1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SetOperations.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/EHPersonalities.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/NoFolder.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> PHINodeFoldingThreshold( 62 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc( 64 "Control the amount of phi node folding to perform (default = 2)")); 65 66 static cl::opt<bool> DupRet( 67 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 68 cl::desc("Duplicate return instructions into unconditional branches")); 69 70 static cl::opt<bool> 71 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 72 cl::desc("Sink common instructions down to the end block")); 73 74 static cl::opt<bool> HoistCondStores( 75 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 76 cl::desc("Hoist conditional stores if an unconditional store precedes")); 77 78 static cl::opt<bool> MergeCondStores( 79 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 80 cl::desc("Hoist conditional stores even if an unconditional store does not " 81 "precede - hoist multiple conditional stores into a single " 82 "predicated store")); 83 84 static cl::opt<bool> MergeCondStoresAggressively( 85 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 86 cl::desc("When merging conditional stores, do so even if the resultant " 87 "basic blocks are unlikely to be if-converted as a result")); 88 89 static cl::opt<bool> SpeculateOneExpensiveInst( 90 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 91 cl::desc("Allow exactly one expensive instruction to be speculatively " 92 "executed")); 93 94 static cl::opt<unsigned> MaxSpeculationDepth( 95 "max-speculation-depth", cl::Hidden, cl::init(10), 96 cl::desc("Limit maximum recursion depth when calculating costs of " 97 "speculatively executed instructions")); 98 99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 100 STATISTIC(NumLinearMaps, 101 "Number of switch instructions turned into linear mapping"); 102 STATISTIC(NumLookupTables, 103 "Number of switch instructions turned into lookup tables"); 104 STATISTIC( 105 NumLookupTablesHoles, 106 "Number of switch instructions turned into lookup tables (holes checked)"); 107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 108 STATISTIC(NumSinkCommons, 109 "Number of common instructions sunk down to the end block"); 110 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 111 112 namespace { 113 // The first field contains the value that the switch produces when a certain 114 // case group is selected, and the second field is a vector containing the 115 // cases composing the case group. 116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 117 SwitchCaseResultVectorTy; 118 // The first field contains the phi node that generates a result of the switch 119 // and the second field contains the value generated for a certain case in the 120 // switch for that PHI. 121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 122 123 /// ValueEqualityComparisonCase - Represents a case of a switch. 124 struct ValueEqualityComparisonCase { 125 ConstantInt *Value; 126 BasicBlock *Dest; 127 128 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 129 : Value(Value), Dest(Dest) {} 130 131 bool operator<(ValueEqualityComparisonCase RHS) const { 132 // Comparing pointers is ok as we only rely on the order for uniquing. 133 return Value < RHS.Value; 134 } 135 136 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 137 }; 138 139 class SimplifyCFGOpt { 140 const TargetTransformInfo &TTI; 141 const DataLayout &DL; 142 unsigned BonusInstThreshold; 143 AssumptionCache *AC; 144 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 145 Value *isValueEqualityComparison(TerminatorInst *TI); 146 BasicBlock *GetValueEqualityComparisonCases( 147 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases); 148 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 149 BasicBlock *Pred, 150 IRBuilder<> &Builder); 151 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 152 IRBuilder<> &Builder); 153 154 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 155 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 156 bool SimplifySingleResume(ResumeInst *RI); 157 bool SimplifyCommonResume(ResumeInst *RI); 158 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 159 bool SimplifyUnreachable(UnreachableInst *UI); 160 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 161 bool SimplifyIndirectBr(IndirectBrInst *IBI); 162 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 163 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 164 165 public: 166 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 167 unsigned BonusInstThreshold, AssumptionCache *AC, 168 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 169 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 170 LoopHeaders(LoopHeaders) {} 171 bool run(BasicBlock *BB); 172 }; 173 } 174 175 /// Return true if it is safe to merge these two 176 /// terminator instructions together. 177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 178 if (SI1 == SI2) 179 return false; // Can't merge with self! 180 181 // It is not safe to merge these two switch instructions if they have a common 182 // successor, and if that successor has a PHI node, and if *that* PHI node has 183 // conflicting incoming values from the two switch blocks. 184 BasicBlock *SI1BB = SI1->getParent(); 185 BasicBlock *SI2BB = SI2->getParent(); 186 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 187 188 for (BasicBlock *Succ : successors(SI2BB)) 189 if (SI1Succs.count(Succ)) 190 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 191 PHINode *PN = cast<PHINode>(BBI); 192 if (PN->getIncomingValueForBlock(SI1BB) != 193 PN->getIncomingValueForBlock(SI2BB)) 194 return false; 195 } 196 197 return true; 198 } 199 200 /// Return true if it is safe and profitable to merge these two terminator 201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 202 /// store all PHI nodes in common successors. 203 static bool 204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 205 Instruction *Cond, 206 SmallVectorImpl<PHINode *> &PhiNodes) { 207 if (SI1 == SI2) 208 return false; // Can't merge with self! 209 assert(SI1->isUnconditional() && SI2->isConditional()); 210 211 // We fold the unconditional branch if we can easily update all PHI nodes in 212 // common successors: 213 // 1> We have a constant incoming value for the conditional branch; 214 // 2> We have "Cond" as the incoming value for the unconditional branch; 215 // 3> SI2->getCondition() and Cond have same operands. 216 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 217 if (!Ci2) 218 return false; 219 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 220 Cond->getOperand(1) == Ci2->getOperand(1)) && 221 !(Cond->getOperand(0) == Ci2->getOperand(1) && 222 Cond->getOperand(1) == Ci2->getOperand(0))) 223 return false; 224 225 BasicBlock *SI1BB = SI1->getParent(); 226 BasicBlock *SI2BB = SI2->getParent(); 227 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 228 for (BasicBlock *Succ : successors(SI2BB)) 229 if (SI1Succs.count(Succ)) 230 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 231 PHINode *PN = cast<PHINode>(BBI); 232 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 233 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 234 return false; 235 PhiNodes.push_back(PN); 236 } 237 return true; 238 } 239 240 /// Update PHI nodes in Succ to indicate that there will now be entries in it 241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 242 /// will be the same as those coming in from ExistPred, an existing predecessor 243 /// of Succ. 244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 245 BasicBlock *ExistPred) { 246 if (!isa<PHINode>(Succ->begin())) 247 return; // Quick exit if nothing to do 248 249 PHINode *PN; 250 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 251 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 252 } 253 254 /// Compute an abstract "cost" of speculating the given instruction, 255 /// which is assumed to be safe to speculate. TCC_Free means cheap, 256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 257 /// expensive. 258 static unsigned ComputeSpeculationCost(const User *I, 259 const TargetTransformInfo &TTI) { 260 assert(isSafeToSpeculativelyExecute(I) && 261 "Instruction is not safe to speculatively execute!"); 262 return TTI.getUserCost(I); 263 } 264 265 /// If we have a merge point of an "if condition" as accepted above, 266 /// return true if the specified value dominates the block. We 267 /// don't handle the true generality of domination here, just a special case 268 /// which works well enough for us. 269 /// 270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 271 /// see if V (which must be an instruction) and its recursive operands 272 /// that do not dominate BB have a combined cost lower than CostRemaining and 273 /// are non-trapping. If both are true, the instruction is inserted into the 274 /// set and true is returned. 275 /// 276 /// The cost for most non-trapping instructions is defined as 1 except for 277 /// Select whose cost is 2. 278 /// 279 /// After this function returns, CostRemaining is decreased by the cost of 280 /// V plus its non-dominating operands. If that cost is greater than 281 /// CostRemaining, false is returned and CostRemaining is undefined. 282 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 283 SmallPtrSetImpl<Instruction *> *AggressiveInsts, 284 unsigned &CostRemaining, 285 const TargetTransformInfo &TTI, 286 unsigned Depth = 0) { 287 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 288 // so limit the recursion depth. 289 // TODO: While this recursion limit does prevent pathological behavior, it 290 // would be better to track visited instructions to avoid cycles. 291 if (Depth == MaxSpeculationDepth) 292 return false; 293 294 Instruction *I = dyn_cast<Instruction>(V); 295 if (!I) { 296 // Non-instructions all dominate instructions, but not all constantexprs 297 // can be executed unconditionally. 298 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 299 if (C->canTrap()) 300 return false; 301 return true; 302 } 303 BasicBlock *PBB = I->getParent(); 304 305 // We don't want to allow weird loops that might have the "if condition" in 306 // the bottom of this block. 307 if (PBB == BB) 308 return false; 309 310 // If this instruction is defined in a block that contains an unconditional 311 // branch to BB, then it must be in the 'conditional' part of the "if 312 // statement". If not, it definitely dominates the region. 313 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 314 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 315 return true; 316 317 // If we aren't allowing aggressive promotion anymore, then don't consider 318 // instructions in the 'if region'. 319 if (!AggressiveInsts) 320 return false; 321 322 // If we have seen this instruction before, don't count it again. 323 if (AggressiveInsts->count(I)) 324 return true; 325 326 // Okay, it looks like the instruction IS in the "condition". Check to 327 // see if it's a cheap instruction to unconditionally compute, and if it 328 // only uses stuff defined outside of the condition. If so, hoist it out. 329 if (!isSafeToSpeculativelyExecute(I)) 330 return false; 331 332 unsigned Cost = ComputeSpeculationCost(I, TTI); 333 334 // Allow exactly one instruction to be speculated regardless of its cost 335 // (as long as it is safe to do so). 336 // This is intended to flatten the CFG even if the instruction is a division 337 // or other expensive operation. The speculation of an expensive instruction 338 // is expected to be undone in CodeGenPrepare if the speculation has not 339 // enabled further IR optimizations. 340 if (Cost > CostRemaining && 341 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 342 return false; 343 344 // Avoid unsigned wrap. 345 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 346 347 // Okay, we can only really hoist these out if their operands do 348 // not take us over the cost threshold. 349 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 350 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 351 Depth + 1)) 352 return false; 353 // Okay, it's safe to do this! Remember this instruction. 354 AggressiveInsts->insert(I); 355 return true; 356 } 357 358 /// Extract ConstantInt from value, looking through IntToPtr 359 /// and PointerNullValue. Return NULL if value is not a constant int. 360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 361 // Normal constant int. 362 ConstantInt *CI = dyn_cast<ConstantInt>(V); 363 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 364 return CI; 365 366 // This is some kind of pointer constant. Turn it into a pointer-sized 367 // ConstantInt if possible. 368 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 369 370 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 371 if (isa<ConstantPointerNull>(V)) 372 return ConstantInt::get(PtrTy, 0); 373 374 // IntToPtr const int. 375 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 376 if (CE->getOpcode() == Instruction::IntToPtr) 377 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 378 // The constant is very likely to have the right type already. 379 if (CI->getType() == PtrTy) 380 return CI; 381 else 382 return cast<ConstantInt>( 383 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 384 } 385 return nullptr; 386 } 387 388 namespace { 389 390 /// Given a chain of or (||) or and (&&) comparison of a value against a 391 /// constant, this will try to recover the information required for a switch 392 /// structure. 393 /// It will depth-first traverse the chain of comparison, seeking for patterns 394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 395 /// representing the different cases for the switch. 396 /// Note that if the chain is composed of '||' it will build the set of elements 397 /// that matches the comparisons (i.e. any of this value validate the chain) 398 /// while for a chain of '&&' it will build the set elements that make the test 399 /// fail. 400 struct ConstantComparesGatherer { 401 const DataLayout &DL; 402 Value *CompValue; /// Value found for the switch comparison 403 Value *Extra; /// Extra clause to be checked before the switch 404 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 405 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 406 407 /// Construct and compute the result for the comparison instruction Cond 408 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 409 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 410 gather(Cond); 411 } 412 413 /// Prevent copy 414 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 415 ConstantComparesGatherer & 416 operator=(const ConstantComparesGatherer &) = delete; 417 418 private: 419 /// Try to set the current value used for the comparison, it succeeds only if 420 /// it wasn't set before or if the new value is the same as the old one 421 bool setValueOnce(Value *NewVal) { 422 if (CompValue && CompValue != NewVal) 423 return false; 424 CompValue = NewVal; 425 return (CompValue != nullptr); 426 } 427 428 /// Try to match Instruction "I" as a comparison against a constant and 429 /// populates the array Vals with the set of values that match (or do not 430 /// match depending on isEQ). 431 /// Return false on failure. On success, the Value the comparison matched 432 /// against is placed in CompValue. 433 /// If CompValue is already set, the function is expected to fail if a match 434 /// is found but the value compared to is different. 435 bool matchInstruction(Instruction *I, bool isEQ) { 436 // If this is an icmp against a constant, handle this as one of the cases. 437 ICmpInst *ICI; 438 ConstantInt *C; 439 if (!((ICI = dyn_cast<ICmpInst>(I)) && 440 (C = GetConstantInt(I->getOperand(1), DL)))) { 441 return false; 442 } 443 444 Value *RHSVal; 445 const APInt *RHSC; 446 447 // Pattern match a special case 448 // (x & ~2^z) == y --> x == y || x == y|2^z 449 // This undoes a transformation done by instcombine to fuse 2 compares. 450 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 451 452 // It's a little bit hard to see why the following transformations are 453 // correct. Here is a CVC3 program to verify them for 64-bit values: 454 455 /* 456 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 457 x : BITVECTOR(64); 458 y : BITVECTOR(64); 459 z : BITVECTOR(64); 460 mask : BITVECTOR(64) = BVSHL(ONE, z); 461 QUERY( (y & ~mask = y) => 462 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 463 ); 464 QUERY( (y | mask = y) => 465 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 466 ); 467 */ 468 469 // Please note that each pattern must be a dual implication (<--> or 470 // iff). One directional implication can create spurious matches. If the 471 // implication is only one-way, an unsatisfiable condition on the left 472 // side can imply a satisfiable condition on the right side. Dual 473 // implication ensures that satisfiable conditions are transformed to 474 // other satisfiable conditions and unsatisfiable conditions are 475 // transformed to other unsatisfiable conditions. 476 477 // Here is a concrete example of a unsatisfiable condition on the left 478 // implying a satisfiable condition on the right: 479 // 480 // mask = (1 << z) 481 // (x & ~mask) == y --> (x == y || x == (y | mask)) 482 // 483 // Substituting y = 3, z = 0 yields: 484 // (x & -2) == 3 --> (x == 3 || x == 2) 485 486 // Pattern match a special case: 487 /* 488 QUERY( (y & ~mask = y) => 489 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 490 ); 491 */ 492 if (match(ICI->getOperand(0), 493 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 494 APInt Mask = ~*RHSC; 495 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 496 // If we already have a value for the switch, it has to match! 497 if (!setValueOnce(RHSVal)) 498 return false; 499 500 Vals.push_back(C); 501 Vals.push_back( 502 ConstantInt::get(C->getContext(), 503 C->getValue() | Mask)); 504 UsedICmps++; 505 return true; 506 } 507 } 508 509 // Pattern match a special case: 510 /* 511 QUERY( (y | mask = y) => 512 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 513 ); 514 */ 515 if (match(ICI->getOperand(0), 516 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 517 APInt Mask = *RHSC; 518 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 519 // If we already have a value for the switch, it has to match! 520 if (!setValueOnce(RHSVal)) 521 return false; 522 523 Vals.push_back(C); 524 Vals.push_back(ConstantInt::get(C->getContext(), 525 C->getValue() & ~Mask)); 526 UsedICmps++; 527 return true; 528 } 529 } 530 531 // If we already have a value for the switch, it has to match! 532 if (!setValueOnce(ICI->getOperand(0))) 533 return false; 534 535 UsedICmps++; 536 Vals.push_back(C); 537 return ICI->getOperand(0); 538 } 539 540 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 541 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 542 ICI->getPredicate(), C->getValue()); 543 544 // Shift the range if the compare is fed by an add. This is the range 545 // compare idiom as emitted by instcombine. 546 Value *CandidateVal = I->getOperand(0); 547 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 548 Span = Span.subtract(*RHSC); 549 CandidateVal = RHSVal; 550 } 551 552 // If this is an and/!= check, then we are looking to build the set of 553 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 554 // x != 0 && x != 1. 555 if (!isEQ) 556 Span = Span.inverse(); 557 558 // If there are a ton of values, we don't want to make a ginormous switch. 559 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 560 return false; 561 } 562 563 // If we already have a value for the switch, it has to match! 564 if (!setValueOnce(CandidateVal)) 565 return false; 566 567 // Add all values from the range to the set 568 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 569 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 570 571 UsedICmps++; 572 return true; 573 } 574 575 /// Given a potentially 'or'd or 'and'd together collection of icmp 576 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 577 /// the value being compared, and stick the list constants into the Vals 578 /// vector. 579 /// One "Extra" case is allowed to differ from the other. 580 void gather(Value *V) { 581 Instruction *I = dyn_cast<Instruction>(V); 582 bool isEQ = (I->getOpcode() == Instruction::Or); 583 584 // Keep a stack (SmallVector for efficiency) for depth-first traversal 585 SmallVector<Value *, 8> DFT; 586 SmallPtrSet<Value *, 8> Visited; 587 588 // Initialize 589 Visited.insert(V); 590 DFT.push_back(V); 591 592 while (!DFT.empty()) { 593 V = DFT.pop_back_val(); 594 595 if (Instruction *I = dyn_cast<Instruction>(V)) { 596 // If it is a || (or && depending on isEQ), process the operands. 597 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 598 if (Visited.insert(I->getOperand(1)).second) 599 DFT.push_back(I->getOperand(1)); 600 if (Visited.insert(I->getOperand(0)).second) 601 DFT.push_back(I->getOperand(0)); 602 continue; 603 } 604 605 // Try to match the current instruction 606 if (matchInstruction(I, isEQ)) 607 // Match succeed, continue the loop 608 continue; 609 } 610 611 // One element of the sequence of || (or &&) could not be match as a 612 // comparison against the same value as the others. 613 // We allow only one "Extra" case to be checked before the switch 614 if (!Extra) { 615 Extra = V; 616 continue; 617 } 618 // Failed to parse a proper sequence, abort now 619 CompValue = nullptr; 620 break; 621 } 622 } 623 }; 624 } 625 626 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 627 Instruction *Cond = nullptr; 628 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 629 Cond = dyn_cast<Instruction>(SI->getCondition()); 630 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 631 if (BI->isConditional()) 632 Cond = dyn_cast<Instruction>(BI->getCondition()); 633 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 634 Cond = dyn_cast<Instruction>(IBI->getAddress()); 635 } 636 637 TI->eraseFromParent(); 638 if (Cond) 639 RecursivelyDeleteTriviallyDeadInstructions(Cond); 640 } 641 642 /// Return true if the specified terminator checks 643 /// to see if a value is equal to constant integer value. 644 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 645 Value *CV = nullptr; 646 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 647 // Do not permit merging of large switch instructions into their 648 // predecessors unless there is only one predecessor. 649 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()), 650 pred_end(SI->getParent())) <= 651 128) 652 CV = SI->getCondition(); 653 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 654 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 655 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 656 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 657 CV = ICI->getOperand(0); 658 } 659 660 // Unwrap any lossless ptrtoint cast. 661 if (CV) { 662 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 663 Value *Ptr = PTII->getPointerOperand(); 664 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 665 CV = Ptr; 666 } 667 } 668 return CV; 669 } 670 671 /// Given a value comparison instruction, 672 /// decode all of the 'cases' that it represents and return the 'default' block. 673 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 674 TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cases.reserve(SI->getNumCases()); 677 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 678 ++i) 679 Cases.push_back( 680 ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor())); 681 return SI->getDefaultDest(); 682 } 683 684 BranchInst *BI = cast<BranchInst>(TI); 685 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 686 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 687 Cases.push_back(ValueEqualityComparisonCase( 688 GetConstantInt(ICI->getOperand(1), DL), Succ)); 689 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 690 } 691 692 /// Given a vector of bb/value pairs, remove any entries 693 /// in the list that match the specified block. 694 static void 695 EliminateBlockCases(BasicBlock *BB, 696 std::vector<ValueEqualityComparisonCase> &Cases) { 697 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 698 } 699 700 /// Return true if there are any keys in C1 that exist in C2 as well. 701 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 702 std::vector<ValueEqualityComparisonCase> &C2) { 703 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 704 705 // Make V1 be smaller than V2. 706 if (V1->size() > V2->size()) 707 std::swap(V1, V2); 708 709 if (V1->size() == 0) 710 return false; 711 if (V1->size() == 1) { 712 // Just scan V2. 713 ConstantInt *TheVal = (*V1)[0].Value; 714 for (unsigned i = 0, e = V2->size(); i != e; ++i) 715 if (TheVal == (*V2)[i].Value) 716 return true; 717 } 718 719 // Otherwise, just sort both lists and compare element by element. 720 array_pod_sort(V1->begin(), V1->end()); 721 array_pod_sort(V2->begin(), V2->end()); 722 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 723 while (i1 != e1 && i2 != e2) { 724 if ((*V1)[i1].Value == (*V2)[i2].Value) 725 return true; 726 if ((*V1)[i1].Value < (*V2)[i2].Value) 727 ++i1; 728 else 729 ++i2; 730 } 731 return false; 732 } 733 734 /// If TI is known to be a terminator instruction and its block is known to 735 /// only have a single predecessor block, check to see if that predecessor is 736 /// also a value comparison with the same value, and if that comparison 737 /// determines the outcome of this comparison. If so, simplify TI. This does a 738 /// very limited form of jump threading. 739 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 740 TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 741 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 742 if (!PredVal) 743 return false; // Not a value comparison in predecessor. 744 745 Value *ThisVal = isValueEqualityComparison(TI); 746 assert(ThisVal && "This isn't a value comparison!!"); 747 if (ThisVal != PredVal) 748 return false; // Different predicates. 749 750 // TODO: Preserve branch weight metadata, similarly to how 751 // FoldValueComparisonIntoPredecessors preserves it. 752 753 // Find out information about when control will move from Pred to TI's block. 754 std::vector<ValueEqualityComparisonCase> PredCases; 755 BasicBlock *PredDef = 756 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 757 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 758 759 // Find information about how control leaves this block. 