1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
178   if (SI1 == SI2)
179     return false; // Can't merge with self!
180 
181   // It is not safe to merge these two switch instructions if they have a common
182   // successor, and if that successor has a PHI node, and if *that* PHI node has
183   // conflicting incoming values from the two switch blocks.
184   BasicBlock *SI1BB = SI1->getParent();
185   BasicBlock *SI2BB = SI2->getParent();
186   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
187 
188   for (BasicBlock *Succ : successors(SI2BB))
189     if (SI1Succs.count(Succ))
190       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
191         PHINode *PN = cast<PHINode>(BBI);
192         if (PN->getIncomingValueForBlock(SI1BB) !=
193             PN->getIncomingValueForBlock(SI2BB))
194           return false;
195       }
196 
197   return true;
198 }
199 
200 /// Return true if it is safe and profitable to merge these two terminator
201 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
202 /// store all PHI nodes in common successors.
203 static bool
204 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
205                                 Instruction *Cond,
206                                 SmallVectorImpl<PHINode *> &PhiNodes) {
207   if (SI1 == SI2)
208     return false; // Can't merge with self!
209   assert(SI1->isUnconditional() && SI2->isConditional());
210 
211   // We fold the unconditional branch if we can easily update all PHI nodes in
212   // common successors:
213   // 1> We have a constant incoming value for the conditional branch;
214   // 2> We have "Cond" as the incoming value for the unconditional branch;
215   // 3> SI2->getCondition() and Cond have same operands.
216   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
217   if (!Ci2)
218     return false;
219   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
220         Cond->getOperand(1) == Ci2->getOperand(1)) &&
221       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
222         Cond->getOperand(1) == Ci2->getOperand(0)))
223     return false;
224 
225   BasicBlock *SI1BB = SI1->getParent();
226   BasicBlock *SI2BB = SI2->getParent();
227   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
228   for (BasicBlock *Succ : successors(SI2BB))
229     if (SI1Succs.count(Succ))
230       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
231         PHINode *PN = cast<PHINode>(BBI);
232         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
233             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
234           return false;
235         PhiNodes.push_back(PN);
236       }
237   return true;
238 }
239 
240 /// Update PHI nodes in Succ to indicate that there will now be entries in it
241 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
242 /// will be the same as those coming in from ExistPred, an existing predecessor
243 /// of Succ.
244 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
245                                   BasicBlock *ExistPred) {
246   if (!isa<PHINode>(Succ->begin()))
247     return; // Quick exit if nothing to do
248 
249   PHINode *PN;
250   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
251     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
252 }
253 
254 /// Compute an abstract "cost" of speculating the given instruction,
255 /// which is assumed to be safe to speculate. TCC_Free means cheap,
256 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
257 /// expensive.
258 static unsigned ComputeSpeculationCost(const User *I,
259                                        const TargetTransformInfo &TTI) {
260   assert(isSafeToSpeculativelyExecute(I) &&
261          "Instruction is not safe to speculatively execute!");
262   return TTI.getUserCost(I);
263 }
264 
265 /// If we have a merge point of an "if condition" as accepted above,
266 /// return true if the specified value dominates the block.  We
267 /// don't handle the true generality of domination here, just a special case
268 /// which works well enough for us.
269 ///
270 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
271 /// see if V (which must be an instruction) and its recursive operands
272 /// that do not dominate BB have a combined cost lower than CostRemaining and
273 /// are non-trapping.  If both are true, the instruction is inserted into the
274 /// set and true is returned.
275 ///
276 /// The cost for most non-trapping instructions is defined as 1 except for
277 /// Select whose cost is 2.
278 ///
279 /// After this function returns, CostRemaining is decreased by the cost of
280 /// V plus its non-dominating operands.  If that cost is greater than
281 /// CostRemaining, false is returned and CostRemaining is undefined.
282 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
283                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
284                                 unsigned &CostRemaining,
285                                 const TargetTransformInfo &TTI,
286                                 unsigned Depth = 0) {
287   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
288   // so limit the recursion depth.
289   // TODO: While this recursion limit does prevent pathological behavior, it
290   // would be better to track visited instructions to avoid cycles.
291   if (Depth == MaxSpeculationDepth)
292     return false;
293 
294   Instruction *I = dyn_cast<Instruction>(V);
295   if (!I) {
296     // Non-instructions all dominate instructions, but not all constantexprs
297     // can be executed unconditionally.
298     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
299       if (C->canTrap())
300         return false;
301     return true;
302   }
303   BasicBlock *PBB = I->getParent();
304 
305   // We don't want to allow weird loops that might have the "if condition" in
306   // the bottom of this block.
307   if (PBB == BB)
308     return false;
309 
310   // If this instruction is defined in a block that contains an unconditional
311   // branch to BB, then it must be in the 'conditional' part of the "if
312   // statement".  If not, it definitely dominates the region.
313   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
314   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
315     return true;
316 
317   // If we aren't allowing aggressive promotion anymore, then don't consider
318   // instructions in the 'if region'.
319   if (!AggressiveInsts)
320     return false;
321 
322   // If we have seen this instruction before, don't count it again.
323   if (AggressiveInsts->count(I))
324     return true;
325 
326   // Okay, it looks like the instruction IS in the "condition".  Check to
327   // see if it's a cheap instruction to unconditionally compute, and if it
328   // only uses stuff defined outside of the condition.  If so, hoist it out.
329   if (!isSafeToSpeculativelyExecute(I))
330     return false;
331 
332   unsigned Cost = ComputeSpeculationCost(I, TTI);
333 
334   // Allow exactly one instruction to be speculated regardless of its cost
335   // (as long as it is safe to do so).
336   // This is intended to flatten the CFG even if the instruction is a division
337   // or other expensive operation. The speculation of an expensive instruction
338   // is expected to be undone in CodeGenPrepare if the speculation has not
339   // enabled further IR optimizations.
340   if (Cost > CostRemaining &&
341       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
342     return false;
343 
344   // Avoid unsigned wrap.
345   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
346 
347   // Okay, we can only really hoist these out if their operands do
348   // not take us over the cost threshold.
349   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
350     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
351                              Depth + 1))
352       return false;
353   // Okay, it's safe to do this!  Remember this instruction.
354   AggressiveInsts->insert(I);
355   return true;
356 }
357 
358 /// Extract ConstantInt from value, looking through IntToPtr
359 /// and PointerNullValue. Return NULL if value is not a constant int.
360 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
361   // Normal constant int.
362   ConstantInt *CI = dyn_cast<ConstantInt>(V);
363   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
364     return CI;
365 
366   // This is some kind of pointer constant. Turn it into a pointer-sized
367   // ConstantInt if possible.
368   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
369 
370   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
371   if (isa<ConstantPointerNull>(V))
372     return ConstantInt::get(PtrTy, 0);
373 
374   // IntToPtr const int.
375   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
376     if (CE->getOpcode() == Instruction::IntToPtr)
377       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
378         // The constant is very likely to have the right type already.
379         if (CI->getType() == PtrTy)
380           return CI;
381         else
382           return cast<ConstantInt>(
383               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
384       }
385   return nullptr;
386 }
387 
388 namespace {
389 
390 /// Given a chain of or (||) or and (&&) comparison of a value against a
391 /// constant, this will try to recover the information required for a switch
392 /// structure.
393 /// It will depth-first traverse the chain of comparison, seeking for patterns
394 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
395 /// representing the different cases for the switch.
396 /// Note that if the chain is composed of '||' it will build the set of elements
397 /// that matches the comparisons (i.e. any of this value validate the chain)
398 /// while for a chain of '&&' it will build the set elements that make the test
399 /// fail.
400 struct ConstantComparesGatherer {
401   const DataLayout &DL;
402   Value *CompValue; /// Value found for the switch comparison
403   Value *Extra;     /// Extra clause to be checked before the switch
404   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
405   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
406 
407   /// Construct and compute the result for the comparison instruction Cond
408   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
409       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
410     gather(Cond);
411   }
412 
413   /// Prevent copy
414   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
415   ConstantComparesGatherer &
416   operator=(const ConstantComparesGatherer &) = delete;
417 
418 private:
419   /// Try to set the current value used for the comparison, it succeeds only if
420   /// it wasn't set before or if the new value is the same as the old one
421   bool setValueOnce(Value *NewVal) {
422     if (CompValue && CompValue != NewVal)
423       return false;
424     CompValue = NewVal;
425     return (CompValue != nullptr);
426   }
427 
428   /// Try to match Instruction "I" as a comparison against a constant and
429   /// populates the array Vals with the set of values that match (or do not
430   /// match depending on isEQ).
431   /// Return false on failure. On success, the Value the comparison matched
432   /// against is placed in CompValue.
433   /// If CompValue is already set, the function is expected to fail if a match
434   /// is found but the value compared to is different.
435   bool matchInstruction(Instruction *I, bool isEQ) {
436     // If this is an icmp against a constant, handle this as one of the cases.
437     ICmpInst *ICI;
438     ConstantInt *C;
439     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
440           (C = GetConstantInt(I->getOperand(1), DL)))) {
441       return false;
442     }
443 
444     Value *RHSVal;
445     const APInt *RHSC;
446 
447     // Pattern match a special case
448     // (x & ~2^z) == y --> x == y || x == y|2^z
449     // This undoes a transformation done by instcombine to fuse 2 compares.
450     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
451 
452       // It's a little bit hard to see why the following transformations are
453       // correct. Here is a CVC3 program to verify them for 64-bit values:
454 
455       /*
456          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
457          x    : BITVECTOR(64);
458          y    : BITVECTOR(64);
459          z    : BITVECTOR(64);
460          mask : BITVECTOR(64) = BVSHL(ONE, z);
461          QUERY( (y & ~mask = y) =>
462                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
463          );
464          QUERY( (y |  mask = y) =>
465                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
466          );
467       */
468 
469       // Please note that each pattern must be a dual implication (<--> or
470       // iff). One directional implication can create spurious matches. If the
471       // implication is only one-way, an unsatisfiable condition on the left
472       // side can imply a satisfiable condition on the right side. Dual
473       // implication ensures that satisfiable conditions are transformed to
474       // other satisfiable conditions and unsatisfiable conditions are
475       // transformed to other unsatisfiable conditions.
476 
477       // Here is a concrete example of a unsatisfiable condition on the left
478       // implying a satisfiable condition on the right:
479       //
480       // mask = (1 << z)
481       // (x & ~mask) == y  --> (x == y || x == (y | mask))
482       //
483       // Substituting y = 3, z = 0 yields:
484       // (x & -2) == 3 --> (x == 3 || x == 2)
485 
486       // Pattern match a special case:
487       /*
488         QUERY( (y & ~mask = y) =>
489                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
490         );
491       */
492       if (match(ICI->getOperand(0),
493                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
494         APInt Mask = ~*RHSC;
495         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
496           // If we already have a value for the switch, it has to match!
497           if (!setValueOnce(RHSVal))
498             return false;
499 
500           Vals.push_back(C);
501           Vals.push_back(
502               ConstantInt::get(C->getContext(),
503                                C->getValue() | Mask));
504           UsedICmps++;
505           return true;
506         }
507       }
508 
509       // Pattern match a special case:
510       /*
511         QUERY( (y |  mask = y) =>
512                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
513         );
514       */
515       if (match(ICI->getOperand(0),
516                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
517         APInt Mask = *RHSC;
518         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
519           // If we already have a value for the switch, it has to match!
520           if (!setValueOnce(RHSVal))
521             return false;
522 
523           Vals.push_back(C);
524           Vals.push_back(ConstantInt::get(C->getContext(),
525                                           C->getValue() & ~Mask));
526           UsedICmps++;
527           return true;
528         }
529       }
530 
531       // If we already have a value for the switch, it has to match!
532       if (!setValueOnce(ICI->getOperand(0)))
533         return false;
534 
535       UsedICmps++;
536       Vals.push_back(C);
537       return ICI->getOperand(0);
538     }
539 
540     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
541     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
542         ICI->getPredicate(), C->getValue());
543 
544     // Shift the range if the compare is fed by an add. This is the range
545     // compare idiom as emitted by instcombine.
546     Value *CandidateVal = I->getOperand(0);
547     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
548       Span = Span.subtract(*RHSC);
549       CandidateVal = RHSVal;
550     }
551 
552     // If this is an and/!= check, then we are looking to build the set of
553     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
554     // x != 0 && x != 1.
555     if (!isEQ)
556       Span = Span.inverse();
557 
558     // If there are a ton of values, we don't want to make a ginormous switch.
559     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
560       return false;
561     }
562 
563     // If we already have a value for the switch, it has to match!
564     if (!setValueOnce(CandidateVal))
565       return false;
566 
567     // Add all values from the range to the set
568     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
569       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
570 
571     UsedICmps++;
572     return true;
573   }
574 
575   /// Given a potentially 'or'd or 'and'd together collection of icmp
576   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
577   /// the value being compared, and stick the list constants into the Vals
578   /// vector.
579   /// One "Extra" case is allowed to differ from the other.
580   void gather(Value *V) {
581     Instruction *I = dyn_cast<Instruction>(V);
582     bool isEQ = (I->getOpcode() == Instruction::Or);
583 
584     // Keep a stack (SmallVector for efficiency) for depth-first traversal
585     SmallVector<Value *, 8> DFT;
586     SmallPtrSet<Value *, 8> Visited;
587 
588     // Initialize
589     Visited.insert(V);
590     DFT.push_back(V);
591 
592     while (!DFT.empty()) {
593       V = DFT.pop_back_val();
594 
595       if (Instruction *I = dyn_cast<Instruction>(V)) {
596         // If it is a || (or && depending on isEQ), process the operands.
597         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
598           if (Visited.insert(I->getOperand(1)).second)
599             DFT.push_back(I->getOperand(1));
600           if (Visited.insert(I->getOperand(0)).second)
601             DFT.push_back(I->getOperand(0));
602           continue;
603         }
604 
605         // Try to match the current instruction
606         if (matchInstruction(I, isEQ))
607           // Match succeed, continue the loop
608           continue;
609       }
610 
611       // One element of the sequence of || (or &&) could not be match as a
612       // comparison against the same value as the others.
613       // We allow only one "Extra" case to be checked before the switch
614       if (!Extra) {
615         Extra = V;
616         continue;
617       }
618       // Failed to parse a proper sequence, abort now
619       CompValue = nullptr;
620       break;
621     }
622   }
623 };
624 }
625 
626 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
627   Instruction *Cond = nullptr;
628   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
629     Cond = dyn_cast<Instruction>(SI->getCondition());
630   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
631     if (BI->isConditional())
632       Cond = dyn_cast<Instruction>(BI->getCondition());
633   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
634     Cond = dyn_cast<Instruction>(IBI->getAddress());
635   }
636 
637   TI->eraseFromParent();
638   if (Cond)
639     RecursivelyDeleteTriviallyDeadInstructions(Cond);
640 }
641 
642 /// Return true if the specified terminator checks
643 /// to see if a value is equal to constant integer value.
644 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
645   Value *CV = nullptr;
646   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
647     // Do not permit merging of large switch instructions into their
648     // predecessors unless there is only one predecessor.
649     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
650                                                pred_end(SI->getParent())) <=
651         128)
652       CV = SI->getCondition();
653   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
654     if (BI->isConditional() && BI->getCondition()->hasOneUse())
655       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
656         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
657           CV = ICI->getOperand(0);
658       }
659 
660   // Unwrap any lossless ptrtoint cast.
661   if (CV) {
662     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
663       Value *Ptr = PTII->getPointerOperand();
664       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
665         CV = Ptr;
666     }
667   }
668   return CV;
669 }
670 
671 /// Given a value comparison instruction,
672 /// decode all of the 'cases' that it represents and return the 'default' block.
673 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
674     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676     Cases.reserve(SI->getNumCases());
677     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
678          ++i)
679       Cases.push_back(
680           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
681     return SI->getDefaultDest();
682   }
683 
684   BranchInst *BI = cast<BranchInst>(TI);
685   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
686   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
687   Cases.push_back(ValueEqualityComparisonCase(
688       GetConstantInt(ICI->getOperand(1), DL), Succ));
689   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
690 }
691 
692 /// Given a vector of bb/value pairs, remove any entries
693 /// in the list that match the specified block.
694 static void
695 EliminateBlockCases(BasicBlock *BB,
696                     std::vector<ValueEqualityComparisonCase> &Cases) {
697   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
698 }
699 
700 /// Return true if there are any keys in C1 that exist in C2 as well.
701 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
702                           std::vector<ValueEqualityComparisonCase> &C2) {
703   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
704 
705   // Make V1 be smaller than V2.
706   if (V1->size() > V2->size())
707     std::swap(V1, V2);
708 
709   if (V1->size() == 0)
710     return false;
711   if (V1->size() == 1) {
712     // Just scan V2.
713     ConstantInt *TheVal = (*V1)[0].Value;
714     for (unsigned i = 0, e = V2->size(); i != e; ++i)
715       if (TheVal == (*V2)[i].Value)
716         return true;
717   }
718 
719   // Otherwise, just sort both lists and compare element by element.
720   array_pod_sort(V1->begin(), V1->end());
721   array_pod_sort(V2->begin(), V2->end());
722   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
723   while (i1 != e1 && i2 != e2) {
724     if ((*V1)[i1].Value == (*V2)[i2].Value)
725       return true;
726     if ((*V1)[i1].Value < (*V2)[i2].Value)
727       ++i1;
728     else
729       ++i2;
730   }
731   return false;
732 }
733 
734 /// If TI is known to be a terminator instruction and its block is known to
735 /// only have a single predecessor block, check to see if that predecessor is
736 /// also a value comparison with the same value, and if that comparison
737 /// determines the outcome of this comparison. If so, simplify TI. This does a
738 /// very limited form of jump threading.
739 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
740     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
741   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
742   if (!PredVal)
743     return false; // Not a value comparison in predecessor.
744 
745   Value *ThisVal = isValueEqualityComparison(TI);
746   assert(ThisVal && "This isn't a value comparison!!");
747   if (ThisVal != PredVal)
748     return false; // Different predicates.
749 
750   // TODO: Preserve branch weight metadata, similarly to how
751   // FoldValueComparisonIntoPredecessors preserves it.
752 
753   // Find out information about when control will move from Pred to TI's block.
754   std::vector<ValueEqualityComparisonCase> PredCases;
755   BasicBlock *PredDef =
756       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
757   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
758 
759   // Find information about how control leaves this block.
760   std::vector<ValueEqualityComparisonCase> ThisCases;
761   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
762   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
763 
764   // If TI's block is the default block from Pred's comparison, potentially
765   // simplify TI based on this knowledge.
766   if (PredDef == TI->getParent()) {
767     // If we are here, we know that the value is none of those cases listed in
768     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
769     // can simplify TI.
770     if (!ValuesOverlap(PredCases, ThisCases))
771       return false;
772 
773     if (isa<BranchInst>(TI)) {
774       // Okay, one of the successors of this condbr is dead.  Convert it to a
775       // uncond br.
776       assert(ThisCases.size() == 1 && "Branch can only have one case!");
777       // Insert the new branch.
778       Instruction *NI = Builder.CreateBr(ThisDef);
779       (void)NI;
780 
781       // Remove PHI node entries for the dead edge.
782       ThisCases[0].Dest->removePredecessor(TI->getParent());
783 
784       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
785                    << "Through successor TI: " << *TI << "Leaving: " << *NI
786                    << "\n");
787 
788       EraseTerminatorInstAndDCECond(TI);
789       return true;
790     }
791 
792     SwitchInst *SI = cast<SwitchInst>(TI);
793     // Okay, TI has cases that are statically dead, prune them away.
794     SmallPtrSet<Constant *, 16> DeadCases;
795     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
796       DeadCases.insert(PredCases[i].Value);
797 
798     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
799                  << "Through successor TI: " << *TI);
800 
801     // Collect branch weights into a vector.
802     SmallVector<uint32_t, 8> Weights;
803     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
804     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
805     if (HasWeight)
806       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
807            ++MD_i) {
808         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
809         Weights.push_back(CI->getValue().getZExtValue());
810       }
811     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
812       --i;
813       if (DeadCases.count(i.getCaseValue())) {
814         if (HasWeight) {
815           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
816           Weights.pop_back();
817         }
818         i.getCaseSuccessor()->removePredecessor(TI->getParent());
819         SI->removeCase(i);
820       }
821     }
822     if (HasWeight && Weights.size() >= 2)
823       SI->setMetadata(LLVMContext::MD_prof,
824                       MDBuilder(SI->getParent()->getContext())
825                           .createBranchWeights(Weights));
826 
827     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
828     return true;
829   }
830 
831   // Otherwise, TI's block must correspond to some matched value.  Find out
832   // which value (or set of values) this is.
833   ConstantInt *TIV = nullptr;
834   BasicBlock *TIBB = TI->getParent();
835   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
836     if (PredCases[i].Dest == TIBB) {
837       if (TIV)
838         return false; // Cannot handle multiple values coming to this block.
839       TIV = PredCases[i].Value;
840     }
841   assert(TIV && "No edge from pred to succ?");
842 
843   // Okay, we found the one constant that our value can be if we get into TI's
844   // BB.  Find out which successor will unconditionally be branched to.
845   BasicBlock *TheRealDest = nullptr;
846   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
847     if (ThisCases[i].Value == TIV) {
848       TheRealDest = ThisCases[i].Dest;
849       break;
850     }
851 
852   // If not handled by any explicit cases, it is handled by the default case.
853   if (!TheRealDest)
854     TheRealDest = ThisDef;
855 
856   // Remove PHI node entries for dead edges.
857   BasicBlock *CheckEdge = TheRealDest;
858   for (BasicBlock *Succ : successors(TIBB))
859     if (Succ != CheckEdge)
860       Succ->removePredecessor(TIBB);
861     else
862       CheckEdge = nullptr;
863 
864   // Insert the new branch.
865   Instruction *NI = Builder.CreateBr(TheRealDest);
866   (void)NI;
867 
868   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
869                << "Through successor TI: " << *TI << "Leaving: " << *NI
870                << "\n");
871 
872   EraseTerminatorInstAndDCECond(TI);
873   return true;
874 }
875 
876 namespace {
877 /// This class implements a stable ordering of constant
878 /// integers that does not depend on their address.  This is important for
879 /// applications that sort ConstantInt's to ensure uniqueness.
880 struct ConstantIntOrdering {
881   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
882     return LHS->getValue().ult(RHS->getValue());
883   }
884 };
885 }
886 
887 static int ConstantIntSortPredicate(ConstantInt *const *P1,
888                                     ConstantInt *const *P2) {
889   const ConstantInt *LHS = *P1;
890   const ConstantInt *RHS = *P2;
891   if (LHS == RHS)
892     return 0;
893   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
894 }
895 
896 static inline bool HasBranchWeights(const Instruction *I) {
897   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
898   if (ProfMD && ProfMD->getOperand(0))
899     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
900       return MDS->getString().equals("branch_weights");
901 
902   return false;
903 }
904 
905 /// Get Weights of a given TerminatorInst, the default weight is at the front
906 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
907 /// metadata.
