1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/NoFolder.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/PatternMatch.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <climits>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <map>
79 #include <set>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace PatternMatch;
86 
87 #define DEBUG_TYPE "simplifycfg"
88 
89 // Chosen as 2 so as to be cheap, but still to have enough power to fold
90 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
91 // To catch this, we need to fold a compare and a select, hence '2' being the
92 // minimum reasonable default.
93 static cl::opt<unsigned> PHINodeFoldingThreshold(
94     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
95     cl::desc(
96         "Control the amount of phi node folding to perform (default = 2)"));
97 
98 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
99     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
100     cl::desc("Control the maximal total instruction cost that we are willing "
101              "to speculatively execute to fold a 2-entry PHI node into a "
102              "select (default = 4)"));
103 
104 static cl::opt<bool> DupRet(
105     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
106     cl::desc("Duplicate return instructions into unconditional branches"));
107 
108 static cl::opt<bool>
109     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
110                cl::desc("Sink common instructions down to the end block"));
111 
112 static cl::opt<bool> HoistCondStores(
113     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
114     cl::desc("Hoist conditional stores if an unconditional store precedes"));
115 
116 static cl::opt<bool> MergeCondStores(
117     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
118     cl::desc("Hoist conditional stores even if an unconditional store does not "
119              "precede - hoist multiple conditional stores into a single "
120              "predicated store"));
121 
122 static cl::opt<bool> MergeCondStoresAggressively(
123     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
124     cl::desc("When merging conditional stores, do so even if the resultant "
125              "basic blocks are unlikely to be if-converted as a result"));
126 
127 static cl::opt<bool> SpeculateOneExpensiveInst(
128     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
129     cl::desc("Allow exactly one expensive instruction to be speculatively "
130              "executed"));
131 
132 static cl::opt<unsigned> MaxSpeculationDepth(
133     "max-speculation-depth", cl::Hidden, cl::init(10),
134     cl::desc("Limit maximum recursion depth when calculating costs of "
135              "speculatively executed instructions"));
136 
137 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
138 STATISTIC(NumLinearMaps,
139           "Number of switch instructions turned into linear mapping");
140 STATISTIC(NumLookupTables,
141           "Number of switch instructions turned into lookup tables");
142 STATISTIC(
143     NumLookupTablesHoles,
144     "Number of switch instructions turned into lookup tables (holes checked)");
145 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
146 STATISTIC(NumSinkCommons,
147           "Number of common instructions sunk down to the end block");
148 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
149 
150 namespace {
151 
152 // The first field contains the value that the switch produces when a certain
153 // case group is selected, and the second field is a vector containing the
154 // cases composing the case group.
155 using SwitchCaseResultVectorTy =
156     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
157 
158 // The first field contains the phi node that generates a result of the switch
159 // and the second field contains the value generated for a certain case in the
160 // switch for that PHI.
161 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
162 
163 /// ValueEqualityComparisonCase - Represents a case of a switch.
164 struct ValueEqualityComparisonCase {
165   ConstantInt *Value;
166   BasicBlock *Dest;
167 
168   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
169       : Value(Value), Dest(Dest) {}
170 
171   bool operator<(ValueEqualityComparisonCase RHS) const {
172     // Comparing pointers is ok as we only rely on the order for uniquing.
173     return Value < RHS.Value;
174   }
175 
176   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
177 };
178 
179 class SimplifyCFGOpt {
180   const TargetTransformInfo &TTI;
181   const DataLayout &DL;
182   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
183   const SimplifyCFGOptions &Options;
184   bool Resimplify;
185 
186   Value *isValueEqualityComparison(Instruction *TI);
187   BasicBlock *GetValueEqualityComparisonCases(
188       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
189   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
190                                                      BasicBlock *Pred,
191                                                      IRBuilder<> &Builder);
192   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
193                                            IRBuilder<> &Builder);
194 
195   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
196   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
197   bool simplifySingleResume(ResumeInst *RI);
198   bool simplifyCommonResume(ResumeInst *RI);
199   bool simplifyCleanupReturn(CleanupReturnInst *RI);
200   bool simplifyUnreachable(UnreachableInst *UI);
201   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
202   bool simplifyIndirectBr(IndirectBrInst *IBI);
203   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
204   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
205   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
206 
207   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
208                                              IRBuilder<> &Builder);
209 
210 public:
211   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
212                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
213                  const SimplifyCFGOptions &Opts)
214       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
215 
216   bool run(BasicBlock *BB);
217   bool simplifyOnce(BasicBlock *BB);
218 
219   // Helper to set Resimplify and return change indication.
220   bool requestResimplify() {
221     Resimplify = true;
222     return true;
223   }
224 };
225 
226 } // end anonymous namespace
227 
228 /// Return true if it is safe to merge these two
229 /// terminator instructions together.
230 static bool
231 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
232                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
233   if (SI1 == SI2)
234     return false; // Can't merge with self!
235 
236   // It is not safe to merge these two switch instructions if they have a common
237   // successor, and if that successor has a PHI node, and if *that* PHI node has
238   // conflicting incoming values from the two switch blocks.
239   BasicBlock *SI1BB = SI1->getParent();
240   BasicBlock *SI2BB = SI2->getParent();
241 
242   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
243   bool Fail = false;
244   for (BasicBlock *Succ : successors(SI2BB))
245     if (SI1Succs.count(Succ))
246       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
247         PHINode *PN = cast<PHINode>(BBI);
248         if (PN->getIncomingValueForBlock(SI1BB) !=
249             PN->getIncomingValueForBlock(SI2BB)) {
250           if (FailBlocks)
251             FailBlocks->insert(Succ);
252           Fail = true;
253         }
254       }
255 
256   return !Fail;
257 }
258 
259 /// Return true if it is safe and profitable to merge these two terminator
260 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
261 /// store all PHI nodes in common successors.
262 static bool
263 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
264                                 Instruction *Cond,
265                                 SmallVectorImpl<PHINode *> &PhiNodes) {
266   if (SI1 == SI2)
267     return false; // Can't merge with self!
268   assert(SI1->isUnconditional() && SI2->isConditional());
269 
270   // We fold the unconditional branch if we can easily update all PHI nodes in
271   // common successors:
272   // 1> We have a constant incoming value for the conditional branch;
273   // 2> We have "Cond" as the incoming value for the unconditional branch;
274   // 3> SI2->getCondition() and Cond have same operands.
275   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
276   if (!Ci2)
277     return false;
278   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
279         Cond->getOperand(1) == Ci2->getOperand(1)) &&
280       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
281         Cond->getOperand(1) == Ci2->getOperand(0)))
282     return false;
283 
284   BasicBlock *SI1BB = SI1->getParent();
285   BasicBlock *SI2BB = SI2->getParent();
286   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
287   for (BasicBlock *Succ : successors(SI2BB))
288     if (SI1Succs.count(Succ))
289       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
290         PHINode *PN = cast<PHINode>(BBI);
291         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
292             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
293           return false;
294         PhiNodes.push_back(PN);
295       }
296   return true;
297 }
298 
299 /// Update PHI nodes in Succ to indicate that there will now be entries in it
300 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
301 /// will be the same as those coming in from ExistPred, an existing predecessor
302 /// of Succ.
303 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
304                                   BasicBlock *ExistPred,
305                                   MemorySSAUpdater *MSSAU = nullptr) {
306   for (PHINode &PN : Succ->phis())
307     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
308   if (MSSAU)
309     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
310       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
311 }
312 
313 /// Compute an abstract "cost" of speculating the given instruction,
314 /// which is assumed to be safe to speculate. TCC_Free means cheap,
315 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
316 /// expensive.
317 static unsigned ComputeSpeculationCost(const User *I,
318                                        const TargetTransformInfo &TTI) {
319   assert(isSafeToSpeculativelyExecute(I) &&
320          "Instruction is not safe to speculatively execute!");
321   return TTI.getUserCost(I);
322 }
323 
324 /// If we have a merge point of an "if condition" as accepted above,
325 /// return true if the specified value dominates the block.  We
326 /// don't handle the true generality of domination here, just a special case
327 /// which works well enough for us.
328 ///
329 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
330 /// see if V (which must be an instruction) and its recursive operands
331 /// that do not dominate BB have a combined cost lower than CostRemaining and
332 /// are non-trapping.  If both are true, the instruction is inserted into the
333 /// set and true is returned.
334 ///
335 /// The cost for most non-trapping instructions is defined as 1 except for
336 /// Select whose cost is 2.
337 ///
338 /// After this function returns, CostRemaining is decreased by the cost of
339 /// V plus its non-dominating operands.  If that cost is greater than
340 /// CostRemaining, false is returned and CostRemaining is undefined.
341 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
342                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
343                                 int &BudgetRemaining,
344                                 const TargetTransformInfo &TTI,
345                                 unsigned Depth = 0) {
346   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
347   // so limit the recursion depth.
348   // TODO: While this recursion limit does prevent pathological behavior, it
349   // would be better to track visited instructions to avoid cycles.
350   if (Depth == MaxSpeculationDepth)
351     return false;
352 
353   Instruction *I = dyn_cast<Instruction>(V);
354   if (!I) {
355     // Non-instructions all dominate instructions, but not all constantexprs
356     // can be executed unconditionally.
357     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
358       if (C->canTrap())
359         return false;
360     return true;
361   }
362   BasicBlock *PBB = I->getParent();
363 
364   // We don't want to allow weird loops that might have the "if condition" in
365   // the bottom of this block.
366   if (PBB == BB)
367     return false;
368 
369   // If this instruction is defined in a block that contains an unconditional
370   // branch to BB, then it must be in the 'conditional' part of the "if
371   // statement".  If not, it definitely dominates the region.
372   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
373   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
374     return true;
375 
376   // If we have seen this instruction before, don't count it again.
377   if (AggressiveInsts.count(I))
378     return true;
379 
380   // Okay, it looks like the instruction IS in the "condition".  Check to
381   // see if it's a cheap instruction to unconditionally compute, and if it
382   // only uses stuff defined outside of the condition.  If so, hoist it out.
383   if (!isSafeToSpeculativelyExecute(I))
384     return false;
385 
386   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
387 
388   // Allow exactly one instruction to be speculated regardless of its cost
389   // (as long as it is safe to do so).
390   // This is intended to flatten the CFG even if the instruction is a division
391   // or other expensive operation. The speculation of an expensive instruction
392   // is expected to be undone in CodeGenPrepare if the speculation has not
393   // enabled further IR optimizations.
394   if (BudgetRemaining < 0 &&
395       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
396     return false;
397 
398   // Okay, we can only really hoist these out if their operands do
399   // not take us over the cost threshold.
400   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
401     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
402                              Depth + 1))
403       return false;
404   // Okay, it's safe to do this!  Remember this instruction.
405   AggressiveInsts.insert(I);
406   return true;
407 }
408 
409 /// Extract ConstantInt from value, looking through IntToPtr
410 /// and PointerNullValue. Return NULL if value is not a constant int.
411 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
412   // Normal constant int.
413   ConstantInt *CI = dyn_cast<ConstantInt>(V);
414   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
415     return CI;
416 
417   // This is some kind of pointer constant. Turn it into a pointer-sized
418   // ConstantInt if possible.
419   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
420 
421   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
422   if (isa<ConstantPointerNull>(V))
423     return ConstantInt::get(PtrTy, 0);
424 
425   // IntToPtr const int.
426   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
427     if (CE->getOpcode() == Instruction::IntToPtr)
428       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
429         // The constant is very likely to have the right type already.
430         if (CI->getType() == PtrTy)
431           return CI;
432         else
433           return cast<ConstantInt>(
434               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
435       }
436   return nullptr;
437 }
438 
439 namespace {
440 
441 /// Given a chain of or (||) or and (&&) comparison of a value against a
442 /// constant, this will try to recover the information required for a switch
443 /// structure.
444 /// It will depth-first traverse the chain of comparison, seeking for patterns
445 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
446 /// representing the different cases for the switch.
447 /// Note that if the chain is composed of '||' it will build the set of elements
448 /// that matches the comparisons (i.e. any of this value validate the chain)
449 /// while for a chain of '&&' it will build the set elements that make the test
450 /// fail.
451 struct ConstantComparesGatherer {
452   const DataLayout &DL;
453 
454   /// Value found for the switch comparison
455   Value *CompValue = nullptr;
456 
457   /// Extra clause to be checked before the switch
458   Value *Extra = nullptr;
459 
460   /// Set of integers to match in switch
461   SmallVector<ConstantInt *, 8> Vals;
462 
463   /// Number of comparisons matched in the and/or chain
464   unsigned UsedICmps = 0;
465 
466   /// Construct and compute the result for the comparison instruction Cond
467   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
468     gather(Cond);
469   }
470 
471   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
472   ConstantComparesGatherer &
473   operator=(const ConstantComparesGatherer &) = delete;
474 
475 private:
476   /// Try to set the current value used for the comparison, it succeeds only if
477   /// it wasn't set before or if the new value is the same as the old one
478   bool setValueOnce(Value *NewVal) {
479     if (CompValue && CompValue != NewVal)
480       return false;
481     CompValue = NewVal;
482     return (CompValue != nullptr);
483   }
484 
485   /// Try to match Instruction "I" as a comparison against a constant and
486   /// populates the array Vals with the set of values that match (or do not
487   /// match depending on isEQ).
488   /// Return false on failure. On success, the Value the comparison matched
489   /// against is placed in CompValue.
490   /// If CompValue is already set, the function is expected to fail if a match
491   /// is found but the value compared to is different.
492   bool matchInstruction(Instruction *I, bool isEQ) {
493     // If this is an icmp against a constant, handle this as one of the cases.
494     ICmpInst *ICI;
495     ConstantInt *C;
496     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
497           (C = GetConstantInt(I->getOperand(1), DL)))) {
498       return false;
499     }
500 
501     Value *RHSVal;
502     const APInt *RHSC;
503 
504     // Pattern match a special case
505     // (x & ~2^z) == y --> x == y || x == y|2^z
506     // This undoes a transformation done by instcombine to fuse 2 compares.
507     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
508       // It's a little bit hard to see why the following transformations are
509       // correct. Here is a CVC3 program to verify them for 64-bit values:
510 
511       /*
512          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
513          x    : BITVECTOR(64);
514          y    : BITVECTOR(64);
515          z    : BITVECTOR(64);
516          mask : BITVECTOR(64) = BVSHL(ONE, z);
517          QUERY( (y & ~mask = y) =>
518                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
519          );
520          QUERY( (y |  mask = y) =>
521                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
522          );
523       */
524 
525       // Please note that each pattern must be a dual implication (<--> or
526       // iff). One directional implication can create spurious matches. If the
527       // implication is only one-way, an unsatisfiable condition on the left
528       // side can imply a satisfiable condition on the right side. Dual
529       // implication ensures that satisfiable conditions are transformed to
530       // other satisfiable conditions and unsatisfiable conditions are
531       // transformed to other unsatisfiable conditions.
532 
533       // Here is a concrete example of a unsatisfiable condition on the left
534       // implying a satisfiable condition on the right:
535       //
536       // mask = (1 << z)
537       // (x & ~mask) == y  --> (x == y || x == (y | mask))
538       //
539       // Substituting y = 3, z = 0 yields:
540       // (x & -2) == 3 --> (x == 3 || x == 2)
541 
542       // Pattern match a special case:
543       /*
544         QUERY( (y & ~mask = y) =>
545                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
546         );
547       */
548       if (match(ICI->getOperand(0),
549                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
550         APInt Mask = ~*RHSC;
551         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
552           // If we already have a value for the switch, it has to match!
553           if (!setValueOnce(RHSVal))
554             return false;
555 
556           Vals.push_back(C);
557           Vals.push_back(
558               ConstantInt::get(C->getContext(),
559                                C->getValue() | Mask));
560           UsedICmps++;
561           return true;
562         }
563       }
564 
565       // Pattern match a special case:
566       /*
567         QUERY( (y |  mask = y) =>
568                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
569         );
570       */
571       if (match(ICI->getOperand(0),
572                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
573         APInt Mask = *RHSC;
574         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
575           // If we already have a value for the switch, it has to match!
576           if (!setValueOnce(RHSVal))
577             return false;
578 
579           Vals.push_back(C);
580           Vals.push_back(ConstantInt::get(C->getContext(),
581                                           C->getValue() & ~Mask));
582           UsedICmps++;
583           return true;
584         }
585       }
586 
587       // If we already have a value for the switch, it has to match!
588       if (!setValueOnce(ICI->getOperand(0)))
589         return false;
590 
591       UsedICmps++;
592       Vals.push_back(C);
593       return ICI->getOperand(0);
594     }
595 
596     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
597     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
598         ICI->getPredicate(), C->getValue());
599 
600     // Shift the range if the compare is fed by an add. This is the range
601     // compare idiom as emitted by instcombine.
602     Value *CandidateVal = I->getOperand(0);
603     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
604       Span = Span.subtract(*RHSC);
605       CandidateVal = RHSVal;
606     }
607 
608     // If this is an and/!= check, then we are looking to build the set of
609     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
610     // x != 0 && x != 1.
611     if (!isEQ)
612       Span = Span.inverse();
613 
614     // If there are a ton of values, we don't want to make a ginormous switch.
615     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
616       return false;
617     }
618 
619     // If we already have a value for the switch, it has to match!
620     if (!setValueOnce(CandidateVal))
621       return false;
622 
623     // Add all values from the range to the set
624     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
625       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
626 
627     UsedICmps++;
628     return true;
629   }
630 
631   /// Given a potentially 'or'd or 'and'd together collection of icmp
632   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
633   /// the value being compared, and stick the list constants into the Vals
634   /// vector.
635   /// One "Extra" case is allowed to differ from the other.
636   void gather(Value *V) {
637     bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
638 
639     // Keep a stack (SmallVector for efficiency) for depth-first traversal
640     SmallVector<Value *, 8> DFT;
641     SmallPtrSet<Value *, 8> Visited;
642 
643     // Initialize
644     Visited.insert(V);
645     DFT.push_back(V);
646 
647     while (!DFT.empty()) {
648       V = DFT.pop_back_val();
649 
650       if (Instruction *I = dyn_cast<Instruction>(V)) {
651         // If it is a || (or && depending on isEQ), process the operands.
652         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
653           if (Visited.insert(I->getOperand(1)).second)
654             DFT.push_back(I->getOperand(1));
655           if (Visited.insert(I->getOperand(0)).second)
656             DFT.push_back(I->getOperand(0));
657           continue;
658         }
659 
660         // Try to match the current instruction
661         if (matchInstruction(I, isEQ))
662           // Match succeed, continue the loop
663           continue;
664       }
665 
666       // One element of the sequence of || (or &&) could not be match as a
667       // comparison against the same value as the others.
668       // We allow only one "Extra" case to be checked before the switch
669       if (!Extra) {
670         Extra = V;
671         continue;
672       }
673       // Failed to parse a proper sequence, abort now
674       CompValue = nullptr;
675       break;
676     }
677   }
678 };
679 
680 } // end anonymous namespace
681 
682 static void EraseTerminatorAndDCECond(Instruction *TI,
683                                       MemorySSAUpdater *MSSAU = nullptr) {
684   Instruction *Cond = nullptr;
685   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
686     Cond = dyn_cast<Instruction>(SI->getCondition());
687   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
688     if (BI->isConditional())
689       Cond = dyn_cast<Instruction>(BI->getCondition());
690   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
691     Cond = dyn_cast<Instruction>(IBI->getAddress());
692   }
693 
694   TI->eraseFromParent();
695   if (Cond)
696     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
697 }
698 
699 /// Return true if the specified terminator checks
700 /// to see if a value is equal to constant integer value.
701 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
702   Value *CV = nullptr;
703   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
704     // Do not permit merging of large switch instructions into their
705     // predecessors unless there is only one predecessor.
706     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
707       CV = SI->getCondition();
708   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
709     if (BI->isConditional() && BI->getCondition()->hasOneUse())
710       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
711         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
712           CV = ICI->getOperand(0);
713       }
714 
715   // Unwrap any lossless ptrtoint cast.
716   if (CV) {
717     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
718       Value *Ptr = PTII->getPointerOperand();
719       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
720         CV = Ptr;
721     }
722   }
723   return CV;
724 }
725 
726 /// Given a value comparison instruction,
727 /// decode all of the 'cases' that it represents and return the 'default' block.
728 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
729     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
730   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
731     Cases.reserve(SI->getNumCases());
732     for (auto Case : SI->cases())
733       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
734                                                   Case.getCaseSuccessor()));
735     return SI->getDefaultDest();
736   }
737 
738   BranchInst *BI = cast<BranchInst>(TI);
739   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
740   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
741   Cases.push_back(ValueEqualityComparisonCase(
742       GetConstantInt(ICI->getOperand(1), DL), Succ));
743   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
744 }
745 
746 /// Given a vector of bb/value pairs, remove any entries
747 /// in the list that match the specified block.
748 static void
749 EliminateBlockCases(BasicBlock *BB,
750                     std::vector<ValueEqualityComparisonCase> &Cases) {
751   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
752 }
753 
754 /// Return true if there are any keys in C1 that exist in C2 as well.
755 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
756                           std::vector<ValueEqualityComparisonCase> &C2) {
757   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
758 
759   // Make V1 be smaller than V2.
760   if (V1->size() > V2->size())
761     std::swap(V1, V2);
762 
763   if (V1->empty())
764     return false;
765   if (V1->size() == 1) {
766     // Just scan V2.
767     ConstantInt *TheVal = (*V1)[0].Value;
768     for (unsigned i = 0, e = V2->size(); i != e; ++i)
769       if (TheVal == (*V2)[i].Value)
770         return true;
771   }
772 
773   // Otherwise, just sort both lists and compare element by element.
774   array_pod_sort(V1->begin(), V1->end());
775   array_pod_sort(V2->begin(), V2->end());
776   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
777   while (i1 != e1 && i2 != e2) {
778     if ((*V1)[i1].Value == (*V2)[i2].Value)
779       return true;
780     if ((*V1)[i1].Value < (*V2)[i2].Value)
781       ++i1;
782     else
783       ++i2;
784   }
785   return false;
786 }
787 
788 // Set branch weights on SwitchInst. This sets the metadata if there is at
789 // least one non-zero weight.
790 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
791   // Check that there is at least one non-zero weight. Otherwise, pass
792   // nullptr to setMetadata which will erase the existing metadata.
793   MDNode *N = nullptr;
794   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
795     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
796   SI->setMetadata(LLVMContext::MD_prof, N);
797 }
798 
799 // Similar to the above, but for branch and select instructions that take
800 // exactly 2 weights.
801 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
802                              uint32_t FalseWeight) {
803   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
804   // Check that there is at least one non-zero weight. Otherwise, pass
805   // nullptr to setMetadata which will erase the existing metadata.
806   MDNode *N = nullptr;
807   if (TrueWeight || FalseWeight)
808     N = MDBuilder(I->getParent()->getContext())
809             .createBranchWeights(TrueWeight, FalseWeight);
810   I->setMetadata(LLVMContext::MD_prof, N);
811 }
812 
813 /// If TI is known to be a terminator instruction and its block is known to
814 /// only have a single predecessor block, check to see if that predecessor is
815 /// also a value comparison with the same value, and if that comparison
816 /// determines the outcome of this comparison. If so, simplify TI. This does a
817 /// very limited form of jump threading.
818 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
819     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
820   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
821   if (!PredVal)
822     return false; // Not a value comparison in predecessor.
823 
824   Value *ThisVal = isValueEqualityComparison(TI);
825   assert(ThisVal && "This isn't a value comparison!!");
826   if (ThisVal != PredVal)
827     return false; // Different predicates.
828 
829   // TODO: Preserve branch weight metadata, similarly to how
830   // FoldValueComparisonIntoPredecessors preserves it.
831 
832   // Find out information about when control will move from Pred to TI's block.
833   std::vector<ValueEqualityComparisonCase> PredCases;
834   BasicBlock *PredDef =
835       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
836   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
837 
838   // Find information about how control leaves this block.
839   std::vector<ValueEqualityComparisonCase> ThisCases;
840   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
841   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
842 
843   // If TI's block is the default block from Pred's comparison, potentially
844   // simplify TI based on this knowledge.
845   if (PredDef == TI->getParent()) {
846     // If we are here, we know that the value is none of those cases listed in
847     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
848     // can simplify TI.
849     if (!ValuesOverlap(PredCases, ThisCases))
850       return false;
851 
852     if (isa<BranchInst>(TI)) {
853       // Okay, one of the successors of this condbr is dead.  Convert it to a
854       // uncond br.
855       assert(ThisCases.size() == 1 && "Branch can only have one case!");
856       // Insert the new branch.
857       Instruction *NI = Builder.CreateBr(ThisDef);
858       (void)NI;
859 
860       // Remove PHI node entries for the dead edge.
