeight)
3378         NewBI->setMetadata(LLVMContext::MD_prof,
3379                            MDBuilder(OldTerm->getContext())
3380                                .createBranchWeights(TrueWeight, FalseWeight));
3381     }
3382   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3383     // Neither of the selected blocks were successors, so this
3384     // terminator must be unreachable.
3385     new UnreachableInst(OldTerm->getContext(), OldTerm);
3386   } else {
3387     // One of the selected values was a successor, but the other wasn't.
3388     // Insert an unconditional branch to the one that was found;
3389     // the edge to the one that wasn't must be unreachable.
3390     if (!KeepEdge1)
3391       // Only TrueBB was found.
3392       Builder.CreateBr(TrueBB);
3393     else
3394       // Only FalseBB was found.
3395       Builder.CreateBr(FalseBB);
3396   }
3397 
3398   EraseTerminatorInstAndDCECond(OldTerm);
3399   return true;
3400 }
3401 
3402 // Replaces
3403 //   (switch (select cond, X, Y)) on constant X, Y
3404 // with a branch - conditional if X and Y lead to distinct BBs,
3405 // unconditional otherwise.
3406 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3407   // Check for constant integer values in the select.
3408   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3409   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3410   if (!TrueVal || !FalseVal)
3411     return false;
3412 
3413   // Find the relevant condition and destinations.
3414   Value *Condition = Select->getCondition();
3415   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3416   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3417 
3418   // Get weight for TrueBB and FalseBB.
3419   uint32_t TrueWeight = 0, FalseWeight = 0;
3420   SmallVector<uint64_t, 8> Weights;
3421   bool HasWeights = HasBranchWeights(SI);
3422   if (HasWeights) {
3423     GetBranchWeights(SI, Weights);
3424     if (Weights.size() == 1 + SI->getNumCases()) {
3425       TrueWeight =
3426           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3427       FalseWeight =
3428           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3429     }
3430   }
3431 
3432   // Perform the actual simplification.
3433   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3434                                     FalseWeight);
3435 }
3436 
3437 // Replaces
3438 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3439 //                             blockaddress(@fn, BlockB)))
3440 // with
3441 //   (br cond, BlockA, BlockB).
3442 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3443   // Check that both operands of the select are block addresses.
3444   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3445   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3446   if (!TBA || !FBA)
3447     return false;
3448 
3449   // Extract the actual blocks.
3450   BasicBlock *TrueBB = TBA->getBasicBlock();
3451   BasicBlock *FalseBB = FBA->getBasicBlock();
3452 
3453   // Perform the actual simplification.
3454   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3455                                     0);
3456 }
3457 
3458 /// This is called when we find an icmp instruction
3459 /// (a seteq/setne with a constant) as the only instruction in a
3460 /// block that ends with an uncond branch.  We are looking for a very specific
3461 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3462 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3463 /// default value goes to an uncond block with a seteq in it, we get something
3464 /// like:
3465 ///
3466 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3467 /// DEFAULT:
3468 ///   %tmp = icmp eq i8 %A, 92
3469 ///   br label %end
3470 /// end:
3471 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3472 ///
3473 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3474 /// the PHI, merging the third icmp into the switch.
3475 static bool TryToSimplifyUncondBranchWithICmpInIt(
3476     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3477     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3478     AssumptionCache *AC) {
3479   BasicBlock *BB = ICI->getParent();
3480 
3481   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3482   // complex.
3483   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3484     return false;
3485 
3486   Value *V = ICI->getOperand(0);
3487   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3488 
3489   // The pattern we're looking for is where our only predecessor is a switch on
3490   // 'V' and this block is the default case for the switch.  In this case we can
3491   // fold the compared value into the switch to simplify things.
3492   BasicBlock *Pred = BB->getSinglePredecessor();
3493   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3494     return false;
3495 
3496   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3497   if (SI->getCondition() != V)
3498     return false;
3499 
3500   // If BB is reachable on a non-default case, then we simply know the value of
3501   // V in this block.  Substitute it and constant fold the icmp instruction
3502   // away.
3503   if (SI->getDefaultDest() != BB) {
3504     ConstantInt *VVal = SI->findCaseDest(BB);
3505     assert(VVal && "Should have a unique destination value");
3506     ICI->setOperand(0, VVal);
3507 
3508     if (Value *V = SimplifyInstruction(ICI, DL)) {
3509       ICI->replaceAllUsesWith(V);
3510       ICI->eraseFromParent();
3511     }
3512     // BB is now empty, so it is likely to simplify away.
3513     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3514   }
3515 
3516   // Ok, the block is reachable from the default dest.  If the constant we're
3517   // comparing exists in one of the other edges, then we can constant fold ICI
3518   // and zap it.
3519   if (SI->findCaseValue(Cst) != SI->case_default()) {
3520     Value *V;
3521     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3522       V = ConstantInt::getFalse(BB->getContext());
3523     else
3524       V = ConstantInt::getTrue(BB->getContext());
3525 
3526     ICI->replaceAllUsesWith(V);
3527     ICI->eraseFromParent();
3528     // BB is now empty, so it is likely to simplify away.
3529     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3530   }
3531 
3532   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3533   // the block.
3534   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3535   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3536   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3537       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3538     return false;
3539 
3540   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3541   // true in the PHI.
3542   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3543   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3544 
3545   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3546     std::swap(DefaultCst, NewCst);
3547 
3548   // Replace ICI (which is used by the PHI for the default value) with true or
3549   // false depending on if it is EQ or NE.
3550   ICI->replaceAllUsesWith(DefaultCst);
3551   ICI->eraseFromParent();
3552 
3553   // Okay, the switch goes to this block on a default value.  Add an edge from
3554   // the switch to the merge point on the compared value.
3555   BasicBlock *NewBB =
3556       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3557   SmallVector<uint64_t, 8> Weights;
3558   bool HasWeights = HasBranchWeights(SI);
3559   if (HasWeights) {
3560     GetBranchWeights(SI, Weights);
3561     if (Weights.size() == 1 + SI->getNumCases()) {
3562       // Split weight for default case to case for "Cst".
3563       Weights[0] = (Weights[0] + 1) >> 1;
3564       Weights.push_back(Weights[0]);
3565 
3566       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3567       SI->setMetadata(
3568           LLVMContext::MD_prof,
3569           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3570     }
3571   }
3572   SI->addCase(Cst, NewBB);
3573 
3574   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3575   Builder.SetInsertPoint(NewBB);
3576   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3577   Builder.CreateBr(SuccBlock);
3578   PHIUse->addIncoming(NewCst, NewBB);
3579   return true;
3580 }
3581 
3582 /// The specified branch is a conditional branch.
3583 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3584 /// fold it into a switch instruction if so.
3585 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3586                                       const DataLayout &DL) {
3587   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3588   if (!Cond)
3589     return false;
3590 
3591   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3592   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3593   // 'setne's and'ed together, collect them.
3594 
3595   // Try to gather values from a chain of and/or to be turned into a switch
3596   ConstantComparesGatherer ConstantCompare(Cond, DL);
3597   // Unpack the result
3598   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3599   Value *CompVal = ConstantCompare.CompValue;
3600   unsigned UsedICmps = ConstantCompare.UsedICmps;
3601   Value *ExtraCase = ConstantCompare.Extra;
3602 
3603   // If we didn't have a multiply compared value, fail.
3604   if (!CompVal)
3605     return false;
3606 
3607   // Avoid turning single icmps into a switch.
3608   if (UsedICmps <= 1)
3609     return false;
3610 
3611   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3612 
3613   // There might be duplicate constants in the list, which the switch
3614   // instruction can't handle, remove them now.
3615   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3616   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3617 
3618   // If Extra was used, we require at least two switch values to do the
3619   // transformation.  A switch with one value is just a conditional branch.
3620   if (ExtraCase && Values.size() < 2)
3621     return false;
3622 
3623   // TODO: Preserve branch weight metadata, similarly to how
3624   // FoldValueComparisonIntoPredecessors preserves it.
3625 
3626   // Figure out which block is which destination.
3627   BasicBlock *DefaultBB = BI->getSuccessor(1);
3628   BasicBlock *EdgeBB = BI->getSuccessor(0);
3629   if (!TrueWhenEqual)
3630     std::swap(DefaultBB, EdgeBB);
3631 
3632   BasicBlock *BB = BI->getParent();
3633 
3634   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3635                << " cases into SWITCH.  BB is:\n"
3636                << *BB);
3637 
3638   // If there are any extra values that couldn't be folded into the switch
3639   // then we evaluate them with an explicit branch first.  Split the block
3640   // right before the condbr to handle it.
3641   if (ExtraCase) {
3642     BasicBlock *NewBB =
3643         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3644     // Remove the uncond branch added to the old block.
3645     TerminatorInst *OldTI = BB->getTerminator();
3646     Builder.SetInsertPoint(OldTI);
3647 
3648     if (TrueWhenEqual)
3649       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3650     else
3651       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3652 
3653     OldTI->eraseFromParent();
3654 
3655     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3656     // for the edge we just added.
3657     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3658 
3659     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3660                  << "\nEXTRABB = " << *BB);
3661     BB = NewBB;
3662   }
3663 
3664   Builder.SetInsertPoint(BI);
3665   // Convert pointer to int before we switch.
3666   if (CompVal->getType()->isPointerTy()) {
3667     CompVal = Builder.CreatePtrToInt(
3668         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3669   }
3670 
3671   // Create the new switch instruction now.
3672   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3673 
3674   // Add all of the 'cases' to the switch instruction.
3675   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3676     New->addCase(Values[i], EdgeBB);
3677 
3678   // We added edges from PI to the EdgeBB.  As such, if there were any
3679   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3680   // the number of edges added.
3681   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3682     PHINode *PN = cast<PHINode>(BBI);
3683     Value *InVal = PN->getIncomingValueForBlock(BB);
3684     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3685       PN->addIncoming(InVal, BB);
3686   }
3687 
3688   // Erase the old branch instruction.
3689   EraseTerminatorInstAndDCECond(BI);
3690 
3691   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3692   return true;
3693 }
3694 
3695 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3696   if (isa<PHINode>(RI->getValue()))
3697     return SimplifyCommonResume(RI);
3698   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3699            RI->getValue() == RI->getParent()->getFirstNonPHI())
3700     // The resume must unwind the exception that caused control to branch here.
3701     return SimplifySingleResume(RI);
3702 
3703   return false;
3704 }
3705 
3706 // Simplify resume that is shared by several landing pads (phi of landing pad).