760 std::vector<ValueEqualityComparisonCase> ThisCases; 761 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 762 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 763 764 // If TI's block is the default block from Pred's comparison, potentially 765 // simplify TI based on this knowledge. 766 if (PredDef == TI->getParent()) { 767 // If we are here, we know that the value is none of those cases listed in 768 // PredCases. If there are any cases in ThisCases that are in PredCases, we 769 // can simplify TI. 770 if (!ValuesOverlap(PredCases, ThisCases)) 771 return false; 772 773 if (isa<BranchInst>(TI)) { 774 // Okay, one of the successors of this condbr is dead. Convert it to a 775 // uncond br. 776 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 777 // Insert the new branch. 778 Instruction *NI = Builder.CreateBr(ThisDef); 779 (void)NI; 780 781 // Remove PHI node entries for the dead edge. 782 ThisCases[0].Dest->removePredecessor(TI->getParent()); 783 784 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 785 << "Through successor TI: " << *TI << "Leaving: " << *NI 786 << "\n"); 787 788 EraseTerminatorInstAndDCECond(TI); 789 return true; 790 } 791 792 SwitchInst *SI = cast<SwitchInst>(TI); 793 // Okay, TI has cases that are statically dead, prune them away. 794 SmallPtrSet<Constant *, 16> DeadCases; 795 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 796 DeadCases.insert(PredCases[i].Value); 797 798 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 799 << "Through successor TI: " << *TI); 800 801 // Collect branch weights into a vector. 802 SmallVector<uint32_t, 8> Weights; 803 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 804 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 805 if (HasWeight) 806 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 807 ++MD_i) { 808 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 809 Weights.push_back(CI->getValue().getZExtValue()); 810 } 811 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 812 --i; 813 if (DeadCases.count(i.getCaseValue())) { 814 if (HasWeight) { 815 std::swap(Weights[i.getCaseIndex() + 1], Weights.back()); 816 Weights.pop_back(); 817 } 818 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 819 SI->removeCase(i); 820 } 821 } 822 if (HasWeight && Weights.size() >= 2) 823 SI->setMetadata(LLVMContext::MD_prof, 824 MDBuilder(SI->getParent()->getContext()) 825 .createBranchWeights(Weights)); 826 827 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 828 return true; 829 } 830 831 // Otherwise, TI's block must correspond to some matched value. Find out 832 // which value (or set of values) this is. 833 ConstantInt *TIV = nullptr; 834 BasicBlock *TIBB = TI->getParent(); 835 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 836 if (PredCases[i].Dest == TIBB) { 837 if (TIV) 838 return false; // Cannot handle multiple values coming to this block. 839 TIV = PredCases[i].Value; 840 } 841 assert(TIV && "No edge from pred to succ?"); 842 843 // Okay, we found the one constant that our value can be if we get into TI's 844 // BB. Find out which successor will unconditionally be branched to. 845 BasicBlock *TheRealDest = nullptr; 846 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 847 if (ThisCases[i].Value == TIV) { 848 TheRealDest = ThisCases[i].Dest; 849 break; 850 } 851 852 // If not handled by any explicit cases, it is handled by the default case. 853 if (!TheRealDest) 854 TheRealDest = ThisDef; 855 856 // Remove PHI node entries for dead edges. 857 BasicBlock *CheckEdge = TheRealDest; 858 for (BasicBlock *Succ : successors(TIBB)) 859 if (Succ != CheckEdge) 860 Succ->removePredecessor(TIBB); 861 else 862 CheckEdge = nullptr; 863 864 // Insert the new branch. 865 Instruction *NI = Builder.CreateBr(TheRealDest); 866 (void)NI; 867 868 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 869 << "Through successor TI: " << *TI << "Leaving: " << *NI 870 << "\n"); 871 872 EraseTerminatorInstAndDCECond(TI); 873 return true; 874 } 875 876 namespace { 877 /// This class implements a stable ordering of constant 878 /// integers that does not depend on their address. This is important for 879 /// applications that sort ConstantInt's to ensure uniqueness. 880 struct ConstantIntOrdering { 881 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 882 return LHS->getValue().ult(RHS->getValue()); 883 } 884 }; 885 } 886 887 static int ConstantIntSortPredicate(ConstantInt *const *P1, 888 ConstantInt *const *P2) { 889 const ConstantInt *LHS = *P1; 890 const ConstantInt *RHS = *P2; 891 if (LHS == RHS) 892 return 0; 893 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 894 } 895 896 static inline bool HasBranchWeights(const Instruction *I) { 897 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 898 if (ProfMD && ProfMD->getOperand(0)) 899 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 900 return MDS->getString().equals("branch_weights"); 901 902 return false; 903 } 904 905 /// Get Weights of a given TerminatorInst, the default weight is at the front 906 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 907 /// metadata. 908 static void GetBranchWeights(TerminatorInst *TI, 909 SmallVectorImpl<uint64_t> &Weights) { 910 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 911 assert(MD); 912 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 913 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 914 Weights.push_back(CI->getValue().getZExtValue()); 915 } 916 917 // If TI is a conditional eq, the default case is the false case, 918 // and the corresponding branch-weight data is at index 2. We swap the 919 // default weight to be the first entry. 920 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 921 assert(Weights.size() == 2); 922 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 923 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 924 std::swap(Weights.front(), Weights.back()); 925 } 926 } 927 928 /// Keep halving the weights until all can fit in uint32_t. 929 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 930 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 931 if (Max > UINT_MAX) { 932 unsigned Offset = 32 - countLeadingZeros(Max); 933 for (uint64_t &I : Weights) 934 I >>= Offset; 935 } 936 } 937 938 /// The specified terminator is a value equality comparison instruction 939 /// (either a switch or a branch on "X == c"). 940 /// See if any of the predecessors of the terminator block are value comparisons 941 /// on the same value. If so, and if safe to do so, fold them together. 942 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 943 IRBuilder<> &Builder) { 944 BasicBlock *BB = TI->getParent(); 945 Value *CV = isValueEqualityComparison(TI); // CondVal 946 assert(CV && "Not a comparison?"); 947 bool Changed = false; 948 949 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 950 while (!Preds.empty()) { 951 BasicBlock *Pred = Preds.pop_back_val(); 952 953 // See if the predecessor is a comparison with the same value. 954 TerminatorInst *PTI = Pred->getTerminator(); 955 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 956 957 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 958 // Figure out which 'cases' to copy from SI to PSI. 959 std::vector<ValueEqualityComparisonCase> BBCases; 960 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 961 962 std::vector<ValueEqualityComparisonCase> PredCases; 963 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 964 965 // Based on whether the default edge from PTI goes to BB or not, fill in 966 // PredCases and PredDefault with the new switch cases we would like to 967 // build. 968 SmallVector<BasicBlock *, 8> NewSuccessors; 969 970 // Update the branch weight metadata along the way 971 SmallVector<uint64_t, 8> Weights; 972 bool PredHasWeights = HasBranchWeights(PTI); 973 bool SuccHasWeights = HasBranchWeights(TI); 974 975 if (PredHasWeights) { 976 GetBranchWeights(PTI, Weights); 977 // branch-weight metadata is inconsistent here. 978 if (Weights.size() != 1 + PredCases.size()) 979 PredHasWeights = SuccHasWeights = false; 980 } else if (SuccHasWeights) 981 // If there are no predecessor weights but there are successor weights, 982 // populate Weights with 1, which will later be scaled to the sum of 983 // successor's weights 984 Weights.assign(1 + PredCases.size(), 1); 985 986 SmallVector<uint64_t, 8> SuccWeights; 987 if (SuccHasWeights) { 988 GetBranchWeights(TI, SuccWeights); 989 // branch-weight metadata is inconsistent here. 990 if (SuccWeights.size() != 1 + BBCases.size()) 991 PredHasWeights = SuccHasWeights = false; 992 } else if (PredHasWeights) 993 SuccWeights.assign(1 + BBCases.size(), 1); 994 995 if (PredDefault == BB) { 996 // If this is the default destination from PTI, only the edges in TI 997 // that don't occur in PTI, or that branch to BB will be activated. 998 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 999 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1000 if (PredCases[i].Dest != BB) 1001 PTIHandled.insert(PredCases[i].Value); 1002 else { 1003 // The default destination is BB, we don't need explicit targets. 1004 std::swap(PredCases[i], PredCases.back()); 1005 1006 if (PredHasWeights || SuccHasWeights) { 1007 // Increase weight for the default case. 1008 Weights[0] += Weights[i + 1]; 1009 std::swap(Weights[i + 1], Weights.back()); 1010 Weights.pop_back(); 1011 } 1012 1013 PredCases.pop_back(); 1014 --i; 1015 --e; 1016 } 1017 1018 // Reconstruct the new switch statement we will be building. 1019 if (PredDefault != BBDefault) { 1020 PredDefault->removePredecessor(Pred); 1021 PredDefault = BBDefault; 1022 NewSuccessors.push_back(BBDefault); 1023 } 1024 1025 unsigned CasesFromPred = Weights.size(); 1026 uint64_t ValidTotalSuccWeight = 0; 1027 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1028 if (!PTIHandled.count(BBCases[i].Value) && 1029 BBCases[i].Dest != BBDefault) { 1030 PredCases.push_back(BBCases[i]); 1031 NewSuccessors.push_back(BBCases[i].Dest); 1032 if (SuccHasWeights || PredHasWeights) { 1033 // The default weight is at index 0, so weight for the ith case 1034 // should be at index i+1. Scale the cases from successor by 1035 // PredDefaultWeight (Weights[0]). 1036 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1037 ValidTotalSuccWeight += SuccWeights[i + 1]; 1038 } 1039 } 1040 1041 if (SuccHasWeights || PredHasWeights) { 1042 ValidTotalSuccWeight += SuccWeights[0]; 1043 // Scale the cases from predecessor by ValidTotalSuccWeight. 1044 for (unsigned i = 1; i < CasesFromPred; ++i) 1045 Weights[i] *= ValidTotalSuccWeight; 1046 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1047 Weights[0] *= SuccWeights[0]; 1048 } 1049 } else { 1050 // If this is not the default destination from PSI, only the edges 1051 // in SI that occur in PSI with a destination of BB will be 1052 // activated. 1053 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1054 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1055 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1056 if (PredCases[i].Dest == BB) { 1057 PTIHandled.insert(PredCases[i].Value); 1058 1059 if (PredHasWeights || SuccHasWeights) { 1060 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1061 std::swap(Weights[i + 1], Weights.back()); 1062 Weights.pop_back(); 1063 } 1064 1065 std::swap(PredCases[i], PredCases.back()); 1066 PredCases.pop_back(); 1067 --i; 1068 --e; 1069 } 1070 1071 // Okay, now we know which constants were sent to BB from the 1072 // predecessor. Figure out where they will all go now. 1073 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1074 if (PTIHandled.count(BBCases[i].Value)) { 1075 // If this is one we are capable of getting... 1076 if (PredHasWeights || SuccHasWeights) 1077 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1078 PredCases.push_back(BBCases[i]); 1079 NewSuccessors.push_back(BBCases[i].Dest); 1080 PTIHandled.erase( 1081 BBCases[i].Value); // This constant is taken care of 1082 } 1083 1084 // If there are any constants vectored to BB that TI doesn't handle, 1085 // they must go to the default destination of TI. 1086 for (ConstantInt *I : PTIHandled) { 1087 if (PredHasWeights || SuccHasWeights) 1088 Weights.push_back(WeightsForHandled[I]); 1089 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1090 NewSuccessors.push_back(BBDefault); 1091 } 1092 } 1093 1094 // Okay, at this point, we know which new successor Pred will get. Make 1095 // sure we update the number of entries in the PHI nodes for these 1096 // successors. 1097 for (BasicBlock *NewSuccessor : NewSuccessors) 1098 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1099 1100 Builder.SetInsertPoint(PTI); 1101 // Convert pointer to int before we switch. 1102 if (CV->getType()->isPointerTy()) { 1103 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1104 "magicptr"); 1105 } 1106 1107 // Now that the successors are updated, create the new Switch instruction. 1108 SwitchInst *NewSI = 1109 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1110 NewSI->setDebugLoc(PTI->getDebugLoc()); 1111 for (ValueEqualityComparisonCase &V : PredCases) 1112 NewSI->addCase(V.Value, V.Dest); 1113 1114 if (PredHasWeights || SuccHasWeights) { 1115 // Halve the weights if any of them cannot fit in an uint32_t 1116 FitWeights(Weights); 1117 1118 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1119 1120 NewSI->setMetadata( 1121 LLVMContext::MD_prof, 1122 MDBuilder(BB->getContext()).createBranchWeights(MDWeights)); 1123 } 1124 1125 EraseTerminatorInstAndDCECond(PTI); 1126 1127 // Okay, last check. If BB is still a successor of PSI, then we must 1128 // have an infinite loop case. If so, add an infinitely looping block 1129 // to handle the case to preserve the behavior of the code. 1130 BasicBlock *InfLoopBlock = nullptr; 1131 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1132 if (NewSI->getSuccessor(i) == BB) { 1133 if (!InfLoopBlock) { 1134 // Insert it at the end of the function, because it's either code, 1135 // or it won't matter if it's hot. :) 1136 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1137 BB->getParent()); 1138 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1139 } 1140 NewSI->setSuccessor(i, InfLoopBlock); 1141 } 1142 1143 Changed = true; 1144 } 1145 } 1146 return Changed; 1147 } 1148 1149 // If we would need to insert a select that uses the value of this invoke 1150 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1151 // can't hoist the invoke, as there is nowhere to put the select in this case. 1152 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1153 Instruction *I1, Instruction *I2) { 1154 for (BasicBlock *Succ : successors(BB1)) { 1155 PHINode *PN; 1156 for (BasicBlock::iterator BBI = Succ->begin(); 1157 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1158 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1159 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1160 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1161 return false; 1162 } 1163 } 1164 } 1165 return true; 1166 } 1167 1168 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1169 1170 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1171 /// in the two blocks up into the branch block. The caller of this function 1172 /// guarantees that BI's block dominates BB1 and BB2. 1173 static bool HoistThenElseCodeToIf(BranchInst *BI, 1174 const TargetTransformInfo &TTI) { 1175 // This does very trivial matching, with limited scanning, to find identical 1176 // instructions in the two blocks. In particular, we don't want to get into 1177 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1178 // such, we currently just scan for obviously identical instructions in an 1179 // identical order. 1180 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1181 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1182 1183 BasicBlock::iterator BB1_Itr = BB1->begin(); 1184 BasicBlock::iterator BB2_Itr = BB2->begin(); 1185 1186 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1187 // Skip debug info if it is not identical. 1188 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1189 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1190 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1191 while (isa<DbgInfoIntrinsic>(I1)) 1192 I1 = &*BB1_Itr++; 1193 while (isa<DbgInfoIntrinsic>(I2)) 1194 I2 = &*BB2_Itr++; 1195 } 1196 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1197 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1198 return false; 1199 1200 BasicBlock *BIParent = BI->getParent(); 1201 1202 bool Changed = false; 1203 do { 1204 // If we are hoisting the terminator instruction, don't move one (making a 1205 // broken BB), instead clone it, and remove BI. 1206 if (isa<TerminatorInst>(I1)) 1207 goto HoistTerminator; 1208 1209 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1210 return Changed; 1211 1212 // For a normal instruction, we just move one to right before the branch, 1213 // then replace all uses of the other with the first. Finally, we remove 1214 // the now redundant second instruction. 1215 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1216 if (!I2->use_empty()) 1217 I2->replaceAllUsesWith(I1); 1218 I1->intersectOptionalDataWith(I2); 1219 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1220 LLVMContext::MD_range, 1221 LLVMContext::MD_fpmath, 1222 LLVMContext::MD_invariant_load, 1223 LLVMContext::MD_nonnull, 1224 LLVMContext::MD_invariant_group, 1225 LLVMContext::MD_align, 1226 LLVMContext::MD_dereferenceable, 1227 LLVMContext::MD_dereferenceable_or_null, 1228 LLVMContext::MD_mem_parallel_loop_access}; 1229 combineMetadata(I1, I2, KnownIDs); 1230 I2->eraseFromParent(); 1231 Changed = true; 1232 1233 I1 = &*BB1_Itr++; 1234 I2 = &*BB2_Itr++; 1235 // Skip debug info if it is not identical. 1236 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1237 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1238 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1239 while (isa<DbgInfoIntrinsic>(I1)) 1240 I1 = &*BB1_Itr++; 1241 while (isa<DbgInfoIntrinsic>(I2)) 1242 I2 = &*BB2_Itr++; 1243 } 1244 } while (I1->isIdenticalToWhenDefined(I2)); 1245 1246 return true; 1247 1248 HoistTerminator: 1249 // It may not be possible to hoist an invoke. 1250 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1251 return Changed; 1252 1253 for (BasicBlock *Succ : successors(BB1)) { 1254 PHINode *PN; 1255 for (BasicBlock::iterator BBI = Succ->begin(); 1256 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1257 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1258 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1259 if (BB1V == BB2V) 1260 continue; 1261 1262 // Check for passingValueIsAlwaysUndefined here because we would rather 1263 // eliminate undefined control flow then converting it to a select. 1264 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1265 passingValueIsAlwaysUndefined(BB2V, PN)) 1266 return Changed; 1267 1268 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1269 return Changed; 1270 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1271 return Changed; 1272 } 1273 } 1274 1275 // Okay, it is safe to hoist the terminator. 1276 Instruction *NT = I1->clone(); 1277 BIParent->getInstList().insert(BI->getIterator(), NT); 1278 if (!NT->getType()->isVoidTy()) { 1279 I1->replaceAllUsesWith(NT); 1280 I2->replaceAllUsesWith(NT); 1281 NT->takeName(I1); 1282 } 1283 1284 IRBuilder<NoFolder> Builder(NT); 1285 // Hoisting one of the terminators from our successor is a great thing. 1286 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1287 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1288 // nodes, so we insert select instruction to compute the final result. 1289 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1290 for (BasicBlock *Succ : successors(BB1)) { 1291 PHINode *PN; 1292 for (BasicBlock::iterator BBI = Succ->begin(); 1293 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1294 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1295 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1296 if (BB1V == BB2V) 1297 continue; 1298 1299 // These values do not agree. Insert a select instruction before NT 1300 // that determines the right value. 1301 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1302 if (!SI) 1303 SI = cast<SelectInst>( 1304 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1305 BB1V->getName() + "." + BB2V->getName(), BI)); 1306 1307 // Make the PHI node use the select for all incoming values for BB1/BB2 1308 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1309 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1310 PN->setIncomingValue(i, SI); 1311 } 1312 } 1313 1314 // Update any PHI nodes in our new successors. 1315 for (BasicBlock *Succ : successors(BB1)) 1316 AddPredecessorToBlock(Succ, BIParent, BB1); 1317 1318 EraseTerminatorInstAndDCECond(BI); 1319 return true; 1320 } 1321 1322 // Return true if V0 and V1 are equivalent. This handles the obvious cases 1323 // where V0 == V1 and V0 and V1 are both identical instructions, but also 1324 // handles loads and stores with identical operands. 1325 // 1326 // Because determining if two memory instructions are equivalent 1327 // depends on control flow, the \c At0 and \c At1 parameters specify a 1328 // location for the query. This function is essentially answering the 1329 // query "If V0 were moved to At0, and V1 were moved to At1, are V0 and V1 1330 // equivalent?". In practice this means checking that moving V0 to At0 1331 // doesn't cross any other memory instructions. 1332 static bool areValuesTriviallySame(Value *V0, BasicBlock::const_iterator At0, 1333 Value *V1, BasicBlock::const_iterator At1) { 1334 if (V0 == V1) 1335 return true; 1336 1337 // Also check for instructions that are identical but not pointer-identical. 1338 // This can include load instructions that haven't been CSE'd. 1339 if (!isa<Instruction>(V0) || !isa<Instruction>(V1)) 1340 return false; 1341 const auto *I0 = cast<Instruction>(V0); 1342 const auto *I1 = cast<Instruction>(V1); 1343 if (!I0->isIdenticalToWhenDefined(I1)) 1344 return false; 1345 1346 if (!I0->mayReadOrWriteMemory()) 1347 return true; 1348 1349 // Instructions that may read or write memory have extra restrictions. We 1350 // must ensure we don't treat %a and %b as equivalent in code such as: 1351 // 1352 // %a = load %x 1353 // store %x, 1 1354 // if (%c) { 1355 // %b = load %x 1356 // %d = add %b, 1 1357 // } else { 1358 // %d = add %a, 1 1359 // } 1360 1361 // Be conservative. We don't want to search the entire CFG between def 1362 // and use; if the def isn't in the same block as the use just bail. 1363 if (I0->getParent() != At0->getParent() || 1364 I1->getParent() != At1->getParent()) 1365 return false; 1366 1367 // Again, be super conservative. Ideally we'd be able to query AliasAnalysis 1368 // but we currently don't have that available. 1369 auto WritesMemory = [](const Instruction &I) { 1370 return I.mayReadOrWriteMemory(); 1371 }; 1372 if (std::any_of(std::next(I0->getIterator()), At0, WritesMemory)) 1373 return false; 1374 if (std::any_of(std::next(I1->getIterator()), At1, WritesMemory)) 1375 return false; 1376 return true; 1377 } 1378 1379 // Is it legal to place a variable in operand \c OpIdx of \c I? 1380 // FIXME: This should be promoted to Instruction. 1381 static bool canReplaceOperandWithVariable(const Instruction *I, 1382 unsigned OpIdx) { 1383 // Early exit. 1384 if (!isa<Constant>(I->getOperand(OpIdx))) 1385 return true; 1386 1387 switch (I->getOpcode()) { 1388 default: 1389 return true; 1390 case Instruction::Call: 1391 case Instruction::Invoke: 1392 // FIXME: many arithmetic intrinsics have no issue taking a 1393 // variable, however it's hard to distingish these from 1394 // specials such as @llvm.frameaddress that require a constant. 1395 return !isa<IntrinsicInst>(I); 1396 case Instruction::ShuffleVector: 1397 // Shufflevector masks are constant. 1398 return OpIdx != 2; 1399 case Instruction::ExtractValue: 1400 case Instruction::InsertValue: 1401 // All operands apart from the first are constant. 1402 return OpIdx == 0; 1403 case Instruction::Alloca: 1404 return false; 1405 case Instruction::GetElementPtr: 1406 if (OpIdx == 0) 1407 return true; 1408 gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1); 1409 return !It->isStructTy(); 1410 } 1411 } 1412 1413 // All blocks in Blocks unconditionally jump to a common successor. Analyze 1414 // the last non-terminator instruction in each block and return true if it would 1415 // be possible to sink them into their successor, creating one common 1416 // instruction instead. Set NumPHIsRequired to the number of PHI nodes that 1417 // would need to be created during sinking. 1418 static bool canSinkLastInstruction(ArrayRef<BasicBlock*> Blocks, 1419 unsigned &NumPHIsRequired) { 1420 SmallVector<Instruction*,4> Insts; 1421 for (auto *BB : Blocks) { 1422 if (BB->getTerminator() == &BB->front()) 1423 // Block was empty. 1424 return false; 1425 Insts.push_back(BB->getTerminator()->getPrevNode()); 1426 } 1427 1428 // Prune out obviously bad instructions to move. Any non-store instruction 1429 // must have exactly one use, and we check later that use is by a single, 1430 // common PHI instruction in the successor. 1431 for (auto *I : Insts) { 1432 // These instructions may change or break semantics if moved. 1433 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1434 I->getType()->isTokenTy()) 1435 return false; 1436 // Apart from loads and stores, we won't move anything that could 1437 // change memory or have sideeffects. 1438 if (!isa<StoreInst>(I) && !isa<LoadInst>(I) && 1439 (I->mayHaveSideEffects() || I->mayHaveSideEffects())) 1440 return false; 1441 // Everything must have only one use too, apart from stores which 1442 // have no uses. 1443 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1444 return false; 1445 } 1446 1447 const Instruction *I0 = Insts.front(); 1448 for (auto *I : Insts) 1449 if (!I->isSameOperationAs(I0)) 1450 return false; 1451 1452 // If this isn't a store, check the only user is a single PHI. 1453 if (!isa<StoreInst>(I0)) { 1454 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1455 if (!PNUse || 1456 !all_of(Insts, [&PNUse](const Instruction *I) { 1457 return *I->user_begin() == PNUse; 1458 })) 1459 return false; 1460 } 1461 1462 NumPHIsRequired = 0; 1463 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1464 if (I0->getOperand(OI)->getType()->isTokenTy()) 1465 // Don't touch any operand of token type. 1466 return false; 1467 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1468 return areValuesTriviallySame(I->getOperand(OI), I->getIterator(), 1469 I0->getOperand(OI), I0->getIterator()); 1470 }; 1471 if (!all_of(Insts, SameAsI0)) { 1472 if (!canReplaceOperandWithVariable(I0, OI)) 1473 // We can't create a PHI from this GEP. 1474 return false; 1475 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI != 0) 1476 // Don't create indirect calls! 