861       ThisCases[0].Dest->removePredecessor(TI->getParent());
862 
863       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
864                         << "Through successor TI: " << *TI << "Leaving: " << *NI
865                         << "\n");
866 
867       EraseTerminatorAndDCECond(TI);
868       return true;
869     }
870 
871     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
872     // Okay, TI has cases that are statically dead, prune them away.
873     SmallPtrSet<Constant *, 16> DeadCases;
874     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
875       DeadCases.insert(PredCases[i].Value);
876 
877     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
878                       << "Through successor TI: " << *TI);
879 
880     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
881       --i;
882       if (DeadCases.count(i->getCaseValue())) {
883         i->getCaseSuccessor()->removePredecessor(TI->getParent());
884         SI.removeCase(i);
885       }
886     }
887     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
888     return true;
889   }
890 
891   // Otherwise, TI's block must correspond to some matched value.  Find out
892   // which value (or set of values) this is.
893   ConstantInt *TIV = nullptr;
894   BasicBlock *TIBB = TI->getParent();
895   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
896     if (PredCases[i].Dest == TIBB) {
897       if (TIV)
898         return false; // Cannot handle multiple values coming to this block.
899       TIV = PredCases[i].Value;
900     }
901   assert(TIV && "No edge from pred to succ?");
902 
903   // Okay, we found the one constant that our value can be if we get into TI's
904   // BB.  Find out which successor will unconditionally be branched to.
905   BasicBlock *TheRealDest = nullptr;
906   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
907     if (ThisCases[i].Value == TIV) {
908       TheRealDest = ThisCases[i].Dest;
909       break;
910     }
911 
912   // If not handled by any explicit cases, it is handled by the default case.
913   if (!TheRealDest)
914     TheRealDest = ThisDef;
915 
916   // Remove PHI node entries for dead edges.
917   BasicBlock *CheckEdge = TheRealDest;
918   for (BasicBlock *Succ : successors(TIBB))
919     if (Succ != CheckEdge)
920       Succ->removePredecessor(TIBB);
921     else
922       CheckEdge = nullptr;
923 
924   // Insert the new branch.
925   Instruction *NI = Builder.CreateBr(TheRealDest);
926   (void)NI;
927 
928   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
929                     << "Through successor TI: " << *TI << "Leaving: " << *NI
930                     << "\n");
931 
932   EraseTerminatorAndDCECond(TI);
933   return true;
934 }
935 
936 namespace {
937 
938 /// This class implements a stable ordering of constant
939 /// integers that does not depend on their address.  This is important for
940 /// applications that sort ConstantInt's to ensure uniqueness.
941 struct ConstantIntOrdering {
942   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
943     return LHS->getValue().ult(RHS->getValue());
944   }
945 };
946 
947 } // end anonymous namespace
948 
949 static int ConstantIntSortPredicate(ConstantInt *const *P1,
950                                     ConstantInt *const *P2) {
951   const ConstantInt *LHS = *P1;
952   const ConstantInt *RHS = *P2;
953   if (LHS == RHS)
954     return 0;
955   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
956 }
957 
958 static inline bool HasBranchWeights(const Instruction *I) {
959   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
960   if (ProfMD && ProfMD->getOperand(0))
961     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
962       return MDS->getString().equals("branch_weights");
963 
964   return false;
965 }
966 
967 /// Get Weights of a given terminator, the default weight is at the front
968 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
969 /// metadata.
970 static void GetBranchWeights(Instruction *TI,
971                              SmallVectorImpl<uint64_t> &Weights) {
972   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
973   assert(MD);
974   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
975     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
976     Weights.push_back(CI->getValue().getZExtValue());
977   }
978 
979   // If TI is a conditional eq, the default case is the false case,
980   // and the corresponding branch-weight data is at index 2. We swap the
981   // default weight to be the first entry.
982   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
983     assert(Weights.size() == 2);
984     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
985     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
986       std::swap(Weights.front(), Weights.back());
987   }
988 }
989 
990 /// Keep halving the weights until all can fit in uint32_t.
991 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
992   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
993   if (Max > UINT_MAX) {
994     unsigned Offset = 32 - countLeadingZeros(Max);
995     for (uint64_t &I : Weights)
996       I >>= Offset;
997   }
998 }
999 
1000 /// The specified terminator is a value equality comparison instruction
1001 /// (either a switch or a branch on "X == c").
1002 /// See if any of the predecessors of the terminator block are value comparisons
1003 /// on the same value.  If so, and if safe to do so, fold them together.
1004 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1005                                                          IRBuilder<> &Builder) {
1006   BasicBlock *BB = TI->getParent();
1007   Value *CV = isValueEqualityComparison(TI); // CondVal
1008   assert(CV && "Not a comparison?");
1009   bool Changed = false;
1010 
1011   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1012   while (!Preds.empty()) {
1013     BasicBlock *Pred = Preds.pop_back_val();
1014 
1015     // See if the predecessor is a comparison with the same value.
1016     Instruction *PTI = Pred->getTerminator();
1017     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1018 
1019     if (PCV == CV && TI != PTI) {
1020       SmallSetVector<BasicBlock*, 4> FailBlocks;
1021       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1022         for (auto *Succ : FailBlocks) {
1023           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1024             return false;
1025         }
1026       }
1027 
1028       // Figure out which 'cases' to copy from SI to PSI.
1029       std::vector<ValueEqualityComparisonCase> BBCases;
1030       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1031 
1032       std::vector<ValueEqualityComparisonCase> PredCases;
1033       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1034 
1035       // Based on whether the default edge from PTI goes to BB or not, fill in
1036       // PredCases and PredDefault with the new switch cases we would like to
1037       // build.
1038       SmallVector<BasicBlock *, 8> NewSuccessors;
1039 
1040       // Update the branch weight metadata along the way
1041       SmallVector<uint64_t, 8> Weights;
1042       bool PredHasWeights = HasBranchWeights(PTI);
1043       bool SuccHasWeights = HasBranchWeights(TI);
1044 
1045       if (PredHasWeights) {
1046         GetBranchWeights(PTI, Weights);
1047         // branch-weight metadata is inconsistent here.
1048         if (Weights.size() != 1 + PredCases.size())
1049           PredHasWeights = SuccHasWeights = false;
1050       } else if (SuccHasWeights)
1051         // If there are no predecessor weights but there are successor weights,
1052         // populate Weights with 1, which will later be scaled to the sum of
1053         // successor's weights
1054         Weights.assign(1 + PredCases.size(), 1);
1055 
1056       SmallVector<uint64_t, 8> SuccWeights;
1057       if (SuccHasWeights) {
1058         GetBranchWeights(TI, SuccWeights);
1059         // branch-weight metadata is inconsistent here.
1060         if (SuccWeights.size() != 1 + BBCases.size())
1061           PredHasWeights = SuccHasWeights = false;
1062       } else if (PredHasWeights)
1063         SuccWeights.assign(1 + BBCases.size(), 1);
1064 
1065       if (PredDefault == BB) {
1066         // If this is the default destination from PTI, only the edges in TI
1067         // that don't occur in PTI, or that branch to BB will be activated.
1068         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1069         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1070           if (PredCases[i].Dest != BB)
1071             PTIHandled.insert(PredCases[i].Value);
1072           else {
1073             // The default destination is BB, we don't need explicit targets.
1074             std::swap(PredCases[i], PredCases.back());
1075 
1076             if (PredHasWeights || SuccHasWeights) {
1077               // Increase weight for the default case.
1078               Weights[0] += Weights[i + 1];
1079               std::swap(Weights[i + 1], Weights.back());
1080               Weights.pop_back();
1081             }
1082 
1083             PredCases.pop_back();
1084             --i;
1085             --e;
1086           }
1087 
1088         // Reconstruct the new switch statement we will be building.
1089         if (PredDefault != BBDefault) {
1090           PredDefault->removePredecessor(Pred);
1091           PredDefault = BBDefault;
1092           NewSuccessors.push_back(BBDefault);
1093         }
1094 
1095         unsigned CasesFromPred = Weights.size();
1096         uint64_t ValidTotalSuccWeight = 0;
1097         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1098           if (!PTIHandled.count(BBCases[i].Value) &&
1099               BBCases[i].Dest != BBDefault) {
1100             PredCases.push_back(BBCases[i]);
1101             NewSuccessors.push_back(BBCases[i].Dest);
1102             if (SuccHasWeights || PredHasWeights) {
1103               // The default weight is at index 0, so weight for the ith case
1104               // should be at index i+1. Scale the cases from successor by
1105               // PredDefaultWeight (Weights[0]).
1106               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1107               ValidTotalSuccWeight += SuccWeights[i + 1];
1108             }
1109           }
1110 
1111         if (SuccHasWeights || PredHasWeights) {
1112           ValidTotalSuccWeight += SuccWeights[0];
1113           // Scale the cases from predecessor by ValidTotalSuccWeight.
1114           for (unsigned i = 1; i < CasesFromPred; ++i)
1115             Weights[i] *= ValidTotalSuccWeight;
1116           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1117           Weights[0] *= SuccWeights[0];
1118         }
1119       } else {
1120         // If this is not the default destination from PSI, only the edges
1121         // in SI that occur in PSI with a destination of BB will be
1122         // activated.
1123         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1124         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1125         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1126           if (PredCases[i].Dest == BB) {
1127             PTIHandled.insert(PredCases[i].Value);
1128 
1129             if (PredHasWeights || SuccHasWeights) {
1130               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1131               std::swap(Weights[i + 1], Weights.back());
1132               Weights.pop_back();
1133             }
1134 
1135             std::swap(PredCases[i], PredCases.back());
1136             PredCases.pop_back();
1137             --i;
1138             --e;
1139           }
1140 
1141         // Okay, now we know which constants were sent to BB from the
1142         // predecessor.  Figure out where they will all go now.
1143         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1144           if (PTIHandled.count(BBCases[i].Value)) {
1145             // If this is one we are capable of getting...
1146             if (PredHasWeights || SuccHasWeights)
1147               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1148             PredCases.push_back(BBCases[i]);
1149             NewSuccessors.push_back(BBCases[i].Dest);
1150             PTIHandled.erase(
1151                 BBCases[i].Value); // This constant is taken care of
1152           }
1153 
1154         // If there are any constants vectored to BB that TI doesn't handle,
1155         // they must go to the default destination of TI.
1156         for (ConstantInt *I : PTIHandled) {
1157           if (PredHasWeights || SuccHasWeights)
1158             Weights.push_back(WeightsForHandled[I]);
1159           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1160           NewSuccessors.push_back(BBDefault);
1161         }
1162       }
1163 
1164       // Okay, at this point, we know which new successor Pred will get.  Make
1165       // sure we update the number of entries in the PHI nodes for these
1166       // successors.
1167       for (BasicBlock *NewSuccessor : NewSuccessors)
1168         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1169 
1170       Builder.SetInsertPoint(PTI);
1171       // Convert pointer to int before we switch.
1172       if (CV->getType()->isPointerTy()) {
1173         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1174                                     "magicptr");
1175       }
1176 
1177       // Now that the successors are updated, create the new Switch instruction.
1178       SwitchInst *NewSI =
1179           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1180       NewSI->setDebugLoc(PTI->getDebugLoc());
1181       for (ValueEqualityComparisonCase &V : PredCases)
1182         NewSI->addCase(V.Value, V.Dest);
1183 
1184       if (PredHasWeights || SuccHasWeights) {
1185         // Halve the weights if any of them cannot fit in an uint32_t
1186         FitWeights(Weights);
1187 
1188         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1189 
1190         setBranchWeights(NewSI, MDWeights);
1191       }
1192 
1193       EraseTerminatorAndDCECond(PTI);
1194 
1195       // Okay, last check.  If BB is still a successor of PSI, then we must
1196       // have an infinite loop case.  If so, add an infinitely looping block
1197       // to handle the case to preserve the behavior of the code.
1198       BasicBlock *InfLoopBlock = nullptr;
1199       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1200         if (NewSI->getSuccessor(i) == BB) {
1201           if (!InfLoopBlock) {
1202             // Insert it at the end of the function, because it's either code,
1203             // or it won't matter if it's hot. :)
1204             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1205                                               BB->getParent());
1206             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1207           }
1208           NewSI->setSuccessor(i, InfLoopBlock);
1209         }
1210 
1211       Changed = true;
1212     }
1213   }
1214   return Changed;
1215 }
1216 
1217 // If we would need to insert a select that uses the value of this invoke
1218 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1219 // can't hoist the invoke, as there is nowhere to put the select in this case.
1220 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1221                                 Instruction *I1, Instruction *I2) {
1222   for (BasicBlock *Succ : successors(BB1)) {
1223     for (const PHINode &PN : Succ->phis()) {
1224       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1225       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1226       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1227         return false;
1228       }
1229     }
1230   }
1231   return true;
1232 }
1233 
1234 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1235 
1236 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1237 /// in the two blocks up into the branch block. The caller of this function
1238 /// guarantees that BI's block dominates BB1 and BB2.
1239 static bool HoistThenElseCodeToIf(BranchInst *BI,
1240                                   const TargetTransformInfo &TTI) {
1241   // This does very trivial matching, with limited scanning, to find identical
1242   // instructions in the two blocks.  In particular, we don't want to get into
1243   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1244   // such, we currently just scan for obviously identical instructions in an
1245   // identical order.
1246   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1247   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1248 
1249   BasicBlock::iterator BB1_Itr = BB1->begin();
1250   BasicBlock::iterator BB2_Itr = BB2->begin();
1251 
1252   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1253   // Skip debug info if it is not identical.
1254   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1255   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1256   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1257     while (isa<DbgInfoIntrinsic>(I1))
1258       I1 = &*BB1_Itr++;
1259     while (isa<DbgInfoIntrinsic>(I2))
1260       I2 = &*BB2_Itr++;
1261   }
1262   // FIXME: Can we define a safety predicate for CallBr?
1263   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1264       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1265       isa<CallBrInst>(I1))
1266     return false;
1267 
1268   BasicBlock *BIParent = BI->getParent();
1269 
1270   bool Changed = false;
1271   do {
1272     // If we are hoisting the terminator instruction, don't move one (making a
1273     // broken BB), instead clone it, and remove BI.
1274     if (I1->isTerminator())
1275       goto HoistTerminator;
1276 
1277     // If we're going to hoist a call, make sure that the two instructions we're
1278     // commoning/hoisting are both marked with musttail, or neither of them is
1279     // marked as such. Otherwise, we might end up in a situation where we hoist
1280     // from a block where the terminator is a `ret` to a block where the terminator
1281     // is a `br`, and `musttail` calls expect to be followed by a return.
1282     auto *C1 = dyn_cast<CallInst>(I1);
1283     auto *C2 = dyn_cast<CallInst>(I2);
1284     if (C1 && C2)
1285       if (C1->isMustTailCall() != C2->isMustTailCall())
1286         return Changed;
1287 
1288     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1289       return Changed;
1290 
1291     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1292       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1293       // The debug location is an integral part of a debug info intrinsic
1294       // and can't be separated from it or replaced.  Instead of attempting
1295       // to merge locations, simply hoist both copies of the intrinsic.
1296       BIParent->getInstList().splice(BI->getIterator(),
1297                                      BB1->getInstList(), I1);
1298       BIParent->getInstList().splice(BI->getIterator(),
1299                                      BB2->getInstList(), I2);
1300       Changed = true;
1301     } else {
1302       // For a normal instruction, we just move one to right before the branch,
1303       // then replace all uses of the other with the first.  Finally, we remove
1304       // the now redundant second instruction.
1305       BIParent->getInstList().splice(BI->getIterator(),
1306                                      BB1->getInstList(), I1);
1307       if (!I2->use_empty())
1308         I2->replaceAllUsesWith(I1);
1309       I1->andIRFlags(I2);
1310       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1311                              LLVMContext::MD_range,
1312                              LLVMContext::MD_fpmath,
1313                              LLVMContext::MD_invariant_load,
1314                              LLVMContext::MD_nonnull,
1315                              LLVMContext::MD_invariant_group,
1316                              LLVMContext::MD_align,
1317                              LLVMContext::MD_dereferenceable,
1318                              LLVMContext::MD_dereferenceable_or_null,
1319                              LLVMContext::MD_mem_parallel_loop_access,
1320                              LLVMContext::MD_access_group,
1321                              LLVMContext::MD_preserve_access_index};
1322       combineMetadata(I1, I2, KnownIDs, true);
1323 
1324       // I1 and I2 are being combined into a single instruction.  Its debug
1325       // location is the merged locations of the original instructions.
1326       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1327 
1328       I2->eraseFromParent();
1329       Changed = true;
1330     }
1331 
1332     I1 = &*BB1_Itr++;
1333     I2 = &*BB2_Itr++;
1334     // Skip debug info if it is not identical.
1335     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1336     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1337     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1338       while (isa<DbgInfoIntrinsic>(I1))
1339         I1 = &*BB1_Itr++;
1340       while (isa<DbgInfoIntrinsic>(I2))
1341         I2 = &*BB2_Itr++;
1342     }
1343   } while (I1->isIdenticalToWhenDefined(I2));
1344 
1345   return true;
1346 
1347 HoistTerminator:
1348   // It may not be possible to hoist an invoke.
1349   // FIXME: Can we define a safety predicate for CallBr?
1350   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1351     return Changed;
1352 
1353   // TODO: callbr hoisting currently disabled pending further study.
1354   if (isa<CallBrInst>(I1))
1355     return Changed;
1356 
1357   for (BasicBlock *Succ : successors(BB1)) {
1358     for (PHINode &PN : Succ->phis()) {
1359       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1360       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1361       if (BB1V == BB2V)
1362         continue;
1363 
1364       // Check for passingValueIsAlwaysUndefined here because we would rather
1365       // eliminate undefined control flow then converting it to a select.
1366       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1367           passingValueIsAlwaysUndefined(BB2V, &PN))
1368         return Changed;
1369 
1370       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1371         return Changed;
1372       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1373         return Changed;
1374     }
1375   }
1376 
1377   // Okay, it is safe to hoist the terminator.
1378   Instruction *NT = I1->clone();
1379   BIParent->getInstList().insert(BI->getIterator(), NT);
1380   if (!NT->getType()->isVoidTy()) {
1381     I1->replaceAllUsesWith(NT);
1382     I2->replaceAllUsesWith(NT);
1383     NT->takeName(I1);
1384   }
1385 
1386   // Ensure terminator gets a debug location, even an unknown one, in case
1387   // it involves inlinable calls.
1388   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1389 
1390   // PHIs created below will adopt NT's merged DebugLoc.
1391   IRBuilder<NoFolder> Builder(NT);
1392 
1393   // Hoisting one of the terminators from our successor is a great thing.
1394   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1395   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1396   // nodes, so we insert select instruction to compute the final result.
1397   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1398   for (BasicBlock *Succ : successors(BB1)) {
1399     for (PHINode &PN : Succ->phis()) {
1400       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1401       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1402       if (BB1V == BB2V)
1403         continue;
1404 
1405       // These values do not agree.  Insert a select instruction before NT
1406       // that determines the right value.
1407       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1408       if (!SI) {
1409         // Propagate fast-math-flags from phi node to its replacement select.
1410         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1411         if (isa<FPMathOperator>(PN))
1412           Builder.setFastMathFlags(PN.getFastMathFlags());
1413 
1414         SI = cast<SelectInst>(
1415             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1416                                  BB1V->getName() + "." + BB2V->getName(), BI));
1417       }
1418 
1419       // Make the PHI node use the select for all incoming values for BB1/BB2
1420       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1421         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1422           PN.setIncomingValue(i, SI);
1423     }
1424   }
1425 
1426   // Update any PHI nodes in our new successors.
1427   for (BasicBlock *Succ : successors(BB1))
1428     AddPredecessorToBlock(Succ, BIParent, BB1);
1429 
1430   EraseTerminatorAndDCECond(BI);
1431   return true;
1432 }
1433 
1434 // Check lifetime markers.
1435 static bool isLifeTimeMarker(const Instruction *I) {
1436   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1437     switch (II->getIntrinsicID()) {
1438     default:
1439       break;
1440     case Intrinsic::lifetime_start:
1441     case Intrinsic::lifetime_end:
1442       return true;
1443     }
1444   }
1445   return false;
1446 }
1447 
1448 // All instructions in Insts belong to different blocks that all unconditionally
1449 // branch to a common successor. Analyze each instruction and return true if it
1450 // would be possible to sink them into their successor, creating one common
1451 // instruction instead. For every value that would be required to be provided by
1452 // PHI node (because an operand varies in each input block), add to PHIOperands.
1453 static bool canSinkInstructions(
1454     ArrayRef<Instruction *> Insts,
1455     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1456   // Prune out obviously bad instructions to move. Each instruction must have
1457   // exactly zero or one use, and we check later that use is by a single, common
1458   // PHI instruction in the successor.
1459   bool HasUse = !Insts.front()->user_empty();
1460   for (auto *I : Insts) {
1461     // These instructions may change or break semantics if moved.
1462     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1463         I->getType()->isTokenTy())
1464       return false;
1465 
1466     // Conservatively return false if I is an inline-asm instruction. Sinking
1467     // and merging inline-asm instructions can potentially create arguments
1468     // that cannot satisfy the inline-asm constraints.
1469     if (const auto *C = dyn_cast<CallBase>(I))
1470       if (C->isInlineAsm())
1471         return false;
1472 
1473     // Each instruction must have zero or one use.
1474     if (HasUse && !I->hasOneUse())
1475       return false;
1476     if (!HasUse && !I->user_empty())
1477       return false;
1478   }
1479 
1480   const Instruction *I0 = Insts.front();
1481   for (auto *I : Insts)
1482     if (!I->isSameOperationAs(I0))
1483       return false;
1484 
1485   // All instructions in Insts are known to be the same opcode. If they have a
1486   // use, check that the only user is a PHI or in the same block as the
1487   // instruction, because if a user is in the same block as an instruction we're
1488   // contemplating sinking, it must already be determined to be sinkable.
1489   if (HasUse) {
1490     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1491     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1492     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1493           auto *U = cast<Instruction>(*I->user_begin());
1494           return (PNUse &&
1495                   PNUse->getParent() == Succ &&
1496                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1497                  U->getParent() == I->getParent();
1498         }))
1499       return false;
1500   }
1501 
1502   // Because SROA can't handle speculating stores of selects, try not to sink
1503   // loads, stores or lifetime markers of allocas when we'd have to create a
1504   // PHI for the address operand. Also, because it is likely that loads or
1505   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1506   // them.
1507   // This can cause code churn which can have unintended consequences down
1508   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1509   // FIXME: This is a workaround for a deficiency in SROA - see
1510   // https://llvm.org/bugs/show_bug.cgi?id=30188
1511   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1512         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1513       }))
1514     return false;
1515   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1516         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1517       }))
1518     return false;
1519   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1520         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1521       }))
1522     return false;
1523 
1524   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1525     if (I0->getOperand(OI)->getType()->isTokenTy())
1526       // Don't touch any operand of token type.
1527       return false;
1528 
1529     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1530       assert(I->getNumOperands() == I0->getNumOperands());
1531       return I->getOperand(OI) == I0->getOperand(OI);
1532     };
1533     if (!all_of(Insts, SameAsI0)) {
1534       if (!canReplaceOperandWithVariable(I0, OI))
1535         // We can't create a PHI from this GEP.
1536         return false;
1537       // Don't create indirect calls! The called value is the final operand.
1538       if (isa<CallBase>(I0) && OI == OE - 1) {
1539         // FIXME: if the call was *already* indirect, we should do this.
1540         return false;
1541       }
1542       for (auto *I : Insts)
1543         PHIOperands[I].push_back(I->getOperand(OI));
1544     }
1545   }
1546   return true;
1547 }
1548 
1549 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1550 // instruction of every block in Blocks to their common successor, commoning
1551 // into one instruction.
1552 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1553   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1554 
1555   // canSinkLastInstruction returning true guarantees that every block has at
1556   // least one non-terminator instruction.
1557   SmallVector<Instruction*,4> Insts;
1558   for (auto *BB : Blocks) {
1559     Instruction *I = BB->getTerminator();
1560     do {
1561       I = I->getPrevNode();
1562     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1563     if (!isa<DbgInfoIntrinsic>(I))
1564       Insts.push_back(I);
1565   }
1566 
1567   // The only checking we need to do now is that all users of all instructions
1568   // are the same PHI node. canSinkLastInstruction should have checked this but
1569   // it is slightly over-aggressive - it gets confused by commutative instructions
1570   // so double-check it here.
1571   Instruction *I0 = Insts.front();
1572   if (!I0->user_empty()) {
1573     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1574     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1575           auto *U = cast<Instruction>(*I->user_begin());
1576           return U == PNUse;
1577         }))
1578       return false;
1579   }
1580 
1581   // We don't need to do any more checking here; canSinkLastInstruction should
1582   // have done it all for us.
1583   SmallVector<Value*, 4> NewOperands;
1584   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1585     // This check is different to that in canSinkLastInstruction. There, we
1586     // cared about the global view once simplifycfg (and instcombine) have
1587     // completed - it takes into account PHIs that become trivially
1588     // simplifiable.  However here we need a more local view; if an operand
1589     // differs we create a PHI and rely on instcombine to clean up the very
1590     // small mess we may make.