3707 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3708   BasicBlock *BB = RI->getParent();
3709 
3710   // Check that there are no other instructions except for debug intrinsics
3711   // between the phi of landing pads (RI->getValue()) and resume instruction.
3712   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3713                        E = RI->getIterator();
3714   while (++I != E)
3715     if (!isa<DbgInfoIntrinsic>(I))
3716       return false;
3717 
3718   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3719   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3720 
3721   // Check incoming blocks to see if any of them are trivial.
3722   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3723        Idx++) {
3724     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3725     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3726 
3727     // If the block has other successors, we can not delete it because
3728     // it has other dependents.
3729     if (IncomingBB->getUniqueSuccessor() != BB)
3730       continue;
3731 
3732     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3733     // Not the landing pad that caused the control to branch here.
3734     if (IncomingValue != LandingPad)
3735       continue;
3736 
3737     bool isTrivial = true;
3738 
3739     I = IncomingBB->getFirstNonPHI()->getIterator();
3740     E = IncomingBB->getTerminator()->getIterator();
3741     while (++I != E)
3742       if (!isa<DbgInfoIntrinsic>(I)) {
3743         isTrivial = false;
3744         break;
3745       }
3746 
3747     if (isTrivial)
3748       TrivialUnwindBlocks.insert(IncomingBB);
3749   }
3750 
3751   // If no trivial unwind blocks, don't do any simplifications.
3752   if (TrivialUnwindBlocks.empty())
3753     return false;
3754 
3755   // Turn all invokes that unwind here into calls.
3756   for (auto *TrivialBB : TrivialUnwindBlocks) {
3757     // Blocks that will be simplified should be removed from the phi node.
3758     // Note there could be multiple edges to the resume block, and we need
3759     // to remove them all.
3760     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3761       BB->removePredecessor(TrivialBB, true);
3762 
3763     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3764          PI != PE;) {
3765       BasicBlock *Pred = *PI++;
3766       removeUnwindEdge(Pred);
3767     }
3768 
3769     // In each SimplifyCFG run, only the current processed block can be erased.
3770     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3771     // of erasing TrivialBB, we only remove the branch to the common resume
3772     // block so that we can later erase the resume block since it has no
3773     // predecessors.
3774     TrivialBB->getTerminator()->eraseFromParent();
3775     new UnreachableInst(RI->getContext(), TrivialBB);
3776   }
3777 
3778   // Delete the resume block if all its predecessors have been removed.
3779   if (pred_empty(BB))
3780     BB->eraseFromParent();
3781 
3782   return !TrivialUnwindBlocks.empty();
3783 }
3784 
3785 // Simplify resume that is only used by a single (non-phi) landing pad.
3786 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3787   BasicBlock *BB = RI->getParent();
3788   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3789   assert(RI->getValue() == LPInst &&
3790          "Resume must unwind the exception that caused control to here");
3791 
3792   // Check that there are no other instructions except for debug intrinsics.
3793   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3794   while (++I != E)
3795     if (!isa<DbgInfoIntrinsic>(I))
3796       return false;
3797 
3798   // Turn all invokes that unwind here into calls and delete the basic block.
3799   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3800     BasicBlock *Pred = *PI++;
3801     removeUnwindEdge(Pred);
3802   }
3803 
3804   // The landingpad is now unreachable.  Zap it.
3805   BB->eraseFromParent();
3806   if (LoopHeaders)
3807     LoopHeaders->erase(BB);
3808   return true;
3809 }
3810 
3811 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3812   // If this is a trivial cleanup pad that executes no instructions, it can be
3813   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3814   // that is an EH pad will be updated to continue to the caller and any
3815   // predecessor that terminates with an invoke instruction will have its invoke
3816   // instruction converted to a call instruction.  If the cleanup pad being
3817   // simplified does not continue to the caller, each predecessor will be
3818   // updated to continue to the unwind destination of the cleanup pad being
3819   // simplified.
3820   BasicBlock *BB = RI->getParent();
3821   CleanupPadInst *CPInst = RI->getCleanupPad();
3822   if (CPInst->getParent() != BB)
3823     // This isn't an empty cleanup.
3824     return false;
3825 
3826   // We cannot kill the pad if it has multiple uses.  This typically arises
3827   // from unreachable basic blocks.
3828   if (!CPInst->hasOneUse())
3829     return false;
3830 
3831   // Check that there are no other instructions except for benign intrinsics.
3832   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3833   while (++I != E) {
3834     auto *II = dyn_cast<IntrinsicInst>(I);
3835     if (!II)
3836       return false;
3837 
3838     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3839     switch (IntrinsicID) {
3840     case Intrinsic::dbg_declare:
3841     case Intrinsic::dbg_value:
3842     case Intrinsic::lifetime_end:
3843       break;
3844     default:
3845       return false;
3846     }
3847   }
3848 
3849   // If the cleanup return we are simplifying unwinds to the caller, this will
3850   // set UnwindDest to nullptr.
3851   BasicBlock *UnwindDest = RI->getUnwindDest();
3852   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3853 
3854   // We're about to remove BB from the control flow.  Before we do, sink any
3855   // PHINodes into the unwind destination.  Doing this before changing the
3856   // control flow avoids some potentially slow checks, since we can currently
3857   // be certain that UnwindDest and BB have no common predecessors (since they
3858   // are both EH pads).
3859   if (UnwindDest) {
3860     // First, go through the PHI nodes in UnwindDest and update any nodes that
3861     // reference the block we are removing
3862     for (BasicBlock::iterator I = UnwindDest->begin(),
3863                               IE = DestEHPad->getIterator();
3864          I != IE; ++I) {
3865       PHINode *DestPN = cast<PHINode>(I);
3866 
3867       int Idx = DestPN->getBasicBlockIndex(BB);
3868       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3869       assert(Idx != -1);
3870       // This PHI node has an incoming value that corresponds to a control
3871       // path through the cleanup pad we are removing.  If the incoming
3872       // value is in the cleanup pad, it must be a PHINode (because we
3873       // verified above that the block is otherwise empty).  Otherwise, the
3874       // value is either a constant or a value that dominates the cleanup
3875       // pad being removed.
3876       //
3877       // Because BB and UnwindDest are both EH pads, all of their
3878       // predecessors must unwind to these blocks, and since no instruction
3879       // can have multiple unwind destinations, there will be no overlap in
3880       // incoming blocks between SrcPN and DestPN.
3881       Value *SrcVal = DestPN->getIncomingValue(Idx);
3882       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3883 
3884       // Remove the entry for the block we are deleting.
3885       DestPN->removeIncomingValue(Idx, false);
3886 
3887       if (SrcPN && SrcPN->getParent() == BB) {
3888         // If the incoming value was a PHI node in the cleanup pad we are
3889         // removing, we need to merge that PHI node's incoming values into
3890         // DestPN.
3891         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3892              SrcIdx != SrcE; ++SrcIdx) {
3893           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3894                               SrcPN->getIncomingBlock(SrcIdx));
3895         }
3896       } else {
3897         // Otherwise, the incoming value came from above BB and
3898         // so we can just reuse it.  We must associate all of BB's
3899         // predecessors with this value.
3900         for (auto *pred : predecessors(BB)) {
3901           DestPN->addIncoming(SrcVal, pred);
3902         }
3903       }
3904     }
3905 
3906     // Sink any remaining PHI nodes directly into UnwindDest.
3907     Instruction *InsertPt = DestEHPad;
3908     for (BasicBlock::iterator I = BB->begin(),
3909                               IE = BB->getFirstNonPHI()->getIterator();
3910          I != IE;) {
3911       // The iterator must be incremented here because the instructions are
3912       // being moved to another block.
3913       PHINode *PN = cast<PHINode>(I++);
3914       if (PN->use_empty())
3915         // If the PHI node has no uses, just leave it.  It will be erased
3916         // when we erase BB below.
3917         continue;
3918 
3919       // Otherwise, sink this PHI node into UnwindDest.
3920       // Any predecessors to UnwindDest which are not already represented
3921       // must be back edges which inherit the value from the path through
3922       // BB.  In this case, the PHI value must reference itself.
3923       for (auto *pred : predecessors(UnwindDest))
3924         if (pred != BB)
3925           PN->addIncoming(PN, pred);
3926       PN->moveBefore(InsertPt);
3927     }
3928   }
3929 
3930   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3931     // The iterator must be updated here because we are removing this pred.
3932     BasicBlock *PredBB = *PI++;
3933     if (UnwindDest == nullptr) {
3934       removeUnwindEdge(PredBB);
3935     } else {
3936       TerminatorInst *TI = PredBB->getTerminator();
3937       TI->replaceUsesOfWith(BB, UnwindDest);
3938     }
3939   }
3940 
3941   // The cleanup pad is now unreachable.  Zap it.
3942   BB->eraseFromParent();
3943   return true;
3944 }
3945 
3946 // Try to merge two cleanuppads together.
3947 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3948   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3949   // with.
3950   BasicBlock *UnwindDest = RI->getUnwindDest();
3951   if (!UnwindDest)
3952     return false;
3953 
3954   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3955   // be safe to merge without code duplication.
3956   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3957     return false;
3958 
3959   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3960   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3961   if (!SuccessorCleanupPad)
3962     return false;
3963 
3964   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3965   // Replace any uses of the successor cleanupad with the predecessor pad
3966   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3967   // funclet bundle operands.
3968   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3969   // Remove the old cleanuppad.
3970   SuccessorCleanupPad->eraseFromParent();
3971   // Now, we simply replace the cleanupret with a branch to the unwind
3972   // destination.
3973   BranchInst::Create(UnwindDest, RI->getParent());
3974   RI->eraseFromParent();
3975 
3976   return true;
3977 }
3978 
3979 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3980   // It is possible to transiantly have an undef cleanuppad operand because we
3981   // have deleted some, but not all, dead blocks.
3982   // Eventually, this block will be deleted.
3983   if (isa<UndefValue>(RI->getOperand(0)))
3984     return false;
3985 
3986   if (mergeCleanupPad(RI))
3987     return true;
3988 
3989   if (removeEmptyCleanup(RI))
3990     return true;
3991 
3992   return false;
3993 }
3994 
3995 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3996   BasicBlock *BB = RI->getParent();
3997   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3998     return false;
3999 
4000   // Find predecessors that end with branches.
4001   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4002   SmallVector<BranchInst *, 8> CondBranchPreds;
4003   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4004     BasicBlock *P = *PI;
4005     TerminatorInst *PTI = P->getTerminator();
4006     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4007       if (BI->isUnconditional())
4008         UncondBranchPreds.push_back(P);
4009       else
4010         CondBranchPreds.push_back(BI);
4011     }
4012   }
4013 
4014   // If we found some, do the transformation!
