1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <map> 50 #include <set> 51 using namespace llvm; 52 using namespace PatternMatch; 53 54 #define DEBUG_TYPE "simplifycfg" 55 56 // Chosen as 2 so as to be cheap, but still to have enough power to fold 57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 58 // To catch this, we need to fold a compare and a select, hence '2' being the 59 // minimum reasonable default. 60 static cl::opt<unsigned> 61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 62 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 63 64 static cl::opt<bool> 65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 66 cl::desc("Duplicate return instructions into unconditional branches")); 67 68 static cl::opt<bool> 69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 70 cl::desc("Sink common instructions down to the end block")); 71 72 static cl::opt<bool> HoistCondStores( 73 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 74 cl::desc("Hoist conditional stores if an unconditional store precedes")); 75 76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 82 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 83 84 namespace { 85 // The first field contains the value that the switch produces when a certain 86 // case group is selected, and the second field is a vector containing the 87 // cases composing the case group. 88 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 89 SwitchCaseResultVectorTy; 90 // The first field contains the phi node that generates a result of the switch 91 // and the second field contains the value generated for a certain case in the 92 // switch for that PHI. 93 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 94 95 /// ValueEqualityComparisonCase - Represents a case of a switch. 96 struct ValueEqualityComparisonCase { 97 ConstantInt *Value; 98 BasicBlock *Dest; 99 100 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 101 : Value(Value), Dest(Dest) {} 102 103 bool operator<(ValueEqualityComparisonCase RHS) const { 104 // Comparing pointers is ok as we only rely on the order for uniquing. 105 return Value < RHS.Value; 106 } 107 108 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 109 }; 110 111 class SimplifyCFGOpt { 112 const TargetTransformInfo &TTI; 113 const DataLayout &DL; 114 unsigned BonusInstThreshold; 115 AssumptionCache *AC; 116 Value *isValueEqualityComparison(TerminatorInst *TI); 117 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 118 std::vector<ValueEqualityComparisonCase> &Cases); 119 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 120 BasicBlock *Pred, 121 IRBuilder<> &Builder); 122 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 123 IRBuilder<> &Builder); 124 125 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 126 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 127 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 128 bool SimplifyUnreachable(UnreachableInst *UI); 129 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 130 bool SimplifyIndirectBr(IndirectBrInst *IBI); 131 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 132 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 133 134 public: 135 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 136 unsigned BonusInstThreshold, AssumptionCache *AC) 137 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 138 bool run(BasicBlock *BB); 139 }; 140 } 141 142 /// Return true if it is safe to merge these two 143 /// terminator instructions together. 144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 145 if (SI1 == SI2) return false; // Can't merge with self! 146 147 // It is not safe to merge these two switch instructions if they have a common 148 // successor, and if that successor has a PHI node, and if *that* PHI node has 149 // conflicting incoming values from the two switch blocks. 150 BasicBlock *SI1BB = SI1->getParent(); 151 BasicBlock *SI2BB = SI2->getParent(); 152 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 153 154 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 155 if (SI1Succs.count(*I)) 156 for (BasicBlock::iterator BBI = (*I)->begin(); 157 isa<PHINode>(BBI); ++BBI) { 158 PHINode *PN = cast<PHINode>(BBI); 159 if (PN->getIncomingValueForBlock(SI1BB) != 160 PN->getIncomingValueForBlock(SI2BB)) 161 return false; 162 } 163 164 return true; 165 } 166 167 /// Return true if it is safe and profitable to merge these two terminator 168 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 169 /// store all PHI nodes in common successors. 170 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 171 BranchInst *SI2, 172 Instruction *Cond, 173 SmallVectorImpl<PHINode*> &PhiNodes) { 174 if (SI1 == SI2) return false; // Can't merge with self! 175 assert(SI1->isUnconditional() && SI2->isConditional()); 176 177 // We fold the unconditional branch if we can easily update all PHI nodes in 178 // common successors: 179 // 1> We have a constant incoming value for the conditional branch; 180 // 2> We have "Cond" as the incoming value for the unconditional branch; 181 // 3> SI2->getCondition() and Cond have same operands. 182 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 183 if (!Ci2) return false; 184 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 185 Cond->getOperand(1) == Ci2->getOperand(1)) && 186 !(Cond->getOperand(0) == Ci2->getOperand(1) && 187 Cond->getOperand(1) == Ci2->getOperand(0))) 188 return false; 189 190 BasicBlock *SI1BB = SI1->getParent(); 191 BasicBlock *SI2BB = SI2->getParent(); 192 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 193 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 194 if (SI1Succs.count(*I)) 195 for (BasicBlock::iterator BBI = (*I)->begin(); 196 isa<PHINode>(BBI); ++BBI) { 197 PHINode *PN = cast<PHINode>(BBI); 198 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 199 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 200 return false; 201 PhiNodes.push_back(PN); 202 } 203 return true; 204 } 205 206 /// Update PHI nodes in Succ to indicate that there will now be entries in it 207 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 208 /// will be the same as those coming in from ExistPred, an existing predecessor 209 /// of Succ. 210 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 211 BasicBlock *ExistPred) { 212 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 213 214 PHINode *PN; 215 for (BasicBlock::iterator I = Succ->begin(); 216 (PN = dyn_cast<PHINode>(I)); ++I) 217 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 218 } 219 220 /// Compute an abstract "cost" of speculating the given instruction, 221 /// which is assumed to be safe to speculate. TCC_Free means cheap, 222 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 223 /// expensive. 224 static unsigned ComputeSpeculationCost(const User *I, 225 const TargetTransformInfo &TTI) { 226 assert(isSafeToSpeculativelyExecute(I) && 227 "Instruction is not safe to speculatively execute!"); 228 return TTI.getUserCost(I); 229 } 230 231 /// If we have a merge point of an "if condition" as accepted above, 232 /// return true if the specified value dominates the block. We 233 /// don't handle the true generality of domination here, just a special case 234 /// which works well enough for us. 235 /// 236 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 237 /// see if V (which must be an instruction) and its recursive operands 238 /// that do not dominate BB have a combined cost lower than CostRemaining and 239 /// are non-trapping. If both are true, the instruction is inserted into the 240 /// set and true is returned. 241 /// 242 /// The cost for most non-trapping instructions is defined as 1 except for 243 /// Select whose cost is 2. 244 /// 245 /// After this function returns, CostRemaining is decreased by the cost of 246 /// V plus its non-dominating operands. If that cost is greater than 247 /// CostRemaining, false is returned and CostRemaining is undefined. 248 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 249 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 250 unsigned &CostRemaining, 251 const TargetTransformInfo &TTI) { 252 Instruction *I = dyn_cast<Instruction>(V); 253 if (!I) { 254 // Non-instructions all dominate instructions, but not all constantexprs 255 // can be executed unconditionally. 256 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 257 if (C->canTrap()) 258 return false; 259 return true; 260 } 261 BasicBlock *PBB = I->getParent(); 262 263 // We don't want to allow weird loops that might have the "if condition" in 264 // the bottom of this block. 265 if (PBB == BB) return false; 266 267 // If this instruction is defined in a block that contains an unconditional 268 // branch to BB, then it must be in the 'conditional' part of the "if 269 // statement". If not, it definitely dominates the region. 270 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 271 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 272 return true; 273 274 // If we aren't allowing aggressive promotion anymore, then don't consider 275 // instructions in the 'if region'. 276 if (!AggressiveInsts) return false; 277 278 // If we have seen this instruction before, don't count it again. 279 if (AggressiveInsts->count(I)) return true; 280 281 // Okay, it looks like the instruction IS in the "condition". Check to 282 // see if it's a cheap instruction to unconditionally compute, and if it 283 // only uses stuff defined outside of the condition. If so, hoist it out. 284 if (!isSafeToSpeculativelyExecute(I)) 285 return false; 286 287 unsigned Cost = ComputeSpeculationCost(I, TTI); 288 289 if (Cost > CostRemaining) 290 return false; 291 292 CostRemaining -= Cost; 293 294 // Okay, we can only really hoist these out if their operands do 295 // not take us over the cost threshold. 296 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 297 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI)) 298 return false; 299 // Okay, it's safe to do this! Remember this instruction. 300 AggressiveInsts->insert(I); 301 return true; 302 } 303 304 /// Extract ConstantInt from value, looking through IntToPtr 305 /// and PointerNullValue. Return NULL if value is not a constant int. 306 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 307 // Normal constant int. 308 ConstantInt *CI = dyn_cast<ConstantInt>(V); 309 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 310 return CI; 311 312 // This is some kind of pointer constant. Turn it into a pointer-sized 313 // ConstantInt if possible. 314 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 315 316 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 317 if (isa<ConstantPointerNull>(V)) 318 return ConstantInt::get(PtrTy, 0); 319 320 // IntToPtr const int. 321 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 322 if (CE->getOpcode() == Instruction::IntToPtr) 323 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 324 // The constant is very likely to have the right type already. 325 if (CI->getType() == PtrTy) 326 return CI; 327 else 328 return cast<ConstantInt> 329 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 330 } 331 return nullptr; 332 } 333 334 namespace { 335 336 /// Given a chain of or (||) or and (&&) comparison of a value against a 337 /// constant, this will try to recover the information required for a switch 338 /// structure. 339 /// It will depth-first traverse the chain of comparison, seeking for patterns 340 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 341 /// representing the different cases for the switch. 342 /// Note that if the chain is composed of '||' it will build the set of elements 343 /// that matches the comparisons (i.e. any of this value validate the chain) 344 /// while for a chain of '&&' it will build the set elements that make the test 345 /// fail. 346 struct ConstantComparesGatherer { 347 const DataLayout &DL; 348 Value *CompValue; /// Value found for the switch comparison 349 Value *Extra; /// Extra clause to be checked before the switch 350 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 351 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 352 353 /// Construct and compute the result for the comparison instruction Cond 354 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 355 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 356 gather(Cond); 357 } 358 359 /// Prevent copy 360 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 361 ConstantComparesGatherer & 362 operator=(const ConstantComparesGatherer &) = delete; 363 364 private: 365 366 /// Try to set the current value used for the comparison, it succeeds only if 367 /// it wasn't set before or if the new value is the same as the old one 368 bool setValueOnce(Value *NewVal) { 369 if(CompValue && CompValue != NewVal) return false; 370 CompValue = NewVal; 371 return (CompValue != nullptr); 372 } 373 374 /// Try to match Instruction "I" as a comparison against a constant and 375 /// populates the array Vals with the set of values that match (or do not 376 /// match depending on isEQ). 377 /// Return false on failure. On success, the Value the comparison matched 378 /// against is placed in CompValue. 379 /// If CompValue is already set, the function is expected to fail if a match 380 /// is found but the value compared to is different. 381 bool matchInstruction(Instruction *I, bool isEQ) { 382 // If this is an icmp against a constant, handle this as one of the cases. 383 ICmpInst *ICI; 384 ConstantInt *C; 385 if (!((ICI = dyn_cast<ICmpInst>(I)) && 386 (C = GetConstantInt(I->getOperand(1), DL)))) { 387 return false; 388 } 389 390 Value *RHSVal; 391 ConstantInt *RHSC; 392 393 // Pattern match a special case 394 // (x & ~2^x) == y --> x == y || x == y|2^x 395 // This undoes a transformation done by instcombine to fuse 2 compares. 396 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 397 if (match(ICI->getOperand(0), 398 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 399 APInt Not = ~RHSC->getValue(); 400 if (Not.isPowerOf2()) { 401 // If we already have a value for the switch, it has to match! 402 if(!setValueOnce(RHSVal)) 403 return false; 404 405 Vals.push_back(C); 406 Vals.push_back(ConstantInt::get(C->getContext(), 407 C->getValue() | Not)); 408 UsedICmps++; 409 return true; 410 } 411 } 412 413 // If we already have a value for the switch, it has to match! 414 if(!setValueOnce(ICI->getOperand(0))) 415 return false; 416 417 UsedICmps++; 418 Vals.push_back(C); 419 return ICI->getOperand(0); 420 } 421 422 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 423 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 424 ICI->getPredicate(), C->getValue()); 425 426 // Shift the range if the compare is fed by an add. This is the range 427 // compare idiom as emitted by instcombine. 428 Value *CandidateVal = I->getOperand(0); 429 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 430 Span = Span.subtract(RHSC->getValue()); 431 CandidateVal = RHSVal; 432 } 433 434 // If this is an and/!= check, then we are looking to build the set of 435 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 436 // x != 0 && x != 1. 437 if (!isEQ) 438 Span = Span.inverse(); 439 440 // If there are a ton of values, we don't want to make a ginormous switch. 441 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 442 return false; 443 } 444 445 // If we already have a value for the switch, it has to match! 446 if(!setValueOnce(CandidateVal)) 447 return false; 448 449 // Add all values from the range to the set 450 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 451 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 452 453 UsedICmps++; 454 return true; 455 456 } 457 458 /// Given a potentially 'or'd or 'and'd together collection of icmp 459 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 460 /// the value being compared, and stick the list constants into the Vals 461 /// vector. 462 /// One "Extra" case is allowed to differ from the other. 463 void gather(Value *V) { 464 Instruction *I = dyn_cast<Instruction>(V); 465 bool isEQ = (I->getOpcode() == Instruction::Or); 466 467 // Keep a stack (SmallVector for efficiency) for depth-first traversal 468 SmallVector<Value *, 8> DFT; 469 470 // Initialize 471 DFT.push_back(V); 472 473 while(!DFT.empty()) { 474 V = DFT.pop_back_val(); 475 476 if (Instruction *I = dyn_cast<Instruction>(V)) { 477 // If it is a || (or && depending on isEQ), process the operands. 478 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 479 DFT.push_back(I->getOperand(1)); 480 DFT.push_back(I->getOperand(0)); 481 continue; 482 } 483 484 // Try to match the current instruction 485 if (matchInstruction(I, isEQ)) 486 // Match succeed, continue the loop 487 continue; 488 } 489 490 // One element of the sequence of || (or &&) could not be match as a 491 // comparison against the same value as the others. 492 // We allow only one "Extra" case to be checked before the switch 493 if (!Extra) { 494 Extra = V; 495 continue; 496 } 497 // Failed to parse a proper sequence, abort now 498 CompValue = nullptr; 499 break; 500 } 501 } 502 }; 503 504 } 505 506 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 507 Instruction *Cond = nullptr; 508 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 509 Cond = dyn_cast<Instruction>(SI->getCondition()); 510 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 511 if (BI->isConditional()) 512 Cond = dyn_cast<Instruction>(BI->getCondition()); 513 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 514 Cond = dyn_cast<Instruction>(IBI->getAddress()); 515 } 516 517 TI->eraseFromParent(); 518 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 519 } 520 521 /// Return true if the specified terminator checks 522 /// to see if a value is equal to constant integer value. 523 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 524 Value *CV = nullptr; 525 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 526 // Do not permit merging of large switch instructions into their 527 // predecessors unless there is only one predecessor. 528 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 529 pred_end(SI->getParent())) <= 128) 530 CV = SI->getCondition(); 531 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 532 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 533 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 534 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 535 CV = ICI->getOperand(0); 536 } 537 538 // Unwrap any lossless ptrtoint cast. 539 if (CV) { 540 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 541 Value *Ptr = PTII->getPointerOperand(); 542 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 543 CV = Ptr; 544 } 545 } 546 return CV; 547 } 548 549 /// Given a value comparison instruction, 550 /// decode all of the 'cases' that it represents and return the 'default' block. 551 BasicBlock *SimplifyCFGOpt:: 552 GetValueEqualityComparisonCases(TerminatorInst *TI, 553 std::vector<ValueEqualityComparisonCase> 554 &Cases) { 555 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 556 Cases.reserve(SI->getNumCases()); 557 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 558 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 559 i.getCaseSuccessor())); 560 return SI->getDefaultDest(); 561 } 562 563 BranchInst *BI = cast<BranchInst>(TI); 564 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 565 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 566 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 567 DL), 568 Succ)); 569 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 570 } 571 572 573 /// Given a vector of bb/value pairs, remove any entries 574 /// in the list that match the specified block. 575 static void EliminateBlockCases(BasicBlock *BB, 576 std::vector<ValueEqualityComparisonCase> &Cases) { 577 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 578 } 579 580 /// Return true if there are any keys in C1 that exist in C2 as well. 581 static bool 582 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 583 std::vector<ValueEqualityComparisonCase > &C2) { 584 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 585 586 // Make V1 be smaller than V2. 587 if (V1->size() > V2->size()) 588 std::swap(V1, V2); 589 590 if (V1->size() == 0) return false; 591 if (V1->size() == 1) { 592 // Just scan V2. 593 ConstantInt *TheVal = (*V1)[0].Value; 594 for (unsigned i = 0, e = V2->size(); i != e; ++i) 595 if (TheVal == (*V2)[i].Value) 596 return true; 597 } 598 599 // Otherwise, just sort both lists and compare element by element. 600 array_pod_sort(V1->begin(), V1->end()); 601 array_pod_sort(V2->begin(), V2->end()); 602 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 603 while (i1 != e1 && i2 != e2) { 604 if ((*V1)[i1].Value == (*V2)[i2].Value) 605 return true; 606 if ((*V1)[i1].Value < (*V2)[i2].Value) 607 ++i1; 608 else 609 ++i2; 610 } 611 return false; 612 } 613 614 /// If TI is known to be a terminator instruction and its block is known to 615 /// only have a single predecessor block, check to see if that predecessor is 616 /// also a value comparison with the same value, and if that comparison 617 /// determines the outcome of this comparison. If so, simplify TI. This does a 618 /// very limited form of jump threading. 619 bool SimplifyCFGOpt:: 620 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 621 BasicBlock *Pred, 622 IRBuilder<> &Builder) { 623 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 624 if (!PredVal) return false; // Not a value comparison in predecessor. 625 626 Value *ThisVal = isValueEqualityComparison(TI); 627 assert(ThisVal && "This isn't a value comparison!!"); 628 if (ThisVal != PredVal) return false; // Different predicates. 629 630 // TODO: Preserve branch weight metadata, similarly to how 631 // FoldValueComparisonIntoPredecessors preserves it. 632 633 // Find out information about when control will move from Pred to TI's block. 634 std::vector<ValueEqualityComparisonCase> PredCases; 635 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 636 PredCases); 637 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 638 639 // Find information about how control leaves this block. 640 std::vector<ValueEqualityComparisonCase> ThisCases; 641 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 642 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 643 644 // If TI's block is the default block from Pred's comparison, potentially 645 // simplify TI based on this knowledge. 