1591     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1592       return I->getOperand(O) != I0->getOperand(O);
1593     });
1594     if (!NeedPHI) {
1595       NewOperands.push_back(I0->getOperand(O));
1596       continue;
1597     }
1598 
1599     // Create a new PHI in the successor block and populate it.
1600     auto *Op = I0->getOperand(O);
1601     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1602     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1603                                Op->getName() + ".sink", &BBEnd->front());
1604     for (auto *I : Insts)
1605       PN->addIncoming(I->getOperand(O), I->getParent());
1606     NewOperands.push_back(PN);
1607   }
1608 
1609   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1610   // and move it to the start of the successor block.
1611   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1612     I0->getOperandUse(O).set(NewOperands[O]);
1613   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1614 
1615   // Update metadata and IR flags, and merge debug locations.
1616   for (auto *I : Insts)
1617     if (I != I0) {
1618       // The debug location for the "common" instruction is the merged locations
1619       // of all the commoned instructions.  We start with the original location
1620       // of the "common" instruction and iteratively merge each location in the
1621       // loop below.
1622       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1623       // However, as N-way merge for CallInst is rare, so we use simplified API
1624       // instead of using complex API for N-way merge.
1625       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1626       combineMetadataForCSE(I0, I, true);
1627       I0->andIRFlags(I);
1628     }
1629 
1630   if (!I0->user_empty()) {
1631     // canSinkLastInstruction checked that all instructions were used by
1632     // one and only one PHI node. Find that now, RAUW it to our common
1633     // instruction and nuke it.
1634     auto *PN = cast<PHINode>(*I0->user_begin());
1635     PN->replaceAllUsesWith(I0);
1636     PN->eraseFromParent();
1637   }
1638 
1639   // Finally nuke all instructions apart from the common instruction.
1640   for (auto *I : Insts)
1641     if (I != I0)
1642       I->eraseFromParent();
1643 
1644   return true;
1645 }
1646 
1647 namespace {
1648 
1649   // LockstepReverseIterator - Iterates through instructions
1650   // in a set of blocks in reverse order from the first non-terminator.
1651   // For example (assume all blocks have size n):
1652   //   LockstepReverseIterator I([B1, B2, B3]);
1653   //   *I-- = [B1[n], B2[n], B3[n]];
1654   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1655   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1656   //   ...
1657   class LockstepReverseIterator {
1658     ArrayRef<BasicBlock*> Blocks;
1659     SmallVector<Instruction*,4> Insts;
1660     bool Fail;
1661 
1662   public:
1663     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1664       reset();
1665     }
1666 
1667     void reset() {
1668       Fail = false;
1669       Insts.clear();
1670       for (auto *BB : Blocks) {
1671         Instruction *Inst = BB->getTerminator();
1672         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1673           Inst = Inst->getPrevNode();
1674         if (!Inst) {
1675           // Block wasn't big enough.
1676           Fail = true;
1677           return;
1678         }
1679         Insts.push_back(Inst);
1680       }
1681     }
1682 
1683     bool isValid() const {
1684       return !Fail;
1685     }
1686 
1687     void operator--() {
1688       if (Fail)
1689         return;
1690       for (auto *&Inst : Insts) {
1691         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1692           Inst = Inst->getPrevNode();
1693         // Already at beginning of block.
1694         if (!Inst) {
1695           Fail = true;
1696           return;
1697         }
1698       }
1699     }
1700 
1701     ArrayRef<Instruction*> operator * () const {
1702       return Insts;
1703     }
1704   };
1705 
1706 } // end anonymous namespace
1707 
1708 /// Check whether BB's predecessors end with unconditional branches. If it is
1709 /// true, sink any common code from the predecessors to BB.
1710 /// We also allow one predecessor to end with conditional branch (but no more
1711 /// than one).
1712 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1713   // We support two situations:
1714   //   (1) all incoming arcs are unconditional
1715   //   (2) one incoming arc is conditional
1716   //
1717   // (2) is very common in switch defaults and
1718   // else-if patterns;
1719   //
1720   //   if (a) f(1);
1721   //   else if (b) f(2);
1722   //
1723   // produces:
1724   //
1725   //       [if]
1726   //      /    \
1727   //    [f(1)] [if]
1728   //      |     | \
1729   //      |     |  |
1730   //      |  [f(2)]|
1731   //       \    | /
1732   //        [ end ]
1733   //
1734   // [end] has two unconditional predecessor arcs and one conditional. The
1735   // conditional refers to the implicit empty 'else' arc. This conditional
1736   // arc can also be caused by an empty default block in a switch.
1737   //
1738   // In this case, we attempt to sink code from all *unconditional* arcs.
1739   // If we can sink instructions from these arcs (determined during the scan
1740   // phase below) we insert a common successor for all unconditional arcs and
1741   // connect that to [end], to enable sinking:
1742   //
1743   //       [if]
1744   //      /    \
1745   //    [x(1)] [if]
1746   //      |     | \
1747   //      |     |  \
1748   //      |  [x(2)] |
1749   //       \   /    |
1750   //   [sink.split] |
1751   //         \     /
1752   //         [ end ]
1753   //
1754   SmallVector<BasicBlock*,4> UnconditionalPreds;
1755   Instruction *Cond = nullptr;
1756   for (auto *B : predecessors(BB)) {
1757     auto *T = B->getTerminator();
1758     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1759       UnconditionalPreds.push_back(B);
1760     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1761       Cond = T;
1762     else
1763       return false;
1764   }
1765   if (UnconditionalPreds.size() < 2)
1766     return false;
1767 
1768   bool Changed = false;
1769   // We take a two-step approach to tail sinking. First we scan from the end of
1770   // each block upwards in lockstep. If the n'th instruction from the end of each
1771   // block can be sunk, those instructions are added to ValuesToSink and we
1772   // carry on. If we can sink an instruction but need to PHI-merge some operands
1773   // (because they're not identical in each instruction) we add these to
1774   // PHIOperands.
1775   unsigned ScanIdx = 0;
1776   SmallPtrSet<Value*,4> InstructionsToSink;
1777   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1778   LockstepReverseIterator LRI(UnconditionalPreds);
1779   while (LRI.isValid() &&
1780          canSinkInstructions(*LRI, PHIOperands)) {
1781     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1782                       << "\n");
1783     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1784     ++ScanIdx;
1785     --LRI;
1786   }
1787 
1788   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1789     unsigned NumPHIdValues = 0;
1790     for (auto *I : *LRI)
1791       for (auto *V : PHIOperands[I])
1792         if (InstructionsToSink.count(V) == 0)
1793           ++NumPHIdValues;
1794     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1795     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1796     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1797         NumPHIInsts++;
1798 
1799     return NumPHIInsts <= 1;
1800   };
1801 
1802   if (ScanIdx > 0 && Cond) {
1803     // Check if we would actually sink anything first! This mutates the CFG and
1804     // adds an extra block. The goal in doing this is to allow instructions that
1805     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1806     // (such as trunc, add) can be sunk and predicated already. So we check that
1807     // we're going to sink at least one non-speculatable instruction.
1808     LRI.reset();
1809     unsigned Idx = 0;
1810     bool Profitable = false;
1811     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1812       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1813         Profitable = true;
1814         break;
1815       }
1816       --LRI;
1817       ++Idx;
1818     }
1819     if (!Profitable)
1820       return false;
1821 
1822     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1823     // We have a conditional edge and we're going to sink some instructions.
1824     // Insert a new block postdominating all blocks we're going to sink from.
1825     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1826       // Edges couldn't be split.
1827       return false;
1828     Changed = true;
1829   }
1830 
1831   // Now that we've analyzed all potential sinking candidates, perform the
1832   // actual sink. We iteratively sink the last non-terminator of the source
1833   // blocks into their common successor unless doing so would require too
1834   // many PHI instructions to be generated (currently only one PHI is allowed
1835   // per sunk instruction).
1836   //
1837   // We can use InstructionsToSink to discount values needing PHI-merging that will
1838   // actually be sunk in a later iteration. This allows us to be more
1839   // aggressive in what we sink. This does allow a false positive where we
1840   // sink presuming a later value will also be sunk, but stop half way through
1841   // and never actually sink it which means we produce more PHIs than intended.
1842   // This is unlikely in practice though.
1843   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1844     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1845                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1846                       << "\n");
1847 
1848     // Because we've sunk every instruction in turn, the current instruction to
1849     // sink is always at index 0.
1850     LRI.reset();
1851     if (!ProfitableToSinkInstruction(LRI)) {
1852       // Too many PHIs would be created.
1853       LLVM_DEBUG(
1854           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1855       break;
1856     }
1857 
1858     if (!sinkLastInstruction(UnconditionalPreds))
1859       return Changed;
1860     NumSinkCommons++;
1861     Changed = true;
1862   }
1863   return Changed;
1864 }
1865 
1866 /// Determine if we can hoist sink a sole store instruction out of a
1867 /// conditional block.
1868 ///
1869 /// We are looking for code like the following:
1870 ///   BrBB:
1871 ///     store i32 %add, i32* %arrayidx2
1872 ///     ... // No other stores or function calls (we could be calling a memory
1873 ///     ... // function).
1874 ///     %cmp = icmp ult %x, %y
1875 ///     br i1 %cmp, label %EndBB, label %ThenBB
1876 ///   ThenBB:
1877 ///     store i32 %add5, i32* %arrayidx2
1878 ///     br label EndBB
1879 ///   EndBB:
1880 ///     ...
1881 ///   We are going to transform this into:
1882 ///   BrBB:
1883 ///     store i32 %add, i32* %arrayidx2
1884 ///     ... //
1885 ///     %cmp = icmp ult %x, %y
1886 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1887 ///     store i32 %add.add5, i32* %arrayidx2
1888 ///     ...
1889 ///
1890 /// \return The pointer to the value of the previous store if the store can be
1891 ///         hoisted into the predecessor block. 0 otherwise.
1892 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1893                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1894   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1895   if (!StoreToHoist)
1896     return nullptr;
1897 
1898   // Volatile or atomic.
1899   if (!StoreToHoist->isSimple())
1900     return nullptr;
1901 
1902   Value *StorePtr = StoreToHoist->getPointerOperand();
1903 
1904   // Look for a store to the same pointer in BrBB.
1905   unsigned MaxNumInstToLookAt = 9;
1906   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1907     if (!MaxNumInstToLookAt)
1908       break;
1909     --MaxNumInstToLookAt;
1910 
1911     // Could be calling an instruction that affects memory like free().
1912     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1913       return nullptr;
1914 
1915     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1916       // Found the previous store make sure it stores to the same location.
1917       if (SI->getPointerOperand() == StorePtr)
1918         // Found the previous store, return its value operand.
1919         return SI->getValueOperand();
1920       return nullptr; // Unknown store.
1921     }
1922   }
1923 
1924   return nullptr;
1925 }
1926 
1927 /// Speculate a conditional basic block flattening the CFG.
1928 ///
1929 /// Note that this is a very risky transform currently. Speculating
1930 /// instructions like this is most often not desirable. Instead, there is an MI
1931 /// pass which can do it with full awareness of the resource constraints.
1932 /// However, some cases are "obvious" and we should do directly. An example of
1933 /// this is speculating a single, reasonably cheap instruction.
1934 ///
1935 /// There is only one distinct advantage to flattening the CFG at the IR level:
1936 /// it makes very common but simplistic optimizations such as are common in
1937 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1938 /// modeling their effects with easier to reason about SSA value graphs.
1939 ///
1940 ///
1941 /// An illustration of this transform is turning this IR:
1942 /// \code
1943 ///   BB:
1944 ///     %cmp = icmp ult %x, %y
1945 ///     br i1 %cmp, label %EndBB, label %ThenBB
1946 ///   ThenBB:
1947 ///     %sub = sub %x, %y
1948 ///     br label BB2
1949 ///   EndBB:
1950 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1951 ///     ...
1952 /// \endcode
1953 ///
1954 /// Into this IR:
1955 /// \code
1956 ///   BB:
1957 ///     %cmp = icmp ult %x, %y
1958 ///     %sub = sub %x, %y
1959 ///     %cond = select i1 %cmp, 0, %sub
1960 ///     ...
1961 /// \endcode
1962 ///
1963 /// \returns true if the conditional block is removed.
1964 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1965                                    const TargetTransformInfo &TTI) {
1966   // Be conservative for now. FP select instruction can often be expensive.
1967   Value *BrCond = BI->getCondition();
1968   if (isa<FCmpInst>(BrCond))
1969     return false;
1970 
1971   BasicBlock *BB = BI->getParent();
1972   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1973 
1974   // If ThenBB is actually on the false edge of the conditional branch, remember
1975   // to swap the select operands later.
1976   bool Invert = false;
1977   if (ThenBB != BI->getSuccessor(0)) {
1978     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1979     Invert = true;
1980   }
1981   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1982 
1983   // Keep a count of how many times instructions are used within ThenBB when
1984   // they are candidates for sinking into ThenBB. Specifically:
1985   // - They are defined in BB, and
1986   // - They have no side effects, and
1987   // - All of their uses are in ThenBB.
1988   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1989 
1990   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1991 
1992   unsigned SpeculatedInstructions = 0;
1993   Value *SpeculatedStoreValue = nullptr;
1994   StoreInst *SpeculatedStore = nullptr;
1995   for (BasicBlock::iterator BBI = ThenBB->begin(),
1996                             BBE = std::prev(ThenBB->end());
1997        BBI != BBE; ++BBI) {
1998     Instruction *I = &*BBI;
1999     // Skip debug info.
2000     if (isa<DbgInfoIntrinsic>(I)) {
2001       SpeculatedDbgIntrinsics.push_back(I);
2002       continue;
2003     }
2004 
2005     // Only speculatively execute a single instruction (not counting the
2006     // terminator) for now.
2007     ++SpeculatedInstructions;
2008     if (SpeculatedInstructions > 1)
2009       return false;
2010 
2011     // Don't hoist the instruction if it's unsafe or expensive.
2012     if (!isSafeToSpeculativelyExecute(I) &&
2013         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2014                                   I, BB, ThenBB, EndBB))))
2015       return false;
2016     if (!SpeculatedStoreValue &&
2017         ComputeSpeculationCost(I, TTI) >
2018             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2019       return false;
2020 
2021     // Store the store speculation candidate.
2022     if (SpeculatedStoreValue)
2023       SpeculatedStore = cast<StoreInst>(I);
2024 
2025     // Do not hoist the instruction if any of its operands are defined but not
2026     // used in BB. The transformation will prevent the operand from
2027     // being sunk into the use block.
2028     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2029       Instruction *OpI = dyn_cast<Instruction>(*i);
2030       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2031         continue; // Not a candidate for sinking.
2032 
2033       ++SinkCandidateUseCounts[OpI];
2034     }
2035   }
2036 
2037   // Consider any sink candidates which are only used in ThenBB as costs for
2038   // speculation. Note, while we iterate over a DenseMap here, we are summing
2039   // and so iteration order isn't significant.
2040   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2041            I = SinkCandidateUseCounts.begin(),
2042            E = SinkCandidateUseCounts.end();
2043        I != E; ++I)
2044     if (I->first->hasNUses(I->second)) {
2045       ++SpeculatedInstructions;
2046       if (SpeculatedInstructions > 1)
2047         return false;
2048     }
2049 
2050   // Check that the PHI nodes can be converted to selects.
2051   bool HaveRewritablePHIs = false;
2052   for (PHINode &PN : EndBB->phis()) {
2053     Value *OrigV = PN.getIncomingValueForBlock(BB);
2054     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2055 
2056     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2057     // Skip PHIs which are trivial.
2058     if (ThenV == OrigV)
2059       continue;
2060 
2061     // Don't convert to selects if we could remove undefined behavior instead.
2062     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2063         passingValueIsAlwaysUndefined(ThenV, &PN))
2064       return false;
2065 
2066     HaveRewritablePHIs = true;
2067     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2068     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2069     if (!OrigCE && !ThenCE)
2070       continue; // Known safe and cheap.
2071 
2072     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2073         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2074       return false;
2075     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2076     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2077     unsigned MaxCost =
2078         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2079     if (OrigCost + ThenCost > MaxCost)
2080       return false;
2081 
2082     // Account for the cost of an unfolded ConstantExpr which could end up
2083     // getting expanded into Instructions.
2084     // FIXME: This doesn't account for how many operations are combined in the
2085     // constant expression.
2086     ++SpeculatedInstructions;
2087     if (SpeculatedInstructions > 1)
2088       return false;
2089   }
2090 
2091   // If there are no PHIs to process, bail early. This helps ensure idempotence
2092   // as well.
2093   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2094     return false;
2095 
2096   // If we get here, we can hoist the instruction and if-convert.
2097   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2098 
2099   // Insert a select of the value of the speculated store.
2100   if (SpeculatedStoreValue) {
2101     IRBuilder<NoFolder> Builder(BI);
2102     Value *TrueV = SpeculatedStore->getValueOperand();
2103     Value *FalseV = SpeculatedStoreValue;
2104     if (Invert)
2105       std::swap(TrueV, FalseV);
2106     Value *S = Builder.CreateSelect(
2107         BrCond, TrueV, FalseV, "spec.store.select", BI);
2108     SpeculatedStore->setOperand(0, S);
2109     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2110                                          SpeculatedStore->getDebugLoc());
2111   }
2112 
2113   // Metadata can be dependent on the condition we are hoisting above.
2114   // Conservatively strip all metadata on the instruction.
2115   for (auto &I : *ThenBB)
2116     I.dropUnknownNonDebugMetadata();
2117 
2118   // Hoist the instructions.
2119   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2120                            ThenBB->begin(), std::prev(ThenBB->end()));
2121 
2122   // Insert selects and rewrite the PHI operands.
2123   IRBuilder<NoFolder> Builder(BI);
2124   for (PHINode &PN : EndBB->phis()) {
2125     unsigned OrigI = PN.getBasicBlockIndex(BB);
2126     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2127     Value *OrigV = PN.getIncomingValue(OrigI);
2128     Value *ThenV = PN.getIncomingValue(ThenI);
2129 
2130     // Skip PHIs which are trivial.
2131     if (OrigV == ThenV)
2132       continue;
2133 
2134     // Create a select whose true value is the speculatively executed value and
2135     // false value is the preexisting value. Swap them if the branch
2136     // destinations were inverted.
2137     Value *TrueV = ThenV, *FalseV = OrigV;
2138     if (Invert)
2139       std::swap(TrueV, FalseV);
2140     Value *V = Builder.CreateSelect(
2141         BrCond, TrueV, FalseV, "spec.select", BI);
2142     PN.setIncomingValue(OrigI, V);
2143     PN.setIncomingValue(ThenI, V);
2144   }
2145 
2146   // Remove speculated dbg intrinsics.
2147   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2148   // dbg value for the different flows and inserting it after the select.
2149   for (Instruction *I : SpeculatedDbgIntrinsics)
2150     I->eraseFromParent();
2151 
2152   ++NumSpeculations;
2153   return true;
2154 }
2155 
2156 /// Return true if we can thread a branch across this block.
2157 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2158   unsigned Size = 0;
2159 
2160   for (Instruction &I : BB->instructionsWithoutDebug()) {
2161     if (Size > 10)
2162       return false; // Don't clone large BB's.
2163     ++Size;
2164 
2165     // We can only support instructions that do not define values that are
2166     // live outside of the current basic block.
2167     for (User *U : I.users()) {
2168       Instruction *UI = cast<Instruction>(U);
2169       if (UI->getParent() != BB || isa<PHINode>(UI))
2170         return false;
2171     }
2172 
2173     // Looks ok, continue checking.
2174   }
2175 
2176   return true;
2177 }
2178 
2179 /// If we have a conditional branch on a PHI node value that is defined in the
2180 /// same block as the branch and if any PHI entries are constants, thread edges
2181 /// corresponding to that entry to be branches to their ultimate destination.
2182 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2183                                 AssumptionCache *AC) {
2184   BasicBlock *BB = BI->getParent();
2185   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2186   // NOTE: we currently cannot transform this case if the PHI node is used
2187   // outside of the block.
2188   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2189     return false;
2190 
2191   // Degenerate case of a single entry PHI.
2192   if (PN->getNumIncomingValues() == 1) {
2193     FoldSingleEntryPHINodes(PN->getParent());
2194     return true;
2195   }
2196 
2197   // Now we know that this block has multiple preds and two succs.
2198   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2199     return false;
2200 
2201   // Can't fold blocks that contain noduplicate or convergent calls.
2202   if (any_of(*BB, [](const Instruction &I) {
2203         const CallInst *CI = dyn_cast<CallInst>(&I);
2204         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2205       }))
2206     return false;
2207 
2208   // Okay, this is a simple enough basic block.  See if any phi values are
2209   // constants.
2210   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2211     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2212     if (!CB || !CB->getType()->isIntegerTy(1))
2213       continue;
2214 
2215     // Okay, we now know that all edges from PredBB should be revectored to
2216     // branch to RealDest.
2217     BasicBlock *PredBB = PN->getIncomingBlock(i);
2218     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2219 
2220     if (RealDest == BB)
2221       continue; // Skip self loops.
2222     // Skip if the predecessor's terminator is an indirect branch.
2223     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2224       continue;
2225 
2226     // The dest block might have PHI nodes, other predecessors and other
2227     // difficult cases.  Instead of being smart about this, just insert a new
2228     // block that jumps to the destination block, effectively splitting
2229     // the edge we are about to create.
2230     BasicBlock *EdgeBB =
2231         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2232                            RealDest->getParent(), RealDest);
2233     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2234     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2235 
2236     // Update PHI nodes.
2237     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2238 
2239     // BB may have instructions that are being threaded over.  Clone these
2240     // instructions into EdgeBB.  We know that there will be no uses of the
2241     // cloned instructions outside of EdgeBB.
2242     BasicBlock::iterator InsertPt = EdgeBB->begin();
2243     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2244     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2245       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2246         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2247         continue;
2248       }
2249       // Clone the instruction.
2250       Instruction *N = BBI->clone();
2251       if (BBI->hasName())
2252         N->setName(BBI->getName() + ".c");
2253 
2254       // Update operands due to translation.
2255       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2256         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2257         if (PI != TranslateMap.end())
2258           *i = PI->second;
2259       }
2260 
2261       // Check for trivial simplification.
2262       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2263         if (!BBI->use_empty())
2264           TranslateMap[&*BBI] = V;
2265         if (!N->mayHaveSideEffects()) {
2266           N->deleteValue(); // Instruction folded away, don't need actual inst
2267           N = nullptr;
2268         }
2269       } else {
2270         if (!BBI->use_empty())
2271           TranslateMap[&*BBI] = N;
2272       }
2273       if (N) {
2274         // Insert the new instruction into its new home.
2275         EdgeBB->getInstList().insert(InsertPt, N);
2276 
2277         // Register the new instruction with the assumption cache if necessary.
2278         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2279           AC->registerAssumption(cast<IntrinsicInst>(N));
2280       }
2281     }
2282 
2283     // Loop over all of the edges from PredBB to BB, changing them to branch
2284     // to EdgeBB instead.
2285     Instruction *PredBBTI = PredBB->getTerminator();
2286     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2287       if (PredBBTI->getSuccessor(i) == BB) {
2288         BB->removePredecessor(PredBB);
2289         PredBBTI->setSuccessor(i, EdgeBB);
2290       }
2291 
2292     // Recurse, simplifying any other constants.
2293     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2294   }
2295 
2296   return false;
2297 }
2298 
2299 /// Given a BB that starts with the specified two-entry PHI node,
2300 /// see if we can eliminate it.
2301 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2302                                 const DataLayout &DL) {
2303   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2304   // statement", which has a very simple dominance structure.  Basically, we
2305   // are trying to find the condition that is being branched on, which
2306   // subsequently causes this merge to happen.  We really want control
2307   // dependence information for this check, but simplifycfg can't keep it up
2308   // to date, and this catches most of the cases we care about anyway.
2309   BasicBlock *BB = PN->getParent();
2310   const Function *Fn = BB->getParent();
2311   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2312     return false;
2313 
2314   BasicBlock *IfTrue, *IfFalse;
2315   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2316   if (!IfCond ||
2317       // Don't bother if the branch will be constant folded trivially.
2318       isa<ConstantInt>(IfCond))
2319     return false;
2320 
2321   // Okay, we found that we can merge this two-entry phi node into a select.
2322   // Doing so would require us to fold *all* two entry phi nodes in this block.
2323   // At some point this becomes non-profitable (particularly if the target
2324   // doesn't support cmov's).  Only do this transformation if there are two or
2325   // fewer PHI nodes in this block.
2326   unsigned NumPhis = 0;
2327   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2328     if (NumPhis > 2)
2329       return false;
2330 
2331   // Loop over the PHI's seeing if we can promote them all to select
2332   // instructions.  While we are at it, keep track of the instructions
2333   // that need to be moved to the dominating block.