4015   if (!UncondBranchPreds.empty() && DupRet) {
4016     while (!UncondBranchPreds.empty()) {
4017       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4018       DEBUG(dbgs() << "FOLDING: " << *BB
4019                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4020       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4021     }
4022 
4023     // If we eliminated all predecessors of the block, delete the block now.
4024     if (pred_empty(BB)) {
4025       // We know there are no successors, so just nuke the block.
4026       BB->eraseFromParent();
4027       if (LoopHeaders)
4028         LoopHeaders->erase(BB);
4029     }
4030 
4031     return true;
4032   }
4033 
4034   // Check out all of the conditional branches going to this return
4035   // instruction.  If any of them just select between returns, change the
4036   // branch itself into a select/return pair.
4037   while (!CondBranchPreds.empty()) {
4038     BranchInst *BI = CondBranchPreds.pop_back_val();
4039 
4040     // Check to see if the non-BB successor is also a return block.
4041     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4042         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4043         SimplifyCondBranchToTwoReturns(BI, Builder))
4044       return true;
4045   }
4046   return false;
4047 }
4048 
4049 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4050   BasicBlock *BB = UI->getParent();
4051 
4052   bool Changed = false;
4053 
4054   // If there are any instructions immediately before the unreachable that can
4055   // be removed, do so.
4056   while (UI->getIterator() != BB->begin()) {
4057     BasicBlock::iterator BBI = UI->getIterator();
4058     --BBI;
4059     // Do not delete instructions that can have side effects which might cause
4060     // the unreachable to not be reachable; specifically, calls and volatile
4061     // operations may have this effect.
4062     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4063       break;
4064 
4065     if (BBI->mayHaveSideEffects()) {
4066       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4067         if (SI->isVolatile())
4068           break;
4069       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4070         if (LI->isVolatile())
4071           break;
4072       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4073         if (RMWI->isVolatile())
4074           break;
4075       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4076         if (CXI->isVolatile())
4077           break;
4078       } else if (isa<CatchPadInst>(BBI)) {
4079         // A catchpad may invoke exception object constructors and such, which
4080         // in some languages can be arbitrary code, so be conservative by
4081         // default.
4082         // For CoreCLR, it just involves a type test, so can be removed.
4083         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4084             EHPersonality::CoreCLR)
4085           break;
4086       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4087                  !isa<LandingPadInst>(BBI)) {
4088         break;
4089       }
4090       // Note that deleting LandingPad's here is in fact okay, although it
4091       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4092       // all the predecessors of this block will be the unwind edges of Invokes,
4093       // and we can therefore guarantee this block will be erased.
4094     }
4095 
4096     // Delete this instruction (any uses are guaranteed to be dead)
4097     if (!BBI->use_empty())
4098       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4099     BBI->eraseFromParent();
4100     Changed = true;
4101   }
4102 
4103   // If the unreachable instruction is the first in the block, take a gander
4104   // at all of the predecessors of this instruction, and simplify them.
4105   if (&BB->front() != UI)
4106     return Changed;
4107 
4108   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4109   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4110     TerminatorInst *TI = Preds[i]->getTerminator();
4111     IRBuilder<> Builder(TI);
4112     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4113       if (BI->isUnconditional()) {
4114         if (BI->getSuccessor(0) == BB) {
4115           new UnreachableInst(TI->getContext(), TI);
4116           TI->eraseFromParent();
4117           Changed = true;
4118         }
4119       } else {
4120         if (BI->getSuccessor(0) == BB) {
4121           Builder.CreateBr(BI->getSuccessor(1));
4122           EraseTerminatorInstAndDCECond(BI);
4123         } else if (BI->getSuccessor(1) == BB) {
4124           Builder.CreateBr(BI->getSuccessor(0));
4125           EraseTerminatorInstAndDCECond(BI);
4126           Changed = true;
4127         }
4128       }
4129     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4130       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4131            ++i)
4132         if (i.getCaseSuccessor() == BB) {
4133           BB->removePredecessor(SI->getParent());
4134           SI->removeCase(i);
4135           --i;
4136           --e;
4137           Changed = true;
4138         }
4139     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4140       if (II->getUnwindDest() == BB) {
4141         removeUnwindEdge(TI->getParent());
4142         Changed = true;
4143       }
4144     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4145       if (CSI->getUnwindDest() == BB) {
4146         removeUnwindEdge(TI->getParent());
4147         Changed = true;
4148         continue;
4149       }
4150 
4151       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4152                                              E = CSI->handler_end();
4153            I != E; ++I) {
4154         if (*I == BB) {
4155           CSI->removeHandler(I);
4156           --I;
4157           --E;
4158           Changed = true;
4159         }
4160       }
4161       if (CSI->getNumHandlers() == 0) {
4162         BasicBlock *CatchSwitchBB = CSI->getParent();
4163         if (CSI->hasUnwindDest()) {
4164           // Redirect preds to the unwind dest
4165           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4166         } else {
4167           // Rewrite all preds to unwind to caller (or from invoke to call).
4168           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4169           for (BasicBlock *EHPred : EHPreds)
4170             removeUnwindEdge(EHPred);
4171         }
4172         // The catchswitch is no longer reachable.
4173         new UnreachableInst(CSI->getContext(), CSI);
4174         CSI->eraseFromParent();
4175         Changed = true;
4176       }
4177     } else if (isa<CleanupReturnInst>(TI)) {
4178       new UnreachableInst(TI->getContext(), TI);
4179       TI->eraseFromParent();
4180       Changed = true;
4181     }
4182   }
4183 
4184   // If this block is now dead, remove it.
4185   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4186     // We know there are no successors, so just nuke the block.
4187     BB->eraseFromParent();
4188     if (LoopHeaders)
4189       LoopHeaders->erase(BB);
4190     return true;
4191   }
4192 
4193   return Changed;
4194 }
4195 
4196 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4197   assert(Cases.size() >= 1);
4198 
4199   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4200   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4201     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4202       return false;
4203   }
4204   return true;
4205 }
4206 
4207 /// Turn a switch with two reachable destinations into an integer range
4208 /// comparison and branch.
4209 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4210   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4211 
4212   bool HasDefault =
4213       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4214 
4215   // Partition the cases into two sets with different destinations.
4216   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4217   BasicBlock *DestB = nullptr;
4218   SmallVector<ConstantInt *, 16> CasesA;
4219   SmallVector<ConstantInt *, 16> CasesB;
4220 
4221   for (SwitchInst::CaseIt I : SI->cases()) {
4222     BasicBlock *Dest = I.getCaseSuccessor();
4223     if (!DestA)
4224       DestA = Dest;
4225     if (Dest == DestA) {
4226       CasesA.push_back(I.getCaseValue());
4227       continue;
4228     }
4229     if (!DestB)
4230       DestB = Dest;
4231     if (Dest == DestB) {
4232       CasesB.push_back(I.getCaseValue());
4233       continue;
4234     }
4235     return false; // More than two destinations.
4236   }
4237 
4238   assert(DestA && DestB &&
4239          "Single-destination switch should have been folded.");
4240   assert(DestA != DestB);
4241   assert(DestB != SI->getDefaultDest());
4242   assert(!CasesB.empty() && "There must be non-default cases.");
4243   assert(!CasesA.empty() || HasDefault);
4244 
4245   // Figure out if one of the sets of cases form a contiguous range.
4246   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4247   BasicBlock *ContiguousDest = nullptr;
4248   BasicBlock *OtherDest = nullptr;
4249   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4250     ContiguousCases = &CasesA;
4251     ContiguousDest = DestA;
4252     OtherDest = DestB;
4253   } else if (CasesAreContiguous(CasesB)) {
4254     ContiguousCases = &CasesB;
4255     ContiguousDest = DestB;
4256     OtherDest = DestA;
4257   } else
4258     return false;
4259 
4260   // Start building the compare and branch.
4261 
4262   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4263   Constant *NumCases =
4264       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4265 
4266   Value *Sub = SI->getCondition();
4267   if (!Offset->isNullValue())
4268     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4269 
4270   Value *Cmp;
4271   // If NumCases overflowed, then all possible values jump to the successor.
4272   if (NumCases->isNullValue() && !ContiguousCases->empty())
4273     Cmp = ConstantInt::getTrue(SI->getContext());
4274   else
4275     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4276   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4277 
4278   // Update weight for the newly-created conditional branch.
4279   if (HasBranchWeights(SI)) {
4280     SmallVector<uint64_t, 8> Weights;
4281     GetBranchWeights(SI, Weights);
4282     if (Weights.size() == 1 + SI->getNumCases()) {
4283       uint64_t TrueWeight = 0;
4284       uint64_t FalseWeight = 0;
4285       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4286         if (SI->getSuccessor(I) == ContiguousDest)
4287           TrueWeight += Weights[I];
4288         else
4289           FalseWeight += Weights[I];
4290       }
4291       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4292         TrueWeight /= 2;
4293         FalseWeight /= 2;
4294       }
4295       NewBI->setMetadata(LLVMContext::MD_prof,
4296                          MDBuilder(SI->getContext())
4297                              .createBranchWeights((uint32_t)TrueWeight,
4298                                                   (uint32_t)FalseWeight));
4299     }
4300   }
4301 
4302   // Prune obsolete incoming values off the successors' PHI nodes.
4303   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4304     unsigned PreviousEdges = ContiguousCases->size();
4305     if (ContiguousDest == SI->getDefaultDest())
4306       ++PreviousEdges;
4307     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4308       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4309   }
4310   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4311     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4312     if (OtherDest == SI->getDefaultDest())
4313       ++PreviousEdges;
4314     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4315       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4316   }
4317 
4318   // Drop the switch.
4319   SI->eraseFromParent();
4320 
4321   return true;
4322 }
4323 
4324 /// Compute masked bits for the condition of a switch
4325 /// and use it to remove dead cases.
4326 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4327                                      const DataLayout &DL) {
4328   Value *Cond = SI->getCondition();
4329   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4330   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4331   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4332 
4333   // We can also eliminate cases by determining that their values are outside of
4334   // the limited range of the condition based on how many significant (non-sign)
4335   // bits are in the condition value.
4336   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4337   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4338 
4339   // Gather dead cases.