908 static void GetBranchWeights(TerminatorInst *TI,
909                              SmallVectorImpl<uint64_t> &Weights) {
910   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
911   assert(MD);
912   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
913     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
914     Weights.push_back(CI->getValue().getZExtValue());
915   }
916 
917   // If TI is a conditional eq, the default case is the false case,
918   // and the corresponding branch-weight data is at index 2. We swap the
919   // default weight to be the first entry.
920   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
921     assert(Weights.size() == 2);
922     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
923     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
924       std::swap(Weights.front(), Weights.back());
925   }
926 }
927 
928 /// Keep halving the weights until all can fit in uint32_t.
929 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
930   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
931   if (Max > UINT_MAX) {
932     unsigned Offset = 32 - countLeadingZeros(Max);
933     for (uint64_t &I : Weights)
934       I >>= Offset;
935   }
936 }
937 
938 /// The specified terminator is a value equality comparison instruction
939 /// (either a switch or a branch on "X == c").
940 /// See if any of the predecessors of the terminator block are value comparisons
941 /// on the same value.  If so, and if safe to do so, fold them together.
942 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
943                                                          IRBuilder<> &Builder) {
944   BasicBlock *BB = TI->getParent();
945   Value *CV = isValueEqualityComparison(TI); // CondVal
946   assert(CV && "Not a comparison?");
947   bool Changed = false;
948 
949   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
950   while (!Preds.empty()) {
951     BasicBlock *Pred = Preds.pop_back_val();
952 
953     // See if the predecessor is a comparison with the same value.
954     TerminatorInst *PTI = Pred->getTerminator();
955     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
956 
957     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
958       // Figure out which 'cases' to copy from SI to PSI.
959       std::vector<ValueEqualityComparisonCase> BBCases;
960       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
961 
962       std::vector<ValueEqualityComparisonCase> PredCases;
963       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
964 
965       // Based on whether the default edge from PTI goes to BB or not, fill in
966       // PredCases and PredDefault with the new switch cases we would like to
967       // build.
968       SmallVector<BasicBlock *, 8> NewSuccessors;
969 
970       // Update the branch weight metadata along the way
971       SmallVector<uint64_t, 8> Weights;
972       bool PredHasWeights = HasBranchWeights(PTI);
973       bool SuccHasWeights = HasBranchWeights(TI);
974 
975       if (PredHasWeights) {
976         GetBranchWeights(PTI, Weights);
977         // branch-weight metadata is inconsistent here.
978         if (Weights.size() != 1 + PredCases.size())
979           PredHasWeights = SuccHasWeights = false;
980       } else if (SuccHasWeights)
981         // If there are no predecessor weights but there are successor weights,
982         // populate Weights with 1, which will later be scaled to the sum of
983         // successor's weights
984         Weights.assign(1 + PredCases.size(), 1);
985 
986       SmallVector<uint64_t, 8> SuccWeights;
987       if (SuccHasWeights) {
988         GetBranchWeights(TI, SuccWeights);
989         // branch-weight metadata is inconsistent here.
990         if (SuccWeights.size() != 1 + BBCases.size())
991           PredHasWeights = SuccHasWeights = false;
992       } else if (PredHasWeights)
993         SuccWeights.assign(1 + BBCases.size(), 1);
994 
995       if (PredDefault == BB) {
996         // If this is the default destination from PTI, only the edges in TI
997         // that don't occur in PTI, or that branch to BB will be activated.
998         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
999         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1000           if (PredCases[i].Dest != BB)
1001             PTIHandled.insert(PredCases[i].Value);
1002           else {
1003             // The default destination is BB, we don't need explicit targets.
1004             std::swap(PredCases[i], PredCases.back());
1005 
1006             if (PredHasWeights || SuccHasWeights) {
1007               // Increase weight for the default case.
1008               Weights[0] += Weights[i + 1];
1009               std::swap(Weights[i + 1], Weights.back());
1010               Weights.pop_back();
1011             }
1012 
1013             PredCases.pop_back();
1014             --i;
1015             --e;
1016           }
1017 
1018         // Reconstruct the new switch statement we will be building.
1019         if (PredDefault != BBDefault) {
1020           PredDefault->removePredecessor(Pred);
1021           PredDefault = BBDefault;
1022           NewSuccessors.push_back(BBDefault);
1023         }
1024 
1025         unsigned CasesFromPred = Weights.size();
1026         uint64_t ValidTotalSuccWeight = 0;
1027         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1028           if (!PTIHandled.count(BBCases[i].Value) &&
1029               BBCases[i].Dest != BBDefault) {
1030             PredCases.push_back(BBCases[i]);
1031             NewSuccessors.push_back(BBCases[i].Dest);
1032             if (SuccHasWeights || PredHasWeights) {
1033               // The default weight is at index 0, so weight for the ith case
1034               // should be at index i+1. Scale the cases from successor by
1035               // PredDefaultWeight (Weights[0]).
1036               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1037               ValidTotalSuccWeight += SuccWeights[i + 1];
1038             }
1039           }
1040 
1041         if (SuccHasWeights || PredHasWeights) {
1042           ValidTotalSuccWeight += SuccWeights[0];
1043           // Scale the cases from predecessor by ValidTotalSuccWeight.
1044           for (unsigned i = 1; i < CasesFromPred; ++i)
1045             Weights[i] *= ValidTotalSuccWeight;
1046           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1047           Weights[0] *= SuccWeights[0];
1048         }
1049       } else {
1050         // If this is not the default destination from PSI, only the edges
1051         // in SI that occur in PSI with a destination of BB will be
1052         // activated.
1053         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1054         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1055         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1056           if (PredCases[i].Dest == BB) {
1057             PTIHandled.insert(PredCases[i].Value);
1058 
1059             if (PredHasWeights || SuccHasWeights) {
1060               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1061               std::swap(Weights[i + 1], Weights.back());
1062               Weights.pop_back();
1063             }
1064 
1065             std::swap(PredCases[i], PredCases.back());
1066             PredCases.pop_back();
1067             --i;
1068             --e;
1069           }
1070 
1071         // Okay, now we know which constants were sent to BB from the
1072         // predecessor.  Figure out where they will all go now.
1073         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1074           if (PTIHandled.count(BBCases[i].Value)) {
1075             // If this is one we are capable of getting...
1076             if (PredHasWeights || SuccHasWeights)
1077               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1078             PredCases.push_back(BBCases[i]);
1079             NewSuccessors.push_back(BBCases[i].Dest);
1080             PTIHandled.erase(
1081                 BBCases[i].Value); // This constant is taken care of
1082           }
1083 
1084         // If there are any constants vectored to BB that TI doesn't handle,
1085         // they must go to the default destination of TI.
1086         for (ConstantInt *I : PTIHandled) {
1087           if (PredHasWeights || SuccHasWeights)
1088             Weights.push_back(WeightsForHandled[I]);
1089           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1090           NewSuccessors.push_back(BBDefault);
1091         }
1092       }
1093 
1094       // Okay, at this point, we know which new successor Pred will get.  Make
1095       // sure we update the number of entries in the PHI nodes for these
1096       // successors.
1097       for (BasicBlock *NewSuccessor : NewSuccessors)
1098         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1099 
1100       Builder.SetInsertPoint(PTI);
1101       // Convert pointer to int before we switch.
1102       if (CV->getType()->isPointerTy()) {
1103         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1104                                     "magicptr");
1105       }
1106 
1107       // Now that the successors are updated, create the new Switch instruction.
1108       SwitchInst *NewSI =
1109           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1110       NewSI->setDebugLoc(PTI->getDebugLoc());
1111       for (ValueEqualityComparisonCase &V : PredCases)
1112         NewSI->addCase(V.Value, V.Dest);
1113 
1114       if (PredHasWeights || SuccHasWeights) {
1115         // Halve the weights if any of them cannot fit in an uint32_t
1116         FitWeights(Weights);
1117 
1118         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1119 
1120         NewSI->setMetadata(
1121             LLVMContext::MD_prof,
1122             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1123       }
1124 
1125       EraseTerminatorInstAndDCECond(PTI);
1126 
1127       // Okay, last check.  If BB is still a successor of PSI, then we must
1128       // have an infinite loop case.  If so, add an infinitely looping block
1129       // to handle the case to preserve the behavior of the code.
1130       BasicBlock *InfLoopBlock = nullptr;
1131       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1132         if (NewSI->getSuccessor(i) == BB) {
1133           if (!InfLoopBlock) {
1134             // Insert it at the end of the function, because it's either code,
1135             // or it won't matter if it's hot. :)
1136             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1137                                               BB->getParent());
1138             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1139           }
1140           NewSI->setSuccessor(i, InfLoopBlock);
1141         }
1142 
1143       Changed = true;
1144     }
1145   }
1146   return Changed;
1147 }
1148 
1149 // If we would need to insert a select that uses the value of this invoke
1150 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1151 // can't hoist the invoke, as there is nowhere to put the select in this case.
1152 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1153                                 Instruction *I1, Instruction *I2) {
1154   for (BasicBlock *Succ : successors(BB1)) {
1155     PHINode *PN;
1156     for (BasicBlock::iterator BBI = Succ->begin();
1157          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1158       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1161         return false;
1162       }
1163     }
1164   }
1165   return true;
1166 }
1167 
1168 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1169 
1170 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1171 /// in the two blocks up into the branch block. The caller of this function
1172 /// guarantees that BI's block dominates BB1 and BB2.
1173 static bool HoistThenElseCodeToIf(BranchInst *BI,
1174                                   const TargetTransformInfo &TTI) {
1175   // This does very trivial matching, with limited scanning, to find identical
1176   // instructions in the two blocks.  In particular, we don't want to get into
1177   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1178   // such, we currently just scan for obviously identical instructions in an
1179   // identical order.
1180   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1181   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1182 
1183   BasicBlock::iterator BB1_Itr = BB1->begin();
1184   BasicBlock::iterator BB2_Itr = BB2->begin();
1185 
1186   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1187   // Skip debug info if it is not identical.
1188   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1189   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1190   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1191     while (isa<DbgInfoIntrinsic>(I1))
1192       I1 = &*BB1_Itr++;
1193     while (isa<DbgInfoIntrinsic>(I2))
1194       I2 = &*BB2_Itr++;
1195   }
1196   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1197       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1198     return false;
1199 
1200   BasicBlock *BIParent = BI->getParent();
1201 
1202   bool Changed = false;
1203   do {
1204     // If we are hoisting the terminator instruction, don't move one (making a
1205     // broken BB), instead clone it, and remove BI.
1206     if (isa<TerminatorInst>(I1))
1207       goto HoistTerminator;
1208 
1209     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1210       return Changed;
1211 
1212     // For a normal instruction, we just move one to right before the branch,
1213     // then replace all uses of the other with the first.  Finally, we remove
1214     // the now redundant second instruction.
1215     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1216     if (!I2->use_empty())
1217       I2->replaceAllUsesWith(I1);
1218     I1->intersectOptionalDataWith(I2);
1219     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1220                            LLVMContext::MD_range,
1221                            LLVMContext::MD_fpmath,
1222                            LLVMContext::MD_invariant_load,
1223                            LLVMContext::MD_nonnull,
1224                            LLVMContext::MD_invariant_group,
1225                            LLVMContext::MD_align,
1226                            LLVMContext::MD_dereferenceable,
1227                            LLVMContext::MD_dereferenceable_or_null,
1228                            LLVMContext::MD_mem_parallel_loop_access};
1229     combineMetadata(I1, I2, KnownIDs);
1230     I2->eraseFromParent();
1231     Changed = true;
1232 
1233     I1 = &*BB1_Itr++;
1234     I2 = &*BB2_Itr++;
1235     // Skip debug info if it is not identical.
1236     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1237     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1238     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1239       while (isa<DbgInfoIntrinsic>(I1))
1240         I1 = &*BB1_Itr++;
1241       while (isa<DbgInfoIntrinsic>(I2))
1242         I2 = &*BB2_Itr++;
1243     }
1244   } while (I1->isIdenticalToWhenDefined(I2));
1245 
1246   return true;
1247 
1248 HoistTerminator:
1249   // It may not be possible to hoist an invoke.
1250   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1251     return Changed;
1252 
1253   for (BasicBlock *Succ : successors(BB1)) {
1254     PHINode *PN;
1255     for (BasicBlock::iterator BBI = Succ->begin();
1256          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1257       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1258       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1259       if (BB1V == BB2V)
1260         continue;
1261 
1262       // Check for passingValueIsAlwaysUndefined here because we would rather
1263       // eliminate undefined control flow then converting it to a select.
1264       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1265           passingValueIsAlwaysUndefined(BB2V, PN))
1266         return Changed;
1267 
1268       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1269         return Changed;
1270       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1271         return Changed;
1272     }
1273   }
1274 
1275   // Okay, it is safe to hoist the terminator.
1276   Instruction *NT = I1->clone();
1277   BIParent->getInstList().insert(BI->getIterator(), NT);
1278   if (!NT->getType()->isVoidTy()) {
1279     I1->replaceAllUsesWith(NT);
1280     I2->replaceAllUsesWith(NT);
1281     NT->takeName(I1);
1282   }
1283 
1284   IRBuilder<NoFolder> Builder(NT);
1285   // Hoisting one of the terminators from our successor is a great thing.
1286   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1287   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1288   // nodes, so we insert select instruction to compute the final result.
1289   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1290   for (BasicBlock *Succ : successors(BB1)) {
1291     PHINode *PN;
1292     for (BasicBlock::iterator BBI = Succ->begin();
1293          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1294       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1295       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1296       if (BB1V == BB2V)
1297         continue;
1298 
1299       // These values do not agree.  Insert a select instruction before NT
1300       // that determines the right value.
1301       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1302       if (!SI)
1303         SI = cast<SelectInst>(
1304             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1305                                  BB1V->getName() + "." + BB2V->getName(), BI));
1306 
1307       // Make the PHI node use the select for all incoming values for BB1/BB2
1308       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1309         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1310           PN->setIncomingValue(i, SI);
1311     }
1312   }
1313 
1314   // Update any PHI nodes in our new successors.
1315   for (BasicBlock *Succ : successors(BB1))
1316     AddPredecessorToBlock(Succ, BIParent, BB1);
1317 
1318   EraseTerminatorInstAndDCECond(BI);
1319   return true;
1320 }
1321 
1322 // Return true if V0 and V1 are equivalent. This handles the obvious cases
1323 // where V0 == V1 and V0 and V1 are both identical instructions, but also
1324 // handles loads and stores with identical operands.
1325 //
1326 // Because determining if two memory instructions are equivalent
1327 // depends on control flow, the \c At0 and \c At1 parameters specify a
1328 // location for the query. This function is essentially answering the
1329 // query "If V0 were moved to At0, and V1 were moved to At1, are V0 and V1
1330 // equivalent?". In practice this means checking that moving V0 to At0
1331 // doesn't cross any other memory instructions.
1332 static bool areValuesTriviallySame(Value *V0, BasicBlock::const_iterator At0,
1333                                    Value *V1, BasicBlock::const_iterator At1) {
1334   if (V0 == V1)
1335     return true;
1336 
1337   // Also check for instructions that are identical but not pointer-identical.
1338   // This can include load instructions that haven't been CSE'd.
1339   if (!isa<Instruction>(V0) || !isa<Instruction>(V1))
1340     return false;
1341   const auto *I0 = cast<Instruction>(V0);
1342   const auto *I1 = cast<Instruction>(V1);
1343   if (!I0->isIdenticalToWhenDefined(I1))
1344     return false;
1345 
1346   if (!I0->mayReadOrWriteMemory())
1347     return true;
1348 
1349   // Instructions that may read or write memory have extra restrictions. We
1350   // must ensure we don't treat %a and %b as equivalent in code such as:
1351   //
1352   //  %a = load %x
1353   //  store %x, 1
1354   //  if (%c) {
1355   //    %b = load %x
1356   //    %d = add %b, 1
1357   //  } else {
1358   //    %d = add %a, 1
1359   //  }
1360 
1361   // Be conservative. We don't want to search the entire CFG between def
1362   // and use; if the def isn't in the same block as the use just bail.
1363   if (I0->getParent() != At0->getParent() ||
1364       I1->getParent() != At1->getParent())
1365     return false;
1366 
1367   // Again, be super conservative. Ideally we'd be able to query AliasAnalysis
1368   // but we currently don't have that available.
1369   auto WritesMemory = [](const Instruction &I) {
1370     return I.mayReadOrWriteMemory();
1371   };
1372   if (std::any_of(std::next(I0->getIterator()), At0, WritesMemory))
1373     return false;
1374   if (std::any_of(std::next(I1->getIterator()), At1, WritesMemory))
1375     return false;
1376   return true;
1377 }
1378 
1379 // Is it legal to place a variable in operand \c OpIdx of \c I?
1380 // FIXME: This should be promoted to Instruction.
1381 static bool canReplaceOperandWithVariable(const Instruction *I,
1382                                           unsigned OpIdx) {
1383   // Early exit.
1384   if (!isa<Constant>(I->getOperand(OpIdx)))
1385     return true;
1386 
1387   switch (I->getOpcode()) {
1388   default:
1389     return true;
1390   case Instruction::Call:
1391   case Instruction::Invoke:
1392     // FIXME: many arithmetic intrinsics have no issue taking a
1393     // variable, however it's hard to distingish these from
1394     // specials such as @llvm.frameaddress that require a constant.
1395     return !isa<IntrinsicInst>(I);
1396   case Instruction::ShuffleVector:
1397     // Shufflevector masks are constant.
1398     return OpIdx != 2;
1399   case Instruction::ExtractValue:
1400   case Instruction::InsertValue:
1401     // All operands apart from the first are constant.
1402     return OpIdx == 0;
1403   case Instruction::Alloca:
1404     return false;
1405   case Instruction::GetElementPtr:
1406     if (OpIdx == 0)
1407       return true;
1408     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1409     return !It->isStructTy();
1410   }
1411 }
1412 
1413 // All blocks in Blocks unconditionally jump to a common successor. Analyze
1414 // the last non-terminator instruction in each block and return true if it would
1415 // be possible to sink them into their successor, creating one common
1416 // instruction instead. Set NumPHIsRequired to the number of PHI nodes that
1417 // would need to be created during sinking.
1418 static bool canSinkLastInstruction(ArrayRef<BasicBlock*> Blocks,
1419                                    unsigned &NumPHIsRequired) {
1420   SmallVector<Instruction*,4> Insts;
1421   for (auto *BB : Blocks) {
1422     if (BB->getTerminator() == &BB->front())
1423       // Block was empty.
1424       return false;
1425     Insts.push_back(BB->getTerminator()->getPrevNode());
1426   }
1427 
1428   // Prune out obviously bad instructions to move. Any non-store instruction
1429   // must have exactly one use, and we check later that use is by a single,
1430   // common PHI instruction in the successor.
1431   for (auto *I : Insts) {
1432     // These instructions may change or break semantics if moved.
1433     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1434         I->getType()->isTokenTy())
1435       return false;
1436     // Apart from loads and stores, we won't move anything that could
1437     // change memory or have sideeffects.
1438     if (!isa<StoreInst>(I) && !isa<LoadInst>(I) &&
1439         (I->mayHaveSideEffects() || I->mayHaveSideEffects()))
1440       return false;
1441     // Everything must have only one use too, apart from stores which
1442     // have no uses.
1443     if (!isa<StoreInst>(I) && !I->hasOneUse())
1444       return false;
1445   }
1446 
1447   const Instruction *I0 = Insts.front();
1448   for (auto *I : Insts)
1449     if (!I->isSameOperationAs(I0))
1450       return false;
1451 
1452   // If this isn't a store, check the only user is a single PHI.
1453   if (!isa<StoreInst>(I0)) {
1454     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1455     if (!PNUse ||
1456         !all_of(Insts, [&PNUse](const Instruction *I) {
1457           return *I->user_begin() == PNUse;
1458         }))
1459       return false;
1460   }
1461 
1462   NumPHIsRequired = 0;
1463   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1464     if (I0->getOperand(OI)->getType()->isTokenTy())
1465       // Don't touch any operand of token type.
1466       return false;
1467     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1468       return areValuesTriviallySame(I->getOperand(OI), I->getIterator(),
1469                                     I0->getOperand(OI), I0->getIterator());
1470     };
1471     if (!all_of(Insts, SameAsI0)) {
1472       if (!canReplaceOperandWithVariable(I0, OI))
1473         // We can't create a PHI from this GEP.
1474         return false;
1475       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI != 0)
1476         // Don't create indirect calls!
1477         // FIXME: if the call was *already* indirect, we should do this.
1478         return false;
1479       ++NumPHIsRequired;
1480     }
1481   }
1482   return true;
1483 }
1484 
1485 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1486 // instruction of every block in Blocks to their common successor, commoning
1487 // into one instruction.
1488 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1489   unsigned Dummy;
1490   (void)Dummy;
1491   assert(canSinkLastInstruction(Blocks, Dummy) &&
1492          "Must analyze before transforming!");
1493   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1494 
1495   // canSinkLastInstruction returning true guarantees that every block has at
1496   // least one non-terminator instruction.
1497   SmallVector<Instruction*,4> Insts;
1498   for (auto *BB : Blocks)
1499     Insts.push_back(BB->getTerminator()->getPrevNode());
1500 
1501   // We don't need to do any checking here; canSinkLastInstruction should have
1502   // done it all for us.
1503   Instruction *I0 = Insts.front();
1504   SmallVector<Value*, 4> NewOperands;
1505   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1506     // This check is different to that in canSinkLastInstruction. There, we
1507     // cared about the global view once simplifycfg (and instcombine) have
1508     // completed - it takes into account PHIs that become trivially
1509     // simplifiable.  However here we need a more local view; if an operand
1510     // differs we create a PHI and rely on instcombine to clean up the very
1511     // small mess we may make.
1512     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1513       return I->getOperand(O) != I0->getOperand(O);
1514     });
1515     if (!NeedPHI) {
1516       NewOperands.push_back(I0->getOperand(O));
1517       continue;
1518     }
1519 
1520     // Create a new PHI in the successor block and populate it.
1521     auto *Op = I0->getOperand(O);
1522     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1523     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1524                                Op->getName() + ".sink", &BBEnd->front());
1525     for (auto *I : Insts)
1526       PN->addIncoming(I->getOperand(O), I->getParent());
1527     NewOperands.push_back(PN);
1528   }
1529 
1530   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1531   // and move it to the start of the successor block.
1532   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1533     I0->getOperandUse(O).set(NewOperands[O]);
1534   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1535 
1536   if (!isa<StoreInst>(I0)) {
1537     // canSinkLastInstruction checked that all instructions were used by
1538     // one and only one PHI node. Find that now, RAUW it to our common
1539     // instruction and nuke it.