1477 // FIXME: if the call was *already* indirect, we should do this. 1478 return false; 1479 ++NumPHIsRequired; 1480 } 1481 } 1482 return true; 1483 } 1484 1485 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1486 // instruction of every block in Blocks to their common successor, commoning 1487 // into one instruction. 1488 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1489 unsigned Dummy; 1490 (void)Dummy; 1491 assert(canSinkLastInstruction(Blocks, Dummy) && 1492 "Must analyze before transforming!"); 1493 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1494 1495 // canSinkLastInstruction returning true guarantees that every block has at 1496 // least one non-terminator instruction. 1497 SmallVector<Instruction*,4> Insts; 1498 for (auto *BB : Blocks) 1499 Insts.push_back(BB->getTerminator()->getPrevNode()); 1500 1501 // We don't need to do any checking here; canSinkLastInstruction should have 1502 // done it all for us. 1503 Instruction *I0 = Insts.front(); 1504 SmallVector<Value*, 4> NewOperands; 1505 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1506 // This check is different to that in canSinkLastInstruction. There, we 1507 // cared about the global view once simplifycfg (and instcombine) have 1508 // completed - it takes into account PHIs that become trivially 1509 // simplifiable. However here we need a more local view; if an operand 1510 // differs we create a PHI and rely on instcombine to clean up the very 1511 // small mess we may make. 1512 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1513 return I->getOperand(O) != I0->getOperand(O); 1514 }); 1515 if (!NeedPHI) { 1516 NewOperands.push_back(I0->getOperand(O)); 1517 continue; 1518 } 1519 1520 // Create a new PHI in the successor block and populate it. 1521 auto *Op = I0->getOperand(O); 1522 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1523 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1524 Op->getName() + ".sink", &BBEnd->front()); 1525 for (auto *I : Insts) 1526 PN->addIncoming(I->getOperand(O), I->getParent()); 1527 NewOperands.push_back(PN); 1528 } 1529 1530 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1531 // and move it to the start of the successor block. 1532 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1533 I0->getOperandUse(O).set(NewOperands[O]); 1534 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1535 1536 if (!isa<StoreInst>(I0)) { 1537 // canSinkLastInstruction checked that all instructions were used by 1538 // one and only one PHI node. Find that now, RAUW it to our common 1539 // instruction and nuke it. 1540 assert(I0->hasOneUse()); 1541 auto *PN = cast<PHINode>(*I0->user_begin()); 1542 PN->replaceAllUsesWith(I0); 1543 PN->eraseFromParent(); 1544 } 1545 1546 // Finally nuke all instructions apart from the common instruction. 1547 for (auto *I : Insts) 1548 if (I != I0) 1549 I->eraseFromParent(); 1550 } 1551 1552 /// Given an unconditional branch that goes to BBEnd, 1553 /// check whether BBEnd has only two predecessors and the other predecessor 1554 /// ends with an unconditional branch. If it is true, sink any common code 1555 /// in the two predecessors to BBEnd. 1556 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1557 assert(BI1->isUnconditional()); 1558 BasicBlock *BBEnd = BI1->getSuccessor(0); 1559 1560 SmallVector<BasicBlock*,4> Blocks; 1561 for (auto *BB : predecessors(BBEnd)) 1562 Blocks.push_back(BB); 1563 if (Blocks.size() != 2 || 1564 !all_of(Blocks, [](const BasicBlock *BB) { 1565 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1566 return BI && BI->isUnconditional(); 1567 })) 1568 return false; 1569 1570 bool Changed = false; 1571 unsigned NumPHIsToInsert; 1572 while (canSinkLastInstruction(Blocks, NumPHIsToInsert) && NumPHIsToInsert <= 1) { 1573 sinkLastInstruction(Blocks); 1574 NumSinkCommons++; 1575 Changed = true; 1576 } 1577 return Changed; 1578 } 1579 1580 /// \brief Determine if we can hoist sink a sole store instruction out of a 1581 /// conditional block. 1582 /// 1583 /// We are looking for code like the following: 1584 /// BrBB: 1585 /// store i32 %add, i32* %arrayidx2 1586 /// ... // No other stores or function calls (we could be calling a memory 1587 /// ... // function). 1588 /// %cmp = icmp ult %x, %y 1589 /// br i1 %cmp, label %EndBB, label %ThenBB 1590 /// ThenBB: 1591 /// store i32 %add5, i32* %arrayidx2 1592 /// br label EndBB 1593 /// EndBB: 1594 /// ... 1595 /// We are going to transform this into: 1596 /// BrBB: 1597 /// store i32 %add, i32* %arrayidx2 1598 /// ... // 1599 /// %cmp = icmp ult %x, %y 1600 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1601 /// store i32 %add.add5, i32* %arrayidx2 1602 /// ... 1603 /// 1604 /// \return The pointer to the value of the previous store if the store can be 1605 /// hoisted into the predecessor block. 0 otherwise. 1606 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1607 BasicBlock *StoreBB, BasicBlock *EndBB) { 1608 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1609 if (!StoreToHoist) 1610 return nullptr; 1611 1612 // Volatile or atomic. 1613 if (!StoreToHoist->isSimple()) 1614 return nullptr; 1615 1616 Value *StorePtr = StoreToHoist->getPointerOperand(); 1617 1618 // Look for a store to the same pointer in BrBB. 1619 unsigned MaxNumInstToLookAt = 9; 1620 for (Instruction &CurI : reverse(*BrBB)) { 1621 if (!MaxNumInstToLookAt) 1622 break; 1623 // Skip debug info. 1624 if (isa<DbgInfoIntrinsic>(CurI)) 1625 continue; 1626 --MaxNumInstToLookAt; 1627 1628 // Could be calling an instruction that affects memory like free(). 1629 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1630 return nullptr; 1631 1632 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1633 // Found the previous store make sure it stores to the same location. 1634 if (SI->getPointerOperand() == StorePtr) 1635 // Found the previous store, return its value operand. 1636 return SI->getValueOperand(); 1637 return nullptr; // Unknown store. 1638 } 1639 } 1640 1641 return nullptr; 1642 } 1643 1644 /// \brief Speculate a conditional basic block flattening the CFG. 1645 /// 1646 /// Note that this is a very risky transform currently. Speculating 1647 /// instructions like this is most often not desirable. Instead, there is an MI 1648 /// pass which can do it with full awareness of the resource constraints. 1649 /// However, some cases are "obvious" and we should do directly. An example of 1650 /// this is speculating a single, reasonably cheap instruction. 1651 /// 1652 /// There is only one distinct advantage to flattening the CFG at the IR level: 1653 /// it makes very common but simplistic optimizations such as are common in 1654 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1655 /// modeling their effects with easier to reason about SSA value graphs. 1656 /// 1657 /// 1658 /// An illustration of this transform is turning this IR: 1659 /// \code 1660 /// BB: 1661 /// %cmp = icmp ult %x, %y 1662 /// br i1 %cmp, label %EndBB, label %ThenBB 1663 /// ThenBB: 1664 /// %sub = sub %x, %y 1665 /// br label BB2 1666 /// EndBB: 1667 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1668 /// ... 1669 /// \endcode 1670 /// 1671 /// Into this IR: 1672 /// \code 1673 /// BB: 1674 /// %cmp = icmp ult %x, %y 1675 /// %sub = sub %x, %y 1676 /// %cond = select i1 %cmp, 0, %sub 1677 /// ... 1678 /// \endcode 1679 /// 1680 /// \returns true if the conditional block is removed. 1681 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1682 const TargetTransformInfo &TTI) { 1683 // Be conservative for now. FP select instruction can often be expensive. 1684 Value *BrCond = BI->getCondition(); 1685 if (isa<FCmpInst>(BrCond)) 1686 return false; 1687 1688 BasicBlock *BB = BI->getParent(); 1689 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1690 1691 // If ThenBB is actually on the false edge of the conditional branch, remember 1692 // to swap the select operands later. 1693 bool Invert = false; 1694 if (ThenBB != BI->getSuccessor(0)) { 1695 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1696 Invert = true; 1697 } 1698 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1699 1700 // Keep a count of how many times instructions are used within CondBB when 1701 // they are candidates for sinking into CondBB. Specifically: 1702 // - They are defined in BB, and 1703 // - They have no side effects, and 1704 // - All of their uses are in CondBB. 1705 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1706 1707 unsigned SpeculationCost = 0; 1708 Value *SpeculatedStoreValue = nullptr; 1709 StoreInst *SpeculatedStore = nullptr; 1710 for (BasicBlock::iterator BBI = ThenBB->begin(), 1711 BBE = std::prev(ThenBB->end()); 1712 BBI != BBE; ++BBI) { 1713 Instruction *I = &*BBI; 1714 // Skip debug info. 1715 if (isa<DbgInfoIntrinsic>(I)) 1716 continue; 1717 1718 // Only speculatively execute a single instruction (not counting the 1719 // terminator) for now. 1720 ++SpeculationCost; 1721 if (SpeculationCost > 1) 1722 return false; 1723 1724 // Don't hoist the instruction if it's unsafe or expensive. 1725 if (!isSafeToSpeculativelyExecute(I) && 1726 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1727 I, BB, ThenBB, EndBB)))) 1728 return false; 1729 if (!SpeculatedStoreValue && 1730 ComputeSpeculationCost(I, TTI) > 1731 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1732 return false; 1733 1734 // Store the store speculation candidate. 1735 if (SpeculatedStoreValue) 1736 SpeculatedStore = cast<StoreInst>(I); 1737 1738 // Do not hoist the instruction if any of its operands are defined but not 1739 // used in BB. The transformation will prevent the operand from 1740 // being sunk into the use block. 1741 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1742 Instruction *OpI = dyn_cast<Instruction>(*i); 1743 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1744 continue; // Not a candidate for sinking. 1745 1746 ++SinkCandidateUseCounts[OpI]; 1747 } 1748 } 1749 1750 // Consider any sink candidates which are only used in CondBB as costs for 1751 // speculation. Note, while we iterate over a DenseMap here, we are summing 1752 // and so iteration order isn't significant. 1753 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 1754 I = SinkCandidateUseCounts.begin(), 1755 E = SinkCandidateUseCounts.end(); 1756 I != E; ++I) 1757 if (I->first->getNumUses() == I->second) { 1758 ++SpeculationCost; 1759 if (SpeculationCost > 1) 1760 return false; 1761 } 1762 1763 // Check that the PHI nodes can be converted to selects. 1764 bool HaveRewritablePHIs = false; 1765 for (BasicBlock::iterator I = EndBB->begin(); 1766 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1767 Value *OrigV = PN->getIncomingValueForBlock(BB); 1768 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1769 1770 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1771 // Skip PHIs which are trivial. 1772 if (ThenV == OrigV) 1773 continue; 1774 1775 // Don't convert to selects if we could remove undefined behavior instead. 1776 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1777 passingValueIsAlwaysUndefined(ThenV, PN)) 1778 return false; 1779 1780 HaveRewritablePHIs = true; 1781 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1782 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1783 if (!OrigCE && !ThenCE) 1784 continue; // Known safe and cheap. 1785 1786 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1787 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1788 return false; 1789 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1790 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1791 unsigned MaxCost = 1792 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 1793 if (OrigCost + ThenCost > MaxCost) 1794 return false; 1795 1796 // Account for the cost of an unfolded ConstantExpr which could end up 1797 // getting expanded into Instructions. 1798 // FIXME: This doesn't account for how many operations are combined in the 1799 // constant expression. 1800 ++SpeculationCost; 1801 if (SpeculationCost > 1) 1802 return false; 1803 } 1804 1805 // If there are no PHIs to process, bail early. This helps ensure idempotence 1806 // as well. 1807 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1808 return false; 1809 1810 // If we get here, we can hoist the instruction and if-convert. 1811 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1812 1813 // Insert a select of the value of the speculated store. 1814 if (SpeculatedStoreValue) { 1815 IRBuilder<NoFolder> Builder(BI); 1816 Value *TrueV = SpeculatedStore->getValueOperand(); 1817 Value *FalseV = SpeculatedStoreValue; 1818 if (Invert) 1819 std::swap(TrueV, FalseV); 1820 Value *S = Builder.CreateSelect( 1821 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1822 SpeculatedStore->setOperand(0, S); 1823 } 1824 1825 // Metadata can be dependent on the condition we are hoisting above. 1826 // Conservatively strip all metadata on the instruction. 1827 for (auto &I : *ThenBB) 1828 I.dropUnknownNonDebugMetadata(); 1829 1830 // Hoist the instructions. 1831 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1832 ThenBB->begin(), std::prev(ThenBB->end())); 1833 1834 // Insert selects and rewrite the PHI operands. 1835 IRBuilder<NoFolder> Builder(BI); 1836 for (BasicBlock::iterator I = EndBB->begin(); 1837 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1838 unsigned OrigI = PN->getBasicBlockIndex(BB); 1839 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1840 Value *OrigV = PN->getIncomingValue(OrigI); 1841 Value *ThenV = PN->getIncomingValue(ThenI); 1842 1843 // Skip PHIs which are trivial. 1844 if (OrigV == ThenV) 1845 continue; 1846 1847 // Create a select whose true value is the speculatively executed value and 1848 // false value is the preexisting value. Swap them if the branch 1849 // destinations were inverted. 1850 Value *TrueV = ThenV, *FalseV = OrigV; 1851 if (Invert) 1852 std::swap(TrueV, FalseV); 1853 Value *V = Builder.CreateSelect( 1854 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1855 PN->setIncomingValue(OrigI, V); 1856 PN->setIncomingValue(ThenI, V); 1857 } 1858 1859 ++NumSpeculations; 1860 return true; 1861 } 1862 1863 /// Return true if we can thread a branch across this block. 1864 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1865 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1866 unsigned Size = 0; 1867 1868 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1869 if (isa<DbgInfoIntrinsic>(BBI)) 1870 continue; 1871 if (Size > 10) 1872 return false; // Don't clone large BB's. 1873 ++Size; 1874 1875 // We can only support instructions that do not define values that are 1876 // live outside of the current basic block. 1877 for (User *U : BBI->users()) { 1878 Instruction *UI = cast<Instruction>(U); 1879 if (UI->getParent() != BB || isa<PHINode>(UI)) 1880 return false; 1881 } 1882 1883 // Looks ok, continue checking. 1884 } 1885 1886 return true; 1887 } 1888 1889 /// If we have a conditional branch on a PHI node value that is defined in the 1890 /// same block as the branch and if any PHI entries are constants, thread edges 1891 /// corresponding to that entry to be branches to their ultimate destination. 1892 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1893 BasicBlock *BB = BI->getParent(); 1894 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1895 // NOTE: we currently cannot transform this case if the PHI node is used 1896 // outside of the block. 1897 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1898 return false; 1899 1900 // Degenerate case of a single entry PHI. 1901 if (PN->getNumIncomingValues() == 1) { 1902 FoldSingleEntryPHINodes(PN->getParent()); 1903 return true; 1904 } 1905 1906 // Now we know that this block has multiple preds and two succs. 1907 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 1908 return false; 1909 1910 // Can't fold blocks that contain noduplicate or convergent calls. 1911 if (any_of(*BB, [](const Instruction &I) { 1912 const CallInst *CI = dyn_cast<CallInst>(&I); 1913 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1914 })) 1915 return false; 1916 1917 // Okay, this is a simple enough basic block. See if any phi values are 1918 // constants. 1919 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1920 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1921 if (!CB || !CB->getType()->isIntegerTy(1)) 1922 continue; 1923 1924 // Okay, we now know that all edges from PredBB should be revectored to 1925 // branch to RealDest. 1926 BasicBlock *PredBB = PN->getIncomingBlock(i); 1927 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1928 1929 if (RealDest == BB) 1930 continue; // Skip self loops. 1931 // Skip if the predecessor's terminator is an indirect branch. 1932 if (isa<IndirectBrInst>(PredBB->getTerminator())) 1933 continue; 1934 1935 // The dest block might have PHI nodes, other predecessors and other 1936 // difficult cases. Instead of being smart about this, just insert a new 1937 // block that jumps to the destination block, effectively splitting 1938 // the edge we are about to create. 1939 BasicBlock *EdgeBB = 1940 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 1941 RealDest->getParent(), RealDest); 1942 BranchInst::Create(RealDest, EdgeBB); 1943 1944 // Update PHI nodes. 1945 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1946 1947 // BB may have instructions that are being threaded over. Clone these 1948 // instructions into EdgeBB. We know that there will be no uses of the 1949 // cloned instructions outside of EdgeBB. 1950 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1951 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 1952 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1953 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1954 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1955 continue; 1956 } 1957 // Clone the instruction. 1958 Instruction *N = BBI->clone(); 1959 if (BBI->hasName()) 1960 N->setName(BBI->getName() + ".c"); 1961 1962 // Update operands due to translation. 1963 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 1964 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 1965 if (PI != TranslateMap.end()) 1966 *i = PI->second; 1967 } 1968 1969 // Check for trivial simplification. 1970 if (Value *V = SimplifyInstruction(N, DL)) { 1971 if (!BBI->use_empty()) 1972 TranslateMap[&*BBI] = V; 1973 if (!N->mayHaveSideEffects()) { 1974 delete N; // Instruction folded away, don't need actual inst 1975 N = nullptr; 1976 } 1977 } else { 1978 if (!BBI->use_empty()) 1979 TranslateMap[&*BBI] = N; 1980 } 1981 // Insert the new instruction into its new home. 1982 if (N) 1983 EdgeBB->getInstList().insert(InsertPt, N); 1984 } 1985 1986 // Loop over all of the edges from PredBB to BB, changing them to branch 1987 // to EdgeBB instead. 1988 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1989 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1990 if (PredBBTI->getSuccessor(i) == BB) { 1991 BB->removePredecessor(PredBB); 1992 PredBBTI->setSuccessor(i, EdgeBB); 1993 } 1994 1995 // Recurse, simplifying any other constants. 1996 return FoldCondBranchOnPHI(BI, DL) | true; 1997 } 1998 1999 return false; 2000 } 2001 2002 /// Given a BB that starts with the specified two-entry PHI node, 2003 /// see if we can eliminate it. 2004 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2005 const DataLayout &DL) { 2006 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2007 // statement", which has a very simple dominance structure. Basically, we 2008 // are trying to find the condition that is being branched on, which 2009 // subsequently causes this merge to happen. We really want control 2010 // dependence information for this check, but simplifycfg can't keep it up 2011 // to date, and this catches most of the cases we care about anyway. 2012 BasicBlock *BB = PN->getParent(); 2013 BasicBlock *IfTrue, *IfFalse; 2014 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2015 if (!IfCond || 2016 // Don't bother if the branch will be constant folded trivially. 2017 isa<ConstantInt>(IfCond)) 2018 return false; 2019 2020 // Okay, we found that we can merge this two-entry phi node into a select. 2021 // Doing so would require us to fold *all* two entry phi nodes in this block. 2022 // At some point this becomes non-profitable (particularly if the target 2023 // doesn't support cmov's). Only do this transformation if there are two or 2024 // fewer PHI nodes in this block. 2025 unsigned NumPhis = 0; 2026 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2027 if (NumPhis > 2) 2028 return false; 2029 2030 // Loop over the PHI's seeing if we can promote them all to select 2031 // instructions. While we are at it, keep track of the instructions 2032 // that need to be moved to the dominating block. 2033 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2034 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2035 MaxCostVal1 = PHINodeFoldingThreshold; 2036 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2037 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2038 2039 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2040 PHINode *PN = cast<PHINode>(II++); 2041 if (Value *V = SimplifyInstruction(PN, DL)) { 2042 PN->replaceAllUsesWith(V); 2043 PN->eraseFromParent(); 2044 continue; 2045 } 2046 2047 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 2048 MaxCostVal0, TTI) || 2049 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 2050 MaxCostVal1, TTI)) 2051 return false; 2052 } 2053 2054 // If we folded the first phi, PN dangles at this point. Refresh it. If 2055 // we ran out of PHIs then we simplified them all. 2056 PN = dyn_cast<PHINode>(BB->begin()); 2057 if (!PN) 2058 return true; 2059 2060 // Don't fold i1 branches on PHIs which contain binary operators. These can 2061 // often be turned into switches and other things. 2062 if (PN->getType()->isIntegerTy(1) && 2063 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2064 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2065 isa<BinaryOperator>(IfCond))) 2066 return false; 2067 2068 // If all PHI nodes are promotable, check to make sure that all instructions 2069 // in the predecessor blocks can be promoted as well. If not, we won't be able 2070 // to get rid of the control flow, so it's not worth promoting to select 2071 // instructions. 2072 BasicBlock *DomBlock = nullptr; 2073 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2074 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2075 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2076 IfBlock1 = nullptr; 2077 } else { 2078 DomBlock = *pred_begin(IfBlock1); 2079 for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I); 2080 ++I) 2081 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2082 // This is not an aggressive instruction that we can promote. 2083 // Because of this, we won't be able to get rid of the control flow, so 2084 // the xform is not worth it. 2085 return false; 2086 } 2087 } 2088 2089 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2090 IfBlock2 = nullptr; 2091 } else { 2092 DomBlock = *pred_begin(IfBlock2); 2093 for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I); 2094 ++I) 2095 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2096 // This is not an aggressive instruction that we can promote. 2097 // Because of this, we won't be able to get rid of the control flow, so 2098 // the xform is not worth it. 2099 return false; 2100 } 2101 } 2102 2103 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 2104 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 2105 2106 // If we can still promote the PHI nodes after this gauntlet of tests, 2107 // do all of the PHI's now. 2108 Instruction *InsertPt = DomBlock->getTerminator(); 2109 IRBuilder<NoFolder> Builder(InsertPt); 2110 2111 // Move all 'aggressive' instructions, which are defined in the 2112 // conditional parts of the if's up to the dominating block. 2113 if (IfBlock1) 2114 DomBlock->getInstList().splice(InsertPt->getIterator(), 2115 IfBlock1->getInstList(), IfBlock1->begin(), 2116 IfBlock1->getTerminator()->getIterator()); 2117 if (IfBlock2) 2118 DomBlock->getInstList().splice(InsertPt->getIterator(), 2119 IfBlock2->getInstList(), IfBlock2->begin(), 2120 IfBlock2->getTerminator()->getIterator()); 2121 2122 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2123 // Change the PHI node into a select instruction. 2124 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2125 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2126 2127 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2128 PN->replaceAllUsesWith(Sel); 2129 Sel->takeName(PN); 2130 PN->eraseFromParent(); 2131 } 2132 2133 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2134 // has been flattened. Change DomBlock to jump directly to our new block to 2135 // avoid other simplifycfg's kicking in on the diamond. 2136 TerminatorInst *OldTI = DomBlock->getTerminator(); 2137 Builder.SetInsertPoint(OldTI); 2138 Builder.CreateBr(BB); 2139 OldTI->eraseFromParent(); 2140 return true; 2141 } 2142 2143 /// If we found a conditional branch that goes to two returning blocks, 2144 /// try to merge them together into one return, 2145 /// introducing a select if the return values disagree. 2146 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2147 IRBuilder<> &Builder) { 2148 assert(BI->isConditional() && "Must be a conditional branch"); 2149 BasicBlock *TrueSucc = BI->getSuccessor(0); 2150 BasicBlock *FalseSucc = BI->getSuccessor(1); 2151 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2152 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2153 2154 // Check to ensure both blocks are empty (just a return) or optionally empty 2155 // with PHI nodes. If there are other instructions, merging would cause extra 2156 // computation on one path or the other. 2157 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2158 return false; 2159 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2160 return false; 2161 2162 Builder.SetInsertPoint(BI); 2163 // Okay, we found a branch that is going to two return nodes. If 2164 // there is no return value for this function, just change the 2165 // branch into a return. 2166 if (FalseRet->getNumOperands() == 0) { 2167 TrueSucc->removePredecessor(BI->getParent()); 2168 FalseSucc->removePredecessor(BI->getParent()); 2169 Builder.CreateRetVoid(); 2170 EraseTerminatorInstAndDCECond(BI); 2171 return true; 2172 } 2173 2174 // Otherwise, figure out what the true and false return values are 2175 // so we can insert a new select instruction. 