4340   SmallVector<ConstantInt *, 8> DeadCases;
4341   for (auto &Case : SI->cases()) {
4342     APInt CaseVal = Case.getCaseValue()->getValue();
4343     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4344         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4345       DeadCases.push_back(Case.getCaseValue());
4346       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4347     }
4348   }
4349 
4350   // If we can prove that the cases must cover all possible values, the
4351   // default destination becomes dead and we can remove it.  If we know some
4352   // of the bits in the value, we can use that to more precisely compute the
4353   // number of possible unique case values.
4354   bool HasDefault =
4355       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4356   const unsigned NumUnknownBits =
4357       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4358   assert(NumUnknownBits <= Bits);
4359   if (HasDefault && DeadCases.empty() &&
4360       NumUnknownBits < 64 /* avoid overflow */ &&
4361       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4362     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4363     BasicBlock *NewDefault =
4364         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4365     SI->setDefaultDest(&*NewDefault);
4366     SplitBlock(&*NewDefault, &NewDefault->front());
4367     auto *OldTI = NewDefault->getTerminator();
4368     new UnreachableInst(SI->getContext(), OldTI);
4369     EraseTerminatorInstAndDCECond(OldTI);
4370     return true;
4371   }
4372 
4373   SmallVector<uint64_t, 8> Weights;
4374   bool HasWeight = HasBranchWeights(SI);
4375   if (HasWeight) {
4376     GetBranchWeights(SI, Weights);
4377     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4378   }
4379 
4380   // Remove dead cases from the switch.
4381   for (ConstantInt *DeadCase : DeadCases) {
4382     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4383     assert(Case != SI->case_default() &&
4384            "Case was not found. Probably mistake in DeadCases forming.");
4385     if (HasWeight) {
4386       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4387       Weights.pop_back();
4388     }
4389 
4390     // Prune unused values from PHI nodes.
4391     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4392     SI->removeCase(Case);
4393   }
4394   if (HasWeight && Weights.size() >= 2) {
4395     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4396     SI->setMetadata(LLVMContext::MD_prof,
4397                     MDBuilder(SI->getParent()->getContext())
4398                         .createBranchWeights(MDWeights));
4399   }
4400 
4401   return !DeadCases.empty();
4402 }
4403 
4404 /// If BB would be eligible for simplification by
4405 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4406 /// by an unconditional branch), look at the phi node for BB in the successor
4407 /// block and see if the incoming value is equal to CaseValue. If so, return
4408 /// the phi node, and set PhiIndex to BB's index in the phi node.
4409 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4410                                               BasicBlock *BB, int *PhiIndex) {
4411   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4412     return nullptr; // BB must be empty to be a candidate for simplification.
4413   if (!BB->getSinglePredecessor())
4414     return nullptr; // BB must be dominated by the switch.
4415 
4416   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4417   if (!Branch || !Branch->isUnconditional())
4418     return nullptr; // Terminator must be unconditional branch.
4419 
4420   BasicBlock *Succ = Branch->getSuccessor(0);
4421 
4422   BasicBlock::iterator I = Succ->begin();
4423   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4424     int Idx = PHI->getBasicBlockIndex(BB);
4425     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4426 
4427     Value *InValue = PHI->getIncomingValue(Idx);
4428     if (InValue != CaseValue)
4429       continue;
4430 
4431     *PhiIndex = Idx;
4432     return PHI;
4433   }
4434 
4435   return nullptr;
4436 }
4437 
4438 /// Try to forward the condition of a switch instruction to a phi node
4439 /// dominated by the switch, if that would mean that some of the destination
4440 /// blocks of the switch can be folded away.
4441 /// Returns true if a change is made.
4442 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4443   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4444   ForwardingNodesMap ForwardingNodes;
4445 
4446   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4447        ++I) {
4448     ConstantInt *CaseValue = I.getCaseValue();
4449     BasicBlock *CaseDest = I.getCaseSuccessor();
4450 
4451     int PhiIndex;
4452     PHINode *PHI =
4453         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4454     if (!PHI)
4455       continue;
4456 
4457     ForwardingNodes[PHI].push_back(PhiIndex);
4458   }
4459 
4460   bool Changed = false;
4461 
4462   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4463                                     E = ForwardingNodes.end();
4464        I != E; ++I) {
4465     PHINode *Phi = I->first;
4466     SmallVectorImpl<int> &Indexes = I->second;
4467 
4468     if (Indexes.size() < 2)
4469       continue;
4470 
4471     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4472       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4473     Changed = true;
4474   }
4475 
4476   return Changed;
4477 }
4478 
4479 /// Return true if the backend will be able to handle
4480 /// initializing an array of constants like C.
4481 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4482   if (C->isThreadDependent())
4483     return false;
4484   if (C->isDLLImportDependent())
4485     return false;
4486 
4487   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4488       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4489       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4490     return false;
4491 
4492   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4493     if (!CE->isGEPWithNoNotionalOverIndexing())
4494       return false;
4495     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4496       return false;
4497   }
4498 
4499   if (!TTI.shouldBuildLookupTablesForConstant(C))
4500     return false;
4501 
4502   return true;
4503 }
4504 
4505 /// If V is a Constant, return it. Otherwise, try to look up
4506 /// its constant value in ConstantPool, returning 0 if it's not there.
4507 static Constant *
4508 LookupConstant(Value *V,
4509                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4510   if (Constant *C = dyn_cast<Constant>(V))
4511     return C;
4512   return ConstantPool.lookup(V);
4513 }
4514 
4515 /// Try to fold instruction I into a constant. This works for
4516 /// simple instructions such as binary operations where both operands are
4517 /// constant or can be replaced by constants from the ConstantPool. Returns the
4518 /// resulting constant on success, 0 otherwise.
4519 static Constant *
4520 ConstantFold(Instruction *I, const DataLayout &DL,
4521              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4522   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4523     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4524     if (!A)
4525       return nullptr;
4526     if (A->isAllOnesValue())
4527       return LookupConstant(Select->getTrueValue(), ConstantPool);
4528     if (A->isNullValue())
4529       return LookupConstant(Select->getFalseValue(), ConstantPool);
4530     return nullptr;
4531   }
4532 
4533   SmallVector<Constant *, 4> COps;
4534   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4535     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4536       COps.push_back(A);
4537     else
4538       return nullptr;
4539   }
4540 
4541   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4542     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4543                                            COps[1], DL);
4544   }
4545 
4546   return ConstantFoldInstOperands(I, COps, DL);
4547 }
4548 
4549 /// Try to determine the resulting constant values in phi nodes
4550 /// at the common destination basic block, *CommonDest, for one of the case
4551 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4552 /// case), of a switch instruction SI.
4553 static bool
4554 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4555                BasicBlock **CommonDest,
4556                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4557                const DataLayout &DL, const TargetTransformInfo &TTI) {
4558   // The block from which we enter the common destination.
4559   BasicBlock *Pred = SI->getParent();
4560 
4561   // If CaseDest is empty except for some side-effect free instructions through
4562   // which we can constant-propagate the CaseVal, continue to its successor.
4563   SmallDenseMap<Value *, Constant *> ConstantPool;
4564   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4565   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4566        ++I) {
4567     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4568       // If the terminator is a simple branch, continue to the next block.
4569       if (T->getNumSuccessors() != 1 || T->isExceptional())
4570         return false;
4571       Pred = CaseDest;
4572       CaseDest = T->getSuccessor(0);
4573     } else if (isa<DbgInfoIntrinsic>(I)) {
4574       // Skip debug intrinsic.
4575       continue;
4576     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4577       // Instruction is side-effect free and constant.
4578 
4579       // If the instruction has uses outside this block or a phi node slot for
4580       // the block, it is not safe to bypass the instruction since it would then
4581       // no longer dominate all its uses.
4582       for (auto &Use : I->uses()) {
4583         User *User = Use.getUser();
4584         if (Instruction *I = dyn_cast<Instruction>(User))
4585           if (I->getParent() == CaseDest)
4586             continue;
4587         if (PHINode *Phi = dyn_cast<PHINode>(User))
4588           if (Phi->getIncomingBlock(Use) == CaseDest)
4589             continue;
4590         return false;
4591       }
4592 
4593       ConstantPool.insert(std::make_pair(&*I, C));
4594     } else {
4595       break;
4596     }
4597   }
4598 
4599   // If we did not have a CommonDest before, use the current one.
4600   if (!*CommonDest)
4601     *CommonDest = CaseDest;
4602   // If the destination isn't the common one, abort.
4603   if (CaseDest != *CommonDest)
4604     return false;
4605 
4606   // Get the values for this case from phi nodes in the destination block.
4607   BasicBlock::iterator I = (*CommonDest)->begin();
4608   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4609     int Idx = PHI->getBasicBlockIndex(Pred);
4610     if (Idx == -1)
4611       continue;
4612 
4613     Constant *ConstVal =
4614         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4615     if (!ConstVal)
4616       return false;
4617 
4618     // Be conservative about which kinds of constants we support.
4619     if (!ValidLookupTableConstant(ConstVal, TTI))
4620       return false;
4621 
4622     Res.push_back(std::make_pair(PHI, ConstVal));
4623   }
4624 
4625   return Res.size() > 0;
4626 }
4627 
4628 // Helper function used to add CaseVal to the list of cases that generate
4629 // Result.
4630 static void MapCaseToResult(ConstantInt *CaseVal,
4631                             SwitchCaseResultVectorTy &UniqueResults,
4632                             Constant *Result) {
4633   for (auto &I : UniqueResults) {
4634     if (I.first == Result) {
4635       I.second.push_back(CaseVal);
4636       return;
4637     }
4638   }
4639   UniqueResults.push_back(
4640       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4641 }
4642 
4643 // Helper function that initializes a map containing
4644 // results for the PHI node of the common destination block for a switch
4645 // instruction. Returns false if multiple PHI nodes have been found or if
4646 // there is not a common destination block for the switch.
4647 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4648                                   BasicBlock *&CommonDest,
4649                                   SwitchCaseResultVectorTy &UniqueResults,
4650                                   Constant *&DefaultResult,
4651                                   const DataLayout &DL,
4652                                   const TargetTransformInfo &TTI) {
4653   for (auto &I : SI->cases()) {
4654     ConstantInt *CaseVal = I.getCaseValue();
4655 
4656     // Resulting value at phi nodes for this case value.
4657     SwitchCaseResultsTy Results;
4658     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4659                         DL, TTI))
4660       return false;
4661 
4662     // Only one value per case is permitted
4663     if (Results.size() > 1)
4664       return false;
4665     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4666 
4667     // Check the PHI consistency.