646 if (PredDef == TI->getParent()) { 647 // If we are here, we know that the value is none of those cases listed in 648 // PredCases. If there are any cases in ThisCases that are in PredCases, we 649 // can simplify TI. 650 if (!ValuesOverlap(PredCases, ThisCases)) 651 return false; 652 653 if (isa<BranchInst>(TI)) { 654 // Okay, one of the successors of this condbr is dead. Convert it to a 655 // uncond br. 656 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 657 // Insert the new branch. 658 Instruction *NI = Builder.CreateBr(ThisDef); 659 (void) NI; 660 661 // Remove PHI node entries for the dead edge. 662 ThisCases[0].Dest->removePredecessor(TI->getParent()); 663 664 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 665 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 666 667 EraseTerminatorInstAndDCECond(TI); 668 return true; 669 } 670 671 SwitchInst *SI = cast<SwitchInst>(TI); 672 // Okay, TI has cases that are statically dead, prune them away. 673 SmallPtrSet<Constant*, 16> DeadCases; 674 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 675 DeadCases.insert(PredCases[i].Value); 676 677 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 678 << "Through successor TI: " << *TI); 679 680 // Collect branch weights into a vector. 681 SmallVector<uint32_t, 8> Weights; 682 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 683 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 684 if (HasWeight) 685 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 686 ++MD_i) { 687 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 688 Weights.push_back(CI->getValue().getZExtValue()); 689 } 690 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 691 --i; 692 if (DeadCases.count(i.getCaseValue())) { 693 if (HasWeight) { 694 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 695 Weights.pop_back(); 696 } 697 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 698 SI->removeCase(i); 699 } 700 } 701 if (HasWeight && Weights.size() >= 2) 702 SI->setMetadata(LLVMContext::MD_prof, 703 MDBuilder(SI->getParent()->getContext()). 704 createBranchWeights(Weights)); 705 706 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 707 return true; 708 } 709 710 // Otherwise, TI's block must correspond to some matched value. Find out 711 // which value (or set of values) this is. 712 ConstantInt *TIV = nullptr; 713 BasicBlock *TIBB = TI->getParent(); 714 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 715 if (PredCases[i].Dest == TIBB) { 716 if (TIV) 717 return false; // Cannot handle multiple values coming to this block. 718 TIV = PredCases[i].Value; 719 } 720 assert(TIV && "No edge from pred to succ?"); 721 722 // Okay, we found the one constant that our value can be if we get into TI's 723 // BB. Find out which successor will unconditionally be branched to. 724 BasicBlock *TheRealDest = nullptr; 725 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 726 if (ThisCases[i].Value == TIV) { 727 TheRealDest = ThisCases[i].Dest; 728 break; 729 } 730 731 // If not handled by any explicit cases, it is handled by the default case. 732 if (!TheRealDest) TheRealDest = ThisDef; 733 734 // Remove PHI node entries for dead edges. 735 BasicBlock *CheckEdge = TheRealDest; 736 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 737 if (*SI != CheckEdge) 738 (*SI)->removePredecessor(TIBB); 739 else 740 CheckEdge = nullptr; 741 742 // Insert the new branch. 743 Instruction *NI = Builder.CreateBr(TheRealDest); 744 (void) NI; 745 746 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 747 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 748 749 EraseTerminatorInstAndDCECond(TI); 750 return true; 751 } 752 753 namespace { 754 /// This class implements a stable ordering of constant 755 /// integers that does not depend on their address. This is important for 756 /// applications that sort ConstantInt's to ensure uniqueness. 757 struct ConstantIntOrdering { 758 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 759 return LHS->getValue().ult(RHS->getValue()); 760 } 761 }; 762 } 763 764 static int ConstantIntSortPredicate(ConstantInt *const *P1, 765 ConstantInt *const *P2) { 766 const ConstantInt *LHS = *P1; 767 const ConstantInt *RHS = *P2; 768 if (LHS->getValue().ult(RHS->getValue())) 769 return 1; 770 if (LHS->getValue() == RHS->getValue()) 771 return 0; 772 return -1; 773 } 774 775 static inline bool HasBranchWeights(const Instruction* I) { 776 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 777 if (ProfMD && ProfMD->getOperand(0)) 778 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 779 return MDS->getString().equals("branch_weights"); 780 781 return false; 782 } 783 784 /// Get Weights of a given TerminatorInst, the default weight is at the front 785 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 786 /// metadata. 787 static void GetBranchWeights(TerminatorInst *TI, 788 SmallVectorImpl<uint64_t> &Weights) { 789 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 790 assert(MD); 791 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 792 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 793 Weights.push_back(CI->getValue().getZExtValue()); 794 } 795 796 // If TI is a conditional eq, the default case is the false case, 797 // and the corresponding branch-weight data is at index 2. We swap the 798 // default weight to be the first entry. 799 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 800 assert(Weights.size() == 2); 801 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 802 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 803 std::swap(Weights.front(), Weights.back()); 804 } 805 } 806 807 /// Keep halving the weights until all can fit in uint32_t. 808 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 809 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 810 if (Max > UINT_MAX) { 811 unsigned Offset = 32 - countLeadingZeros(Max); 812 for (uint64_t &I : Weights) 813 I >>= Offset; 814 } 815 } 816 817 /// The specified terminator is a value equality comparison instruction 818 /// (either a switch or a branch on "X == c"). 819 /// See if any of the predecessors of the terminator block are value comparisons 820 /// on the same value. If so, and if safe to do so, fold them together. 821 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 822 IRBuilder<> &Builder) { 823 BasicBlock *BB = TI->getParent(); 824 Value *CV = isValueEqualityComparison(TI); // CondVal 825 assert(CV && "Not a comparison?"); 826 bool Changed = false; 827 828 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 829 while (!Preds.empty()) { 830 BasicBlock *Pred = Preds.pop_back_val(); 831 832 // See if the predecessor is a comparison with the same value. 833 TerminatorInst *PTI = Pred->getTerminator(); 834 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 835 836 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 837 // Figure out which 'cases' to copy from SI to PSI. 838 std::vector<ValueEqualityComparisonCase> BBCases; 839 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 840 841 std::vector<ValueEqualityComparisonCase> PredCases; 842 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 843 844 // Based on whether the default edge from PTI goes to BB or not, fill in 845 // PredCases and PredDefault with the new switch cases we would like to 846 // build. 847 SmallVector<BasicBlock*, 8> NewSuccessors; 848 849 // Update the branch weight metadata along the way 850 SmallVector<uint64_t, 8> Weights; 851 bool PredHasWeights = HasBranchWeights(PTI); 852 bool SuccHasWeights = HasBranchWeights(TI); 853 854 if (PredHasWeights) { 855 GetBranchWeights(PTI, Weights); 856 // branch-weight metadata is inconsistent here. 857 if (Weights.size() != 1 + PredCases.size()) 858 PredHasWeights = SuccHasWeights = false; 859 } else if (SuccHasWeights) 860 // If there are no predecessor weights but there are successor weights, 861 // populate Weights with 1, which will later be scaled to the sum of 862 // successor's weights 863 Weights.assign(1 + PredCases.size(), 1); 864 865 SmallVector<uint64_t, 8> SuccWeights; 866 if (SuccHasWeights) { 867 GetBranchWeights(TI, SuccWeights); 868 // branch-weight metadata is inconsistent here. 869 if (SuccWeights.size() != 1 + BBCases.size()) 870 PredHasWeights = SuccHasWeights = false; 871 } else if (PredHasWeights) 872 SuccWeights.assign(1 + BBCases.size(), 1); 873 874 if (PredDefault == BB) { 875 // If this is the default destination from PTI, only the edges in TI 876 // that don't occur in PTI, or that branch to BB will be activated. 877 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 878 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 879 if (PredCases[i].Dest != BB) 880 PTIHandled.insert(PredCases[i].Value); 881 else { 882 // The default destination is BB, we don't need explicit targets. 883 std::swap(PredCases[i], PredCases.back()); 884 885 if (PredHasWeights || SuccHasWeights) { 886 // Increase weight for the default case. 887 Weights[0] += Weights[i+1]; 888 std::swap(Weights[i+1], Weights.back()); 889 Weights.pop_back(); 890 } 891 892 PredCases.pop_back(); 893 --i; --e; 894 } 895 896 // Reconstruct the new switch statement we will be building. 897 if (PredDefault != BBDefault) { 898 PredDefault->removePredecessor(Pred); 899 PredDefault = BBDefault; 900 NewSuccessors.push_back(BBDefault); 901 } 902 903 unsigned CasesFromPred = Weights.size(); 904 uint64_t ValidTotalSuccWeight = 0; 905 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 906 if (!PTIHandled.count(BBCases[i].Value) && 907 BBCases[i].Dest != BBDefault) { 908 PredCases.push_back(BBCases[i]); 909 NewSuccessors.push_back(BBCases[i].Dest); 910 if (SuccHasWeights || PredHasWeights) { 911 // The default weight is at index 0, so weight for the ith case 912 // should be at index i+1. Scale the cases from successor by 913 // PredDefaultWeight (Weights[0]). 914 Weights.push_back(Weights[0] * SuccWeights[i+1]); 915 ValidTotalSuccWeight += SuccWeights[i+1]; 916 } 917 } 918 919 if (SuccHasWeights || PredHasWeights) { 920 ValidTotalSuccWeight += SuccWeights[0]; 921 // Scale the cases from predecessor by ValidTotalSuccWeight. 922 for (unsigned i = 1; i < CasesFromPred; ++i) 923 Weights[i] *= ValidTotalSuccWeight; 924 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 925 Weights[0] *= SuccWeights[0]; 926 } 927 } else { 928 // If this is not the default destination from PSI, only the edges 929 // in SI that occur in PSI with a destination of BB will be 930 // activated. 931 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 932 std::map<ConstantInt*, uint64_t> WeightsForHandled; 933 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 934 if (PredCases[i].Dest == BB) { 935 PTIHandled.insert(PredCases[i].Value); 936 937 if (PredHasWeights || SuccHasWeights) { 938 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 939 std::swap(Weights[i+1], Weights.back()); 940 Weights.pop_back(); 941 } 942 943 std::swap(PredCases[i], PredCases.back()); 944 PredCases.pop_back(); 945 --i; --e; 946 } 947 948 // Okay, now we know which constants were sent to BB from the 949 // predecessor. Figure out where they will all go now. 950 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 951 if (PTIHandled.count(BBCases[i].Value)) { 952 // If this is one we are capable of getting... 953 if (PredHasWeights || SuccHasWeights) 954 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 955 PredCases.push_back(BBCases[i]); 956 NewSuccessors.push_back(BBCases[i].Dest); 957 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 958 } 959 960 // If there are any constants vectored to BB that TI doesn't handle, 961 // they must go to the default destination of TI. 962 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 963 PTIHandled.begin(), 964 E = PTIHandled.end(); I != E; ++I) { 965 if (PredHasWeights || SuccHasWeights) 966 Weights.push_back(WeightsForHandled[*I]); 967 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 968 NewSuccessors.push_back(BBDefault); 969 } 970 } 971 972 // Okay, at this point, we know which new successor Pred will get. Make 973 // sure we update the number of entries in the PHI nodes for these 974 // successors. 975 for (BasicBlock *NewSuccessor : NewSuccessors) 976 AddPredecessorToBlock(NewSuccessor, Pred, BB); 977 978 Builder.SetInsertPoint(PTI); 979 // Convert pointer to int before we switch. 980 if (CV->getType()->isPointerTy()) { 981 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 982 "magicptr"); 983 } 984 985 // Now that the successors are updated, create the new Switch instruction. 986 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 987 PredCases.size()); 988 NewSI->setDebugLoc(PTI->getDebugLoc()); 989 for (ValueEqualityComparisonCase &V : PredCases) 990 NewSI->addCase(V.Value, V.Dest); 991 992 if (PredHasWeights || SuccHasWeights) { 993 // Halve the weights if any of them cannot fit in an uint32_t 994 FitWeights(Weights); 995 996 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 997 998 NewSI->setMetadata(LLVMContext::MD_prof, 999 MDBuilder(BB->getContext()). 1000 createBranchWeights(MDWeights)); 1001 } 1002 1003 EraseTerminatorInstAndDCECond(PTI); 1004 1005 // Okay, last check. If BB is still a successor of PSI, then we must 1006 // have an infinite loop case. If so, add an infinitely looping block 1007 // to handle the case to preserve the behavior of the code. 1008 BasicBlock *InfLoopBlock = nullptr; 1009 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1010 if (NewSI->getSuccessor(i) == BB) { 1011 if (!InfLoopBlock) { 1012 // Insert it at the end of the function, because it's either code, 1013 // or it won't matter if it's hot. :) 1014 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1015 "infloop", BB->getParent()); 1016 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1017 } 1018 NewSI->setSuccessor(i, InfLoopBlock); 1019 } 1020 1021 Changed = true; 1022 } 1023 } 1024 return Changed; 1025 } 1026 1027 // If we would need to insert a select that uses the value of this invoke 1028 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1029 // can't hoist the invoke, as there is nowhere to put the select in this case. 1030 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1031 Instruction *I1, Instruction *I2) { 1032 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1033 PHINode *PN; 1034 for (BasicBlock::iterator BBI = SI->begin(); 1035 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1036 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1037 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1038 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1039 return false; 1040 } 1041 } 1042 } 1043 return true; 1044 } 1045 1046 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1047 1048 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1049 /// in the two blocks up into the branch block. The caller of this function 1050 /// guarantees that BI's block dominates BB1 and BB2. 1051 static bool HoistThenElseCodeToIf(BranchInst *BI, 1052 const TargetTransformInfo &TTI) { 1053 // This does very trivial matching, with limited scanning, to find identical 1054 // instructions in the two blocks. In particular, we don't want to get into 1055 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1056 // such, we currently just scan for obviously identical instructions in an 1057 // identical order. 1058 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1059 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1060 1061 BasicBlock::iterator BB1_Itr = BB1->begin(); 1062 BasicBlock::iterator BB2_Itr = BB2->begin(); 1063 1064 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1065 // Skip debug info if it is not identical. 1066 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1067 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1068 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1069 while (isa<DbgInfoIntrinsic>(I1)) 1070 I1 = BB1_Itr++; 1071 while (isa<DbgInfoIntrinsic>(I2)) 1072 I2 = BB2_Itr++; 1073 } 1074 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1075 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1076 return false; 1077 1078 BasicBlock *BIParent = BI->getParent(); 1079 1080 bool Changed = false; 1081 do { 1082 // If we are hoisting the terminator instruction, don't move one (making a 1083 // broken BB), instead clone it, and remove BI. 1084 if (isa<TerminatorInst>(I1)) 1085 goto HoistTerminator; 1086 1087 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1088 return Changed; 1089 1090 // For a normal instruction, we just move one to right before the branch, 1091 // then replace all uses of the other with the first. Finally, we remove 1092 // the now redundant second instruction. 1093 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1094 if (!I2->use_empty()) 1095 I2->replaceAllUsesWith(I1); 1096 I1->intersectOptionalDataWith(I2); 1097 unsigned KnownIDs[] = { 1098 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1099 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1100 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group}; 1101 combineMetadata(I1, I2, KnownIDs); 1102 I2->eraseFromParent(); 1103 Changed = true; 1104 1105 I1 = BB1_Itr++; 1106 I2 = BB2_Itr++; 1107 // Skip debug info if it is not identical. 1108 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1109 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1110 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1111 while (isa<DbgInfoIntrinsic>(I1)) 1112 I1 = BB1_Itr++; 1113 while (isa<DbgInfoIntrinsic>(I2)) 1114 I2 = BB2_Itr++; 1115 } 1116 } while (I1->isIdenticalToWhenDefined(I2)); 1117 1118 return true; 1119 1120 HoistTerminator: 1121 // It may not be possible to hoist an invoke. 1122 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1123 return Changed; 1124 1125 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1126 PHINode *PN; 1127 for (BasicBlock::iterator BBI = SI->begin(); 1128 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1129 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1130 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1131 if (BB1V == BB2V) 1132 continue; 1133 1134 // Check for passingValueIsAlwaysUndefined here because we would rather 1135 // eliminate undefined control flow then converting it to a select. 1136 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1137 passingValueIsAlwaysUndefined(BB2V, PN)) 1138 return Changed; 1139 1140 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1141 return Changed; 1142 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1143 return Changed; 1144 } 1145 } 1146 1147 // Okay, it is safe to hoist the terminator. 1148 Instruction *NT = I1->clone(); 1149 BIParent->getInstList().insert(BI, NT); 1150 if (!NT->getType()->isVoidTy()) { 1151 I1->replaceAllUsesWith(NT); 1152 I2->replaceAllUsesWith(NT); 1153 NT->takeName(I1); 1154 } 1155 1156 IRBuilder<true, NoFolder> Builder(NT); 1157 // Hoisting one of the terminators from our successor is a great thing. 1158 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1159 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1160 // nodes, so we insert select instruction to compute the final result. 1161 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1162 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1163 PHINode *PN; 1164 for (BasicBlock::iterator BBI = SI->begin(); 1165 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1166 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1167 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1168 if (BB1V == BB2V) continue; 1169 1170 // These values do not agree. Insert a select instruction before NT 1171 // that determines the right value. 1172 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1173 if (!SI) 1174 SI = cast<SelectInst> 1175 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1176 BB1V->getName()+"."+BB2V->getName())); 1177 1178 // Make the PHI node use the select for all incoming values for BB1/BB2 1179 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1180 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1181 PN->setIncomingValue(i, SI); 1182 } 1183 } 1184 1185 // Update any PHI nodes in our new successors. 1186 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1187 AddPredecessorToBlock(*SI, BIParent, BB1); 1188 1189 EraseTerminatorInstAndDCECond(BI); 1190 return true; 1191 } 1192 1193 /// Given an unconditional branch that goes to BBEnd, 1194 /// check whether BBEnd has only two predecessors and the other predecessor 1195 /// ends with an unconditional branch. If it is true, sink any common code 1196 /// in the two predecessors to BBEnd. 1197 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1198 assert(BI1->isUnconditional()); 1199 BasicBlock *BB1 = BI1->getParent(); 1200 BasicBlock *BBEnd = BI1->getSuccessor(0); 1201 1202 // Check that BBEnd has two predecessors and the other predecessor ends with 1203 // an unconditional branch. 1204 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1205 BasicBlock *Pred0 = *PI++; 1206 if (PI == PE) // Only one predecessor. 1207 return false; 1208 BasicBlock *Pred1 = *PI++; 1209 if (PI != PE) // More than two predecessors. 1210 return false; 1211 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1212 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1213 if (!BI2 || !BI2->isUnconditional()) 1214 return false; 1215 1216 // Gather the PHI nodes in BBEnd. 1217 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1218 Instruction *FirstNonPhiInBBEnd = nullptr; 1219 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1220 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1221 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1222 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1223 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1224 } else { 1225 FirstNonPhiInBBEnd = &*I; 1226 break; 1227 } 1228 } 1229 if (!FirstNonPhiInBBEnd) 1230 return false; 1231 1232 // This does very trivial matching, with limited scanning, to find identical 1233 // instructions in the two blocks. We scan backward for obviously identical 1234 // instructions in an identical order. 1235 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1236 RE1 = BB1->getInstList().rend(), 1237 RI2 = BB2->getInstList().rbegin(), 1238 RE2 = BB2->getInstList().rend(); 1239 // Skip debug info. 1240 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1241 if (RI1 == RE1) 1242 return false; 1243 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1244 if (RI2 == RE2) 1245 return false; 1246 // Skip the unconditional branches. 