2176 Value *TrueValue = TrueRet->getReturnValue(); 2177 Value *FalseValue = FalseRet->getReturnValue(); 2178 2179 // Unwrap any PHI nodes in the return blocks. 2180 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2181 if (TVPN->getParent() == TrueSucc) 2182 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2183 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2184 if (FVPN->getParent() == FalseSucc) 2185 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2186 2187 // In order for this transformation to be safe, we must be able to 2188 // unconditionally execute both operands to the return. This is 2189 // normally the case, but we could have a potentially-trapping 2190 // constant expression that prevents this transformation from being 2191 // safe. 2192 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2193 if (TCV->canTrap()) 2194 return false; 2195 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2196 if (FCV->canTrap()) 2197 return false; 2198 2199 // Okay, we collected all the mapped values and checked them for sanity, and 2200 // defined to really do this transformation. First, update the CFG. 2201 TrueSucc->removePredecessor(BI->getParent()); 2202 FalseSucc->removePredecessor(BI->getParent()); 2203 2204 // Insert select instructions where needed. 2205 Value *BrCond = BI->getCondition(); 2206 if (TrueValue) { 2207 // Insert a select if the results differ. 2208 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2209 } else if (isa<UndefValue>(TrueValue)) { 2210 TrueValue = FalseValue; 2211 } else { 2212 TrueValue = 2213 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2214 } 2215 } 2216 2217 Value *RI = 2218 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2219 2220 (void)RI; 2221 2222 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2223 << "\n " << *BI << "NewRet = " << *RI 2224 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2225 2226 EraseTerminatorInstAndDCECond(BI); 2227 2228 return true; 2229 } 2230 2231 /// Return true if the given instruction is available 2232 /// in its predecessor block. If yes, the instruction will be removed. 2233 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2234 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2235 return false; 2236 for (Instruction &I : *PB) { 2237 Instruction *PBI = &I; 2238 // Check whether Inst and PBI generate the same value. 2239 if (Inst->isIdenticalTo(PBI)) { 2240 Inst->replaceAllUsesWith(PBI); 2241 Inst->eraseFromParent(); 2242 return true; 2243 } 2244 } 2245 return false; 2246 } 2247 2248 /// Return true if either PBI or BI has branch weight available, and store 2249 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2250 /// not have branch weight, use 1:1 as its weight. 2251 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2252 uint64_t &PredTrueWeight, 2253 uint64_t &PredFalseWeight, 2254 uint64_t &SuccTrueWeight, 2255 uint64_t &SuccFalseWeight) { 2256 bool PredHasWeights = 2257 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2258 bool SuccHasWeights = 2259 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2260 if (PredHasWeights || SuccHasWeights) { 2261 if (!PredHasWeights) 2262 PredTrueWeight = PredFalseWeight = 1; 2263 if (!SuccHasWeights) 2264 SuccTrueWeight = SuccFalseWeight = 1; 2265 return true; 2266 } else { 2267 return false; 2268 } 2269 } 2270 2271 /// If this basic block is simple enough, and if a predecessor branches to us 2272 /// and one of our successors, fold the block into the predecessor and use 2273 /// logical operations to pick the right destination. 2274 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2275 BasicBlock *BB = BI->getParent(); 2276 2277 Instruction *Cond = nullptr; 2278 if (BI->isConditional()) 2279 Cond = dyn_cast<Instruction>(BI->getCondition()); 2280 else { 2281 // For unconditional branch, check for a simple CFG pattern, where 2282 // BB has a single predecessor and BB's successor is also its predecessor's 2283 // successor. If such pattern exisits, check for CSE between BB and its 2284 // predecessor. 2285 if (BasicBlock *PB = BB->getSinglePredecessor()) 2286 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2287 if (PBI->isConditional() && 2288 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2289 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2291 Instruction *Curr = &*I++; 2292 if (isa<CmpInst>(Curr)) { 2293 Cond = Curr; 2294 break; 2295 } 2296 // Quit if we can't remove this instruction. 2297 if (!checkCSEInPredecessor(Curr, PB)) 2298 return false; 2299 } 2300 } 2301 2302 if (!Cond) 2303 return false; 2304 } 2305 2306 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2307 Cond->getParent() != BB || !Cond->hasOneUse()) 2308 return false; 2309 2310 // Make sure the instruction after the condition is the cond branch. 2311 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2312 2313 // Ignore dbg intrinsics. 2314 while (isa<DbgInfoIntrinsic>(CondIt)) 2315 ++CondIt; 2316 2317 if (&*CondIt != BI) 2318 return false; 2319 2320 // Only allow this transformation if computing the condition doesn't involve 2321 // too many instructions and these involved instructions can be executed 2322 // unconditionally. We denote all involved instructions except the condition 2323 // as "bonus instructions", and only allow this transformation when the 2324 // number of the bonus instructions does not exceed a certain threshold. 2325 unsigned NumBonusInsts = 0; 2326 for (auto I = BB->begin(); Cond != &*I; ++I) { 2327 // Ignore dbg intrinsics. 2328 if (isa<DbgInfoIntrinsic>(I)) 2329 continue; 2330 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2331 return false; 2332 // I has only one use and can be executed unconditionally. 2333 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2334 if (User == nullptr || User->getParent() != BB) 2335 return false; 2336 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2337 // to use any other instruction, User must be an instruction between next(I) 2338 // and Cond. 2339 ++NumBonusInsts; 2340 // Early exits once we reach the limit. 2341 if (NumBonusInsts > BonusInstThreshold) 2342 return false; 2343 } 2344 2345 // Cond is known to be a compare or binary operator. Check to make sure that 2346 // neither operand is a potentially-trapping constant expression. 2347 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2348 if (CE->canTrap()) 2349 return false; 2350 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2351 if (CE->canTrap()) 2352 return false; 2353 2354 // Finally, don't infinitely unroll conditional loops. 2355 BasicBlock *TrueDest = BI->getSuccessor(0); 2356 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2357 if (TrueDest == BB || FalseDest == BB) 2358 return false; 2359 2360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2361 BasicBlock *PredBlock = *PI; 2362 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2363 2364 // Check that we have two conditional branches. If there is a PHI node in 2365 // the common successor, verify that the same value flows in from both 2366 // blocks. 2367 SmallVector<PHINode *, 4> PHIs; 2368 if (!PBI || PBI->isUnconditional() || 2369 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2370 (!BI->isConditional() && 2371 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2372 continue; 2373 2374 // Determine if the two branches share a common destination. 2375 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2376 bool InvertPredCond = false; 2377 2378 if (BI->isConditional()) { 2379 if (PBI->getSuccessor(0) == TrueDest) { 2380 Opc = Instruction::Or; 2381 } else if (PBI->getSuccessor(1) == FalseDest) { 2382 Opc = Instruction::And; 2383 } else if (PBI->getSuccessor(0) == FalseDest) { 2384 Opc = Instruction::And; 2385 InvertPredCond = true; 2386 } else if (PBI->getSuccessor(1) == TrueDest) { 2387 Opc = Instruction::Or; 2388 InvertPredCond = true; 2389 } else { 2390 continue; 2391 } 2392 } else { 2393 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2394 continue; 2395 } 2396 2397 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2398 IRBuilder<> Builder(PBI); 2399 2400 // If we need to invert the condition in the pred block to match, do so now. 2401 if (InvertPredCond) { 2402 Value *NewCond = PBI->getCondition(); 2403 2404 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2405 CmpInst *CI = cast<CmpInst>(NewCond); 2406 CI->setPredicate(CI->getInversePredicate()); 2407 } else { 2408 NewCond = 2409 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2410 } 2411 2412 PBI->setCondition(NewCond); 2413 PBI->swapSuccessors(); 2414 } 2415 2416 // If we have bonus instructions, clone them into the predecessor block. 2417 // Note that there may be multiple predecessor blocks, so we cannot move 2418 // bonus instructions to a predecessor block. 2419 ValueToValueMapTy VMap; // maps original values to cloned values 2420 // We already make sure Cond is the last instruction before BI. Therefore, 2421 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2422 // instructions. 2423 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2424 if (isa<DbgInfoIntrinsic>(BonusInst)) 2425 continue; 2426 Instruction *NewBonusInst = BonusInst->clone(); 2427 RemapInstruction(NewBonusInst, VMap, 2428 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2429 VMap[&*BonusInst] = NewBonusInst; 2430 2431 // If we moved a load, we cannot any longer claim any knowledge about 2432 // its potential value. The previous information might have been valid 2433 // only given the branch precondition. 2434 // For an analogous reason, we must also drop all the metadata whose 2435 // semantics we don't understand. 2436 NewBonusInst->dropUnknownNonDebugMetadata(); 2437 2438 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2439 NewBonusInst->takeName(&*BonusInst); 2440 BonusInst->setName(BonusInst->getName() + ".old"); 2441 } 2442 2443 // Clone Cond into the predecessor basic block, and or/and the 2444 // two conditions together. 2445 Instruction *New = Cond->clone(); 2446 RemapInstruction(New, VMap, 2447 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2448 PredBlock->getInstList().insert(PBI->getIterator(), New); 2449 New->takeName(Cond); 2450 Cond->setName(New->getName() + ".old"); 2451 2452 if (BI->isConditional()) { 2453 Instruction *NewCond = cast<Instruction>( 2454 Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond")); 2455 PBI->setCondition(NewCond); 2456 2457 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2458 bool HasWeights = 2459 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2460 SuccTrueWeight, SuccFalseWeight); 2461 SmallVector<uint64_t, 8> NewWeights; 2462 2463 if (PBI->getSuccessor(0) == BB) { 2464 if (HasWeights) { 2465 // PBI: br i1 %x, BB, FalseDest 2466 // BI: br i1 %y, TrueDest, FalseDest 2467 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2468 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2469 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2470 // TrueWeight for PBI * FalseWeight for BI. 2471 // We assume that total weights of a BranchInst can fit into 32 bits. 2472 // Therefore, we will not have overflow using 64-bit arithmetic. 2473 NewWeights.push_back(PredFalseWeight * 2474 (SuccFalseWeight + SuccTrueWeight) + 2475 PredTrueWeight * SuccFalseWeight); 2476 } 2477 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2478 PBI->setSuccessor(0, TrueDest); 2479 } 2480 if (PBI->getSuccessor(1) == BB) { 2481 if (HasWeights) { 2482 // PBI: br i1 %x, TrueDest, BB 2483 // BI: br i1 %y, TrueDest, FalseDest 2484 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2485 // FalseWeight for PBI * TrueWeight for BI. 2486 NewWeights.push_back(PredTrueWeight * 2487 (SuccFalseWeight + SuccTrueWeight) + 2488 PredFalseWeight * SuccTrueWeight); 2489 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2490 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2491 } 2492 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2493 PBI->setSuccessor(1, FalseDest); 2494 } 2495 if (NewWeights.size() == 2) { 2496 // Halve the weights if any of them cannot fit in an uint32_t 2497 FitWeights(NewWeights); 2498 2499 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2500 NewWeights.end()); 2501 PBI->setMetadata( 2502 LLVMContext::MD_prof, 2503 MDBuilder(BI->getContext()).createBranchWeights(MDWeights)); 2504 } else 2505 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2506 } else { 2507 // Update PHI nodes in the common successors. 2508 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2509 ConstantInt *PBI_C = cast<ConstantInt>( 2510 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2511 assert(PBI_C->getType()->isIntegerTy(1)); 2512 Instruction *MergedCond = nullptr; 2513 if (PBI->getSuccessor(0) == TrueDest) { 2514 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2515 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2516 // is false: !PBI_Cond and BI_Value 2517 Instruction *NotCond = cast<Instruction>( 2518 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2519 MergedCond = cast<Instruction>( 2520 Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond")); 2521 if (PBI_C->isOne()) 2522 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2523 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2524 } else { 2525 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2526 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2527 // is false: PBI_Cond and BI_Value 2528 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2529 Instruction::And, PBI->getCondition(), New, "and.cond")); 2530 if (PBI_C->isOne()) { 2531 Instruction *NotCond = cast<Instruction>( 2532 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2533 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2534 Instruction::Or, NotCond, MergedCond, "or.cond")); 2535 } 2536 } 2537 // Update PHI Node. 2538 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2539 MergedCond); 2540 } 2541 // Change PBI from Conditional to Unconditional. 2542 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2543 EraseTerminatorInstAndDCECond(PBI); 2544 PBI = New_PBI; 2545 } 2546 2547 // TODO: If BB is reachable from all paths through PredBlock, then we 2548 // could replace PBI's branch probabilities with BI's. 2549 2550 // Copy any debug value intrinsics into the end of PredBlock. 2551 for (Instruction &I : *BB) 2552 if (isa<DbgInfoIntrinsic>(I)) 2553 I.clone()->insertBefore(PBI); 2554 2555 return true; 2556 } 2557 return false; 2558 } 2559 2560 // If there is only one store in BB1 and BB2, return it, otherwise return 2561 // nullptr. 2562 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2563 StoreInst *S = nullptr; 2564 for (auto *BB : {BB1, BB2}) { 2565 if (!BB) 2566 continue; 2567 for (auto &I : *BB) 2568 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2569 if (S) 2570 // Multiple stores seen. 2571 return nullptr; 2572 else 2573 S = SI; 2574 } 2575 } 2576 return S; 2577 } 2578 2579 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2580 Value *AlternativeV = nullptr) { 2581 // PHI is going to be a PHI node that allows the value V that is defined in 2582 // BB to be referenced in BB's only successor. 2583 // 2584 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2585 // doesn't matter to us what the other operand is (it'll never get used). We 2586 // could just create a new PHI with an undef incoming value, but that could 2587 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2588 // other PHI. So here we directly look for some PHI in BB's successor with V 2589 // as an incoming operand. If we find one, we use it, else we create a new 2590 // one. 2591 // 2592 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2593 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2594 // where OtherBB is the single other predecessor of BB's only successor. 2595 PHINode *PHI = nullptr; 2596 BasicBlock *Succ = BB->getSingleSuccessor(); 2597 2598 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2599 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2600 PHI = cast<PHINode>(I); 2601 if (!AlternativeV) 2602 break; 2603 2604 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2605 auto PredI = pred_begin(Succ); 2606 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2607 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2608 break; 2609 PHI = nullptr; 2610 } 2611 if (PHI) 2612 return PHI; 2613 2614 // If V is not an instruction defined in BB, just return it. 2615 if (!AlternativeV && 2616 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2617 return V; 2618 2619 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2620 PHI->addIncoming(V, BB); 2621 for (BasicBlock *PredBB : predecessors(Succ)) 2622 if (PredBB != BB) 2623 PHI->addIncoming( 2624 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2625 return PHI; 2626 } 2627 2628 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2629 BasicBlock *QTB, BasicBlock *QFB, 2630 BasicBlock *PostBB, Value *Address, 2631 bool InvertPCond, bool InvertQCond) { 2632 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2633 return Operator::getOpcode(&I) == Instruction::BitCast && 2634 I.getType()->isPointerTy(); 2635 }; 2636 2637 // If we're not in aggressive mode, we only optimize if we have some 2638 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2639 auto IsWorthwhile = [&](BasicBlock *BB) { 2640 if (!BB) 2641 return true; 2642 // Heuristic: if the block can be if-converted/phi-folded and the 2643 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2644 // thread this store. 2645 unsigned N = 0; 2646 for (auto &I : *BB) { 2647 // Cheap instructions viable for folding. 2648 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2649 isa<StoreInst>(I)) 2650 ++N; 2651 // Free instructions. 2652 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2653 IsaBitcastOfPointerType(I)) 2654 continue; 2655 else 2656 return false; 2657 } 2658 return N <= PHINodeFoldingThreshold; 2659 }; 2660 2661 if (!MergeCondStoresAggressively && 2662 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2663 !IsWorthwhile(QFB))) 2664 return false; 2665 2666 // For every pointer, there must be exactly two stores, one coming from 2667 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2668 // store (to any address) in PTB,PFB or QTB,QFB. 2669 // FIXME: We could relax this restriction with a bit more work and performance 2670 // testing. 2671 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2672 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2673 if (!PStore || !QStore) 2674 return false; 2675 2676 // Now check the stores are compatible. 2677 if (!QStore->isUnordered() || !PStore->isUnordered()) 2678 return false; 2679 2680 // Check that sinking the store won't cause program behavior changes. Sinking 2681 // the store out of the Q blocks won't change any behavior as we're sinking 2682 // from a block to its unconditional successor. But we're moving a store from 2683 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2684 // So we need to check that there are no aliasing loads or stores in 2685 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2686 // operations between PStore and the end of its parent block. 2687 // 2688 // The ideal way to do this is to query AliasAnalysis, but we don't 2689 // preserve AA currently so that is dangerous. Be super safe and just 2690 // check there are no other memory operations at all. 2691 for (auto &I : *QFB->getSinglePredecessor()) 2692 if (I.mayReadOrWriteMemory()) 2693 return false; 2694 for (auto &I : *QFB) 2695 if (&I != QStore && I.mayReadOrWriteMemory()) 2696 return false; 2697 if (QTB) 2698 for (auto &I : *QTB) 2699 if (&I != QStore && I.mayReadOrWriteMemory()) 2700 return false; 2701 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2702 I != E; ++I) 2703 if (&*I != PStore && I->mayReadOrWriteMemory()) 2704 return false; 2705 2706 // OK, we're going to sink the stores to PostBB. The store has to be 2707 // conditional though, so first create the predicate. 2708 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2709 ->getCondition(); 2710 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2711 ->getCondition(); 2712 2713 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2714 PStore->getParent()); 2715 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2716 QStore->getParent(), PPHI); 2717 2718 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2719 2720 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2721 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2722 2723 if (InvertPCond) 2724 PPred = QB.CreateNot(PPred); 2725 if (InvertQCond) 2726 QPred = QB.CreateNot(QPred); 2727 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2728 2729 auto *T = 2730 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2731 QB.SetInsertPoint(T); 2732 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2733 AAMDNodes AAMD; 2734 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2735 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2736 SI->setAAMetadata(AAMD); 2737 2738 QStore->eraseFromParent(); 2739 PStore->eraseFromParent(); 2740 2741 return true; 2742 } 2743 2744 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2745 // The intention here is to find diamonds or triangles (see below) where each 2746 // conditional block contains a store to the same address. Both of these 2747 // stores are conditional, so they can't be unconditionally sunk. But it may 2748 // be profitable to speculatively sink the stores into one merged store at the 2749 // end, and predicate the merged store on the union of the two conditions of 2750 // PBI and QBI. 2751 // 2752 // This can reduce the number of stores executed if both of the conditions are 2753 // true, and can allow the blocks to become small enough to be if-converted. 2754 // This optimization will also chain, so that ladders of test-and-set 2755 // sequences can be if-converted away. 2756 // 2757 // We only deal with simple diamonds or triangles: 2758 // 2759 // PBI or PBI or a combination of the two 2760 // / \ | \ 2761 // PTB PFB | PFB 2762 // \ / | / 2763 // QBI QBI 2764 // / \ | \ 2765 // QTB QFB | QFB 2766 // \ / | / 2767 // PostBB PostBB 2768 // 2769 // We model triangles as a type of diamond with a nullptr "true" block. 2770 // Triangles are canonicalized so that the fallthrough edge is represented by 2771 // a true condition, as in the diagram above. 2772 // 2773 BasicBlock *PTB = PBI->getSuccessor(0); 2774 BasicBlock *PFB = PBI->getSuccessor(1); 2775 BasicBlock *QTB = QBI->getSuccessor(0); 2776 BasicBlock *QFB = QBI->getSuccessor(1); 2777 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2778 2779 bool InvertPCond = false, InvertQCond = false; 2780 // Canonicalize fallthroughs to the true branches. 2781 if (PFB == QBI->getParent()) { 2782 std::swap(PFB, PTB); 2783 InvertPCond = true; 2784 } 2785 if (QFB == PostBB) { 2786 std::swap(QFB, QTB); 2787 InvertQCond = true; 2788 } 2789 2790 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2791 // and QFB may not. Model fallthroughs as a nullptr block. 2792 if (PTB == QBI->getParent()) 2793 PTB = nullptr; 2794 if (QTB == PostBB) 2795 QTB = nullptr; 2796 2797 // Legality bailouts. We must have at least the non-fallthrough blocks and 2798 // the post-dominating block, and the non-fallthroughs must only have one 2799 // predecessor. 2800 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2801 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 2802 }; 2803 if (!PostBB || 2804 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2805 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2806 return false; 2807 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2808 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2809 return false; 2810 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2811 return false; 2812 2813 // OK, this is a sequence of two diamonds or triangles. 2814 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2815 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 2816 for (auto *BB : {PTB, PFB}) { 2817 if (!BB) 2818 continue; 2819 for (auto &I : *BB) 2820 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2821 PStoreAddresses.insert(SI->getPointerOperand()); 2822 } 2823 for (auto *BB : {QTB, QFB}) { 2824 if (!BB) 2825 continue; 2826 for (auto &I : *BB) 2827 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2828 QStoreAddresses.insert(SI->getPointerOperand()); 2829 } 2830 2831 set_intersect(PStoreAddresses, QStoreAddresses); 2832 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2833 // clear what it contains. 2834 auto &CommonAddresses = PStoreAddresses; 2835 2836 bool Changed = false; 2837 for (auto *Address : CommonAddresses) 2838 Changed |= mergeConditionalStoreToAddress( 2839 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2840 return Changed; 2841 } 2842 2843 /// If we have a conditional branch as a predecessor of another block, 2844 /// this function tries to simplify it. We know 2845 /// that PBI and BI are both conditional branches, and BI is in one of the 2846 /// successor blocks of PBI - PBI branches to BI. 2847 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2848 const DataLayout &DL) { 2849 assert(PBI->isConditional() && BI->isConditional()); 2850 BasicBlock *BB = BI->getParent(); 2851 2852 // If this block ends with a branch instruction, and if there is a 2853 // predecessor that ends on a branch of the same condition, make 2854 // this conditional branch redundant. 2855 if (PBI->getCondition() == BI->getCondition() && 2856 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2857 // Okay, the outcome of this conditional branch is statically 2858 // knowable. If this block had a single pred, handle specially. 2859 if (BB->getSinglePredecessor()) { 2860 // Turn this into a branch on constant. 2861 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2862 BI->setCondition( 2863 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 2864 return true; // Nuke the branch on constant. 2865 } 2866 2867 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2868 // in the constant and simplify the block result. Subsequent passes of 2869 // simplifycfg will thread the block. 2870 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2871 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2872 PHINode *NewPN = PHINode::Create( 2873 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2874 BI->getCondition()->getName() + ".pr", &BB->front()); 2875 // Okay, we're going to insert the PHI node. Since PBI is not the only 2876 // predecessor, compute the PHI'd conditional value for all of the preds. 2877 // Any predecessor where the condition is not computable we keep symbolic. 