4668     if (!PHI)
4669       PHI = Results[0].first;
4670     else if (PHI != Results[0].first)
4671       return false;
4672   }
4673   // Find the default result value.
4674   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4675   BasicBlock *DefaultDest = SI->getDefaultDest();
4676   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4677                  DL, TTI);
4678   // If the default value is not found abort unless the default destination
4679   // is unreachable.
4680   DefaultResult =
4681       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4682   if ((!DefaultResult &&
4683        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4684     return false;
4685 
4686   return true;
4687 }
4688 
4689 // Helper function that checks if it is possible to transform a switch with only
4690 // two cases (or two cases + default) that produces a result into a select.
4691 // Example:
4692 // switch (a) {
4693 //   case 10:                %0 = icmp eq i32 %a, 10
4694 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4695 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4696 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4697 //   default:
4698 //     return 4;
4699 // }
4700 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4701                                    Constant *DefaultResult, Value *Condition,
4702                                    IRBuilder<> &Builder) {
4703   assert(ResultVector.size() == 2 &&
4704          "We should have exactly two unique results at this point");
4705   // If we are selecting between only two cases transform into a simple
4706   // select or a two-way select if default is possible.
4707   if (ResultVector[0].second.size() == 1 &&
4708       ResultVector[1].second.size() == 1) {
4709     ConstantInt *const FirstCase = ResultVector[0].second[0];
4710     ConstantInt *const SecondCase = ResultVector[1].second[0];
4711 
4712     bool DefaultCanTrigger = DefaultResult;
4713     Value *SelectValue = ResultVector[1].first;
4714     if (DefaultCanTrigger) {
4715       Value *const ValueCompare =
4716           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4717       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4718                                          DefaultResult, "switch.select");
4719     }
4720     Value *const ValueCompare =
4721         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4722     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4723                                 SelectValue, "switch.select");
4724   }
4725 
4726   return nullptr;
4727 }
4728 
4729 // Helper function to cleanup a switch instruction that has been converted into
4730 // a select, fixing up PHI nodes and basic blocks.
4731 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4732                                               Value *SelectValue,
4733                                               IRBuilder<> &Builder) {
4734   BasicBlock *SelectBB = SI->getParent();
4735   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4736     PHI->removeIncomingValue(SelectBB);
4737   PHI->addIncoming(SelectValue, SelectBB);
4738 
4739   Builder.CreateBr(PHI->getParent());
4740 
4741   // Remove the switch.
4742   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4743     BasicBlock *Succ = SI->getSuccessor(i);
4744 
4745     if (Succ == PHI->getParent())
4746       continue;
4747     Succ->removePredecessor(SelectBB);
4748   }
4749   SI->eraseFromParent();
4750 }
4751 
4752 /// If the switch is only used to initialize one or more
4753 /// phi nodes in a common successor block with only two different
4754 /// constant values, replace the switch with select.
4755 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4756                            AssumptionCache *AC, const DataLayout &DL,
4757                            const TargetTransformInfo &TTI) {
4758   Value *const Cond = SI->getCondition();
4759   PHINode *PHI = nullptr;
4760   BasicBlock *CommonDest = nullptr;
4761   Constant *DefaultResult;
4762   SwitchCaseResultVectorTy UniqueResults;
4763   // Collect all the cases that will deliver the same value from the switch.
4764   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4765                              DL, TTI))
4766     return false;
4767   // Selects choose between maximum two values.
4768   if (UniqueResults.size() != 2)
4769     return false;
4770   assert(PHI != nullptr && "PHI for value select not found");
4771 
4772   Builder.SetInsertPoint(SI);
4773   Value *SelectValue =
4774       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4775   if (SelectValue) {
4776     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4777     return true;
4778   }
4779   // The switch couldn't be converted into a select.
4780   return false;
4781 }
4782 
4783 namespace {
4784 
4785 /// This class represents a lookup table that can be used to replace a switch.
4786 class SwitchLookupTable {
4787 public:
4788   /// Create a lookup table to use as a switch replacement with the contents
4789   /// of Values, using DefaultValue to fill any holes in the table.
4790   SwitchLookupTable(
4791       Module &M, uint64_t TableSize, ConstantInt *Offset,
4792       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4793       Constant *DefaultValue, const DataLayout &DL);
4794 
4795   /// Build instructions with Builder to retrieve the value at
4796   /// the position given by Index in the lookup table.
4797   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4798 
4799   /// Return true if a table with TableSize elements of
4800   /// type ElementType would fit in a target-legal register.
4801   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4802                                  Type *ElementType);
4803 
4804 private:
4805   // Depending on the contents of the table, it can be represented in
4806   // different ways.
4807   enum {
4808     // For tables where each element contains the same value, we just have to
4809     // store that single value and return it for each lookup.
4810     SingleValueKind,
4811 
4812     // For tables where there is a linear relationship between table index
4813     // and values. We calculate the result with a simple multiplication
4814     // and addition instead of a table lookup.
4815     LinearMapKind,
4816 
4817     // For small tables with integer elements, we can pack them into a bitmap
4818     // that fits into a target-legal register. Values are retrieved by
4819     // shift and mask operations.
4820     BitMapKind,
4821 
4822     // The table is stored as an array of values. Values are retrieved by load
4823     // instructions from the table.
4824     ArrayKind
4825   } Kind;
4826 
4827   // For SingleValueKind, this is the single value.
4828   Constant *SingleValue;
4829 
4830   // For BitMapKind, this is the bitmap.
4831   ConstantInt *BitMap;
4832   IntegerType *BitMapElementTy;
4833 
4834   // For LinearMapKind, these are the constants used to derive the value.
4835   ConstantInt *LinearOffset;
4836   ConstantInt *LinearMultiplier;
4837 
4838   // For ArrayKind, this is the array.
4839   GlobalVariable *Array;
4840 };
4841 
4842 } // end anonymous namespace
4843 
4844 SwitchLookupTable::SwitchLookupTable(
4845     Module &M, uint64_t TableSize, ConstantInt *Offset,
4846     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4847     Constant *DefaultValue, const DataLayout &DL)
4848     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4849       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4850   assert(Values.size() && "Can't build lookup table without values!");
4851   assert(TableSize >= Values.size() && "Can't fit values in table!");
4852 
4853   // If all values in the table are equal, this is that value.
4854   SingleValue = Values.begin()->second;
4855 
4856   Type *ValueType = Values.begin()->second->getType();
4857 
4858   // Build up the table contents.
4859   SmallVector<Constant *, 64> TableContents(TableSize);
4860   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4861     ConstantInt *CaseVal = Values[I].first;
4862     Constant *CaseRes = Values[I].second;
4863     assert(CaseRes->getType() == ValueType);
4864 
4865     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4866     TableContents[Idx] = CaseRes;
4867 
4868     if (CaseRes != SingleValue)
4869       SingleValue = nullptr;
4870   }
4871 
4872   // Fill in any holes in the table with the default result.
4873   if (Values.size() < TableSize) {
4874     assert(DefaultValue &&
4875            "Need a default value to fill the lookup table holes.");
4876     assert(DefaultValue->getType() == ValueType);
4877     for (uint64_t I = 0; I < TableSize; ++I) {
4878       if (!TableContents[I])
4879         TableContents[I] = DefaultValue;
4880     }
4881 
4882     if (DefaultValue != SingleValue)
4883       SingleValue = nullptr;
4884   }
4885 
4886   // If each element in the table contains the same value, we only need to store
4887   // that single value.
4888   if (SingleValue) {
4889     Kind = SingleValueKind;
4890     return;
4891   }
4892 
4893   // Check if we can derive the value with a linear transformation from the
4894   // table index.
4895   if (isa<IntegerType>(ValueType)) {
4896     bool LinearMappingPossible = true;
4897     APInt PrevVal;
4898     APInt DistToPrev;
4899     assert(TableSize >= 2 && "Should be a SingleValue table.");
4900     // Check if there is the same distance between two consecutive values.
4901     for (uint64_t I = 0; I < TableSize; ++I) {
4902       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4903       if (!ConstVal) {
4904         // This is an undef. We could deal with it, but undefs in lookup tables
4905         // are very seldom. It's probably not worth the additional complexity.
4906         LinearMappingPossible = false;
4907         break;
4908       }
4909       APInt Val = ConstVal->getValue();
4910       if (I != 0) {
4911         APInt Dist = Val - PrevVal;
4912         if (I == 1) {
4913           DistToPrev = Dist;
4914         } else if (Dist != DistToPrev) {
4915           LinearMappingPossible = false;
4916           break;
4917         }
4918       }
4919       PrevVal = Val;
4920     }
4921     if (LinearMappingPossible) {
4922       LinearOffset = cast<ConstantInt>(TableContents[0]);
4923       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4924       Kind = LinearMapKind;
4925       ++NumLinearMaps;
4926       return;
4927     }
4928   }
4929 
4930   // If the type is integer and the table fits in a register, build a bitmap.
4931   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4932     IntegerType *IT = cast<IntegerType>(ValueType);
4933     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4934     for (uint64_t I = TableSize; I > 0; --I) {
4935       TableInt <<= IT->getBitWidth();
4936       // Insert values into the bitmap. Undef values are set to zero.
4937       if (!isa<UndefValue>(TableContents[I - 1])) {
4938         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4939         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4940       }
4941     }
4942     BitMap = ConstantInt::get(M.getContext(), TableInt);
4943     BitMapElementTy = IT;
4944     Kind = BitMapKind;
4945     ++NumBitMaps;
4946     return;
4947   }
4948 
4949   // Store the table in an array.
4950   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4951   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4952 
4953   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4954                              GlobalVariable::PrivateLinkage, Initializer,
4955                              "switch.table");
4956   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4957   Kind = ArrayKind;
4958 }
4959 
4960 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4961   switch (Kind) {
4962   case SingleValueKind:
4963     return SingleValue;
4964   case LinearMapKind: {
4965     // Derive the result value from the input value.
4966     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4967                                           false, "switch.idx.cast");
4968     if (!LinearMultiplier->isOne())
4969       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4970     if (!LinearOffset->isZero())
4971       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4972     return Result;
4973   }
4974   case BitMapKind: {
4975     // Type of the bitmap (e.g. i59).
4976     IntegerType *MapTy = BitMap->getType();
4977 
4978     // Cast Index to the same type as the bitmap.
4979     // Note: The Index is <= the number of elements in the table, so
4980     // truncating it to the width of the bitmask is safe.
4981     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4982 
4983     // Multiply the shift amount by the element width.