1540     assert(I0->hasOneUse());
1541     auto *PN = cast<PHINode>(*I0->user_begin());
1542     PN->replaceAllUsesWith(I0);
1543     PN->eraseFromParent();
1544   }
1545 
1546   // Finally nuke all instructions apart from the common instruction.
1547   for (auto *I : Insts)
1548     if (I != I0)
1549       I->eraseFromParent();
1550 }
1551 
1552 /// Given an unconditional branch that goes to BBEnd,
1553 /// check whether BBEnd has only two predecessors and the other predecessor
1554 /// ends with an unconditional branch. If it is true, sink any common code
1555 /// in the two predecessors to BBEnd.
1556 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1557   assert(BI1->isUnconditional());
1558   BasicBlock *BBEnd = BI1->getSuccessor(0);
1559 
1560   SmallVector<BasicBlock*,4> Blocks;
1561   for (auto *BB : predecessors(BBEnd))
1562     Blocks.push_back(BB);
1563   if (Blocks.size() != 2 ||
1564       !all_of(Blocks, [](const BasicBlock *BB) {
1565         auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1566         return BI && BI->isUnconditional();
1567       }))
1568     return false;
1569 
1570   bool Changed = false;
1571   unsigned NumPHIsToInsert;
1572   while (canSinkLastInstruction(Blocks, NumPHIsToInsert) && NumPHIsToInsert <= 1) {
1573     sinkLastInstruction(Blocks);
1574     NumSinkCommons++;
1575     Changed = true;
1576   }
1577   return Changed;
1578 }
1579 
1580 /// \brief Determine if we can hoist sink a sole store instruction out of a
1581 /// conditional block.
1582 ///
1583 /// We are looking for code like the following:
1584 ///   BrBB:
1585 ///     store i32 %add, i32* %arrayidx2
1586 ///     ... // No other stores or function calls (we could be calling a memory
1587 ///     ... // function).
1588 ///     %cmp = icmp ult %x, %y
1589 ///     br i1 %cmp, label %EndBB, label %ThenBB
1590 ///   ThenBB:
1591 ///     store i32 %add5, i32* %arrayidx2
1592 ///     br label EndBB
1593 ///   EndBB:
1594 ///     ...
1595 ///   We are going to transform this into:
1596 ///   BrBB:
1597 ///     store i32 %add, i32* %arrayidx2
1598 ///     ... //
1599 ///     %cmp = icmp ult %x, %y
1600 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1601 ///     store i32 %add.add5, i32* %arrayidx2
1602 ///     ...
1603 ///
1604 /// \return The pointer to the value of the previous store if the store can be
1605 ///         hoisted into the predecessor block. 0 otherwise.
1606 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1607                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1608   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1609   if (!StoreToHoist)
1610     return nullptr;
1611 
1612   // Volatile or atomic.
1613   if (!StoreToHoist->isSimple())
1614     return nullptr;
1615 
1616   Value *StorePtr = StoreToHoist->getPointerOperand();
1617 
1618   // Look for a store to the same pointer in BrBB.
1619   unsigned MaxNumInstToLookAt = 9;
1620   for (Instruction &CurI : reverse(*BrBB)) {
1621     if (!MaxNumInstToLookAt)
1622       break;
1623     // Skip debug info.
1624     if (isa<DbgInfoIntrinsic>(CurI))
1625       continue;
1626     --MaxNumInstToLookAt;
1627 
1628     // Could be calling an instruction that affects memory like free().
1629     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1630       return nullptr;
1631 
1632     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1633       // Found the previous store make sure it stores to the same location.
1634       if (SI->getPointerOperand() == StorePtr)
1635         // Found the previous store, return its value operand.
1636         return SI->getValueOperand();
1637       return nullptr; // Unknown store.
1638     }
1639   }
1640 
1641   return nullptr;
1642 }
1643 
1644 /// \brief Speculate a conditional basic block flattening the CFG.
1645 ///
1646 /// Note that this is a very risky transform currently. Speculating
1647 /// instructions like this is most often not desirable. Instead, there is an MI
1648 /// pass which can do it with full awareness of the resource constraints.
1649 /// However, some cases are "obvious" and we should do directly. An example of
1650 /// this is speculating a single, reasonably cheap instruction.
1651 ///
1652 /// There is only one distinct advantage to flattening the CFG at the IR level:
1653 /// it makes very common but simplistic optimizations such as are common in
1654 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1655 /// modeling their effects with easier to reason about SSA value graphs.
1656 ///
1657 ///
1658 /// An illustration of this transform is turning this IR:
1659 /// \code
1660 ///   BB:
1661 ///     %cmp = icmp ult %x, %y
1662 ///     br i1 %cmp, label %EndBB, label %ThenBB
1663 ///   ThenBB:
1664 ///     %sub = sub %x, %y
1665 ///     br label BB2
1666 ///   EndBB:
1667 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1668 ///     ...
1669 /// \endcode
1670 ///
1671 /// Into this IR:
1672 /// \code
1673 ///   BB:
1674 ///     %cmp = icmp ult %x, %y
1675 ///     %sub = sub %x, %y
1676 ///     %cond = select i1 %cmp, 0, %sub
1677 ///     ...
1678 /// \endcode
1679 ///
1680 /// \returns true if the conditional block is removed.
1681 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1682                                    const TargetTransformInfo &TTI) {
1683   // Be conservative for now. FP select instruction can often be expensive.
1684   Value *BrCond = BI->getCondition();
1685   if (isa<FCmpInst>(BrCond))
1686     return false;
1687 
1688   BasicBlock *BB = BI->getParent();
1689   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1690 
1691   // If ThenBB is actually on the false edge of the conditional branch, remember
1692   // to swap the select operands later.
1693   bool Invert = false;
1694   if (ThenBB != BI->getSuccessor(0)) {
1695     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1696     Invert = true;
1697   }
1698   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1699 
1700   // Keep a count of how many times instructions are used within CondBB when
1701   // they are candidates for sinking into CondBB. Specifically:
1702   // - They are defined in BB, and
1703   // - They have no side effects, and
1704   // - All of their uses are in CondBB.
1705   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1706 
1707   unsigned SpeculationCost = 0;
1708   Value *SpeculatedStoreValue = nullptr;
1709   StoreInst *SpeculatedStore = nullptr;
1710   for (BasicBlock::iterator BBI = ThenBB->begin(),
1711                             BBE = std::prev(ThenBB->end());
1712        BBI != BBE; ++BBI) {
1713     Instruction *I = &*BBI;
1714     // Skip debug info.
1715     if (isa<DbgInfoIntrinsic>(I))
1716       continue;
1717 
1718     // Only speculatively execute a single instruction (not counting the
1719     // terminator) for now.
1720     ++SpeculationCost;
1721     if (SpeculationCost > 1)
1722       return false;
1723 
1724     // Don't hoist the instruction if it's unsafe or expensive.
1725     if (!isSafeToSpeculativelyExecute(I) &&
1726         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1727                                   I, BB, ThenBB, EndBB))))
1728       return false;
1729     if (!SpeculatedStoreValue &&
1730         ComputeSpeculationCost(I, TTI) >
1731             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1732       return false;
1733 
1734     // Store the store speculation candidate.
1735     if (SpeculatedStoreValue)
1736       SpeculatedStore = cast<StoreInst>(I);
1737 
1738     // Do not hoist the instruction if any of its operands are defined but not
1739     // used in BB. The transformation will prevent the operand from
1740     // being sunk into the use block.
1741     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1742       Instruction *OpI = dyn_cast<Instruction>(*i);
1743       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1744         continue; // Not a candidate for sinking.
1745 
1746       ++SinkCandidateUseCounts[OpI];
1747     }
1748   }
1749 
1750   // Consider any sink candidates which are only used in CondBB as costs for
1751   // speculation. Note, while we iterate over a DenseMap here, we are summing
1752   // and so iteration order isn't significant.
1753   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1754            I = SinkCandidateUseCounts.begin(),
1755            E = SinkCandidateUseCounts.end();
1756        I != E; ++I)
1757     if (I->first->getNumUses() == I->second) {
1758       ++SpeculationCost;
1759       if (SpeculationCost > 1)
1760         return false;
1761     }
1762 
1763   // Check that the PHI nodes can be converted to selects.
1764   bool HaveRewritablePHIs = false;
1765   for (BasicBlock::iterator I = EndBB->begin();
1766        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1767     Value *OrigV = PN->getIncomingValueForBlock(BB);
1768     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1769 
1770     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1771     // Skip PHIs which are trivial.
1772     if (ThenV == OrigV)
1773       continue;
1774 
1775     // Don't convert to selects if we could remove undefined behavior instead.
1776     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1777         passingValueIsAlwaysUndefined(ThenV, PN))
1778       return false;
1779 
1780     HaveRewritablePHIs = true;
1781     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1782     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1783     if (!OrigCE && !ThenCE)
1784       continue; // Known safe and cheap.
1785 
1786     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1787         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1788       return false;
1789     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1790     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1791     unsigned MaxCost =
1792         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1793     if (OrigCost + ThenCost > MaxCost)
1794       return false;
1795 
1796     // Account for the cost of an unfolded ConstantExpr which could end up
1797     // getting expanded into Instructions.
1798     // FIXME: This doesn't account for how many operations are combined in the
1799     // constant expression.
1800     ++SpeculationCost;
1801     if (SpeculationCost > 1)
1802       return false;
1803   }
1804 
1805   // If there are no PHIs to process, bail early. This helps ensure idempotence
1806   // as well.
1807   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1808     return false;
1809 
1810   // If we get here, we can hoist the instruction and if-convert.
1811   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1812 
1813   // Insert a select of the value of the speculated store.
1814   if (SpeculatedStoreValue) {
1815     IRBuilder<NoFolder> Builder(BI);
1816     Value *TrueV = SpeculatedStore->getValueOperand();
1817     Value *FalseV = SpeculatedStoreValue;
1818     if (Invert)
1819       std::swap(TrueV, FalseV);
1820     Value *S = Builder.CreateSelect(
1821         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1822     SpeculatedStore->setOperand(0, S);
1823   }
1824 
1825   // Metadata can be dependent on the condition we are hoisting above.
1826   // Conservatively strip all metadata on the instruction.
1827   for (auto &I : *ThenBB)
1828     I.dropUnknownNonDebugMetadata();
1829 
1830   // Hoist the instructions.
1831   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
1832                            ThenBB->begin(), std::prev(ThenBB->end()));
1833 
1834   // Insert selects and rewrite the PHI operands.
1835   IRBuilder<NoFolder> Builder(BI);
1836   for (BasicBlock::iterator I = EndBB->begin();
1837        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1838     unsigned OrigI = PN->getBasicBlockIndex(BB);
1839     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1840     Value *OrigV = PN->getIncomingValue(OrigI);
1841     Value *ThenV = PN->getIncomingValue(ThenI);
1842 
1843     // Skip PHIs which are trivial.
1844     if (OrigV == ThenV)
1845       continue;
1846 
1847     // Create a select whose true value is the speculatively executed value and
1848     // false value is the preexisting value. Swap them if the branch
1849     // destinations were inverted.
1850     Value *TrueV = ThenV, *FalseV = OrigV;
1851     if (Invert)
1852       std::swap(TrueV, FalseV);
1853     Value *V = Builder.CreateSelect(
1854         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
1855     PN->setIncomingValue(OrigI, V);
1856     PN->setIncomingValue(ThenI, V);
1857   }
1858 
1859   ++NumSpeculations;
1860   return true;
1861 }
1862 
1863 /// Return true if we can thread a branch across this block.
1864 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1865   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1866   unsigned Size = 0;
1867 
1868   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1869     if (isa<DbgInfoIntrinsic>(BBI))
1870       continue;
1871     if (Size > 10)
1872       return false; // Don't clone large BB's.
1873     ++Size;
1874 
1875     // We can only support instructions that do not define values that are
1876     // live outside of the current basic block.
1877     for (User *U : BBI->users()) {
1878       Instruction *UI = cast<Instruction>(U);
1879       if (UI->getParent() != BB || isa<PHINode>(UI))
1880         return false;
1881     }
1882 
1883     // Looks ok, continue checking.
1884   }
1885 
1886   return true;
1887 }
1888 
1889 /// If we have a conditional branch on a PHI node value that is defined in the
1890 /// same block as the branch and if any PHI entries are constants, thread edges
1891 /// corresponding to that entry to be branches to their ultimate destination.
1892 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
1893   BasicBlock *BB = BI->getParent();
1894   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1895   // NOTE: we currently cannot transform this case if the PHI node is used
1896   // outside of the block.
1897   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1898     return false;
1899 
1900   // Degenerate case of a single entry PHI.
1901   if (PN->getNumIncomingValues() == 1) {
1902     FoldSingleEntryPHINodes(PN->getParent());
1903     return true;
1904   }
1905 
1906   // Now we know that this block has multiple preds and two succs.
1907   if (!BlockIsSimpleEnoughToThreadThrough(BB))
1908     return false;
1909 
1910   // Can't fold blocks that contain noduplicate or convergent calls.
1911   if (any_of(*BB, [](const Instruction &I) {
1912         const CallInst *CI = dyn_cast<CallInst>(&I);
1913         return CI && (CI->cannotDuplicate() || CI->isConvergent());
1914       }))
1915     return false;
1916 
1917   // Okay, this is a simple enough basic block.  See if any phi values are
1918   // constants.
1919   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1920     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1921     if (!CB || !CB->getType()->isIntegerTy(1))
1922       continue;
1923 
1924     // Okay, we now know that all edges from PredBB should be revectored to
1925     // branch to RealDest.
1926     BasicBlock *PredBB = PN->getIncomingBlock(i);
1927     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1928 
1929     if (RealDest == BB)
1930       continue; // Skip self loops.
1931     // Skip if the predecessor's terminator is an indirect branch.
1932     if (isa<IndirectBrInst>(PredBB->getTerminator()))
1933       continue;
1934 
1935     // The dest block might have PHI nodes, other predecessors and other
1936     // difficult cases.  Instead of being smart about this, just insert a new
1937     // block that jumps to the destination block, effectively splitting
1938     // the edge we are about to create.
1939     BasicBlock *EdgeBB =
1940         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
1941                            RealDest->getParent(), RealDest);
1942     BranchInst::Create(RealDest, EdgeBB);
1943 
1944     // Update PHI nodes.
1945     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1946 
1947     // BB may have instructions that are being threaded over.  Clone these
1948     // instructions into EdgeBB.  We know that there will be no uses of the
1949     // cloned instructions outside of EdgeBB.
1950     BasicBlock::iterator InsertPt = EdgeBB->begin();
1951     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
1952     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1953       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1954         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1955         continue;
1956       }
1957       // Clone the instruction.
1958       Instruction *N = BBI->clone();
1959       if (BBI->hasName())
1960         N->setName(BBI->getName() + ".c");
1961 
1962       // Update operands due to translation.
1963       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
1964         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
1965         if (PI != TranslateMap.end())
1966           *i = PI->second;
1967       }
1968 
1969       // Check for trivial simplification.
1970       if (Value *V = SimplifyInstruction(N, DL)) {
1971         if (!BBI->use_empty())
1972           TranslateMap[&*BBI] = V;
1973         if (!N->mayHaveSideEffects()) {
1974           delete N; // Instruction folded away, don't need actual inst
1975           N = nullptr;
1976         }
1977       } else {
1978         if (!BBI->use_empty())
1979           TranslateMap[&*BBI] = N;
1980       }
1981       // Insert the new instruction into its new home.
1982       if (N)
1983         EdgeBB->getInstList().insert(InsertPt, N);
1984     }
1985 
1986     // Loop over all of the edges from PredBB to BB, changing them to branch
1987     // to EdgeBB instead.
1988     TerminatorInst *PredBBTI = PredBB->getTerminator();
1989     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1990       if (PredBBTI->getSuccessor(i) == BB) {
1991         BB->removePredecessor(PredBB);
1992         PredBBTI->setSuccessor(i, EdgeBB);
1993       }
1994 
1995     // Recurse, simplifying any other constants.
1996     return FoldCondBranchOnPHI(BI, DL) | true;
1997   }
1998 
1999   return false;
2000 }
2001 
2002 /// Given a BB that starts with the specified two-entry PHI node,
2003 /// see if we can eliminate it.
2004 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2005                                 const DataLayout &DL) {
2006   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2007   // statement", which has a very simple dominance structure.  Basically, we
2008   // are trying to find the condition that is being branched on, which
2009   // subsequently causes this merge to happen.  We really want control
2010   // dependence information for this check, but simplifycfg can't keep it up
2011   // to date, and this catches most of the cases we care about anyway.
2012   BasicBlock *BB = PN->getParent();
2013   BasicBlock *IfTrue, *IfFalse;
2014   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2015   if (!IfCond ||
2016       // Don't bother if the branch will be constant folded trivially.
2017       isa<ConstantInt>(IfCond))
2018     return false;
2019 
2020   // Okay, we found that we can merge this two-entry phi node into a select.
2021   // Doing so would require us to fold *all* two entry phi nodes in this block.
2022   // At some point this becomes non-profitable (particularly if the target
2023   // doesn't support cmov's).  Only do this transformation if there are two or
2024   // fewer PHI nodes in this block.
2025   unsigned NumPhis = 0;
2026   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2027     if (NumPhis > 2)
2028       return false;
2029 
2030   // Loop over the PHI's seeing if we can promote them all to select
2031   // instructions.  While we are at it, keep track of the instructions
2032   // that need to be moved to the dominating block.
2033   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2034   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2035            MaxCostVal1 = PHINodeFoldingThreshold;
2036   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2037   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2038 
2039   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2040     PHINode *PN = cast<PHINode>(II++);
2041     if (Value *V = SimplifyInstruction(PN, DL)) {
2042       PN->replaceAllUsesWith(V);
2043       PN->eraseFromParent();
2044       continue;
2045     }
2046 
2047     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2048                              MaxCostVal0, TTI) ||
2049         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2050                              MaxCostVal1, TTI))
2051       return false;
2052   }
2053 
2054   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2055   // we ran out of PHIs then we simplified them all.
2056   PN = dyn_cast<PHINode>(BB->begin());
2057   if (!PN)
2058     return true;
2059 
2060   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2061   // often be turned into switches and other things.
2062   if (PN->getType()->isIntegerTy(1) &&
2063       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2064        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2065        isa<BinaryOperator>(IfCond)))
2066     return false;
2067 
2068   // If all PHI nodes are promotable, check to make sure that all instructions
2069   // in the predecessor blocks can be promoted as well. If not, we won't be able
2070   // to get rid of the control flow, so it's not worth promoting to select
2071   // instructions.
2072   BasicBlock *DomBlock = nullptr;
2073   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2074   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2075   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2076     IfBlock1 = nullptr;
2077   } else {
2078     DomBlock = *pred_begin(IfBlock1);
2079     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2080          ++I)
2081       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2082         // This is not an aggressive instruction that we can promote.
2083         // Because of this, we won't be able to get rid of the control flow, so
2084         // the xform is not worth it.
2085         return false;
2086       }
2087   }
2088 
2089   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2090     IfBlock2 = nullptr;
2091   } else {
2092     DomBlock = *pred_begin(IfBlock2);
2093     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2094          ++I)
2095       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2096         // This is not an aggressive instruction that we can promote.
2097         // Because of this, we won't be able to get rid of the control flow, so
2098         // the xform is not worth it.
2099         return false;
2100       }
2101   }
2102 
2103   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2104                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2105 
2106   // If we can still promote the PHI nodes after this gauntlet of tests,
2107   // do all of the PHI's now.
2108   Instruction *InsertPt = DomBlock->getTerminator();
2109   IRBuilder<NoFolder> Builder(InsertPt);
2110 
2111   // Move all 'aggressive' instructions, which are defined in the
2112   // conditional parts of the if's up to the dominating block.
2113   if (IfBlock1)
2114     DomBlock->getInstList().splice(InsertPt->getIterator(),
2115                                    IfBlock1->getInstList(), IfBlock1->begin(),
2116                                    IfBlock1->getTerminator()->getIterator());
2117   if (IfBlock2)
2118     DomBlock->getInstList().splice(InsertPt->getIterator(),
2119                                    IfBlock2->getInstList(), IfBlock2->begin(),
2120                                    IfBlock2->getTerminator()->getIterator());
2121 
2122   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2123     // Change the PHI node into a select instruction.
2124     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2125     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2126 
2127     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2128     PN->replaceAllUsesWith(Sel);
2129     Sel->takeName(PN);
2130     PN->eraseFromParent();
2131   }
2132 
2133   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2134   // has been flattened.  Change DomBlock to jump directly to our new block to
2135   // avoid other simplifycfg's kicking in on the diamond.
2136   TerminatorInst *OldTI = DomBlock->getTerminator();
2137   Builder.SetInsertPoint(OldTI);
2138   Builder.CreateBr(BB);
2139   OldTI->eraseFromParent();
2140   return true;
2141 }
2142 
2143 /// If we found a conditional branch that goes to two returning blocks,
2144 /// try to merge them together into one return,
2145 /// introducing a select if the return values disagree.
2146 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2147                                            IRBuilder<> &Builder) {
2148   assert(BI->isConditional() && "Must be a conditional branch");
2149   BasicBlock *TrueSucc = BI->getSuccessor(0);
2150   BasicBlock *FalseSucc = BI->getSuccessor(1);
2151   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2152   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2153 
2154   // Check to ensure both blocks are empty (just a return) or optionally empty
2155   // with PHI nodes.  If there are other instructions, merging would cause extra
2156   // computation on one path or the other.
2157   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2158     return false;
2159   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2160     return false;
2161 
2162   Builder.SetInsertPoint(BI);
2163   // Okay, we found a branch that is going to two return nodes.  If
2164   // there is no return value for this function, just change the
2165   // branch into a return.
2166   if (FalseRet->getNumOperands() == 0) {
2167     TrueSucc->removePredecessor(BI->getParent());
2168     FalseSucc->removePredecessor(BI->getParent());
2169     Builder.CreateRetVoid();
2170     EraseTerminatorInstAndDCECond(BI);
2171     return true;
2172   }
2173 
2174   // Otherwise, figure out what the true and false return values are
2175   // so we can insert a new select instruction.
2176   Value *TrueValue = TrueRet->getReturnValue();
2177   Value *FalseValue = FalseRet->getReturnValue();
2178 
2179   // Unwrap any PHI nodes in the return blocks.
2180   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2181     if (TVPN->getParent() == TrueSucc)
2182       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2183   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2184     if (FVPN->getParent() == FalseSucc)
2185       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2186 
2187   // In order for this transformation to be safe, we must be able to
2188   // unconditionally execute both operands to the return.  This is
2189   // normally the case, but we could have a potentially-trapping
2190   // constant expression that prevents this transformation from being
2191   // safe.
2192   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2193     if (TCV->canTrap())
2194       return false;
2195   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2196     if (FCV->canTrap())
2197       return false;
2198 
2199   // Okay, we collected all the mapped values and checked them for sanity, and
2200   // defined to really do this transformation.  First, update the CFG.