2878 for (pred_iterator PI = PB; PI != PE; ++PI) { 2879 BasicBlock *P = *PI; 2880 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 2881 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 2882 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2883 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2884 NewPN->addIncoming( 2885 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 2886 P); 2887 } else { 2888 NewPN->addIncoming(BI->getCondition(), P); 2889 } 2890 } 2891 2892 BI->setCondition(NewPN); 2893 return true; 2894 } 2895 } 2896 2897 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2898 if (CE->canTrap()) 2899 return false; 2900 2901 // If both branches are conditional and both contain stores to the same 2902 // address, remove the stores from the conditionals and create a conditional 2903 // merged store at the end. 2904 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2905 return true; 2906 2907 // If this is a conditional branch in an empty block, and if any 2908 // predecessors are a conditional branch to one of our destinations, 2909 // fold the conditions into logical ops and one cond br. 2910 BasicBlock::iterator BBI = BB->begin(); 2911 // Ignore dbg intrinsics. 2912 while (isa<DbgInfoIntrinsic>(BBI)) 2913 ++BBI; 2914 if (&*BBI != BI) 2915 return false; 2916 2917 int PBIOp, BIOp; 2918 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2919 PBIOp = 0; 2920 BIOp = 0; 2921 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2922 PBIOp = 0; 2923 BIOp = 1; 2924 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2925 PBIOp = 1; 2926 BIOp = 0; 2927 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2928 PBIOp = 1; 2929 BIOp = 1; 2930 } else { 2931 return false; 2932 } 2933 2934 // Check to make sure that the other destination of this branch 2935 // isn't BB itself. If so, this is an infinite loop that will 2936 // keep getting unwound. 2937 if (PBI->getSuccessor(PBIOp) == BB) 2938 return false; 2939 2940 // Do not perform this transformation if it would require 2941 // insertion of a large number of select instructions. For targets 2942 // without predication/cmovs, this is a big pessimization. 2943 2944 // Also do not perform this transformation if any phi node in the common 2945 // destination block can trap when reached by BB or PBB (PR17073). In that 2946 // case, it would be unsafe to hoist the operation into a select instruction. 2947 2948 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2949 unsigned NumPhis = 0; 2950 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 2951 ++II, ++NumPhis) { 2952 if (NumPhis > 2) // Disable this xform. 2953 return false; 2954 2955 PHINode *PN = cast<PHINode>(II); 2956 Value *BIV = PN->getIncomingValueForBlock(BB); 2957 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2958 if (CE->canTrap()) 2959 return false; 2960 2961 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2962 Value *PBIV = PN->getIncomingValue(PBBIdx); 2963 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2964 if (CE->canTrap()) 2965 return false; 2966 } 2967 2968 // Finally, if everything is ok, fold the branches to logical ops. 2969 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2970 2971 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2972 << "AND: " << *BI->getParent()); 2973 2974 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2975 // branch in it, where one edge (OtherDest) goes back to itself but the other 2976 // exits. We don't *know* that the program avoids the infinite loop 2977 // (even though that seems likely). If we do this xform naively, we'll end up 2978 // recursively unpeeling the loop. Since we know that (after the xform is 2979 // done) that the block *is* infinite if reached, we just make it an obviously 2980 // infinite loop with no cond branch. 2981 if (OtherDest == BB) { 2982 // Insert it at the end of the function, because it's either code, 2983 // or it won't matter if it's hot. :) 2984 BasicBlock *InfLoopBlock = 2985 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 2986 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2987 OtherDest = InfLoopBlock; 2988 } 2989 2990 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2991 2992 // BI may have other predecessors. Because of this, we leave 2993 // it alone, but modify PBI. 2994 2995 // Make sure we get to CommonDest on True&True directions. 2996 Value *PBICond = PBI->getCondition(); 2997 IRBuilder<NoFolder> Builder(PBI); 2998 if (PBIOp) 2999 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3000 3001 Value *BICond = BI->getCondition(); 3002 if (BIOp) 3003 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3004 3005 // Merge the conditions. 3006 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3007 3008 // Modify PBI to branch on the new condition to the new dests. 3009 PBI->setCondition(Cond); 3010 PBI->setSuccessor(0, CommonDest); 3011 PBI->setSuccessor(1, OtherDest); 3012 3013 // Update branch weight for PBI. 3014 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3015 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3016 bool HasWeights = 3017 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3018 SuccTrueWeight, SuccFalseWeight); 3019 if (HasWeights) { 3020 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3021 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3022 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3023 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3024 // The weight to CommonDest should be PredCommon * SuccTotal + 3025 // PredOther * SuccCommon. 3026 // The weight to OtherDest should be PredOther * SuccOther. 3027 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3028 PredOther * SuccCommon, 3029 PredOther * SuccOther}; 3030 // Halve the weights if any of them cannot fit in an uint32_t 3031 FitWeights(NewWeights); 3032 3033 PBI->setMetadata(LLVMContext::MD_prof, 3034 MDBuilder(BI->getContext()) 3035 .createBranchWeights(NewWeights[0], NewWeights[1])); 3036 } 3037 3038 // OtherDest may have phi nodes. If so, add an entry from PBI's 3039 // block that are identical to the entries for BI's block. 3040 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3041 3042 // We know that the CommonDest already had an edge from PBI to 3043 // it. If it has PHIs though, the PHIs may have different 3044 // entries for BB and PBI's BB. If so, insert a select to make 3045 // them agree. 3046 PHINode *PN; 3047 for (BasicBlock::iterator II = CommonDest->begin(); 3048 (PN = dyn_cast<PHINode>(II)); ++II) { 3049 Value *BIV = PN->getIncomingValueForBlock(BB); 3050 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3051 Value *PBIV = PN->getIncomingValue(PBBIdx); 3052 if (BIV != PBIV) { 3053 // Insert a select in PBI to pick the right value. 3054 SelectInst *NV = cast<SelectInst>( 3055 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3056 PN->setIncomingValue(PBBIdx, NV); 3057 // Although the select has the same condition as PBI, the original branch 3058 // weights for PBI do not apply to the new select because the select's 3059 // 'logical' edges are incoming edges of the phi that is eliminated, not 3060 // the outgoing edges of PBI. 3061 if (HasWeights) { 3062 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3063 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3064 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3065 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3066 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3067 // The weight to PredOtherDest should be PredOther * SuccCommon. 3068 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3069 PredOther * SuccCommon}; 3070 3071 FitWeights(NewWeights); 3072 3073 NV->setMetadata(LLVMContext::MD_prof, 3074 MDBuilder(BI->getContext()) 3075 .createBranchWeights(NewWeights[0], NewWeights[1])); 3076 } 3077 } 3078 } 3079 3080 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3081 DEBUG(dbgs() << *PBI->getParent()->getParent()); 3082 3083 // This basic block is probably dead. We know it has at least 3084 // one fewer predecessor. 3085 return true; 3086 } 3087 3088 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3089 // true or to FalseBB if Cond is false. 3090 // Takes care of updating the successors and removing the old terminator. 3091 // Also makes sure not to introduce new successors by assuming that edges to 3092 // non-successor TrueBBs and FalseBBs aren't reachable. 3093 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 3094 BasicBlock *TrueBB, BasicBlock *FalseBB, 3095 uint32_t TrueWeight, 3096 uint32_t FalseWeight) { 3097 // Remove any superfluous successor edges from the CFG. 3098 // First, figure out which successors to preserve. 3099 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3100 // successor. 3101 BasicBlock *KeepEdge1 = TrueBB; 3102 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3103 3104 // Then remove the rest. 3105 for (BasicBlock *Succ : OldTerm->successors()) { 3106 // Make sure only to keep exactly one copy of each edge. 3107 if (Succ == KeepEdge1) 3108 KeepEdge1 = nullptr; 3109 else if (Succ == KeepEdge2) 3110 KeepEdge2 = nullptr; 3111 else 3112 Succ->removePredecessor(OldTerm->getParent(), 3113 /*DontDeleteUselessPHIs=*/true); 3114 } 3115 3116 IRBuilder<> Builder(OldTerm); 3117 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3118 3119 // Insert an appropriate new terminator. 3120 if (!KeepEdge1 && !KeepEdge2) { 3121 if (TrueBB == FalseBB) 3122 // We were only looking for one successor, and it was present. 3123 // Create an unconditional branch to it. 3124 Builder.CreateBr(TrueBB); 3125 else { 3126 // We found both of the successors we were looking for. 3127 // Create a conditional branch sharing the condition of the select. 3128 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3129 if (TrueWeight != FalseWeight) 3130 NewBI->setMetadata(LLVMContext::MD_prof, 3131 MDBuilder(OldTerm->getContext()) 3132 .createBranchWeights(TrueWeight, FalseWeight)); 3133 } 3134 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3135 // Neither of the selected blocks were successors, so this 3136 // terminator must be unreachable. 3137 new UnreachableInst(OldTerm->getContext(), OldTerm); 3138 } else { 3139 // One of the selected values was a successor, but the other wasn't. 3140 // Insert an unconditional branch to the one that was found; 3141 // the edge to the one that wasn't must be unreachable. 3142 if (!KeepEdge1) 3143 // Only TrueBB was found. 3144 Builder.CreateBr(TrueBB); 3145 else 3146 // Only FalseBB was found. 3147 Builder.CreateBr(FalseBB); 3148 } 3149 3150 EraseTerminatorInstAndDCECond(OldTerm); 3151 return true; 3152 } 3153 3154 // Replaces 3155 // (switch (select cond, X, Y)) on constant X, Y 3156 // with a branch - conditional if X and Y lead to distinct BBs, 3157 // unconditional otherwise. 3158 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3159 // Check for constant integer values in the select. 3160 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3161 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3162 if (!TrueVal || !FalseVal) 3163 return false; 3164 3165 // Find the relevant condition and destinations. 3166 Value *Condition = Select->getCondition(); 3167 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 3168 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 3169 3170 // Get weight for TrueBB and FalseBB. 3171 uint32_t TrueWeight = 0, FalseWeight = 0; 3172 SmallVector<uint64_t, 8> Weights; 3173 bool HasWeights = HasBranchWeights(SI); 3174 if (HasWeights) { 3175 GetBranchWeights(SI, Weights); 3176 if (Weights.size() == 1 + SI->getNumCases()) { 3177 TrueWeight = 3178 (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()]; 3179 FalseWeight = 3180 (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()]; 3181 } 3182 } 3183 3184 // Perform the actual simplification. 3185 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3186 FalseWeight); 3187 } 3188 3189 // Replaces 3190 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3191 // blockaddress(@fn, BlockB))) 3192 // with 3193 // (br cond, BlockA, BlockB). 3194 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3195 // Check that both operands of the select are block addresses. 3196 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3197 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3198 if (!TBA || !FBA) 3199 return false; 3200 3201 // Extract the actual blocks. 3202 BasicBlock *TrueBB = TBA->getBasicBlock(); 3203 BasicBlock *FalseBB = FBA->getBasicBlock(); 3204 3205 // Perform the actual simplification. 3206 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3207 0); 3208 } 3209 3210 /// This is called when we find an icmp instruction 3211 /// (a seteq/setne with a constant) as the only instruction in a 3212 /// block that ends with an uncond branch. We are looking for a very specific 3213 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3214 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3215 /// default value goes to an uncond block with a seteq in it, we get something 3216 /// like: 3217 /// 3218 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3219 /// DEFAULT: 3220 /// %tmp = icmp eq i8 %A, 92 3221 /// br label %end 3222 /// end: 3223 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3224 /// 3225 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3226 /// the PHI, merging the third icmp into the switch. 3227 static bool TryToSimplifyUncondBranchWithICmpInIt( 3228 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3229 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3230 AssumptionCache *AC) { 3231 BasicBlock *BB = ICI->getParent(); 3232 3233 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3234 // complex. 3235 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3236 return false; 3237 3238 Value *V = ICI->getOperand(0); 3239 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3240 3241 // The pattern we're looking for is where our only predecessor is a switch on 3242 // 'V' and this block is the default case for the switch. In this case we can 3243 // fold the compared value into the switch to simplify things. 3244 BasicBlock *Pred = BB->getSinglePredecessor(); 3245 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3246 return false; 3247 3248 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3249 if (SI->getCondition() != V) 3250 return false; 3251 3252 // If BB is reachable on a non-default case, then we simply know the value of 3253 // V in this block. Substitute it and constant fold the icmp instruction 3254 // away. 3255 if (SI->getDefaultDest() != BB) { 3256 ConstantInt *VVal = SI->findCaseDest(BB); 3257 assert(VVal && "Should have a unique destination value"); 3258 ICI->setOperand(0, VVal); 3259 3260 if (Value *V = SimplifyInstruction(ICI, DL)) { 3261 ICI->replaceAllUsesWith(V); 3262 ICI->eraseFromParent(); 3263 } 3264 // BB is now empty, so it is likely to simplify away. 3265 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3266 } 3267 3268 // Ok, the block is reachable from the default dest. If the constant we're 3269 // comparing exists in one of the other edges, then we can constant fold ICI 3270 // and zap it. 3271 if (SI->findCaseValue(Cst) != SI->case_default()) { 3272 Value *V; 3273 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3274 V = ConstantInt::getFalse(BB->getContext()); 3275 else 3276 V = ConstantInt::getTrue(BB->getContext()); 3277 3278 ICI->replaceAllUsesWith(V); 3279 ICI->eraseFromParent(); 3280 // BB is now empty, so it is likely to simplify away. 3281 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3282 } 3283 3284 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3285 // the block. 3286 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3287 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3288 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3289 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3290 return false; 3291 3292 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3293 // true in the PHI. 3294 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3295 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3296 3297 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3298 std::swap(DefaultCst, NewCst); 3299 3300 // Replace ICI (which is used by the PHI for the default value) with true or 3301 // false depending on if it is EQ or NE. 3302 ICI->replaceAllUsesWith(DefaultCst); 3303 ICI->eraseFromParent(); 3304 3305 // Okay, the switch goes to this block on a default value. Add an edge from 3306 // the switch to the merge point on the compared value. 3307 BasicBlock *NewBB = 3308 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3309 SmallVector<uint64_t, 8> Weights; 3310 bool HasWeights = HasBranchWeights(SI); 3311 if (HasWeights) { 3312 GetBranchWeights(SI, Weights); 3313 if (Weights.size() == 1 + SI->getNumCases()) { 3314 // Split weight for default case to case for "Cst". 3315 Weights[0] = (Weights[0] + 1) >> 1; 3316 Weights.push_back(Weights[0]); 3317 3318 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3319 SI->setMetadata( 3320 LLVMContext::MD_prof, 3321 MDBuilder(SI->getContext()).createBranchWeights(MDWeights)); 3322 } 3323 } 3324 SI->addCase(Cst, NewBB); 3325 3326 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3327 Builder.SetInsertPoint(NewBB); 3328 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3329 Builder.CreateBr(SuccBlock); 3330 PHIUse->addIncoming(NewCst, NewBB); 3331 return true; 3332 } 3333 3334 /// The specified branch is a conditional branch. 3335 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3336 /// fold it into a switch instruction if so. 3337 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3338 const DataLayout &DL) { 3339 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3340 if (!Cond) 3341 return false; 3342 3343 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3344 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3345 // 'setne's and'ed together, collect them. 3346 3347 // Try to gather values from a chain of and/or to be turned into a switch 3348 ConstantComparesGatherer ConstantCompare(Cond, DL); 3349 // Unpack the result 3350 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3351 Value *CompVal = ConstantCompare.CompValue; 3352 unsigned UsedICmps = ConstantCompare.UsedICmps; 3353 Value *ExtraCase = ConstantCompare.Extra; 3354 3355 // If we didn't have a multiply compared value, fail. 3356 if (!CompVal) 3357 return false; 3358 3359 // Avoid turning single icmps into a switch. 3360 if (UsedICmps <= 1) 3361 return false; 3362 3363 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3364 3365 // There might be duplicate constants in the list, which the switch 3366 // instruction can't handle, remove them now. 3367 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3368 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3369 3370 // If Extra was used, we require at least two switch values to do the 3371 // transformation. A switch with one value is just a conditional branch. 3372 if (ExtraCase && Values.size() < 2) 3373 return false; 3374 3375 // TODO: Preserve branch weight metadata, similarly to how 3376 // FoldValueComparisonIntoPredecessors preserves it. 3377 3378 // Figure out which block is which destination. 3379 BasicBlock *DefaultBB = BI->getSuccessor(1); 3380 BasicBlock *EdgeBB = BI->getSuccessor(0); 3381 if (!TrueWhenEqual) 3382 std::swap(DefaultBB, EdgeBB); 3383 3384 BasicBlock *BB = BI->getParent(); 3385 3386 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3387 << " cases into SWITCH. BB is:\n" 3388 << *BB); 3389 3390 // If there are any extra values that couldn't be folded into the switch 3391 // then we evaluate them with an explicit branch first. Split the block 3392 // right before the condbr to handle it. 3393 if (ExtraCase) { 3394 BasicBlock *NewBB = 3395 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3396 // Remove the uncond branch added to the old block. 3397 TerminatorInst *OldTI = BB->getTerminator(); 3398 Builder.SetInsertPoint(OldTI); 3399 3400 if (TrueWhenEqual) 3401 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3402 else 3403 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3404 3405 OldTI->eraseFromParent(); 3406 3407 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3408 // for the edge we just added. 3409 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3410 3411 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3412 << "\nEXTRABB = " << *BB); 3413 BB = NewBB; 3414 } 3415 3416 Builder.SetInsertPoint(BI); 3417 // Convert pointer to int before we switch. 3418 if (CompVal->getType()->isPointerTy()) { 3419 CompVal = Builder.CreatePtrToInt( 3420 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3421 } 3422 3423 // Create the new switch instruction now. 3424 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3425 3426 // Add all of the 'cases' to the switch instruction. 3427 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3428 New->addCase(Values[i], EdgeBB); 3429 3430 // We added edges from PI to the EdgeBB. As such, if there were any 3431 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3432 // the number of edges added. 3433 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3434 PHINode *PN = cast<PHINode>(BBI); 3435 Value *InVal = PN->getIncomingValueForBlock(BB); 3436 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3437 PN->addIncoming(InVal, BB); 3438 } 3439 3440 // Erase the old branch instruction. 3441 EraseTerminatorInstAndDCECond(BI); 3442 3443 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3444 return true; 3445 } 3446 3447 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3448 if (isa<PHINode>(RI->getValue())) 3449 return SimplifyCommonResume(RI); 3450 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3451 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3452 // The resume must unwind the exception that caused control to branch here. 3453 return SimplifySingleResume(RI); 3454 3455 return false; 3456 } 3457 3458 // Simplify resume that is shared by several landing pads (phi of landing pad). 3459 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3460 BasicBlock *BB = RI->getParent(); 3461 3462 // Check that there are no other instructions except for debug intrinsics 3463 // between the phi of landing pads (RI->getValue()) and resume instruction. 3464 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3465 E = RI->getIterator(); 3466 while (++I != E) 3467 if (!isa<DbgInfoIntrinsic>(I)) 3468 return false; 3469 3470 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3471 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3472 3473 // Check incoming blocks to see if any of them are trivial. 3474 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3475 Idx++) { 3476 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3477 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3478 3479 // If the block has other successors, we can not delete it because 3480 // it has other dependents. 3481 if (IncomingBB->getUniqueSuccessor() != BB) 3482 continue; 3483 3484 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3485 // Not the landing pad that caused the control to branch here. 3486 if (IncomingValue != LandingPad) 3487 continue; 3488 3489 bool isTrivial = true; 3490 3491 I = IncomingBB->getFirstNonPHI()->getIterator(); 3492 E = IncomingBB->getTerminator()->getIterator(); 3493 while (++I != E) 3494 if (!isa<DbgInfoIntrinsic>(I)) { 3495 isTrivial = false; 3496 break; 3497 } 3498 3499 if (isTrivial) 3500 TrivialUnwindBlocks.insert(IncomingBB); 3501 } 3502 3503 // If no trivial unwind blocks, don't do any simplifications. 3504 if (TrivialUnwindBlocks.empty()) 3505 return false; 3506 3507 // Turn all invokes that unwind here into calls. 3508 for (auto *TrivialBB : TrivialUnwindBlocks) { 3509 // Blocks that will be simplified should be removed from the phi node. 3510 // Note there could be multiple edges to the resume block, and we need 3511 // to remove them all. 3512 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3513 BB->removePredecessor(TrivialBB, true); 3514 3515 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3516 PI != PE;) { 3517 BasicBlock *Pred = *PI++; 3518 removeUnwindEdge(Pred); 3519 } 3520 3521 // In each SimplifyCFG run, only the current processed block can be erased. 3522 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3523 // of erasing TrivialBB, we only remove the branch to the common resume 3524 // block so that we can later erase the resume block since it has no 3525 // predecessors. 3526 TrivialBB->getTerminator()->eraseFromParent(); 3527 new UnreachableInst(RI->getContext(), TrivialBB); 3528 } 3529 3530 // Delete the resume block if all its predecessors have been removed. 3531 if (pred_empty(BB)) 3532 BB->eraseFromParent(); 3533 3534 return !TrivialUnwindBlocks.empty(); 3535 } 3536 3537 // Simplify resume that is only used by a single (non-phi) landing pad. 3538 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3539 BasicBlock *BB = RI->getParent(); 3540 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3541 assert(RI->getValue() == LPInst && 3542 "Resume must unwind the exception that caused control to here"); 3543 3544 // Check that there are no other instructions except for debug intrinsics. 3545 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3546 while (++I != E) 3547 if (!isa<DbgInfoIntrinsic>(I)) 3548 return false; 3549 3550 // Turn all invokes that unwind here into calls and delete the basic block. 3551 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3552 BasicBlock *Pred = *PI++; 3553 removeUnwindEdge(Pred); 3554 } 3555 3556 // The landingpad is now unreachable. Zap it. 3557 BB->eraseFromParent(); 3558 if (LoopHeaders) 3559 LoopHeaders->erase(BB); 3560 return true; 3561 } 3562 3563 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3564 // If this is a trivial cleanup pad that executes no instructions, it can be 3565 // eliminated. If the cleanup pad continues to the caller, any predecessor 3566 // that is an EH pad will be updated to continue to the caller and any 3567 // predecessor that terminates with an invoke instruction will have its invoke 3568 // instruction converted to a call instruction. If the cleanup pad being 3569 // simplified does not continue to the caller, each predecessor will be 3570 // updated to continue to the unwind destination of the cleanup pad being 3571 // simplified. 3572 BasicBlock *BB = RI->getParent(); 3573 CleanupPadInst *CPInst = RI->getCleanupPad(); 3574 if (CPInst->getParent() != BB) 3575 // This isn't an empty cleanup. 3576 return false; 3577 3578 // We cannot kill the pad if it has multiple uses. This typically arises 3579 // from unreachable basic blocks. 