4984     ShiftAmt = Builder.CreateMul(
4985         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4986         "switch.shiftamt");
4987 
4988     // Shift down.
4989     Value *DownShifted =
4990         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4991     // Mask off.
4992     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4993   }
4994   case ArrayKind: {
4995     // Make sure the table index will not overflow when treated as signed.
4996     IntegerType *IT = cast<IntegerType>(Index->getType());
4997     uint64_t TableSize =
4998         Array->getInitializer()->getType()->getArrayNumElements();
4999     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5000       Index = Builder.CreateZExt(
5001           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5002           "switch.tableidx.zext");
5003 
5004     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5005     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5006                                            GEPIndices, "switch.gep");
5007     return Builder.CreateLoad(GEP, "switch.load");
5008   }
5009   }
5010   llvm_unreachable("Unknown lookup table kind!");
5011 }
5012 
5013 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5014                                            uint64_t TableSize,
5015                                            Type *ElementType) {
5016   auto *IT = dyn_cast<IntegerType>(ElementType);
5017   if (!IT)
5018     return false;
5019   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5020   // are <= 15, we could try to narrow the type.
5021 
5022   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5023   if (TableSize >= UINT_MAX / IT->getBitWidth())
5024     return false;
5025   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5026 }
5027 
5028 /// Determine whether a lookup table should be built for this switch, based on
5029 /// the number of cases, size of the table, and the types of the results.
5030 static bool
5031 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5032                        const TargetTransformInfo &TTI, const DataLayout &DL,
5033                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5034   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5035     return false; // TableSize overflowed, or mul below might overflow.
5036 
5037   bool AllTablesFitInRegister = true;
5038   bool HasIllegalType = false;
5039   for (const auto &I : ResultTypes) {
5040     Type *Ty = I.second;
5041 
5042     // Saturate this flag to true.
5043     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5044 
5045     // Saturate this flag to false.
5046     AllTablesFitInRegister =
5047         AllTablesFitInRegister &&
5048         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5049 
5050     // If both flags saturate, we're done. NOTE: This *only* works with
5051     // saturating flags, and all flags have to saturate first due to the
5052     // non-deterministic behavior of iterating over a dense map.
5053     if (HasIllegalType && !AllTablesFitInRegister)
5054       break;
5055   }
5056 
5057   // If each table would fit in a register, we should build it anyway.
5058   if (AllTablesFitInRegister)
5059     return true;
5060 
5061   // Don't build a table that doesn't fit in-register if it has illegal types.
5062   if (HasIllegalType)
5063     return false;
5064 
5065   // The table density should be at least 40%. This is the same criterion as for
5066   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5067   // FIXME: Find the best cut-off.
5068   return SI->getNumCases() * 10 >= TableSize * 4;
5069 }
5070 
5071 /// Try to reuse the switch table index compare. Following pattern:
5072 /// \code
5073 ///     if (idx < tablesize)
5074 ///        r = table[idx]; // table does not contain default_value
5075 ///     else
5076 ///        r = default_value;
5077 ///     if (r != default_value)
5078 ///        ...
5079 /// \endcode
5080 /// Is optimized to:
5081 /// \code
5082 ///     cond = idx < tablesize;
5083 ///     if (cond)
5084 ///        r = table[idx];
5085 ///     else
5086 ///        r = default_value;
5087 ///     if (cond)
5088 ///        ...
5089 /// \endcode
5090 /// Jump threading will then eliminate the second if(cond).
5091 static void reuseTableCompare(
5092     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5093     Constant *DefaultValue,
5094     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5095 
5096   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5097   if (!CmpInst)
5098     return;
5099 
5100   // We require that the compare is in the same block as the phi so that jump
5101   // threading can do its work afterwards.
5102   if (CmpInst->getParent() != PhiBlock)
5103     return;
5104 
5105   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5106   if (!CmpOp1)
5107     return;
5108 
5109   Value *RangeCmp = RangeCheckBranch->getCondition();
5110   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5111   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5112 
5113   // Check if the compare with the default value is constant true or false.
5114   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5115                                                  DefaultValue, CmpOp1, true);
5116   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5117     return;
5118 
5119   // Check if the compare with the case values is distinct from the default
5120   // compare result.
5121   for (auto ValuePair : Values) {
5122     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5123                                                 ValuePair.second, CmpOp1, true);
5124     if (!CaseConst || CaseConst == DefaultConst)
5125       return;
5126     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5127            "Expect true or false as compare result.");
5128   }
5129 
5130   // Check if the branch instruction dominates the phi node. It's a simple
5131   // dominance check, but sufficient for our needs.
5132   // Although this check is invariant in the calling loops, it's better to do it
5133   // at this late stage. Practically we do it at most once for a switch.
5134   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5135   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5136     BasicBlock *Pred = *PI;
5137     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5138       return;
5139   }
5140 
5141   if (DefaultConst == FalseConst) {
5142     // The compare yields the same result. We can replace it.
5143     CmpInst->replaceAllUsesWith(RangeCmp);
5144     ++NumTableCmpReuses;
5145   } else {
5146     // The compare yields the same result, just inverted. We can replace it.
5147     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5148         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5149         RangeCheckBranch);
5150     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5151     ++NumTableCmpReuses;
5152   }
5153 }
5154 
5155 /// If the switch is only used to initialize one or more phi nodes in a common
5156 /// successor block with different constant values, replace the switch with
5157 /// lookup tables.
5158 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5159                                 const DataLayout &DL,
5160                                 const TargetTransformInfo &TTI) {
5161   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5162 
5163   // Only build lookup table when we have a target that supports it.
5164   if (!TTI.shouldBuildLookupTables())
5165     return false;
5166 
5167   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5168   // split off a dense part and build a lookup table for that.
5169 
5170   // FIXME: This creates arrays of GEPs to constant strings, which means each
5171   // GEP needs a runtime relocation in PIC code. We should just build one big
5172   // string and lookup indices into that.
5173 
5174   // Ignore switches with less than three cases. Lookup tables will not make
5175   // them
5176   // faster, so we don't analyze them.
5177   if (SI->getNumCases() < 3)
5178     return false;
5179 
5180   // Figure out the corresponding result for each case value and phi node in the
5181   // common destination, as well as the min and max case values.
5182   assert(SI->case_begin() != SI->case_end());
5183   SwitchInst::CaseIt CI = SI->case_begin();
5184   ConstantInt *MinCaseVal = CI.getCaseValue();
5185   ConstantInt *MaxCaseVal = CI.getCaseValue();
5186 
5187   BasicBlock *CommonDest = nullptr;
5188   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5189   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5190   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5191   SmallDenseMap<PHINode *, Type *> ResultTypes;
5192   SmallVector<PHINode *, 4> PHIs;
5193 
5194   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5195     ConstantInt *CaseVal = CI.getCaseValue();
5196     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5197       MinCaseVal = CaseVal;
5198     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5199       MaxCaseVal = CaseVal;
5200 
5201     // Resulting value at phi nodes for this case value.
5202     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5203     ResultsTy Results;
5204     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5205                         Results, DL, TTI))
5206       return false;
5207 
5208     // Append the result from this case to the list for each phi.
5209     for (const auto &I : Results) {
5210       PHINode *PHI = I.first;
5211       Constant *Value = I.second;
5212       if (!ResultLists.count(PHI))
5213         PHIs.push_back(PHI);
5214       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5215     }
5216   }
5217 
5218   // Keep track of the result types.
5219   for (PHINode *PHI : PHIs) {
5220     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5221   }
5222 
5223   uint64_t NumResults = ResultLists[PHIs[0]].size();
5224   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5225   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5226   bool TableHasHoles = (NumResults < TableSize);
5227 
5228   // If the table has holes, we need a constant result for the default case
5229   // or a bitmask that fits in a register.
5230   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5231   bool HasDefaultResults =
5232       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5233                      DefaultResultsList, DL, TTI);
5234 
5235   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5236   if (NeedMask) {
5237     // As an extra penalty for the validity test we require more cases.
5238     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5239       return false;
5240     if (!DL.fitsInLegalInteger(TableSize))
5241       return false;
5242   }
5243 
5244   for (const auto &I : DefaultResultsList) {
5245     PHINode *PHI = I.first;
5246     Constant *Result = I.second;
5247     DefaultResults[PHI] = Result;
5248   }
5249 
5250   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5251     return false;
5252 
5253   // Create the BB that does the lookups.
5254   Module &Mod = *CommonDest->getParent()->getParent();
5255   BasicBlock *LookupBB = BasicBlock::Create(
5256       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5257 
5258   // Compute the table index value.
5259   Builder.SetInsertPoint(SI);
5260   Value *TableIndex =
5261       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5262 
5263   // Compute the maximum table size representable by the integer type we are
5264   // switching upon.
5265   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5266   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5267   assert(MaxTableSize >= TableSize &&
5268          "It is impossible for a switch to have more entries than the max "
5269          "representable value of its input integer type's size.");
5270 
5271   // If the default destination is unreachable, or if the lookup table covers
5272   // all values of the conditional variable, branch directly to the lookup table
5273   // BB. Otherwise, check that the condition is within the case range.
5274   const bool DefaultIsReachable =
5275       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5276   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5277   BranchInst *RangeCheckBranch = nullptr;
5278 
5279   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5280     Builder.CreateBr(LookupBB);
5281     // Note: We call removeProdecessor later since we need to be able to get the
5282     // PHI value for the default case in case we're using a bit mask.
5283   } else {
5284     Value *Cmp = Builder.CreateICmpULT(
5285         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5286     RangeCheckBranch =
5287         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5288   }
5289 
5290   // Populate the BB that does the lookups.
5291   Builder.SetInsertPoint(LookupBB);
5292 
5293   if (NeedMask) {
5294     // Before doing the lookup we do the hole check.
5295     // The LookupBB is therefore re-purposed to do the hole check
5296     // and we create a new LookupBB.
5297     BasicBlock *MaskBB = LookupBB;
5298     MaskBB->setName("switch.hole_check");
5299     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5300                                   CommonDest->getParent(), CommonDest);
5301 
5302     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5303     // unnecessary illegal types.
5304     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5305     APInt MaskInt(TableSizePowOf2, 0);
5306     APInt One(TableSizePowOf2, 1);
5307     // Build bitmask; fill in a 1 bit for every case.
5308     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5309     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5310       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5311                          .getLimitedValue();
5312       MaskInt |= One << Idx;
5313     }
5314     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5315 
5316     // Get the TableIndex'th bit of the bitmask.
5317     // If this bit is 0 (meaning hole) jump to the default destination,
5318     // else continue with table lookup.