2201   TrueSucc->removePredecessor(BI->getParent());
2202   FalseSucc->removePredecessor(BI->getParent());
2203 
2204   // Insert select instructions where needed.
2205   Value *BrCond = BI->getCondition();
2206   if (TrueValue) {
2207     // Insert a select if the results differ.
2208     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2209     } else if (isa<UndefValue>(TrueValue)) {
2210       TrueValue = FalseValue;
2211     } else {
2212       TrueValue =
2213           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2214     }
2215   }
2216 
2217   Value *RI =
2218       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2219 
2220   (void)RI;
2221 
2222   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2223                << "\n  " << *BI << "NewRet = " << *RI
2224                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2225 
2226   EraseTerminatorInstAndDCECond(BI);
2227 
2228   return true;
2229 }
2230 
2231 /// Return true if the given instruction is available
2232 /// in its predecessor block. If yes, the instruction will be removed.
2233 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2234   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2235     return false;
2236   for (Instruction &I : *PB) {
2237     Instruction *PBI = &I;
2238     // Check whether Inst and PBI generate the same value.
2239     if (Inst->isIdenticalTo(PBI)) {
2240       Inst->replaceAllUsesWith(PBI);
2241       Inst->eraseFromParent();
2242       return true;
2243     }
2244   }
2245   return false;
2246 }
2247 
2248 /// Return true if either PBI or BI has branch weight available, and store
2249 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2250 /// not have branch weight, use 1:1 as its weight.
2251 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2252                                    uint64_t &PredTrueWeight,
2253                                    uint64_t &PredFalseWeight,
2254                                    uint64_t &SuccTrueWeight,
2255                                    uint64_t &SuccFalseWeight) {
2256   bool PredHasWeights =
2257       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2258   bool SuccHasWeights =
2259       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2260   if (PredHasWeights || SuccHasWeights) {
2261     if (!PredHasWeights)
2262       PredTrueWeight = PredFalseWeight = 1;
2263     if (!SuccHasWeights)
2264       SuccTrueWeight = SuccFalseWeight = 1;
2265     return true;
2266   } else {
2267     return false;
2268   }
2269 }
2270 
2271 /// If this basic block is simple enough, and if a predecessor branches to us
2272 /// and one of our successors, fold the block into the predecessor and use
2273 /// logical operations to pick the right destination.
2274 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2275   BasicBlock *BB = BI->getParent();
2276 
2277   Instruction *Cond = nullptr;
2278   if (BI->isConditional())
2279     Cond = dyn_cast<Instruction>(BI->getCondition());
2280   else {
2281     // For unconditional branch, check for a simple CFG pattern, where
2282     // BB has a single predecessor and BB's successor is also its predecessor's
2283     // successor. If such pattern exisits, check for CSE between BB and its
2284     // predecessor.
2285     if (BasicBlock *PB = BB->getSinglePredecessor())
2286       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2287         if (PBI->isConditional() &&
2288             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2289              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2290           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2291             Instruction *Curr = &*I++;
2292             if (isa<CmpInst>(Curr)) {
2293               Cond = Curr;
2294               break;
2295             }
2296             // Quit if we can't remove this instruction.
2297             if (!checkCSEInPredecessor(Curr, PB))
2298               return false;
2299           }
2300         }
2301 
2302     if (!Cond)
2303       return false;
2304   }
2305 
2306   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2307       Cond->getParent() != BB || !Cond->hasOneUse())
2308     return false;
2309 
2310   // Make sure the instruction after the condition is the cond branch.
2311   BasicBlock::iterator CondIt = ++Cond->getIterator();
2312 
2313   // Ignore dbg intrinsics.
2314   while (isa<DbgInfoIntrinsic>(CondIt))
2315     ++CondIt;
2316 
2317   if (&*CondIt != BI)
2318     return false;
2319 
2320   // Only allow this transformation if computing the condition doesn't involve
2321   // too many instructions and these involved instructions can be executed
2322   // unconditionally. We denote all involved instructions except the condition
2323   // as "bonus instructions", and only allow this transformation when the
2324   // number of the bonus instructions does not exceed a certain threshold.
2325   unsigned NumBonusInsts = 0;
2326   for (auto I = BB->begin(); Cond != &*I; ++I) {
2327     // Ignore dbg intrinsics.
2328     if (isa<DbgInfoIntrinsic>(I))
2329       continue;
2330     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2331       return false;
2332     // I has only one use and can be executed unconditionally.
2333     Instruction *User = dyn_cast<Instruction>(I->user_back());
2334     if (User == nullptr || User->getParent() != BB)
2335       return false;
2336     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2337     // to use any other instruction, User must be an instruction between next(I)
2338     // and Cond.
2339     ++NumBonusInsts;
2340     // Early exits once we reach the limit.
2341     if (NumBonusInsts > BonusInstThreshold)
2342       return false;
2343   }
2344 
2345   // Cond is known to be a compare or binary operator.  Check to make sure that
2346   // neither operand is a potentially-trapping constant expression.
2347   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2348     if (CE->canTrap())
2349       return false;
2350   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2351     if (CE->canTrap())
2352       return false;
2353 
2354   // Finally, don't infinitely unroll conditional loops.
2355   BasicBlock *TrueDest = BI->getSuccessor(0);
2356   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2357   if (TrueDest == BB || FalseDest == BB)
2358     return false;
2359 
2360   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2361     BasicBlock *PredBlock = *PI;
2362     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2363 
2364     // Check that we have two conditional branches.  If there is a PHI node in
2365     // the common successor, verify that the same value flows in from both
2366     // blocks.
2367     SmallVector<PHINode *, 4> PHIs;
2368     if (!PBI || PBI->isUnconditional() ||
2369         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2370         (!BI->isConditional() &&
2371          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2372       continue;
2373 
2374     // Determine if the two branches share a common destination.
2375     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2376     bool InvertPredCond = false;
2377 
2378     if (BI->isConditional()) {
2379       if (PBI->getSuccessor(0) == TrueDest) {
2380         Opc = Instruction::Or;
2381       } else if (PBI->getSuccessor(1) == FalseDest) {
2382         Opc = Instruction::And;
2383       } else if (PBI->getSuccessor(0) == FalseDest) {
2384         Opc = Instruction::And;
2385         InvertPredCond = true;
2386       } else if (PBI->getSuccessor(1) == TrueDest) {
2387         Opc = Instruction::Or;
2388         InvertPredCond = true;
2389       } else {
2390         continue;
2391       }
2392     } else {
2393       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2394         continue;
2395     }
2396 
2397     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2398     IRBuilder<> Builder(PBI);
2399 
2400     // If we need to invert the condition in the pred block to match, do so now.
2401     if (InvertPredCond) {
2402       Value *NewCond = PBI->getCondition();
2403 
2404       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2405         CmpInst *CI = cast<CmpInst>(NewCond);
2406         CI->setPredicate(CI->getInversePredicate());
2407       } else {
2408         NewCond =
2409             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2410       }
2411 
2412       PBI->setCondition(NewCond);
2413       PBI->swapSuccessors();
2414     }
2415 
2416     // If we have bonus instructions, clone them into the predecessor block.
2417     // Note that there may be multiple predecessor blocks, so we cannot move
2418     // bonus instructions to a predecessor block.
2419     ValueToValueMapTy VMap; // maps original values to cloned values
2420     // We already make sure Cond is the last instruction before BI. Therefore,
2421     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2422     // instructions.
2423     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2424       if (isa<DbgInfoIntrinsic>(BonusInst))
2425         continue;
2426       Instruction *NewBonusInst = BonusInst->clone();
2427       RemapInstruction(NewBonusInst, VMap,
2428                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2429       VMap[&*BonusInst] = NewBonusInst;
2430 
2431       // If we moved a load, we cannot any longer claim any knowledge about
2432       // its potential value. The previous information might have been valid
2433       // only given the branch precondition.
2434       // For an analogous reason, we must also drop all the metadata whose
2435       // semantics we don't understand.
2436       NewBonusInst->dropUnknownNonDebugMetadata();
2437 
2438       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2439       NewBonusInst->takeName(&*BonusInst);
2440       BonusInst->setName(BonusInst->getName() + ".old");
2441     }
2442 
2443     // Clone Cond into the predecessor basic block, and or/and the
2444     // two conditions together.
2445     Instruction *New = Cond->clone();
2446     RemapInstruction(New, VMap,
2447                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2448     PredBlock->getInstList().insert(PBI->getIterator(), New);
2449     New->takeName(Cond);
2450     Cond->setName(New->getName() + ".old");
2451 
2452     if (BI->isConditional()) {
2453       Instruction *NewCond = cast<Instruction>(
2454           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2455       PBI->setCondition(NewCond);
2456 
2457       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2458       bool HasWeights =
2459           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2460                                  SuccTrueWeight, SuccFalseWeight);
2461       SmallVector<uint64_t, 8> NewWeights;
2462 
2463       if (PBI->getSuccessor(0) == BB) {
2464         if (HasWeights) {
2465           // PBI: br i1 %x, BB, FalseDest
2466           // BI:  br i1 %y, TrueDest, FalseDest
2467           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2468           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2469           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2470           //               TrueWeight for PBI * FalseWeight for BI.
2471           // We assume that total weights of a BranchInst can fit into 32 bits.
2472           // Therefore, we will not have overflow using 64-bit arithmetic.
2473           NewWeights.push_back(PredFalseWeight *
2474                                    (SuccFalseWeight + SuccTrueWeight) +
2475                                PredTrueWeight * SuccFalseWeight);
2476         }
2477         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2478         PBI->setSuccessor(0, TrueDest);
2479       }
2480       if (PBI->getSuccessor(1) == BB) {
2481         if (HasWeights) {
2482           // PBI: br i1 %x, TrueDest, BB
2483           // BI:  br i1 %y, TrueDest, FalseDest
2484           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2485           //              FalseWeight for PBI * TrueWeight for BI.
2486           NewWeights.push_back(PredTrueWeight *
2487                                    (SuccFalseWeight + SuccTrueWeight) +
2488                                PredFalseWeight * SuccTrueWeight);
2489           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2490           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2491         }
2492         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2493         PBI->setSuccessor(1, FalseDest);
2494       }
2495       if (NewWeights.size() == 2) {
2496         // Halve the weights if any of them cannot fit in an uint32_t
2497         FitWeights(NewWeights);
2498 
2499         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2500                                            NewWeights.end());
2501         PBI->setMetadata(
2502             LLVMContext::MD_prof,
2503             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2504       } else
2505         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2506     } else {
2507       // Update PHI nodes in the common successors.
2508       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2509         ConstantInt *PBI_C = cast<ConstantInt>(
2510             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2511         assert(PBI_C->getType()->isIntegerTy(1));
2512         Instruction *MergedCond = nullptr;
2513         if (PBI->getSuccessor(0) == TrueDest) {
2514           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2515           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2516           //       is false: !PBI_Cond and BI_Value
2517           Instruction *NotCond = cast<Instruction>(
2518               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2519           MergedCond = cast<Instruction>(
2520               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2521           if (PBI_C->isOne())
2522             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2523                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2524         } else {
2525           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2526           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2527           //       is false: PBI_Cond and BI_Value
2528           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2529               Instruction::And, PBI->getCondition(), New, "and.cond"));
2530           if (PBI_C->isOne()) {
2531             Instruction *NotCond = cast<Instruction>(
2532                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2533             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2534                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2535           }
2536         }
2537         // Update PHI Node.
2538         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2539                                   MergedCond);
2540       }
2541       // Change PBI from Conditional to Unconditional.
2542       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2543       EraseTerminatorInstAndDCECond(PBI);
2544       PBI = New_PBI;
2545     }
2546 
2547     // TODO: If BB is reachable from all paths through PredBlock, then we
2548     // could replace PBI's branch probabilities with BI's.
2549 
2550     // Copy any debug value intrinsics into the end of PredBlock.
2551     for (Instruction &I : *BB)
2552       if (isa<DbgInfoIntrinsic>(I))
2553         I.clone()->insertBefore(PBI);
2554 
2555     return true;
2556   }
2557   return false;
2558 }
2559 
2560 // If there is only one store in BB1 and BB2, return it, otherwise return
2561 // nullptr.
2562 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2563   StoreInst *S = nullptr;
2564   for (auto *BB : {BB1, BB2}) {
2565     if (!BB)
2566       continue;
2567     for (auto &I : *BB)
2568       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2569         if (S)
2570           // Multiple stores seen.
2571           return nullptr;
2572         else
2573           S = SI;
2574       }
2575   }
2576   return S;
2577 }
2578 
2579 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2580                                               Value *AlternativeV = nullptr) {
2581   // PHI is going to be a PHI node that allows the value V that is defined in
2582   // BB to be referenced in BB's only successor.
2583   //
2584   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2585   // doesn't matter to us what the other operand is (it'll never get used). We
2586   // could just create a new PHI with an undef incoming value, but that could
2587   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2588   // other PHI. So here we directly look for some PHI in BB's successor with V
2589   // as an incoming operand. If we find one, we use it, else we create a new
2590   // one.
2591   //
2592   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2593   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2594   // where OtherBB is the single other predecessor of BB's only successor.
2595   PHINode *PHI = nullptr;
2596   BasicBlock *Succ = BB->getSingleSuccessor();
2597 
2598   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2599     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2600       PHI = cast<PHINode>(I);
2601       if (!AlternativeV)
2602         break;
2603 
2604       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2605       auto PredI = pred_begin(Succ);
2606       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2607       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2608         break;
2609       PHI = nullptr;
2610     }
2611   if (PHI)
2612     return PHI;
2613 
2614   // If V is not an instruction defined in BB, just return it.
2615   if (!AlternativeV &&
2616       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2617     return V;
2618 
2619   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2620   PHI->addIncoming(V, BB);
2621   for (BasicBlock *PredBB : predecessors(Succ))
2622     if (PredBB != BB)
2623       PHI->addIncoming(
2624           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2625   return PHI;
2626 }
2627 
2628 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2629                                            BasicBlock *QTB, BasicBlock *QFB,
2630                                            BasicBlock *PostBB, Value *Address,
2631                                            bool InvertPCond, bool InvertQCond) {
2632   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2633     return Operator::getOpcode(&I) == Instruction::BitCast &&
2634            I.getType()->isPointerTy();
2635   };
2636 
2637   // If we're not in aggressive mode, we only optimize if we have some
2638   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2639   auto IsWorthwhile = [&](BasicBlock *BB) {
2640     if (!BB)
2641       return true;
2642     // Heuristic: if the block can be if-converted/phi-folded and the
2643     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2644     // thread this store.
2645     unsigned N = 0;
2646     for (auto &I : *BB) {
2647       // Cheap instructions viable for folding.
2648       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2649           isa<StoreInst>(I))
2650         ++N;
2651       // Free instructions.
2652       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2653                IsaBitcastOfPointerType(I))
2654         continue;
2655       else
2656         return false;
2657     }
2658     return N <= PHINodeFoldingThreshold;
2659   };
2660 
2661   if (!MergeCondStoresAggressively &&
2662       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2663        !IsWorthwhile(QFB)))
2664     return false;
2665 
2666   // For every pointer, there must be exactly two stores, one coming from
2667   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2668   // store (to any address) in PTB,PFB or QTB,QFB.
2669   // FIXME: We could relax this restriction with a bit more work and performance
2670   // testing.
2671   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2672   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2673   if (!PStore || !QStore)
2674     return false;
2675 
2676   // Now check the stores are compatible.
2677   if (!QStore->isUnordered() || !PStore->isUnordered())
2678     return false;
2679 
2680   // Check that sinking the store won't cause program behavior changes. Sinking
2681   // the store out of the Q blocks won't change any behavior as we're sinking
2682   // from a block to its unconditional successor. But we're moving a store from
2683   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2684   // So we need to check that there are no aliasing loads or stores in
2685   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2686   // operations between PStore and the end of its parent block.
2687   //
2688   // The ideal way to do this is to query AliasAnalysis, but we don't
2689   // preserve AA currently so that is dangerous. Be super safe and just
2690   // check there are no other memory operations at all.
2691   for (auto &I : *QFB->getSinglePredecessor())
2692     if (I.mayReadOrWriteMemory())
2693       return false;
2694   for (auto &I : *QFB)
2695     if (&I != QStore && I.mayReadOrWriteMemory())
2696       return false;
2697   if (QTB)
2698     for (auto &I : *QTB)
2699       if (&I != QStore && I.mayReadOrWriteMemory())
2700         return false;
2701   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2702        I != E; ++I)
2703     if (&*I != PStore && I->mayReadOrWriteMemory())
2704       return false;
2705 
2706   // OK, we're going to sink the stores to PostBB. The store has to be
2707   // conditional though, so first create the predicate.
2708   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2709                      ->getCondition();
2710   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2711                      ->getCondition();
2712 
2713   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2714                                                 PStore->getParent());
2715   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2716                                                 QStore->getParent(), PPHI);
2717 
2718   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2719 
2720   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2721   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2722 
2723   if (InvertPCond)
2724     PPred = QB.CreateNot(PPred);
2725   if (InvertQCond)
2726     QPred = QB.CreateNot(QPred);
2727   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2728 
2729   auto *T =
2730       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2731   QB.SetInsertPoint(T);
2732   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2733   AAMDNodes AAMD;
2734   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2735   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2736   SI->setAAMetadata(AAMD);
2737 
2738   QStore->eraseFromParent();
2739   PStore->eraseFromParent();
2740 
2741   return true;
2742 }
2743 
2744 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2745   // The intention here is to find diamonds or triangles (see below) where each
2746   // conditional block contains a store to the same address. Both of these
2747   // stores are conditional, so they can't be unconditionally sunk. But it may
2748   // be profitable to speculatively sink the stores into one merged store at the
2749   // end, and predicate the merged store on the union of the two conditions of
2750   // PBI and QBI.
2751   //
2752   // This can reduce the number of stores executed if both of the conditions are
2753   // true, and can allow the blocks to become small enough to be if-converted.
2754   // This optimization will also chain, so that ladders of test-and-set
2755   // sequences can be if-converted away.
2756   //
2757   // We only deal with simple diamonds or triangles:
2758   //
2759   //     PBI       or      PBI        or a combination of the two
2760   //    /   \               | \
2761   //   PTB  PFB             |  PFB
2762   //    \   /               | /
2763   //     QBI                QBI
2764   //    /  \                | \
2765   //   QTB  QFB             |  QFB
2766   //    \  /                | /
2767   //    PostBB            PostBB
2768   //
2769   // We model triangles as a type of diamond with a nullptr "true" block.
2770   // Triangles are canonicalized so that the fallthrough edge is represented by
2771   // a true condition, as in the diagram above.
2772   //
2773   BasicBlock *PTB = PBI->getSuccessor(0);
2774   BasicBlock *PFB = PBI->getSuccessor(1);
2775   BasicBlock *QTB = QBI->getSuccessor(0);
2776   BasicBlock *QFB = QBI->getSuccessor(1);
2777   BasicBlock *PostBB = QFB->getSingleSuccessor();
2778 
2779   bool InvertPCond = false, InvertQCond = false;
2780   // Canonicalize fallthroughs to the true branches.
2781   if (PFB == QBI->getParent()) {
2782     std::swap(PFB, PTB);
2783     InvertPCond = true;
2784   }
2785   if (QFB == PostBB) {
2786     std::swap(QFB, QTB);
2787     InvertQCond = true;
2788   }
2789 
2790   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2791   // and QFB may not. Model fallthroughs as a nullptr block.
2792   if (PTB == QBI->getParent())
2793     PTB = nullptr;
2794   if (QTB == PostBB)
2795     QTB = nullptr;
2796 
2797   // Legality bailouts. We must have at least the non-fallthrough blocks and
2798   // the post-dominating block, and the non-fallthroughs must only have one
2799   // predecessor.
2800   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2801     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2802   };
2803   if (!PostBB ||
2804       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
2805       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
2806     return false;
2807   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
2808       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
2809     return false;
2810   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
2811     return false;
2812 
2813   // OK, this is a sequence of two diamonds or triangles.
2814   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
2815   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
2816   for (auto *BB : {PTB, PFB}) {
2817     if (!BB)
2818       continue;
2819     for (auto &I : *BB)
2820       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2821         PStoreAddresses.insert(SI->getPointerOperand());
2822   }
2823   for (auto *BB : {QTB, QFB}) {
2824     if (!BB)
2825       continue;
2826     for (auto &I : *BB)
2827       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2828         QStoreAddresses.insert(SI->getPointerOperand());
2829   }
2830 
2831   set_intersect(PStoreAddresses, QStoreAddresses);
2832   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
2833   // clear what it contains.
2834   auto &CommonAddresses = PStoreAddresses;
2835 
2836   bool Changed = false;
2837   for (auto *Address : CommonAddresses)
2838     Changed |= mergeConditionalStoreToAddress(
2839         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
2840   return Changed;
2841 }
2842 
2843 /// If we have a conditional branch as a predecessor of another block,
2844 /// this function tries to simplify it.  We know
2845 /// that PBI and BI are both conditional branches, and BI is in one of the
2846 /// successor blocks of PBI - PBI branches to BI.
2847 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
2848                                            const DataLayout &DL) {
2849   assert(PBI->isConditional() && BI->isConditional());
2850   BasicBlock *BB = BI->getParent();
2851 
2852   // If this block ends with a branch instruction, and if there is a
2853   // predecessor that ends on a branch of the same condition, make
2854   // this conditional branch redundant.
2855   if (PBI->getCondition() == BI->getCondition() &&
2856       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2857     // Okay, the outcome of this conditional branch is statically
2858     // knowable.  If this block had a single pred, handle specially.
2859     if (BB->getSinglePredecessor()) {
2860       // Turn this into a branch on constant.
2861       bool CondIsTrue = PBI->getSuccessor(0) == BB;
2862       BI->setCondition(
2863           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
2864       return true; // Nuke the branch on constant.
2865     }
2866 
2867     // Otherwise, if there are multiple predecessors, insert a PHI that merges
2868     // in the constant and simplify the block result.  Subsequent passes of
2869     // simplifycfg will thread the block.
2870     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2871       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2872       PHINode *NewPN = PHINode::Create(
2873           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
2874           BI->getCondition()->getName() + ".pr", &BB->front());
2875       // Okay, we're going to insert the PHI node.  Since PBI is not the only
2876       // predecessor, compute the PHI'd conditional value for all of the preds.
2877       // Any predecessor where the condition is not computable we keep symbolic.
2878       for (pred_iterator PI = PB; PI != PE; ++PI) {
2879         BasicBlock *P = *PI;
2880         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
2881             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
2882             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2883           bool CondIsTrue = PBI->getSuccessor(0) == BB;
2884           NewPN->addIncoming(
2885               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
2886               P);
2887         } else {
2888           NewPN->addIncoming(BI->getCondition(), P);
2889         }
2890       }
2891 
2892       BI->setCondition(NewPN);
2893       return true;
2894     }
2895   }
2896 
2897   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2898     if (CE->canTrap())
2899       return false;
2900 
2901   // If both branches are conditional and both contain stores to the same
2902   // address, remove the stores from the conditionals and create a conditional
2903   // merged store at the end.