3580 if (!CPInst->hasOneUse()) 3581 return false; 3582 3583 // Check that there are no other instructions except for benign intrinsics. 3584 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3585 while (++I != E) { 3586 auto *II = dyn_cast<IntrinsicInst>(I); 3587 if (!II) 3588 return false; 3589 3590 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3591 switch (IntrinsicID) { 3592 case Intrinsic::dbg_declare: 3593 case Intrinsic::dbg_value: 3594 case Intrinsic::lifetime_end: 3595 break; 3596 default: 3597 return false; 3598 } 3599 } 3600 3601 // If the cleanup return we are simplifying unwinds to the caller, this will 3602 // set UnwindDest to nullptr. 3603 BasicBlock *UnwindDest = RI->getUnwindDest(); 3604 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3605 3606 // We're about to remove BB from the control flow. Before we do, sink any 3607 // PHINodes into the unwind destination. Doing this before changing the 3608 // control flow avoids some potentially slow checks, since we can currently 3609 // be certain that UnwindDest and BB have no common predecessors (since they 3610 // are both EH pads). 3611 if (UnwindDest) { 3612 // First, go through the PHI nodes in UnwindDest and update any nodes that 3613 // reference the block we are removing 3614 for (BasicBlock::iterator I = UnwindDest->begin(), 3615 IE = DestEHPad->getIterator(); 3616 I != IE; ++I) { 3617 PHINode *DestPN = cast<PHINode>(I); 3618 3619 int Idx = DestPN->getBasicBlockIndex(BB); 3620 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3621 assert(Idx != -1); 3622 // This PHI node has an incoming value that corresponds to a control 3623 // path through the cleanup pad we are removing. If the incoming 3624 // value is in the cleanup pad, it must be a PHINode (because we 3625 // verified above that the block is otherwise empty). Otherwise, the 3626 // value is either a constant or a value that dominates the cleanup 3627 // pad being removed. 3628 // 3629 // Because BB and UnwindDest are both EH pads, all of their 3630 // predecessors must unwind to these blocks, and since no instruction 3631 // can have multiple unwind destinations, there will be no overlap in 3632 // incoming blocks between SrcPN and DestPN. 3633 Value *SrcVal = DestPN->getIncomingValue(Idx); 3634 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3635 3636 // Remove the entry for the block we are deleting. 3637 DestPN->removeIncomingValue(Idx, false); 3638 3639 if (SrcPN && SrcPN->getParent() == BB) { 3640 // If the incoming value was a PHI node in the cleanup pad we are 3641 // removing, we need to merge that PHI node's incoming values into 3642 // DestPN. 3643 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3644 SrcIdx != SrcE; ++SrcIdx) { 3645 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3646 SrcPN->getIncomingBlock(SrcIdx)); 3647 } 3648 } else { 3649 // Otherwise, the incoming value came from above BB and 3650 // so we can just reuse it. We must associate all of BB's 3651 // predecessors with this value. 3652 for (auto *pred : predecessors(BB)) { 3653 DestPN->addIncoming(SrcVal, pred); 3654 } 3655 } 3656 } 3657 3658 // Sink any remaining PHI nodes directly into UnwindDest. 3659 Instruction *InsertPt = DestEHPad; 3660 for (BasicBlock::iterator I = BB->begin(), 3661 IE = BB->getFirstNonPHI()->getIterator(); 3662 I != IE;) { 3663 // The iterator must be incremented here because the instructions are 3664 // being moved to another block. 3665 PHINode *PN = cast<PHINode>(I++); 3666 if (PN->use_empty()) 3667 // If the PHI node has no uses, just leave it. It will be erased 3668 // when we erase BB below. 3669 continue; 3670 3671 // Otherwise, sink this PHI node into UnwindDest. 3672 // Any predecessors to UnwindDest which are not already represented 3673 // must be back edges which inherit the value from the path through 3674 // BB. In this case, the PHI value must reference itself. 3675 for (auto *pred : predecessors(UnwindDest)) 3676 if (pred != BB) 3677 PN->addIncoming(PN, pred); 3678 PN->moveBefore(InsertPt); 3679 } 3680 } 3681 3682 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3683 // The iterator must be updated here because we are removing this pred. 3684 BasicBlock *PredBB = *PI++; 3685 if (UnwindDest == nullptr) { 3686 removeUnwindEdge(PredBB); 3687 } else { 3688 TerminatorInst *TI = PredBB->getTerminator(); 3689 TI->replaceUsesOfWith(BB, UnwindDest); 3690 } 3691 } 3692 3693 // The cleanup pad is now unreachable. Zap it. 3694 BB->eraseFromParent(); 3695 return true; 3696 } 3697 3698 // Try to merge two cleanuppads together. 3699 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3700 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3701 // with. 3702 BasicBlock *UnwindDest = RI->getUnwindDest(); 3703 if (!UnwindDest) 3704 return false; 3705 3706 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3707 // be safe to merge without code duplication. 3708 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3709 return false; 3710 3711 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3712 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3713 if (!SuccessorCleanupPad) 3714 return false; 3715 3716 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3717 // Replace any uses of the successor cleanupad with the predecessor pad 3718 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3719 // funclet bundle operands. 3720 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3721 // Remove the old cleanuppad. 3722 SuccessorCleanupPad->eraseFromParent(); 3723 // Now, we simply replace the cleanupret with a branch to the unwind 3724 // destination. 3725 BranchInst::Create(UnwindDest, RI->getParent()); 3726 RI->eraseFromParent(); 3727 3728 return true; 3729 } 3730 3731 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3732 // It is possible to transiantly have an undef cleanuppad operand because we 3733 // have deleted some, but not all, dead blocks. 3734 // Eventually, this block will be deleted. 3735 if (isa<UndefValue>(RI->getOperand(0))) 3736 return false; 3737 3738 if (mergeCleanupPad(RI)) 3739 return true; 3740 3741 if (removeEmptyCleanup(RI)) 3742 return true; 3743 3744 return false; 3745 } 3746 3747 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3748 BasicBlock *BB = RI->getParent(); 3749 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 3750 return false; 3751 3752 // Find predecessors that end with branches. 3753 SmallVector<BasicBlock *, 8> UncondBranchPreds; 3754 SmallVector<BranchInst *, 8> CondBranchPreds; 3755 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3756 BasicBlock *P = *PI; 3757 TerminatorInst *PTI = P->getTerminator(); 3758 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3759 if (BI->isUnconditional()) 3760 UncondBranchPreds.push_back(P); 3761 else 3762 CondBranchPreds.push_back(BI); 3763 } 3764 } 3765 3766 // If we found some, do the transformation! 3767 if (!UncondBranchPreds.empty() && DupRet) { 3768 while (!UncondBranchPreds.empty()) { 3769 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3770 DEBUG(dbgs() << "FOLDING: " << *BB 3771 << "INTO UNCOND BRANCH PRED: " << *Pred); 3772 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3773 } 3774 3775 // If we eliminated all predecessors of the block, delete the block now. 3776 if (pred_empty(BB)) { 3777 // We know there are no successors, so just nuke the block. 3778 BB->eraseFromParent(); 3779 if (LoopHeaders) 3780 LoopHeaders->erase(BB); 3781 } 3782 3783 return true; 3784 } 3785 3786 // Check out all of the conditional branches going to this return 3787 // instruction. If any of them just select between returns, change the 3788 // branch itself into a select/return pair. 3789 while (!CondBranchPreds.empty()) { 3790 BranchInst *BI = CondBranchPreds.pop_back_val(); 3791 3792 // Check to see if the non-BB successor is also a return block. 3793 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3794 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3795 SimplifyCondBranchToTwoReturns(BI, Builder)) 3796 return true; 3797 } 3798 return false; 3799 } 3800 3801 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3802 BasicBlock *BB = UI->getParent(); 3803 3804 bool Changed = false; 3805 3806 // If there are any instructions immediately before the unreachable that can 3807 // be removed, do so. 3808 while (UI->getIterator() != BB->begin()) { 3809 BasicBlock::iterator BBI = UI->getIterator(); 3810 --BBI; 3811 // Do not delete instructions that can have side effects which might cause 3812 // the unreachable to not be reachable; specifically, calls and volatile 3813 // operations may have this effect. 3814 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 3815 break; 3816 3817 if (BBI->mayHaveSideEffects()) { 3818 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3819 if (SI->isVolatile()) 3820 break; 3821 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3822 if (LI->isVolatile()) 3823 break; 3824 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3825 if (RMWI->isVolatile()) 3826 break; 3827 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3828 if (CXI->isVolatile()) 3829 break; 3830 } else if (isa<CatchPadInst>(BBI)) { 3831 // A catchpad may invoke exception object constructors and such, which 3832 // in some languages can be arbitrary code, so be conservative by 3833 // default. 3834 // For CoreCLR, it just involves a type test, so can be removed. 3835 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3836 EHPersonality::CoreCLR) 3837 break; 3838 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3839 !isa<LandingPadInst>(BBI)) { 3840 break; 3841 } 3842 // Note that deleting LandingPad's here is in fact okay, although it 3843 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3844 // all the predecessors of this block will be the unwind edges of Invokes, 3845 // and we can therefore guarantee this block will be erased. 3846 } 3847 3848 // Delete this instruction (any uses are guaranteed to be dead) 3849 if (!BBI->use_empty()) 3850 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3851 BBI->eraseFromParent(); 3852 Changed = true; 3853 } 3854 3855 // If the unreachable instruction is the first in the block, take a gander 3856 // at all of the predecessors of this instruction, and simplify them. 3857 if (&BB->front() != UI) 3858 return Changed; 3859 3860 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 3861 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3862 TerminatorInst *TI = Preds[i]->getTerminator(); 3863 IRBuilder<> Builder(TI); 3864 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3865 if (BI->isUnconditional()) { 3866 if (BI->getSuccessor(0) == BB) { 3867 new UnreachableInst(TI->getContext(), TI); 3868 TI->eraseFromParent(); 3869 Changed = true; 3870 } 3871 } else { 3872 if (BI->getSuccessor(0) == BB) { 3873 Builder.CreateBr(BI->getSuccessor(1)); 3874 EraseTerminatorInstAndDCECond(BI); 3875 } else if (BI->getSuccessor(1) == BB) { 3876 Builder.CreateBr(BI->getSuccessor(0)); 3877 EraseTerminatorInstAndDCECond(BI); 3878 Changed = true; 3879 } 3880 } 3881 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3882 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; 3883 ++i) 3884 if (i.getCaseSuccessor() == BB) { 3885 BB->removePredecessor(SI->getParent()); 3886 SI->removeCase(i); 3887 --i; 3888 --e; 3889 Changed = true; 3890 } 3891 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3892 if (II->getUnwindDest() == BB) { 3893 removeUnwindEdge(TI->getParent()); 3894 Changed = true; 3895 } 3896 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3897 if (CSI->getUnwindDest() == BB) { 3898 removeUnwindEdge(TI->getParent()); 3899 Changed = true; 3900 continue; 3901 } 3902 3903 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3904 E = CSI->handler_end(); 3905 I != E; ++I) { 3906 if (*I == BB) { 3907 CSI->removeHandler(I); 3908 --I; 3909 --E; 3910 Changed = true; 3911 } 3912 } 3913 if (CSI->getNumHandlers() == 0) { 3914 BasicBlock *CatchSwitchBB = CSI->getParent(); 3915 if (CSI->hasUnwindDest()) { 3916 // Redirect preds to the unwind dest 3917 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3918 } else { 3919 // Rewrite all preds to unwind to caller (or from invoke to call). 3920 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3921 for (BasicBlock *EHPred : EHPreds) 3922 removeUnwindEdge(EHPred); 3923 } 3924 // The catchswitch is no longer reachable. 3925 new UnreachableInst(CSI->getContext(), CSI); 3926 CSI->eraseFromParent(); 3927 Changed = true; 3928 } 3929 } else if (isa<CleanupReturnInst>(TI)) { 3930 new UnreachableInst(TI->getContext(), TI); 3931 TI->eraseFromParent(); 3932 Changed = true; 3933 } 3934 } 3935 3936 // If this block is now dead, remove it. 3937 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 3938 // We know there are no successors, so just nuke the block. 3939 BB->eraseFromParent(); 3940 if (LoopHeaders) 3941 LoopHeaders->erase(BB); 3942 return true; 3943 } 3944 3945 return Changed; 3946 } 3947 3948 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3949 assert(Cases.size() >= 1); 3950 3951 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3952 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3953 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3954 return false; 3955 } 3956 return true; 3957 } 3958 3959 /// Turn a switch with two reachable destinations into an integer range 3960 /// comparison and branch. 3961 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3962 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3963 3964 bool HasDefault = 3965 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3966 3967 // Partition the cases into two sets with different destinations. 3968 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3969 BasicBlock *DestB = nullptr; 3970 SmallVector<ConstantInt *, 16> CasesA; 3971 SmallVector<ConstantInt *, 16> CasesB; 3972 3973 for (SwitchInst::CaseIt I : SI->cases()) { 3974 BasicBlock *Dest = I.getCaseSuccessor(); 3975 if (!DestA) 3976 DestA = Dest; 3977 if (Dest == DestA) { 3978 CasesA.push_back(I.getCaseValue()); 3979 continue; 3980 } 3981 if (!DestB) 3982 DestB = Dest; 3983 if (Dest == DestB) { 3984 CasesB.push_back(I.getCaseValue()); 3985 continue; 3986 } 3987 return false; // More than two destinations. 3988 } 3989 3990 assert(DestA && DestB && 3991 "Single-destination switch should have been folded."); 3992 assert(DestA != DestB); 3993 assert(DestB != SI->getDefaultDest()); 3994 assert(!CasesB.empty() && "There must be non-default cases."); 3995 assert(!CasesA.empty() || HasDefault); 3996 3997 // Figure out if one of the sets of cases form a contiguous range. 3998 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3999 BasicBlock *ContiguousDest = nullptr; 4000 BasicBlock *OtherDest = nullptr; 4001 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4002 ContiguousCases = &CasesA; 4003 ContiguousDest = DestA; 4004 OtherDest = DestB; 4005 } else if (CasesAreContiguous(CasesB)) { 4006 ContiguousCases = &CasesB; 4007 ContiguousDest = DestB; 4008 OtherDest = DestA; 4009 } else 4010 return false; 4011 4012 // Start building the compare and branch. 4013 4014 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4015 Constant *NumCases = 4016 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4017 4018 Value *Sub = SI->getCondition(); 4019 if (!Offset->isNullValue()) 4020 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4021 4022 Value *Cmp; 4023 // If NumCases overflowed, then all possible values jump to the successor. 4024 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4025 Cmp = ConstantInt::getTrue(SI->getContext()); 4026 else 4027 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4028 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4029 4030 // Update weight for the newly-created conditional branch. 4031 if (HasBranchWeights(SI)) { 4032 SmallVector<uint64_t, 8> Weights; 4033 GetBranchWeights(SI, Weights); 4034 if (Weights.size() == 1 + SI->getNumCases()) { 4035 uint64_t TrueWeight = 0; 4036 uint64_t FalseWeight = 0; 4037 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4038 if (SI->getSuccessor(I) == ContiguousDest) 4039 TrueWeight += Weights[I]; 4040 else 4041 FalseWeight += Weights[I]; 4042 } 4043 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4044 TrueWeight /= 2; 4045 FalseWeight /= 2; 4046 } 4047 NewBI->setMetadata(LLVMContext::MD_prof, 4048 MDBuilder(SI->getContext()) 4049 .createBranchWeights((uint32_t)TrueWeight, 4050 (uint32_t)FalseWeight)); 4051 } 4052 } 4053 4054 // Prune obsolete incoming values off the successors' PHI nodes. 4055 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4056 unsigned PreviousEdges = ContiguousCases->size(); 4057 if (ContiguousDest == SI->getDefaultDest()) 4058 ++PreviousEdges; 4059 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4060 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4061 } 4062 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4063 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4064 if (OtherDest == SI->getDefaultDest()) 4065 ++PreviousEdges; 4066 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4067 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4068 } 4069 4070 // Drop the switch. 4071 SI->eraseFromParent(); 4072 4073 return true; 4074 } 4075 4076 /// Compute masked bits for the condition of a switch 4077 /// and use it to remove dead cases. 4078 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4079 const DataLayout &DL) { 4080 Value *Cond = SI->getCondition(); 4081 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4082 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 4083 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 4084 4085 // We can also eliminate cases by determining that their values are outside of 4086 // the limited range of the condition based on how many significant (non-sign) 4087 // bits are in the condition value. 4088 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4089 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4090 4091 // Gather dead cases. 4092 SmallVector<ConstantInt *, 8> DeadCases; 4093 for (auto &Case : SI->cases()) { 4094 APInt CaseVal = Case.getCaseValue()->getValue(); 4095 if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne || 4096 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4097 DeadCases.push_back(Case.getCaseValue()); 4098 DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n"); 4099 } 4100 } 4101 4102 // If we can prove that the cases must cover all possible values, the 4103 // default destination becomes dead and we can remove it. If we know some 4104 // of the bits in the value, we can use that to more precisely compute the 4105 // number of possible unique case values. 4106 bool HasDefault = 4107 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4108 const unsigned NumUnknownBits = 4109 Bits - (KnownZero.Or(KnownOne)).countPopulation(); 4110 assert(NumUnknownBits <= Bits); 4111 if (HasDefault && DeadCases.empty() && 4112 NumUnknownBits < 64 /* avoid overflow */ && 4113 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4114 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4115 BasicBlock *NewDefault = 4116 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4117 SI->setDefaultDest(&*NewDefault); 4118 SplitBlock(&*NewDefault, &NewDefault->front()); 4119 auto *OldTI = NewDefault->getTerminator(); 4120 new UnreachableInst(SI->getContext(), OldTI); 4121 EraseTerminatorInstAndDCECond(OldTI); 4122 return true; 4123 } 4124 4125 SmallVector<uint64_t, 8> Weights; 4126 bool HasWeight = HasBranchWeights(SI); 4127 if (HasWeight) { 4128 GetBranchWeights(SI, Weights); 4129 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4130 } 4131 4132 // Remove dead cases from the switch. 4133 for (ConstantInt *DeadCase : DeadCases) { 4134 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase); 4135 assert(Case != SI->case_default() && 4136 "Case was not found. Probably mistake in DeadCases forming."); 4137 if (HasWeight) { 4138 std::swap(Weights[Case.getCaseIndex() + 1], Weights.back()); 4139 Weights.pop_back(); 4140 } 4141 4142 // Prune unused values from PHI nodes. 4143 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 4144 SI->removeCase(Case); 4145 } 4146 if (HasWeight && Weights.size() >= 2) { 4147 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4148 SI->setMetadata(LLVMContext::MD_prof, 4149 MDBuilder(SI->getParent()->getContext()) 4150 .createBranchWeights(MDWeights)); 4151 } 4152 4153 return !DeadCases.empty(); 4154 } 4155 4156 /// If BB would be eligible for simplification by 4157 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4158 /// by an unconditional branch), look at the phi node for BB in the successor 4159 /// block and see if the incoming value is equal to CaseValue. If so, return 4160 /// the phi node, and set PhiIndex to BB's index in the phi node. 4161 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4162 BasicBlock *BB, int *PhiIndex) { 4163 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4164 return nullptr; // BB must be empty to be a candidate for simplification. 4165 if (!BB->getSinglePredecessor()) 4166 return nullptr; // BB must be dominated by the switch. 4167 4168 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4169 if (!Branch || !Branch->isUnconditional()) 4170 return nullptr; // Terminator must be unconditional branch. 4171 4172 BasicBlock *Succ = Branch->getSuccessor(0); 4173 4174 BasicBlock::iterator I = Succ->begin(); 4175 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4176 int Idx = PHI->getBasicBlockIndex(BB); 4177 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4178 4179 Value *InValue = PHI->getIncomingValue(Idx); 4180 if (InValue != CaseValue) 4181 continue; 4182 4183 *PhiIndex = Idx; 4184 return PHI; 4185 } 4186 4187 return nullptr; 4188 } 4189 4190 /// Try to forward the condition of a switch instruction to a phi node 4191 /// dominated by the switch, if that would mean that some of the destination 4192 /// blocks of the switch can be folded away. 4193 /// Returns true if a change is made. 4194 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4195 typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap; 4196 ForwardingNodesMap ForwardingNodes; 4197 4198 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; 4199 ++I) { 4200 ConstantInt *CaseValue = I.getCaseValue(); 4201 BasicBlock *CaseDest = I.getCaseSuccessor(); 4202 4203 int PhiIndex; 4204 PHINode *PHI = 4205 FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex); 4206 if (!PHI) 4207 continue; 4208 4209 ForwardingNodes[PHI].push_back(PhiIndex); 4210 } 4211 4212 bool Changed = false; 4213 4214 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 4215 E = ForwardingNodes.end(); 4216 I != E; ++I) { 4217 PHINode *Phi = I->first; 4218 SmallVectorImpl<int> &Indexes = I->second; 4219 4220 if (Indexes.size() < 2) 4221 continue; 4222 4223 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 4224 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 4225 Changed = true; 4226 } 4227 4228 return Changed; 4229 } 4230 4231 /// Return true if the backend will be able to handle 4232 /// initializing an array of constants like C. 4233 static bool ValidLookupTableConstant(Constant *C) { 4234 if (C->isThreadDependent()) 4235 return false; 4236 if (C->isDLLImportDependent()) 4237 return false; 4238 4239 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4240 return CE->isGEPWithNoNotionalOverIndexing(); 4241 4242 return isa<ConstantFP>(C) || isa<ConstantInt>(C) || 4243 isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) || 4244 isa<UndefValue>(C); 4245 } 4246 4247 /// If V is a Constant, return it. Otherwise, try to look up 4248 /// its constant value in ConstantPool, returning 0 if it's not there. 4249 static Constant * 4250 LookupConstant(Value *V, 4251 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4252 if (Constant *C = dyn_cast<Constant>(V)) 4253 return C; 4254 return ConstantPool.lookup(V); 4255 } 4256 4257 /// Try to fold instruction I into a constant. This works for 4258 /// simple instructions such as binary operations where both operands are 4259 /// constant or can be replaced by constants from the ConstantPool. Returns the 4260 /// resulting constant on success, 0 otherwise. 4261 static Constant * 4262 ConstantFold(Instruction *I, const DataLayout &DL, 4263 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4264 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4265 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4266 if (!A) 4267 return nullptr; 4268 if (A->isAllOnesValue()) 4269 return LookupConstant(Select->getTrueValue(), ConstantPool); 4270 if (A->isNullValue()) 4271 return LookupConstant(Select->getFalseValue(), ConstantPool); 4272 return nullptr; 4273 } 4274 4275 SmallVector<Constant *, 4> COps; 4276 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4277 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4278 COps.push_back(A); 4279 else 4280 return nullptr; 4281 } 4282 4283 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4284 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4285 COps[1], DL); 4286 } 4287 4288 return ConstantFoldInstOperands(I, COps, DL); 4289 } 4290 4291 /// Try to determine the resulting constant values in phi nodes 4292 /// at the common destination basic block, *CommonDest, for one of the case 4293 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4294 /// case), of a switch instruction SI. 4295 static bool 4296 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4297 BasicBlock **CommonDest, 4298 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4299 const DataLayout &DL) { 4300 // The block from which we enter the common destination. 4301 BasicBlock *Pred = SI->getParent(); 4302 4303 // If CaseDest is empty except for some side-effect free instructions through 4304 // which we can constant-propagate the CaseVal, continue to its successor. 4305 SmallDenseMap<Value *, Constant *> ConstantPool; 4306 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4307 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4308 ++I) { 4309 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4310 // If the terminator is a simple branch, continue to the next block. 4311 if (T->getNumSuccessors() != 1) 4312 return false; 4313 Pred = CaseDest; 4314 CaseDest = T->getSuccessor(0); 4315 } else if (isa<DbgInfoIntrinsic>(I)) { 4316 // Skip debug intrinsic. 4317 continue; 4318 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4319 // Instruction is side-effect free and constant. 