5319     IntegerType *MapTy = TableMask->getType();
5320     Value *MaskIndex =
5321         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5322     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5323     Value *LoBit = Builder.CreateTrunc(
5324         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5325     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5326 
5327     Builder.SetInsertPoint(LookupBB);
5328     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5329   }
5330 
5331   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5332     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5333     // do not delete PHINodes here.
5334     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5335                                             /*DontDeleteUselessPHIs=*/true);
5336   }
5337 
5338   bool ReturnedEarly = false;
5339   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5340     PHINode *PHI = PHIs[I];
5341     const ResultListTy &ResultList = ResultLists[PHI];
5342 
5343     // If using a bitmask, use any value to fill the lookup table holes.
5344     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5345     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5346 
5347     Value *Result = Table.BuildLookup(TableIndex, Builder);
5348 
5349     // If the result is used to return immediately from the function, we want to
5350     // do that right here.
5351     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5352         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5353       Builder.CreateRet(Result);
5354       ReturnedEarly = true;
5355       break;
5356     }
5357 
5358     // Do a small peephole optimization: re-use the switch table compare if
5359     // possible.
5360     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5361       BasicBlock *PhiBlock = PHI->getParent();
5362       // Search for compare instructions which use the phi.
5363       for (auto *User : PHI->users()) {
5364         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5365       }
5366     }
5367 
5368     PHI->addIncoming(Result, LookupBB);
5369   }
5370 
5371   if (!ReturnedEarly)
5372     Builder.CreateBr(CommonDest);
5373 
5374   // Remove the switch.
5375   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5376     BasicBlock *Succ = SI->getSuccessor(i);
5377 
5378     if (Succ == SI->getDefaultDest())
5379       continue;
5380     Succ->removePredecessor(SI->getParent());
5381   }
5382   SI->eraseFromParent();
5383 
5384   ++NumLookupTables;
5385   if (NeedMask)
5386     ++NumLookupTablesHoles;
5387   return true;
5388 }
5389 
5390 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5391   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5392   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5393   uint64_t Range = Diff + 1;
5394   uint64_t NumCases = Values.size();
5395   // 40% is the default density for building a jump table in optsize/minsize mode.
5396   uint64_t MinDensity = 40;
5397 
5398   return NumCases * 100 >= Range * MinDensity;
5399 }
5400 
5401 // Try and transform a switch that has "holes" in it to a contiguous sequence
5402 // of cases.
5403 //
5404 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5405 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5406 //
5407 // This converts a sparse switch into a dense switch which allows better
5408 // lowering and could also allow transforming into a lookup table.
5409 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5410                               const DataLayout &DL,
5411                               const TargetTransformInfo &TTI) {
5412   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5413   if (CondTy->getIntegerBitWidth() > 64 ||
5414       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5415     return false;
5416   // Only bother with this optimization if there are more than 3 switch cases;
5417   // SDAG will only bother creating jump tables for 4 or more cases.
5418   if (SI->getNumCases() < 4)
5419     return false;
5420 
5421   // This transform is agnostic to the signedness of the input or case values. We
5422   // can treat the case values as signed or unsigned. We can optimize more common
5423   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5424   // as signed.
5425   SmallVector<int64_t,4> Values;
5426   for (auto &C : SI->cases())
5427     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5428   std::sort(Values.begin(), Values.end());
5429 
5430   // If the switch is already dense, there's nothing useful to do here.
5431   if (isSwitchDense(Values))
5432     return false;
5433 
5434   // First, transform the values such that they start at zero and ascend.
5435   int64_t Base = Values[0];
5436   for (auto &V : Values)
5437     V -= Base;
5438 
5439   // Now we have signed numbers that have been shifted so that, given enough
5440   // precision, there are no negative values. Since the rest of the transform
5441   // is bitwise only, we switch now to an unsigned representation.
5442   uint64_t GCD = 0;
5443   for (auto &V : Values)
5444     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5445 
5446   // This transform can be done speculatively because it is so cheap - it results
5447   // in a single rotate operation being inserted. This can only happen if the
5448   // factor extracted is a power of 2.
5449   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5450   // inverse of GCD and then perform this transform.
5451   // FIXME: It's possible that optimizing a switch on powers of two might also
5452   // be beneficial - flag values are often powers of two and we could use a CLZ
5453   // as the key function.
5454   if (GCD <= 1 || !isPowerOf2_64(GCD))
5455     // No common divisor found or too expensive to compute key function.
5456     return false;
5457 
5458   unsigned Shift = Log2_64(GCD);
5459   for (auto &V : Values)
5460     V = (int64_t)((uint64_t)V >> Shift);
5461 
5462   if (!isSwitchDense(Values))
5463     // Transform didn't create a dense switch.
5464     return false;
5465 
5466   // The obvious transform is to shift the switch condition right and emit a
5467   // check that the condition actually cleanly divided by GCD, i.e.
5468   //   C & (1 << Shift - 1) == 0
5469   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5470   //
5471   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5472   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5473   // are nonzero then the switch condition will be very large and will hit the
5474   // default case.
5475 
5476   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5477   Builder.SetInsertPoint(SI);
5478   auto *ShiftC = ConstantInt::get(Ty, Shift);
5479   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5480   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5481   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5482   auto *Rot = Builder.CreateOr(LShr, Shl);
5483   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5484 
5485   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5486        ++C) {
5487     auto *Orig = C.getCaseValue();
5488     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5489     C.setValue(
5490         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5491   }
5492   return true;
5493 }
5494 
5495 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5496   BasicBlock *BB = SI->getParent();
5497 
5498   if (isValueEqualityComparison(SI)) {
5499     // If we only have one predecessor, and if it is a branch on this value,
5500     // see if that predecessor totally determines the outcome of this switch.
5501     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5502       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5503         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5504 
5505     Value *Cond = SI->getCondition();
5506     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5507       if (SimplifySwitchOnSelect(SI, Select))
5508         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5509 
5510     // If the block only contains the switch, see if we can fold the block
5511     // away into any preds.
5512     BasicBlock::iterator BBI = BB->begin();
5513     // Ignore dbg intrinsics.
5514     while (isa<DbgInfoIntrinsic>(BBI))
5515       ++BBI;
5516     if (SI == &*BBI)
5517       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5518         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5519   }
5520 
5521   // Try to transform the switch into an icmp and a branch.
5522   if (TurnSwitchRangeIntoICmp(SI, Builder))
5523     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5524 
5525   // Remove unreachable cases.
5526   if (EliminateDeadSwitchCases(SI, AC, DL))
5527     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5528 
5529   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5530     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5531 
5532   if (ForwardSwitchConditionToPHI(SI))
5533     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5534 
5535   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5536     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5537 
5538   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5539     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5540 
5541   return false;
5542 }
5543 
5544 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5545   BasicBlock *BB = IBI->getParent();
5546   bool Changed = false;
5547 
5548   // Eliminate redundant destinations.
5549   SmallPtrSet<Value *, 8> Succs;
5550   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5551     BasicBlock *Dest = IBI->getDestination(i);
5552     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5553       Dest->removePredecessor(BB);
5554       IBI->removeDestination(i);
5555       --i;
5556       --e;
5557       Changed = true;
5558     }
5559   }
5560 
5561   if (IBI->getNumDestinations() == 0) {
5562     // If the indirectbr has no successors, change it to unreachable.
5563     new UnreachableInst(IBI->getContext(), IBI);
5564     EraseTerminatorInstAndDCECond(IBI);
5565     return true;
5566   }
5567 
5568   if (IBI->getNumDestinations() == 1) {
5569     // If the indirectbr has one successor, change it to a direct branch.
5570     BranchInst::Create(IBI->getDestination(0), IBI);
5571     EraseTerminatorInstAndDCECond(IBI);
5572     return true;
5573   }
5574 
5575   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5576     if (SimplifyIndirectBrOnSelect(IBI, SI))
5577       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5578   }
5579   return Changed;
5580 }
5581 
5582 /// Given an block with only a single landing pad and a unconditional branch
5583 /// try to find another basic block which this one can be merged with.  This
5584 /// handles cases where we have multiple invokes with unique landing pads, but
5585 /// a shared handler.
5586 ///
5587 /// We specifically choose to not worry about merging non-empty blocks
5588 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5589 /// practice, the optimizer produces empty landing pad blocks quite frequently
5590 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5591 /// sinking in this file)
5592 ///
5593 /// This is primarily a code size optimization.  We need to avoid performing
5594 /// any transform which might inhibit optimization (such as our ability to
5595 /// specialize a particular handler via tail commoning).  We do this by not
5596 /// merging any blocks which require us to introduce a phi.  Since the same
5597 /// values are flowing through both blocks, we don't loose any ability to
5598 /// specialize.  If anything, we make such specialization more likely.
5599 ///
5600 /// TODO - This transformation could remove entries from a phi in the target
5601 /// block when the inputs in the phi are the same for the two blocks being
5602 /// merged.  In some cases, this could result in removal of the PHI entirely.
5603 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5604                                  BasicBlock *BB) {
5605   auto Succ = BB->getUniqueSuccessor();
5606   assert(Succ);
5607   // If there's a phi in the successor block, we'd likely have to introduce
5608   // a phi into the merged landing pad block.
5609   if (isa<PHINode>(*Succ->begin()))
5610     return false;
5611 
5612   for (BasicBlock *OtherPred : predecessors(Succ)) {
5613     if (BB == OtherPred)
5614       continue;
5615     BasicBlock::iterator I = OtherPred->begin();
5616     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5617     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5618       continue;
5619     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5620     }
5621     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5622     if (!BI2 || !BI2->isIdenticalTo(BI))
5623       continue;
5624 
5625     // We've found an identical block.  Update our predecessors to take that
5626     // path instead and make ourselves dead.
5627     SmallSet<BasicBlock *, 16> Preds;
5628     Preds.insert(pred_begin(BB), pred_end(BB));
5629     for (BasicBlock *Pred : Preds) {
5630       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5631       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5632              "unexpected successor");
5633       II->setUnwindDest(OtherPred);
5634     }
5635 
5636     // The debug info in OtherPred doesn't cover the merged control flow that
5637     // used to go through BB.  We need to delete it or update it.