2904   if (MergeCondStores && mergeConditionalStores(PBI, BI))
2905     return true;
2906 
2907   // If this is a conditional branch in an empty block, and if any
2908   // predecessors are a conditional branch to one of our destinations,
2909   // fold the conditions into logical ops and one cond br.
2910   BasicBlock::iterator BBI = BB->begin();
2911   // Ignore dbg intrinsics.
2912   while (isa<DbgInfoIntrinsic>(BBI))
2913     ++BBI;
2914   if (&*BBI != BI)
2915     return false;
2916 
2917   int PBIOp, BIOp;
2918   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
2919     PBIOp = 0;
2920     BIOp = 0;
2921   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
2922     PBIOp = 0;
2923     BIOp = 1;
2924   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
2925     PBIOp = 1;
2926     BIOp = 0;
2927   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
2928     PBIOp = 1;
2929     BIOp = 1;
2930   } else {
2931     return false;
2932   }
2933 
2934   // Check to make sure that the other destination of this branch
2935   // isn't BB itself.  If so, this is an infinite loop that will
2936   // keep getting unwound.
2937   if (PBI->getSuccessor(PBIOp) == BB)
2938     return false;
2939 
2940   // Do not perform this transformation if it would require
2941   // insertion of a large number of select instructions. For targets
2942   // without predication/cmovs, this is a big pessimization.
2943 
2944   // Also do not perform this transformation if any phi node in the common
2945   // destination block can trap when reached by BB or PBB (PR17073). In that
2946   // case, it would be unsafe to hoist the operation into a select instruction.
2947 
2948   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2949   unsigned NumPhis = 0;
2950   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
2951        ++II, ++NumPhis) {
2952     if (NumPhis > 2) // Disable this xform.
2953       return false;
2954 
2955     PHINode *PN = cast<PHINode>(II);
2956     Value *BIV = PN->getIncomingValueForBlock(BB);
2957     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2958       if (CE->canTrap())
2959         return false;
2960 
2961     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2962     Value *PBIV = PN->getIncomingValue(PBBIdx);
2963     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2964       if (CE->canTrap())
2965         return false;
2966   }
2967 
2968   // Finally, if everything is ok, fold the branches to logical ops.
2969   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2970 
2971   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2972                << "AND: " << *BI->getParent());
2973 
2974   // If OtherDest *is* BB, then BB is a basic block with a single conditional
2975   // branch in it, where one edge (OtherDest) goes back to itself but the other
2976   // exits.  We don't *know* that the program avoids the infinite loop
2977   // (even though that seems likely).  If we do this xform naively, we'll end up
2978   // recursively unpeeling the loop.  Since we know that (after the xform is
2979   // done) that the block *is* infinite if reached, we just make it an obviously
2980   // infinite loop with no cond branch.
2981   if (OtherDest == BB) {
2982     // Insert it at the end of the function, because it's either code,
2983     // or it won't matter if it's hot. :)
2984     BasicBlock *InfLoopBlock =
2985         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
2986     BranchInst::Create(InfLoopBlock, InfLoopBlock);
2987     OtherDest = InfLoopBlock;
2988   }
2989 
2990   DEBUG(dbgs() << *PBI->getParent()->getParent());
2991 
2992   // BI may have other predecessors.  Because of this, we leave
2993   // it alone, but modify PBI.
2994 
2995   // Make sure we get to CommonDest on True&True directions.
2996   Value *PBICond = PBI->getCondition();
2997   IRBuilder<NoFolder> Builder(PBI);
2998   if (PBIOp)
2999     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3000 
3001   Value *BICond = BI->getCondition();
3002   if (BIOp)
3003     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3004 
3005   // Merge the conditions.
3006   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3007 
3008   // Modify PBI to branch on the new condition to the new dests.
3009   PBI->setCondition(Cond);
3010   PBI->setSuccessor(0, CommonDest);
3011   PBI->setSuccessor(1, OtherDest);
3012 
3013   // Update branch weight for PBI.
3014   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3015   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3016   bool HasWeights =
3017       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3018                              SuccTrueWeight, SuccFalseWeight);
3019   if (HasWeights) {
3020     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3021     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3022     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3023     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3024     // The weight to CommonDest should be PredCommon * SuccTotal +
3025     //                                    PredOther * SuccCommon.
3026     // The weight to OtherDest should be PredOther * SuccOther.
3027     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3028                                   PredOther * SuccCommon,
3029                               PredOther * SuccOther};
3030     // Halve the weights if any of them cannot fit in an uint32_t
3031     FitWeights(NewWeights);
3032 
3033     PBI->setMetadata(LLVMContext::MD_prof,
3034                      MDBuilder(BI->getContext())
3035                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3036   }
3037 
3038   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3039   // block that are identical to the entries for BI's block.
3040   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3041 
3042   // We know that the CommonDest already had an edge from PBI to
3043   // it.  If it has PHIs though, the PHIs may have different
3044   // entries for BB and PBI's BB.  If so, insert a select to make
3045   // them agree.
3046   PHINode *PN;
3047   for (BasicBlock::iterator II = CommonDest->begin();
3048        (PN = dyn_cast<PHINode>(II)); ++II) {
3049     Value *BIV = PN->getIncomingValueForBlock(BB);
3050     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3051     Value *PBIV = PN->getIncomingValue(PBBIdx);
3052     if (BIV != PBIV) {
3053       // Insert a select in PBI to pick the right value.
3054       SelectInst *NV = cast<SelectInst>(
3055           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3056       PN->setIncomingValue(PBBIdx, NV);
3057       // Although the select has the same condition as PBI, the original branch
3058       // weights for PBI do not apply to the new select because the select's
3059       // 'logical' edges are incoming edges of the phi that is eliminated, not
3060       // the outgoing edges of PBI.
3061       if (HasWeights) {
3062         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3063         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3064         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3065         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3066         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3067         // The weight to PredOtherDest should be PredOther * SuccCommon.
3068         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3069                                   PredOther * SuccCommon};
3070 
3071         FitWeights(NewWeights);
3072 
3073         NV->setMetadata(LLVMContext::MD_prof,
3074                         MDBuilder(BI->getContext())
3075                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3076       }
3077     }
3078   }
3079 
3080   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3081   DEBUG(dbgs() << *PBI->getParent()->getParent());
3082 
3083   // This basic block is probably dead.  We know it has at least
3084   // one fewer predecessor.
3085   return true;
3086 }
3087 
3088 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3089 // true or to FalseBB if Cond is false.
3090 // Takes care of updating the successors and removing the old terminator.
3091 // Also makes sure not to introduce new successors by assuming that edges to
3092 // non-successor TrueBBs and FalseBBs aren't reachable.
3093 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3094                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3095                                        uint32_t TrueWeight,
3096                                        uint32_t FalseWeight) {
3097   // Remove any superfluous successor edges from the CFG.
3098   // First, figure out which successors to preserve.
3099   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3100   // successor.
3101   BasicBlock *KeepEdge1 = TrueBB;
3102   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3103 
3104   // Then remove the rest.
3105   for (BasicBlock *Succ : OldTerm->successors()) {
3106     // Make sure only to keep exactly one copy of each edge.
3107     if (Succ == KeepEdge1)
3108       KeepEdge1 = nullptr;
3109     else if (Succ == KeepEdge2)
3110       KeepEdge2 = nullptr;
3111     else
3112       Succ->removePredecessor(OldTerm->getParent(),
3113                               /*DontDeleteUselessPHIs=*/true);
3114   }
3115 
3116   IRBuilder<> Builder(OldTerm);
3117   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3118 
3119   // Insert an appropriate new terminator.
3120   if (!KeepEdge1 && !KeepEdge2) {
3121     if (TrueBB == FalseBB)
3122       // We were only looking for one successor, and it was present.
3123       // Create an unconditional branch to it.
3124       Builder.CreateBr(TrueBB);
3125     else {
3126       // We found both of the successors we were looking for.
3127       // Create a conditional branch sharing the condition of the select.
3128       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3129       if (TrueWeight != FalseWeight)
3130         NewBI->setMetadata(LLVMContext::MD_prof,
3131                            MDBuilder(OldTerm->getContext())
3132                                .createBranchWeights(TrueWeight, FalseWeight));
3133     }
3134   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3135     // Neither of the selected blocks were successors, so this
3136     // terminator must be unreachable.
3137     new UnreachableInst(OldTerm->getContext(), OldTerm);
3138   } else {
3139     // One of the selected values was a successor, but the other wasn't.
3140     // Insert an unconditional branch to the one that was found;
3141     // the edge to the one that wasn't must be unreachable.
3142     if (!KeepEdge1)
3143       // Only TrueBB was found.
3144       Builder.CreateBr(TrueBB);
3145     else
3146       // Only FalseBB was found.
3147       Builder.CreateBr(FalseBB);
3148   }
3149 
3150   EraseTerminatorInstAndDCECond(OldTerm);
3151   return true;
3152 }
3153 
3154 // Replaces
3155 //   (switch (select cond, X, Y)) on constant X, Y
3156 // with a branch - conditional if X and Y lead to distinct BBs,
3157 // unconditional otherwise.
3158 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3159   // Check for constant integer values in the select.
3160   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3161   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3162   if (!TrueVal || !FalseVal)
3163     return false;
3164 
3165   // Find the relevant condition and destinations.
3166   Value *Condition = Select->getCondition();
3167   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3168   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3169 
3170   // Get weight for TrueBB and FalseBB.
3171   uint32_t TrueWeight = 0, FalseWeight = 0;
3172   SmallVector<uint64_t, 8> Weights;
3173   bool HasWeights = HasBranchWeights(SI);
3174   if (HasWeights) {
3175     GetBranchWeights(SI, Weights);
3176     if (Weights.size() == 1 + SI->getNumCases()) {
3177       TrueWeight =
3178           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3179       FalseWeight =
3180           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3181     }
3182   }
3183 
3184   // Perform the actual simplification.
3185   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3186                                     FalseWeight);
3187 }
3188 
3189 // Replaces
3190 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3191 //                             blockaddress(@fn, BlockB)))
3192 // with
3193 //   (br cond, BlockA, BlockB).
3194 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3195   // Check that both operands of the select are block addresses.
3196   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3197   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3198   if (!TBA || !FBA)
3199     return false;
3200 
3201   // Extract the actual blocks.
3202   BasicBlock *TrueBB = TBA->getBasicBlock();
3203   BasicBlock *FalseBB = FBA->getBasicBlock();
3204 
3205   // Perform the actual simplification.
3206   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3207                                     0);
3208 }
3209 
3210 /// This is called when we find an icmp instruction
3211 /// (a seteq/setne with a constant) as the only instruction in a
3212 /// block that ends with an uncond branch.  We are looking for a very specific
3213 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3214 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3215 /// default value goes to an uncond block with a seteq in it, we get something
3216 /// like:
3217 ///
3218 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3219 /// DEFAULT:
3220 ///   %tmp = icmp eq i8 %A, 92
3221 ///   br label %end
3222 /// end:
3223 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3224 ///
3225 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3226 /// the PHI, merging the third icmp into the switch.
3227 static bool TryToSimplifyUncondBranchWithICmpInIt(
3228     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3229     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3230     AssumptionCache *AC) {
3231   BasicBlock *BB = ICI->getParent();
3232 
3233   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3234   // complex.
3235   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3236     return false;
3237 
3238   Value *V = ICI->getOperand(0);
3239   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3240 
3241   // The pattern we're looking for is where our only predecessor is a switch on
3242   // 'V' and this block is the default case for the switch.  In this case we can
3243   // fold the compared value into the switch to simplify things.
3244   BasicBlock *Pred = BB->getSinglePredecessor();
3245   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3246     return false;
3247 
3248   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3249   if (SI->getCondition() != V)
3250     return false;
3251 
3252   // If BB is reachable on a non-default case, then we simply know the value of
3253   // V in this block.  Substitute it and constant fold the icmp instruction
3254   // away.
3255   if (SI->getDefaultDest() != BB) {
3256     ConstantInt *VVal = SI->findCaseDest(BB);
3257     assert(VVal && "Should have a unique destination value");
3258     ICI->setOperand(0, VVal);
3259 
3260     if (Value *V = SimplifyInstruction(ICI, DL)) {
3261       ICI->replaceAllUsesWith(V);
3262       ICI->eraseFromParent();
3263     }
3264     // BB is now empty, so it is likely to simplify away.
3265     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3266   }
3267 
3268   // Ok, the block is reachable from the default dest.  If the constant we're
3269   // comparing exists in one of the other edges, then we can constant fold ICI
3270   // and zap it.
3271   if (SI->findCaseValue(Cst) != SI->case_default()) {
3272     Value *V;
3273     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3274       V = ConstantInt::getFalse(BB->getContext());
3275     else
3276       V = ConstantInt::getTrue(BB->getContext());
3277 
3278     ICI->replaceAllUsesWith(V);
3279     ICI->eraseFromParent();
3280     // BB is now empty, so it is likely to simplify away.
3281     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3282   }
3283 
3284   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3285   // the block.
3286   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3287   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3288   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3289       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3290     return false;
3291 
3292   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3293   // true in the PHI.
3294   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3295   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3296 
3297   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3298     std::swap(DefaultCst, NewCst);
3299 
3300   // Replace ICI (which is used by the PHI for the default value) with true or
3301   // false depending on if it is EQ or NE.
3302   ICI->replaceAllUsesWith(DefaultCst);
3303   ICI->eraseFromParent();
3304 
3305   // Okay, the switch goes to this block on a default value.  Add an edge from
3306   // the switch to the merge point on the compared value.
3307   BasicBlock *NewBB =
3308       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3309   SmallVector<uint64_t, 8> Weights;
3310   bool HasWeights = HasBranchWeights(SI);
3311   if (HasWeights) {
3312     GetBranchWeights(SI, Weights);
3313     if (Weights.size() == 1 + SI->getNumCases()) {
3314       // Split weight for default case to case for "Cst".
3315       Weights[0] = (Weights[0] + 1) >> 1;
3316       Weights.push_back(Weights[0]);
3317 
3318       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3319       SI->setMetadata(
3320           LLVMContext::MD_prof,
3321           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3322     }
3323   }
3324   SI->addCase(Cst, NewBB);
3325 
3326   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3327   Builder.SetInsertPoint(NewBB);
3328   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3329   Builder.CreateBr(SuccBlock);
3330   PHIUse->addIncoming(NewCst, NewBB);
3331   return true;
3332 }
3333 
3334 /// The specified branch is a conditional branch.
3335 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3336 /// fold it into a switch instruction if so.
3337 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3338                                       const DataLayout &DL) {
3339   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3340   if (!Cond)
3341     return false;
3342 
3343   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3344   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3345   // 'setne's and'ed together, collect them.
3346 
3347   // Try to gather values from a chain of and/or to be turned into a switch
3348   ConstantComparesGatherer ConstantCompare(Cond, DL);
3349   // Unpack the result
3350   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3351   Value *CompVal = ConstantCompare.CompValue;
3352   unsigned UsedICmps = ConstantCompare.UsedICmps;
3353   Value *ExtraCase = ConstantCompare.Extra;
3354 
3355   // If we didn't have a multiply compared value, fail.
3356   if (!CompVal)
3357     return false;
3358 
3359   // Avoid turning single icmps into a switch.
3360   if (UsedICmps <= 1)
3361     return false;
3362 
3363   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3364 
3365   // There might be duplicate constants in the list, which the switch
3366   // instruction can't handle, remove them now.
3367   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3368   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3369 
3370   // If Extra was used, we require at least two switch values to do the
3371   // transformation.  A switch with one value is just a conditional branch.
3372   if (ExtraCase && Values.size() < 2)
3373     return false;
3374 
3375   // TODO: Preserve branch weight metadata, similarly to how
3376   // FoldValueComparisonIntoPredecessors preserves it.
3377 
3378   // Figure out which block is which destination.
3379   BasicBlock *DefaultBB = BI->getSuccessor(1);
3380   BasicBlock *EdgeBB = BI->getSuccessor(0);
3381   if (!TrueWhenEqual)
3382     std::swap(DefaultBB, EdgeBB);
3383 
3384   BasicBlock *BB = BI->getParent();
3385 
3386   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3387                << " cases into SWITCH.  BB is:\n"
3388                << *BB);
3389 
3390   // If there are any extra values that couldn't be folded into the switch
3391   // then we evaluate them with an explicit branch first.  Split the block
3392   // right before the condbr to handle it.
3393   if (ExtraCase) {
3394     BasicBlock *NewBB =
3395         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3396     // Remove the uncond branch added to the old block.
3397     TerminatorInst *OldTI = BB->getTerminator();
3398     Builder.SetInsertPoint(OldTI);
3399 
3400     if (TrueWhenEqual)
3401       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3402     else
3403       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3404 
3405     OldTI->eraseFromParent();
3406 
3407     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3408     // for the edge we just added.
3409     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3410 
3411     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3412                  << "\nEXTRABB = " << *BB);
3413     BB = NewBB;
3414   }
3415 
3416   Builder.SetInsertPoint(BI);
3417   // Convert pointer to int before we switch.
3418   if (CompVal->getType()->isPointerTy()) {
3419     CompVal = Builder.CreatePtrToInt(
3420         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3421   }
3422 
3423   // Create the new switch instruction now.
3424   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3425 
3426   // Add all of the 'cases' to the switch instruction.
3427   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3428     New->addCase(Values[i], EdgeBB);
3429 
3430   // We added edges from PI to the EdgeBB.  As such, if there were any
3431   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3432   // the number of edges added.
3433   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3434     PHINode *PN = cast<PHINode>(BBI);
3435     Value *InVal = PN->getIncomingValueForBlock(BB);
3436     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3437       PN->addIncoming(InVal, BB);
3438   }
3439 
3440   // Erase the old branch instruction.
3441   EraseTerminatorInstAndDCECond(BI);
3442 
3443   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3444   return true;
3445 }
3446 
3447 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3448   if (isa<PHINode>(RI->getValue()))
3449     return SimplifyCommonResume(RI);
3450   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3451            RI->getValue() == RI->getParent()->getFirstNonPHI())
3452     // The resume must unwind the exception that caused control to branch here.
3453     return SimplifySingleResume(RI);
3454 
3455   return false;
3456 }
3457 
3458 // Simplify resume that is shared by several landing pads (phi of landing pad).
3459 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3460   BasicBlock *BB = RI->getParent();
3461 
3462   // Check that there are no other instructions except for debug intrinsics
3463   // between the phi of landing pads (RI->getValue()) and resume instruction.
3464   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3465                        E = RI->getIterator();
3466   while (++I != E)
3467     if (!isa<DbgInfoIntrinsic>(I))
3468       return false;
3469 
3470   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3471   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3472 
3473   // Check incoming blocks to see if any of them are trivial.
3474   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3475        Idx++) {
3476     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3477     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3478 
3479     // If the block has other successors, we can not delete it because
3480     // it has other dependents.
3481     if (IncomingBB->getUniqueSuccessor() != BB)
3482       continue;
3483 
3484     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3485     // Not the landing pad that caused the control to branch here.
3486     if (IncomingValue != LandingPad)
3487       continue;
3488 
3489     bool isTrivial = true;
3490 
3491     I = IncomingBB->getFirstNonPHI()->getIterator();
3492     E = IncomingBB->getTerminator()->getIterator();
3493     while (++I != E)
3494       if (!isa<DbgInfoIntrinsic>(I)) {
3495         isTrivial = false;
3496         break;
3497       }
3498 
3499     if (isTrivial)
3500       TrivialUnwindBlocks.insert(IncomingBB);
3501   }
3502 
3503   // If no trivial unwind blocks, don't do any simplifications.
3504   if (TrivialUnwindBlocks.empty())
3505     return false;
3506 
3507   // Turn all invokes that unwind here into calls.
3508   for (auto *TrivialBB : TrivialUnwindBlocks) {
3509     // Blocks that will be simplified should be removed from the phi node.
3510     // Note there could be multiple edges to the resume block, and we need
3511     // to remove them all.
3512     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3513       BB->removePredecessor(TrivialBB, true);
3514 
3515     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3516          PI != PE;) {
3517       BasicBlock *Pred = *PI++;
3518       removeUnwindEdge(Pred);
3519     }
3520 
3521     // In each SimplifyCFG run, only the current processed block can be erased.
3522     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3523     // of erasing TrivialBB, we only remove the branch to the common resume
3524     // block so that we can later erase the resume block since it has no
3525     // predecessors.
3526     TrivialBB->getTerminator()->eraseFromParent();
3527     new UnreachableInst(RI->getContext(), TrivialBB);
3528   }
3529 
3530   // Delete the resume block if all its predecessors have been removed.
3531   if (pred_empty(BB))
3532     BB->eraseFromParent();
3533 
3534   return !TrivialUnwindBlocks.empty();
3535 }
3536 
3537 // Simplify resume that is only used by a single (non-phi) landing pad.
3538 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3539   BasicBlock *BB = RI->getParent();
3540   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3541   assert(RI->getValue() == LPInst &&
3542          "Resume must unwind the exception that caused control to here");
3543 
3544   // Check that there are no other instructions except for debug intrinsics.
3545   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3546   while (++I != E)
3547     if (!isa<DbgInfoIntrinsic>(I))
3548       return false;
3549 
3550   // Turn all invokes that unwind here into calls and delete the basic block.
3551   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3552     BasicBlock *Pred = *PI++;
3553     removeUnwindEdge(Pred);
3554   }
3555 
3556   // The landingpad is now unreachable.  Zap it.
3557   BB->eraseFromParent();
3558   if (LoopHeaders)
3559     LoopHeaders->erase(BB);
3560   return true;
3561 }
3562 
3563 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3564   // If this is a trivial cleanup pad that executes no instructions, it can be
3565   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3566   // that is an EH pad will be updated to continue to the caller and any
3567   // predecessor that terminates with an invoke instruction will have its invoke
3568   // instruction converted to a call instruction.  If the cleanup pad being
3569   // simplified does not continue to the caller, each predecessor will be
3570   // updated to continue to the unwind destination of the cleanup pad being
3571   // simplified.
3572   BasicBlock *BB = RI->getParent();
3573   CleanupPadInst *CPInst = RI->getCleanupPad();
3574   if (CPInst->getParent() != BB)
3575     // This isn't an empty cleanup.
3576     return false;
3577 
3578   // We cannot kill the pad if it has multiple uses.  This typically arises
3579   // from unreachable basic blocks.
3580   if (!CPInst->hasOneUse())
3581     return false;
3582 
3583   // Check that there are no other instructions except for benign intrinsics.