1247 ++RI1; 1248 ++RI2; 1249 1250 bool Changed = false; 1251 while (RI1 != RE1 && RI2 != RE2) { 1252 // Skip debug info. 1253 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1254 if (RI1 == RE1) 1255 return Changed; 1256 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1257 if (RI2 == RE2) 1258 return Changed; 1259 1260 Instruction *I1 = &*RI1, *I2 = &*RI2; 1261 auto InstPair = std::make_pair(I1, I2); 1262 // I1 and I2 should have a single use in the same PHI node, and they 1263 // perform the same operation. 1264 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1265 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1266 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1267 I1->isEHPad() || I2->isEHPad() || 1268 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1269 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1270 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1271 !I1->hasOneUse() || !I2->hasOneUse() || 1272 !JointValueMap.count(InstPair)) 1273 return Changed; 1274 1275 // Check whether we should swap the operands of ICmpInst. 1276 // TODO: Add support of communativity. 1277 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1278 bool SwapOpnds = false; 1279 if (ICmp1 && ICmp2 && 1280 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1281 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1282 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1283 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1284 ICmp2->swapOperands(); 1285 SwapOpnds = true; 1286 } 1287 if (!I1->isSameOperationAs(I2)) { 1288 if (SwapOpnds) 1289 ICmp2->swapOperands(); 1290 return Changed; 1291 } 1292 1293 // The operands should be either the same or they need to be generated 1294 // with a PHI node after sinking. We only handle the case where there is 1295 // a single pair of different operands. 1296 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1297 unsigned Op1Idx = ~0U; 1298 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1299 if (I1->getOperand(I) == I2->getOperand(I)) 1300 continue; 1301 // Early exit if we have more-than one pair of different operands or if 1302 // we need a PHI node to replace a constant. 1303 if (Op1Idx != ~0U || 1304 isa<Constant>(I1->getOperand(I)) || 1305 isa<Constant>(I2->getOperand(I))) { 1306 // If we can't sink the instructions, undo the swapping. 1307 if (SwapOpnds) 1308 ICmp2->swapOperands(); 1309 return Changed; 1310 } 1311 DifferentOp1 = I1->getOperand(I); 1312 Op1Idx = I; 1313 DifferentOp2 = I2->getOperand(I); 1314 } 1315 1316 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1317 DEBUG(dbgs() << " " << *I2 << "\n"); 1318 1319 // We insert the pair of different operands to JointValueMap and 1320 // remove (I1, I2) from JointValueMap. 1321 if (Op1Idx != ~0U) { 1322 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1323 if (!NewPN) { 1324 NewPN = 1325 PHINode::Create(DifferentOp1->getType(), 2, 1326 DifferentOp1->getName() + ".sink", BBEnd->begin()); 1327 NewPN->addIncoming(DifferentOp1, BB1); 1328 NewPN->addIncoming(DifferentOp2, BB2); 1329 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1330 } 1331 // I1 should use NewPN instead of DifferentOp1. 1332 I1->setOperand(Op1Idx, NewPN); 1333 } 1334 PHINode *OldPN = JointValueMap[InstPair]; 1335 JointValueMap.erase(InstPair); 1336 1337 // We need to update RE1 and RE2 if we are going to sink the first 1338 // instruction in the basic block down. 1339 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1340 // Sink the instruction. 1341 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1342 if (!OldPN->use_empty()) 1343 OldPN->replaceAllUsesWith(I1); 1344 OldPN->eraseFromParent(); 1345 1346 if (!I2->use_empty()) 1347 I2->replaceAllUsesWith(I1); 1348 I1->intersectOptionalDataWith(I2); 1349 // TODO: Use combineMetadata here to preserve what metadata we can 1350 // (analogous to the hoisting case above). 1351 I2->eraseFromParent(); 1352 1353 if (UpdateRE1) 1354 RE1 = BB1->getInstList().rend(); 1355 if (UpdateRE2) 1356 RE2 = BB2->getInstList().rend(); 1357 FirstNonPhiInBBEnd = I1; 1358 NumSinkCommons++; 1359 Changed = true; 1360 } 1361 return Changed; 1362 } 1363 1364 /// \brief Determine if we can hoist sink a sole store instruction out of a 1365 /// conditional block. 1366 /// 1367 /// We are looking for code like the following: 1368 /// BrBB: 1369 /// store i32 %add, i32* %arrayidx2 1370 /// ... // No other stores or function calls (we could be calling a memory 1371 /// ... // function). 1372 /// %cmp = icmp ult %x, %y 1373 /// br i1 %cmp, label %EndBB, label %ThenBB 1374 /// ThenBB: 1375 /// store i32 %add5, i32* %arrayidx2 1376 /// br label EndBB 1377 /// EndBB: 1378 /// ... 1379 /// We are going to transform this into: 1380 /// BrBB: 1381 /// store i32 %add, i32* %arrayidx2 1382 /// ... // 1383 /// %cmp = icmp ult %x, %y 1384 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1385 /// store i32 %add.add5, i32* %arrayidx2 1386 /// ... 1387 /// 1388 /// \return The pointer to the value of the previous store if the store can be 1389 /// hoisted into the predecessor block. 0 otherwise. 1390 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1391 BasicBlock *StoreBB, BasicBlock *EndBB) { 1392 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1393 if (!StoreToHoist) 1394 return nullptr; 1395 1396 // Volatile or atomic. 1397 if (!StoreToHoist->isSimple()) 1398 return nullptr; 1399 1400 Value *StorePtr = StoreToHoist->getPointerOperand(); 1401 1402 // Look for a store to the same pointer in BrBB. 1403 unsigned MaxNumInstToLookAt = 10; 1404 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1405 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1406 Instruction *CurI = &*RI; 1407 1408 // Could be calling an instruction that effects memory like free(). 1409 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1410 return nullptr; 1411 1412 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1413 // Found the previous store make sure it stores to the same location. 1414 if (SI && SI->getPointerOperand() == StorePtr) 1415 // Found the previous store, return its value operand. 1416 return SI->getValueOperand(); 1417 else if (SI) 1418 return nullptr; // Unknown store. 1419 } 1420 1421 return nullptr; 1422 } 1423 1424 /// \brief Speculate a conditional basic block flattening the CFG. 1425 /// 1426 /// Note that this is a very risky transform currently. Speculating 1427 /// instructions like this is most often not desirable. Instead, there is an MI 1428 /// pass which can do it with full awareness of the resource constraints. 1429 /// However, some cases are "obvious" and we should do directly. An example of 1430 /// this is speculating a single, reasonably cheap instruction. 1431 /// 1432 /// There is only one distinct advantage to flattening the CFG at the IR level: 1433 /// it makes very common but simplistic optimizations such as are common in 1434 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1435 /// modeling their effects with easier to reason about SSA value graphs. 1436 /// 1437 /// 1438 /// An illustration of this transform is turning this IR: 1439 /// \code 1440 /// BB: 1441 /// %cmp = icmp ult %x, %y 1442 /// br i1 %cmp, label %EndBB, label %ThenBB 1443 /// ThenBB: 1444 /// %sub = sub %x, %y 1445 /// br label BB2 1446 /// EndBB: 1447 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1448 /// ... 1449 /// \endcode 1450 /// 1451 /// Into this IR: 1452 /// \code 1453 /// BB: 1454 /// %cmp = icmp ult %x, %y 1455 /// %sub = sub %x, %y 1456 /// %cond = select i1 %cmp, 0, %sub 1457 /// ... 1458 /// \endcode 1459 /// 1460 /// \returns true if the conditional block is removed. 1461 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1462 const TargetTransformInfo &TTI) { 1463 // Be conservative for now. FP select instruction can often be expensive. 1464 Value *BrCond = BI->getCondition(); 1465 if (isa<FCmpInst>(BrCond)) 1466 return false; 1467 1468 BasicBlock *BB = BI->getParent(); 1469 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1470 1471 // If ThenBB is actually on the false edge of the conditional branch, remember 1472 // to swap the select operands later. 1473 bool Invert = false; 1474 if (ThenBB != BI->getSuccessor(0)) { 1475 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1476 Invert = true; 1477 } 1478 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1479 1480 // Keep a count of how many times instructions are used within CondBB when 1481 // they are candidates for sinking into CondBB. Specifically: 1482 // - They are defined in BB, and 1483 // - They have no side effects, and 1484 // - All of their uses are in CondBB. 1485 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1486 1487 unsigned SpeculationCost = 0; 1488 Value *SpeculatedStoreValue = nullptr; 1489 StoreInst *SpeculatedStore = nullptr; 1490 for (BasicBlock::iterator BBI = ThenBB->begin(), 1491 BBE = std::prev(ThenBB->end()); 1492 BBI != BBE; ++BBI) { 1493 Instruction *I = BBI; 1494 // Skip debug info. 1495 if (isa<DbgInfoIntrinsic>(I)) 1496 continue; 1497 1498 // Only speculatively execute a single instruction (not counting the 1499 // terminator) for now. 1500 ++SpeculationCost; 1501 if (SpeculationCost > 1) 1502 return false; 1503 1504 // Don't hoist the instruction if it's unsafe or expensive. 1505 if (!isSafeToSpeculativelyExecute(I) && 1506 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1507 I, BB, ThenBB, EndBB)))) 1508 return false; 1509 if (!SpeculatedStoreValue && 1510 ComputeSpeculationCost(I, TTI) > 1511 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1512 return false; 1513 1514 // Store the store speculation candidate. 1515 if (SpeculatedStoreValue) 1516 SpeculatedStore = cast<StoreInst>(I); 1517 1518 // Do not hoist the instruction if any of its operands are defined but not 1519 // used in BB. The transformation will prevent the operand from 1520 // being sunk into the use block. 1521 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1522 i != e; ++i) { 1523 Instruction *OpI = dyn_cast<Instruction>(*i); 1524 if (!OpI || OpI->getParent() != BB || 1525 OpI->mayHaveSideEffects()) 1526 continue; // Not a candidate for sinking. 1527 1528 ++SinkCandidateUseCounts[OpI]; 1529 } 1530 } 1531 1532 // Consider any sink candidates which are only used in CondBB as costs for 1533 // speculation. Note, while we iterate over a DenseMap here, we are summing 1534 // and so iteration order isn't significant. 1535 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1536 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1537 I != E; ++I) 1538 if (I->first->getNumUses() == I->second) { 1539 ++SpeculationCost; 1540 if (SpeculationCost > 1) 1541 return false; 1542 } 1543 1544 // Check that the PHI nodes can be converted to selects. 1545 bool HaveRewritablePHIs = false; 1546 for (BasicBlock::iterator I = EndBB->begin(); 1547 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1548 Value *OrigV = PN->getIncomingValueForBlock(BB); 1549 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1550 1551 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1552 // Skip PHIs which are trivial. 1553 if (ThenV == OrigV) 1554 continue; 1555 1556 // Don't convert to selects if we could remove undefined behavior instead. 1557 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1558 passingValueIsAlwaysUndefined(ThenV, PN)) 1559 return false; 1560 1561 HaveRewritablePHIs = true; 1562 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1563 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1564 if (!OrigCE && !ThenCE) 1565 continue; // Known safe and cheap. 1566 1567 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1568 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1569 return false; 1570 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1571 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1572 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1573 TargetTransformInfo::TCC_Basic; 1574 if (OrigCost + ThenCost > MaxCost) 1575 return false; 1576 1577 // Account for the cost of an unfolded ConstantExpr which could end up 1578 // getting expanded into Instructions. 1579 // FIXME: This doesn't account for how many operations are combined in the 1580 // constant expression. 1581 ++SpeculationCost; 1582 if (SpeculationCost > 1) 1583 return false; 1584 } 1585 1586 // If there are no PHIs to process, bail early. This helps ensure idempotence 1587 // as well. 1588 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1589 return false; 1590 1591 // If we get here, we can hoist the instruction and if-convert. 1592 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1593 1594 // Insert a select of the value of the speculated store. 1595 if (SpeculatedStoreValue) { 1596 IRBuilder<true, NoFolder> Builder(BI); 1597 Value *TrueV = SpeculatedStore->getValueOperand(); 1598 Value *FalseV = SpeculatedStoreValue; 1599 if (Invert) 1600 std::swap(TrueV, FalseV); 1601 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1602 "." + FalseV->getName()); 1603 SpeculatedStore->setOperand(0, S); 1604 } 1605 1606 // Hoist the instructions. 1607 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1608 std::prev(ThenBB->end())); 1609 1610 // Insert selects and rewrite the PHI operands. 1611 IRBuilder<true, NoFolder> Builder(BI); 1612 for (BasicBlock::iterator I = EndBB->begin(); 1613 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1614 unsigned OrigI = PN->getBasicBlockIndex(BB); 1615 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1616 Value *OrigV = PN->getIncomingValue(OrigI); 1617 Value *ThenV = PN->getIncomingValue(ThenI); 1618 1619 // Skip PHIs which are trivial. 1620 if (OrigV == ThenV) 1621 continue; 1622 1623 // Create a select whose true value is the speculatively executed value and 1624 // false value is the preexisting value. Swap them if the branch 1625 // destinations were inverted. 1626 Value *TrueV = ThenV, *FalseV = OrigV; 1627 if (Invert) 1628 std::swap(TrueV, FalseV); 1629 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1630 TrueV->getName() + "." + FalseV->getName()); 1631 PN->setIncomingValue(OrigI, V); 1632 PN->setIncomingValue(ThenI, V); 1633 } 1634 1635 ++NumSpeculations; 1636 return true; 1637 } 1638 1639 /// \returns True if this block contains a CallInst with the NoDuplicate 1640 /// attribute. 1641 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1642 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1643 const CallInst *CI = dyn_cast<CallInst>(I); 1644 if (!CI) 1645 continue; 1646 if (CI->cannotDuplicate()) 1647 return true; 1648 } 1649 return false; 1650 } 1651 1652 /// Return true if we can thread a branch across this block. 1653 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1654 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1655 unsigned Size = 0; 1656 1657 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1658 if (isa<DbgInfoIntrinsic>(BBI)) 1659 continue; 1660 if (Size > 10) return false; // Don't clone large BB's. 1661 ++Size; 1662 1663 // We can only support instructions that do not define values that are 1664 // live outside of the current basic block. 1665 for (User *U : BBI->users()) { 1666 Instruction *UI = cast<Instruction>(U); 1667 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1668 } 1669 1670 // Looks ok, continue checking. 1671 } 1672 1673 return true; 1674 } 1675 1676 /// If we have a conditional branch on a PHI node value that is defined in the 1677 /// same block as the branch and if any PHI entries are constants, thread edges 1678 /// corresponding to that entry to be branches to their ultimate destination. 1679 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1680 BasicBlock *BB = BI->getParent(); 1681 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1682 // NOTE: we currently cannot transform this case if the PHI node is used 1683 // outside of the block. 1684 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1685 return false; 1686 1687 // Degenerate case of a single entry PHI. 1688 if (PN->getNumIncomingValues() == 1) { 1689 FoldSingleEntryPHINodes(PN->getParent()); 1690 return true; 1691 } 1692 1693 // Now we know that this block has multiple preds and two succs. 1694 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1695 1696 if (HasNoDuplicateCall(BB)) return false; 1697 1698 // Okay, this is a simple enough basic block. See if any phi values are 1699 // constants. 1700 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1701 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1702 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1703 1704 // Okay, we now know that all edges from PredBB should be revectored to 1705 // branch to RealDest. 1706 BasicBlock *PredBB = PN->getIncomingBlock(i); 1707 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1708 1709 if (RealDest == BB) continue; // Skip self loops. 1710 // Skip if the predecessor's terminator is an indirect branch. 1711 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1712 1713 // The dest block might have PHI nodes, other predecessors and other 1714 // difficult cases. Instead of being smart about this, just insert a new 1715 // block that jumps to the destination block, effectively splitting 1716 // the edge we are about to create. 1717 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1718 RealDest->getName()+".critedge", 1719 RealDest->getParent(), RealDest); 1720 BranchInst::Create(RealDest, EdgeBB); 1721 1722 // Update PHI nodes. 1723 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1724 1725 // BB may have instructions that are being threaded over. Clone these 1726 // instructions into EdgeBB. We know that there will be no uses of the 1727 // cloned instructions outside of EdgeBB. 1728 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1729 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1730 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1731 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1732 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1733 continue; 1734 } 1735 // Clone the instruction. 1736 Instruction *N = BBI->clone(); 1737 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1738 1739 // Update operands due to translation. 1740 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1741 i != e; ++i) { 1742 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1743 if (PI != TranslateMap.end()) 1744 *i = PI->second; 1745 } 1746 1747 // Check for trivial simplification. 1748 if (Value *V = SimplifyInstruction(N, DL)) { 1749 TranslateMap[BBI] = V; 1750 delete N; // Instruction folded away, don't need actual inst 1751 } else { 1752 // Insert the new instruction into its new home. 1753 EdgeBB->getInstList().insert(InsertPt, N); 1754 if (!BBI->use_empty()) 1755 TranslateMap[BBI] = N; 1756 } 1757 } 1758 1759 // Loop over all of the edges from PredBB to BB, changing them to branch 1760 // to EdgeBB instead. 1761 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1762 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1763 if (PredBBTI->getSuccessor(i) == BB) { 1764 BB->removePredecessor(PredBB); 1765 PredBBTI->setSuccessor(i, EdgeBB); 1766 } 1767 1768 // Recurse, simplifying any other constants. 1769 return FoldCondBranchOnPHI(BI, DL) | true; 1770 } 1771 1772 return false; 1773 } 1774 1775 /// Given a BB that starts with the specified two-entry PHI node, 1776 /// see if we can eliminate it. 1777 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1778 const DataLayout &DL) { 1779 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1780 // statement", which has a very simple dominance structure. Basically, we 1781 // are trying to find the condition that is being branched on, which 1782 // subsequently causes this merge to happen. We really want control 1783 // dependence information for this check, but simplifycfg can't keep it up 1784 // to date, and this catches most of the cases we care about anyway. 1785 BasicBlock *BB = PN->getParent(); 1786 BasicBlock *IfTrue, *IfFalse; 1787 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1788 if (!IfCond || 1789 // Don't bother if the branch will be constant folded trivially. 1790 isa<ConstantInt>(IfCond)) 1791 return false; 1792 1793 // Okay, we found that we can merge this two-entry phi node into a select. 1794 // Doing so would require us to fold *all* two entry phi nodes in this block. 1795 // At some point this becomes non-profitable (particularly if the target 1796 // doesn't support cmov's). Only do this transformation if there are two or 1797 // fewer PHI nodes in this block. 1798 unsigned NumPhis = 0; 1799 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1800 if (NumPhis > 2) 1801 return false; 1802 1803 // Loop over the PHI's seeing if we can promote them all to select 1804 // instructions. While we are at it, keep track of the instructions 1805 // that need to be moved to the dominating block. 1806 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1807 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1808 MaxCostVal1 = PHINodeFoldingThreshold; 1809 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1810 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1811 1812 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1813 PHINode *PN = cast<PHINode>(II++); 1814 if (Value *V = SimplifyInstruction(PN, DL)) { 1815 PN->replaceAllUsesWith(V); 1816 PN->eraseFromParent(); 1817 continue; 1818 } 1819 1820 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1821 MaxCostVal0, TTI) || 1822 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1823 MaxCostVal1, TTI)) 1824 return false; 1825 } 1826 1827 // If we folded the first phi, PN dangles at this point. Refresh it. If 1828 // we ran out of PHIs then we simplified them all. 1829 PN = dyn_cast<PHINode>(BB->begin()); 1830 if (!PN) return true; 1831 1832 // Don't fold i1 branches on PHIs which contain binary operators. These can 1833 // often be turned into switches and other things. 1834 if (PN->getType()->isIntegerTy(1) && 1835 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1836 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1837 isa<BinaryOperator>(IfCond))) 1838 return false; 1839 1840 // If we all PHI nodes are promotable, check to make sure that all 1841 // instructions in the predecessor blocks can be promoted as well. If 1842 // not, we won't be able to get rid of the control flow, so it's not 1843 // worth promoting to select instructions. 