2334   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2335   int BudgetRemaining =
2336       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2337 
2338   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2339     PHINode *PN = cast<PHINode>(II++);
2340     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2341       PN->replaceAllUsesWith(V);
2342       PN->eraseFromParent();
2343       continue;
2344     }
2345 
2346     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2347                              BudgetRemaining, TTI) ||
2348         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2349                              BudgetRemaining, TTI))
2350       return false;
2351   }
2352 
2353   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2354   // we ran out of PHIs then we simplified them all.
2355   PN = dyn_cast<PHINode>(BB->begin());
2356   if (!PN)
2357     return true;
2358 
2359   // Return true if at least one of these is a 'not', and another is either
2360   // a 'not' too, or a constant.
2361   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2362     if (!match(V0, m_Not(m_Value())))
2363       std::swap(V0, V1);
2364     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2365     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2366   };
2367 
2368   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2369   // of the incoming values is an 'not' and another one is freely invertible.
2370   // These can often be turned into switches and other things.
2371   if (PN->getType()->isIntegerTy(1) &&
2372       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2373        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2374        isa<BinaryOperator>(IfCond)) &&
2375       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2376                                  PN->getIncomingValue(1)))
2377     return false;
2378 
2379   // If all PHI nodes are promotable, check to make sure that all instructions
2380   // in the predecessor blocks can be promoted as well. If not, we won't be able
2381   // to get rid of the control flow, so it's not worth promoting to select
2382   // instructions.
2383   BasicBlock *DomBlock = nullptr;
2384   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2385   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2386   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2387     IfBlock1 = nullptr;
2388   } else {
2389     DomBlock = *pred_begin(IfBlock1);
2390     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2391       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2392         // This is not an aggressive instruction that we can promote.
2393         // Because of this, we won't be able to get rid of the control flow, so
2394         // the xform is not worth it.
2395         return false;
2396       }
2397   }
2398 
2399   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2400     IfBlock2 = nullptr;
2401   } else {
2402     DomBlock = *pred_begin(IfBlock2);
2403     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2404       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2405         // This is not an aggressive instruction that we can promote.
2406         // Because of this, we won't be able to get rid of the control flow, so
2407         // the xform is not worth it.
2408         return false;
2409       }
2410   }
2411   assert(DomBlock && "Failed to find root DomBlock");
2412 
2413   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2414                     << "  T: " << IfTrue->getName()
2415                     << "  F: " << IfFalse->getName() << "\n");
2416 
2417   // If we can still promote the PHI nodes after this gauntlet of tests,
2418   // do all of the PHI's now.
2419   Instruction *InsertPt = DomBlock->getTerminator();
2420   IRBuilder<NoFolder> Builder(InsertPt);
2421 
2422   // Move all 'aggressive' instructions, which are defined in the
2423   // conditional parts of the if's up to the dominating block.
2424   if (IfBlock1)
2425     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2426   if (IfBlock2)
2427     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2428 
2429   // Propagate fast-math-flags from phi nodes to replacement selects.
2430   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2431   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2432     if (isa<FPMathOperator>(PN))
2433       Builder.setFastMathFlags(PN->getFastMathFlags());
2434 
2435     // Change the PHI node into a select instruction.
2436     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2437     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2438 
2439     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2440     PN->replaceAllUsesWith(Sel);
2441     Sel->takeName(PN);
2442     PN->eraseFromParent();
2443   }
2444 
2445   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2446   // has been flattened.  Change DomBlock to jump directly to our new block to
2447   // avoid other simplifycfg's kicking in on the diamond.
2448   Instruction *OldTI = DomBlock->getTerminator();
2449   Builder.SetInsertPoint(OldTI);
2450   Builder.CreateBr(BB);
2451   OldTI->eraseFromParent();
2452   return true;
2453 }
2454 
2455 /// If we found a conditional branch that goes to two returning blocks,
2456 /// try to merge them together into one return,
2457 /// introducing a select if the return values disagree.
2458 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2459                                            IRBuilder<> &Builder) {
2460   assert(BI->isConditional() && "Must be a conditional branch");
2461   BasicBlock *TrueSucc = BI->getSuccessor(0);
2462   BasicBlock *FalseSucc = BI->getSuccessor(1);
2463   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2464   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2465 
2466   // Check to ensure both blocks are empty (just a return) or optionally empty
2467   // with PHI nodes.  If there are other instructions, merging would cause extra
2468   // computation on one path or the other.
2469   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2470     return false;
2471   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2472     return false;
2473 
2474   Builder.SetInsertPoint(BI);
2475   // Okay, we found a branch that is going to two return nodes.  If
2476   // there is no return value for this function, just change the
2477   // branch into a return.
2478   if (FalseRet->getNumOperands() == 0) {
2479     TrueSucc->removePredecessor(BI->getParent());
2480     FalseSucc->removePredecessor(BI->getParent());
2481     Builder.CreateRetVoid();
2482     EraseTerminatorAndDCECond(BI);
2483     return true;
2484   }
2485 
2486   // Otherwise, figure out what the true and false return values are
2487   // so we can insert a new select instruction.
2488   Value *TrueValue = TrueRet->getReturnValue();
2489   Value *FalseValue = FalseRet->getReturnValue();
2490 
2491   // Unwrap any PHI nodes in the return blocks.
2492   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2493     if (TVPN->getParent() == TrueSucc)
2494       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2495   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2496     if (FVPN->getParent() == FalseSucc)
2497       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2498 
2499   // In order for this transformation to be safe, we must be able to
2500   // unconditionally execute both operands to the return.  This is
2501   // normally the case, but we could have a potentially-trapping
2502   // constant expression that prevents this transformation from being
2503   // safe.
2504   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2505     if (TCV->canTrap())
2506       return false;
2507   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2508     if (FCV->canTrap())
2509       return false;
2510 
2511   // Okay, we collected all the mapped values and checked them for sanity, and
2512   // defined to really do this transformation.  First, update the CFG.
2513   TrueSucc->removePredecessor(BI->getParent());
2514   FalseSucc->removePredecessor(BI->getParent());
2515 
2516   // Insert select instructions where needed.
2517   Value *BrCond = BI->getCondition();
2518   if (TrueValue) {
2519     // Insert a select if the results differ.
2520     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2521     } else if (isa<UndefValue>(TrueValue)) {
2522       TrueValue = FalseValue;
2523     } else {
2524       TrueValue =
2525           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2526     }
2527   }
2528 
2529   Value *RI =
2530       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2531 
2532   (void)RI;
2533 
2534   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2535                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2536                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2537 
2538   EraseTerminatorAndDCECond(BI);
2539 
2540   return true;
2541 }
2542 
2543 /// Return true if the given instruction is available
2544 /// in its predecessor block. If yes, the instruction will be removed.
2545 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2546   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2547     return false;
2548   for (Instruction &I : *PB) {
2549     Instruction *PBI = &I;
2550     // Check whether Inst and PBI generate the same value.
2551     if (Inst->isIdenticalTo(PBI)) {
2552       Inst->replaceAllUsesWith(PBI);
2553       Inst->eraseFromParent();
2554       return true;
2555     }
2556   }
2557   return false;
2558 }
2559 
2560 /// Return true if either PBI or BI has branch weight available, and store
2561 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2562 /// not have branch weight, use 1:1 as its weight.
2563 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2564                                    uint64_t &PredTrueWeight,
2565                                    uint64_t &PredFalseWeight,
2566                                    uint64_t &SuccTrueWeight,
2567                                    uint64_t &SuccFalseWeight) {
2568   bool PredHasWeights =
2569       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2570   bool SuccHasWeights =
2571       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2572   if (PredHasWeights || SuccHasWeights) {
2573     if (!PredHasWeights)
2574       PredTrueWeight = PredFalseWeight = 1;
2575     if (!SuccHasWeights)
2576       SuccTrueWeight = SuccFalseWeight = 1;
2577     return true;
2578   } else {
2579     return false;
2580   }
2581 }
2582 
2583 /// If this basic block is simple enough, and if a predecessor branches to us
2584 /// and one of our successors, fold the block into the predecessor and use
2585 /// logical operations to pick the right destination.
2586 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2587                                   unsigned BonusInstThreshold) {
2588   BasicBlock *BB = BI->getParent();
2589 
2590   const unsigned PredCount = pred_size(BB);
2591 
2592   Instruction *Cond = nullptr;
2593   if (BI->isConditional())
2594     Cond = dyn_cast<Instruction>(BI->getCondition());
2595   else {
2596     // For unconditional branch, check for a simple CFG pattern, where
2597     // BB has a single predecessor and BB's successor is also its predecessor's
2598     // successor. If such pattern exists, check for CSE between BB and its
2599     // predecessor.
2600     if (BasicBlock *PB = BB->getSinglePredecessor())
2601       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2602         if (PBI->isConditional() &&
2603             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2604              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2605           for (auto I = BB->instructionsWithoutDebug().begin(),
2606                     E = BB->instructionsWithoutDebug().end();
2607                I != E;) {
2608             Instruction *Curr = &*I++;
2609             if (isa<CmpInst>(Curr)) {
2610               Cond = Curr;
2611               break;
2612             }
2613             // Quit if we can't remove this instruction.
2614             if (!tryCSEWithPredecessor(Curr, PB))
2615               return false;
2616           }
2617         }
2618 
2619     if (!Cond)
2620       return false;
2621   }
2622 
2623   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2624       Cond->getParent() != BB || !Cond->hasOneUse())
2625     return false;
2626 
2627   // Make sure the instruction after the condition is the cond branch.
2628   BasicBlock::iterator CondIt = ++Cond->getIterator();
2629 
2630   // Ignore dbg intrinsics.
2631   while (isa<DbgInfoIntrinsic>(CondIt))
2632     ++CondIt;
2633 
2634   if (&*CondIt != BI)
2635     return false;
2636 
2637   // Only allow this transformation if computing the condition doesn't involve
2638   // too many instructions and these involved instructions can be executed
2639   // unconditionally. We denote all involved instructions except the condition
2640   // as "bonus instructions", and only allow this transformation when the
2641   // number of the bonus instructions we'll need to create when cloning into
2642   // each predecessor does not exceed a certain threshold.
2643   unsigned NumBonusInsts = 0;
2644   for (auto I = BB->begin(); Cond != &*I; ++I) {
2645     // Ignore dbg intrinsics.
2646     if (isa<DbgInfoIntrinsic>(I))
2647       continue;
2648     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2649       return false;
2650     // I has only one use and can be executed unconditionally.
2651     Instruction *User = dyn_cast<Instruction>(I->user_back());
2652     if (User == nullptr || User->getParent() != BB)
2653       return false;
2654     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2655     // to use any other instruction, User must be an instruction between next(I)
2656     // and Cond.
2657 
2658     // Account for the cost of duplicating this instruction into each
2659     // predecessor.
2660     NumBonusInsts += PredCount;
2661     // Early exits once we reach the limit.
2662     if (NumBonusInsts > BonusInstThreshold)
2663       return false;
2664   }
2665 
2666   // Cond is known to be a compare or binary operator.  Check to make sure that
2667   // neither operand is a potentially-trapping constant expression.
2668   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2669     if (CE->canTrap())
2670       return false;
2671   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2672     if (CE->canTrap())
2673       return false;
2674 
2675   // Finally, don't infinitely unroll conditional loops.
2676   BasicBlock *TrueDest = BI->getSuccessor(0);
2677   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2678   if (TrueDest == BB || FalseDest == BB)
2679     return false;
2680 
2681   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2682     BasicBlock *PredBlock = *PI;
2683     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2684 
2685     // Check that we have two conditional branches.  If there is a PHI node in
2686     // the common successor, verify that the same value flows in from both
2687     // blocks.
2688     SmallVector<PHINode *, 4> PHIs;
2689     if (!PBI || PBI->isUnconditional() ||
2690         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2691         (!BI->isConditional() &&
2692          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2693       continue;
2694 
2695     // Determine if the two branches share a common destination.
2696     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2697     bool InvertPredCond = false;
2698 
2699     if (BI->isConditional()) {
2700       if (PBI->getSuccessor(0) == TrueDest) {
2701         Opc = Instruction::Or;
2702       } else if (PBI->getSuccessor(1) == FalseDest) {
2703         Opc = Instruction::And;
2704       } else if (PBI->getSuccessor(0) == FalseDest) {
2705         Opc = Instruction::And;
2706         InvertPredCond = true;
2707       } else if (PBI->getSuccessor(1) == TrueDest) {
2708         Opc = Instruction::Or;
2709         InvertPredCond = true;
2710       } else {
2711         continue;
2712       }
2713     } else {
2714       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2715         continue;
2716     }
2717 
2718     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2719     IRBuilder<> Builder(PBI);
2720 
2721     // If we need to invert the condition in the pred block to match, do so now.
2722     if (InvertPredCond) {
2723       Value *NewCond = PBI->getCondition();
2724 
2725       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2726         CmpInst *CI = cast<CmpInst>(NewCond);
2727         CI->setPredicate(CI->getInversePredicate());
2728       } else {
2729         NewCond =
2730             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2731       }
2732 
2733       PBI->setCondition(NewCond);
2734       PBI->swapSuccessors();
2735     }
2736 
2737     // If we have bonus instructions, clone them into the predecessor block.
2738     // Note that there may be multiple predecessor blocks, so we cannot move
2739     // bonus instructions to a predecessor block.
2740     ValueToValueMapTy VMap; // maps original values to cloned values
2741     // We already make sure Cond is the last instruction before BI. Therefore,
2742     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2743     // instructions.
2744     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2745       if (isa<DbgInfoIntrinsic>(BonusInst))
2746         continue;
2747       Instruction *NewBonusInst = BonusInst->clone();
2748       RemapInstruction(NewBonusInst, VMap,
2749                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2750       VMap[&*BonusInst] = NewBonusInst;
2751 
2752       // If we moved a load, we cannot any longer claim any knowledge about
2753       // its potential value. The previous information might have been valid
2754       // only given the branch precondition.
2755       // For an analogous reason, we must also drop all the metadata whose
2756       // semantics we don't understand.
2757       NewBonusInst->dropUnknownNonDebugMetadata();
2758 
2759       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2760       NewBonusInst->takeName(&*BonusInst);
2761       BonusInst->setName(BonusInst->getName() + ".old");
2762     }
2763 
2764     // Clone Cond into the predecessor basic block, and or/and the
2765     // two conditions together.
2766     Instruction *CondInPred = Cond->clone();
2767     RemapInstruction(CondInPred, VMap,
2768                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2769     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2770     CondInPred->takeName(Cond);
2771     Cond->setName(CondInPred->getName() + ".old");
2772 
2773     if (BI->isConditional()) {
2774       Instruction *NewCond = cast<Instruction>(
2775           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2776       PBI->setCondition(NewCond);
2777 
2778       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2779       bool HasWeights =
2780           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2781                                  SuccTrueWeight, SuccFalseWeight);
2782       SmallVector<uint64_t, 8> NewWeights;
2783 
2784       if (PBI->getSuccessor(0) == BB) {
2785         if (HasWeights) {
2786           // PBI: br i1 %x, BB, FalseDest
2787           // BI:  br i1 %y, TrueDest, FalseDest
2788           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2789           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2790           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2791           //               TrueWeight for PBI * FalseWeight for BI.
2792           // We assume that total weights of a BranchInst can fit into 32 bits.
2793           // Therefore, we will not have overflow using 64-bit arithmetic.
2794           NewWeights.push_back(PredFalseWeight *
2795                                    (SuccFalseWeight + SuccTrueWeight) +
2796                                PredTrueWeight * SuccFalseWeight);
2797         }
2798         AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2799         PBI->setSuccessor(0, TrueDest);
2800       }
2801       if (PBI->getSuccessor(1) == BB) {
2802         if (HasWeights) {
2803           // PBI: br i1 %x, TrueDest, BB
2804           // BI:  br i1 %y, TrueDest, FalseDest
2805           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2806           //              FalseWeight for PBI * TrueWeight for BI.
2807           NewWeights.push_back(PredTrueWeight *
2808                                    (SuccFalseWeight + SuccTrueWeight) +
2809                                PredFalseWeight * SuccTrueWeight);
2810           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2811           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2812         }
2813         AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2814         PBI->setSuccessor(1, FalseDest);
2815       }
2816       if (NewWeights.size() == 2) {
2817         // Halve the weights if any of them cannot fit in an uint32_t
2818         FitWeights(NewWeights);
2819 
2820         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2821                                            NewWeights.end());
2822         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2823       } else
2824         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2825     } else {
2826       // Update PHI nodes in the common successors.
2827       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2828         ConstantInt *PBI_C = cast<ConstantInt>(
2829             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2830         assert(PBI_C->getType()->isIntegerTy(1));
2831         Instruction *MergedCond = nullptr;
2832         if (PBI->getSuccessor(0) == TrueDest) {
2833           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2834           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2835           //       is false: !PBI_Cond and BI_Value
2836           Instruction *NotCond = cast<Instruction>(
2837               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2838           MergedCond = cast<Instruction>(
2839                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2840                                    "and.cond"));
2841           if (PBI_C->isOne())
2842             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2843                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2844         } else {
2845           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2846           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2847           //       is false: PBI_Cond and BI_Value
2848           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2849               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2850           if (PBI_C->isOne()) {
2851             Instruction *NotCond = cast<Instruction>(
2852                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2853             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2854                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2855           }
2856         }
2857         // Update PHI Node.
2858 	PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2859       }
2860 
2861       // PBI is changed to branch to TrueDest below. Remove itself from
2862       // potential phis from all other successors.
2863       if (MSSAU)
2864         MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2865 
2866       // Change PBI from Conditional to Unconditional.
2867       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2868       EraseTerminatorAndDCECond(PBI, MSSAU);
2869       PBI = New_PBI;
2870     }
2871 
2872     // If BI was a loop latch, it may have had associated loop metadata.
2873     // We need to copy it to the new latch, that is, PBI.
2874     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2875       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2876 
2877     // TODO: If BB is reachable from all paths through PredBlock, then we
2878     // could replace PBI's branch probabilities with BI's.
2879 
2880     // Copy any debug value intrinsics into the end of PredBlock.
2881     for (Instruction &I : *BB)
2882       if (isa<DbgInfoIntrinsic>(I))
2883         I.clone()->insertBefore(PBI);
2884 
2885     return true;
2886   }
2887   return false;
2888 }
2889 
2890 // If there is only one store in BB1 and BB2, return it, otherwise return
2891 // nullptr.
2892 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2893   StoreInst *S = nullptr;
2894   for (auto *BB : {BB1, BB2}) {
2895     if (!BB)
2896       continue;
2897     for (auto &I : *BB)
2898       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2899         if (S)
2900           // Multiple stores seen.
2901           return nullptr;
2902         else
2903           S = SI;
2904       }
2905   }
2906   return S;
2907 }
2908 
2909 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2910                                               Value *AlternativeV = nullptr) {
2911   // PHI is going to be a PHI node that allows the value V that is defined in
2912   // BB to be referenced in BB's only successor.
2913   //
2914   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2915   // doesn't matter to us what the other operand is (it'll never get used). We
2916   // could just create a new PHI with an undef incoming value, but that could
2917   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2918   // other PHI. So here we directly look for some PHI in BB's successor with V
2919   // as an incoming operand. If we find one, we use it, else we create a new
2920   // one.
2921   //
2922   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2923   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2924   // where OtherBB is the single other predecessor of BB's only successor.
2925   PHINode *PHI = nullptr;
2926   BasicBlock *Succ = BB->getSingleSuccessor();
2927 
2928   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2929     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2930       PHI = cast<PHINode>(I);
2931       if (!AlternativeV)
2932         break;
2933 
2934       assert(Succ->hasNPredecessors(2));
2935       auto PredI = pred_begin(Succ);
2936       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2937       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2938         break;
2939       PHI = nullptr;
2940     }
2941   if (PHI)
2942     return PHI;
2943 
2944   // If V is not an instruction defined in BB, just return it.
2945   if (!AlternativeV &&
2946       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2947     return V;
2948 
2949   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2950   PHI->addIncoming(V, BB);
2951   for (BasicBlock *PredBB : predecessors(Succ))
2952     if (PredBB != BB)
2953       PHI->addIncoming(
2954           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2955   return PHI;
2956 }
2957 
2958 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2959                                            BasicBlock *QTB, BasicBlock *QFB,
2960                                            BasicBlock *PostBB, Value *Address,
2961                                            bool InvertPCond, bool InvertQCond,
2962                                            const DataLayout &DL,
2963                                            const TargetTransformInfo &TTI) {
2964   // For every pointer, there must be exactly two stores, one coming from
2965   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2966   // store (to any address) in PTB,PFB or QTB,QFB.
2967   // FIXME: We could relax this restriction with a bit more work and performance
2968   // testing.
2969   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2970   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2971   if (!PStore || !QStore)
2972     return false;
2973 
2974   // Now check the stores are compatible.
2975   if (!QStore->isUnordered() || !PStore->isUnordered())
2976     return false;
2977 
2978   // Check that sinking the store won't cause program behavior changes. Sinking
2979   // the store out of the Q blocks won't change any behavior as we're sinking
2980   // from a block to its unconditional successor. But we're moving a store from
2981   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2982   // So we need to check that there are no aliasing loads or stores in
2983   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2984   // operations between PStore and the end of its parent block.
2985   //
2986   // The ideal way to do this is to query AliasAnalysis, but we don't
2987   // preserve AA currently so that is dangerous. Be super safe and just
2988   // check there are no other memory operations at all.
2989   for (auto &I : *QFB->getSinglePredecessor())
2990     if (I.mayReadOrWriteMemory())
2991       return false;
2992   for (auto &I : *QFB)
2993     if (&I != QStore && I.mayReadOrWriteMemory())
2994       return false;
2995   if (QTB)
2996     for (auto &I : *QTB)
2997       if (&I != QStore && I.mayReadOrWriteMemory())
2998         return false;
2999   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3000        I != E; ++I)
3001     if (&*I != PStore && I->mayReadOrWriteMemory())
3002       return false;
3003 
3004   // If we're not in aggressive mode, we only optimize if we have some
3005   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3006   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3007     if (!BB)
3008       return true;
3009     // Heuristic: if the block can be if-converted/phi-folded and the
3010     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3011     // thread this store.
3012     int BudgetRemaining =
3013         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3014     for (auto &I : BB->instructionsWithoutDebug()) {
3015       // Consider terminator instruction to be free.
3016       if (I.isTerminator())
3017         continue;
3018       // If this is one the stores that we want to speculate out of this BB,
3019       // then don't count it's cost, consider it to be free.
3020       if (auto *S = dyn_cast<StoreInst>(&I))
3021         if (llvm::find(FreeStores, S))
3022           continue;
3023       // Else, we have a white-list of instructions that we are ak speculating.
3024       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3025         return false; // Not in white-list - not worthwhile folding.
3026       // And finally, if this is a non-free instruction that we are okay
3027       // speculating, ensure that we consider the speculation budget.
3028       BudgetRemaining -= TTI.getUserCost(&I);
3029       if (BudgetRemaining < 0)
3030         return false; // Eagerly refuse to fold as soon as we're out of budget.
3031     }
3032     assert(BudgetRemaining >= 0 &&
3033            "When we run out of budget we will eagerly return from within the "
3034            "per-instruction loop.");
3035     return true;
3036   };
3037 
3038   const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3039   if (!MergeCondStoresAggressively &&
3040       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3041        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3042     return false;
3043 
3044   // If PostBB has more than two predecessors, we need to split it so we can
3045   // sink the store.
3046   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3047     // We know that QFB's only successor is PostBB. And QFB has a single
3048     // predecessor. If QTB exists, then its only successor is also PostBB.
3049     // If QTB does not exist, then QFB's only predecessor has a conditional
3050     // branch to QFB and PostBB.
3051     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3052     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3053                                                "condstore.split");
3054     if (!NewBB)
3055       return false;
3056     PostBB = NewBB;
3057   }
3058 
3059   // OK, we're going to sink the stores to PostBB. The store has to be
3060   // conditional though, so first create the predicate.
3061   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3062                      ->getCondition();
3063   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3064                      ->getCondition();
3065 
3066   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3067                                                 PStore->getParent());
3068   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3069                                                 QStore->getParent(), PPHI);
3070 
3071   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3072 
3073   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3074   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3075 
3076   if (InvertPCond)
3077     PPred = QB.CreateNot(PPred);
3078   if (InvertQCond)
3079     QPred = QB.CreateNot(QPred);
3080   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3081 
3082   auto *T =
3083       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3084   QB.SetInsertPoint(T);
3085   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3086   AAMDNodes AAMD;
3087   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3088   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3089   SI->setAAMetadata(AAMD);
3090   unsigned PAlignment = PStore->getAlignment();
3091   unsigned QAlignment = QStore->getAlignment();
3092   unsigned TypeAlignment =
3093       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3094   unsigned MinAlignment;
3095   unsigned MaxAlignment;
3096   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3097   // Choose the minimum alignment. If we could prove both stores execute, we
3098   // could use biggest one.  In this case, though, we only know that one of the
3099   // stores executes.  And we don't know it's safe to take the alignment from a
3100   // store that doesn't execute.