3584   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3585   while (++I != E) {
3586     auto *II = dyn_cast<IntrinsicInst>(I);
3587     if (!II)
3588       return false;
3589 
3590     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3591     switch (IntrinsicID) {
3592     case Intrinsic::dbg_declare:
3593     case Intrinsic::dbg_value:
3594     case Intrinsic::lifetime_end:
3595       break;
3596     default:
3597       return false;
3598     }
3599   }
3600 
3601   // If the cleanup return we are simplifying unwinds to the caller, this will
3602   // set UnwindDest to nullptr.
3603   BasicBlock *UnwindDest = RI->getUnwindDest();
3604   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3605 
3606   // We're about to remove BB from the control flow.  Before we do, sink any
3607   // PHINodes into the unwind destination.  Doing this before changing the
3608   // control flow avoids some potentially slow checks, since we can currently
3609   // be certain that UnwindDest and BB have no common predecessors (since they
3610   // are both EH pads).
3611   if (UnwindDest) {
3612     // First, go through the PHI nodes in UnwindDest and update any nodes that
3613     // reference the block we are removing
3614     for (BasicBlock::iterator I = UnwindDest->begin(),
3615                               IE = DestEHPad->getIterator();
3616          I != IE; ++I) {
3617       PHINode *DestPN = cast<PHINode>(I);
3618 
3619       int Idx = DestPN->getBasicBlockIndex(BB);
3620       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3621       assert(Idx != -1);
3622       // This PHI node has an incoming value that corresponds to a control
3623       // path through the cleanup pad we are removing.  If the incoming
3624       // value is in the cleanup pad, it must be a PHINode (because we
3625       // verified above that the block is otherwise empty).  Otherwise, the
3626       // value is either a constant or a value that dominates the cleanup
3627       // pad being removed.
3628       //
3629       // Because BB and UnwindDest are both EH pads, all of their
3630       // predecessors must unwind to these blocks, and since no instruction
3631       // can have multiple unwind destinations, there will be no overlap in
3632       // incoming blocks between SrcPN and DestPN.
3633       Value *SrcVal = DestPN->getIncomingValue(Idx);
3634       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3635 
3636       // Remove the entry for the block we are deleting.
3637       DestPN->removeIncomingValue(Idx, false);
3638 
3639       if (SrcPN && SrcPN->getParent() == BB) {
3640         // If the incoming value was a PHI node in the cleanup pad we are
3641         // removing, we need to merge that PHI node's incoming values into
3642         // DestPN.
3643         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3644              SrcIdx != SrcE; ++SrcIdx) {
3645           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3646                               SrcPN->getIncomingBlock(SrcIdx));
3647         }
3648       } else {
3649         // Otherwise, the incoming value came from above BB and
3650         // so we can just reuse it.  We must associate all of BB's
3651         // predecessors with this value.
3652         for (auto *pred : predecessors(BB)) {
3653           DestPN->addIncoming(SrcVal, pred);
3654         }
3655       }
3656     }
3657 
3658     // Sink any remaining PHI nodes directly into UnwindDest.
3659     Instruction *InsertPt = DestEHPad;
3660     for (BasicBlock::iterator I = BB->begin(),
3661                               IE = BB->getFirstNonPHI()->getIterator();
3662          I != IE;) {
3663       // The iterator must be incremented here because the instructions are
3664       // being moved to another block.
3665       PHINode *PN = cast<PHINode>(I++);
3666       if (PN->use_empty())
3667         // If the PHI node has no uses, just leave it.  It will be erased
3668         // when we erase BB below.
3669         continue;
3670 
3671       // Otherwise, sink this PHI node into UnwindDest.
3672       // Any predecessors to UnwindDest which are not already represented
3673       // must be back edges which inherit the value from the path through
3674       // BB.  In this case, the PHI value must reference itself.
3675       for (auto *pred : predecessors(UnwindDest))
3676         if (pred != BB)
3677           PN->addIncoming(PN, pred);
3678       PN->moveBefore(InsertPt);
3679     }
3680   }
3681 
3682   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3683     // The iterator must be updated here because we are removing this pred.
3684     BasicBlock *PredBB = *PI++;
3685     if (UnwindDest == nullptr) {
3686       removeUnwindEdge(PredBB);
3687     } else {
3688       TerminatorInst *TI = PredBB->getTerminator();
3689       TI->replaceUsesOfWith(BB, UnwindDest);
3690     }
3691   }
3692 
3693   // The cleanup pad is now unreachable.  Zap it.
3694   BB->eraseFromParent();
3695   return true;
3696 }
3697 
3698 // Try to merge two cleanuppads together.
3699 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3700   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3701   // with.
3702   BasicBlock *UnwindDest = RI->getUnwindDest();
3703   if (!UnwindDest)
3704     return false;
3705 
3706   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3707   // be safe to merge without code duplication.
3708   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3709     return false;
3710 
3711   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3712   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3713   if (!SuccessorCleanupPad)
3714     return false;
3715 
3716   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3717   // Replace any uses of the successor cleanupad with the predecessor pad
3718   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3719   // funclet bundle operands.
3720   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3721   // Remove the old cleanuppad.
3722   SuccessorCleanupPad->eraseFromParent();
3723   // Now, we simply replace the cleanupret with a branch to the unwind
3724   // destination.
3725   BranchInst::Create(UnwindDest, RI->getParent());
3726   RI->eraseFromParent();
3727 
3728   return true;
3729 }
3730 
3731 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3732   // It is possible to transiantly have an undef cleanuppad operand because we
3733   // have deleted some, but not all, dead blocks.
3734   // Eventually, this block will be deleted.
3735   if (isa<UndefValue>(RI->getOperand(0)))
3736     return false;
3737 
3738   if (mergeCleanupPad(RI))
3739     return true;
3740 
3741   if (removeEmptyCleanup(RI))
3742     return true;
3743 
3744   return false;
3745 }
3746 
3747 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3748   BasicBlock *BB = RI->getParent();
3749   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3750     return false;
3751 
3752   // Find predecessors that end with branches.
3753   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3754   SmallVector<BranchInst *, 8> CondBranchPreds;
3755   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3756     BasicBlock *P = *PI;
3757     TerminatorInst *PTI = P->getTerminator();
3758     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3759       if (BI->isUnconditional())
3760         UncondBranchPreds.push_back(P);
3761       else
3762         CondBranchPreds.push_back(BI);
3763     }
3764   }
3765 
3766   // If we found some, do the transformation!
3767   if (!UncondBranchPreds.empty() && DupRet) {
3768     while (!UncondBranchPreds.empty()) {
3769       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3770       DEBUG(dbgs() << "FOLDING: " << *BB
3771                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3772       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3773     }
3774 
3775     // If we eliminated all predecessors of the block, delete the block now.
3776     if (pred_empty(BB)) {
3777       // We know there are no successors, so just nuke the block.
3778       BB->eraseFromParent();
3779       if (LoopHeaders)
3780         LoopHeaders->erase(BB);
3781     }
3782 
3783     return true;
3784   }
3785 
3786   // Check out all of the conditional branches going to this return
3787   // instruction.  If any of them just select between returns, change the
3788   // branch itself into a select/return pair.
3789   while (!CondBranchPreds.empty()) {
3790     BranchInst *BI = CondBranchPreds.pop_back_val();
3791 
3792     // Check to see if the non-BB successor is also a return block.
3793     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3794         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3795         SimplifyCondBranchToTwoReturns(BI, Builder))
3796       return true;
3797   }
3798   return false;
3799 }
3800 
3801 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3802   BasicBlock *BB = UI->getParent();
3803 
3804   bool Changed = false;
3805 
3806   // If there are any instructions immediately before the unreachable that can
3807   // be removed, do so.
3808   while (UI->getIterator() != BB->begin()) {
3809     BasicBlock::iterator BBI = UI->getIterator();
3810     --BBI;
3811     // Do not delete instructions that can have side effects which might cause
3812     // the unreachable to not be reachable; specifically, calls and volatile
3813     // operations may have this effect.
3814     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
3815       break;
3816 
3817     if (BBI->mayHaveSideEffects()) {
3818       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
3819         if (SI->isVolatile())
3820           break;
3821       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
3822         if (LI->isVolatile())
3823           break;
3824       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3825         if (RMWI->isVolatile())
3826           break;
3827       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3828         if (CXI->isVolatile())
3829           break;
3830       } else if (isa<CatchPadInst>(BBI)) {
3831         // A catchpad may invoke exception object constructors and such, which
3832         // in some languages can be arbitrary code, so be conservative by
3833         // default.
3834         // For CoreCLR, it just involves a type test, so can be removed.
3835         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
3836             EHPersonality::CoreCLR)
3837           break;
3838       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3839                  !isa<LandingPadInst>(BBI)) {
3840         break;
3841       }
3842       // Note that deleting LandingPad's here is in fact okay, although it
3843       // involves a bit of subtle reasoning. If this inst is a LandingPad,
3844       // all the predecessors of this block will be the unwind edges of Invokes,
3845       // and we can therefore guarantee this block will be erased.
3846     }
3847 
3848     // Delete this instruction (any uses are guaranteed to be dead)
3849     if (!BBI->use_empty())
3850       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3851     BBI->eraseFromParent();
3852     Changed = true;
3853   }
3854 
3855   // If the unreachable instruction is the first in the block, take a gander
3856   // at all of the predecessors of this instruction, and simplify them.
3857   if (&BB->front() != UI)
3858     return Changed;
3859 
3860   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
3861   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3862     TerminatorInst *TI = Preds[i]->getTerminator();
3863     IRBuilder<> Builder(TI);
3864     if (auto *BI = dyn_cast<BranchInst>(TI)) {
3865       if (BI->isUnconditional()) {
3866         if (BI->getSuccessor(0) == BB) {
3867           new UnreachableInst(TI->getContext(), TI);
3868           TI->eraseFromParent();
3869           Changed = true;
3870         }
3871       } else {
3872         if (BI->getSuccessor(0) == BB) {
3873           Builder.CreateBr(BI->getSuccessor(1));
3874           EraseTerminatorInstAndDCECond(BI);
3875         } else if (BI->getSuccessor(1) == BB) {
3876           Builder.CreateBr(BI->getSuccessor(0));
3877           EraseTerminatorInstAndDCECond(BI);
3878           Changed = true;
3879         }
3880       }
3881     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
3882       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
3883            ++i)
3884         if (i.getCaseSuccessor() == BB) {
3885           BB->removePredecessor(SI->getParent());
3886           SI->removeCase(i);
3887           --i;
3888           --e;
3889           Changed = true;
3890         }
3891     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
3892       if (II->getUnwindDest() == BB) {
3893         removeUnwindEdge(TI->getParent());
3894         Changed = true;
3895       }
3896     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3897       if (CSI->getUnwindDest() == BB) {
3898         removeUnwindEdge(TI->getParent());
3899         Changed = true;
3900         continue;
3901       }
3902 
3903       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
3904                                              E = CSI->handler_end();
3905            I != E; ++I) {
3906         if (*I == BB) {
3907           CSI->removeHandler(I);
3908           --I;
3909           --E;
3910           Changed = true;
3911         }
3912       }
3913       if (CSI->getNumHandlers() == 0) {
3914         BasicBlock *CatchSwitchBB = CSI->getParent();
3915         if (CSI->hasUnwindDest()) {
3916           // Redirect preds to the unwind dest
3917           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
3918         } else {
3919           // Rewrite all preds to unwind to caller (or from invoke to call).
3920           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
3921           for (BasicBlock *EHPred : EHPreds)
3922             removeUnwindEdge(EHPred);
3923         }
3924         // The catchswitch is no longer reachable.
3925         new UnreachableInst(CSI->getContext(), CSI);
3926         CSI->eraseFromParent();
3927         Changed = true;
3928       }
3929     } else if (isa<CleanupReturnInst>(TI)) {
3930       new UnreachableInst(TI->getContext(), TI);
3931       TI->eraseFromParent();
3932       Changed = true;
3933     }
3934   }
3935 
3936   // If this block is now dead, remove it.
3937   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
3938     // We know there are no successors, so just nuke the block.
3939     BB->eraseFromParent();
3940     if (LoopHeaders)
3941       LoopHeaders->erase(BB);
3942     return true;
3943   }
3944 
3945   return Changed;
3946 }
3947 
3948 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
3949   assert(Cases.size() >= 1);
3950 
3951   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3952   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
3953     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
3954       return false;
3955   }
3956   return true;
3957 }
3958 
3959 /// Turn a switch with two reachable destinations into an integer range
3960 /// comparison and branch.
3961 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3962   assert(SI->getNumCases() > 1 && "Degenerate switch?");
3963 
3964   bool HasDefault =
3965       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
3966 
3967   // Partition the cases into two sets with different destinations.
3968   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
3969   BasicBlock *DestB = nullptr;
3970   SmallVector<ConstantInt *, 16> CasesA;
3971   SmallVector<ConstantInt *, 16> CasesB;
3972 
3973   for (SwitchInst::CaseIt I : SI->cases()) {
3974     BasicBlock *Dest = I.getCaseSuccessor();
3975     if (!DestA)
3976       DestA = Dest;
3977     if (Dest == DestA) {
3978       CasesA.push_back(I.getCaseValue());
3979       continue;
3980     }
3981     if (!DestB)
3982       DestB = Dest;
3983     if (Dest == DestB) {
3984       CasesB.push_back(I.getCaseValue());
3985       continue;
3986     }
3987     return false; // More than two destinations.
3988   }
3989 
3990   assert(DestA && DestB &&
3991          "Single-destination switch should have been folded.");
3992   assert(DestA != DestB);
3993   assert(DestB != SI->getDefaultDest());
3994   assert(!CasesB.empty() && "There must be non-default cases.");
3995   assert(!CasesA.empty() || HasDefault);
3996 
3997   // Figure out if one of the sets of cases form a contiguous range.
3998   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
3999   BasicBlock *ContiguousDest = nullptr;
4000   BasicBlock *OtherDest = nullptr;
4001   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4002     ContiguousCases = &CasesA;
4003     ContiguousDest = DestA;
4004     OtherDest = DestB;
4005   } else if (CasesAreContiguous(CasesB)) {
4006     ContiguousCases = &CasesB;
4007     ContiguousDest = DestB;
4008     OtherDest = DestA;
4009   } else
4010     return false;
4011 
4012   // Start building the compare and branch.
4013 
4014   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4015   Constant *NumCases =
4016       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4017 
4018   Value *Sub = SI->getCondition();
4019   if (!Offset->isNullValue())
4020     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4021 
4022   Value *Cmp;
4023   // If NumCases overflowed, then all possible values jump to the successor.
4024   if (NumCases->isNullValue() && !ContiguousCases->empty())
4025     Cmp = ConstantInt::getTrue(SI->getContext());
4026   else
4027     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4028   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4029 
4030   // Update weight for the newly-created conditional branch.
4031   if (HasBranchWeights(SI)) {
4032     SmallVector<uint64_t, 8> Weights;
4033     GetBranchWeights(SI, Weights);
4034     if (Weights.size() == 1 + SI->getNumCases()) {
4035       uint64_t TrueWeight = 0;
4036       uint64_t FalseWeight = 0;
4037       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4038         if (SI->getSuccessor(I) == ContiguousDest)
4039           TrueWeight += Weights[I];
4040         else
4041           FalseWeight += Weights[I];
4042       }
4043       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4044         TrueWeight /= 2;
4045         FalseWeight /= 2;
4046       }
4047       NewBI->setMetadata(LLVMContext::MD_prof,
4048                          MDBuilder(SI->getContext())
4049                              .createBranchWeights((uint32_t)TrueWeight,
4050                                                   (uint32_t)FalseWeight));
4051     }
4052   }
4053 
4054   // Prune obsolete incoming values off the successors' PHI nodes.
4055   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4056     unsigned PreviousEdges = ContiguousCases->size();
4057     if (ContiguousDest == SI->getDefaultDest())
4058       ++PreviousEdges;
4059     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4060       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4061   }
4062   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4063     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4064     if (OtherDest == SI->getDefaultDest())
4065       ++PreviousEdges;
4066     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4067       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4068   }
4069 
4070   // Drop the switch.
4071   SI->eraseFromParent();
4072 
4073   return true;
4074 }
4075 
4076 /// Compute masked bits for the condition of a switch
4077 /// and use it to remove dead cases.
4078 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4079                                      const DataLayout &DL) {
4080   Value *Cond = SI->getCondition();
4081   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4082   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4083   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4084 
4085   // We can also eliminate cases by determining that their values are outside of
4086   // the limited range of the condition based on how many significant (non-sign)
4087   // bits are in the condition value.
4088   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4089   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4090 
4091   // Gather dead cases.
4092   SmallVector<ConstantInt *, 8> DeadCases;
4093   for (auto &Case : SI->cases()) {
4094     APInt CaseVal = Case.getCaseValue()->getValue();
4095     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4096         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4097       DeadCases.push_back(Case.getCaseValue());
4098       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4099     }
4100   }
4101 
4102   // If we can prove that the cases must cover all possible values, the
4103   // default destination becomes dead and we can remove it.  If we know some
4104   // of the bits in the value, we can use that to more precisely compute the
4105   // number of possible unique case values.
4106   bool HasDefault =
4107       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4108   const unsigned NumUnknownBits =
4109       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4110   assert(NumUnknownBits <= Bits);
4111   if (HasDefault && DeadCases.empty() &&
4112       NumUnknownBits < 64 /* avoid overflow */ &&
4113       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4114     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4115     BasicBlock *NewDefault =
4116         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4117     SI->setDefaultDest(&*NewDefault);
4118     SplitBlock(&*NewDefault, &NewDefault->front());
4119     auto *OldTI = NewDefault->getTerminator();
4120     new UnreachableInst(SI->getContext(), OldTI);
4121     EraseTerminatorInstAndDCECond(OldTI);
4122     return true;
4123   }
4124 
4125   SmallVector<uint64_t, 8> Weights;
4126   bool HasWeight = HasBranchWeights(SI);
4127   if (HasWeight) {
4128     GetBranchWeights(SI, Weights);
4129     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4130   }
4131 
4132   // Remove dead cases from the switch.
4133   for (ConstantInt *DeadCase : DeadCases) {
4134     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4135     assert(Case != SI->case_default() &&
4136            "Case was not found. Probably mistake in DeadCases forming.");
4137     if (HasWeight) {
4138       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4139       Weights.pop_back();
4140     }
4141 
4142     // Prune unused values from PHI nodes.
4143     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4144     SI->removeCase(Case);
4145   }
4146   if (HasWeight && Weights.size() >= 2) {
4147     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4148     SI->setMetadata(LLVMContext::MD_prof,
4149                     MDBuilder(SI->getParent()->getContext())
4150                         .createBranchWeights(MDWeights));
4151   }
4152 
4153   return !DeadCases.empty();
4154 }
4155 
4156 /// If BB would be eligible for simplification by
4157 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4158 /// by an unconditional branch), look at the phi node for BB in the successor
4159 /// block and see if the incoming value is equal to CaseValue. If so, return
4160 /// the phi node, and set PhiIndex to BB's index in the phi node.
4161 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4162                                               BasicBlock *BB, int *PhiIndex) {
4163   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4164     return nullptr; // BB must be empty to be a candidate for simplification.
4165   if (!BB->getSinglePredecessor())
4166     return nullptr; // BB must be dominated by the switch.
4167 
4168   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4169   if (!Branch || !Branch->isUnconditional())
4170     return nullptr; // Terminator must be unconditional branch.
4171 
4172   BasicBlock *Succ = Branch->getSuccessor(0);
4173 
4174   BasicBlock::iterator I = Succ->begin();
4175   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4176     int Idx = PHI->getBasicBlockIndex(BB);
4177     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4178 
4179     Value *InValue = PHI->getIncomingValue(Idx);
4180     if (InValue != CaseValue)
4181       continue;
4182 
4183     *PhiIndex = Idx;
4184     return PHI;
4185   }
4186 
4187   return nullptr;
4188 }
4189 
4190 /// Try to forward the condition of a switch instruction to a phi node
4191 /// dominated by the switch, if that would mean that some of the destination
4192 /// blocks of the switch can be folded away.
4193 /// Returns true if a change is made.
4194 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4195   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4196   ForwardingNodesMap ForwardingNodes;
4197 
4198   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4199        ++I) {
4200     ConstantInt *CaseValue = I.getCaseValue();
4201     BasicBlock *CaseDest = I.getCaseSuccessor();
4202 
4203     int PhiIndex;
4204     PHINode *PHI =
4205         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4206     if (!PHI)
4207       continue;
4208 
4209     ForwardingNodes[PHI].push_back(PhiIndex);
4210   }
4211 
4212   bool Changed = false;
4213 
4214   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4215                                     E = ForwardingNodes.end();
4216        I != E; ++I) {
4217     PHINode *Phi = I->first;
4218     SmallVectorImpl<int> &Indexes = I->second;
4219 
4220     if (Indexes.size() < 2)
4221       continue;
4222 
4223     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4224       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4225     Changed = true;
4226   }
4227 
4228   return Changed;
4229 }
4230 
4231 /// Return true if the backend will be able to handle
4232 /// initializing an array of constants like C.
4233 static bool ValidLookupTableConstant(Constant *C) {
4234   if (C->isThreadDependent())
4235     return false;
4236   if (C->isDLLImportDependent())
4237     return false;
4238 
4239   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4240     return CE->isGEPWithNoNotionalOverIndexing();
4241 
4242   return isa<ConstantFP>(C) || isa<ConstantInt>(C) ||
4243          isa<ConstantPointerNull>(C) || isa<GlobalValue>(C) ||
4244          isa<UndefValue>(C);
4245 }
4246 
4247 /// If V is a Constant, return it. Otherwise, try to look up
4248 /// its constant value in ConstantPool, returning 0 if it's not there.
4249 static Constant *
4250 LookupConstant(Value *V,
4251                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4252   if (Constant *C = dyn_cast<Constant>(V))
4253     return C;
4254   return ConstantPool.lookup(V);
4255 }
4256 
4257 /// Try to fold instruction I into a constant. This works for
4258 /// simple instructions such as binary operations where both operands are
4259 /// constant or can be replaced by constants from the ConstantPool. Returns the
4260 /// resulting constant on success, 0 otherwise.
4261 static Constant *
4262 ConstantFold(Instruction *I, const DataLayout &DL,
4263              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4264   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4265     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4266     if (!A)
4267       return nullptr;
4268     if (A->isAllOnesValue())
4269       return LookupConstant(Select->getTrueValue(), ConstantPool);
4270     if (A->isNullValue())
4271       return LookupConstant(Select->getFalseValue(), ConstantPool);
4272     return nullptr;
4273   }
4274 
4275   SmallVector<Constant *, 4> COps;
4276   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4277     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4278       COps.push_back(A);
4279     else
4280       return nullptr;
4281   }
4282 
4283   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4284     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4285                                            COps[1], DL);
4286   }
4287 
4288   return ConstantFoldInstOperands(I, COps, DL);
4289 }
4290 
4291 /// Try to determine the resulting constant values in phi nodes
4292 /// at the common destination basic block, *CommonDest, for one of the case
4293 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4294 /// case), of a switch instruction SI.