1844 BasicBlock *DomBlock = nullptr; 1845 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1846 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1847 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1848 IfBlock1 = nullptr; 1849 } else { 1850 DomBlock = *pred_begin(IfBlock1); 1851 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1852 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1853 // This is not an aggressive instruction that we can promote. 1854 // Because of this, we won't be able to get rid of the control 1855 // flow, so the xform is not worth it. 1856 return false; 1857 } 1858 } 1859 1860 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1861 IfBlock2 = nullptr; 1862 } else { 1863 DomBlock = *pred_begin(IfBlock2); 1864 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1865 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1866 // This is not an aggressive instruction that we can promote. 1867 // Because of this, we won't be able to get rid of the control 1868 // flow, so the xform is not worth it. 1869 return false; 1870 } 1871 } 1872 1873 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1874 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1875 1876 // If we can still promote the PHI nodes after this gauntlet of tests, 1877 // do all of the PHI's now. 1878 Instruction *InsertPt = DomBlock->getTerminator(); 1879 IRBuilder<true, NoFolder> Builder(InsertPt); 1880 1881 // Move all 'aggressive' instructions, which are defined in the 1882 // conditional parts of the if's up to the dominating block. 1883 if (IfBlock1) 1884 DomBlock->getInstList().splice(InsertPt, 1885 IfBlock1->getInstList(), IfBlock1->begin(), 1886 IfBlock1->getTerminator()); 1887 if (IfBlock2) 1888 DomBlock->getInstList().splice(InsertPt, 1889 IfBlock2->getInstList(), IfBlock2->begin(), 1890 IfBlock2->getTerminator()); 1891 1892 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1893 // Change the PHI node into a select instruction. 1894 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1895 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1896 1897 SelectInst *NV = 1898 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1899 PN->replaceAllUsesWith(NV); 1900 NV->takeName(PN); 1901 PN->eraseFromParent(); 1902 } 1903 1904 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1905 // has been flattened. Change DomBlock to jump directly to our new block to 1906 // avoid other simplifycfg's kicking in on the diamond. 1907 TerminatorInst *OldTI = DomBlock->getTerminator(); 1908 Builder.SetInsertPoint(OldTI); 1909 Builder.CreateBr(BB); 1910 OldTI->eraseFromParent(); 1911 return true; 1912 } 1913 1914 /// If we found a conditional branch that goes to two returning blocks, 1915 /// try to merge them together into one return, 1916 /// introducing a select if the return values disagree. 1917 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1918 IRBuilder<> &Builder) { 1919 assert(BI->isConditional() && "Must be a conditional branch"); 1920 BasicBlock *TrueSucc = BI->getSuccessor(0); 1921 BasicBlock *FalseSucc = BI->getSuccessor(1); 1922 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1923 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1924 1925 // Check to ensure both blocks are empty (just a return) or optionally empty 1926 // with PHI nodes. If there are other instructions, merging would cause extra 1927 // computation on one path or the other. 1928 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1929 return false; 1930 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1931 return false; 1932 1933 Builder.SetInsertPoint(BI); 1934 // Okay, we found a branch that is going to two return nodes. If 1935 // there is no return value for this function, just change the 1936 // branch into a return. 1937 if (FalseRet->getNumOperands() == 0) { 1938 TrueSucc->removePredecessor(BI->getParent()); 1939 FalseSucc->removePredecessor(BI->getParent()); 1940 Builder.CreateRetVoid(); 1941 EraseTerminatorInstAndDCECond(BI); 1942 return true; 1943 } 1944 1945 // Otherwise, figure out what the true and false return values are 1946 // so we can insert a new select instruction. 1947 Value *TrueValue = TrueRet->getReturnValue(); 1948 Value *FalseValue = FalseRet->getReturnValue(); 1949 1950 // Unwrap any PHI nodes in the return blocks. 1951 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1952 if (TVPN->getParent() == TrueSucc) 1953 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1954 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1955 if (FVPN->getParent() == FalseSucc) 1956 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1957 1958 // In order for this transformation to be safe, we must be able to 1959 // unconditionally execute both operands to the return. This is 1960 // normally the case, but we could have a potentially-trapping 1961 // constant expression that prevents this transformation from being 1962 // safe. 1963 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1964 if (TCV->canTrap()) 1965 return false; 1966 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1967 if (FCV->canTrap()) 1968 return false; 1969 1970 // Okay, we collected all the mapped values and checked them for sanity, and 1971 // defined to really do this transformation. First, update the CFG. 1972 TrueSucc->removePredecessor(BI->getParent()); 1973 FalseSucc->removePredecessor(BI->getParent()); 1974 1975 // Insert select instructions where needed. 1976 Value *BrCond = BI->getCondition(); 1977 if (TrueValue) { 1978 // Insert a select if the results differ. 1979 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1980 } else if (isa<UndefValue>(TrueValue)) { 1981 TrueValue = FalseValue; 1982 } else { 1983 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1984 FalseValue, "retval"); 1985 } 1986 } 1987 1988 Value *RI = !TrueValue ? 1989 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1990 1991 (void) RI; 1992 1993 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1994 << "\n " << *BI << "NewRet = " << *RI 1995 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1996 1997 EraseTerminatorInstAndDCECond(BI); 1998 1999 return true; 2000 } 2001 2002 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2003 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2004 /// or returns false if no or invalid metadata was found. 2005 static bool ExtractBranchMetadata(BranchInst *BI, 2006 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2007 assert(BI->isConditional() && 2008 "Looking for probabilities on unconditional branch?"); 2009 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2010 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2011 ConstantInt *CITrue = 2012 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2013 ConstantInt *CIFalse = 2014 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2015 if (!CITrue || !CIFalse) return false; 2016 ProbTrue = CITrue->getValue().getZExtValue(); 2017 ProbFalse = CIFalse->getValue().getZExtValue(); 2018 return true; 2019 } 2020 2021 /// Return true if the given instruction is available 2022 /// in its predecessor block. If yes, the instruction will be removed. 2023 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2024 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2025 return false; 2026 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2027 Instruction *PBI = &*I; 2028 // Check whether Inst and PBI generate the same value. 2029 if (Inst->isIdenticalTo(PBI)) { 2030 Inst->replaceAllUsesWith(PBI); 2031 Inst->eraseFromParent(); 2032 return true; 2033 } 2034 } 2035 return false; 2036 } 2037 2038 /// If this basic block is simple enough, and if a predecessor branches to us 2039 /// and one of our successors, fold the block into the predecessor and use 2040 /// logical operations to pick the right destination. 2041 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2042 BasicBlock *BB = BI->getParent(); 2043 2044 Instruction *Cond = nullptr; 2045 if (BI->isConditional()) 2046 Cond = dyn_cast<Instruction>(BI->getCondition()); 2047 else { 2048 // For unconditional branch, check for a simple CFG pattern, where 2049 // BB has a single predecessor and BB's successor is also its predecessor's 2050 // successor. If such pattern exisits, check for CSE between BB and its 2051 // predecessor. 2052 if (BasicBlock *PB = BB->getSinglePredecessor()) 2053 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2054 if (PBI->isConditional() && 2055 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2056 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2057 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2058 I != E; ) { 2059 Instruction *Curr = I++; 2060 if (isa<CmpInst>(Curr)) { 2061 Cond = Curr; 2062 break; 2063 } 2064 // Quit if we can't remove this instruction. 2065 if (!checkCSEInPredecessor(Curr, PB)) 2066 return false; 2067 } 2068 } 2069 2070 if (!Cond) 2071 return false; 2072 } 2073 2074 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2075 Cond->getParent() != BB || !Cond->hasOneUse()) 2076 return false; 2077 2078 // Make sure the instruction after the condition is the cond branch. 2079 BasicBlock::iterator CondIt = Cond; ++CondIt; 2080 2081 // Ignore dbg intrinsics. 2082 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2083 2084 if (&*CondIt != BI) 2085 return false; 2086 2087 // Only allow this transformation if computing the condition doesn't involve 2088 // too many instructions and these involved instructions can be executed 2089 // unconditionally. We denote all involved instructions except the condition 2090 // as "bonus instructions", and only allow this transformation when the 2091 // number of the bonus instructions does not exceed a certain threshold. 2092 unsigned NumBonusInsts = 0; 2093 for (auto I = BB->begin(); Cond != I; ++I) { 2094 // Ignore dbg intrinsics. 2095 if (isa<DbgInfoIntrinsic>(I)) 2096 continue; 2097 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I)) 2098 return false; 2099 // I has only one use and can be executed unconditionally. 2100 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2101 if (User == nullptr || User->getParent() != BB) 2102 return false; 2103 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2104 // to use any other instruction, User must be an instruction between next(I) 2105 // and Cond. 2106 ++NumBonusInsts; 2107 // Early exits once we reach the limit. 2108 if (NumBonusInsts > BonusInstThreshold) 2109 return false; 2110 } 2111 2112 // Cond is known to be a compare or binary operator. Check to make sure that 2113 // neither operand is a potentially-trapping constant expression. 2114 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2115 if (CE->canTrap()) 2116 return false; 2117 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2118 if (CE->canTrap()) 2119 return false; 2120 2121 // Finally, don't infinitely unroll conditional loops. 2122 BasicBlock *TrueDest = BI->getSuccessor(0); 2123 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2124 if (TrueDest == BB || FalseDest == BB) 2125 return false; 2126 2127 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2128 BasicBlock *PredBlock = *PI; 2129 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2130 2131 // Check that we have two conditional branches. If there is a PHI node in 2132 // the common successor, verify that the same value flows in from both 2133 // blocks. 2134 SmallVector<PHINode*, 4> PHIs; 2135 if (!PBI || PBI->isUnconditional() || 2136 (BI->isConditional() && 2137 !SafeToMergeTerminators(BI, PBI)) || 2138 (!BI->isConditional() && 2139 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2140 continue; 2141 2142 // Determine if the two branches share a common destination. 2143 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2144 bool InvertPredCond = false; 2145 2146 if (BI->isConditional()) { 2147 if (PBI->getSuccessor(0) == TrueDest) 2148 Opc = Instruction::Or; 2149 else if (PBI->getSuccessor(1) == FalseDest) 2150 Opc = Instruction::And; 2151 else if (PBI->getSuccessor(0) == FalseDest) 2152 Opc = Instruction::And, InvertPredCond = true; 2153 else if (PBI->getSuccessor(1) == TrueDest) 2154 Opc = Instruction::Or, InvertPredCond = true; 2155 else 2156 continue; 2157 } else { 2158 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2159 continue; 2160 } 2161 2162 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2163 IRBuilder<> Builder(PBI); 2164 2165 // If we need to invert the condition in the pred block to match, do so now. 2166 if (InvertPredCond) { 2167 Value *NewCond = PBI->getCondition(); 2168 2169 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2170 CmpInst *CI = cast<CmpInst>(NewCond); 2171 CI->setPredicate(CI->getInversePredicate()); 2172 } else { 2173 NewCond = Builder.CreateNot(NewCond, 2174 PBI->getCondition()->getName()+".not"); 2175 } 2176 2177 PBI->setCondition(NewCond); 2178 PBI->swapSuccessors(); 2179 } 2180 2181 // If we have bonus instructions, clone them into the predecessor block. 2182 // Note that there may be multiple predecessor blocks, so we cannot move 2183 // bonus instructions to a predecessor block. 2184 ValueToValueMapTy VMap; // maps original values to cloned values 2185 // We already make sure Cond is the last instruction before BI. Therefore, 2186 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2187 // instructions. 2188 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2189 if (isa<DbgInfoIntrinsic>(BonusInst)) 2190 continue; 2191 Instruction *NewBonusInst = BonusInst->clone(); 2192 RemapInstruction(NewBonusInst, VMap, 2193 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2194 VMap[BonusInst] = NewBonusInst; 2195 2196 // If we moved a load, we cannot any longer claim any knowledge about 2197 // its potential value. The previous information might have been valid 2198 // only given the branch precondition. 2199 // For an analogous reason, we must also drop all the metadata whose 2200 // semantics we don't understand. 2201 NewBonusInst->dropUnknownNonDebugMetadata(); 2202 2203 PredBlock->getInstList().insert(PBI, NewBonusInst); 2204 NewBonusInst->takeName(BonusInst); 2205 BonusInst->setName(BonusInst->getName() + ".old"); 2206 } 2207 2208 // Clone Cond into the predecessor basic block, and or/and the 2209 // two conditions together. 2210 Instruction *New = Cond->clone(); 2211 RemapInstruction(New, VMap, 2212 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2213 PredBlock->getInstList().insert(PBI, New); 2214 New->takeName(Cond); 2215 Cond->setName(New->getName() + ".old"); 2216 2217 if (BI->isConditional()) { 2218 Instruction *NewCond = 2219 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2220 New, "or.cond")); 2221 PBI->setCondition(NewCond); 2222 2223 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2224 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2225 PredFalseWeight); 2226 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2227 SuccFalseWeight); 2228 SmallVector<uint64_t, 8> NewWeights; 2229 2230 if (PBI->getSuccessor(0) == BB) { 2231 if (PredHasWeights && SuccHasWeights) { 2232 // PBI: br i1 %x, BB, FalseDest 2233 // BI: br i1 %y, TrueDest, FalseDest 2234 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2235 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2236 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2237 // TrueWeight for PBI * FalseWeight for BI. 2238 // We assume that total weights of a BranchInst can fit into 32 bits. 2239 // Therefore, we will not have overflow using 64-bit arithmetic. 2240 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2241 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2242 } 2243 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2244 PBI->setSuccessor(0, TrueDest); 2245 } 2246 if (PBI->getSuccessor(1) == BB) { 2247 if (PredHasWeights && SuccHasWeights) { 2248 // PBI: br i1 %x, TrueDest, BB 2249 // BI: br i1 %y, TrueDest, FalseDest 2250 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2251 // FalseWeight for PBI * TrueWeight for BI. 2252 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2253 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2254 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2255 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2256 } 2257 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2258 PBI->setSuccessor(1, FalseDest); 2259 } 2260 if (NewWeights.size() == 2) { 2261 // Halve the weights if any of them cannot fit in an uint32_t 2262 FitWeights(NewWeights); 2263 2264 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2265 PBI->setMetadata(LLVMContext::MD_prof, 2266 MDBuilder(BI->getContext()). 2267 createBranchWeights(MDWeights)); 2268 } else 2269 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2270 } else { 2271 // Update PHI nodes in the common successors. 2272 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2273 ConstantInt *PBI_C = cast<ConstantInt>( 2274 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2275 assert(PBI_C->getType()->isIntegerTy(1)); 2276 Instruction *MergedCond = nullptr; 2277 if (PBI->getSuccessor(0) == TrueDest) { 2278 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2279 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2280 // is false: !PBI_Cond and BI_Value 2281 Instruction *NotCond = 2282 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2283 "not.cond")); 2284 MergedCond = 2285 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2286 NotCond, New, 2287 "and.cond")); 2288 if (PBI_C->isOne()) 2289 MergedCond = 2290 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2291 PBI->getCondition(), MergedCond, 2292 "or.cond")); 2293 } else { 2294 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2295 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2296 // is false: PBI_Cond and BI_Value 2297 MergedCond = 2298 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2299 PBI->getCondition(), New, 2300 "and.cond")); 2301 if (PBI_C->isOne()) { 2302 Instruction *NotCond = 2303 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2304 "not.cond")); 2305 MergedCond = 2306 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2307 NotCond, MergedCond, 2308 "or.cond")); 2309 } 2310 } 2311 // Update PHI Node. 2312 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2313 MergedCond); 2314 } 2315 // Change PBI from Conditional to Unconditional. 2316 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2317 EraseTerminatorInstAndDCECond(PBI); 2318 PBI = New_PBI; 2319 } 2320 2321 // TODO: If BB is reachable from all paths through PredBlock, then we 2322 // could replace PBI's branch probabilities with BI's. 2323 2324 // Copy any debug value intrinsics into the end of PredBlock. 2325 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2326 if (isa<DbgInfoIntrinsic>(*I)) 2327 I->clone()->insertBefore(PBI); 2328 2329 return true; 2330 } 2331 return false; 2332 } 2333 2334 /// If we have a conditional branch as a predecessor of another block, 2335 /// this function tries to simplify it. We know 2336 /// that PBI and BI are both conditional branches, and BI is in one of the 2337 /// successor blocks of PBI - PBI branches to BI. 2338 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2339 assert(PBI->isConditional() && BI->isConditional()); 2340 BasicBlock *BB = BI->getParent(); 2341 2342 // If this block ends with a branch instruction, and if there is a 2343 // predecessor that ends on a branch of the same condition, make 2344 // this conditional branch redundant. 2345 if (PBI->getCondition() == BI->getCondition() && 2346 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2347 // Okay, the outcome of this conditional branch is statically 2348 // knowable. If this block had a single pred, handle specially. 2349 if (BB->getSinglePredecessor()) { 2350 // Turn this into a branch on constant. 2351 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2352 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2353 CondIsTrue)); 2354 return true; // Nuke the branch on constant. 2355 } 2356 2357 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2358 // in the constant and simplify the block result. Subsequent passes of 2359 // simplifycfg will thread the block. 2360 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2361 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2362 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2363 std::distance(PB, PE), 2364 BI->getCondition()->getName() + ".pr", 2365 BB->begin()); 2366 // Okay, we're going to insert the PHI node. Since PBI is not the only 2367 // predecessor, compute the PHI'd conditional value for all of the preds. 2368 // Any predecessor where the condition is not computable we keep symbolic. 2369 for (pred_iterator PI = PB; PI != PE; ++PI) { 2370 BasicBlock *P = *PI; 2371 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2372 PBI != BI && PBI->isConditional() && 2373 PBI->getCondition() == BI->getCondition() && 2374 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2375 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2376 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2377 CondIsTrue), P); 2378 } else { 2379 NewPN->addIncoming(BI->getCondition(), P); 2380 } 2381 } 2382 2383 BI->setCondition(NewPN); 2384 return true; 2385 } 2386 } 2387 2388 // If this is a conditional branch in an empty block, and if any 2389 // predecessors are a conditional branch to one of our destinations, 2390 // fold the conditions into logical ops and one cond br. 2391 BasicBlock::iterator BBI = BB->begin(); 2392 // Ignore dbg intrinsics. 2393 while (isa<DbgInfoIntrinsic>(BBI)) 2394 ++BBI; 2395 if (&*BBI != BI) 2396 return false; 2397 2398 2399 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2400 if (CE->canTrap()) 2401 return false; 2402 2403 int PBIOp, BIOp; 2404 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2405 PBIOp = BIOp = 0; 2406 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2407 PBIOp = 0, BIOp = 1; 2408 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2409 PBIOp = 1, BIOp = 0; 2410 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2411 PBIOp = BIOp = 1; 2412 else 2413 return false; 2414 2415 // Check to make sure that the other destination of this branch 2416 // isn't BB itself. If so, this is an infinite loop that will 2417 // keep getting unwound. 2418 if (PBI->getSuccessor(PBIOp) == BB) 2419 return false; 2420 2421 // Do not perform this transformation if it would require 2422 // insertion of a large number of select instructions. For targets 2423 // without predication/cmovs, this is a big pessimization. 