3101   if (MinAlignment != 0) {
3102     // Choose the minimum of all non-zero alignments.
3103     SI->setAlignment(Align(MinAlignment));
3104   } else if (MaxAlignment != 0) {
3105     // Choose the minimal alignment between the non-zero alignment and the ABI
3106     // default alignment for the type of the stored value.
3107     SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3108   } else {
3109     // If both alignments are zero, use ABI default alignment for the type of
3110     // the stored value.
3111     SI->setAlignment(Align(TypeAlignment));
3112   }
3113 
3114   QStore->eraseFromParent();
3115   PStore->eraseFromParent();
3116 
3117   return true;
3118 }
3119 
3120 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3121                                    const DataLayout &DL,
3122                                    const TargetTransformInfo &TTI) {
3123   // The intention here is to find diamonds or triangles (see below) where each
3124   // conditional block contains a store to the same address. Both of these
3125   // stores are conditional, so they can't be unconditionally sunk. But it may
3126   // be profitable to speculatively sink the stores into one merged store at the
3127   // end, and predicate the merged store on the union of the two conditions of
3128   // PBI and QBI.
3129   //
3130   // This can reduce the number of stores executed if both of the conditions are
3131   // true, and can allow the blocks to become small enough to be if-converted.
3132   // This optimization will also chain, so that ladders of test-and-set
3133   // sequences can be if-converted away.
3134   //
3135   // We only deal with simple diamonds or triangles:
3136   //
3137   //     PBI       or      PBI        or a combination of the two
3138   //    /   \               | \
3139   //   PTB  PFB             |  PFB
3140   //    \   /               | /
3141   //     QBI                QBI
3142   //    /  \                | \
3143   //   QTB  QFB             |  QFB
3144   //    \  /                | /
3145   //    PostBB            PostBB
3146   //
3147   // We model triangles as a type of diamond with a nullptr "true" block.
3148   // Triangles are canonicalized so that the fallthrough edge is represented by
3149   // a true condition, as in the diagram above.
3150   BasicBlock *PTB = PBI->getSuccessor(0);
3151   BasicBlock *PFB = PBI->getSuccessor(1);
3152   BasicBlock *QTB = QBI->getSuccessor(0);
3153   BasicBlock *QFB = QBI->getSuccessor(1);
3154   BasicBlock *PostBB = QFB->getSingleSuccessor();
3155 
3156   // Make sure we have a good guess for PostBB. If QTB's only successor is
3157   // QFB, then QFB is a better PostBB.
3158   if (QTB->getSingleSuccessor() == QFB)
3159     PostBB = QFB;
3160 
3161   // If we couldn't find a good PostBB, stop.
3162   if (!PostBB)
3163     return false;
3164 
3165   bool InvertPCond = false, InvertQCond = false;
3166   // Canonicalize fallthroughs to the true branches.
3167   if (PFB == QBI->getParent()) {
3168     std::swap(PFB, PTB);
3169     InvertPCond = true;
3170   }
3171   if (QFB == PostBB) {
3172     std::swap(QFB, QTB);
3173     InvertQCond = true;
3174   }
3175 
3176   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3177   // and QFB may not. Model fallthroughs as a nullptr block.
3178   if (PTB == QBI->getParent())
3179     PTB = nullptr;
3180   if (QTB == PostBB)
3181     QTB = nullptr;
3182 
3183   // Legality bailouts. We must have at least the non-fallthrough blocks and
3184   // the post-dominating block, and the non-fallthroughs must only have one
3185   // predecessor.
3186   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3187     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3188   };
3189   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3190       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3191     return false;
3192   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3193       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3194     return false;
3195   if (!QBI->getParent()->hasNUses(2))
3196     return false;
3197 
3198   // OK, this is a sequence of two diamonds or triangles.
3199   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3200   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3201   for (auto *BB : {PTB, PFB}) {
3202     if (!BB)
3203       continue;
3204     for (auto &I : *BB)
3205       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3206         PStoreAddresses.insert(SI->getPointerOperand());
3207   }
3208   for (auto *BB : {QTB, QFB}) {
3209     if (!BB)
3210       continue;
3211     for (auto &I : *BB)
3212       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3213         QStoreAddresses.insert(SI->getPointerOperand());
3214   }
3215 
3216   set_intersect(PStoreAddresses, QStoreAddresses);
3217   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3218   // clear what it contains.
3219   auto &CommonAddresses = PStoreAddresses;
3220 
3221   bool Changed = false;
3222   for (auto *Address : CommonAddresses)
3223     Changed |= mergeConditionalStoreToAddress(
3224         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3225   return Changed;
3226 }
3227 
3228 
3229 /// If the previous block ended with a widenable branch, determine if reusing
3230 /// the target block is profitable and legal.  This will have the effect of
3231 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3232 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
3233   // TODO: This can be generalized in two important ways:
3234   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3235   //    values from the PBI edge.
3236   // 2) We can sink side effecting instructions into BI's fallthrough
3237   //    successor provided they doesn't contribute to computation of
3238   //    BI's condition.
3239   Value *CondWB, *WC;
3240   BasicBlock *IfTrueBB, *IfFalseBB;
3241   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3242       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3243     return false;
3244   if (!IfFalseBB->phis().empty())
3245     return false; // TODO
3246   // Use lambda to lazily compute expensive condition after cheap ones.
3247   auto NoSideEffects = [](BasicBlock &BB) {
3248     return !llvm::any_of(BB, [](const Instruction &I) {
3249         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3250       });
3251   };
3252   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3253       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3254       NoSideEffects(*BI->getParent())) {
3255     BI->getSuccessor(1)->removePredecessor(BI->getParent());
3256     BI->setSuccessor(1, IfFalseBB);
3257     return true;
3258   }
3259   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3260       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3261       NoSideEffects(*BI->getParent())) {
3262     BI->getSuccessor(0)->removePredecessor(BI->getParent());
3263     BI->setSuccessor(0, IfFalseBB);
3264     return true;
3265   }
3266   return false;
3267 }
3268 
3269 /// If we have a conditional branch as a predecessor of another block,
3270 /// this function tries to simplify it.  We know
3271 /// that PBI and BI are both conditional branches, and BI is in one of the
3272 /// successor blocks of PBI - PBI branches to BI.
3273 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3274                                            const DataLayout &DL,
3275                                            const TargetTransformInfo &TTI) {
3276   assert(PBI->isConditional() && BI->isConditional());
3277   BasicBlock *BB = BI->getParent();
3278 
3279   // If this block ends with a branch instruction, and if there is a
3280   // predecessor that ends on a branch of the same condition, make
3281   // this conditional branch redundant.
3282   if (PBI->getCondition() == BI->getCondition() &&
3283       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3284     // Okay, the outcome of this conditional branch is statically
3285     // knowable.  If this block had a single pred, handle specially.
3286     if (BB->getSinglePredecessor()) {
3287       // Turn this into a branch on constant.
3288       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3289       BI->setCondition(
3290           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3291       return true; // Nuke the branch on constant.
3292     }
3293 
3294     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3295     // in the constant and simplify the block result.  Subsequent passes of
3296     // simplifycfg will thread the block.
3297     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3298       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3299       PHINode *NewPN = PHINode::Create(
3300           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3301           BI->getCondition()->getName() + ".pr", &BB->front());
3302       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3303       // predecessor, compute the PHI'd conditional value for all of the preds.
3304       // Any predecessor where the condition is not computable we keep symbolic.
3305       for (pred_iterator PI = PB; PI != PE; ++PI) {
3306         BasicBlock *P = *PI;
3307         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3308             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3309             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3310           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3311           NewPN->addIncoming(
3312               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3313               P);
3314         } else {
3315           NewPN->addIncoming(BI->getCondition(), P);
3316         }
3317       }
3318 
3319       BI->setCondition(NewPN);
3320       return true;
3321     }
3322   }
3323 
3324   // If the previous block ended with a widenable branch, determine if reusing
3325   // the target block is profitable and legal.  This will have the effect of
3326   // "widening" PBI, but doesn't require us to reason about hosting safety.
3327   if (tryWidenCondBranchToCondBranch(PBI, BI))
3328     return true;
3329 
3330   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3331     if (CE->canTrap())
3332       return false;
3333 
3334   // If both branches are conditional and both contain stores to the same
3335   // address, remove the stores from the conditionals and create a conditional
3336   // merged store at the end.
3337   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3338     return true;
3339 
3340   // If this is a conditional branch in an empty block, and if any
3341   // predecessors are a conditional branch to one of our destinations,
3342   // fold the conditions into logical ops and one cond br.
3343 
3344   // Ignore dbg intrinsics.
3345   if (&*BB->instructionsWithoutDebug().begin() != BI)
3346     return false;
3347 
3348   int PBIOp, BIOp;
3349   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3350     PBIOp = 0;
3351     BIOp = 0;
3352   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3353     PBIOp = 0;
3354     BIOp = 1;
3355   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3356     PBIOp = 1;
3357     BIOp = 0;
3358   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3359     PBIOp = 1;
3360     BIOp = 1;
3361   } else {
3362     return false;
3363   }
3364 
3365   // Check to make sure that the other destination of this branch
3366   // isn't BB itself.  If so, this is an infinite loop that will
3367   // keep getting unwound.
3368   if (PBI->getSuccessor(PBIOp) == BB)
3369     return false;
3370 
3371   // Do not perform this transformation if it would require
3372   // insertion of a large number of select instructions. For targets
3373   // without predication/cmovs, this is a big pessimization.
3374 
3375   // Also do not perform this transformation if any phi node in the common
3376   // destination block can trap when reached by BB or PBB (PR17073). In that
3377   // case, it would be unsafe to hoist the operation into a select instruction.
3378 
3379   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3380   unsigned NumPhis = 0;
3381   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3382        ++II, ++NumPhis) {
3383     if (NumPhis > 2) // Disable this xform.
3384       return false;
3385 
3386     PHINode *PN = cast<PHINode>(II);
3387     Value *BIV = PN->getIncomingValueForBlock(BB);
3388     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3389       if (CE->canTrap())
3390         return false;
3391 
3392     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3393     Value *PBIV = PN->getIncomingValue(PBBIdx);
3394     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3395       if (CE->canTrap())
3396         return false;
3397   }
3398 
3399   // Finally, if everything is ok, fold the branches to logical ops.
3400   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3401 
3402   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3403                     << "AND: " << *BI->getParent());
3404 
3405   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3406   // branch in it, where one edge (OtherDest) goes back to itself but the other
3407   // exits.  We don't *know* that the program avoids the infinite loop
3408   // (even though that seems likely).  If we do this xform naively, we'll end up
3409   // recursively unpeeling the loop.  Since we know that (after the xform is
3410   // done) that the block *is* infinite if reached, we just make it an obviously
3411   // infinite loop with no cond branch.
3412   if (OtherDest == BB) {
3413     // Insert it at the end of the function, because it's either code,
3414     // or it won't matter if it's hot. :)
3415     BasicBlock *InfLoopBlock =
3416         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3417     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3418     OtherDest = InfLoopBlock;
3419   }
3420 
3421   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3422 
3423   // BI may have other predecessors.  Because of this, we leave
3424   // it alone, but modify PBI.
3425 
3426   // Make sure we get to CommonDest on True&True directions.
3427   Value *PBICond = PBI->getCondition();
3428   IRBuilder<NoFolder> Builder(PBI);
3429   if (PBIOp)
3430     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3431 
3432   Value *BICond = BI->getCondition();
3433   if (BIOp)
3434     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3435 
3436   // Merge the conditions.
3437   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3438 
3439   // Modify PBI to branch on the new condition to the new dests.
3440   PBI->setCondition(Cond);
3441   PBI->setSuccessor(0, CommonDest);
3442   PBI->setSuccessor(1, OtherDest);
3443 
3444   // Update branch weight for PBI.
3445   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3446   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3447   bool HasWeights =
3448       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3449                              SuccTrueWeight, SuccFalseWeight);
3450   if (HasWeights) {
3451     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3452     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3453     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3454     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3455     // The weight to CommonDest should be PredCommon * SuccTotal +
3456     //                                    PredOther * SuccCommon.
3457     // The weight to OtherDest should be PredOther * SuccOther.
3458     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3459                                   PredOther * SuccCommon,
3460                               PredOther * SuccOther};
3461     // Halve the weights if any of them cannot fit in an uint32_t
3462     FitWeights(NewWeights);
3463 
3464     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3465   }
3466 
3467   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3468   // block that are identical to the entries for BI's block.
3469   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3470 
3471   // We know that the CommonDest already had an edge from PBI to
3472   // it.  If it has PHIs though, the PHIs may have different
3473   // entries for BB and PBI's BB.  If so, insert a select to make
3474   // them agree.
3475   for (PHINode &PN : CommonDest->phis()) {
3476     Value *BIV = PN.getIncomingValueForBlock(BB);
3477     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3478     Value *PBIV = PN.getIncomingValue(PBBIdx);
3479     if (BIV != PBIV) {
3480       // Insert a select in PBI to pick the right value.
3481       SelectInst *NV = cast<SelectInst>(
3482           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3483       PN.setIncomingValue(PBBIdx, NV);
3484       // Although the select has the same condition as PBI, the original branch
3485       // weights for PBI do not apply to the new select because the select's
3486       // 'logical' edges are incoming edges of the phi that is eliminated, not
3487       // the outgoing edges of PBI.
3488       if (HasWeights) {
3489         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3490         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3491         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3492         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3493         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3494         // The weight to PredOtherDest should be PredOther * SuccCommon.
3495         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3496                                   PredOther * SuccCommon};
3497 
3498         FitWeights(NewWeights);
3499 
3500         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3501       }
3502     }
3503   }
3504 
3505   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3506   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3507 
3508   // This basic block is probably dead.  We know it has at least
3509   // one fewer predecessor.
3510   return true;
3511 }
3512 
3513 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3514 // true or to FalseBB if Cond is false.
3515 // Takes care of updating the successors and removing the old terminator.
3516 // Also makes sure not to introduce new successors by assuming that edges to
3517 // non-successor TrueBBs and FalseBBs aren't reachable.
3518 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3519                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3520                                        uint32_t TrueWeight,
3521                                        uint32_t FalseWeight) {
3522   // Remove any superfluous successor edges from the CFG.
3523   // First, figure out which successors to preserve.
3524   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3525   // successor.
3526   BasicBlock *KeepEdge1 = TrueBB;
3527   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3528 
3529   // Then remove the rest.
3530   for (BasicBlock *Succ : successors(OldTerm)) {
3531     // Make sure only to keep exactly one copy of each edge.
3532     if (Succ == KeepEdge1)
3533       KeepEdge1 = nullptr;
3534     else if (Succ == KeepEdge2)
3535       KeepEdge2 = nullptr;
3536     else
3537       Succ->removePredecessor(OldTerm->getParent(),
3538                               /*KeepOneInputPHIs=*/true);
3539   }
3540 
3541   IRBuilder<> Builder(OldTerm);
3542   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3543 
3544   // Insert an appropriate new terminator.
3545   if (!KeepEdge1 && !KeepEdge2) {
3546     if (TrueBB == FalseBB)
3547       // We were only looking for one successor, and it was present.
3548       // Create an unconditional branch to it.
3549       Builder.CreateBr(TrueBB);
3550     else {
3551       // We found both of the successors we were looking for.
3552       // Create a conditional branch sharing the condition of the select.
3553       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3554       if (TrueWeight != FalseWeight)
3555         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3556     }
3557   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3558     // Neither of the selected blocks were successors, so this
3559     // terminator must be unreachable.
3560     new UnreachableInst(OldTerm->getContext(), OldTerm);
3561   } else {
3562     // One of the selected values was a successor, but the other wasn't.
3563     // Insert an unconditional branch to the one that was found;
3564     // the edge to the one that wasn't must be unreachable.
3565     if (!KeepEdge1)
3566       // Only TrueBB was found.
3567       Builder.CreateBr(TrueBB);
3568     else
3569       // Only FalseBB was found.
3570       Builder.CreateBr(FalseBB);
3571   }
3572 
3573   EraseTerminatorAndDCECond(OldTerm);
3574   return true;
3575 }
3576 
3577 // Replaces
3578 //   (switch (select cond, X, Y)) on constant X, Y
3579 // with a branch - conditional if X and Y lead to distinct BBs,
3580 // unconditional otherwise.
3581 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3582   // Check for constant integer values in the select.
3583   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3584   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3585   if (!TrueVal || !FalseVal)
3586     return false;
3587 
3588   // Find the relevant condition and destinations.
3589   Value *Condition = Select->getCondition();
3590   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3591   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3592 
3593   // Get weight for TrueBB and FalseBB.
3594   uint32_t TrueWeight = 0, FalseWeight = 0;
3595   SmallVector<uint64_t, 8> Weights;
3596   bool HasWeights = HasBranchWeights(SI);
3597   if (HasWeights) {
3598     GetBranchWeights(SI, Weights);
3599     if (Weights.size() == 1 + SI->getNumCases()) {
3600       TrueWeight =
3601           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3602       FalseWeight =
3603           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3604     }
3605   }
3606 
3607   // Perform the actual simplification.
3608   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3609                                     FalseWeight);
3610 }
3611 
3612 // Replaces
3613 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3614 //                             blockaddress(@fn, BlockB)))
3615 // with
3616 //   (br cond, BlockA, BlockB).
3617 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3618   // Check that both operands of the select are block addresses.
3619   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3620   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3621   if (!TBA || !FBA)
3622     return false;
3623 
3624   // Extract the actual blocks.
3625   BasicBlock *TrueBB = TBA->getBasicBlock();
3626   BasicBlock *FalseBB = FBA->getBasicBlock();
3627 
3628   // Perform the actual simplification.
3629   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3630                                     0);
3631 }
3632 
3633 /// This is called when we find an icmp instruction
3634 /// (a seteq/setne with a constant) as the only instruction in a
3635 /// block that ends with an uncond branch.  We are looking for a very specific
3636 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3637 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3638 /// default value goes to an uncond block with a seteq in it, we get something
3639 /// like:
3640 ///
3641 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3642 /// DEFAULT:
3643 ///   %tmp = icmp eq i8 %A, 92
3644 ///   br label %end
3645 /// end:
3646 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3647 ///
3648 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3649 /// the PHI, merging the third icmp into the switch.
3650 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3651     ICmpInst *ICI, IRBuilder<> &Builder) {
3652   BasicBlock *BB = ICI->getParent();
3653 
3654   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3655   // complex.
3656   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3657     return false;
3658 
3659   Value *V = ICI->getOperand(0);
3660   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3661 
3662   // The pattern we're looking for is where our only predecessor is a switch on
3663   // 'V' and this block is the default case for the switch.  In this case we can
3664   // fold the compared value into the switch to simplify things.
3665   BasicBlock *Pred = BB->getSinglePredecessor();
3666   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3667     return false;
3668 
3669   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3670   if (SI->getCondition() != V)
3671     return false;
3672 
3673   // If BB is reachable on a non-default case, then we simply know the value of
3674   // V in this block.  Substitute it and constant fold the icmp instruction
3675   // away.
3676   if (SI->getDefaultDest() != BB) {
3677     ConstantInt *VVal = SI->findCaseDest(BB);
3678     assert(VVal && "Should have a unique destination value");
3679     ICI->setOperand(0, VVal);
3680 
3681     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3682       ICI->replaceAllUsesWith(V);
3683       ICI->eraseFromParent();
3684     }
3685     // BB is now empty, so it is likely to simplify away.
3686     return requestResimplify();
3687   }
3688 
3689   // Ok, the block is reachable from the default dest.  If the constant we're
3690   // comparing exists in one of the other edges, then we can constant fold ICI
3691   // and zap it.
3692   if (SI->findCaseValue(Cst) != SI->case_default()) {
3693     Value *V;
3694     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3695       V = ConstantInt::getFalse(BB->getContext());
3696     else
3697       V = ConstantInt::getTrue(BB->getContext());
3698 
3699     ICI->replaceAllUsesWith(V);
3700     ICI->eraseFromParent();
3701     // BB is now empty, so it is likely to simplify away.
3702     return requestResimplify();
3703   }
3704 
3705   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3706   // the block.
3707   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3708   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3709   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3710       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3711     return false;
3712 
3713   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3714   // true in the PHI.
3715   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3716   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3717 
3718   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3719     std::swap(DefaultCst, NewCst);
3720 
3721   // Replace ICI (which is used by the PHI for the default value) with true or
3722   // false depending on if it is EQ or NE.
3723   ICI->replaceAllUsesWith(DefaultCst);
3724   ICI->eraseFromParent();
3725 
3726   // Okay, the switch goes to this block on a default value.  Add an edge from
3727   // the switch to the merge point on the compared value.
3728   BasicBlock *NewBB =
3729       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3730   {
3731     SwitchInstProfUpdateWrapper SIW(*SI);
3732     auto W0 = SIW.getSuccessorWeight(0);
3733     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3734     if (W0) {
3735       NewW = ((uint64_t(*W0) + 1) >> 1);
3736       SIW.setSuccessorWeight(0, *NewW);
3737     }
3738     SIW.addCase(Cst, NewBB, NewW);
3739   }
3740 
3741   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3742   Builder.SetInsertPoint(NewBB);
3743   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3744   Builder.CreateBr(SuccBlock);
3745   PHIUse->addIncoming(NewCst, NewBB);
3746   return true;
3747 }
3748 
3749 /// The specified branch is a conditional branch.
3750 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3751 /// fold it into a switch instruction if so.
3752 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3753                                       const DataLayout &DL) {
3754   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3755   if (!Cond)
3756     return false;
3757 
3758   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3759   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3760   // 'setne's and'ed together, collect them.
3761 
3762   // Try to gather values from a chain of and/or to be turned into a switch
3763   ConstantComparesGatherer ConstantCompare(Cond, DL);
3764   // Unpack the result
3765   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3766   Value *CompVal = ConstantCompare.CompValue;
3767   unsigned UsedICmps = ConstantCompare.UsedICmps;
3768   Value *ExtraCase = ConstantCompare.Extra;
3769 
3770   // If we didn't have a multiply compared value, fail.
3771   if (!CompVal)
3772     return false;
3773 
3774   // Avoid turning single icmps into a switch.
3775   if (UsedICmps <= 1)
3776     return false;
3777 
3778   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3779 
3780   // There might be duplicate constants in the list, which the switch
3781   // instruction can't handle, remove them now.
3782   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3783   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3784 
3785   // If Extra was used, we require at least two switch values to do the
3786   // transformation.  A switch with one value is just a conditional branch.
3787   if (ExtraCase && Values.size() < 2)
3788     return false;
3789 
3790   // TODO: Preserve branch weight metadata, similarly to how
3791   // FoldValueComparisonIntoPredecessors preserves it.
3792 
3793   // Figure out which block is which destination.
3794   BasicBlock *DefaultBB = BI->getSuccessor(1);
3795   BasicBlock *EdgeBB = BI->getSuccessor(0);
3796   if (!TrueWhenEqual)
3797     std::swap(DefaultBB, EdgeBB);
3798 
3799   BasicBlock *BB = BI->getParent();
3800 
3801   // MSAN does not like undefs as branch condition which can be introduced
3802   // with "explicit branch".
3803   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3804     return false;
3805 
3806   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3807                     << " cases into SWITCH.  BB is:\n"
3808                     << *BB);
3809 
3810   // If there are any extra values that couldn't be folded into the switch
3811   // then we evaluate them with an explicit branch first. Split the block
3812   // right before the condbr to handle it.
3813   if (ExtraCase) {
3814     BasicBlock *NewBB =
3815         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3816     // Remove the uncond branch added to the old block.
3817     Instruction *OldTI = BB->getTerminator();
3818     Builder.SetInsertPoint(OldTI);
3819 
3820     if (TrueWhenEqual)
3821       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3822     else
3823       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3824 
3825     OldTI->eraseFromParent();
3826 
3827     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3828     // for the edge we just added.
3829     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3830 
3831     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3832                       << "\nEXTRABB = " << *BB);
3833     BB = NewBB;
3834   }
3835 
3836   Builder.SetInsertPoint(BI);
3837   // Convert pointer to int before we switch.
3838   if (CompVal->getType()->isPointerTy()) {
3839     CompVal = Builder.CreatePtrToInt(
3840         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3841   }
3842 
3843   // Create the new switch instruction now.
3844   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3845 
3846   // Add all of the 'cases' to the switch instruction.
3847   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3848     New->addCase(Values[i], EdgeBB);
3849 
3850   // We added edges from PI to the EdgeBB.  As such, if there were any
3851   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3852   // the number of edges added.