4295 static bool
4296 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4297                BasicBlock **CommonDest,
4298                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4299                const DataLayout &DL) {
4300   // The block from which we enter the common destination.
4301   BasicBlock *Pred = SI->getParent();
4302 
4303   // If CaseDest is empty except for some side-effect free instructions through
4304   // which we can constant-propagate the CaseVal, continue to its successor.
4305   SmallDenseMap<Value *, Constant *> ConstantPool;
4306   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4307   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4308        ++I) {
4309     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4310       // If the terminator is a simple branch, continue to the next block.
4311       if (T->getNumSuccessors() != 1)
4312         return false;
4313       Pred = CaseDest;
4314       CaseDest = T->getSuccessor(0);
4315     } else if (isa<DbgInfoIntrinsic>(I)) {
4316       // Skip debug intrinsic.
4317       continue;
4318     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4319       // Instruction is side-effect free and constant.
4320 
4321       // If the instruction has uses outside this block or a phi node slot for
4322       // the block, it is not safe to bypass the instruction since it would then
4323       // no longer dominate all its uses.
4324       for (auto &Use : I->uses()) {
4325         User *User = Use.getUser();
4326         if (Instruction *I = dyn_cast<Instruction>(User))
4327           if (I->getParent() == CaseDest)
4328             continue;
4329         if (PHINode *Phi = dyn_cast<PHINode>(User))
4330           if (Phi->getIncomingBlock(Use) == CaseDest)
4331             continue;
4332         return false;
4333       }
4334 
4335       ConstantPool.insert(std::make_pair(&*I, C));
4336     } else {
4337       break;
4338     }
4339   }
4340 
4341   // If we did not have a CommonDest before, use the current one.
4342   if (!*CommonDest)
4343     *CommonDest = CaseDest;
4344   // If the destination isn't the common one, abort.
4345   if (CaseDest != *CommonDest)
4346     return false;
4347 
4348   // Get the values for this case from phi nodes in the destination block.
4349   BasicBlock::iterator I = (*CommonDest)->begin();
4350   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4351     int Idx = PHI->getBasicBlockIndex(Pred);
4352     if (Idx == -1)
4353       continue;
4354 
4355     Constant *ConstVal =
4356         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4357     if (!ConstVal)
4358       return false;
4359 
4360     // Be conservative about which kinds of constants we support.
4361     if (!ValidLookupTableConstant(ConstVal))
4362       return false;
4363 
4364     Res.push_back(std::make_pair(PHI, ConstVal));
4365   }
4366 
4367   return Res.size() > 0;
4368 }
4369 
4370 // Helper function used to add CaseVal to the list of cases that generate
4371 // Result.
4372 static void MapCaseToResult(ConstantInt *CaseVal,
4373                             SwitchCaseResultVectorTy &UniqueResults,
4374                             Constant *Result) {
4375   for (auto &I : UniqueResults) {
4376     if (I.first == Result) {
4377       I.second.push_back(CaseVal);
4378       return;
4379     }
4380   }
4381   UniqueResults.push_back(
4382       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4383 }
4384 
4385 // Helper function that initializes a map containing
4386 // results for the PHI node of the common destination block for a switch
4387 // instruction. Returns false if multiple PHI nodes have been found or if
4388 // there is not a common destination block for the switch.
4389 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4390                                   BasicBlock *&CommonDest,
4391                                   SwitchCaseResultVectorTy &UniqueResults,
4392                                   Constant *&DefaultResult,
4393                                   const DataLayout &DL) {
4394   for (auto &I : SI->cases()) {
4395     ConstantInt *CaseVal = I.getCaseValue();
4396 
4397     // Resulting value at phi nodes for this case value.
4398     SwitchCaseResultsTy Results;
4399     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4400                         DL))
4401       return false;
4402 
4403     // Only one value per case is permitted
4404     if (Results.size() > 1)
4405       return false;
4406     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4407 
4408     // Check the PHI consistency.
4409     if (!PHI)
4410       PHI = Results[0].first;
4411     else if (PHI != Results[0].first)
4412       return false;
4413   }
4414   // Find the default result value.
4415   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4416   BasicBlock *DefaultDest = SI->getDefaultDest();
4417   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4418                  DL);
4419   // If the default value is not found abort unless the default destination
4420   // is unreachable.
4421   DefaultResult =
4422       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4423   if ((!DefaultResult &&
4424        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4425     return false;
4426 
4427   return true;
4428 }
4429 
4430 // Helper function that checks if it is possible to transform a switch with only
4431 // two cases (or two cases + default) that produces a result into a select.
4432 // Example:
4433 // switch (a) {
4434 //   case 10:                %0 = icmp eq i32 %a, 10
4435 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4436 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4437 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4438 //   default:
4439 //     return 4;
4440 // }
4441 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4442                                    Constant *DefaultResult, Value *Condition,
4443                                    IRBuilder<> &Builder) {
4444   assert(ResultVector.size() == 2 &&
4445          "We should have exactly two unique results at this point");
4446   // If we are selecting between only two cases transform into a simple
4447   // select or a two-way select if default is possible.
4448   if (ResultVector[0].second.size() == 1 &&
4449       ResultVector[1].second.size() == 1) {
4450     ConstantInt *const FirstCase = ResultVector[0].second[0];
4451     ConstantInt *const SecondCase = ResultVector[1].second[0];
4452 
4453     bool DefaultCanTrigger = DefaultResult;
4454     Value *SelectValue = ResultVector[1].first;
4455     if (DefaultCanTrigger) {
4456       Value *const ValueCompare =
4457           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4458       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4459                                          DefaultResult, "switch.select");
4460     }
4461     Value *const ValueCompare =
4462         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4463     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4464                                 SelectValue, "switch.select");
4465   }
4466 
4467   return nullptr;
4468 }
4469 
4470 // Helper function to cleanup a switch instruction that has been converted into
4471 // a select, fixing up PHI nodes and basic blocks.
4472 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4473                                               Value *SelectValue,
4474                                               IRBuilder<> &Builder) {
4475   BasicBlock *SelectBB = SI->getParent();
4476   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4477     PHI->removeIncomingValue(SelectBB);
4478   PHI->addIncoming(SelectValue, SelectBB);
4479 
4480   Builder.CreateBr(PHI->getParent());
4481 
4482   // Remove the switch.
4483   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4484     BasicBlock *Succ = SI->getSuccessor(i);
4485 
4486     if (Succ == PHI->getParent())
4487       continue;
4488     Succ->removePredecessor(SelectBB);
4489   }
4490   SI->eraseFromParent();
4491 }
4492 
4493 /// If the switch is only used to initialize one or more
4494 /// phi nodes in a common successor block with only two different
4495 /// constant values, replace the switch with select.
4496 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4497                            AssumptionCache *AC, const DataLayout &DL) {
4498   Value *const Cond = SI->getCondition();
4499   PHINode *PHI = nullptr;
4500   BasicBlock *CommonDest = nullptr;
4501   Constant *DefaultResult;
4502   SwitchCaseResultVectorTy UniqueResults;
4503   // Collect all the cases that will deliver the same value from the switch.
4504   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4505                              DL))
4506     return false;
4507   // Selects choose between maximum two values.
4508   if (UniqueResults.size() != 2)
4509     return false;
4510   assert(PHI != nullptr && "PHI for value select not found");
4511 
4512   Builder.SetInsertPoint(SI);
4513   Value *SelectValue =
4514       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4515   if (SelectValue) {
4516     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4517     return true;
4518   }
4519   // The switch couldn't be converted into a select.
4520   return false;
4521 }
4522 
4523 namespace {
4524 /// This class represents a lookup table that can be used to replace a switch.
4525 class SwitchLookupTable {
4526 public:
4527   /// Create a lookup table to use as a switch replacement with the contents
4528   /// of Values, using DefaultValue to fill any holes in the table.
4529   SwitchLookupTable(
4530       Module &M, uint64_t TableSize, ConstantInt *Offset,
4531       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4532       Constant *DefaultValue, const DataLayout &DL);
4533 
4534   /// Build instructions with Builder to retrieve the value at
4535   /// the position given by Index in the lookup table.
4536   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4537 
4538   /// Return true if a table with TableSize elements of
4539   /// type ElementType would fit in a target-legal register.
4540   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4541                                  Type *ElementType);
4542 
4543 private:
4544   // Depending on the contents of the table, it can be represented in
4545   // different ways.
4546   enum {
4547     // For tables where each element contains the same value, we just have to
4548     // store that single value and return it for each lookup.
4549     SingleValueKind,
4550 
4551     // For tables where there is a linear relationship between table index
4552     // and values. We calculate the result with a simple multiplication
4553     // and addition instead of a table lookup.
4554     LinearMapKind,
4555 
4556     // For small tables with integer elements, we can pack them into a bitmap
4557     // that fits into a target-legal register. Values are retrieved by
4558     // shift and mask operations.
4559     BitMapKind,
4560 
4561     // The table is stored as an array of values. Values are retrieved by load
4562     // instructions from the table.
4563     ArrayKind
4564   } Kind;
4565 
4566   // For SingleValueKind, this is the single value.
4567   Constant *SingleValue;
4568 
4569   // For BitMapKind, this is the bitmap.
4570   ConstantInt *BitMap;
4571   IntegerType *BitMapElementTy;
4572 
4573   // For LinearMapKind, these are the constants used to derive the value.
4574   ConstantInt *LinearOffset;
4575   ConstantInt *LinearMultiplier;
4576 
4577   // For ArrayKind, this is the array.
4578   GlobalVariable *Array;
4579 };
4580 }
4581 
4582 SwitchLookupTable::SwitchLookupTable(
4583     Module &M, uint64_t TableSize, ConstantInt *Offset,
4584     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4585     Constant *DefaultValue, const DataLayout &DL)
4586     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4587       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4588   assert(Values.size() && "Can't build lookup table without values!");
4589   assert(TableSize >= Values.size() && "Can't fit values in table!");
4590 
4591   // If all values in the table are equal, this is that value.
4592   SingleValue = Values.begin()->second;
4593 
4594   Type *ValueType = Values.begin()->second->getType();
4595 
4596   // Build up the table contents.
4597   SmallVector<Constant *, 64> TableContents(TableSize);
4598   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4599     ConstantInt *CaseVal = Values[I].first;
4600     Constant *CaseRes = Values[I].second;
4601     assert(CaseRes->getType() == ValueType);
4602 
4603     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4604     TableContents[Idx] = CaseRes;
4605 
4606     if (CaseRes != SingleValue)
4607       SingleValue = nullptr;
4608   }
4609 
4610   // Fill in any holes in the table with the default result.
4611   if (Values.size() < TableSize) {
4612     assert(DefaultValue &&
4613            "Need a default value to fill the lookup table holes.");
4614     assert(DefaultValue->getType() == ValueType);
4615     for (uint64_t I = 0; I < TableSize; ++I) {
4616       if (!TableContents[I])
4617         TableContents[I] = DefaultValue;
4618     }
4619 
4620     if (DefaultValue != SingleValue)
4621       SingleValue = nullptr;
4622   }
4623 
4624   // If each element in the table contains the same value, we only need to store
4625   // that single value.
4626   if (SingleValue) {
4627     Kind = SingleValueKind;
4628     return;
4629   }
4630 
4631   // Check if we can derive the value with a linear transformation from the
4632   // table index.
4633   if (isa<IntegerType>(ValueType)) {
4634     bool LinearMappingPossible = true;
4635     APInt PrevVal;
4636     APInt DistToPrev;
4637     assert(TableSize >= 2 && "Should be a SingleValue table.");
4638     // Check if there is the same distance between two consecutive values.
4639     for (uint64_t I = 0; I < TableSize; ++I) {
4640       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4641       if (!ConstVal) {
4642         // This is an undef. We could deal with it, but undefs in lookup tables
4643         // are very seldom. It's probably not worth the additional complexity.
4644         LinearMappingPossible = false;
4645         break;
4646       }
4647       APInt Val = ConstVal->getValue();
4648       if (I != 0) {
4649         APInt Dist = Val - PrevVal;
4650         if (I == 1) {
4651           DistToPrev = Dist;
4652         } else if (Dist != DistToPrev) {
4653           LinearMappingPossible = false;
4654           break;
4655         }
4656       }
4657       PrevVal = Val;
4658     }
4659     if (LinearMappingPossible) {
4660       LinearOffset = cast<ConstantInt>(TableContents[0]);
4661       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4662       Kind = LinearMapKind;
4663       ++NumLinearMaps;
4664       return;
4665     }
4666   }
4667 
4668   // If the type is integer and the table fits in a register, build a bitmap.
4669   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4670     IntegerType *IT = cast<IntegerType>(ValueType);
4671     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4672     for (uint64_t I = TableSize; I > 0; --I) {
4673       TableInt <<= IT->getBitWidth();
4674       // Insert values into the bitmap. Undef values are set to zero.
4675       if (!isa<UndefValue>(TableContents[I - 1])) {
4676         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4677         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4678       }
4679     }
4680     BitMap = ConstantInt::get(M.getContext(), TableInt);
4681     BitMapElementTy = IT;
4682     Kind = BitMapKind;
4683     ++NumBitMaps;
4684     return;
4685   }
4686 
4687   // Store the table in an array.
4688   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4689   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4690 
4691   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4692                              GlobalVariable::PrivateLinkage, Initializer,
4693                              "switch.table");
4694   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4695   Kind = ArrayKind;
4696 }
4697 
4698 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4699   switch (Kind) {
4700   case SingleValueKind:
4701     return SingleValue;
4702   case LinearMapKind: {
4703     // Derive the result value from the input value.
4704     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4705                                           false, "switch.idx.cast");
4706     if (!LinearMultiplier->isOne())
4707       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4708     if (!LinearOffset->isZero())
4709       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4710     return Result;
4711   }
4712   case BitMapKind: {
4713     // Type of the bitmap (e.g. i59).
4714     IntegerType *MapTy = BitMap->getType();
4715 
4716     // Cast Index to the same type as the bitmap.
4717     // Note: The Index is <= the number of elements in the table, so
4718     // truncating it to the width of the bitmask is safe.
4719     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4720 
4721     // Multiply the shift amount by the element width.
4722     ShiftAmt = Builder.CreateMul(
4723         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4724         "switch.shiftamt");
4725 
4726     // Shift down.
4727     Value *DownShifted =
4728         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4729     // Mask off.
4730     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4731   }
4732   case ArrayKind: {
4733     // Make sure the table index will not overflow when treated as signed.
4734     IntegerType *IT = cast<IntegerType>(Index->getType());
4735     uint64_t TableSize =
4736         Array->getInitializer()->getType()->getArrayNumElements();
4737     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4738       Index = Builder.CreateZExt(
4739           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4740           "switch.tableidx.zext");
4741 
4742     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4743     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4744                                            GEPIndices, "switch.gep");
4745     return Builder.CreateLoad(GEP, "switch.load");
4746   }
4747   }
4748   llvm_unreachable("Unknown lookup table kind!");
4749 }
4750 
4751 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4752                                            uint64_t TableSize,
4753                                            Type *ElementType) {
4754   auto *IT = dyn_cast<IntegerType>(ElementType);
4755   if (!IT)
4756     return false;
4757   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4758   // are <= 15, we could try to narrow the type.
4759 
4760   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4761   if (TableSize >= UINT_MAX / IT->getBitWidth())
4762     return false;
4763   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4764 }
4765 
4766 /// Determine whether a lookup table should be built for this switch, based on
4767 /// the number of cases, size of the table, and the types of the results.
4768 static bool
4769 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4770                        const TargetTransformInfo &TTI, const DataLayout &DL,
4771                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4772   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4773     return false; // TableSize overflowed, or mul below might overflow.
4774 
4775   bool AllTablesFitInRegister = true;
4776   bool HasIllegalType = false;
4777   for (const auto &I : ResultTypes) {
4778     Type *Ty = I.second;
4779 
4780     // Saturate this flag to true.
4781     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4782 
4783     // Saturate this flag to false.
4784     AllTablesFitInRegister =
4785         AllTablesFitInRegister &&
4786         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4787 
4788     // If both flags saturate, we're done. NOTE: This *only* works with
4789     // saturating flags, and all flags have to saturate first due to the
4790     // non-deterministic behavior of iterating over a dense map.
4791     if (HasIllegalType && !AllTablesFitInRegister)
4792       break;
4793   }
4794 
4795   // If each table would fit in a register, we should build it anyway.
4796   if (AllTablesFitInRegister)
4797     return true;
4798 
4799   // Don't build a table that doesn't fit in-register if it has illegal types.
4800   if (HasIllegalType)
4801     return false;
4802 
4803   // The table density should be at least 40%. This is the same criterion as for
4804   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
4805   // FIXME: Find the best cut-off.
4806   return SI->getNumCases() * 10 >= TableSize * 4;
4807 }
4808 
4809 /// Try to reuse the switch table index compare. Following pattern:
4810 /// \code
4811 ///     if (idx < tablesize)
4812 ///        r = table[idx]; // table does not contain default_value
4813 ///     else
4814 ///        r = default_value;
4815 ///     if (r != default_value)
4816 ///        ...
4817 /// \endcode
4818 /// Is optimized to:
4819 /// \code
4820 ///     cond = idx < tablesize;
4821 ///     if (cond)
4822 ///        r = table[idx];
4823 ///     else
4824 ///        r = default_value;
4825 ///     if (cond)
4826 ///        ...
4827 /// \endcode
4828 /// Jump threading will then eliminate the second if(cond).
4829 static void reuseTableCompare(
4830     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
4831     Constant *DefaultValue,
4832     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
4833 
4834   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
4835   if (!CmpInst)
4836     return;
4837 
4838   // We require that the compare is in the same block as the phi so that jump
4839   // threading can do its work afterwards.
4840   if (CmpInst->getParent() != PhiBlock)
4841     return;
4842 
4843   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
4844   if (!CmpOp1)
4845     return;
4846 
4847   Value *RangeCmp = RangeCheckBranch->getCondition();
4848   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
4849   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
4850 
4851   // Check if the compare with the default value is constant true or false.
4852   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4853                                                  DefaultValue, CmpOp1, true);
4854   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
4855     return;
4856 
4857   // Check if the compare with the case values is distinct from the default
4858   // compare result.
4859   for (auto ValuePair : Values) {
4860     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
4861                                                 ValuePair.second, CmpOp1, true);
4862     if (!CaseConst || CaseConst == DefaultConst)
4863       return;
4864     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
4865            "Expect true or false as compare result.");
4866   }
4867 
4868   // Check if the branch instruction dominates the phi node. It's a simple
4869   // dominance check, but sufficient for our needs.
4870   // Although this check is invariant in the calling loops, it's better to do it
4871   // at this late stage. Practically we do it at most once for a switch.
4872   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
4873   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
4874     BasicBlock *Pred = *PI;
4875     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
4876       return;
4877   }
4878 
4879   if (DefaultConst == FalseConst) {
4880     // The compare yields the same result. We can replace it.
4881     CmpInst->replaceAllUsesWith(RangeCmp);
4882     ++NumTableCmpReuses;
4883   } else {
4884     // The compare yields the same result, just inverted. We can replace it.
4885     Value *InvertedTableCmp = BinaryOperator::CreateXor(
4886         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
4887         RangeCheckBranch);
4888     CmpInst->replaceAllUsesWith(InvertedTableCmp);
4889     ++NumTableCmpReuses;
4890   }
4891 }
4892 
4893 /// If the switch is only used to initialize one or more phi nodes in a common
4894 /// successor block with different constant values, replace the switch with
4895 /// lookup tables.
4896 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
4897                                 const DataLayout &DL,
4898                                 const TargetTransformInfo &TTI) {
4899   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4900 
4901   // Only build lookup table when we have a target that supports it.
4902   if (!TTI.shouldBuildLookupTables())
4903     return false;
4904 
4905   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
4906   // split off a dense part and build a lookup table for that.
4907 
4908   // FIXME: This creates arrays of GEPs to constant strings, which means each
4909   // GEP needs a runtime relocation in PIC code. We should just build one big
4910   // string and lookup indices into that.
4911 
4912   // Ignore switches with less than three cases. Lookup tables will not make
4913   // them
4914   // faster, so we don't analyze them.
4915   if (SI->getNumCases() < 3)
4916     return false;
4917 
4918   // Figure out the corresponding result for each case value and phi node in the
4919   // common destination, as well as the min and max case values.
4920   assert(SI->case_begin() != SI->case_end());
4921   SwitchInst::CaseIt CI = SI->case_begin();
4922   ConstantInt *MinCaseVal = CI.getCaseValue();
4923   ConstantInt *MaxCaseVal = CI.getCaseValue();
4924 
4925   BasicBlock *CommonDest = nullptr;
4926   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
4927   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
4928   SmallDenseMap<PHINode *, Constant *> DefaultResults;
4929   SmallDenseMap<PHINode *, Type *> ResultTypes;
4930   SmallVector<PHINode *, 4> PHIs;
4931 
4932   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
4933     ConstantInt *CaseVal = CI.getCaseValue();
4934     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
4935       MinCaseVal = CaseVal;
4936     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
4937       MaxCaseVal = CaseVal;
4938 
4939     // Resulting value at phi nodes for this case value.
4940     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
4941     ResultsTy Results;
4942     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
4943                         Results, DL))
4944       return false;
4945 
4946     // Append the result from this case to the list for each phi.
4947     for (const auto &I : Results) {
4948       PHINode *PHI = I.first;
4949       Constant *Value = I.second;
4950       if (!ResultLists.count(PHI))
4951         PHIs.push_back(PHI);
4952       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
4953     }
4954   }
4955 
4956   // Keep track of the result types.
4957   for (PHINode *PHI : PHIs) {
4958     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
4959   }
4960 
4961   uint64_t NumResults = ResultLists[PHIs[0]].size();
4962   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
4963   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
4964   bool TableHasHoles = (NumResults < TableSize);
4965 
4966   // If the table has holes, we need a constant result for the default case
4967   // or a bitmask that fits in a register.
4968   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
4969   bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
4970                                           &CommonDest, DefaultResultsList, DL);
4971 
4972   bool NeedMask = (TableHasHoles && !HasDefaultResults);
4973   if (NeedMask) {
4974     // As an extra penalty for the validity test we require more cases.
4975     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
4976       return false;
4977     if (!DL.fitsInLegalInteger(TableSize))
4978       return false;
4979   }
4980 
4981   for (const auto &I : DefaultResultsList) {
4982     PHINode *PHI = I.first;
4983     Constant *Result = I.second;
4984     DefaultResults[PHI] = Result;
4985   }
4986 
4987   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
4988     return false;
4989 
4990   // Create the BB that does the lookups.
4991   Module &Mod = *CommonDest->getParent()->getParent();
4992   BasicBlock *LookupBB = BasicBlock::Create(
4993       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
4994 
4995   // Compute the table index value.