2424 2425 // Also do not perform this transformation if any phi node in the common 2426 // destination block can trap when reached by BB or PBB (PR17073). In that 2427 // case, it would be unsafe to hoist the operation into a select instruction. 2428 2429 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2430 unsigned NumPhis = 0; 2431 for (BasicBlock::iterator II = CommonDest->begin(); 2432 isa<PHINode>(II); ++II, ++NumPhis) { 2433 if (NumPhis > 2) // Disable this xform. 2434 return false; 2435 2436 PHINode *PN = cast<PHINode>(II); 2437 Value *BIV = PN->getIncomingValueForBlock(BB); 2438 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2439 if (CE->canTrap()) 2440 return false; 2441 2442 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2443 Value *PBIV = PN->getIncomingValue(PBBIdx); 2444 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2445 if (CE->canTrap()) 2446 return false; 2447 } 2448 2449 // Finally, if everything is ok, fold the branches to logical ops. 2450 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2451 2452 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2453 << "AND: " << *BI->getParent()); 2454 2455 2456 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2457 // branch in it, where one edge (OtherDest) goes back to itself but the other 2458 // exits. We don't *know* that the program avoids the infinite loop 2459 // (even though that seems likely). If we do this xform naively, we'll end up 2460 // recursively unpeeling the loop. Since we know that (after the xform is 2461 // done) that the block *is* infinite if reached, we just make it an obviously 2462 // infinite loop with no cond branch. 2463 if (OtherDest == BB) { 2464 // Insert it at the end of the function, because it's either code, 2465 // or it won't matter if it's hot. :) 2466 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2467 "infloop", BB->getParent()); 2468 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2469 OtherDest = InfLoopBlock; 2470 } 2471 2472 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2473 2474 // BI may have other predecessors. Because of this, we leave 2475 // it alone, but modify PBI. 2476 2477 // Make sure we get to CommonDest on True&True directions. 2478 Value *PBICond = PBI->getCondition(); 2479 IRBuilder<true, NoFolder> Builder(PBI); 2480 if (PBIOp) 2481 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2482 2483 Value *BICond = BI->getCondition(); 2484 if (BIOp) 2485 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2486 2487 // Merge the conditions. 2488 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2489 2490 // Modify PBI to branch on the new condition to the new dests. 2491 PBI->setCondition(Cond); 2492 PBI->setSuccessor(0, CommonDest); 2493 PBI->setSuccessor(1, OtherDest); 2494 2495 // Update branch weight for PBI. 2496 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2497 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2498 PredFalseWeight); 2499 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2500 SuccFalseWeight); 2501 if (PredHasWeights && SuccHasWeights) { 2502 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2503 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2504 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2505 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2506 // The weight to CommonDest should be PredCommon * SuccTotal + 2507 // PredOther * SuccCommon. 2508 // The weight to OtherDest should be PredOther * SuccOther. 2509 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2510 PredOther * SuccCommon, 2511 PredOther * SuccOther}; 2512 // Halve the weights if any of them cannot fit in an uint32_t 2513 FitWeights(NewWeights); 2514 2515 PBI->setMetadata(LLVMContext::MD_prof, 2516 MDBuilder(BI->getContext()) 2517 .createBranchWeights(NewWeights[0], NewWeights[1])); 2518 } 2519 2520 // OtherDest may have phi nodes. If so, add an entry from PBI's 2521 // block that are identical to the entries for BI's block. 2522 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2523 2524 // We know that the CommonDest already had an edge from PBI to 2525 // it. If it has PHIs though, the PHIs may have different 2526 // entries for BB and PBI's BB. If so, insert a select to make 2527 // them agree. 2528 PHINode *PN; 2529 for (BasicBlock::iterator II = CommonDest->begin(); 2530 (PN = dyn_cast<PHINode>(II)); ++II) { 2531 Value *BIV = PN->getIncomingValueForBlock(BB); 2532 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2533 Value *PBIV = PN->getIncomingValue(PBBIdx); 2534 if (BIV != PBIV) { 2535 // Insert a select in PBI to pick the right value. 2536 Value *NV = cast<SelectInst> 2537 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2538 PN->setIncomingValue(PBBIdx, NV); 2539 } 2540 } 2541 2542 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2543 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2544 2545 // This basic block is probably dead. We know it has at least 2546 // one fewer predecessor. 2547 return true; 2548 } 2549 2550 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2551 // true or to FalseBB if Cond is false. 2552 // Takes care of updating the successors and removing the old terminator. 2553 // Also makes sure not to introduce new successors by assuming that edges to 2554 // non-successor TrueBBs and FalseBBs aren't reachable. 2555 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2556 BasicBlock *TrueBB, BasicBlock *FalseBB, 2557 uint32_t TrueWeight, 2558 uint32_t FalseWeight){ 2559 // Remove any superfluous successor edges from the CFG. 2560 // First, figure out which successors to preserve. 2561 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2562 // successor. 2563 BasicBlock *KeepEdge1 = TrueBB; 2564 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2565 2566 // Then remove the rest. 2567 for (BasicBlock *Succ : OldTerm->successors()) { 2568 // Make sure only to keep exactly one copy of each edge. 2569 if (Succ == KeepEdge1) 2570 KeepEdge1 = nullptr; 2571 else if (Succ == KeepEdge2) 2572 KeepEdge2 = nullptr; 2573 else 2574 Succ->removePredecessor(OldTerm->getParent()); 2575 } 2576 2577 IRBuilder<> Builder(OldTerm); 2578 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2579 2580 // Insert an appropriate new terminator. 2581 if (!KeepEdge1 && !KeepEdge2) { 2582 if (TrueBB == FalseBB) 2583 // We were only looking for one successor, and it was present. 2584 // Create an unconditional branch to it. 2585 Builder.CreateBr(TrueBB); 2586 else { 2587 // We found both of the successors we were looking for. 2588 // Create a conditional branch sharing the condition of the select. 2589 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2590 if (TrueWeight != FalseWeight) 2591 NewBI->setMetadata(LLVMContext::MD_prof, 2592 MDBuilder(OldTerm->getContext()). 2593 createBranchWeights(TrueWeight, FalseWeight)); 2594 } 2595 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2596 // Neither of the selected blocks were successors, so this 2597 // terminator must be unreachable. 2598 new UnreachableInst(OldTerm->getContext(), OldTerm); 2599 } else { 2600 // One of the selected values was a successor, but the other wasn't. 2601 // Insert an unconditional branch to the one that was found; 2602 // the edge to the one that wasn't must be unreachable. 2603 if (!KeepEdge1) 2604 // Only TrueBB was found. 2605 Builder.CreateBr(TrueBB); 2606 else 2607 // Only FalseBB was found. 2608 Builder.CreateBr(FalseBB); 2609 } 2610 2611 EraseTerminatorInstAndDCECond(OldTerm); 2612 return true; 2613 } 2614 2615 // Replaces 2616 // (switch (select cond, X, Y)) on constant X, Y 2617 // with a branch - conditional if X and Y lead to distinct BBs, 2618 // unconditional otherwise. 2619 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2620 // Check for constant integer values in the select. 2621 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2622 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2623 if (!TrueVal || !FalseVal) 2624 return false; 2625 2626 // Find the relevant condition and destinations. 2627 Value *Condition = Select->getCondition(); 2628 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2629 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2630 2631 // Get weight for TrueBB and FalseBB. 2632 uint32_t TrueWeight = 0, FalseWeight = 0; 2633 SmallVector<uint64_t, 8> Weights; 2634 bool HasWeights = HasBranchWeights(SI); 2635 if (HasWeights) { 2636 GetBranchWeights(SI, Weights); 2637 if (Weights.size() == 1 + SI->getNumCases()) { 2638 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2639 getSuccessorIndex()]; 2640 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2641 getSuccessorIndex()]; 2642 } 2643 } 2644 2645 // Perform the actual simplification. 2646 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2647 TrueWeight, FalseWeight); 2648 } 2649 2650 // Replaces 2651 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2652 // blockaddress(@fn, BlockB))) 2653 // with 2654 // (br cond, BlockA, BlockB). 2655 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2656 // Check that both operands of the select are block addresses. 2657 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2658 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2659 if (!TBA || !FBA) 2660 return false; 2661 2662 // Extract the actual blocks. 2663 BasicBlock *TrueBB = TBA->getBasicBlock(); 2664 BasicBlock *FalseBB = FBA->getBasicBlock(); 2665 2666 // Perform the actual simplification. 2667 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2668 0, 0); 2669 } 2670 2671 /// This is called when we find an icmp instruction 2672 /// (a seteq/setne with a constant) as the only instruction in a 2673 /// block that ends with an uncond branch. We are looking for a very specific 2674 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2675 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2676 /// default value goes to an uncond block with a seteq in it, we get something 2677 /// like: 2678 /// 2679 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2680 /// DEFAULT: 2681 /// %tmp = icmp eq i8 %A, 92 2682 /// br label %end 2683 /// end: 2684 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2685 /// 2686 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2687 /// the PHI, merging the third icmp into the switch. 2688 static bool TryToSimplifyUncondBranchWithICmpInIt( 2689 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 2690 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 2691 AssumptionCache *AC) { 2692 BasicBlock *BB = ICI->getParent(); 2693 2694 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2695 // complex. 2696 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2697 2698 Value *V = ICI->getOperand(0); 2699 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2700 2701 // The pattern we're looking for is where our only predecessor is a switch on 2702 // 'V' and this block is the default case for the switch. In this case we can 2703 // fold the compared value into the switch to simplify things. 2704 BasicBlock *Pred = BB->getSinglePredecessor(); 2705 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2706 2707 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2708 if (SI->getCondition() != V) 2709 return false; 2710 2711 // If BB is reachable on a non-default case, then we simply know the value of 2712 // V in this block. Substitute it and constant fold the icmp instruction 2713 // away. 2714 if (SI->getDefaultDest() != BB) { 2715 ConstantInt *VVal = SI->findCaseDest(BB); 2716 assert(VVal && "Should have a unique destination value"); 2717 ICI->setOperand(0, VVal); 2718 2719 if (Value *V = SimplifyInstruction(ICI, DL)) { 2720 ICI->replaceAllUsesWith(V); 2721 ICI->eraseFromParent(); 2722 } 2723 // BB is now empty, so it is likely to simplify away. 2724 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 2725 } 2726 2727 // Ok, the block is reachable from the default dest. If the constant we're 2728 // comparing exists in one of the other edges, then we can constant fold ICI 2729 // and zap it. 2730 if (SI->findCaseValue(Cst) != SI->case_default()) { 2731 Value *V; 2732 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2733 V = ConstantInt::getFalse(BB->getContext()); 2734 else 2735 V = ConstantInt::getTrue(BB->getContext()); 2736 2737 ICI->replaceAllUsesWith(V); 2738 ICI->eraseFromParent(); 2739 // BB is now empty, so it is likely to simplify away. 2740 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 2741 } 2742 2743 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2744 // the block. 2745 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2746 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2747 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2748 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2749 return false; 2750 2751 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2752 // true in the PHI. 2753 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2754 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2755 2756 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2757 std::swap(DefaultCst, NewCst); 2758 2759 // Replace ICI (which is used by the PHI for the default value) with true or 2760 // false depending on if it is EQ or NE. 2761 ICI->replaceAllUsesWith(DefaultCst); 2762 ICI->eraseFromParent(); 2763 2764 // Okay, the switch goes to this block on a default value. Add an edge from 2765 // the switch to the merge point on the compared value. 2766 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2767 BB->getParent(), BB); 2768 SmallVector<uint64_t, 8> Weights; 2769 bool HasWeights = HasBranchWeights(SI); 2770 if (HasWeights) { 2771 GetBranchWeights(SI, Weights); 2772 if (Weights.size() == 1 + SI->getNumCases()) { 2773 // Split weight for default case to case for "Cst". 2774 Weights[0] = (Weights[0]+1) >> 1; 2775 Weights.push_back(Weights[0]); 2776 2777 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2778 SI->setMetadata(LLVMContext::MD_prof, 2779 MDBuilder(SI->getContext()). 2780 createBranchWeights(MDWeights)); 2781 } 2782 } 2783 SI->addCase(Cst, NewBB); 2784 2785 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2786 Builder.SetInsertPoint(NewBB); 2787 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2788 Builder.CreateBr(SuccBlock); 2789 PHIUse->addIncoming(NewCst, NewBB); 2790 return true; 2791 } 2792 2793 /// The specified branch is a conditional branch. 2794 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2795 /// fold it into a switch instruction if so. 2796 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 2797 const DataLayout &DL) { 2798 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2799 if (!Cond) return false; 2800 2801 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2802 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2803 // 'setne's and'ed together, collect them. 2804 2805 // Try to gather values from a chain of and/or to be turned into a switch 2806 ConstantComparesGatherer ConstantCompare(Cond, DL); 2807 // Unpack the result 2808 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 2809 Value *CompVal = ConstantCompare.CompValue; 2810 unsigned UsedICmps = ConstantCompare.UsedICmps; 2811 Value *ExtraCase = ConstantCompare.Extra; 2812 2813 // If we didn't have a multiply compared value, fail. 2814 if (!CompVal) return false; 2815 2816 // Avoid turning single icmps into a switch. 2817 if (UsedICmps <= 1) 2818 return false; 2819 2820 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 2821 2822 // There might be duplicate constants in the list, which the switch 2823 // instruction can't handle, remove them now. 2824 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2825 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2826 2827 // If Extra was used, we require at least two switch values to do the 2828 // transformation. A switch with one value is just a conditional branch. 2829 if (ExtraCase && Values.size() < 2) return false; 2830 2831 // TODO: Preserve branch weight metadata, similarly to how 2832 // FoldValueComparisonIntoPredecessors preserves it. 2833 2834 // Figure out which block is which destination. 2835 BasicBlock *DefaultBB = BI->getSuccessor(1); 2836 BasicBlock *EdgeBB = BI->getSuccessor(0); 2837 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2838 2839 BasicBlock *BB = BI->getParent(); 2840 2841 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2842 << " cases into SWITCH. BB is:\n" << *BB); 2843 2844 // If there are any extra values that couldn't be folded into the switch 2845 // then we evaluate them with an explicit branch first. Split the block 2846 // right before the condbr to handle it. 2847 if (ExtraCase) { 2848 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2849 // Remove the uncond branch added to the old block. 2850 TerminatorInst *OldTI = BB->getTerminator(); 2851 Builder.SetInsertPoint(OldTI); 2852 2853 if (TrueWhenEqual) 2854 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2855 else 2856 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2857 2858 OldTI->eraseFromParent(); 2859 2860 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2861 // for the edge we just added. 2862 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2863 2864 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2865 << "\nEXTRABB = " << *BB); 2866 BB = NewBB; 2867 } 2868 2869 Builder.SetInsertPoint(BI); 2870 // Convert pointer to int before we switch. 2871 if (CompVal->getType()->isPointerTy()) { 2872 CompVal = Builder.CreatePtrToInt( 2873 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 2874 } 2875 2876 // Create the new switch instruction now. 2877 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2878 2879 // Add all of the 'cases' to the switch instruction. 2880 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2881 New->addCase(Values[i], EdgeBB); 2882 2883 // We added edges from PI to the EdgeBB. As such, if there were any 2884 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2885 // the number of edges added. 2886 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2887 isa<PHINode>(BBI); ++BBI) { 2888 PHINode *PN = cast<PHINode>(BBI); 2889 Value *InVal = PN->getIncomingValueForBlock(BB); 2890 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2891 PN->addIncoming(InVal, BB); 2892 } 2893 2894 // Erase the old branch instruction. 2895 EraseTerminatorInstAndDCECond(BI); 2896 2897 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2898 return true; 2899 } 2900 2901 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2902 // If this is a trivial landing pad that just continues unwinding the caught 2903 // exception then zap the landing pad, turning its invokes into calls. 2904 BasicBlock *BB = RI->getParent(); 2905 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2906 if (RI->getValue() != LPInst) 2907 // Not a landing pad, or the resume is not unwinding the exception that 2908 // caused control to branch here. 2909 return false; 2910 2911 // Check that there are no other instructions except for debug intrinsics. 2912 BasicBlock::iterator I = LPInst, E = RI; 2913 while (++I != E) 2914 if (!isa<DbgInfoIntrinsic>(I)) 2915 return false; 2916 2917 // Turn all invokes that unwind here into calls and delete the basic block. 2918 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2919 BasicBlock *Pred = *PI++; 2920 removeUnwindEdge(Pred); 2921 } 2922 2923 // The landingpad is now unreachable. Zap it. 2924 BB->eraseFromParent(); 2925 return true; 2926 } 2927 2928 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 2929 // If this is a trivial cleanup pad that executes no instructions, it can be 2930 // eliminated. If the cleanup pad continues to the caller, any predecessor 2931 // that is an EH pad will be updated to continue to the caller and any 2932 // predecessor that terminates with an invoke instruction will have its invoke 2933 // instruction converted to a call instruction. If the cleanup pad being 2934 // simplified does not continue to the caller, each predecessor will be 2935 // updated to continue to the unwind destination of the cleanup pad being 2936 // simplified. 2937 BasicBlock *BB = RI->getParent(); 2938 Instruction *CPInst = dyn_cast<CleanupPadInst>(BB->getFirstNonPHI()); 2939 if (!CPInst) 2940 // This isn't an empty cleanup. 2941 return false; 2942 2943 // Check that there are no other instructions except for debug intrinsics. 2944 BasicBlock::iterator I = CPInst, E = RI; 2945 while (++I != E) 2946 if (!isa<DbgInfoIntrinsic>(I)) 2947 return false; 2948 2949 // If the cleanup return we are simplifying unwinds to the caller, this 2950 // will set UnwindDest to nullptr. 2951 BasicBlock *UnwindDest = RI->getUnwindDest(); 2952 2953 // We're about to remove BB from the control flow. Before we do, sink any 2954 // PHINodes into the unwind destination. Doing this before changing the 2955 // control flow avoids some potentially slow checks, since we can currently 2956 // be certain that UnwindDest and BB have no common predecessors (since they 2957 // are both EH pads). 2958 if (UnwindDest) { 2959 // First, go through the PHI nodes in UnwindDest and update any nodes that 2960 // reference the block we are removing 2961 for (BasicBlock::iterator I = UnwindDest->begin(), 2962 IE = UnwindDest->getFirstNonPHI(); 2963 I != IE; ++I) { 2964 PHINode *DestPN = cast<PHINode>(I); 2965 2966 int Idx = DestPN->getBasicBlockIndex(BB); 2967 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 2968 assert(Idx != -1); 2969 // This PHI node has an incoming value that corresponds to a control 2970 // path through the cleanup pad we are removing. If the incoming 2971 // value is in the cleanup pad, it must be a PHINode (because we 2972 // verified above that the block is otherwise empty). Otherwise, the 2973 // value is either a constant or a value that dominates the cleanup 2974 // pad being removed. 2975 // 2976 // Because BB and UnwindDest are both EH pads, all of their 2977 // predecessors must unwind to these blocks, and since no instruction 2978 // can have multiple unwind destinations, there will be no overlap in 2979 // incoming blocks between SrcPN and DestPN. 2980 Value *SrcVal = DestPN->getIncomingValue(Idx); 2981 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 2982 2983 // Remove the entry for the block we are deleting. 2984 DestPN->removeIncomingValue(Idx, false); 2985 2986 if (SrcPN && SrcPN->getParent() == BB) { 2987 // If the incoming value was a PHI node in the cleanup pad we are 2988 // removing, we need to merge that PHI node's incoming values into 2989 // DestPN. 