3853   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3854     PHINode *PN = cast<PHINode>(BBI);
3855     Value *InVal = PN->getIncomingValueForBlock(BB);
3856     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3857       PN->addIncoming(InVal, BB);
3858   }
3859 
3860   // Erase the old branch instruction.
3861   EraseTerminatorAndDCECond(BI);
3862 
3863   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3864   return true;
3865 }
3866 
3867 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3868   if (isa<PHINode>(RI->getValue()))
3869     return simplifyCommonResume(RI);
3870   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3871            RI->getValue() == RI->getParent()->getFirstNonPHI())
3872     // The resume must unwind the exception that caused control to branch here.
3873     return simplifySingleResume(RI);
3874 
3875   return false;
3876 }
3877 
3878 // Simplify resume that is shared by several landing pads (phi of landing pad).
3879 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
3880   BasicBlock *BB = RI->getParent();
3881 
3882   // Check that there are no other instructions except for debug intrinsics
3883   // between the phi of landing pads (RI->getValue()) and resume instruction.
3884   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3885                        E = RI->getIterator();
3886   while (++I != E)
3887     if (!isa<DbgInfoIntrinsic>(I))
3888       return false;
3889 
3890   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3891   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3892 
3893   // Check incoming blocks to see if any of them are trivial.
3894   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3895        Idx++) {
3896     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3897     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3898 
3899     // If the block has other successors, we can not delete it because
3900     // it has other dependents.
3901     if (IncomingBB->getUniqueSuccessor() != BB)
3902       continue;
3903 
3904     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3905     // Not the landing pad that caused the control to branch here.
3906     if (IncomingValue != LandingPad)
3907       continue;
3908 
3909     bool isTrivial = true;
3910 
3911     I = IncomingBB->getFirstNonPHI()->getIterator();
3912     E = IncomingBB->getTerminator()->getIterator();
3913     while (++I != E)
3914       if (!isa<DbgInfoIntrinsic>(I)) {
3915         isTrivial = false;
3916         break;
3917       }
3918 
3919     if (isTrivial)
3920       TrivialUnwindBlocks.insert(IncomingBB);
3921   }
3922 
3923   // If no trivial unwind blocks, don't do any simplifications.
3924   if (TrivialUnwindBlocks.empty())
3925     return false;
3926 
3927   // Turn all invokes that unwind here into calls.
3928   for (auto *TrivialBB : TrivialUnwindBlocks) {
3929     // Blocks that will be simplified should be removed from the phi node.
3930     // Note there could be multiple edges to the resume block, and we need
3931     // to remove them all.
3932     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3933       BB->removePredecessor(TrivialBB, true);
3934 
3935     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3936          PI != PE;) {
3937       BasicBlock *Pred = *PI++;
3938       removeUnwindEdge(Pred);
3939     }
3940 
3941     // In each SimplifyCFG run, only the current processed block can be erased.
3942     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3943     // of erasing TrivialBB, we only remove the branch to the common resume
3944     // block so that we can later erase the resume block since it has no
3945     // predecessors.
3946     TrivialBB->getTerminator()->eraseFromParent();
3947     new UnreachableInst(RI->getContext(), TrivialBB);
3948   }
3949 
3950   // Delete the resume block if all its predecessors have been removed.
3951   if (pred_empty(BB))
3952     BB->eraseFromParent();
3953 
3954   return !TrivialUnwindBlocks.empty();
3955 }
3956 
3957 // Simplify resume that is only used by a single (non-phi) landing pad.
3958 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
3959   BasicBlock *BB = RI->getParent();
3960   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
3961   assert(RI->getValue() == LPInst &&
3962          "Resume must unwind the exception that caused control to here");
3963 
3964   // Check that there are no other instructions except for debug intrinsics.
3965   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3966   while (++I != E)
3967     if (!isa<DbgInfoIntrinsic>(I))
3968       return false;
3969 
3970   // Turn all invokes that unwind here into calls and delete the basic block.
3971   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3972     BasicBlock *Pred = *PI++;
3973     removeUnwindEdge(Pred);
3974   }
3975 
3976   // The landingpad is now unreachable.  Zap it.
3977   if (LoopHeaders)
3978     LoopHeaders->erase(BB);
3979   BB->eraseFromParent();
3980   return true;
3981 }
3982 
3983 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3984   // If this is a trivial cleanup pad that executes no instructions, it can be
3985   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3986   // that is an EH pad will be updated to continue to the caller and any
3987   // predecessor that terminates with an invoke instruction will have its invoke
3988   // instruction converted to a call instruction.  If the cleanup pad being
3989   // simplified does not continue to the caller, each predecessor will be
3990   // updated to continue to the unwind destination of the cleanup pad being
3991   // simplified.
3992   BasicBlock *BB = RI->getParent();
3993   CleanupPadInst *CPInst = RI->getCleanupPad();
3994   if (CPInst->getParent() != BB)
3995     // This isn't an empty cleanup.
3996     return false;
3997 
3998   // We cannot kill the pad if it has multiple uses.  This typically arises
3999   // from unreachable basic blocks.
4000   if (!CPInst->hasOneUse())
4001     return false;
4002 
4003   // Check that there are no other instructions except for benign intrinsics.
4004   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
4005   while (++I != E) {
4006     auto *II = dyn_cast<IntrinsicInst>(I);
4007     if (!II)
4008       return false;
4009 
4010     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4011     switch (IntrinsicID) {
4012     case Intrinsic::dbg_declare:
4013     case Intrinsic::dbg_value:
4014     case Intrinsic::dbg_label:
4015     case Intrinsic::lifetime_end:
4016       break;
4017     default:
4018       return false;
4019     }
4020   }
4021 
4022   // If the cleanup return we are simplifying unwinds to the caller, this will
4023   // set UnwindDest to nullptr.
4024   BasicBlock *UnwindDest = RI->getUnwindDest();
4025   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4026 
4027   // We're about to remove BB from the control flow.  Before we do, sink any
4028   // PHINodes into the unwind destination.  Doing this before changing the
4029   // control flow avoids some potentially slow checks, since we can currently
4030   // be certain that UnwindDest and BB have no common predecessors (since they
4031   // are both EH pads).
4032   if (UnwindDest) {
4033     // First, go through the PHI nodes in UnwindDest and update any nodes that
4034     // reference the block we are removing
4035     for (BasicBlock::iterator I = UnwindDest->begin(),
4036                               IE = DestEHPad->getIterator();
4037          I != IE; ++I) {
4038       PHINode *DestPN = cast<PHINode>(I);
4039 
4040       int Idx = DestPN->getBasicBlockIndex(BB);
4041       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4042       assert(Idx != -1);
4043       // This PHI node has an incoming value that corresponds to a control
4044       // path through the cleanup pad we are removing.  If the incoming
4045       // value is in the cleanup pad, it must be a PHINode (because we
4046       // verified above that the block is otherwise empty).  Otherwise, the
4047       // value is either a constant or a value that dominates the cleanup
4048       // pad being removed.
4049       //
4050       // Because BB and UnwindDest are both EH pads, all of their
4051       // predecessors must unwind to these blocks, and since no instruction
4052       // can have multiple unwind destinations, there will be no overlap in
4053       // incoming blocks between SrcPN and DestPN.
4054       Value *SrcVal = DestPN->getIncomingValue(Idx);
4055       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4056 
4057       // Remove the entry for the block we are deleting.
4058       DestPN->removeIncomingValue(Idx, false);
4059 
4060       if (SrcPN && SrcPN->getParent() == BB) {
4061         // If the incoming value was a PHI node in the cleanup pad we are
4062         // removing, we need to merge that PHI node's incoming values into
4063         // DestPN.
4064         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4065              SrcIdx != SrcE; ++SrcIdx) {
4066           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4067                               SrcPN->getIncomingBlock(SrcIdx));
4068         }
4069       } else {
4070         // Otherwise, the incoming value came from above BB and
4071         // so we can just reuse it.  We must associate all of BB's
4072         // predecessors with this value.
4073         for (auto *pred : predecessors(BB)) {
4074           DestPN->addIncoming(SrcVal, pred);
4075         }
4076       }
4077     }
4078 
4079     // Sink any remaining PHI nodes directly into UnwindDest.
4080     Instruction *InsertPt = DestEHPad;
4081     for (BasicBlock::iterator I = BB->begin(),
4082                               IE = BB->getFirstNonPHI()->getIterator();
4083          I != IE;) {
4084       // The iterator must be incremented here because the instructions are
4085       // being moved to another block.
4086       PHINode *PN = cast<PHINode>(I++);
4087       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4088         // If the PHI node has no uses or all of its uses are in this basic
4089         // block (meaning they are debug or lifetime intrinsics), just leave
4090         // it.  It will be erased when we erase BB below.
4091         continue;
4092 
4093       // Otherwise, sink this PHI node into UnwindDest.
4094       // Any predecessors to UnwindDest which are not already represented
4095       // must be back edges which inherit the value from the path through
4096       // BB.  In this case, the PHI value must reference itself.
4097       for (auto *pred : predecessors(UnwindDest))
4098         if (pred != BB)
4099           PN->addIncoming(PN, pred);
4100       PN->moveBefore(InsertPt);
4101     }
4102   }
4103 
4104   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4105     // The iterator must be updated here because we are removing this pred.
4106     BasicBlock *PredBB = *PI++;
4107     if (UnwindDest == nullptr) {
4108       removeUnwindEdge(PredBB);
4109     } else {
4110       Instruction *TI = PredBB->getTerminator();
4111       TI->replaceUsesOfWith(BB, UnwindDest);
4112     }
4113   }
4114 
4115   // The cleanup pad is now unreachable.  Zap it.
4116   BB->eraseFromParent();
4117   return true;
4118 }
4119 
4120 // Try to merge two cleanuppads together.
4121 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4122   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4123   // with.
4124   BasicBlock *UnwindDest = RI->getUnwindDest();
4125   if (!UnwindDest)
4126     return false;
4127 
4128   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4129   // be safe to merge without code duplication.
4130   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4131     return false;
4132 
4133   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4134   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4135   if (!SuccessorCleanupPad)
4136     return false;
4137 
4138   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4139   // Replace any uses of the successor cleanupad with the predecessor pad
4140   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4141   // funclet bundle operands.
4142   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4143   // Remove the old cleanuppad.
4144   SuccessorCleanupPad->eraseFromParent();
4145   // Now, we simply replace the cleanupret with a branch to the unwind
4146   // destination.
4147   BranchInst::Create(UnwindDest, RI->getParent());
4148   RI->eraseFromParent();
4149 
4150   return true;
4151 }
4152 
4153 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4154   // It is possible to transiantly have an undef cleanuppad operand because we
4155   // have deleted some, but not all, dead blocks.
4156   // Eventually, this block will be deleted.
4157   if (isa<UndefValue>(RI->getOperand(0)))
4158     return false;
4159 
4160   if (mergeCleanupPad(RI))
4161     return true;
4162 
4163   if (removeEmptyCleanup(RI))
4164     return true;
4165 
4166   return false;
4167 }
4168 
4169 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4170   BasicBlock *BB = RI->getParent();
4171   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4172     return false;
4173 
4174   // Find predecessors that end with branches.
4175   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4176   SmallVector<BranchInst *, 8> CondBranchPreds;
4177   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4178     BasicBlock *P = *PI;
4179     Instruction *PTI = P->getTerminator();
4180     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4181       if (BI->isUnconditional())
4182         UncondBranchPreds.push_back(P);
4183       else
4184         CondBranchPreds.push_back(BI);
4185     }
4186   }
4187 
4188   // If we found some, do the transformation!
4189   if (!UncondBranchPreds.empty() && DupRet) {
4190     while (!UncondBranchPreds.empty()) {
4191       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4192       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4193                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4194       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4195     }
4196 
4197     // If we eliminated all predecessors of the block, delete the block now.
4198     if (pred_empty(BB)) {
4199       // We know there are no successors, so just nuke the block.
4200       if (LoopHeaders)
4201         LoopHeaders->erase(BB);
4202       BB->eraseFromParent();
4203     }
4204 
4205     return true;
4206   }
4207 
4208   // Check out all of the conditional branches going to this return
4209   // instruction.  If any of them just select between returns, change the
4210   // branch itself into a select/return pair.
4211   while (!CondBranchPreds.empty()) {
4212     BranchInst *BI = CondBranchPreds.pop_back_val();
4213 
4214     // Check to see if the non-BB successor is also a return block.
4215     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4216         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4217         SimplifyCondBranchToTwoReturns(BI, Builder))
4218       return true;
4219   }
4220   return false;
4221 }
4222 
4223 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4224   BasicBlock *BB = UI->getParent();
4225 
4226   bool Changed = false;
4227 
4228   // If there are any instructions immediately before the unreachable that can
4229   // be removed, do so.
4230   while (UI->getIterator() != BB->begin()) {
4231     BasicBlock::iterator BBI = UI->getIterator();
4232     --BBI;
4233     // Do not delete instructions that can have side effects which might cause
4234     // the unreachable to not be reachable; specifically, calls and volatile
4235     // operations may have this effect.
4236     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4237       break;
4238 
4239     if (BBI->mayHaveSideEffects()) {
4240       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4241         if (SI->isVolatile())
4242           break;
4243       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4244         if (LI->isVolatile())
4245           break;
4246       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4247         if (RMWI->isVolatile())
4248           break;
4249       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4250         if (CXI->isVolatile())
4251           break;
4252       } else if (isa<CatchPadInst>(BBI)) {
4253         // A catchpad may invoke exception object constructors and such, which
4254         // in some languages can be arbitrary code, so be conservative by
4255         // default.
4256         // For CoreCLR, it just involves a type test, so can be removed.
4257         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4258             EHPersonality::CoreCLR)
4259           break;
4260       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4261                  !isa<LandingPadInst>(BBI)) {
4262         break;
4263       }
4264       // Note that deleting LandingPad's here is in fact okay, although it
4265       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4266       // all the predecessors of this block will be the unwind edges of Invokes,
4267       // and we can therefore guarantee this block will be erased.
4268     }
4269 
4270     // Delete this instruction (any uses are guaranteed to be dead)
4271     if (!BBI->use_empty())
4272       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4273     BBI->eraseFromParent();
4274     Changed = true;
4275   }
4276 
4277   // If the unreachable instruction is the first in the block, take a gander
4278   // at all of the predecessors of this instruction, and simplify them.
4279   if (&BB->front() != UI)
4280     return Changed;
4281 
4282   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4283   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4284     Instruction *TI = Preds[i]->getTerminator();
4285     IRBuilder<> Builder(TI);
4286     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4287       if (BI->isUnconditional()) {
4288         assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4289         new UnreachableInst(TI->getContext(), TI);
4290         TI->eraseFromParent();
4291         Changed = true;
4292       } else {
4293         Value* Cond = BI->getCondition();
4294         if (BI->getSuccessor(0) == BB) {
4295           Builder.CreateAssumption(Builder.CreateNot(Cond));
4296           Builder.CreateBr(BI->getSuccessor(1));
4297         } else {
4298           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4299           Builder.CreateAssumption(Cond);
4300           Builder.CreateBr(BI->getSuccessor(0));
4301         }
4302         EraseTerminatorAndDCECond(BI);
4303         Changed = true;
4304       }
4305     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4306       SwitchInstProfUpdateWrapper SU(*SI);
4307       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4308         if (i->getCaseSuccessor() != BB) {
4309           ++i;
4310           continue;
4311         }
4312         BB->removePredecessor(SU->getParent());
4313         i = SU.removeCase(i);
4314         e = SU->case_end();
4315         Changed = true;
4316       }
4317     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4318       if (II->getUnwindDest() == BB) {
4319         removeUnwindEdge(TI->getParent());
4320         Changed = true;
4321       }
4322     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4323       if (CSI->getUnwindDest() == BB) {
4324         removeUnwindEdge(TI->getParent());
4325         Changed = true;
4326         continue;
4327       }
4328 
4329       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4330                                              E = CSI->handler_end();
4331            I != E; ++I) {
4332         if (*I == BB) {
4333           CSI->removeHandler(I);
4334           --I;
4335           --E;
4336           Changed = true;
4337         }
4338       }
4339       if (CSI->getNumHandlers() == 0) {
4340         BasicBlock *CatchSwitchBB = CSI->getParent();
4341         if (CSI->hasUnwindDest()) {
4342           // Redirect preds to the unwind dest
4343           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4344         } else {
4345           // Rewrite all preds to unwind to caller (or from invoke to call).
4346           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4347           for (BasicBlock *EHPred : EHPreds)
4348             removeUnwindEdge(EHPred);
4349         }
4350         // The catchswitch is no longer reachable.
4351         new UnreachableInst(CSI->getContext(), CSI);
4352         CSI->eraseFromParent();
4353         Changed = true;
4354       }
4355     } else if (isa<CleanupReturnInst>(TI)) {
4356       new UnreachableInst(TI->getContext(), TI);
4357       TI->eraseFromParent();
4358       Changed = true;
4359     }
4360   }
4361 
4362   // If this block is now dead, remove it.
4363   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4364     // We know there are no successors, so just nuke the block.
4365     if (LoopHeaders)
4366       LoopHeaders->erase(BB);
4367     BB->eraseFromParent();
4368     return true;
4369   }
4370 
4371   return Changed;
4372 }
4373 
4374 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4375   assert(Cases.size() >= 1);
4376 
4377   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4378   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4379     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4380       return false;
4381   }
4382   return true;
4383 }
4384 
4385 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4386   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4387   BasicBlock *NewDefaultBlock =
4388      SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4389   Switch->setDefaultDest(&*NewDefaultBlock);
4390   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4391   auto *NewTerminator = NewDefaultBlock->getTerminator();
4392   new UnreachableInst(Switch->getContext(), NewTerminator);
4393   EraseTerminatorAndDCECond(NewTerminator);
4394 }
4395 
4396 /// Turn a switch with two reachable destinations into an integer range
4397 /// comparison and branch.
4398 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4399   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4400 
4401   bool HasDefault =
4402       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4403 
4404   // Partition the cases into two sets with different destinations.
4405   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4406   BasicBlock *DestB = nullptr;
4407   SmallVector<ConstantInt *, 16> CasesA;
4408   SmallVector<ConstantInt *, 16> CasesB;
4409 
4410   for (auto Case : SI->cases()) {
4411     BasicBlock *Dest = Case.getCaseSuccessor();
4412     if (!DestA)
4413       DestA = Dest;
4414     if (Dest == DestA) {
4415       CasesA.push_back(Case.getCaseValue());
4416       continue;
4417     }
4418     if (!DestB)
4419       DestB = Dest;
4420     if (Dest == DestB) {
4421       CasesB.push_back(Case.getCaseValue());
4422       continue;
4423     }
4424     return false; // More than two destinations.
4425   }
4426 
4427   assert(DestA && DestB &&
4428          "Single-destination switch should have been folded.");
4429   assert(DestA != DestB);
4430   assert(DestB != SI->getDefaultDest());
4431   assert(!CasesB.empty() && "There must be non-default cases.");
4432   assert(!CasesA.empty() || HasDefault);
4433 
4434   // Figure out if one of the sets of cases form a contiguous range.
4435   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4436   BasicBlock *ContiguousDest = nullptr;
4437   BasicBlock *OtherDest = nullptr;
4438   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4439     ContiguousCases = &CasesA;
4440     ContiguousDest = DestA;
4441     OtherDest = DestB;
4442   } else if (CasesAreContiguous(CasesB)) {
4443     ContiguousCases = &CasesB;
4444     ContiguousDest = DestB;
4445     OtherDest = DestA;
4446   } else
4447     return false;
4448 
4449   // Start building the compare and branch.
4450 
4451   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4452   Constant *NumCases =
4453       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4454 
4455   Value *Sub = SI->getCondition();
4456   if (!Offset->isNullValue())
4457     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4458 
4459   Value *Cmp;
4460   // If NumCases overflowed, then all possible values jump to the successor.
4461   if (NumCases->isNullValue() && !ContiguousCases->empty())
4462     Cmp = ConstantInt::getTrue(SI->getContext());
4463   else
4464     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4465   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4466 
4467   // Update weight for the newly-created conditional branch.
4468   if (HasBranchWeights(SI)) {
4469     SmallVector<uint64_t, 8> Weights;
4470     GetBranchWeights(SI, Weights);
4471     if (Weights.size() == 1 + SI->getNumCases()) {
4472       uint64_t TrueWeight = 0;
4473       uint64_t FalseWeight = 0;
4474       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4475         if (SI->getSuccessor(I) == ContiguousDest)
4476           TrueWeight += Weights[I];
4477         else
4478           FalseWeight += Weights[I];
4479       }
4480       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4481         TrueWeight /= 2;
4482         FalseWeight /= 2;
4483       }
4484       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4485     }
4486   }
4487 
4488   // Prune obsolete incoming values off the successors' PHI nodes.
4489   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4490     unsigned PreviousEdges = ContiguousCases->size();
4491     if (ContiguousDest == SI->getDefaultDest())
4492       ++PreviousEdges;
4493     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4494       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4495   }
4496   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4497     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4498     if (OtherDest == SI->getDefaultDest())
4499       ++PreviousEdges;
4500     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4501       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4502   }
4503 
4504   // Clean up the default block - it may have phis or other instructions before
4505   // the unreachable terminator.
4506   if (!HasDefault)
4507     createUnreachableSwitchDefault(SI);
4508 
4509   // Drop the switch.
4510   SI->eraseFromParent();
4511 
4512   return true;
4513 }
4514 
4515 /// Compute masked bits for the condition of a switch
4516 /// and use it to remove dead cases.
4517 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4518                                      const DataLayout &DL) {
4519   Value *Cond = SI->getCondition();
4520   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4521   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4522 
4523   // We can also eliminate cases by determining that their values are outside of
4524   // the limited range of the condition based on how many significant (non-sign)
4525   // bits are in the condition value.
4526   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4527   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4528 
4529   // Gather dead cases.
4530   SmallVector<ConstantInt *, 8> DeadCases;
4531   for (auto &Case : SI->cases()) {
4532     const APInt &CaseVal = Case.getCaseValue()->getValue();
4533     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4534         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4535       DeadCases.push_back(Case.getCaseValue());
4536       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4537                         << " is dead.\n");
4538     }
4539   }
4540 
4541   // If we can prove that the cases must cover all possible values, the
4542   // default destination becomes dead and we can remove it.  If we know some
4543   // of the bits in the value, we can use that to more precisely compute the
4544   // number of possible unique case values.
4545   bool HasDefault =
4546       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4547   const unsigned NumUnknownBits =
4548       Bits - (Known.Zero | Known.One).countPopulation();
4549   assert(NumUnknownBits <= Bits);
4550   if (HasDefault && DeadCases.empty() &&
4551       NumUnknownBits < 64 /* avoid overflow */ &&
4552       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4553     createUnreachableSwitchDefault(SI);
4554     return true;
4555   }
4556 
4557   if (DeadCases.empty())
4558     return false;
4559 
4560   SwitchInstProfUpdateWrapper SIW(*SI);
4561   for (ConstantInt *DeadCase : DeadCases) {
4562     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4563     assert(CaseI != SI->case_default() &&
4564            "Case was not found. Probably mistake in DeadCases forming.");
4565     // Prune unused values from PHI nodes.
4566     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4567     SIW.removeCase(CaseI);
4568   }
4569 
4570   return true;
4571 }
4572 
4573 /// If BB would be eligible for simplification by
4574 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4575 /// by an unconditional branch), look at the phi node for BB in the successor
4576 /// block and see if the incoming value is equal to CaseValue. If so, return
4577 /// the phi node, and set PhiIndex to BB's index in the phi node.
4578 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4579                                               BasicBlock *BB, int *PhiIndex) {
4580   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4581     return nullptr; // BB must be empty to be a candidate for simplification.
4582   if (!BB->getSinglePredecessor())
4583     return nullptr; // BB must be dominated by the switch.
4584 
4585   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4586   if (!Branch || !Branch->isUnconditional())
4587     return nullptr; // Terminator must be unconditional branch.
4588 
4589   BasicBlock *Succ = Branch->getSuccessor(0);
4590 
4591   for (PHINode &PHI : Succ->phis()) {
4592     int Idx = PHI.getBasicBlockIndex(BB);
4593     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4594 
4595     Value *InValue = PHI.getIncomingValue(Idx);
4596     if (InValue != CaseValue)
4597       continue;
4598 
4599     *PhiIndex = Idx;
4600     return &PHI;
4601   }
4602 
4603   return nullptr;
4604 }
4605 
4606 /// Try to forward the condition of a switch instruction to a phi node
4607 /// dominated by the switch, if that would mean that some of the destination
4608 /// blocks of the switch can be folded away. Return true if a change is made.