4320 4321 // If the instruction has uses outside this block or a phi node slot for 4322 // the block, it is not safe to bypass the instruction since it would then 4323 // no longer dominate all its uses. 4324 for (auto &Use : I->uses()) { 4325 User *User = Use.getUser(); 4326 if (Instruction *I = dyn_cast<Instruction>(User)) 4327 if (I->getParent() == CaseDest) 4328 continue; 4329 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4330 if (Phi->getIncomingBlock(Use) == CaseDest) 4331 continue; 4332 return false; 4333 } 4334 4335 ConstantPool.insert(std::make_pair(&*I, C)); 4336 } else { 4337 break; 4338 } 4339 } 4340 4341 // If we did not have a CommonDest before, use the current one. 4342 if (!*CommonDest) 4343 *CommonDest = CaseDest; 4344 // If the destination isn't the common one, abort. 4345 if (CaseDest != *CommonDest) 4346 return false; 4347 4348 // Get the values for this case from phi nodes in the destination block. 4349 BasicBlock::iterator I = (*CommonDest)->begin(); 4350 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4351 int Idx = PHI->getBasicBlockIndex(Pred); 4352 if (Idx == -1) 4353 continue; 4354 4355 Constant *ConstVal = 4356 LookupConstant(PHI->getIncomingValue(Idx), ConstantPool); 4357 if (!ConstVal) 4358 return false; 4359 4360 // Be conservative about which kinds of constants we support. 4361 if (!ValidLookupTableConstant(ConstVal)) 4362 return false; 4363 4364 Res.push_back(std::make_pair(PHI, ConstVal)); 4365 } 4366 4367 return Res.size() > 0; 4368 } 4369 4370 // Helper function used to add CaseVal to the list of cases that generate 4371 // Result. 4372 static void MapCaseToResult(ConstantInt *CaseVal, 4373 SwitchCaseResultVectorTy &UniqueResults, 4374 Constant *Result) { 4375 for (auto &I : UniqueResults) { 4376 if (I.first == Result) { 4377 I.second.push_back(CaseVal); 4378 return; 4379 } 4380 } 4381 UniqueResults.push_back( 4382 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4383 } 4384 4385 // Helper function that initializes a map containing 4386 // results for the PHI node of the common destination block for a switch 4387 // instruction. Returns false if multiple PHI nodes have been found or if 4388 // there is not a common destination block for the switch. 4389 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4390 BasicBlock *&CommonDest, 4391 SwitchCaseResultVectorTy &UniqueResults, 4392 Constant *&DefaultResult, 4393 const DataLayout &DL) { 4394 for (auto &I : SI->cases()) { 4395 ConstantInt *CaseVal = I.getCaseValue(); 4396 4397 // Resulting value at phi nodes for this case value. 4398 SwitchCaseResultsTy Results; 4399 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4400 DL)) 4401 return false; 4402 4403 // Only one value per case is permitted 4404 if (Results.size() > 1) 4405 return false; 4406 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4407 4408 // Check the PHI consistency. 4409 if (!PHI) 4410 PHI = Results[0].first; 4411 else if (PHI != Results[0].first) 4412 return false; 4413 } 4414 // Find the default result value. 4415 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4416 BasicBlock *DefaultDest = SI->getDefaultDest(); 4417 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4418 DL); 4419 // If the default value is not found abort unless the default destination 4420 // is unreachable. 4421 DefaultResult = 4422 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4423 if ((!DefaultResult && 4424 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4425 return false; 4426 4427 return true; 4428 } 4429 4430 // Helper function that checks if it is possible to transform a switch with only 4431 // two cases (or two cases + default) that produces a result into a select. 4432 // Example: 4433 // switch (a) { 4434 // case 10: %0 = icmp eq i32 %a, 10 4435 // return 10; %1 = select i1 %0, i32 10, i32 4 4436 // case 20: ----> %2 = icmp eq i32 %a, 20 4437 // return 2; %3 = select i1 %2, i32 2, i32 %1 4438 // default: 4439 // return 4; 4440 // } 4441 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4442 Constant *DefaultResult, Value *Condition, 4443 IRBuilder<> &Builder) { 4444 assert(ResultVector.size() == 2 && 4445 "We should have exactly two unique results at this point"); 4446 // If we are selecting between only two cases transform into a simple 4447 // select or a two-way select if default is possible. 4448 if (ResultVector[0].second.size() == 1 && 4449 ResultVector[1].second.size() == 1) { 4450 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4451 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4452 4453 bool DefaultCanTrigger = DefaultResult; 4454 Value *SelectValue = ResultVector[1].first; 4455 if (DefaultCanTrigger) { 4456 Value *const ValueCompare = 4457 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4458 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4459 DefaultResult, "switch.select"); 4460 } 4461 Value *const ValueCompare = 4462 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4463 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4464 SelectValue, "switch.select"); 4465 } 4466 4467 return nullptr; 4468 } 4469 4470 // Helper function to cleanup a switch instruction that has been converted into 4471 // a select, fixing up PHI nodes and basic blocks. 4472 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4473 Value *SelectValue, 4474 IRBuilder<> &Builder) { 4475 BasicBlock *SelectBB = SI->getParent(); 4476 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4477 PHI->removeIncomingValue(SelectBB); 4478 PHI->addIncoming(SelectValue, SelectBB); 4479 4480 Builder.CreateBr(PHI->getParent()); 4481 4482 // Remove the switch. 4483 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4484 BasicBlock *Succ = SI->getSuccessor(i); 4485 4486 if (Succ == PHI->getParent()) 4487 continue; 4488 Succ->removePredecessor(SelectBB); 4489 } 4490 SI->eraseFromParent(); 4491 } 4492 4493 /// If the switch is only used to initialize one or more 4494 /// phi nodes in a common successor block with only two different 4495 /// constant values, replace the switch with select. 4496 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4497 AssumptionCache *AC, const DataLayout &DL) { 4498 Value *const Cond = SI->getCondition(); 4499 PHINode *PHI = nullptr; 4500 BasicBlock *CommonDest = nullptr; 4501 Constant *DefaultResult; 4502 SwitchCaseResultVectorTy UniqueResults; 4503 // Collect all the cases that will deliver the same value from the switch. 4504 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4505 DL)) 4506 return false; 4507 // Selects choose between maximum two values. 4508 if (UniqueResults.size() != 2) 4509 return false; 4510 assert(PHI != nullptr && "PHI for value select not found"); 4511 4512 Builder.SetInsertPoint(SI); 4513 Value *SelectValue = 4514 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4515 if (SelectValue) { 4516 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4517 return true; 4518 } 4519 // The switch couldn't be converted into a select. 4520 return false; 4521 } 4522 4523 namespace { 4524 /// This class represents a lookup table that can be used to replace a switch. 4525 class SwitchLookupTable { 4526 public: 4527 /// Create a lookup table to use as a switch replacement with the contents 4528 /// of Values, using DefaultValue to fill any holes in the table. 4529 SwitchLookupTable( 4530 Module &M, uint64_t TableSize, ConstantInt *Offset, 4531 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4532 Constant *DefaultValue, const DataLayout &DL); 4533 4534 /// Build instructions with Builder to retrieve the value at 4535 /// the position given by Index in the lookup table. 4536 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4537 4538 /// Return true if a table with TableSize elements of 4539 /// type ElementType would fit in a target-legal register. 4540 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4541 Type *ElementType); 4542 4543 private: 4544 // Depending on the contents of the table, it can be represented in 4545 // different ways. 4546 enum { 4547 // For tables where each element contains the same value, we just have to 4548 // store that single value and return it for each lookup. 4549 SingleValueKind, 4550 4551 // For tables where there is a linear relationship between table index 4552 // and values. We calculate the result with a simple multiplication 4553 // and addition instead of a table lookup. 4554 LinearMapKind, 4555 4556 // For small tables with integer elements, we can pack them into a bitmap 4557 // that fits into a target-legal register. Values are retrieved by 4558 // shift and mask operations. 4559 BitMapKind, 4560 4561 // The table is stored as an array of values. Values are retrieved by load 4562 // instructions from the table. 4563 ArrayKind 4564 } Kind; 4565 4566 // For SingleValueKind, this is the single value. 4567 Constant *SingleValue; 4568 4569 // For BitMapKind, this is the bitmap. 4570 ConstantInt *BitMap; 4571 IntegerType *BitMapElementTy; 4572 4573 // For LinearMapKind, these are the constants used to derive the value. 4574 ConstantInt *LinearOffset; 4575 ConstantInt *LinearMultiplier; 4576 4577 // For ArrayKind, this is the array. 4578 GlobalVariable *Array; 4579 }; 4580 } 4581 4582 SwitchLookupTable::SwitchLookupTable( 4583 Module &M, uint64_t TableSize, ConstantInt *Offset, 4584 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4585 Constant *DefaultValue, const DataLayout &DL) 4586 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4587 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4588 assert(Values.size() && "Can't build lookup table without values!"); 4589 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4590 4591 // If all values in the table are equal, this is that value. 4592 SingleValue = Values.begin()->second; 4593 4594 Type *ValueType = Values.begin()->second->getType(); 4595 4596 // Build up the table contents. 4597 SmallVector<Constant *, 64> TableContents(TableSize); 4598 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4599 ConstantInt *CaseVal = Values[I].first; 4600 Constant *CaseRes = Values[I].second; 4601 assert(CaseRes->getType() == ValueType); 4602 4603 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4604 TableContents[Idx] = CaseRes; 4605 4606 if (CaseRes != SingleValue) 4607 SingleValue = nullptr; 4608 } 4609 4610 // Fill in any holes in the table with the default result. 4611 if (Values.size() < TableSize) { 4612 assert(DefaultValue && 4613 "Need a default value to fill the lookup table holes."); 4614 assert(DefaultValue->getType() == ValueType); 4615 for (uint64_t I = 0; I < TableSize; ++I) { 4616 if (!TableContents[I]) 4617 TableContents[I] = DefaultValue; 4618 } 4619 4620 if (DefaultValue != SingleValue) 4621 SingleValue = nullptr; 4622 } 4623 4624 // If each element in the table contains the same value, we only need to store 4625 // that single value. 4626 if (SingleValue) { 4627 Kind = SingleValueKind; 4628 return; 4629 } 4630 4631 // Check if we can derive the value with a linear transformation from the 4632 // table index. 4633 if (isa<IntegerType>(ValueType)) { 4634 bool LinearMappingPossible = true; 4635 APInt PrevVal; 4636 APInt DistToPrev; 4637 assert(TableSize >= 2 && "Should be a SingleValue table."); 4638 // Check if there is the same distance between two consecutive values. 4639 for (uint64_t I = 0; I < TableSize; ++I) { 4640 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4641 if (!ConstVal) { 4642 // This is an undef. We could deal with it, but undefs in lookup tables 4643 // are very seldom. It's probably not worth the additional complexity. 4644 LinearMappingPossible = false; 4645 break; 4646 } 4647 APInt Val = ConstVal->getValue(); 4648 if (I != 0) { 4649 APInt Dist = Val - PrevVal; 4650 if (I == 1) { 4651 DistToPrev = Dist; 4652 } else if (Dist != DistToPrev) { 4653 LinearMappingPossible = false; 4654 break; 4655 } 4656 } 4657 PrevVal = Val; 4658 } 4659 if (LinearMappingPossible) { 4660 LinearOffset = cast<ConstantInt>(TableContents[0]); 4661 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4662 Kind = LinearMapKind; 4663 ++NumLinearMaps; 4664 return; 4665 } 4666 } 4667 4668 // If the type is integer and the table fits in a register, build a bitmap. 4669 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4670 IntegerType *IT = cast<IntegerType>(ValueType); 4671 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4672 for (uint64_t I = TableSize; I > 0; --I) { 4673 TableInt <<= IT->getBitWidth(); 4674 // Insert values into the bitmap. Undef values are set to zero. 4675 if (!isa<UndefValue>(TableContents[I - 1])) { 4676 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4677 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4678 } 4679 } 4680 BitMap = ConstantInt::get(M.getContext(), TableInt); 4681 BitMapElementTy = IT; 4682 Kind = BitMapKind; 4683 ++NumBitMaps; 4684 return; 4685 } 4686 4687 // Store the table in an array. 4688 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4689 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4690 4691 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 4692 GlobalVariable::PrivateLinkage, Initializer, 4693 "switch.table"); 4694 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 4695 Kind = ArrayKind; 4696 } 4697 4698 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4699 switch (Kind) { 4700 case SingleValueKind: 4701 return SingleValue; 4702 case LinearMapKind: { 4703 // Derive the result value from the input value. 4704 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4705 false, "switch.idx.cast"); 4706 if (!LinearMultiplier->isOne()) 4707 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4708 if (!LinearOffset->isZero()) 4709 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4710 return Result; 4711 } 4712 case BitMapKind: { 4713 // Type of the bitmap (e.g. i59). 4714 IntegerType *MapTy = BitMap->getType(); 4715 4716 // Cast Index to the same type as the bitmap. 4717 // Note: The Index is <= the number of elements in the table, so 4718 // truncating it to the width of the bitmask is safe. 4719 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4720 4721 // Multiply the shift amount by the element width. 4722 ShiftAmt = Builder.CreateMul( 4723 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4724 "switch.shiftamt"); 4725 4726 // Shift down. 4727 Value *DownShifted = 4728 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 4729 // Mask off. 4730 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 4731 } 4732 case ArrayKind: { 4733 // Make sure the table index will not overflow when treated as signed. 4734 IntegerType *IT = cast<IntegerType>(Index->getType()); 4735 uint64_t TableSize = 4736 Array->getInitializer()->getType()->getArrayNumElements(); 4737 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4738 Index = Builder.CreateZExt( 4739 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 4740 "switch.tableidx.zext"); 4741 4742 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 4743 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4744 GEPIndices, "switch.gep"); 4745 return Builder.CreateLoad(GEP, "switch.load"); 4746 } 4747 } 4748 llvm_unreachable("Unknown lookup table kind!"); 4749 } 4750 4751 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4752 uint64_t TableSize, 4753 Type *ElementType) { 4754 auto *IT = dyn_cast<IntegerType>(ElementType); 4755 if (!IT) 4756 return false; 4757 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4758 // are <= 15, we could try to narrow the type. 4759 4760 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4761 if (TableSize >= UINT_MAX / IT->getBitWidth()) 4762 return false; 4763 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4764 } 4765 4766 /// Determine whether a lookup table should be built for this switch, based on 4767 /// the number of cases, size of the table, and the types of the results. 4768 static bool 4769 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4770 const TargetTransformInfo &TTI, const DataLayout &DL, 4771 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4772 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4773 return false; // TableSize overflowed, or mul below might overflow. 4774 4775 bool AllTablesFitInRegister = true; 4776 bool HasIllegalType = false; 4777 for (const auto &I : ResultTypes) { 4778 Type *Ty = I.second; 4779 4780 // Saturate this flag to true. 4781 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4782 4783 // Saturate this flag to false. 4784 AllTablesFitInRegister = 4785 AllTablesFitInRegister && 4786 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4787 4788 // If both flags saturate, we're done. NOTE: This *only* works with 4789 // saturating flags, and all flags have to saturate first due to the 4790 // non-deterministic behavior of iterating over a dense map. 4791 if (HasIllegalType && !AllTablesFitInRegister) 4792 break; 4793 } 4794 4795 // If each table would fit in a register, we should build it anyway. 4796 if (AllTablesFitInRegister) 4797 return true; 4798 4799 // Don't build a table that doesn't fit in-register if it has illegal types. 4800 if (HasIllegalType) 4801 return false; 4802 4803 // The table density should be at least 40%. This is the same criterion as for 4804 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4805 // FIXME: Find the best cut-off. 4806 return SI->getNumCases() * 10 >= TableSize * 4; 4807 } 4808 4809 /// Try to reuse the switch table index compare. Following pattern: 4810 /// \code 4811 /// if (idx < tablesize) 4812 /// r = table[idx]; // table does not contain default_value 4813 /// else 4814 /// r = default_value; 4815 /// if (r != default_value) 4816 /// ... 4817 /// \endcode 4818 /// Is optimized to: 4819 /// \code 4820 /// cond = idx < tablesize; 4821 /// if (cond) 4822 /// r = table[idx]; 4823 /// else 4824 /// r = default_value; 4825 /// if (cond) 4826 /// ... 4827 /// \endcode 4828 /// Jump threading will then eliminate the second if(cond). 4829 static void reuseTableCompare( 4830 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 4831 Constant *DefaultValue, 4832 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 4833 4834 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4835 if (!CmpInst) 4836 return; 4837 4838 // We require that the compare is in the same block as the phi so that jump 4839 // threading can do its work afterwards. 4840 if (CmpInst->getParent() != PhiBlock) 4841 return; 4842 4843 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4844 if (!CmpOp1) 4845 return; 4846 4847 Value *RangeCmp = RangeCheckBranch->getCondition(); 4848 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4849 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4850 4851 // Check if the compare with the default value is constant true or false. 4852 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4853 DefaultValue, CmpOp1, true); 4854 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4855 return; 4856 4857 // Check if the compare with the case values is distinct from the default 4858 // compare result. 4859 for (auto ValuePair : Values) { 4860 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4861 ValuePair.second, CmpOp1, true); 4862 if (!CaseConst || CaseConst == DefaultConst) 4863 return; 4864 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4865 "Expect true or false as compare result."); 4866 } 4867 4868 // Check if the branch instruction dominates the phi node. It's a simple 4869 // dominance check, but sufficient for our needs. 4870 // Although this check is invariant in the calling loops, it's better to do it 4871 // at this late stage. Practically we do it at most once for a switch. 4872 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4873 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4874 BasicBlock *Pred = *PI; 4875 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4876 return; 4877 } 4878 4879 if (DefaultConst == FalseConst) { 4880 // The compare yields the same result. We can replace it. 4881 CmpInst->replaceAllUsesWith(RangeCmp); 4882 ++NumTableCmpReuses; 4883 } else { 4884 // The compare yields the same result, just inverted. We can replace it. 4885 Value *InvertedTableCmp = BinaryOperator::CreateXor( 4886 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4887 RangeCheckBranch); 4888 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4889 ++NumTableCmpReuses; 4890 } 4891 } 4892 4893 /// If the switch is only used to initialize one or more phi nodes in a common 4894 /// successor block with different constant values, replace the switch with 4895 /// lookup tables. 4896 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4897 const DataLayout &DL, 4898 const TargetTransformInfo &TTI) { 4899 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4900 4901 // Only build lookup table when we have a target that supports it. 4902 if (!TTI.shouldBuildLookupTables()) 4903 return false; 4904 4905 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4906 // split off a dense part and build a lookup table for that. 4907 4908 // FIXME: This creates arrays of GEPs to constant strings, which means each 4909 // GEP needs a runtime relocation in PIC code. We should just build one big 4910 // string and lookup indices into that. 4911 4912 // Ignore switches with less than three cases. Lookup tables will not make 4913 // them 4914 // faster, so we don't analyze them. 4915 if (SI->getNumCases() < 3) 4916 return false; 4917 4918 // Figure out the corresponding result for each case value and phi node in the 4919 // common destination, as well as the min and max case values. 4920 assert(SI->case_begin() != SI->case_end()); 4921 SwitchInst::CaseIt CI = SI->case_begin(); 4922 ConstantInt *MinCaseVal = CI.getCaseValue(); 4923 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4924 4925 BasicBlock *CommonDest = nullptr; 4926 typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy; 4927 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 4928 SmallDenseMap<PHINode *, Constant *> DefaultResults; 4929 SmallDenseMap<PHINode *, Type *> ResultTypes; 4930 SmallVector<PHINode *, 4> PHIs; 4931 4932 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4933 ConstantInt *CaseVal = CI.getCaseValue(); 4934 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4935 MinCaseVal = CaseVal; 4936 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4937 MaxCaseVal = CaseVal; 4938 4939 // Resulting value at phi nodes for this case value. 4940 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy; 4941 ResultsTy Results; 4942 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4943 Results, DL)) 4944 return false; 4945 4946 // Append the result from this case to the list for each phi. 4947 for (const auto &I : Results) { 4948 PHINode *PHI = I.first; 4949 Constant *Value = I.second; 4950 if (!ResultLists.count(PHI)) 4951 PHIs.push_back(PHI); 4952 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4953 } 4954 } 4955 4956 // Keep track of the result types. 4957 for (PHINode *PHI : PHIs) { 4958 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4959 } 4960 4961 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4962 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4963 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4964 bool TableHasHoles = (NumResults < TableSize); 4965 4966 // If the table has holes, we need a constant result for the default case 4967 // or a bitmask that fits in a register. 4968 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 4969 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4970 &CommonDest, DefaultResultsList, DL); 4971 4972 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4973 if (NeedMask) { 4974 // As an extra penalty for the validity test we require more cases. 4975 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4976 return false; 4977 if (!DL.fitsInLegalInteger(TableSize)) 4978 return false; 4979 } 4980 4981 for (const auto &I : DefaultResultsList) { 4982 PHINode *PHI = I.first; 4983 Constant *Result = I.second; 4984 DefaultResults[PHI] = Result; 4985 } 4986 4987 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4988 return false; 4989 4990 // Create the BB that does the lookups. 4991 Module &Mod = *CommonDest->getParent()->getParent(); 4992 BasicBlock *LookupBB = BasicBlock::Create( 4993 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 4994 4995 // Compute the table index value. 4996 Builder.SetInsertPoint(SI); 4997 Value *TableIndex = 4998 Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx"); 4999 5000 // Compute the maximum table size representable by the integer type we are 5001 // switching upon. 5002 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5003 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5004 assert(MaxTableSize >= TableSize && 5005 "It is impossible for a switch to have more entries than the max " 5006 "representable value of its input integer type's size."); 5007 5008 // If the default destination is unreachable, or if the lookup table covers 5009 // all values of the conditional variable, branch directly to the lookup table 5010 // BB. Otherwise, check that the condition is within the case range. 5011 const bool DefaultIsReachable = 5012 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5013 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5014 BranchInst *RangeCheckBranch = nullptr; 5015 5016 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5017 Builder.CreateBr(LookupBB); 5018 // Note: We call removeProdecessor later since we need to be able to get the 5019 // PHI value for the default case in case we're using a bit mask. 5020 } else { 5021 Value *Cmp = Builder.CreateICmpULT( 5022 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5023 RangeCheckBranch = 5024 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5025 } 5026 5027 // Populate the BB that does the lookups. 5028 Builder.SetInsertPoint(LookupBB); 5029 5030 if (NeedMask) { 5031 // Before doing the lookup we do the hole check. 5032 // The LookupBB is therefore re-purposed to do the hole check 5033 // and we create a new LookupBB. 5034 BasicBlock *MaskBB = LookupBB; 5035 MaskBB->setName("switch.hole_check"); 5036 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5037 CommonDest->getParent(), CommonDest); 5038 5039 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 5040 // unnecessary illegal types. 5041 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5042 APInt MaskInt(TableSizePowOf2, 0); 5043 APInt One(TableSizePowOf2, 1); 5044 // Build bitmask; fill in a 1 bit for every case. 5045 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5046 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5047 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5048 .getLimitedValue(); 5049 MaskInt |= One << Idx; 5050 } 5051 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5052 5053 // Get the TableIndex'th bit of the bitmask. 