2990 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 2991 SrcIdx != SrcE; ++SrcIdx) { 2992 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 2993 SrcPN->getIncomingBlock(SrcIdx)); 2994 } 2995 } else { 2996 // Otherwise, the incoming value came from above BB and 2997 // so we can just reuse it. We must associate all of BB's 2998 // predecessors with this value. 2999 for (auto *pred : predecessors(BB)) { 3000 DestPN->addIncoming(SrcVal, pred); 3001 } 3002 } 3003 } 3004 3005 // Sink any remaining PHI nodes directly into UnwindDest. 3006 Instruction *InsertPt = UnwindDest->getFirstNonPHI(); 3007 for (BasicBlock::iterator I = BB->begin(), IE = BB->getFirstNonPHI(); 3008 I != IE;) { 3009 // The iterator must be incremented here because the instructions are 3010 // being moved to another block. 3011 PHINode *PN = cast<PHINode>(I++); 3012 if (PN->use_empty()) 3013 // If the PHI node has no uses, just leave it. It will be erased 3014 // when we erase BB below. 3015 continue; 3016 3017 // Otherwise, sink this PHI node into UnwindDest. 3018 // Any predecessors to UnwindDest which are not already represented 3019 // must be back edges which inherit the value from the path through 3020 // BB. In this case, the PHI value must reference itself. 3021 for (auto *pred : predecessors(UnwindDest)) 3022 if (pred != BB) 3023 PN->addIncoming(PN, pred); 3024 PN->moveBefore(InsertPt); 3025 } 3026 } 3027 3028 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3029 // The iterator must be updated here because we are removing this pred. 3030 BasicBlock *PredBB = *PI++; 3031 if (UnwindDest == nullptr) { 3032 removeUnwindEdge(PredBB); 3033 } else { 3034 TerminatorInst *TI = PredBB->getTerminator(); 3035 TI->replaceUsesOfWith(BB, UnwindDest); 3036 } 3037 } 3038 3039 // The cleanup pad is now unreachable. Zap it. 3040 BB->eraseFromParent(); 3041 return true; 3042 } 3043 3044 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3045 BasicBlock *BB = RI->getParent(); 3046 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3047 3048 // Find predecessors that end with branches. 3049 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3050 SmallVector<BranchInst*, 8> CondBranchPreds; 3051 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3052 BasicBlock *P = *PI; 3053 TerminatorInst *PTI = P->getTerminator(); 3054 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3055 if (BI->isUnconditional()) 3056 UncondBranchPreds.push_back(P); 3057 else 3058 CondBranchPreds.push_back(BI); 3059 } 3060 } 3061 3062 // If we found some, do the transformation! 3063 if (!UncondBranchPreds.empty() && DupRet) { 3064 while (!UncondBranchPreds.empty()) { 3065 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3066 DEBUG(dbgs() << "FOLDING: " << *BB 3067 << "INTO UNCOND BRANCH PRED: " << *Pred); 3068 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3069 } 3070 3071 // If we eliminated all predecessors of the block, delete the block now. 3072 if (pred_empty(BB)) 3073 // We know there are no successors, so just nuke the block. 3074 BB->eraseFromParent(); 3075 3076 return true; 3077 } 3078 3079 // Check out all of the conditional branches going to this return 3080 // instruction. If any of them just select between returns, change the 3081 // branch itself into a select/return pair. 3082 while (!CondBranchPreds.empty()) { 3083 BranchInst *BI = CondBranchPreds.pop_back_val(); 3084 3085 // Check to see if the non-BB successor is also a return block. 3086 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3087 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3088 SimplifyCondBranchToTwoReturns(BI, Builder)) 3089 return true; 3090 } 3091 return false; 3092 } 3093 3094 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3095 BasicBlock *BB = UI->getParent(); 3096 3097 bool Changed = false; 3098 3099 // If there are any instructions immediately before the unreachable that can 3100 // be removed, do so. 3101 while (UI != BB->begin()) { 3102 BasicBlock::iterator BBI = UI; 3103 --BBI; 3104 // Do not delete instructions that can have side effects which might cause 3105 // the unreachable to not be reachable; specifically, calls and volatile 3106 // operations may have this effect. 3107 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3108 3109 if (BBI->mayHaveSideEffects()) { 3110 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3111 if (SI->isVolatile()) 3112 break; 3113 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3114 if (LI->isVolatile()) 3115 break; 3116 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3117 if (RMWI->isVolatile()) 3118 break; 3119 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3120 if (CXI->isVolatile()) 3121 break; 3122 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3123 !isa<LandingPadInst>(BBI)) { 3124 break; 3125 } 3126 // Note that deleting LandingPad's here is in fact okay, although it 3127 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3128 // all the predecessors of this block will be the unwind edges of Invokes, 3129 // and we can therefore guarantee this block will be erased. 3130 } 3131 3132 // Delete this instruction (any uses are guaranteed to be dead) 3133 if (!BBI->use_empty()) 3134 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3135 BBI->eraseFromParent(); 3136 Changed = true; 3137 } 3138 3139 // If the unreachable instruction is the first in the block, take a gander 3140 // at all of the predecessors of this instruction, and simplify them. 3141 if (&BB->front() != UI) return Changed; 3142 3143 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3144 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3145 TerminatorInst *TI = Preds[i]->getTerminator(); 3146 IRBuilder<> Builder(TI); 3147 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3148 if (BI->isUnconditional()) { 3149 if (BI->getSuccessor(0) == BB) { 3150 new UnreachableInst(TI->getContext(), TI); 3151 TI->eraseFromParent(); 3152 Changed = true; 3153 } 3154 } else { 3155 if (BI->getSuccessor(0) == BB) { 3156 Builder.CreateBr(BI->getSuccessor(1)); 3157 EraseTerminatorInstAndDCECond(BI); 3158 } else if (BI->getSuccessor(1) == BB) { 3159 Builder.CreateBr(BI->getSuccessor(0)); 3160 EraseTerminatorInstAndDCECond(BI); 3161 Changed = true; 3162 } 3163 } 3164 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3165 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3166 i != e; ++i) 3167 if (i.getCaseSuccessor() == BB) { 3168 BB->removePredecessor(SI->getParent()); 3169 SI->removeCase(i); 3170 --i; --e; 3171 Changed = true; 3172 } 3173 } else if ((isa<InvokeInst>(TI) && 3174 cast<InvokeInst>(TI)->getUnwindDest() == BB) || 3175 isa<CatchEndPadInst>(TI) || isa<TerminatePadInst>(TI)) { 3176 removeUnwindEdge(TI->getParent()); 3177 Changed = true; 3178 } else if (isa<CleanupReturnInst>(TI) || isa<CleanupEndPadInst>(TI) || 3179 isa<CatchReturnInst>(TI)) { 3180 new UnreachableInst(TI->getContext(), TI); 3181 TI->eraseFromParent(); 3182 Changed = true; 3183 } 3184 // TODO: If TI is a CatchPadInst, then (BB must be its normal dest and) 3185 // we can eliminate it, redirecting its preds to its unwind successor, 3186 // or to the next outer handler if the removed catch is the last for its 3187 // catchendpad. 3188 } 3189 3190 // If this block is now dead, remove it. 3191 if (pred_empty(BB) && 3192 BB != &BB->getParent()->getEntryBlock()) { 3193 // We know there are no successors, so just nuke the block. 3194 BB->eraseFromParent(); 3195 return true; 3196 } 3197 3198 return Changed; 3199 } 3200 3201 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3202 assert(Cases.size() >= 1); 3203 3204 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3205 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3206 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3207 return false; 3208 } 3209 return true; 3210 } 3211 3212 /// Turn a switch with two reachable destinations into an integer range 3213 /// comparison and branch. 3214 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3215 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3216 3217 bool HasDefault = 3218 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3219 3220 // Partition the cases into two sets with different destinations. 3221 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3222 BasicBlock *DestB = nullptr; 3223 SmallVector <ConstantInt *, 16> CasesA; 3224 SmallVector <ConstantInt *, 16> CasesB; 3225 3226 for (SwitchInst::CaseIt I : SI->cases()) { 3227 BasicBlock *Dest = I.getCaseSuccessor(); 3228 if (!DestA) DestA = Dest; 3229 if (Dest == DestA) { 3230 CasesA.push_back(I.getCaseValue()); 3231 continue; 3232 } 3233 if (!DestB) DestB = Dest; 3234 if (Dest == DestB) { 3235 CasesB.push_back(I.getCaseValue()); 3236 continue; 3237 } 3238 return false; // More than two destinations. 3239 } 3240 3241 assert(DestA && DestB && "Single-destination switch should have been folded."); 3242 assert(DestA != DestB); 3243 assert(DestB != SI->getDefaultDest()); 3244 assert(!CasesB.empty() && "There must be non-default cases."); 3245 assert(!CasesA.empty() || HasDefault); 3246 3247 // Figure out if one of the sets of cases form a contiguous range. 3248 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3249 BasicBlock *ContiguousDest = nullptr; 3250 BasicBlock *OtherDest = nullptr; 3251 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3252 ContiguousCases = &CasesA; 3253 ContiguousDest = DestA; 3254 OtherDest = DestB; 3255 } else if (CasesAreContiguous(CasesB)) { 3256 ContiguousCases = &CasesB; 3257 ContiguousDest = DestB; 3258 OtherDest = DestA; 3259 } else 3260 return false; 3261 3262 // Start building the compare and branch. 3263 3264 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3265 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3266 3267 Value *Sub = SI->getCondition(); 3268 if (!Offset->isNullValue()) 3269 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3270 3271 Value *Cmp; 3272 // If NumCases overflowed, then all possible values jump to the successor. 3273 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3274 Cmp = ConstantInt::getTrue(SI->getContext()); 3275 else 3276 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3277 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3278 3279 // Update weight for the newly-created conditional branch. 3280 if (HasBranchWeights(SI)) { 3281 SmallVector<uint64_t, 8> Weights; 3282 GetBranchWeights(SI, Weights); 3283 if (Weights.size() == 1 + SI->getNumCases()) { 3284 uint64_t TrueWeight = 0; 3285 uint64_t FalseWeight = 0; 3286 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3287 if (SI->getSuccessor(I) == ContiguousDest) 3288 TrueWeight += Weights[I]; 3289 else 3290 FalseWeight += Weights[I]; 3291 } 3292 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3293 TrueWeight /= 2; 3294 FalseWeight /= 2; 3295 } 3296 NewBI->setMetadata(LLVMContext::MD_prof, 3297 MDBuilder(SI->getContext()).createBranchWeights( 3298 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3299 } 3300 } 3301 3302 // Prune obsolete incoming values off the successors' PHI nodes. 3303 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3304 unsigned PreviousEdges = ContiguousCases->size(); 3305 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3306 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3307 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3308 } 3309 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3310 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3311 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3312 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3313 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3314 } 3315 3316 // Drop the switch. 3317 SI->eraseFromParent(); 3318 3319 return true; 3320 } 3321 3322 /// Compute masked bits for the condition of a switch 3323 /// and use it to remove dead cases. 3324 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3325 const DataLayout &DL) { 3326 Value *Cond = SI->getCondition(); 3327 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3328 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3329 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3330 3331 // Gather dead cases. 3332 SmallVector<ConstantInt*, 8> DeadCases; 3333 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3334 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3335 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3336 DeadCases.push_back(I.getCaseValue()); 3337 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3338 << I.getCaseValue() << "' is dead.\n"); 3339 } 3340 } 3341 3342 // If we can prove that the cases must cover all possible values, the 3343 // default destination becomes dead and we can remove it. If we know some 3344 // of the bits in the value, we can use that to more precisely compute the 3345 // number of possible unique case values. 3346 bool HasDefault = 3347 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3348 const unsigned NumUnknownBits = Bits - 3349 (KnownZero.Or(KnownOne)).countPopulation(); 3350 assert(NumUnknownBits <= Bits); 3351 if (HasDefault && DeadCases.empty() && 3352 NumUnknownBits < 64 /* avoid overflow */ && 3353 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3354 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3355 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3356 SI->getParent(), ""); 3357 SI->setDefaultDest(NewDefault); 3358 SplitBlock(NewDefault, NewDefault->begin()); 3359 auto *OldTI = NewDefault->getTerminator(); 3360 new UnreachableInst(SI->getContext(), OldTI); 3361 EraseTerminatorInstAndDCECond(OldTI); 3362 return true; 3363 } 3364 3365 SmallVector<uint64_t, 8> Weights; 3366 bool HasWeight = HasBranchWeights(SI); 3367 if (HasWeight) { 3368 GetBranchWeights(SI, Weights); 3369 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3370 } 3371 3372 // Remove dead cases from the switch. 3373 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3374 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3375 assert(Case != SI->case_default() && 3376 "Case was not found. Probably mistake in DeadCases forming."); 3377 if (HasWeight) { 3378 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3379 Weights.pop_back(); 3380 } 3381 3382 // Prune unused values from PHI nodes. 3383 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3384 SI->removeCase(Case); 3385 } 3386 if (HasWeight && Weights.size() >= 2) { 3387 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3388 SI->setMetadata(LLVMContext::MD_prof, 3389 MDBuilder(SI->getParent()->getContext()). 3390 createBranchWeights(MDWeights)); 3391 } 3392 3393 return !DeadCases.empty(); 3394 } 3395 3396 /// If BB would be eligible for simplification by 3397 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3398 /// by an unconditional branch), look at the phi node for BB in the successor 3399 /// block and see if the incoming value is equal to CaseValue. If so, return 3400 /// the phi node, and set PhiIndex to BB's index in the phi node. 3401 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3402 BasicBlock *BB, 3403 int *PhiIndex) { 3404 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3405 return nullptr; // BB must be empty to be a candidate for simplification. 3406 if (!BB->getSinglePredecessor()) 3407 return nullptr; // BB must be dominated by the switch. 3408 3409 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3410 if (!Branch || !Branch->isUnconditional()) 3411 return nullptr; // Terminator must be unconditional branch. 3412 3413 BasicBlock *Succ = Branch->getSuccessor(0); 3414 3415 BasicBlock::iterator I = Succ->begin(); 3416 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3417 int Idx = PHI->getBasicBlockIndex(BB); 3418 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3419 3420 Value *InValue = PHI->getIncomingValue(Idx); 3421 if (InValue != CaseValue) continue; 3422 3423 *PhiIndex = Idx; 3424 return PHI; 3425 } 3426 3427 return nullptr; 3428 } 3429 3430 /// Try to forward the condition of a switch instruction to a phi node 3431 /// dominated by the switch, if that would mean that some of the destination 3432 /// blocks of the switch can be folded away. 3433 /// Returns true if a change is made. 3434 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3435 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3436 ForwardingNodesMap ForwardingNodes; 3437 3438 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3439 ConstantInt *CaseValue = I.getCaseValue(); 3440 BasicBlock *CaseDest = I.getCaseSuccessor(); 3441 3442 int PhiIndex; 3443 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3444 &PhiIndex); 3445 if (!PHI) continue; 3446 3447 ForwardingNodes[PHI].push_back(PhiIndex); 3448 } 3449 3450 bool Changed = false; 3451 3452 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3453 E = ForwardingNodes.end(); I != E; ++I) { 3454 PHINode *Phi = I->first; 3455 SmallVectorImpl<int> &Indexes = I->second; 3456 3457 if (Indexes.size() < 2) continue; 3458 3459 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3460 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3461 Changed = true; 3462 } 3463 3464 return Changed; 3465 } 3466 3467 /// Return true if the backend will be able to handle 3468 /// initializing an array of constants like C. 3469 static bool ValidLookupTableConstant(Constant *C) { 3470 if (C->isThreadDependent()) 3471 return false; 3472 if (C->isDLLImportDependent()) 3473 return false; 3474 3475 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3476 return CE->isGEPWithNoNotionalOverIndexing(); 3477 3478 return isa<ConstantFP>(C) || 3479 isa<ConstantInt>(C) || 3480 isa<ConstantPointerNull>(C) || 3481 isa<GlobalValue>(C) || 3482 isa<UndefValue>(C); 3483 } 3484 3485 /// If V is a Constant, return it. Otherwise, try to look up 3486 /// its constant value in ConstantPool, returning 0 if it's not there. 3487 static Constant *LookupConstant(Value *V, 3488 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3489 if (Constant *C = dyn_cast<Constant>(V)) 3490 return C; 3491 return ConstantPool.lookup(V); 3492 } 3493 3494 /// Try to fold instruction I into a constant. This works for 3495 /// simple instructions such as binary operations where both operands are 3496 /// constant or can be replaced by constants from the ConstantPool. Returns the 3497 /// resulting constant on success, 0 otherwise. 3498 static Constant * 3499 ConstantFold(Instruction *I, const DataLayout &DL, 3500 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3501 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3502 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3503 if (!A) 3504 return nullptr; 3505 if (A->isAllOnesValue()) 3506 return LookupConstant(Select->getTrueValue(), ConstantPool); 3507 if (A->isNullValue()) 3508 return LookupConstant(Select->getFalseValue(), ConstantPool); 3509 return nullptr; 3510 } 3511 3512 SmallVector<Constant *, 4> COps; 3513 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3514 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3515 COps.push_back(A); 3516 else 3517 return nullptr; 3518 } 3519 3520 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3521 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3522 COps[1], DL); 3523 } 3524 3525 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3526 } 3527 3528 /// Try to determine the resulting constant values in phi nodes 3529 /// at the common destination basic block, *CommonDest, for one of the case 3530 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3531 /// case), of a switch instruction SI. 3532 static bool 3533 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 3534 BasicBlock **CommonDest, 3535 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 3536 const DataLayout &DL) { 3537 // The block from which we enter the common destination. 3538 BasicBlock *Pred = SI->getParent(); 3539 3540 // If CaseDest is empty except for some side-effect free instructions through 3541 // which we can constant-propagate the CaseVal, continue to its successor. 3542 SmallDenseMap<Value*, Constant*> ConstantPool; 3543 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3544 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3545 ++I) { 3546 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3547 // If the terminator is a simple branch, continue to the next block. 3548 if (T->getNumSuccessors() != 1) 3549 return false; 3550 Pred = CaseDest; 3551 CaseDest = T->getSuccessor(0); 3552 } else if (isa<DbgInfoIntrinsic>(I)) { 3553 // Skip debug intrinsic. 3554 continue; 3555 } else if (Constant *C = ConstantFold(I, DL, ConstantPool)) { 3556 // Instruction is side-effect free and constant. 3557 3558 // If the instruction has uses outside this block or a phi node slot for 3559 // the block, it is not safe to bypass the instruction since it would then 3560 // no longer dominate all its uses. 3561 for (auto &Use : I->uses()) { 3562 User *User = Use.getUser(); 3563 if (Instruction *I = dyn_cast<Instruction>(User)) 3564 if (I->getParent() == CaseDest) 3565 continue; 3566 if (PHINode *Phi = dyn_cast<PHINode>(User)) 3567 if (Phi->getIncomingBlock(Use) == CaseDest) 3568 continue; 3569 return false; 3570 } 3571 3572 ConstantPool.insert(std::make_pair(I, C)); 3573 } else { 3574 break; 3575 } 3576 } 3577 3578 // If we did not have a CommonDest before, use the current one. 3579 if (!*CommonDest) 3580 *CommonDest = CaseDest; 3581 // If the destination isn't the common one, abort. 3582 if (CaseDest != *CommonDest) 3583 return false; 3584 3585 // Get the values for this case from phi nodes in the destination block. 3586 BasicBlock::iterator I = (*CommonDest)->begin(); 3587 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3588 int Idx = PHI->getBasicBlockIndex(Pred); 3589 if (Idx == -1) 3590 continue; 3591 3592 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3593 ConstantPool); 3594 if (!ConstVal) 3595 return false; 3596 3597 // Be conservative about which kinds of constants we support. 3598 if (!ValidLookupTableConstant(ConstVal)) 3599 return false; 3600 3601 Res.push_back(std::make_pair(PHI, ConstVal)); 3602 } 3603 3604 return Res.size() > 0; 3605 } 3606 3607 // Helper function used to add CaseVal to the list of cases that generate 3608 // Result. 