4609 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4610   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4611 
4612   ForwardingNodesMap ForwardingNodes;
4613   BasicBlock *SwitchBlock = SI->getParent();
4614   bool Changed = false;
4615   for (auto &Case : SI->cases()) {
4616     ConstantInt *CaseValue = Case.getCaseValue();
4617     BasicBlock *CaseDest = Case.getCaseSuccessor();
4618 
4619     // Replace phi operands in successor blocks that are using the constant case
4620     // value rather than the switch condition variable:
4621     //   switchbb:
4622     //   switch i32 %x, label %default [
4623     //     i32 17, label %succ
4624     //   ...
4625     //   succ:
4626     //     %r = phi i32 ... [ 17, %switchbb ] ...
4627     // -->
4628     //     %r = phi i32 ... [ %x, %switchbb ] ...
4629 
4630     for (PHINode &Phi : CaseDest->phis()) {
4631       // This only works if there is exactly 1 incoming edge from the switch to
4632       // a phi. If there is >1, that means multiple cases of the switch map to 1
4633       // value in the phi, and that phi value is not the switch condition. Thus,
4634       // this transform would not make sense (the phi would be invalid because
4635       // a phi can't have different incoming values from the same block).
4636       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4637       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4638           count(Phi.blocks(), SwitchBlock) == 1) {
4639         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4640         Changed = true;
4641       }
4642     }
4643 
4644     // Collect phi nodes that are indirectly using this switch's case constants.
4645     int PhiIdx;
4646     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4647       ForwardingNodes[Phi].push_back(PhiIdx);
4648   }
4649 
4650   for (auto &ForwardingNode : ForwardingNodes) {
4651     PHINode *Phi = ForwardingNode.first;
4652     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4653     if (Indexes.size() < 2)
4654       continue;
4655 
4656     for (int Index : Indexes)
4657       Phi->setIncomingValue(Index, SI->getCondition());
4658     Changed = true;
4659   }
4660 
4661   return Changed;
4662 }
4663 
4664 /// Return true if the backend will be able to handle
4665 /// initializing an array of constants like C.
4666 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4667   if (C->isThreadDependent())
4668     return false;
4669   if (C->isDLLImportDependent())
4670     return false;
4671 
4672   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4673       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4674       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4675     return false;
4676 
4677   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4678     if (!CE->isGEPWithNoNotionalOverIndexing())
4679       return false;
4680     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4681       return false;
4682   }
4683 
4684   if (!TTI.shouldBuildLookupTablesForConstant(C))
4685     return false;
4686 
4687   return true;
4688 }
4689 
4690 /// If V is a Constant, return it. Otherwise, try to look up
4691 /// its constant value in ConstantPool, returning 0 if it's not there.
4692 static Constant *
4693 LookupConstant(Value *V,
4694                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4695   if (Constant *C = dyn_cast<Constant>(V))
4696     return C;
4697   return ConstantPool.lookup(V);
4698 }
4699 
4700 /// Try to fold instruction I into a constant. This works for
4701 /// simple instructions such as binary operations where both operands are
4702 /// constant or can be replaced by constants from the ConstantPool. Returns the
4703 /// resulting constant on success, 0 otherwise.
4704 static Constant *
4705 ConstantFold(Instruction *I, const DataLayout &DL,
4706              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4707   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4708     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4709     if (!A)
4710       return nullptr;
4711     if (A->isAllOnesValue())
4712       return LookupConstant(Select->getTrueValue(), ConstantPool);
4713     if (A->isNullValue())
4714       return LookupConstant(Select->getFalseValue(), ConstantPool);
4715     return nullptr;
4716   }
4717 
4718   SmallVector<Constant *, 4> COps;
4719   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4720     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4721       COps.push_back(A);
4722     else
4723       return nullptr;
4724   }
4725 
4726   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4727     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4728                                            COps[1], DL);
4729   }
4730 
4731   return ConstantFoldInstOperands(I, COps, DL);
4732 }
4733 
4734 /// Try to determine the resulting constant values in phi nodes
4735 /// at the common destination basic block, *CommonDest, for one of the case
4736 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4737 /// case), of a switch instruction SI.
4738 static bool
4739 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4740                BasicBlock **CommonDest,
4741                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4742                const DataLayout &DL, const TargetTransformInfo &TTI) {
4743   // The block from which we enter the common destination.
4744   BasicBlock *Pred = SI->getParent();
4745 
4746   // If CaseDest is empty except for some side-effect free instructions through
4747   // which we can constant-propagate the CaseVal, continue to its successor.
4748   SmallDenseMap<Value *, Constant *> ConstantPool;
4749   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4750   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4751     if (I.isTerminator()) {
4752       // If the terminator is a simple branch, continue to the next block.
4753       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4754         return false;
4755       Pred = CaseDest;
4756       CaseDest = I.getSuccessor(0);
4757     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4758       // Instruction is side-effect free and constant.
4759 
4760       // If the instruction has uses outside this block or a phi node slot for
4761       // the block, it is not safe to bypass the instruction since it would then
4762       // no longer dominate all its uses.
4763       for (auto &Use : I.uses()) {
4764         User *User = Use.getUser();
4765         if (Instruction *I = dyn_cast<Instruction>(User))
4766           if (I->getParent() == CaseDest)
4767             continue;
4768         if (PHINode *Phi = dyn_cast<PHINode>(User))
4769           if (Phi->getIncomingBlock(Use) == CaseDest)
4770             continue;
4771         return false;
4772       }
4773 
4774       ConstantPool.insert(std::make_pair(&I, C));
4775     } else {
4776       break;
4777     }
4778   }
4779 
4780   // If we did not have a CommonDest before, use the current one.
4781   if (!*CommonDest)
4782     *CommonDest = CaseDest;
4783   // If the destination isn't the common one, abort.
4784   if (CaseDest != *CommonDest)
4785     return false;
4786 
4787   // Get the values for this case from phi nodes in the destination block.
4788   for (PHINode &PHI : (*CommonDest)->phis()) {
4789     int Idx = PHI.getBasicBlockIndex(Pred);
4790     if (Idx == -1)
4791       continue;
4792 
4793     Constant *ConstVal =
4794         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4795     if (!ConstVal)
4796       return false;
4797 
4798     // Be conservative about which kinds of constants we support.
4799     if (!ValidLookupTableConstant(ConstVal, TTI))
4800       return false;
4801 
4802     Res.push_back(std::make_pair(&PHI, ConstVal));
4803   }
4804 
4805   return Res.size() > 0;
4806 }
4807 
4808 // Helper function used to add CaseVal to the list of cases that generate
4809 // Result. Returns the updated number of cases that generate this result.
4810 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4811                                  SwitchCaseResultVectorTy &UniqueResults,
4812                                  Constant *Result) {
4813   for (auto &I : UniqueResults) {
4814     if (I.first == Result) {
4815       I.second.push_back(CaseVal);
4816       return I.second.size();
4817     }
4818   }
4819   UniqueResults.push_back(
4820       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4821   return 1;
4822 }
4823 
4824 // Helper function that initializes a map containing
4825 // results for the PHI node of the common destination block for a switch
4826 // instruction. Returns false if multiple PHI nodes have been found or if
4827 // there is not a common destination block for the switch.
4828 static bool
4829 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4830                       SwitchCaseResultVectorTy &UniqueResults,
4831                       Constant *&DefaultResult, const DataLayout &DL,
4832                       const TargetTransformInfo &TTI,
4833                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4834   for (auto &I : SI->cases()) {
4835     ConstantInt *CaseVal = I.getCaseValue();
4836 
4837     // Resulting value at phi nodes for this case value.
4838     SwitchCaseResultsTy Results;
4839     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4840                         DL, TTI))
4841       return false;
4842 
4843     // Only one value per case is permitted.
4844     if (Results.size() > 1)
4845       return false;
4846 
4847     // Add the case->result mapping to UniqueResults.
4848     const uintptr_t NumCasesForResult =
4849         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4850 
4851     // Early out if there are too many cases for this result.
4852     if (NumCasesForResult > MaxCasesPerResult)
4853       return false;
4854 
4855     // Early out if there are too many unique results.
4856     if (UniqueResults.size() > MaxUniqueResults)
4857       return false;
4858 
4859     // Check the PHI consistency.
4860     if (!PHI)
4861       PHI = Results[0].first;
4862     else if (PHI != Results[0].first)
4863       return false;
4864   }
4865   // Find the default result value.
4866   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4867   BasicBlock *DefaultDest = SI->getDefaultDest();
4868   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4869                  DL, TTI);
4870   // If the default value is not found abort unless the default destination
4871   // is unreachable.
4872   DefaultResult =
4873       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4874   if ((!DefaultResult &&
4875        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4876     return false;
4877 
4878   return true;
4879 }
4880 
4881 // Helper function that checks if it is possible to transform a switch with only
4882 // two cases (or two cases + default) that produces a result into a select.
4883 // Example:
4884 // switch (a) {
4885 //   case 10:                %0 = icmp eq i32 %a, 10
4886 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4887 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4888 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4889 //   default:
4890 //     return 4;
4891 // }
4892 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4893                                    Constant *DefaultResult, Value *Condition,
4894                                    IRBuilder<> &Builder) {
4895   assert(ResultVector.size() == 2 &&
4896          "We should have exactly two unique results at this point");
4897   // If we are selecting between only two cases transform into a simple
4898   // select or a two-way select if default is possible.
4899   if (ResultVector[0].second.size() == 1 &&
4900       ResultVector[1].second.size() == 1) {
4901     ConstantInt *const FirstCase = ResultVector[0].second[0];
4902     ConstantInt *const SecondCase = ResultVector[1].second[0];
4903 
4904     bool DefaultCanTrigger = DefaultResult;
4905     Value *SelectValue = ResultVector[1].first;
4906     if (DefaultCanTrigger) {
4907       Value *const ValueCompare =
4908           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4909       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4910                                          DefaultResult, "switch.select");
4911     }
4912     Value *const ValueCompare =
4913         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4914     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4915                                 SelectValue, "switch.select");
4916   }
4917 
4918   return nullptr;
4919 }
4920 
4921 // Helper function to cleanup a switch instruction that has been converted into
4922 // a select, fixing up PHI nodes and basic blocks.
4923 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4924                                               Value *SelectValue,
4925                                               IRBuilder<> &Builder) {
4926   BasicBlock *SelectBB = SI->getParent();
4927   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4928     PHI->removeIncomingValue(SelectBB);
4929   PHI->addIncoming(SelectValue, SelectBB);
4930 
4931   Builder.CreateBr(PHI->getParent());
4932 
4933   // Remove the switch.
4934   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4935     BasicBlock *Succ = SI->getSuccessor(i);
4936 
4937     if (Succ == PHI->getParent())
4938       continue;
4939     Succ->removePredecessor(SelectBB);
4940   }
4941   SI->eraseFromParent();
4942 }
4943 
4944 /// If the switch is only used to initialize one or more
4945 /// phi nodes in a common successor block with only two different
4946 /// constant values, replace the switch with select.
4947 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4948                            const DataLayout &DL,
4949                            const TargetTransformInfo &TTI) {
4950   Value *const Cond = SI->getCondition();
4951   PHINode *PHI = nullptr;
4952   BasicBlock *CommonDest = nullptr;
4953   Constant *DefaultResult;
4954   SwitchCaseResultVectorTy UniqueResults;
4955   // Collect all the cases that will deliver the same value from the switch.
4956   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4957                              DL, TTI, 2, 1))
4958     return false;
4959   // Selects choose between maximum two values.
4960   if (UniqueResults.size() != 2)
4961     return false;
4962   assert(PHI != nullptr && "PHI for value select not found");
4963 
4964   Builder.SetInsertPoint(SI);
4965   Value *SelectValue =
4966       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4967   if (SelectValue) {
4968     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4969     return true;
4970   }
4971   // The switch couldn't be converted into a select.
4972   return false;
4973 }
4974 
4975 namespace {
4976 
4977 /// This class represents a lookup table that can be used to replace a switch.
4978 class SwitchLookupTable {
4979 public:
4980   /// Create a lookup table to use as a switch replacement with the contents
4981   /// of Values, using DefaultValue to fill any holes in the table.
4982   SwitchLookupTable(
4983       Module &M, uint64_t TableSize, ConstantInt *Offset,
4984       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4985       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4986 
4987   /// Build instructions with Builder to retrieve the value at
4988   /// the position given by Index in the lookup table.
4989   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4990 
4991   /// Return true if a table with TableSize elements of
4992   /// type ElementType would fit in a target-legal register.
4993   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4994                                  Type *ElementType);
4995 
4996 private:
4997   // Depending on the contents of the table, it can be represented in
4998   // different ways.
4999   enum {
5000     // For tables where each element contains the same value, we just have to
5001     // store that single value and return it for each lookup.
5002     SingleValueKind,
5003 
5004     // For tables where there is a linear relationship between table index
5005     // and values. We calculate the result with a simple multiplication
5006     // and addition instead of a table lookup.
5007     LinearMapKind,
5008 
5009     // For small tables with integer elements, we can pack them into a bitmap
5010     // that fits into a target-legal register. Values are retrieved by
5011     // shift and mask operations.
5012     BitMapKind,
5013 
5014     // The table is stored as an array of values. Values are retrieved by load
5015     // instructions from the table.
5016     ArrayKind
5017   } Kind;
5018 
5019   // For SingleValueKind, this is the single value.
5020   Constant *SingleValue = nullptr;
5021 
5022   // For BitMapKind, this is the bitmap.
5023   ConstantInt *BitMap = nullptr;
5024   IntegerType *BitMapElementTy = nullptr;
5025 
5026   // For LinearMapKind, these are the constants used to derive the value.
5027   ConstantInt *LinearOffset = nullptr;
5028   ConstantInt *LinearMultiplier = nullptr;
5029 
5030   // For ArrayKind, this is the array.
5031   GlobalVariable *Array = nullptr;
5032 };
5033 
5034 } // end anonymous namespace
5035 
5036 SwitchLookupTable::SwitchLookupTable(
5037     Module &M, uint64_t TableSize, ConstantInt *Offset,
5038     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5039     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5040   assert(Values.size() && "Can't build lookup table without values!");
5041   assert(TableSize >= Values.size() && "Can't fit values in table!");
5042 
5043   // If all values in the table are equal, this is that value.
5044   SingleValue = Values.begin()->second;
5045 
5046   Type *ValueType = Values.begin()->second->getType();
5047 
5048   // Build up the table contents.
5049   SmallVector<Constant *, 64> TableContents(TableSize);
5050   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5051     ConstantInt *CaseVal = Values[I].first;
5052     Constant *CaseRes = Values[I].second;
5053     assert(CaseRes->getType() == ValueType);
5054 
5055     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5056     TableContents[Idx] = CaseRes;
5057 
5058     if (CaseRes != SingleValue)
5059       SingleValue = nullptr;
5060   }
5061 
5062   // Fill in any holes in the table with the default result.
5063   if (Values.size() < TableSize) {
5064     assert(DefaultValue &&
5065            "Need a default value to fill the lookup table holes.");
5066     assert(DefaultValue->getType() == ValueType);
5067     for (uint64_t I = 0; I < TableSize; ++I) {
5068       if (!TableContents[I])
5069         TableContents[I] = DefaultValue;
5070     }
5071 
5072     if (DefaultValue != SingleValue)
5073       SingleValue = nullptr;
5074   }
5075 
5076   // If each element in the table contains the same value, we only need to store
5077   // that single value.
5078   if (SingleValue) {
5079     Kind = SingleValueKind;
5080     return;
5081   }
5082 
5083   // Check if we can derive the value with a linear transformation from the
5084   // table index.
5085   if (isa<IntegerType>(ValueType)) {
5086     bool LinearMappingPossible = true;
5087     APInt PrevVal;
5088     APInt DistToPrev;
5089     assert(TableSize >= 2 && "Should be a SingleValue table.");
5090     // Check if there is the same distance between two consecutive values.
5091     for (uint64_t I = 0; I < TableSize; ++I) {
5092       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5093       if (!ConstVal) {
5094         // This is an undef. We could deal with it, but undefs in lookup tables
5095         // are very seldom. It's probably not worth the additional complexity.
5096         LinearMappingPossible = false;
5097         break;
5098       }
5099       const APInt &Val = ConstVal->getValue();
5100       if (I != 0) {
5101         APInt Dist = Val - PrevVal;
5102         if (I == 1) {
5103           DistToPrev = Dist;
5104         } else if (Dist != DistToPrev) {
5105           LinearMappingPossible = false;
5106           break;
5107         }
5108       }
5109       PrevVal = Val;
5110     }
5111     if (LinearMappingPossible) {
5112       LinearOffset = cast<ConstantInt>(TableContents[0]);
5113       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5114       Kind = LinearMapKind;
5115       ++NumLinearMaps;
5116       return;
5117     }
5118   }
5119 
5120   // If the type is integer and the table fits in a register, build a bitmap.
5121   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5122     IntegerType *IT = cast<IntegerType>(ValueType);
5123     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5124     for (uint64_t I = TableSize; I > 0; --I) {
5125       TableInt <<= IT->getBitWidth();
5126       // Insert values into the bitmap. Undef values are set to zero.
5127       if (!isa<UndefValue>(TableContents[I - 1])) {
5128         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5129         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5130       }
5131     }
5132     BitMap = ConstantInt::get(M.getContext(), TableInt);
5133     BitMapElementTy = IT;
5134     Kind = BitMapKind;
5135     ++NumBitMaps;
5136     return;
5137   }
5138 
5139   // Store the table in an array.
5140   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5141   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5142 
5143   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5144                              GlobalVariable::PrivateLinkage, Initializer,
5145                              "switch.table." + FuncName);
5146   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5147   // Set the alignment to that of an array items. We will be only loading one
5148   // value out of it.
5149   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5150   Kind = ArrayKind;
5151 }
5152 
5153 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5154   switch (Kind) {
5155   case SingleValueKind:
5156     return SingleValue;
5157   case LinearMapKind: {
5158     // Derive the result value from the input value.
5159     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5160                                           false, "switch.idx.cast");
5161     if (!LinearMultiplier->isOne())
5162       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5163     if (!LinearOffset->isZero())
5164       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5165     return Result;
5166   }
5167   case BitMapKind: {
5168     // Type of the bitmap (e.g. i59).
5169     IntegerType *MapTy = BitMap->getType();
5170 
5171     // Cast Index to the same type as the bitmap.
5172     // Note: The Index is <= the number of elements in the table, so
5173     // truncating it to the width of the bitmask is safe.
5174     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5175 
5176     // Multiply the shift amount by the element width.
5177     ShiftAmt = Builder.CreateMul(
5178         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5179         "switch.shiftamt");
5180 
5181     // Shift down.
5182     Value *DownShifted =
5183         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5184     // Mask off.
5185     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5186   }
5187   case ArrayKind: {
5188     // Make sure the table index will not overflow when treated as signed.
5189     IntegerType *IT = cast<IntegerType>(Index->getType());
5190     uint64_t TableSize =
5191         Array->getInitializer()->getType()->getArrayNumElements();
5192     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5193       Index = Builder.CreateZExt(
5194           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5195           "switch.tableidx.zext");
5196 
5197     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5198     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5199                                            GEPIndices, "switch.gep");
5200     return Builder.CreateLoad(
5201         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5202         "switch.load");
5203   }
5204   }
5205   llvm_unreachable("Unknown lookup table kind!");
5206 }
5207 
5208 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5209                                            uint64_t TableSize,
5210                                            Type *ElementType) {
5211   auto *IT = dyn_cast<IntegerType>(ElementType);
5212   if (!IT)
5213     return false;
5214   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5215   // are <= 15, we could try to narrow the type.
5216 
5217   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5218   if (TableSize >= UINT_MAX / IT->getBitWidth())
5219     return false;
5220   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5221 }
5222 
5223 /// Determine whether a lookup table should be built for this switch, based on
5224 /// the number of cases, size of the table, and the types of the results.
5225 static bool
5226 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5227                        const TargetTransformInfo &TTI, const DataLayout &DL,
5228                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5229   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5230     return false; // TableSize overflowed, or mul below might overflow.
5231 
5232   bool AllTablesFitInRegister = true;
5233   bool HasIllegalType = false;
5234   for (const auto &I : ResultTypes) {
5235     Type *Ty = I.second;
5236 
5237     // Saturate this flag to true.
5238     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5239 
5240     // Saturate this flag to false.
5241     AllTablesFitInRegister =
5242         AllTablesFitInRegister &&
5243         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5244 
5245     // If both flags saturate, we're done. NOTE: This *only* works with
5246     // saturating flags, and all flags have to saturate first due to the
5247     // non-deterministic behavior of iterating over a dense map.
5248     if (HasIllegalType && !AllTablesFitInRegister)
5249       break;
5250   }
5251 
5252   // If each table would fit in a register, we should build it anyway.
5253   if (AllTablesFitInRegister)
5254     return true;
5255 
5256   // Don't build a table that doesn't fit in-register if it has illegal types.
5257   if (HasIllegalType)
5258     return false;
5259 
5260   // The table density should be at least 40%. This is the same criterion as for
5261   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5262   // FIXME: Find the best cut-off.
5263   return SI->getNumCases() * 10 >= TableSize * 4;
5264 }
5265 
5266 /// Try to reuse the switch table index compare. Following pattern:
5267 /// \code
5268 ///     if (idx < tablesize)
5269 ///        r = table[idx]; // table does not contain default_value
5270 ///     else
5271 ///        r = default_value;
5272 ///     if (r != default_value)
5273 ///        ...
5274 /// \endcode
5275 /// Is optimized to:
5276 /// \code
5277 ///     cond = idx < tablesize;
5278 ///     if (cond)
5279 ///        r = table[idx];
5280 ///     else
5281 ///        r = default_value;
5282 ///     if (cond)
5283 ///        ...
5284 /// \endcode
5285 /// Jump threading will then eliminate the second if(cond).
5286 static void reuseTableCompare(
5287     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5288     Constant *DefaultValue,
5289     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5290   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5291   if (!CmpInst)
5292     return;
5293 
5294   // We require that the compare is in the same block as the phi so that jump
5295   // threading can do its work afterwards.
5296   if (CmpInst->getParent() != PhiBlock)
5297     return;
5298 
5299   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5300   if (!CmpOp1)
5301     return;
5302 
5303   Value *RangeCmp = RangeCheckBranch->getCondition();
5304   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5305   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5306 
5307   // Check if the compare with the default value is constant true or false.
5308   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5309                                                  DefaultValue, CmpOp1, true);
5310   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5311     return;
5312 
5313   // Check if the compare with the case values is distinct from the default
5314   // compare result.
5315   for (auto ValuePair : Values) {
5316     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5317                                                 ValuePair.second, CmpOp1, true);
5318     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5319       return;
5320     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5321            "Expect true or false as compare result.");
5322   }
5323 
5324   // Check if the branch instruction dominates the phi node. It's a simple
5325   // dominance check, but sufficient for our needs.
5326   // Although this check is invariant in the calling loops, it's better to do it
5327   // at this late stage. Practically we do it at most once for a switch.
5328   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5329   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5330     BasicBlock *Pred = *PI;
5331     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5332       return;
5333   }
5334 
5335   if (DefaultConst == FalseConst) {
5336     // The compare yields the same result. We can replace it.
5337     CmpInst->replaceAllUsesWith(RangeCmp);
5338     ++NumTableCmpReuses;
5339   } else {
5340     // The compare yields the same result, just inverted. We can replace it.
5341     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5342         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5343         RangeCheckBranch);
5344     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5345     ++NumTableCmpReuses;
5346   }
5347 }
5348 
5349 /// If the switch is only used to initialize one or more phi nodes in a common
5350 /// successor block with different constant values, replace the switch with
5351 /// lookup tables.
5352 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5353                                 const DataLayout &DL,
5354                                 const TargetTransformInfo &TTI) {
5355   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5356 
5357   Function *Fn = SI->getParent()->getParent();
5358   // Only build lookup table when we have a target that supports it or the
5359   // attribute is not set.
5360   if (!TTI.shouldBuildLookupTables() ||
5361       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5362     return false;
5363 
5364   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5365   // split off a dense part and build a lookup table for that.
5366 
5367   // FIXME: This creates arrays of GEPs to constant strings, which means each
5368   // GEP needs a runtime relocation in PIC code. We should just build one big
5369   // string and lookup indices into that.
5370 
5371   // Ignore switches with less than three cases. Lookup tables will not make
5372   // them faster, so we don't analyze them.
5373   if (SI->getNumCases() < 3)
5374     return false;
5375 
5376   // Figure out the corresponding result for each case value and phi node in the
5377   // common destination, as well as the min and max case values.
5378   assert(!SI->cases().empty());
5379   SwitchInst::CaseIt CI = SI->case_begin();
5380   ConstantInt *MinCaseVal = CI->getCaseValue();
5381   ConstantInt *MaxCaseVal = CI->getCaseValue();
5382 
5383   BasicBlock *CommonDest = nullptr;
5384 
5385   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5386   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5387 
5388   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5389   SmallDenseMap<PHINode *, Type *> ResultTypes;
5390   SmallVector<PHINode *, 4> PHIs;
5391 
5392   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5393     ConstantInt *CaseVal = CI->getCaseValue();
5394     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5395       MinCaseVal = CaseVal;
5396     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5397       MaxCaseVal = CaseVal;
5398 
5399     // Resulting value at phi nodes for this case value.