5638     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5639       Instruction &Inst = *I;
5640       I++;
5641       if (isa<DbgInfoIntrinsic>(Inst))
5642         Inst.eraseFromParent();
5643     }
5644 
5645     SmallSet<BasicBlock *, 16> Succs;
5646     Succs.insert(succ_begin(BB), succ_end(BB));
5647     for (BasicBlock *Succ : Succs) {
5648       Succ->removePredecessor(BB);
5649     }
5650 
5651     IRBuilder<> Builder(BI);
5652     Builder.CreateUnreachable();
5653     BI->eraseFromParent();
5654     return true;
5655   }
5656   return false;
5657 }
5658 
5659 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5660                                           IRBuilder<> &Builder) {
5661   BasicBlock *BB = BI->getParent();
5662 
5663   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5664     return true;
5665 
5666   // If the Terminator is the only non-phi instruction, simplify the block.
5667   // if LoopHeader is provided, check if the block is a loop header
5668   // (This is for early invocations before loop simplify and vectorization
5669   // to keep canonical loop forms for nested loops.
5670   // These blocks can be eliminated when the pass is invoked later
5671   // in the back-end.)
5672   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5673   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5674       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5675       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5676     return true;
5677 
5678   // If the only instruction in the block is a seteq/setne comparison
5679   // against a constant, try to simplify the block.
5680   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5681     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5682       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5683         ;
5684       if (I->isTerminator() &&
5685           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5686                                                 BonusInstThreshold, AC))
5687         return true;
5688     }
5689 
5690   // See if we can merge an empty landing pad block with another which is
5691   // equivalent.
5692   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5693     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5694     }
5695     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5696       return true;
5697   }
5698 
5699   // If this basic block is ONLY a compare and a branch, and if a predecessor
5700   // branches to us and our successor, fold the comparison into the
5701   // predecessor and use logical operations to update the incoming value
5702   // for PHI nodes in common successor.
5703   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5704     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5705   return false;
5706 }
5707 
5708 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5709   BasicBlock *PredPred = nullptr;
5710   for (auto *P : predecessors(BB)) {
5711     BasicBlock *PPred = P->getSinglePredecessor();
5712     if (!PPred || (PredPred && PredPred != PPred))
5713       return nullptr;
5714     PredPred = PPred;
5715   }
5716   return PredPred;
5717 }
5718 
5719 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5720   BasicBlock *BB = BI->getParent();
5721 
5722   // Conditional branch
5723   if (isValueEqualityComparison(BI)) {
5724     // If we only have one predecessor, and if it is a branch on this value,
5725     // see if that predecessor totally determines the outcome of this
5726     // switch.
5727     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5728       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5729         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5730 
5731     // This block must be empty, except for the setcond inst, if it exists.
5732     // Ignore dbg intrinsics.
5733     BasicBlock::iterator I = BB->begin();
5734     // Ignore dbg intrinsics.
5735     while (isa<DbgInfoIntrinsic>(I))
5736       ++I;
5737     if (&*I == BI) {
5738       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5739         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5740     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5741       ++I;
5742       // Ignore dbg intrinsics.
5743       while (isa<DbgInfoIntrinsic>(I))
5744         ++I;
5745       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5746         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5747     }
5748   }
5749 
5750   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5751   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5752     return true;
5753 
5754   // If this basic block has a single dominating predecessor block and the
5755   // dominating block's condition implies BI's condition, we know the direction
5756   // of the BI branch.
5757   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5758     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5759     if (PBI && PBI->isConditional() &&
5760         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5761         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5762       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5763       Optional<bool> Implication = isImpliedCondition(
5764           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5765       if (Implication) {
5766         // Turn this into a branch on constant.
5767         auto *OldCond = BI->getCondition();
5768         ConstantInt *CI = *Implication
5769                               ? ConstantInt::getTrue(BB->getContext())
5770                               : ConstantInt::getFalse(BB->getContext());
5771         BI->setCondition(CI);
5772         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5773         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5774       }
5775     }
5776   }
5777 
5778   // If this basic block is ONLY a compare and a branch, and if a predecessor
5779   // branches to us and one of our successors, fold the comparison into the
5780   // predecessor and use logical operations to pick the right destination.
5781   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5782     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5783 
5784   // We have a conditional branch to two blocks that are only reachable
5785   // from BI.  We know that the condbr dominates the two blocks, so see if
5786   // there is any identical code in the "then" and "else" blocks.  If so, we
5787   // can hoist it up to the branching block.
5788   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5789     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5790       if (HoistThenElseCodeToIf(BI, TTI))
5791         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5792     } else {
5793       // If Successor #1 has multiple preds, we may be able to conditionally
5794       // execute Successor #0 if it branches to Successor #1.
5795       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5796       if (Succ0TI->getNumSuccessors() == 1 &&
5797           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5798         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5799           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5800     }
5801   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5802     // If Successor #0 has multiple preds, we may be able to conditionally
5803     // execute Successor #1 if it branches to Successor #0.
5804     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5805     if (Succ1TI->getNumSuccessors() == 1 &&
5806         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5807       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5808         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5809   }
5810 
5811   // If this is a branch on a phi node in the current block, thread control
5812   // through this block if any PHI node entries are constants.
5813   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5814     if (PN->getParent() == BI->getParent())
5815       if (FoldCondBranchOnPHI(BI, DL))
5816         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5817 
5818   // Scan predecessor blocks for conditional branches.
5819   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5820     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5821       if (PBI != BI && PBI->isConditional())
5822         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5823           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5824 
5825   // Look for diamond patterns.
5826   if (MergeCondStores)
5827     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5828       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5829         if (PBI != BI && PBI->isConditional())
5830           if (mergeConditionalStores(PBI, BI))
5831             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5832 
5833   return false;
5834 }
5835 
5836 /// Check if passing a value to an instruction will cause undefined behavior.
5837 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5838   Constant *C = dyn_cast<Constant>(V);
5839   if (!C)
5840     return false;
5841 
5842   if (I->use_empty())
5843     return false;
5844 
5845   if (C->isNullValue() || isa<UndefValue>(C)) {
5846     // Only look at the first use, avoid hurting compile time with long uselists
5847     User *Use = *I->user_begin();
5848 
5849     // Now make sure that there are no instructions in between that can alter
5850     // control flow (eg. calls)
5851     for (BasicBlock::iterator
5852              i = ++BasicBlock::iterator(I),
5853              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5854          i != UI; ++i)
5855       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5856         return false;
5857 
5858     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5859     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5860       if (GEP->getPointerOperand() == I)
5861         return passingValueIsAlwaysUndefined(V, GEP);
5862 
5863     // Look through bitcasts.
5864     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5865       return passingValueIsAlwaysUndefined(V, BC);
5866 
5867     // Load from null is undefined.
5868     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5869       if (!LI->isVolatile())
5870         return LI->getPointerAddressSpace() == 0;
5871 
5872     // Store to null is undefined.
5873     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5874       if (!SI->isVolatile())
5875         return SI->getPointerAddressSpace() == 0 &&
5876                SI->getPointerOperand() == I;
5877 
5878     // A call to null is undefined.
5879     if (auto CS = CallSite(Use))
5880       return CS.getCalledValue() == I;
5881   }
5882   return false;
5883 }
5884 
5885 /// If BB has an incoming value that will always trigger undefined behavior
5886 /// (eg. null pointer dereference), remove the branch leading here.
5887 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5888   for (BasicBlock::iterator i = BB->begin();
5889        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5890     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5891       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5892         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5893         IRBuilder<> Builder(T);
5894         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5895           BB->removePredecessor(PHI->getIncomingBlock(i));
5896           // Turn uncoditional branches into unreachables and remove the dead
5897           // destination from conditional branches.
5898           if (BI->isUnconditional())
5899             Builder.CreateUnreachable();
5900           else
5901             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5902                                                        : BI->getSuccessor(0));
5903           BI->eraseFromParent();
5904           return true;
5905         }
5906         // TODO: SwitchInst.
5907       }
5908 
5909   return false;
5910 }
5911 
5912 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5913   bool Changed = false;
5914 
5915   assert(BB && BB->getParent() && "Block not embedded in function!");
5916   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5917 
5918   // Remove basic blocks that have no predecessors (except the entry block)...
5919   // or that just have themself as a predecessor.  These are unreachable.
5920   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5921       BB->getSinglePredecessor() == BB) {
5922     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5923     DeleteDeadBlock(BB);
5924     return true;
5925   }
5926 
5927   // Check to see if we can constant propagate this terminator instruction
5928   // away...
5929   Changed |= ConstantFoldTerminator(BB, true);
5930 
5931   // Check for and eliminate duplicate PHI nodes in this block.
5932   Changed |= EliminateDuplicatePHINodes(BB);
5933 
5934   // Check for and remove branches that will always cause undefined behavior.
5935   Changed |= removeUndefIntroducingPredecessor(BB);
5936 
5937   // Merge basic blocks into their predecessor if there is only one distinct
5938   // pred, and if there is only one distinct successor of the predecessor, and
5939   // if there are no PHI nodes.
5940   //
5941   if (MergeBlockIntoPredecessor(BB))
5942     return true;
5943 
5944   IRBuilder<> Builder(BB);
5945 
5946   // If there is a trivial two-entry PHI node in this basic block, and we can
5947   // eliminate it, do so now.
5948   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5949     if (PN->getNumIncomingValues() == 2)
5950       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5951 
5952   Builder.SetInsertPoint(BB->getTerminator());
5953   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5954     if (BI->isUnconditional()) {
5955       if (SimplifyUncondBranch(BI, Builder))
5956         return true;
5957     } else {
5958       if (SimplifyCondBranch(BI, Builder))
5959         return true;
5960     }
5961   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5962     if (SimplifyReturn(RI, Builder))
5963       return true;
5964   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5965     if (SimplifyResume(RI, Builder))
5966       return true;
5967   } else if (CleanupReturnInst *RI =
5968                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5969     if (SimplifyCleanupReturn(RI))
5970       return true;
5971   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5972     if (SimplifySwitch(SI, Builder))
5973       return true;
5974   } else if (UnreachableInst *UI =
5975                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5976     if (SimplifyUnreachable(UI))
5977       return true;
5978   } else if (IndirectBrInst *IBI =
5979                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5980     if (SimplifyIndirectBr(IBI))
5981       return true;
5982   }
5983 
5984   return Changed;
5985 }
5986 
5987 /// This function is used to do simplification of a CFG.
5988 /// For example, it adjusts branches to branches to eliminate the extra hop,
5989 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5990 /// of the CFG.  It returns true if a modification was made.
5991 ///
5992 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5993                        unsigned BonusInstThreshold, AssumptionCache *AC,
5994                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5995   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5996                         BonusInstThreshold, AC, LoopHeaders)
5997       .run(BB);
5998 }
5999