3609 static void MapCaseToResult(ConstantInt *CaseVal, 3610 SwitchCaseResultVectorTy &UniqueResults, 3611 Constant *Result) { 3612 for (auto &I : UniqueResults) { 3613 if (I.first == Result) { 3614 I.second.push_back(CaseVal); 3615 return; 3616 } 3617 } 3618 UniqueResults.push_back(std::make_pair(Result, 3619 SmallVector<ConstantInt*, 4>(1, CaseVal))); 3620 } 3621 3622 // Helper function that initializes a map containing 3623 // results for the PHI node of the common destination block for a switch 3624 // instruction. Returns false if multiple PHI nodes have been found or if 3625 // there is not a common destination block for the switch. 3626 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 3627 BasicBlock *&CommonDest, 3628 SwitchCaseResultVectorTy &UniqueResults, 3629 Constant *&DefaultResult, 3630 const DataLayout &DL) { 3631 for (auto &I : SI->cases()) { 3632 ConstantInt *CaseVal = I.getCaseValue(); 3633 3634 // Resulting value at phi nodes for this case value. 3635 SwitchCaseResultsTy Results; 3636 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 3637 DL)) 3638 return false; 3639 3640 // Only one value per case is permitted 3641 if (Results.size() > 1) 3642 return false; 3643 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 3644 3645 // Check the PHI consistency. 3646 if (!PHI) 3647 PHI = Results[0].first; 3648 else if (PHI != Results[0].first) 3649 return false; 3650 } 3651 // Find the default result value. 3652 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 3653 BasicBlock *DefaultDest = SI->getDefaultDest(); 3654 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 3655 DL); 3656 // If the default value is not found abort unless the default destination 3657 // is unreachable. 3658 DefaultResult = 3659 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 3660 if ((!DefaultResult && 3661 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 3662 return false; 3663 3664 return true; 3665 } 3666 3667 // Helper function that checks if it is possible to transform a switch with only 3668 // two cases (or two cases + default) that produces a result into a select. 3669 // Example: 3670 // switch (a) { 3671 // case 10: %0 = icmp eq i32 %a, 10 3672 // return 10; %1 = select i1 %0, i32 10, i32 4 3673 // case 20: ----> %2 = icmp eq i32 %a, 20 3674 // return 2; %3 = select i1 %2, i32 2, i32 %1 3675 // default: 3676 // return 4; 3677 // } 3678 static Value * 3679 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 3680 Constant *DefaultResult, Value *Condition, 3681 IRBuilder<> &Builder) { 3682 assert(ResultVector.size() == 2 && 3683 "We should have exactly two unique results at this point"); 3684 // If we are selecting between only two cases transform into a simple 3685 // select or a two-way select if default is possible. 3686 if (ResultVector[0].second.size() == 1 && 3687 ResultVector[1].second.size() == 1) { 3688 ConstantInt *const FirstCase = ResultVector[0].second[0]; 3689 ConstantInt *const SecondCase = ResultVector[1].second[0]; 3690 3691 bool DefaultCanTrigger = DefaultResult; 3692 Value *SelectValue = ResultVector[1].first; 3693 if (DefaultCanTrigger) { 3694 Value *const ValueCompare = 3695 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 3696 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 3697 DefaultResult, "switch.select"); 3698 } 3699 Value *const ValueCompare = 3700 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 3701 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 3702 "switch.select"); 3703 } 3704 3705 return nullptr; 3706 } 3707 3708 // Helper function to cleanup a switch instruction that has been converted into 3709 // a select, fixing up PHI nodes and basic blocks. 3710 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 3711 Value *SelectValue, 3712 IRBuilder<> &Builder) { 3713 BasicBlock *SelectBB = SI->getParent(); 3714 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 3715 PHI->removeIncomingValue(SelectBB); 3716 PHI->addIncoming(SelectValue, SelectBB); 3717 3718 Builder.CreateBr(PHI->getParent()); 3719 3720 // Remove the switch. 3721 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3722 BasicBlock *Succ = SI->getSuccessor(i); 3723 3724 if (Succ == PHI->getParent()) 3725 continue; 3726 Succ->removePredecessor(SelectBB); 3727 } 3728 SI->eraseFromParent(); 3729 } 3730 3731 /// If the switch is only used to initialize one or more 3732 /// phi nodes in a common successor block with only two different 3733 /// constant values, replace the switch with select. 3734 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 3735 AssumptionCache *AC, const DataLayout &DL) { 3736 Value *const Cond = SI->getCondition(); 3737 PHINode *PHI = nullptr; 3738 BasicBlock *CommonDest = nullptr; 3739 Constant *DefaultResult; 3740 SwitchCaseResultVectorTy UniqueResults; 3741 // Collect all the cases that will deliver the same value from the switch. 3742 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 3743 DL)) 3744 return false; 3745 // Selects choose between maximum two values. 3746 if (UniqueResults.size() != 2) 3747 return false; 3748 assert(PHI != nullptr && "PHI for value select not found"); 3749 3750 Builder.SetInsertPoint(SI); 3751 Value *SelectValue = ConvertTwoCaseSwitch( 3752 UniqueResults, 3753 DefaultResult, Cond, Builder); 3754 if (SelectValue) { 3755 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 3756 return true; 3757 } 3758 // The switch couldn't be converted into a select. 3759 return false; 3760 } 3761 3762 namespace { 3763 /// This class represents a lookup table that can be used to replace a switch. 3764 class SwitchLookupTable { 3765 public: 3766 /// Create a lookup table to use as a switch replacement with the contents 3767 /// of Values, using DefaultValue to fill any holes in the table. 3768 SwitchLookupTable( 3769 Module &M, uint64_t TableSize, ConstantInt *Offset, 3770 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 3771 Constant *DefaultValue, const DataLayout &DL); 3772 3773 /// Build instructions with Builder to retrieve the value at 3774 /// the position given by Index in the lookup table. 3775 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3776 3777 /// Return true if a table with TableSize elements of 3778 /// type ElementType would fit in a target-legal register. 3779 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 3780 Type *ElementType); 3781 3782 private: 3783 // Depending on the contents of the table, it can be represented in 3784 // different ways. 3785 enum { 3786 // For tables where each element contains the same value, we just have to 3787 // store that single value and return it for each lookup. 3788 SingleValueKind, 3789 3790 // For tables where there is a linear relationship between table index 3791 // and values. We calculate the result with a simple multiplication 3792 // and addition instead of a table lookup. 3793 LinearMapKind, 3794 3795 // For small tables with integer elements, we can pack them into a bitmap 3796 // that fits into a target-legal register. Values are retrieved by 3797 // shift and mask operations. 3798 BitMapKind, 3799 3800 // The table is stored as an array of values. Values are retrieved by load 3801 // instructions from the table. 3802 ArrayKind 3803 } Kind; 3804 3805 // For SingleValueKind, this is the single value. 3806 Constant *SingleValue; 3807 3808 // For BitMapKind, this is the bitmap. 3809 ConstantInt *BitMap; 3810 IntegerType *BitMapElementTy; 3811 3812 // For LinearMapKind, these are the constants used to derive the value. 3813 ConstantInt *LinearOffset; 3814 ConstantInt *LinearMultiplier; 3815 3816 // For ArrayKind, this is the array. 3817 GlobalVariable *Array; 3818 }; 3819 } 3820 3821 SwitchLookupTable::SwitchLookupTable( 3822 Module &M, uint64_t TableSize, ConstantInt *Offset, 3823 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 3824 Constant *DefaultValue, const DataLayout &DL) 3825 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3826 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 3827 assert(Values.size() && "Can't build lookup table without values!"); 3828 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3829 3830 // If all values in the table are equal, this is that value. 3831 SingleValue = Values.begin()->second; 3832 3833 Type *ValueType = Values.begin()->second->getType(); 3834 3835 // Build up the table contents. 3836 SmallVector<Constant*, 64> TableContents(TableSize); 3837 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3838 ConstantInt *CaseVal = Values[I].first; 3839 Constant *CaseRes = Values[I].second; 3840 assert(CaseRes->getType() == ValueType); 3841 3842 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3843 .getLimitedValue(); 3844 TableContents[Idx] = CaseRes; 3845 3846 if (CaseRes != SingleValue) 3847 SingleValue = nullptr; 3848 } 3849 3850 // Fill in any holes in the table with the default result. 3851 if (Values.size() < TableSize) { 3852 assert(DefaultValue && 3853 "Need a default value to fill the lookup table holes."); 3854 assert(DefaultValue->getType() == ValueType); 3855 for (uint64_t I = 0; I < TableSize; ++I) { 3856 if (!TableContents[I]) 3857 TableContents[I] = DefaultValue; 3858 } 3859 3860 if (DefaultValue != SingleValue) 3861 SingleValue = nullptr; 3862 } 3863 3864 // If each element in the table contains the same value, we only need to store 3865 // that single value. 3866 if (SingleValue) { 3867 Kind = SingleValueKind; 3868 return; 3869 } 3870 3871 // Check if we can derive the value with a linear transformation from the 3872 // table index. 3873 if (isa<IntegerType>(ValueType)) { 3874 bool LinearMappingPossible = true; 3875 APInt PrevVal; 3876 APInt DistToPrev; 3877 assert(TableSize >= 2 && "Should be a SingleValue table."); 3878 // Check if there is the same distance between two consecutive values. 3879 for (uint64_t I = 0; I < TableSize; ++I) { 3880 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 3881 if (!ConstVal) { 3882 // This is an undef. We could deal with it, but undefs in lookup tables 3883 // are very seldom. It's probably not worth the additional complexity. 3884 LinearMappingPossible = false; 3885 break; 3886 } 3887 APInt Val = ConstVal->getValue(); 3888 if (I != 0) { 3889 APInt Dist = Val - PrevVal; 3890 if (I == 1) { 3891 DistToPrev = Dist; 3892 } else if (Dist != DistToPrev) { 3893 LinearMappingPossible = false; 3894 break; 3895 } 3896 } 3897 PrevVal = Val; 3898 } 3899 if (LinearMappingPossible) { 3900 LinearOffset = cast<ConstantInt>(TableContents[0]); 3901 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 3902 Kind = LinearMapKind; 3903 ++NumLinearMaps; 3904 return; 3905 } 3906 } 3907 3908 // If the type is integer and the table fits in a register, build a bitmap. 3909 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3910 IntegerType *IT = cast<IntegerType>(ValueType); 3911 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3912 for (uint64_t I = TableSize; I > 0; --I) { 3913 TableInt <<= IT->getBitWidth(); 3914 // Insert values into the bitmap. Undef values are set to zero. 3915 if (!isa<UndefValue>(TableContents[I - 1])) { 3916 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3917 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3918 } 3919 } 3920 BitMap = ConstantInt::get(M.getContext(), TableInt); 3921 BitMapElementTy = IT; 3922 Kind = BitMapKind; 3923 ++NumBitMaps; 3924 return; 3925 } 3926 3927 // Store the table in an array. 3928 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3929 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3930 3931 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3932 GlobalVariable::PrivateLinkage, 3933 Initializer, 3934 "switch.table"); 3935 Array->setUnnamedAddr(true); 3936 Kind = ArrayKind; 3937 } 3938 3939 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3940 switch (Kind) { 3941 case SingleValueKind: 3942 return SingleValue; 3943 case LinearMapKind: { 3944 // Derive the result value from the input value. 3945 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 3946 false, "switch.idx.cast"); 3947 if (!LinearMultiplier->isOne()) 3948 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 3949 if (!LinearOffset->isZero()) 3950 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 3951 return Result; 3952 } 3953 case BitMapKind: { 3954 // Type of the bitmap (e.g. i59). 3955 IntegerType *MapTy = BitMap->getType(); 3956 3957 // Cast Index to the same type as the bitmap. 3958 // Note: The Index is <= the number of elements in the table, so 3959 // truncating it to the width of the bitmask is safe. 3960 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3961 3962 // Multiply the shift amount by the element width. 3963 ShiftAmt = Builder.CreateMul(ShiftAmt, 3964 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3965 "switch.shiftamt"); 3966 3967 // Shift down. 3968 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3969 "switch.downshift"); 3970 // Mask off. 3971 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3972 "switch.masked"); 3973 } 3974 case ArrayKind: { 3975 // Make sure the table index will not overflow when treated as signed. 3976 IntegerType *IT = cast<IntegerType>(Index->getType()); 3977 uint64_t TableSize = Array->getInitializer()->getType() 3978 ->getArrayNumElements(); 3979 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 3980 Index = Builder.CreateZExt(Index, 3981 IntegerType::get(IT->getContext(), 3982 IT->getBitWidth() + 1), 3983 "switch.tableidx.zext"); 3984 3985 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3986 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 3987 GEPIndices, "switch.gep"); 3988 return Builder.CreateLoad(GEP, "switch.load"); 3989 } 3990 } 3991 llvm_unreachable("Unknown lookup table kind!"); 3992 } 3993 3994 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 3995 uint64_t TableSize, 3996 Type *ElementType) { 3997 auto *IT = dyn_cast<IntegerType>(ElementType); 3998 if (!IT) 3999 return false; 4000 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4001 // are <= 15, we could try to narrow the type. 4002 4003 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4004 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4005 return false; 4006 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4007 } 4008 4009 /// Determine whether a lookup table should be built for this switch, based on 4010 /// the number of cases, size of the table, and the types of the results. 4011 static bool 4012 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4013 const TargetTransformInfo &TTI, const DataLayout &DL, 4014 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4015 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4016 return false; // TableSize overflowed, or mul below might overflow. 4017 4018 bool AllTablesFitInRegister = true; 4019 bool HasIllegalType = false; 4020 for (const auto &I : ResultTypes) { 4021 Type *Ty = I.second; 4022 4023 // Saturate this flag to true. 4024 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4025 4026 // Saturate this flag to false. 4027 AllTablesFitInRegister = AllTablesFitInRegister && 4028 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4029 4030 // If both flags saturate, we're done. NOTE: This *only* works with 4031 // saturating flags, and all flags have to saturate first due to the 4032 // non-deterministic behavior of iterating over a dense map. 4033 if (HasIllegalType && !AllTablesFitInRegister) 4034 break; 4035 } 4036 4037 // If each table would fit in a register, we should build it anyway. 4038 if (AllTablesFitInRegister) 4039 return true; 4040 4041 // Don't build a table that doesn't fit in-register if it has illegal types. 4042 if (HasIllegalType) 4043 return false; 4044 4045 // The table density should be at least 40%. This is the same criterion as for 4046 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4047 // FIXME: Find the best cut-off. 4048 return SI->getNumCases() * 10 >= TableSize * 4; 4049 } 4050 4051 /// Try to reuse the switch table index compare. Following pattern: 4052 /// \code 4053 /// if (idx < tablesize) 4054 /// r = table[idx]; // table does not contain default_value 4055 /// else 4056 /// r = default_value; 4057 /// if (r != default_value) 4058 /// ... 4059 /// \endcode 4060 /// Is optimized to: 4061 /// \code 4062 /// cond = idx < tablesize; 4063 /// if (cond) 4064 /// r = table[idx]; 4065 /// else 4066 /// r = default_value; 4067 /// if (cond) 4068 /// ... 4069 /// \endcode 4070 /// Jump threading will then eliminate the second if(cond). 4071 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4072 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4073 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4074 4075 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4076 if (!CmpInst) 4077 return; 4078 4079 // We require that the compare is in the same block as the phi so that jump 4080 // threading can do its work afterwards. 4081 if (CmpInst->getParent() != PhiBlock) 4082 return; 4083 4084 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4085 if (!CmpOp1) 4086 return; 4087 4088 Value *RangeCmp = RangeCheckBranch->getCondition(); 4089 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4090 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4091 4092 // Check if the compare with the default value is constant true or false. 4093 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4094 DefaultValue, CmpOp1, true); 4095 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4096 return; 4097 4098 // Check if the compare with the case values is distinct from the default 4099 // compare result. 4100 for (auto ValuePair : Values) { 4101 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4102 ValuePair.second, CmpOp1, true); 4103 if (!CaseConst || CaseConst == DefaultConst) 4104 return; 4105 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4106 "Expect true or false as compare result."); 4107 } 4108 4109 // Check if the branch instruction dominates the phi node. It's a simple 4110 // dominance check, but sufficient for our needs. 4111 // Although this check is invariant in the calling loops, it's better to do it 4112 // at this late stage. Practically we do it at most once for a switch. 4113 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4114 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4115 BasicBlock *Pred = *PI; 4116 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4117 return; 4118 } 4119 4120 if (DefaultConst == FalseConst) { 4121 // The compare yields the same result. We can replace it. 4122 CmpInst->replaceAllUsesWith(RangeCmp); 4123 ++NumTableCmpReuses; 4124 } else { 4125 // The compare yields the same result, just inverted. We can replace it. 4126 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4127 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4128 RangeCheckBranch); 4129 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4130 ++NumTableCmpReuses; 4131 } 4132 } 4133 4134 /// If the switch is only used to initialize one or more phi nodes in a common 4135 /// successor block with different constant values, replace the switch with 4136 /// lookup tables. 4137 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4138 const DataLayout &DL, 4139 const TargetTransformInfo &TTI) { 4140 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4141 4142 // Only build lookup table when we have a target that supports it. 4143 if (!TTI.shouldBuildLookupTables()) 4144 return false; 4145 4146 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4147 // split off a dense part and build a lookup table for that. 4148 4149 // FIXME: This creates arrays of GEPs to constant strings, which means each 4150 // GEP needs a runtime relocation in PIC code. We should just build one big 4151 // string and lookup indices into that. 4152 4153 // Ignore switches with less than three cases. Lookup tables will not make them 4154 // faster, so we don't analyze them. 4155 if (SI->getNumCases() < 3) 4156 return false; 4157 4158 // Figure out the corresponding result for each case value and phi node in the 4159 // common destination, as well as the min and max case values. 4160 assert(SI->case_begin() != SI->case_end()); 4161 SwitchInst::CaseIt CI = SI->case_begin(); 4162 ConstantInt *MinCaseVal = CI.getCaseValue(); 4163 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4164 4165 BasicBlock *CommonDest = nullptr; 4166 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4167 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4168 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4169 SmallDenseMap<PHINode*, Type*> ResultTypes; 4170 SmallVector<PHINode*, 4> PHIs; 4171 4172 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4173 ConstantInt *CaseVal = CI.getCaseValue(); 4174 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4175 MinCaseVal = CaseVal; 4176 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4177 MaxCaseVal = CaseVal; 4178 4179 // Resulting value at phi nodes for this case value. 4180 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4181 ResultsTy Results; 4182 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4183 Results, DL)) 4184 return false; 4185 4186 // Append the result from this case to the list for each phi. 4187 for (const auto &I : Results) { 4188 PHINode *PHI = I.first; 4189 Constant *Value = I.second; 4190 if (!ResultLists.count(PHI)) 4191 PHIs.push_back(PHI); 4192 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4193 } 4194 } 4195 4196 // Keep track of the result types. 4197 for (PHINode *PHI : PHIs) { 4198 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4199 } 4200 4201 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4202 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4203 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4204 bool TableHasHoles = (NumResults < TableSize); 4205 4206 // If the table has holes, we need a constant result for the default case 4207 // or a bitmask that fits in a register. 4208 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4209 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4210 &CommonDest, DefaultResultsList, DL); 4211 4212 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4213 if (NeedMask) { 4214 // As an extra penalty for the validity test we require more cases. 4215 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4216 return false; 4217 if (!DL.fitsInLegalInteger(TableSize)) 4218 return false; 4219 } 4220 4221 for (const auto &I : DefaultResultsList) { 4222 PHINode *PHI = I.first; 4223 Constant *Result = I.second; 4224 DefaultResults[PHI] = Result; 4225 } 4226 4227 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4228 return false; 4229 4230 // Create the BB that does the lookups. 