5400     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5401     ResultsTy Results;
5402     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5403                         Results, DL, TTI))
5404       return false;
5405 
5406     // Append the result from this case to the list for each phi.
5407     for (const auto &I : Results) {
5408       PHINode *PHI = I.first;
5409       Constant *Value = I.second;
5410       if (!ResultLists.count(PHI))
5411         PHIs.push_back(PHI);
5412       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5413     }
5414   }
5415 
5416   // Keep track of the result types.
5417   for (PHINode *PHI : PHIs) {
5418     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5419   }
5420 
5421   uint64_t NumResults = ResultLists[PHIs[0]].size();
5422   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5423   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5424   bool TableHasHoles = (NumResults < TableSize);
5425 
5426   // If the table has holes, we need a constant result for the default case
5427   // or a bitmask that fits in a register.
5428   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5429   bool HasDefaultResults =
5430       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5431                      DefaultResultsList, DL, TTI);
5432 
5433   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5434   if (NeedMask) {
5435     // As an extra penalty for the validity test we require more cases.
5436     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5437       return false;
5438     if (!DL.fitsInLegalInteger(TableSize))
5439       return false;
5440   }
5441 
5442   for (const auto &I : DefaultResultsList) {
5443     PHINode *PHI = I.first;
5444     Constant *Result = I.second;
5445     DefaultResults[PHI] = Result;
5446   }
5447 
5448   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5449     return false;
5450 
5451   // Create the BB that does the lookups.
5452   Module &Mod = *CommonDest->getParent()->getParent();
5453   BasicBlock *LookupBB = BasicBlock::Create(
5454       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5455 
5456   // Compute the table index value.
5457   Builder.SetInsertPoint(SI);
5458   Value *TableIndex;
5459   if (MinCaseVal->isNullValue())
5460     TableIndex = SI->getCondition();
5461   else
5462     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5463                                    "switch.tableidx");
5464 
5465   // Compute the maximum table size representable by the integer type we are
5466   // switching upon.
5467   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5468   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5469   assert(MaxTableSize >= TableSize &&
5470          "It is impossible for a switch to have more entries than the max "
5471          "representable value of its input integer type's size.");
5472 
5473   // If the default destination is unreachable, or if the lookup table covers
5474   // all values of the conditional variable, branch directly to the lookup table
5475   // BB. Otherwise, check that the condition is within the case range.
5476   const bool DefaultIsReachable =
5477       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5478   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5479   BranchInst *RangeCheckBranch = nullptr;
5480 
5481   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5482     Builder.CreateBr(LookupBB);
5483     // Note: We call removeProdecessor later since we need to be able to get the
5484     // PHI value for the default case in case we're using a bit mask.
5485   } else {
5486     Value *Cmp = Builder.CreateICmpULT(
5487         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5488     RangeCheckBranch =
5489         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5490   }
5491 
5492   // Populate the BB that does the lookups.
5493   Builder.SetInsertPoint(LookupBB);
5494 
5495   if (NeedMask) {
5496     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5497     // re-purposed to do the hole check, and we create a new LookupBB.
5498     BasicBlock *MaskBB = LookupBB;
5499     MaskBB->setName("switch.hole_check");
5500     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5501                                   CommonDest->getParent(), CommonDest);
5502 
5503     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5504     // unnecessary illegal types.
5505     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5506     APInt MaskInt(TableSizePowOf2, 0);
5507     APInt One(TableSizePowOf2, 1);
5508     // Build bitmask; fill in a 1 bit for every case.
5509     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5510     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5511       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5512                          .getLimitedValue();
5513       MaskInt |= One << Idx;
5514     }
5515     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5516 
5517     // Get the TableIndex'th bit of the bitmask.
5518     // If this bit is 0 (meaning hole) jump to the default destination,
5519     // else continue with table lookup.
5520     IntegerType *MapTy = TableMask->getType();
5521     Value *MaskIndex =
5522         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5523     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5524     Value *LoBit = Builder.CreateTrunc(
5525         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5526     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5527 
5528     Builder.SetInsertPoint(LookupBB);
5529     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5530   }
5531 
5532   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5533     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5534     // do not delete PHINodes here.
5535     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5536                                             /*KeepOneInputPHIs=*/true);
5537   }
5538 
5539   bool ReturnedEarly = false;
5540   for (PHINode *PHI : PHIs) {
5541     const ResultListTy &ResultList = ResultLists[PHI];
5542 
5543     // If using a bitmask, use any value to fill the lookup table holes.
5544     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5545     StringRef FuncName = Fn->getName();
5546     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5547                             FuncName);
5548 
5549     Value *Result = Table.BuildLookup(TableIndex, Builder);
5550 
5551     // If the result is used to return immediately from the function, we want to
5552     // do that right here.
5553     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5554         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5555       Builder.CreateRet(Result);
5556       ReturnedEarly = true;
5557       break;
5558     }
5559 
5560     // Do a small peephole optimization: re-use the switch table compare if
5561     // possible.
5562     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5563       BasicBlock *PhiBlock = PHI->getParent();
5564       // Search for compare instructions which use the phi.
5565       for (auto *User : PHI->users()) {
5566         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5567       }
5568     }
5569 
5570     PHI->addIncoming(Result, LookupBB);
5571   }
5572 
5573   if (!ReturnedEarly)
5574     Builder.CreateBr(CommonDest);
5575 
5576   // Remove the switch.
5577   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5578     BasicBlock *Succ = SI->getSuccessor(i);
5579 
5580     if (Succ == SI->getDefaultDest())
5581       continue;
5582     Succ->removePredecessor(SI->getParent());
5583   }
5584   SI->eraseFromParent();
5585 
5586   ++NumLookupTables;
5587   if (NeedMask)
5588     ++NumLookupTablesHoles;
5589   return true;
5590 }
5591 
5592 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5593   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5594   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5595   uint64_t Range = Diff + 1;
5596   uint64_t NumCases = Values.size();
5597   // 40% is the default density for building a jump table in optsize/minsize mode.
5598   uint64_t MinDensity = 40;
5599 
5600   return NumCases * 100 >= Range * MinDensity;
5601 }
5602 
5603 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5604 /// of cases.
5605 ///
5606 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5607 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5608 ///
5609 /// This converts a sparse switch into a dense switch which allows better
5610 /// lowering and could also allow transforming into a lookup table.
5611 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5612                               const DataLayout &DL,
5613                               const TargetTransformInfo &TTI) {
5614   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5615   if (CondTy->getIntegerBitWidth() > 64 ||
5616       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5617     return false;
5618   // Only bother with this optimization if there are more than 3 switch cases;
5619   // SDAG will only bother creating jump tables for 4 or more cases.
5620   if (SI->getNumCases() < 4)
5621     return false;
5622 
5623   // This transform is agnostic to the signedness of the input or case values. We
5624   // can treat the case values as signed or unsigned. We can optimize more common
5625   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5626   // as signed.
5627   SmallVector<int64_t,4> Values;
5628   for (auto &C : SI->cases())
5629     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5630   llvm::sort(Values);
5631 
5632   // If the switch is already dense, there's nothing useful to do here.
5633   if (isSwitchDense(Values))
5634     return false;
5635 
5636   // First, transform the values such that they start at zero and ascend.
5637   int64_t Base = Values[0];
5638   for (auto &V : Values)
5639     V -= (uint64_t)(Base);
5640 
5641   // Now we have signed numbers that have been shifted so that, given enough
5642   // precision, there are no negative values. Since the rest of the transform
5643   // is bitwise only, we switch now to an unsigned representation.
5644 
5645   // This transform can be done speculatively because it is so cheap - it
5646   // results in a single rotate operation being inserted.
5647   // FIXME: It's possible that optimizing a switch on powers of two might also
5648   // be beneficial - flag values are often powers of two and we could use a CLZ
5649   // as the key function.
5650 
5651   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5652   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5653   // less than 64.
5654   unsigned Shift = 64;
5655   for (auto &V : Values)
5656     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5657   assert(Shift < 64);
5658   if (Shift > 0)
5659     for (auto &V : Values)
5660       V = (int64_t)((uint64_t)V >> Shift);
5661 
5662   if (!isSwitchDense(Values))
5663     // Transform didn't create a dense switch.
5664     return false;
5665 
5666   // The obvious transform is to shift the switch condition right and emit a
5667   // check that the condition actually cleanly divided by GCD, i.e.
5668   //   C & (1 << Shift - 1) == 0
5669   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5670   //
5671   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5672   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5673   // are nonzero then the switch condition will be very large and will hit the
5674   // default case.
5675 
5676   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5677   Builder.SetInsertPoint(SI);
5678   auto *ShiftC = ConstantInt::get(Ty, Shift);
5679   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5680   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5681   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5682   auto *Rot = Builder.CreateOr(LShr, Shl);
5683   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5684 
5685   for (auto Case : SI->cases()) {
5686     auto *Orig = Case.getCaseValue();
5687     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5688     Case.setValue(
5689         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5690   }
5691   return true;
5692 }
5693 
5694 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5695   BasicBlock *BB = SI->getParent();
5696 
5697   if (isValueEqualityComparison(SI)) {
5698     // If we only have one predecessor, and if it is a branch on this value,
5699     // see if that predecessor totally determines the outcome of this switch.
5700     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5701       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5702         return requestResimplify();
5703 
5704     Value *Cond = SI->getCondition();
5705     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5706       if (SimplifySwitchOnSelect(SI, Select))
5707         return requestResimplify();
5708 
5709     // If the block only contains the switch, see if we can fold the block
5710     // away into any preds.
5711     if (SI == &*BB->instructionsWithoutDebug().begin())
5712       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5713         return requestResimplify();
5714   }
5715 
5716   // Try to transform the switch into an icmp and a branch.
5717   if (TurnSwitchRangeIntoICmp(SI, Builder))
5718     return requestResimplify();
5719 
5720   // Remove unreachable cases.
5721   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5722     return requestResimplify();
5723 
5724   if (switchToSelect(SI, Builder, DL, TTI))
5725     return requestResimplify();
5726 
5727   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5728     return requestResimplify();
5729 
5730   // The conversion from switch to lookup tables results in difficult-to-analyze
5731   // code and makes pruning branches much harder. This is a problem if the
5732   // switch expression itself can still be restricted as a result of inlining or
5733   // CVP. Therefore, only apply this transformation during late stages of the
5734   // optimisation pipeline.
5735   if (Options.ConvertSwitchToLookupTable &&
5736       SwitchToLookupTable(SI, Builder, DL, TTI))
5737     return requestResimplify();
5738 
5739   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5740     return requestResimplify();
5741 
5742   return false;
5743 }
5744 
5745 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
5746   BasicBlock *BB = IBI->getParent();
5747   bool Changed = false;
5748 
5749   // Eliminate redundant destinations.
5750   SmallPtrSet<Value *, 8> Succs;
5751   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5752     BasicBlock *Dest = IBI->getDestination(i);
5753     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5754       Dest->removePredecessor(BB);
5755       IBI->removeDestination(i);
5756       --i;
5757       --e;
5758       Changed = true;
5759     }
5760   }
5761 
5762   if (IBI->getNumDestinations() == 0) {
5763     // If the indirectbr has no successors, change it to unreachable.
5764     new UnreachableInst(IBI->getContext(), IBI);
5765     EraseTerminatorAndDCECond(IBI);
5766     return true;
5767   }
5768 
5769   if (IBI->getNumDestinations() == 1) {
5770     // If the indirectbr has one successor, change it to a direct branch.
5771     BranchInst::Create(IBI->getDestination(0), IBI);
5772     EraseTerminatorAndDCECond(IBI);
5773     return true;
5774   }
5775 
5776   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5777     if (SimplifyIndirectBrOnSelect(IBI, SI))
5778       return requestResimplify();
5779   }
5780   return Changed;
5781 }
5782 
5783 /// Given an block with only a single landing pad and a unconditional branch
5784 /// try to find another basic block which this one can be merged with.  This
5785 /// handles cases where we have multiple invokes with unique landing pads, but
5786 /// a shared handler.
5787 ///
5788 /// We specifically choose to not worry about merging non-empty blocks
5789 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5790 /// practice, the optimizer produces empty landing pad blocks quite frequently
5791 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5792 /// sinking in this file)
5793 ///
5794 /// This is primarily a code size optimization.  We need to avoid performing
5795 /// any transform which might inhibit optimization (such as our ability to
5796 /// specialize a particular handler via tail commoning).  We do this by not
5797 /// merging any blocks which require us to introduce a phi.  Since the same
5798 /// values are flowing through both blocks, we don't lose any ability to
5799 /// specialize.  If anything, we make such specialization more likely.
5800 ///
5801 /// TODO - This transformation could remove entries from a phi in the target
5802 /// block when the inputs in the phi are the same for the two blocks being
5803 /// merged.  In some cases, this could result in removal of the PHI entirely.
5804 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5805                                  BasicBlock *BB) {
5806   auto Succ = BB->getUniqueSuccessor();
5807   assert(Succ);
5808   // If there's a phi in the successor block, we'd likely have to introduce
5809   // a phi into the merged landing pad block.
5810   if (isa<PHINode>(*Succ->begin()))
5811     return false;
5812 
5813   for (BasicBlock *OtherPred : predecessors(Succ)) {
5814     if (BB == OtherPred)
5815       continue;
5816     BasicBlock::iterator I = OtherPred->begin();
5817     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5818     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5819       continue;
5820     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5821       ;
5822     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5823     if (!BI2 || !BI2->isIdenticalTo(BI))
5824       continue;
5825 
5826     // We've found an identical block.  Update our predecessors to take that
5827     // path instead and make ourselves dead.
5828     SmallPtrSet<BasicBlock *, 16> Preds;
5829     Preds.insert(pred_begin(BB), pred_end(BB));
5830     for (BasicBlock *Pred : Preds) {
5831       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5832       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5833              "unexpected successor");
5834       II->setUnwindDest(OtherPred);
5835     }
5836 
5837     // The debug info in OtherPred doesn't cover the merged control flow that
5838     // used to go through BB.  We need to delete it or update it.
5839     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5840       Instruction &Inst = *I;
5841       I++;
5842       if (isa<DbgInfoIntrinsic>(Inst))
5843         Inst.eraseFromParent();
5844     }
5845 
5846     SmallPtrSet<BasicBlock *, 16> Succs;
5847     Succs.insert(succ_begin(BB), succ_end(BB));
5848     for (BasicBlock *Succ : Succs) {
5849       Succ->removePredecessor(BB);
5850     }
5851 
5852     IRBuilder<> Builder(BI);
5853     Builder.CreateUnreachable();
5854     BI->eraseFromParent();
5855     return true;
5856   }
5857   return false;
5858 }
5859 
5860 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
5861   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
5862                                    : simplifyCondBranch(Branch, Builder);
5863 }
5864 
5865 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
5866                                           IRBuilder<> &Builder) {
5867   BasicBlock *BB = BI->getParent();
5868   BasicBlock *Succ = BI->getSuccessor(0);
5869 
5870   // If the Terminator is the only non-phi instruction, simplify the block.
5871   // If LoopHeader is provided, check if the block or its successor is a loop
5872   // header. (This is for early invocations before loop simplify and
5873   // vectorization to keep canonical loop forms for nested loops. These blocks
5874   // can be eliminated when the pass is invoked later in the back-end.)
5875   // Note that if BB has only one predecessor then we do not introduce new
5876   // backedge, so we can eliminate BB.
5877   bool NeedCanonicalLoop =
5878       Options.NeedCanonicalLoop &&
5879       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5880        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5881   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5882   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5883       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5884     return true;
5885 
5886   // If the only instruction in the block is a seteq/setne comparison against a
5887   // constant, try to simplify the block.
5888   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5889     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5890       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5891         ;
5892       if (I->isTerminator() &&
5893           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5894         return true;
5895     }
5896 
5897   // See if we can merge an empty landing pad block with another which is
5898   // equivalent.
5899   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5900     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5901       ;
5902     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5903       return true;
5904   }
5905 
5906   // If this basic block is ONLY a compare and a branch, and if a predecessor
5907   // branches to us and our successor, fold the comparison into the
5908   // predecessor and use logical operations to update the incoming value
5909   // for PHI nodes in common successor.
5910   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5911     return requestResimplify();
5912   return false;
5913 }
5914 
5915 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5916   BasicBlock *PredPred = nullptr;
5917   for (auto *P : predecessors(BB)) {
5918     BasicBlock *PPred = P->getSinglePredecessor();
5919     if (!PPred || (PredPred && PredPred != PPred))
5920       return nullptr;
5921     PredPred = PPred;
5922   }
5923   return PredPred;
5924 }
5925 
5926 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5927   BasicBlock *BB = BI->getParent();
5928   const Function *Fn = BB->getParent();
5929   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5930     return false;
5931 
5932   // Conditional branch
5933   if (isValueEqualityComparison(BI)) {
5934     // If we only have one predecessor, and if it is a branch on this value,
5935     // see if that predecessor totally determines the outcome of this
5936     // switch.
5937     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5938       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5939         return requestResimplify();
5940 
5941     // This block must be empty, except for the setcond inst, if it exists.
5942     // Ignore dbg intrinsics.
5943     auto I = BB->instructionsWithoutDebug().begin();
5944     if (&*I == BI) {
5945       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5946         return requestResimplify();
5947     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5948       ++I;
5949       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5950         return requestResimplify();
5951     }
5952   }
5953 
5954   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5955   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5956     return true;
5957 
5958   // If this basic block has dominating predecessor blocks and the dominating
5959   // blocks' conditions imply BI's condition, we know the direction of BI.
5960   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5961   if (Imp) {
5962     // Turn this into a branch on constant.
5963     auto *OldCond = BI->getCondition();
5964     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5965                              : ConstantInt::getFalse(BB->getContext());
5966     BI->setCondition(TorF);
5967     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5968     return requestResimplify();
5969   }
5970 
5971   // If this basic block is ONLY a compare and a branch, and if a predecessor
5972   // branches to us and one of our successors, fold the comparison into the
5973   // predecessor and use logical operations to pick the right destination.
5974   if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5975     return requestResimplify();
5976 
5977   // We have a conditional branch to two blocks that are only reachable
5978   // from BI.  We know that the condbr dominates the two blocks, so see if
5979   // there is any identical code in the "then" and "else" blocks.  If so, we
5980   // can hoist it up to the branching block.
5981   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5982     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5983       if (HoistThenElseCodeToIf(BI, TTI))
5984         return requestResimplify();
5985     } else {
5986       // If Successor #1 has multiple preds, we may be able to conditionally
5987       // execute Successor #0 if it branches to Successor #1.
5988       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5989       if (Succ0TI->getNumSuccessors() == 1 &&
5990           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5991         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5992           return requestResimplify();
5993     }
5994   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5995     // If Successor #0 has multiple preds, we may be able to conditionally
5996     // execute Successor #1 if it branches to Successor #0.
5997     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5998     if (Succ1TI->getNumSuccessors() == 1 &&
5999         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6000       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6001         return requestResimplify();
6002   }
6003 
6004   // If this is a branch on a phi node in the current block, thread control
6005   // through this block if any PHI node entries are constants.
6006   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6007     if (PN->getParent() == BI->getParent())
6008       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
6009         return requestResimplify();
6010 
6011   // Scan predecessor blocks for conditional branches.
6012   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6013     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6014       if (PBI != BI && PBI->isConditional())
6015         if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
6016           return requestResimplify();
6017 
6018   // Look for diamond patterns.
6019   if (MergeCondStores)
6020     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6021       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6022         if (PBI != BI && PBI->isConditional())
6023           if (mergeConditionalStores(PBI, BI, DL, TTI))
6024             return requestResimplify();
6025 
6026   return false;
6027 }
6028 
6029 /// Check if passing a value to an instruction will cause undefined behavior.
6030 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
6031   Constant *C = dyn_cast<Constant>(V);
6032   if (!C)
6033     return false;
6034 
6035   if (I->use_empty())
6036     return false;
6037 
6038   if (C->isNullValue() || isa<UndefValue>(C)) {
6039     // Only look at the first use, avoid hurting compile time with long uselists
6040     User *Use = *I->user_begin();
6041 
6042     // Now make sure that there are no instructions in between that can alter
6043     // control flow (eg. calls)
6044     for (BasicBlock::iterator
6045              i = ++BasicBlock::iterator(I),
6046              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6047          i != UI; ++i)
6048       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6049         return false;
6050 
6051     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6052     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6053       if (GEP->getPointerOperand() == I)
6054         return passingValueIsAlwaysUndefined(V, GEP);
6055 
6056     // Look through bitcasts.
6057     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6058       return passingValueIsAlwaysUndefined(V, BC);
6059 
6060     // Load from null is undefined.
6061     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6062       if (!LI->isVolatile())
6063         return !NullPointerIsDefined(LI->getFunction(),
6064                                      LI->getPointerAddressSpace());
6065 
6066     // Store to null is undefined.
6067     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6068       if (!SI->isVolatile())
6069         return (!NullPointerIsDefined(SI->getFunction(),
6070                                       SI->getPointerAddressSpace())) &&
6071                SI->getPointerOperand() == I;
6072 
6073     // A call to null is undefined.
6074     if (auto CS = CallSite(Use))
6075       return !NullPointerIsDefined(CS->getFunction()) &&
6076              CS.getCalledValue() == I;
6077   }
6078   return false;
6079 }
6080 
6081 /// If BB has an incoming value that will always trigger undefined behavior
6082 /// (eg. null pointer dereference), remove the branch leading here.
6083 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6084   for (PHINode &PHI : BB->phis())
6085     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6086       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6087         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6088         IRBuilder<> Builder(T);
6089         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6090           BB->removePredecessor(PHI.getIncomingBlock(i));
6091           // Turn uncoditional branches into unreachables and remove the dead
6092           // destination from conditional branches.
6093           if (BI->isUnconditional())
6094             Builder.CreateUnreachable();
6095           else
6096             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6097                                                        : BI->getSuccessor(0));
6098           BI->eraseFromParent();
6099           return true;
6100         }
6101         // TODO: SwitchInst.
6102       }
6103 
6104   return false;
6105 }
6106 
6107 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6108   bool Changed = false;
6109 
6110   assert(BB && BB->getParent() && "Block not embedded in function!");
6111   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6112 
6113   // Remove basic blocks that have no predecessors (except the entry block)...
6114   // or that just have themself as a predecessor.  These are unreachable.
6115   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6116       BB->getSinglePredecessor() == BB) {
6117     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6118     DeleteDeadBlock(BB);
6119     return true;
6120   }
6121 
6122   // Check to see if we can constant propagate this terminator instruction
6123   // away...
6124   Changed |= ConstantFoldTerminator(BB, true);
6125 
6126   // Check for and eliminate duplicate PHI nodes in this block.
6127   Changed |= EliminateDuplicatePHINodes(BB);
6128 
6129   // Check for and remove branches that will always cause undefined behavior.
6130   Changed |= removeUndefIntroducingPredecessor(BB);
6131 
6132   // Merge basic blocks into their predecessor if there is only one distinct
6133   // pred, and if there is only one distinct successor of the predecessor, and
6134   // if there are no PHI nodes.
6135   if (MergeBlockIntoPredecessor(BB))
6136     return true;
6137 
6138   if (SinkCommon && Options.SinkCommonInsts)
6139     Changed |= SinkCommonCodeFromPredecessors(BB);
6140 
6141   IRBuilder<> Builder(BB);
6142 
6143   // If there is a trivial two-entry PHI node in this basic block, and we can
6144   // eliminate it, do so now.
6145   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6146     if (PN->getNumIncomingValues() == 2)
6147       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6148 
6149   Instruction *Terminator = BB->getTerminator();
6150   Builder.SetInsertPoint(Terminator);
6151   switch (Terminator->getOpcode()) {
6152   case Instruction::Br:
6153     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6154     break;
6155   case Instruction::Ret:
6156     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6157     break;
6158   case Instruction::Resume:
6159     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6160     break;
6161   case Instruction::CleanupRet:
6162     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6163     break;
6164   case Instruction::Switch:
6165     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6166     break;
6167   case Instruction::Unreachable:
6168     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6169     break;
6170   case Instruction::IndirectBr:
6171     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6172     break;
6173   }
6174 
6175   return Changed;
6176 }
6177 
6178 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6179   bool Changed = false;
6180 
6181   // Repeated simplify BB as long as resimplification is requested.
6182   do {
6183     Resimplify = false;
6184 
6185     // Perform one round of simplifcation. Resimplify flag will be set if
6186     // another iteration is requested.
6187     Changed |= simplifyOnce(BB);
6188   } while (Resimplify);
6189 
6190   return Changed;
6191 }
6192 
6193 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6194                        const SimplifyCFGOptions &Options,
6195                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6196   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6197                         Options)
6198       .run(BB);
6199 }
6200