5054 // If this bit is 0 (meaning hole) jump to the default destination, 5055 // else continue with table lookup. 5056 IntegerType *MapTy = TableMask->getType(); 5057 Value *MaskIndex = 5058 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5059 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5060 Value *LoBit = Builder.CreateTrunc( 5061 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5062 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5063 5064 Builder.SetInsertPoint(LookupBB); 5065 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5066 } 5067 5068 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5069 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 5070 // do not delete PHINodes here. 5071 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5072 /*DontDeleteUselessPHIs=*/true); 5073 } 5074 5075 bool ReturnedEarly = false; 5076 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 5077 PHINode *PHI = PHIs[I]; 5078 const ResultListTy &ResultList = ResultLists[PHI]; 5079 5080 // If using a bitmask, use any value to fill the lookup table holes. 5081 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5082 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 5083 5084 Value *Result = Table.BuildLookup(TableIndex, Builder); 5085 5086 // If the result is used to return immediately from the function, we want to 5087 // do that right here. 5088 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5089 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5090 Builder.CreateRet(Result); 5091 ReturnedEarly = true; 5092 break; 5093 } 5094 5095 // Do a small peephole optimization: re-use the switch table compare if 5096 // possible. 5097 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5098 BasicBlock *PhiBlock = PHI->getParent(); 5099 // Search for compare instructions which use the phi. 5100 for (auto *User : PHI->users()) { 5101 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5102 } 5103 } 5104 5105 PHI->addIncoming(Result, LookupBB); 5106 } 5107 5108 if (!ReturnedEarly) 5109 Builder.CreateBr(CommonDest); 5110 5111 // Remove the switch. 5112 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5113 BasicBlock *Succ = SI->getSuccessor(i); 5114 5115 if (Succ == SI->getDefaultDest()) 5116 continue; 5117 Succ->removePredecessor(SI->getParent()); 5118 } 5119 SI->eraseFromParent(); 5120 5121 ++NumLookupTables; 5122 if (NeedMask) 5123 ++NumLookupTablesHoles; 5124 return true; 5125 } 5126 5127 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5128 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5129 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5130 uint64_t Range = Diff + 1; 5131 uint64_t NumCases = Values.size(); 5132 // 40% is the default density for building a jump table in optsize/minsize mode. 5133 uint64_t MinDensity = 40; 5134 5135 return NumCases * 100 >= Range * MinDensity; 5136 } 5137 5138 // Try and transform a switch that has "holes" in it to a contiguous sequence 5139 // of cases. 5140 // 5141 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5142 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5143 // 5144 // This converts a sparse switch into a dense switch which allows better 5145 // lowering and could also allow transforming into a lookup table. 5146 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5147 const DataLayout &DL, 5148 const TargetTransformInfo &TTI) { 5149 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5150 if (CondTy->getIntegerBitWidth() > 64 || 5151 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5152 return false; 5153 // Only bother with this optimization if there are more than 3 switch cases; 5154 // SDAG will only bother creating jump tables for 4 or more cases. 5155 if (SI->getNumCases() < 4) 5156 return false; 5157 5158 // This transform is agnostic to the signedness of the input or case values. We 5159 // can treat the case values as signed or unsigned. We can optimize more common 5160 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5161 // as signed. 5162 SmallVector<int64_t,4> Values; 5163 for (auto &C : SI->cases()) 5164 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5165 std::sort(Values.begin(), Values.end()); 5166 5167 // If the switch is already dense, there's nothing useful to do here. 5168 if (isSwitchDense(Values)) 5169 return false; 5170 5171 // First, transform the values such that they start at zero and ascend. 5172 int64_t Base = Values[0]; 5173 for (auto &V : Values) 5174 V -= Base; 5175 5176 // Now we have signed numbers that have been shifted so that, given enough 5177 // precision, there are no negative values. Since the rest of the transform 5178 // is bitwise only, we switch now to an unsigned representation. 5179 uint64_t GCD = 0; 5180 for (auto &V : Values) 5181 GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V); 5182 5183 // This transform can be done speculatively because it is so cheap - it results 5184 // in a single rotate operation being inserted. This can only happen if the 5185 // factor extracted is a power of 2. 5186 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5187 // inverse of GCD and then perform this transform. 5188 // FIXME: It's possible that optimizing a switch on powers of two might also 5189 // be beneficial - flag values are often powers of two and we could use a CLZ 5190 // as the key function. 5191 if (GCD <= 1 || !llvm::isPowerOf2_64(GCD)) 5192 // No common divisor found or too expensive to compute key function. 5193 return false; 5194 5195 unsigned Shift = llvm::Log2_64(GCD); 5196 for (auto &V : Values) 5197 V = (int64_t)((uint64_t)V >> Shift); 5198 5199 if (!isSwitchDense(Values)) 5200 // Transform didn't create a dense switch. 5201 return false; 5202 5203 // The obvious transform is to shift the switch condition right and emit a 5204 // check that the condition actually cleanly divided by GCD, i.e. 5205 // C & (1 << Shift - 1) == 0 5206 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5207 // 5208 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5209 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5210 // are nonzero then the switch condition will be very large and will hit the 5211 // default case. 5212 5213 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5214 Builder.SetInsertPoint(SI); 5215 auto *ShiftC = ConstantInt::get(Ty, Shift); 5216 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5217 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5218 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5219 auto *Rot = Builder.CreateOr(LShr, Shl); 5220 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5221 5222 for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E; 5223 ++C) { 5224 auto *Orig = C.getCaseValue(); 5225 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5226 C.setValue( 5227 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5228 } 5229 return true; 5230 } 5231 5232 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5233 BasicBlock *BB = SI->getParent(); 5234 5235 if (isValueEqualityComparison(SI)) { 5236 // If we only have one predecessor, and if it is a branch on this value, 5237 // see if that predecessor totally determines the outcome of this switch. 5238 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5239 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5240 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5241 5242 Value *Cond = SI->getCondition(); 5243 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5244 if (SimplifySwitchOnSelect(SI, Select)) 5245 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5246 5247 // If the block only contains the switch, see if we can fold the block 5248 // away into any preds. 5249 BasicBlock::iterator BBI = BB->begin(); 5250 // Ignore dbg intrinsics. 5251 while (isa<DbgInfoIntrinsic>(BBI)) 5252 ++BBI; 5253 if (SI == &*BBI) 5254 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5255 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5256 } 5257 5258 // Try to transform the switch into an icmp and a branch. 5259 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5260 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5261 5262 // Remove unreachable cases. 5263 if (EliminateDeadSwitchCases(SI, AC, DL)) 5264 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5265 5266 if (SwitchToSelect(SI, Builder, AC, DL)) 5267 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5268 5269 if (ForwardSwitchConditionToPHI(SI)) 5270 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5271 5272 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 5273 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5274 5275 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5276 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5277 5278 return false; 5279 } 5280 5281 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5282 BasicBlock *BB = IBI->getParent(); 5283 bool Changed = false; 5284 5285 // Eliminate redundant destinations. 5286 SmallPtrSet<Value *, 8> Succs; 5287 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5288 BasicBlock *Dest = IBI->getDestination(i); 5289 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5290 Dest->removePredecessor(BB); 5291 IBI->removeDestination(i); 5292 --i; 5293 --e; 5294 Changed = true; 5295 } 5296 } 5297 5298 if (IBI->getNumDestinations() == 0) { 5299 // If the indirectbr has no successors, change it to unreachable. 5300 new UnreachableInst(IBI->getContext(), IBI); 5301 EraseTerminatorInstAndDCECond(IBI); 5302 return true; 5303 } 5304 5305 if (IBI->getNumDestinations() == 1) { 5306 // If the indirectbr has one successor, change it to a direct branch. 5307 BranchInst::Create(IBI->getDestination(0), IBI); 5308 EraseTerminatorInstAndDCECond(IBI); 5309 return true; 5310 } 5311 5312 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5313 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5314 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5315 } 5316 return Changed; 5317 } 5318 5319 /// Given an block with only a single landing pad and a unconditional branch 5320 /// try to find another basic block which this one can be merged with. This 5321 /// handles cases where we have multiple invokes with unique landing pads, but 5322 /// a shared handler. 5323 /// 5324 /// We specifically choose to not worry about merging non-empty blocks 5325 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5326 /// practice, the optimizer produces empty landing pad blocks quite frequently 5327 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5328 /// sinking in this file) 5329 /// 5330 /// This is primarily a code size optimization. We need to avoid performing 5331 /// any transform which might inhibit optimization (such as our ability to 5332 /// specialize a particular handler via tail commoning). We do this by not 5333 /// merging any blocks which require us to introduce a phi. Since the same 5334 /// values are flowing through both blocks, we don't loose any ability to 5335 /// specialize. If anything, we make such specialization more likely. 5336 /// 5337 /// TODO - This transformation could remove entries from a phi in the target 5338 /// block when the inputs in the phi are the same for the two blocks being 5339 /// merged. In some cases, this could result in removal of the PHI entirely. 5340 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5341 BasicBlock *BB) { 5342 auto Succ = BB->getUniqueSuccessor(); 5343 assert(Succ); 5344 // If there's a phi in the successor block, we'd likely have to introduce 5345 // a phi into the merged landing pad block. 5346 if (isa<PHINode>(*Succ->begin())) 5347 return false; 5348 5349 for (BasicBlock *OtherPred : predecessors(Succ)) { 5350 if (BB == OtherPred) 5351 continue; 5352 BasicBlock::iterator I = OtherPred->begin(); 5353 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5354 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5355 continue; 5356 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5357 } 5358 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5359 if (!BI2 || !BI2->isIdenticalTo(BI)) 5360 continue; 5361 5362 // We've found an identical block. Update our predecessors to take that 5363 // path instead and make ourselves dead. 5364 SmallSet<BasicBlock *, 16> Preds; 5365 Preds.insert(pred_begin(BB), pred_end(BB)); 5366 for (BasicBlock *Pred : Preds) { 5367 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5368 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5369 "unexpected successor"); 5370 II->setUnwindDest(OtherPred); 5371 } 5372 5373 // The debug info in OtherPred doesn't cover the merged control flow that 5374 // used to go through BB. We need to delete it or update it. 5375 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5376 Instruction &Inst = *I; 5377 I++; 5378 if (isa<DbgInfoIntrinsic>(Inst)) 5379 Inst.eraseFromParent(); 5380 } 5381 5382 SmallSet<BasicBlock *, 16> Succs; 5383 Succs.insert(succ_begin(BB), succ_end(BB)); 5384 for (BasicBlock *Succ : Succs) { 5385 Succ->removePredecessor(BB); 5386 } 5387 5388 IRBuilder<> Builder(BI); 5389 Builder.CreateUnreachable(); 5390 BI->eraseFromParent(); 5391 return true; 5392 } 5393 return false; 5394 } 5395 5396 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5397 IRBuilder<> &Builder) { 5398 BasicBlock *BB = BI->getParent(); 5399 5400 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5401 return true; 5402 5403 // If the Terminator is the only non-phi instruction, simplify the block. 5404 // if LoopHeader is provided, check if the block is a loop header 5405 // (This is for early invocations before loop simplify and vectorization 5406 // to keep canonical loop forms for nested loops. 5407 // These blocks can be eliminated when the pass is invoked later 5408 // in the back-end.) 5409 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5410 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5411 (!LoopHeaders || !LoopHeaders->count(BB)) && 5412 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5413 return true; 5414 5415 // If the only instruction in the block is a seteq/setne comparison 5416 // against a constant, try to simplify the block. 5417 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5418 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5419 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5420 ; 5421 if (I->isTerminator() && 5422 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5423 BonusInstThreshold, AC)) 5424 return true; 5425 } 5426 5427 // See if we can merge an empty landing pad block with another which is 5428 // equivalent. 5429 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5430 for (++I; isa<DbgInfoIntrinsic>(I); ++I) { 5431 } 5432 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5433 return true; 5434 } 5435 5436 // If this basic block is ONLY a compare and a branch, and if a predecessor 5437 // branches to us and our successor, fold the comparison into the 5438 // predecessor and use logical operations to update the incoming value 5439 // for PHI nodes in common successor. 5440 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5441 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5442 return false; 5443 } 5444 5445 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5446 BasicBlock *PredPred = nullptr; 5447 for (auto *P : predecessors(BB)) { 5448 BasicBlock *PPred = P->getSinglePredecessor(); 5449 if (!PPred || (PredPred && PredPred != PPred)) 5450 return nullptr; 5451 PredPred = PPred; 5452 } 5453 return PredPred; 5454 } 5455 5456 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5457 BasicBlock *BB = BI->getParent(); 5458 5459 // Conditional branch 5460 if (isValueEqualityComparison(BI)) { 5461 // If we only have one predecessor, and if it is a branch on this value, 5462 // see if that predecessor totally determines the outcome of this 5463 // switch. 5464 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5465 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5466 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5467 5468 // This block must be empty, except for the setcond inst, if it exists. 5469 // Ignore dbg intrinsics. 5470 BasicBlock::iterator I = BB->begin(); 5471 // Ignore dbg intrinsics. 5472 while (isa<DbgInfoIntrinsic>(I)) 5473 ++I; 5474 if (&*I == BI) { 5475 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5476 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5477 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5478 ++I; 5479 // Ignore dbg intrinsics. 5480 while (isa<DbgInfoIntrinsic>(I)) 5481 ++I; 5482 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5483 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5484 } 5485 } 5486 5487 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5488 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5489 return true; 5490 5491 // If this basic block has a single dominating predecessor block and the 5492 // dominating block's condition implies BI's condition, we know the direction 5493 // of the BI branch. 5494 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5495 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5496 if (PBI && PBI->isConditional() && 5497 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 5498 (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) { 5499 bool CondIsFalse = PBI->getSuccessor(1) == BB; 5500 Optional<bool> Implication = isImpliedCondition( 5501 PBI->getCondition(), BI->getCondition(), DL, CondIsFalse); 5502 if (Implication) { 5503 // Turn this into a branch on constant. 5504 auto *OldCond = BI->getCondition(); 5505 ConstantInt *CI = *Implication 5506 ? ConstantInt::getTrue(BB->getContext()) 5507 : ConstantInt::getFalse(BB->getContext()); 5508 BI->setCondition(CI); 5509 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5510 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5511 } 5512 } 5513 } 5514 5515 // If this basic block is ONLY a compare and a branch, and if a predecessor 5516 // branches to us and one of our successors, fold the comparison into the 5517 // predecessor and use logical operations to pick the right destination. 5518 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5519 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5520 5521 // We have a conditional branch to two blocks that are only reachable 5522 // from BI. We know that the condbr dominates the two blocks, so see if 5523 // there is any identical code in the "then" and "else" blocks. If so, we 5524 // can hoist it up to the branching block. 5525 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5526 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5527 if (HoistThenElseCodeToIf(BI, TTI)) 5528 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5529 } else { 5530 // If Successor #1 has multiple preds, we may be able to conditionally 5531 // execute Successor #0 if it branches to Successor #1. 5532 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5533 if (Succ0TI->getNumSuccessors() == 1 && 5534 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5535 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5536 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5537 } 5538 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5539 // If Successor #0 has multiple preds, we may be able to conditionally 5540 // execute Successor #1 if it branches to Successor #0. 5541 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5542 if (Succ1TI->getNumSuccessors() == 1 && 5543 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5544 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5545 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5546 } 5547 5548 // If this is a branch on a phi node in the current block, thread control 5549 // through this block if any PHI node entries are constants. 5550 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5551 if (PN->getParent() == BI->getParent()) 5552 if (FoldCondBranchOnPHI(BI, DL)) 5553 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5554 5555 // Scan predecessor blocks for conditional branches. 5556 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5557 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5558 if (PBI != BI && PBI->isConditional()) 5559 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5560 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5561 5562 // Look for diamond patterns. 5563 if (MergeCondStores) 5564 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5565 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5566 if (PBI != BI && PBI->isConditional()) 5567 if (mergeConditionalStores(PBI, BI)) 5568 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5569 5570 return false; 5571 } 5572 5573 /// Check if passing a value to an instruction will cause undefined behavior. 5574 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5575 Constant *C = dyn_cast<Constant>(V); 5576 if (!C) 5577 return false; 5578 5579 if (I->use_empty()) 5580 return false; 5581 5582 if (C->isNullValue() || isa<UndefValue>(C)) { 5583 // Only look at the first use, avoid hurting compile time with long uselists 5584 User *Use = *I->user_begin(); 5585 5586 // Now make sure that there are no instructions in between that can alter 5587 // control flow (eg. calls) 5588 for (BasicBlock::iterator 5589 i = ++BasicBlock::iterator(I), 5590 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5591 i != UI; ++i) 5592 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5593 return false; 5594 5595 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5596 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5597 if (GEP->getPointerOperand() == I) 5598 return passingValueIsAlwaysUndefined(V, GEP); 5599 5600 // Look through bitcasts. 5601 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5602 return passingValueIsAlwaysUndefined(V, BC); 5603 5604 // Load from null is undefined. 5605 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5606 if (!LI->isVolatile()) 5607 return LI->getPointerAddressSpace() == 0; 5608 5609 // Store to null is undefined. 5610 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5611 if (!SI->isVolatile()) 5612 return SI->getPointerAddressSpace() == 0 && 5613 SI->getPointerOperand() == I; 5614 5615 // A call to null is undefined. 5616 if (auto CS = CallSite(Use)) 5617 return CS.getCalledValue() == I; 5618 } 5619 return false; 5620 } 5621 5622 /// If BB has an incoming value that will always trigger undefined behavior 5623 /// (eg. null pointer dereference), remove the branch leading here. 5624 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5625 for (BasicBlock::iterator i = BB->begin(); 5626 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5627 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5628 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5629 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5630 IRBuilder<> Builder(T); 5631 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5632 BB->removePredecessor(PHI->getIncomingBlock(i)); 5633 // Turn uncoditional branches into unreachables and remove the dead 5634 // destination from conditional branches. 5635 if (BI->isUnconditional()) 5636 Builder.CreateUnreachable(); 5637 else 5638 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5639 : BI->getSuccessor(0)); 5640 BI->eraseFromParent(); 5641 return true; 5642 } 5643 // TODO: SwitchInst. 5644 } 5645 5646 return false; 5647 } 5648 5649 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5650 bool Changed = false; 5651 5652 assert(BB && BB->getParent() && "Block not embedded in function!"); 5653 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5654 5655 // Remove basic blocks that have no predecessors (except the entry block)... 5656 // or that just have themself as a predecessor. These are unreachable. 5657 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 5658 BB->getSinglePredecessor() == BB) { 5659 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5660 DeleteDeadBlock(BB); 5661 return true; 5662 } 5663 5664 // Check to see if we can constant propagate this terminator instruction 5665 // away... 5666 Changed |= ConstantFoldTerminator(BB, true); 5667 5668 // Check for and eliminate duplicate PHI nodes in this block. 5669 Changed |= EliminateDuplicatePHINodes(BB); 5670 5671 // Check for and remove branches that will always cause undefined behavior. 5672 Changed |= removeUndefIntroducingPredecessor(BB); 5673 5674 // Merge basic blocks into their predecessor if there is only one distinct 5675 // pred, and if there is only one distinct successor of the predecessor, and 5676 // if there are no PHI nodes. 5677 // 5678 if (MergeBlockIntoPredecessor(BB)) 5679 return true; 5680 5681 IRBuilder<> Builder(BB); 5682 5683 // If there is a trivial two-entry PHI node in this basic block, and we can 5684 // eliminate it, do so now. 5685 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5686 if (PN->getNumIncomingValues() == 2) 5687 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5688 5689 Builder.SetInsertPoint(BB->getTerminator()); 5690 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5691 if (BI->isUnconditional()) { 5692 if (SimplifyUncondBranch(BI, Builder)) 5693 return true; 5694 } else { 5695 if (SimplifyCondBranch(BI, Builder)) 5696 return true; 5697 } 5698 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5699 if (SimplifyReturn(RI, Builder)) 5700 return true; 5701 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5702 if (SimplifyResume(RI, Builder)) 5703 return true; 5704 } else if (CleanupReturnInst *RI = 5705 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5706 if (SimplifyCleanupReturn(RI)) 5707 return true; 5708 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5709 if (SimplifySwitch(SI, Builder)) 5710 return true; 5711 } else if (UnreachableInst *UI = 5712 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5713 if (SimplifyUnreachable(UI)) 5714 return true; 5715 } else if (IndirectBrInst *IBI = 5716 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5717 if (SimplifyIndirectBr(IBI)) 5718 return true; 5719 } 5720 5721 return Changed; 5722 } 5723 5724 /// This function is used to do simplification of a CFG. 5725 /// For example, it adjusts branches to branches to eliminate the extra hop, 5726 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5727 /// of the CFG. It returns true if a modification was made. 5728 /// 5729 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5730 unsigned BonusInstThreshold, AssumptionCache *AC, 5731 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5732 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5733 BonusInstThreshold, AC, LoopHeaders) 5734 .run(BB); 5735 } 5736