4231 Module &Mod = *CommonDest->getParent()->getParent(); 4232 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4233 "switch.lookup", 4234 CommonDest->getParent(), 4235 CommonDest); 4236 4237 // Compute the table index value. 4238 Builder.SetInsertPoint(SI); 4239 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4240 "switch.tableidx"); 4241 4242 // Compute the maximum table size representable by the integer type we are 4243 // switching upon. 4244 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4245 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4246 assert(MaxTableSize >= TableSize && 4247 "It is impossible for a switch to have more entries than the max " 4248 "representable value of its input integer type's size."); 4249 4250 // If the default destination is unreachable, or if the lookup table covers 4251 // all values of the conditional variable, branch directly to the lookup table 4252 // BB. Otherwise, check that the condition is within the case range. 4253 const bool DefaultIsReachable = 4254 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4255 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4256 BranchInst *RangeCheckBranch = nullptr; 4257 4258 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4259 Builder.CreateBr(LookupBB); 4260 // Note: We call removeProdecessor later since we need to be able to get the 4261 // PHI value for the default case in case we're using a bit mask. 4262 } else { 4263 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4264 MinCaseVal->getType(), TableSize)); 4265 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4266 } 4267 4268 // Populate the BB that does the lookups. 4269 Builder.SetInsertPoint(LookupBB); 4270 4271 if (NeedMask) { 4272 // Before doing the lookup we do the hole check. 4273 // The LookupBB is therefore re-purposed to do the hole check 4274 // and we create a new LookupBB. 4275 BasicBlock *MaskBB = LookupBB; 4276 MaskBB->setName("switch.hole_check"); 4277 LookupBB = BasicBlock::Create(Mod.getContext(), 4278 "switch.lookup", 4279 CommonDest->getParent(), 4280 CommonDest); 4281 4282 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4283 // unnecessary illegal types. 4284 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4285 APInt MaskInt(TableSizePowOf2, 0); 4286 APInt One(TableSizePowOf2, 1); 4287 // Build bitmask; fill in a 1 bit for every case. 4288 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4289 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4290 uint64_t Idx = (ResultList[I].first->getValue() - 4291 MinCaseVal->getValue()).getLimitedValue(); 4292 MaskInt |= One << Idx; 4293 } 4294 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4295 4296 // Get the TableIndex'th bit of the bitmask. 4297 // If this bit is 0 (meaning hole) jump to the default destination, 4298 // else continue with table lookup. 4299 IntegerType *MapTy = TableMask->getType(); 4300 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4301 "switch.maskindex"); 4302 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4303 "switch.shifted"); 4304 Value *LoBit = Builder.CreateTrunc(Shifted, 4305 Type::getInt1Ty(Mod.getContext()), 4306 "switch.lobit"); 4307 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4308 4309 Builder.SetInsertPoint(LookupBB); 4310 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4311 } 4312 4313 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4314 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4315 // do not delete PHINodes here. 4316 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4317 /*DontDeleteUselessPHIs=*/true); 4318 } 4319 4320 bool ReturnedEarly = false; 4321 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4322 PHINode *PHI = PHIs[I]; 4323 const ResultListTy &ResultList = ResultLists[PHI]; 4324 4325 // If using a bitmask, use any value to fill the lookup table holes. 4326 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4327 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4328 4329 Value *Result = Table.BuildLookup(TableIndex, Builder); 4330 4331 // If the result is used to return immediately from the function, we want to 4332 // do that right here. 4333 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4334 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4335 Builder.CreateRet(Result); 4336 ReturnedEarly = true; 4337 break; 4338 } 4339 4340 // Do a small peephole optimization: re-use the switch table compare if 4341 // possible. 4342 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4343 BasicBlock *PhiBlock = PHI->getParent(); 4344 // Search for compare instructions which use the phi. 4345 for (auto *User : PHI->users()) { 4346 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4347 } 4348 } 4349 4350 PHI->addIncoming(Result, LookupBB); 4351 } 4352 4353 if (!ReturnedEarly) 4354 Builder.CreateBr(CommonDest); 4355 4356 // Remove the switch. 4357 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4358 BasicBlock *Succ = SI->getSuccessor(i); 4359 4360 if (Succ == SI->getDefaultDest()) 4361 continue; 4362 Succ->removePredecessor(SI->getParent()); 4363 } 4364 SI->eraseFromParent(); 4365 4366 ++NumLookupTables; 4367 if (NeedMask) 4368 ++NumLookupTablesHoles; 4369 return true; 4370 } 4371 4372 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4373 BasicBlock *BB = SI->getParent(); 4374 4375 if (isValueEqualityComparison(SI)) { 4376 // If we only have one predecessor, and if it is a branch on this value, 4377 // see if that predecessor totally determines the outcome of this switch. 4378 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4379 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4380 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4381 4382 Value *Cond = SI->getCondition(); 4383 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4384 if (SimplifySwitchOnSelect(SI, Select)) 4385 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4386 4387 // If the block only contains the switch, see if we can fold the block 4388 // away into any preds. 4389 BasicBlock::iterator BBI = BB->begin(); 4390 // Ignore dbg intrinsics. 4391 while (isa<DbgInfoIntrinsic>(BBI)) 4392 ++BBI; 4393 if (SI == &*BBI) 4394 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4395 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4396 } 4397 4398 // Try to transform the switch into an icmp and a branch. 4399 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4400 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4401 4402 // Remove unreachable cases. 4403 if (EliminateDeadSwitchCases(SI, AC, DL)) 4404 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4405 4406 if (SwitchToSelect(SI, Builder, AC, DL)) 4407 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4408 4409 if (ForwardSwitchConditionToPHI(SI)) 4410 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4411 4412 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4413 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4414 4415 return false; 4416 } 4417 4418 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4419 BasicBlock *BB = IBI->getParent(); 4420 bool Changed = false; 4421 4422 // Eliminate redundant destinations. 4423 SmallPtrSet<Value *, 8> Succs; 4424 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4425 BasicBlock *Dest = IBI->getDestination(i); 4426 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4427 Dest->removePredecessor(BB); 4428 IBI->removeDestination(i); 4429 --i; --e; 4430 Changed = true; 4431 } 4432 } 4433 4434 if (IBI->getNumDestinations() == 0) { 4435 // If the indirectbr has no successors, change it to unreachable. 4436 new UnreachableInst(IBI->getContext(), IBI); 4437 EraseTerminatorInstAndDCECond(IBI); 4438 return true; 4439 } 4440 4441 if (IBI->getNumDestinations() == 1) { 4442 // If the indirectbr has one successor, change it to a direct branch. 4443 BranchInst::Create(IBI->getDestination(0), IBI); 4444 EraseTerminatorInstAndDCECond(IBI); 4445 return true; 4446 } 4447 4448 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4449 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4450 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4451 } 4452 return Changed; 4453 } 4454 4455 /// Given an block with only a single landing pad and a unconditional branch 4456 /// try to find another basic block which this one can be merged with. This 4457 /// handles cases where we have multiple invokes with unique landing pads, but 4458 /// a shared handler. 4459 /// 4460 /// We specifically choose to not worry about merging non-empty blocks 4461 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4462 /// practice, the optimizer produces empty landing pad blocks quite frequently 4463 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4464 /// sinking in this file) 4465 /// 4466 /// This is primarily a code size optimization. We need to avoid performing 4467 /// any transform which might inhibit optimization (such as our ability to 4468 /// specialize a particular handler via tail commoning). We do this by not 4469 /// merging any blocks which require us to introduce a phi. Since the same 4470 /// values are flowing through both blocks, we don't loose any ability to 4471 /// specialize. If anything, we make such specialization more likely. 4472 /// 4473 /// TODO - This transformation could remove entries from a phi in the target 4474 /// block when the inputs in the phi are the same for the two blocks being 4475 /// merged. In some cases, this could result in removal of the PHI entirely. 4476 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4477 BasicBlock *BB) { 4478 auto Succ = BB->getUniqueSuccessor(); 4479 assert(Succ); 4480 // If there's a phi in the successor block, we'd likely have to introduce 4481 // a phi into the merged landing pad block. 4482 if (isa<PHINode>(*Succ->begin())) 4483 return false; 4484 4485 for (BasicBlock *OtherPred : predecessors(Succ)) { 4486 if (BB == OtherPred) 4487 continue; 4488 BasicBlock::iterator I = OtherPred->begin(); 4489 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4490 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4491 continue; 4492 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4493 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4494 if (!BI2 || !BI2->isIdenticalTo(BI)) 4495 continue; 4496 4497 // We've found an identical block. Update our predeccessors to take that 4498 // path instead and make ourselves dead. 4499 SmallSet<BasicBlock *, 16> Preds; 4500 Preds.insert(pred_begin(BB), pred_end(BB)); 4501 for (BasicBlock *Pred : Preds) { 4502 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4503 assert(II->getNormalDest() != BB && 4504 II->getUnwindDest() == BB && "unexpected successor"); 4505 II->setUnwindDest(OtherPred); 4506 } 4507 4508 // The debug info in OtherPred doesn't cover the merged control flow that 4509 // used to go through BB. We need to delete it or update it. 4510 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4511 I != E;) { 4512 Instruction &Inst = *I; I++; 4513 if (isa<DbgInfoIntrinsic>(Inst)) 4514 Inst.eraseFromParent(); 4515 } 4516 4517 SmallSet<BasicBlock *, 16> Succs; 4518 Succs.insert(succ_begin(BB), succ_end(BB)); 4519 for (BasicBlock *Succ : Succs) { 4520 Succ->removePredecessor(BB); 4521 } 4522 4523 IRBuilder<> Builder(BI); 4524 Builder.CreateUnreachable(); 4525 BI->eraseFromParent(); 4526 return true; 4527 } 4528 return false; 4529 } 4530 4531 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4532 BasicBlock *BB = BI->getParent(); 4533 4534 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 4535 return true; 4536 4537 // If the Terminator is the only non-phi instruction, simplify the block. 4538 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 4539 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4540 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4541 return true; 4542 4543 // If the only instruction in the block is a seteq/setne comparison 4544 // against a constant, try to simplify the block. 4545 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4546 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4547 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4548 ; 4549 if (I->isTerminator() && 4550 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 4551 BonusInstThreshold, AC)) 4552 return true; 4553 } 4554 4555 // See if we can merge an empty landing pad block with another which is 4556 // equivalent. 4557 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 4558 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4559 if (I->isTerminator() && 4560 TryToMergeLandingPad(LPad, BI, BB)) 4561 return true; 4562 } 4563 4564 // If this basic block is ONLY a compare and a branch, and if a predecessor 4565 // branches to us and our successor, fold the comparison into the 4566 // predecessor and use logical operations to update the incoming value 4567 // for PHI nodes in common successor. 4568 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 4569 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4570 return false; 4571 } 4572 4573 4574 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4575 BasicBlock *BB = BI->getParent(); 4576 4577 // Conditional branch 4578 if (isValueEqualityComparison(BI)) { 4579 // If we only have one predecessor, and if it is a branch on this value, 4580 // see if that predecessor totally determines the outcome of this 4581 // switch. 4582 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4583 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4584 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4585 4586 // This block must be empty, except for the setcond inst, if it exists. 4587 // Ignore dbg intrinsics. 4588 BasicBlock::iterator I = BB->begin(); 4589 // Ignore dbg intrinsics. 4590 while (isa<DbgInfoIntrinsic>(I)) 4591 ++I; 4592 if (&*I == BI) { 4593 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4594 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4595 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4596 ++I; 4597 // Ignore dbg intrinsics. 4598 while (isa<DbgInfoIntrinsic>(I)) 4599 ++I; 4600 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4601 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4602 } 4603 } 4604 4605 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4606 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 4607 return true; 4608 4609 // If this basic block is ONLY a compare and a branch, and if a predecessor 4610 // branches to us and one of our successors, fold the comparison into the 4611 // predecessor and use logical operations to pick the right destination. 4612 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 4613 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4614 4615 // We have a conditional branch to two blocks that are only reachable 4616 // from BI. We know that the condbr dominates the two blocks, so see if 4617 // there is any identical code in the "then" and "else" blocks. If so, we 4618 // can hoist it up to the branching block. 4619 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4620 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4621 if (HoistThenElseCodeToIf(BI, TTI)) 4622 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4623 } else { 4624 // If Successor #1 has multiple preds, we may be able to conditionally 4625 // execute Successor #0 if it branches to Successor #1. 4626 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4627 if (Succ0TI->getNumSuccessors() == 1 && 4628 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4629 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 4630 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4631 } 4632 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4633 // If Successor #0 has multiple preds, we may be able to conditionally 4634 // execute Successor #1 if it branches to Successor #0. 4635 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4636 if (Succ1TI->getNumSuccessors() == 1 && 4637 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4638 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 4639 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4640 } 4641 4642 // If this is a branch on a phi node in the current block, thread control 4643 // through this block if any PHI node entries are constants. 4644 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4645 if (PN->getParent() == BI->getParent()) 4646 if (FoldCondBranchOnPHI(BI, DL)) 4647 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4648 4649 // Scan predecessor blocks for conditional branches. 4650 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4651 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4652 if (PBI != BI && PBI->isConditional()) 4653 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4654 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4655 4656 return false; 4657 } 4658 4659 /// Check if passing a value to an instruction will cause undefined behavior. 4660 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4661 Constant *C = dyn_cast<Constant>(V); 4662 if (!C) 4663 return false; 4664 4665 if (I->use_empty()) 4666 return false; 4667 4668 if (C->isNullValue()) { 4669 // Only look at the first use, avoid hurting compile time with long uselists 4670 User *Use = *I->user_begin(); 4671 4672 // Now make sure that there are no instructions in between that can alter 4673 // control flow (eg. calls) 4674 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4675 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4676 return false; 4677 4678 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4679 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4680 if (GEP->getPointerOperand() == I) 4681 return passingValueIsAlwaysUndefined(V, GEP); 4682 4683 // Look through bitcasts. 4684 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4685 return passingValueIsAlwaysUndefined(V, BC); 4686 4687 // Load from null is undefined. 4688 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4689 if (!LI->isVolatile()) 4690 return LI->getPointerAddressSpace() == 0; 4691 4692 // Store to null is undefined. 4693 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4694 if (!SI->isVolatile()) 4695 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4696 } 4697 return false; 4698 } 4699 4700 /// If BB has an incoming value that will always trigger undefined behavior 4701 /// (eg. null pointer dereference), remove the branch leading here. 4702 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4703 for (BasicBlock::iterator i = BB->begin(); 4704 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4705 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4706 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4707 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4708 IRBuilder<> Builder(T); 4709 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4710 BB->removePredecessor(PHI->getIncomingBlock(i)); 4711 // Turn uncoditional branches into unreachables and remove the dead 4712 // destination from conditional branches. 4713 if (BI->isUnconditional()) 4714 Builder.CreateUnreachable(); 4715 else 4716 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4717 BI->getSuccessor(0)); 4718 BI->eraseFromParent(); 4719 return true; 4720 } 4721 // TODO: SwitchInst. 4722 } 4723 4724 return false; 4725 } 4726 4727 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4728 bool Changed = false; 4729 4730 assert(BB && BB->getParent() && "Block not embedded in function!"); 4731 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4732 4733 // Remove basic blocks that have no predecessors (except the entry block)... 4734 // or that just have themself as a predecessor. These are unreachable. 4735 if ((pred_empty(BB) && 4736 BB != &BB->getParent()->getEntryBlock()) || 4737 BB->getSinglePredecessor() == BB) { 4738 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4739 DeleteDeadBlock(BB); 4740 return true; 4741 } 4742 4743 // Check to see if we can constant propagate this terminator instruction 4744 // away... 4745 Changed |= ConstantFoldTerminator(BB, true); 4746 4747 // Check for and eliminate duplicate PHI nodes in this block. 4748 Changed |= EliminateDuplicatePHINodes(BB); 4749 4750 // Check for and remove branches that will always cause undefined behavior. 4751 Changed |= removeUndefIntroducingPredecessor(BB); 4752 4753 // Merge basic blocks into their predecessor if there is only one distinct 4754 // pred, and if there is only one distinct successor of the predecessor, and 4755 // if there are no PHI nodes. 4756 // 4757 if (MergeBlockIntoPredecessor(BB)) 4758 return true; 4759 4760 IRBuilder<> Builder(BB); 4761 4762 // If there is a trivial two-entry PHI node in this basic block, and we can 4763 // eliminate it, do so now. 4764 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4765 if (PN->getNumIncomingValues() == 2) 4766 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 4767 4768 Builder.SetInsertPoint(BB->getTerminator()); 4769 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4770 if (BI->isUnconditional()) { 4771 if (SimplifyUncondBranch(BI, Builder)) return true; 4772 } else { 4773 if (SimplifyCondBranch(BI, Builder)) return true; 4774 } 4775 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4776 if (SimplifyReturn(RI, Builder)) return true; 4777 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4778 if (SimplifyResume(RI, Builder)) return true; 4779 } else if (CleanupReturnInst *RI = 4780 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 4781 if (SimplifyCleanupReturn(RI)) return true; 4782 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4783 if (SimplifySwitch(SI, Builder)) return true; 4784 } else if (UnreachableInst *UI = 4785 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4786 if (SimplifyUnreachable(UI)) return true; 4787 } else if (IndirectBrInst *IBI = 4788 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4789 if (SimplifyIndirectBr(IBI)) return true; 4790 } 4791 4792 return Changed; 4793 } 4794 4795 /// This function is used to do simplification of a CFG. 4796 /// For example, it adjusts branches to branches to eliminate the extra hop, 4797 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4798 /// of the CFG. It returns true if a modification was made. 4799 /// 4800 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4801 unsigned BonusInstThreshold, AssumptionCache *AC) { 4802 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 4803 BonusInstThreshold, AC).run(BB); 4804 } 4805