4996   Builder.SetInsertPoint(SI);
4997   Value *TableIndex =
4998       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
4999 
5000   // Compute the maximum table size representable by the integer type we are
5001   // switching upon.
5002   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5003   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5004   assert(MaxTableSize >= TableSize &&
5005          "It is impossible for a switch to have more entries than the max "
5006          "representable value of its input integer type's size.");
5007 
5008   // If the default destination is unreachable, or if the lookup table covers
5009   // all values of the conditional variable, branch directly to the lookup table
5010   // BB. Otherwise, check that the condition is within the case range.
5011   const bool DefaultIsReachable =
5012       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5013   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5014   BranchInst *RangeCheckBranch = nullptr;
5015 
5016   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5017     Builder.CreateBr(LookupBB);
5018     // Note: We call removeProdecessor later since we need to be able to get the
5019     // PHI value for the default case in case we're using a bit mask.
5020   } else {
5021     Value *Cmp = Builder.CreateICmpULT(
5022         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5023     RangeCheckBranch =
5024         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5025   }
5026 
5027   // Populate the BB that does the lookups.
5028   Builder.SetInsertPoint(LookupBB);
5029 
5030   if (NeedMask) {
5031     // Before doing the lookup we do the hole check.
5032     // The LookupBB is therefore re-purposed to do the hole check
5033     // and we create a new LookupBB.
5034     BasicBlock *MaskBB = LookupBB;
5035     MaskBB->setName("switch.hole_check");
5036     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5037                                   CommonDest->getParent(), CommonDest);
5038 
5039     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5040     // unnecessary illegal types.
5041     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5042     APInt MaskInt(TableSizePowOf2, 0);
5043     APInt One(TableSizePowOf2, 1);
5044     // Build bitmask; fill in a 1 bit for every case.
5045     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5046     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5047       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5048                          .getLimitedValue();
5049       MaskInt |= One << Idx;
5050     }
5051     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5052 
5053     // Get the TableIndex'th bit of the bitmask.
5054     // If this bit is 0 (meaning hole) jump to the default destination,
5055     // else continue with table lookup.
5056     IntegerType *MapTy = TableMask->getType();
5057     Value *MaskIndex =
5058         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5059     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5060     Value *LoBit = Builder.CreateTrunc(
5061         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5062     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5063 
5064     Builder.SetInsertPoint(LookupBB);
5065     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5066   }
5067 
5068   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5069     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5070     // do not delete PHINodes here.
5071     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5072                                             /*DontDeleteUselessPHIs=*/true);
5073   }
5074 
5075   bool ReturnedEarly = false;
5076   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5077     PHINode *PHI = PHIs[I];
5078     const ResultListTy &ResultList = ResultLists[PHI];
5079 
5080     // If using a bitmask, use any value to fill the lookup table holes.
5081     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5082     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5083 
5084     Value *Result = Table.BuildLookup(TableIndex, Builder);
5085 
5086     // If the result is used to return immediately from the function, we want to
5087     // do that right here.
5088     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5089         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5090       Builder.CreateRet(Result);
5091       ReturnedEarly = true;
5092       break;
5093     }
5094 
5095     // Do a small peephole optimization: re-use the switch table compare if
5096     // possible.
5097     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5098       BasicBlock *PhiBlock = PHI->getParent();
5099       // Search for compare instructions which use the phi.
5100       for (auto *User : PHI->users()) {
5101         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5102       }
5103     }
5104 
5105     PHI->addIncoming(Result, LookupBB);
5106   }
5107 
5108   if (!ReturnedEarly)
5109     Builder.CreateBr(CommonDest);
5110 
5111   // Remove the switch.
5112   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5113     BasicBlock *Succ = SI->getSuccessor(i);
5114 
5115     if (Succ == SI->getDefaultDest())
5116       continue;
5117     Succ->removePredecessor(SI->getParent());
5118   }
5119   SI->eraseFromParent();
5120 
5121   ++NumLookupTables;
5122   if (NeedMask)
5123     ++NumLookupTablesHoles;
5124   return true;
5125 }
5126 
5127 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5128   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5129   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5130   uint64_t Range = Diff + 1;
5131   uint64_t NumCases = Values.size();
5132   // 40% is the default density for building a jump table in optsize/minsize mode.
5133   uint64_t MinDensity = 40;
5134 
5135   return NumCases * 100 >= Range * MinDensity;
5136 }
5137 
5138 // Try and transform a switch that has "holes" in it to a contiguous sequence
5139 // of cases.
5140 //
5141 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5142 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5143 //
5144 // This converts a sparse switch into a dense switch which allows better
5145 // lowering and could also allow transforming into a lookup table.
5146 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5147                               const DataLayout &DL,
5148                               const TargetTransformInfo &TTI) {
5149   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5150   if (CondTy->getIntegerBitWidth() > 64 ||
5151       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5152     return false;
5153   // Only bother with this optimization if there are more than 3 switch cases;
5154   // SDAG will only bother creating jump tables for 4 or more cases.
5155   if (SI->getNumCases() < 4)
5156     return false;
5157 
5158   // This transform is agnostic to the signedness of the input or case values. We
5159   // can treat the case values as signed or unsigned. We can optimize more common
5160   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5161   // as signed.
5162   SmallVector<int64_t,4> Values;
5163   for (auto &C : SI->cases())
5164     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5165   std::sort(Values.begin(), Values.end());
5166 
5167   // If the switch is already dense, there's nothing useful to do here.
5168   if (isSwitchDense(Values))
5169     return false;
5170 
5171   // First, transform the values such that they start at zero and ascend.
5172   int64_t Base = Values[0];
5173   for (auto &V : Values)
5174     V -= Base;
5175 
5176   // Now we have signed numbers that have been shifted so that, given enough
5177   // precision, there are no negative values. Since the rest of the transform
5178   // is bitwise only, we switch now to an unsigned representation.
5179   uint64_t GCD = 0;
5180   for (auto &V : Values)
5181     GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V);
5182 
5183   // This transform can be done speculatively because it is so cheap - it results
5184   // in a single rotate operation being inserted. This can only happen if the
5185   // factor extracted is a power of 2.
5186   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5187   // inverse of GCD and then perform this transform.
5188   // FIXME: It's possible that optimizing a switch on powers of two might also
5189   // be beneficial - flag values are often powers of two and we could use a CLZ
5190   // as the key function.
5191   if (GCD <= 1 || !llvm::isPowerOf2_64(GCD))
5192     // No common divisor found or too expensive to compute key function.
5193     return false;
5194 
5195   unsigned Shift = llvm::Log2_64(GCD);
5196   for (auto &V : Values)
5197     V = (int64_t)((uint64_t)V >> Shift);
5198 
5199   if (!isSwitchDense(Values))
5200     // Transform didn't create a dense switch.
5201     return false;
5202 
5203   // The obvious transform is to shift the switch condition right and emit a
5204   // check that the condition actually cleanly divided by GCD, i.e.
5205   //   C & (1 << Shift - 1) == 0
5206   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5207   //
5208   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5209   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5210   // are nonzero then the switch condition will be very large and will hit the
5211   // default case.
5212 
5213   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5214   Builder.SetInsertPoint(SI);
5215   auto *ShiftC = ConstantInt::get(Ty, Shift);
5216   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5217   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5218   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5219   auto *Rot = Builder.CreateOr(LShr, Shl);
5220   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5221 
5222   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5223        ++C) {
5224     auto *Orig = C.getCaseValue();
5225     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5226     C.setValue(
5227         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5228   }
5229   return true;
5230 }
5231 
5232 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5233   BasicBlock *BB = SI->getParent();
5234 
5235   if (isValueEqualityComparison(SI)) {
5236     // If we only have one predecessor, and if it is a branch on this value,
5237     // see if that predecessor totally determines the outcome of this switch.
5238     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5239       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5240         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5241 
5242     Value *Cond = SI->getCondition();
5243     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5244       if (SimplifySwitchOnSelect(SI, Select))
5245         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5246 
5247     // If the block only contains the switch, see if we can fold the block
5248     // away into any preds.
5249     BasicBlock::iterator BBI = BB->begin();
5250     // Ignore dbg intrinsics.
5251     while (isa<DbgInfoIntrinsic>(BBI))
5252       ++BBI;
5253     if (SI == &*BBI)
5254       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5255         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5256   }
5257 
5258   // Try to transform the switch into an icmp and a branch.
5259   if (TurnSwitchRangeIntoICmp(SI, Builder))
5260     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5261 
5262   // Remove unreachable cases.
5263   if (EliminateDeadSwitchCases(SI, AC, DL))
5264     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5265 
5266   if (SwitchToSelect(SI, Builder, AC, DL))
5267     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5268 
5269   if (ForwardSwitchConditionToPHI(SI))
5270     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5271 
5272   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5273     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5274 
5275   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5276     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5277 
5278   return false;
5279 }
5280 
5281 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5282   BasicBlock *BB = IBI->getParent();
5283   bool Changed = false;
5284 
5285   // Eliminate redundant destinations.
5286   SmallPtrSet<Value *, 8> Succs;
5287   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5288     BasicBlock *Dest = IBI->getDestination(i);
5289     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5290       Dest->removePredecessor(BB);
5291       IBI->removeDestination(i);
5292       --i;
5293       --e;
5294       Changed = true;
5295     }
5296   }
5297 
5298   if (IBI->getNumDestinations() == 0) {
5299     // If the indirectbr has no successors, change it to unreachable.
5300     new UnreachableInst(IBI->getContext(), IBI);
5301     EraseTerminatorInstAndDCECond(IBI);
5302     return true;
5303   }
5304 
5305   if (IBI->getNumDestinations() == 1) {
5306     // If the indirectbr has one successor, change it to a direct branch.
5307     BranchInst::Create(IBI->getDestination(0), IBI);
5308     EraseTerminatorInstAndDCECond(IBI);
5309     return true;
5310   }
5311 
5312   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5313     if (SimplifyIndirectBrOnSelect(IBI, SI))
5314       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5315   }
5316   return Changed;
5317 }
5318 
5319 /// Given an block with only a single landing pad and a unconditional branch
5320 /// try to find another basic block which this one can be merged with.  This
5321 /// handles cases where we have multiple invokes with unique landing pads, but
5322 /// a shared handler.
5323 ///
5324 /// We specifically choose to not worry about merging non-empty blocks
5325 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5326 /// practice, the optimizer produces empty landing pad blocks quite frequently
5327 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5328 /// sinking in this file)
5329 ///
5330 /// This is primarily a code size optimization.  We need to avoid performing
5331 /// any transform which might inhibit optimization (such as our ability to
5332 /// specialize a particular handler via tail commoning).  We do this by not
5333 /// merging any blocks which require us to introduce a phi.  Since the same
5334 /// values are flowing through both blocks, we don't loose any ability to
5335 /// specialize.  If anything, we make such specialization more likely.
5336 ///
5337 /// TODO - This transformation could remove entries from a phi in the target
5338 /// block when the inputs in the phi are the same for the two blocks being
5339 /// merged.  In some cases, this could result in removal of the PHI entirely.
5340 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5341                                  BasicBlock *BB) {
5342   auto Succ = BB->getUniqueSuccessor();
5343   assert(Succ);
5344   // If there's a phi in the successor block, we'd likely have to introduce
5345   // a phi into the merged landing pad block.
5346   if (isa<PHINode>(*Succ->begin()))
5347     return false;
5348 
5349   for (BasicBlock *OtherPred : predecessors(Succ)) {
5350     if (BB == OtherPred)
5351       continue;
5352     BasicBlock::iterator I = OtherPred->begin();
5353     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5354     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5355       continue;
5356     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5357     }
5358     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5359     if (!BI2 || !BI2->isIdenticalTo(BI))
5360       continue;
5361 
5362     // We've found an identical block.  Update our predecessors to take that
5363     // path instead and make ourselves dead.
5364     SmallSet<BasicBlock *, 16> Preds;
5365     Preds.insert(pred_begin(BB), pred_end(BB));
5366     for (BasicBlock *Pred : Preds) {
5367       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5368       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5369              "unexpected successor");
5370       II->setUnwindDest(OtherPred);
5371     }
5372 
5373     // The debug info in OtherPred doesn't cover the merged control flow that
5374     // used to go through BB.  We need to delete it or update it.
5375     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5376       Instruction &Inst = *I;
5377       I++;
5378       if (isa<DbgInfoIntrinsic>(Inst))
5379         Inst.eraseFromParent();
5380     }
5381 
5382     SmallSet<BasicBlock *, 16> Succs;
5383     Succs.insert(succ_begin(BB), succ_end(BB));
5384     for (BasicBlock *Succ : Succs) {
5385       Succ->removePredecessor(BB);
5386     }
5387 
5388     IRBuilder<> Builder(BI);
5389     Builder.CreateUnreachable();
5390     BI->eraseFromParent();
5391     return true;
5392   }
5393   return false;
5394 }
5395 
5396 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5397                                           IRBuilder<> &Builder) {
5398   BasicBlock *BB = BI->getParent();
5399 
5400   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5401     return true;
5402 
5403   // If the Terminator is the only non-phi instruction, simplify the block.
5404   // if LoopHeader is provided, check if the block is a loop header
5405   // (This is for early invocations before loop simplify and vectorization
5406   // to keep canonical loop forms for nested loops.
5407   // These blocks can be eliminated when the pass is invoked later
5408   // in the back-end.)
5409   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5410   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5411       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5412       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5413     return true;
5414 
5415   // If the only instruction in the block is a seteq/setne comparison
5416   // against a constant, try to simplify the block.
5417   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5418     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5419       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5420         ;
5421       if (I->isTerminator() &&
5422           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5423                                                 BonusInstThreshold, AC))
5424         return true;
5425     }
5426 
5427   // See if we can merge an empty landing pad block with another which is
5428   // equivalent.
5429   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5430     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5431     }
5432     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5433       return true;
5434   }
5435 
5436   // If this basic block is ONLY a compare and a branch, and if a predecessor
5437   // branches to us and our successor, fold the comparison into the
5438   // predecessor and use logical operations to update the incoming value
5439   // for PHI nodes in common successor.
5440   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5441     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5442   return false;
5443 }
5444 
5445 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5446   BasicBlock *PredPred = nullptr;
5447   for (auto *P : predecessors(BB)) {
5448     BasicBlock *PPred = P->getSinglePredecessor();
5449     if (!PPred || (PredPred && PredPred != PPred))
5450       return nullptr;
5451     PredPred = PPred;
5452   }
5453   return PredPred;
5454 }
5455 
5456 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5457   BasicBlock *BB = BI->getParent();
5458 
5459   // Conditional branch
5460   if (isValueEqualityComparison(BI)) {
5461     // If we only have one predecessor, and if it is a branch on this value,
5462     // see if that predecessor totally determines the outcome of this
5463     // switch.
5464     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5465       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5466         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5467 
5468     // This block must be empty, except for the setcond inst, if it exists.
5469     // Ignore dbg intrinsics.
5470     BasicBlock::iterator I = BB->begin();
5471     // Ignore dbg intrinsics.
5472     while (isa<DbgInfoIntrinsic>(I))
5473       ++I;
5474     if (&*I == BI) {
5475       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5476         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5477     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5478       ++I;
5479       // Ignore dbg intrinsics.
5480       while (isa<DbgInfoIntrinsic>(I))
5481         ++I;
5482       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5483         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5484     }
5485   }
5486 
5487   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5488   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5489     return true;
5490 
5491   // If this basic block has a single dominating predecessor block and the
5492   // dominating block's condition implies BI's condition, we know the direction
5493   // of the BI branch.
5494   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5495     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5496     if (PBI && PBI->isConditional() &&
5497         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5498         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5499       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5500       Optional<bool> Implication = isImpliedCondition(
5501           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5502       if (Implication) {
5503         // Turn this into a branch on constant.
5504         auto *OldCond = BI->getCondition();
5505         ConstantInt *CI = *Implication
5506                               ? ConstantInt::getTrue(BB->getContext())
5507                               : ConstantInt::getFalse(BB->getContext());
5508         BI->setCondition(CI);
5509         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5510         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5511       }
5512     }
5513   }
5514 
5515   // If this basic block is ONLY a compare and a branch, and if a predecessor
5516   // branches to us and one of our successors, fold the comparison into the
5517   // predecessor and use logical operations to pick the right destination.
5518   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5519     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5520 
5521   // We have a conditional branch to two blocks that are only reachable
5522   // from BI.  We know that the condbr dominates the two blocks, so see if
5523   // there is any identical code in the "then" and "else" blocks.  If so, we
5524   // can hoist it up to the branching block.
5525   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5526     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5527       if (HoistThenElseCodeToIf(BI, TTI))
5528         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5529     } else {
5530       // If Successor #1 has multiple preds, we may be able to conditionally
5531       // execute Successor #0 if it branches to Successor #1.
5532       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5533       if (Succ0TI->getNumSuccessors() == 1 &&
5534           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5535         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5536           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5537     }
5538   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5539     // If Successor #0 has multiple preds, we may be able to conditionally
5540     // execute Successor #1 if it branches to Successor #0.
5541     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5542     if (Succ1TI->getNumSuccessors() == 1 &&
5543         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5544       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5545         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5546   }
5547 
5548   // If this is a branch on a phi node in the current block, thread control
5549   // through this block if any PHI node entries are constants.
5550   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5551     if (PN->getParent() == BI->getParent())
5552       if (FoldCondBranchOnPHI(BI, DL))
5553         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5554 
5555   // Scan predecessor blocks for conditional branches.
5556   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5557     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5558       if (PBI != BI && PBI->isConditional())
5559         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5560           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5561 
5562   // Look for diamond patterns.
5563   if (MergeCondStores)
5564     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5565       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5566         if (PBI != BI && PBI->isConditional())
5567           if (mergeConditionalStores(PBI, BI))
5568             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5569 
5570   return false;
5571 }
5572 
5573 /// Check if passing a value to an instruction will cause undefined behavior.
5574 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5575   Constant *C = dyn_cast<Constant>(V);
5576   if (!C)
5577     return false;
5578 
5579   if (I->use_empty())
5580     return false;
5581 
5582   if (C->isNullValue() || isa<UndefValue>(C)) {
5583     // Only look at the first use, avoid hurting compile time with long uselists
5584     User *Use = *I->user_begin();
5585 
5586     // Now make sure that there are no instructions in between that can alter
5587     // control flow (eg. calls)
5588     for (BasicBlock::iterator
5589              i = ++BasicBlock::iterator(I),
5590              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5591          i != UI; ++i)
5592       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5593         return false;
5594 
5595     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5596     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5597       if (GEP->getPointerOperand() == I)
5598         return passingValueIsAlwaysUndefined(V, GEP);
5599 
5600     // Look through bitcasts.
5601     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5602       return passingValueIsAlwaysUndefined(V, BC);
5603 
5604     // Load from null is undefined.
5605     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5606       if (!LI->isVolatile())
5607         return LI->getPointerAddressSpace() == 0;
5608 
5609     // Store to null is undefined.
5610     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5611       if (!SI->isVolatile())
5612         return SI->getPointerAddressSpace() == 0 &&
5613                SI->getPointerOperand() == I;
5614 
5615     // A call to null is undefined.
5616     if (auto CS = CallSite(Use))
5617       return CS.getCalledValue() == I;
5618   }
5619   return false;
5620 }
5621 
5622 /// If BB has an incoming value that will always trigger undefined behavior
5623 /// (eg. null pointer dereference), remove the branch leading here.
5624 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5625   for (BasicBlock::iterator i = BB->begin();
5626        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5627     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5628       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5629         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5630         IRBuilder<> Builder(T);
5631         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5632           BB->removePredecessor(PHI->getIncomingBlock(i));
5633           // Turn uncoditional branches into unreachables and remove the dead
5634           // destination from conditional branches.
5635           if (BI->isUnconditional())
5636             Builder.CreateUnreachable();
5637           else
5638             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5639                                                        : BI->getSuccessor(0));
5640           BI->eraseFromParent();
5641           return true;
5642         }
5643         // TODO: SwitchInst.
5644       }
5645 
5646   return false;
5647 }
5648 
5649 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5650   bool Changed = false;
5651 
5652   assert(BB && BB->getParent() && "Block not embedded in function!");
5653   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5654 
5655   // Remove basic blocks that have no predecessors (except the entry block)...
5656   // or that just have themself as a predecessor.  These are unreachable.
5657   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5658       BB->getSinglePredecessor() == BB) {
5659     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5660     DeleteDeadBlock(BB);
5661     return true;
5662   }
5663 
5664   // Check to see if we can constant propagate this terminator instruction
5665   // away...
5666   Changed |= ConstantFoldTerminator(BB, true);
5667 
5668   // Check for and eliminate duplicate PHI nodes in this block.
5669   Changed |= EliminateDuplicatePHINodes(BB);
5670 
5671   // Check for and remove branches that will always cause undefined behavior.
5672   Changed |= removeUndefIntroducingPredecessor(BB);
5673 
5674   // Merge basic blocks into their predecessor if there is only one distinct
5675   // pred, and if there is only one distinct successor of the predecessor, and
5676   // if there are no PHI nodes.
5677   //
5678   if (MergeBlockIntoPredecessor(BB))
5679     return true;
5680 
5681   IRBuilder<> Builder(BB);
5682 
5683   // If there is a trivial two-entry PHI node in this basic block, and we can
5684   // eliminate it, do so now.
5685   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5686     if (PN->getNumIncomingValues() == 2)
5687       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5688 
5689   Builder.SetInsertPoint(BB->getTerminator());
5690   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5691     if (BI->isUnconditional()) {
5692       if (SimplifyUncondBranch(BI, Builder))
5693         return true;
5694     } else {
5695       if (SimplifyCondBranch(BI, Builder))
5696         return true;
5697     }
5698   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5699     if (SimplifyReturn(RI, Builder))
5700       return true;
5701   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5702     if (SimplifyResume(RI, Builder))
5703       return true;
5704   } else if (CleanupReturnInst *RI =
5705                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5706     if (SimplifyCleanupReturn(RI))
5707       return true;
5708   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5709     if (SimplifySwitch(SI, Builder))
5710       return true;
5711   } else if (UnreachableInst *UI =
5712                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5713     if (SimplifyUnreachable(UI))
5714       return true;
5715   } else if (IndirectBrInst *IBI =
5716                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5717     if (SimplifyIndirectBr(IBI))
5718       return true;
5719   }
5720 
5721   return Changed;
5722 }
5723 
5724 /// This function is used to do simplification of a CFG.
5725 /// For example, it adjusts branches to branches to eliminate the extra hop,
5726 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5727 /// of the CFG.  It returns true if a modification was made.
5728 ///
5729 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5730                        unsigned BonusInstThreshold, AssumptionCache *AC,
5731                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5732   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5733                         BonusInstThreshold, AC, LoopHeaders)
5734       .run(BB);
5735 }
5736