1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "simplifycfg" 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/GlobalVariable.h" 19 #include "llvm/IRBuilder.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/MDBuilder.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/Module.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Type.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/Analysis/InstructionSimplify.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Support/CFG.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ConstantRange.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/NoFolder.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetData.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include <algorithm> 45 #include <set> 46 #include <map> 47 using namespace llvm; 48 49 static cl::opt<unsigned> 50 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), 51 cl::desc("Control the amount of phi node folding to perform (default = 1)")); 52 53 static cl::opt<bool> 54 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 55 cl::desc("Duplicate return instructions into unconditional branches")); 56 57 static cl::opt<bool> 58 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 59 cl::desc("Sink common instructions down to the end block")); 60 61 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 62 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 63 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 64 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 65 66 namespace { 67 /// ValueEqualityComparisonCase - Represents a case of a switch. 68 struct ValueEqualityComparisonCase { 69 ConstantInt *Value; 70 BasicBlock *Dest; 71 72 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 73 : Value(Value), Dest(Dest) {} 74 75 bool operator<(ValueEqualityComparisonCase RHS) const { 76 // Comparing pointers is ok as we only rely on the order for uniquing. 77 return Value < RHS.Value; 78 } 79 }; 80 81 class SimplifyCFGOpt { 82 const TargetData *const TD; 83 84 Value *isValueEqualityComparison(TerminatorInst *TI); 85 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 86 std::vector<ValueEqualityComparisonCase> &Cases); 87 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 88 BasicBlock *Pred, 89 IRBuilder<> &Builder); 90 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 91 IRBuilder<> &Builder); 92 93 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 94 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 95 bool SimplifyUnreachable(UnreachableInst *UI); 96 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 97 bool SimplifyIndirectBr(IndirectBrInst *IBI); 98 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 99 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 100 101 public: 102 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {} 103 bool run(BasicBlock *BB); 104 }; 105 } 106 107 /// SafeToMergeTerminators - Return true if it is safe to merge these two 108 /// terminator instructions together. 109 /// 110 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 111 if (SI1 == SI2) return false; // Can't merge with self! 112 113 // It is not safe to merge these two switch instructions if they have a common 114 // successor, and if that successor has a PHI node, and if *that* PHI node has 115 // conflicting incoming values from the two switch blocks. 116 BasicBlock *SI1BB = SI1->getParent(); 117 BasicBlock *SI2BB = SI2->getParent(); 118 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 119 120 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 121 if (SI1Succs.count(*I)) 122 for (BasicBlock::iterator BBI = (*I)->begin(); 123 isa<PHINode>(BBI); ++BBI) { 124 PHINode *PN = cast<PHINode>(BBI); 125 if (PN->getIncomingValueForBlock(SI1BB) != 126 PN->getIncomingValueForBlock(SI2BB)) 127 return false; 128 } 129 130 return true; 131 } 132 133 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 134 /// to merge these two terminator instructions together, where SI1 is an 135 /// unconditional branch. PhiNodes will store all PHI nodes in common 136 /// successors. 137 /// 138 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 139 BranchInst *SI2, 140 Instruction *Cond, 141 SmallVectorImpl<PHINode*> &PhiNodes) { 142 if (SI1 == SI2) return false; // Can't merge with self! 143 assert(SI1->isUnconditional() && SI2->isConditional()); 144 145 // We fold the unconditional branch if we can easily update all PHI nodes in 146 // common successors: 147 // 1> We have a constant incoming value for the conditional branch; 148 // 2> We have "Cond" as the incoming value for the unconditional branch; 149 // 3> SI2->getCondition() and Cond have same operands. 150 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 151 if (!Ci2) return false; 152 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 153 Cond->getOperand(1) == Ci2->getOperand(1)) && 154 !(Cond->getOperand(0) == Ci2->getOperand(1) && 155 Cond->getOperand(1) == Ci2->getOperand(0))) 156 return false; 157 158 BasicBlock *SI1BB = SI1->getParent(); 159 BasicBlock *SI2BB = SI2->getParent(); 160 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 161 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 162 if (SI1Succs.count(*I)) 163 for (BasicBlock::iterator BBI = (*I)->begin(); 164 isa<PHINode>(BBI); ++BBI) { 165 PHINode *PN = cast<PHINode>(BBI); 166 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 167 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 168 return false; 169 PhiNodes.push_back(PN); 170 } 171 return true; 172 } 173 174 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 175 /// now be entries in it from the 'NewPred' block. The values that will be 176 /// flowing into the PHI nodes will be the same as those coming in from 177 /// ExistPred, an existing predecessor of Succ. 178 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 179 BasicBlock *ExistPred) { 180 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 181 182 PHINode *PN; 183 for (BasicBlock::iterator I = Succ->begin(); 184 (PN = dyn_cast<PHINode>(I)); ++I) 185 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 186 } 187 188 189 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at 190 /// least one PHI node in it), check to see if the merge at this block is due 191 /// to an "if condition". If so, return the boolean condition that determines 192 /// which entry into BB will be taken. Also, return by references the block 193 /// that will be entered from if the condition is true, and the block that will 194 /// be entered if the condition is false. 195 /// 196 /// This does no checking to see if the true/false blocks have large or unsavory 197 /// instructions in them. 198 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 199 BasicBlock *&IfFalse) { 200 PHINode *SomePHI = cast<PHINode>(BB->begin()); 201 assert(SomePHI->getNumIncomingValues() == 2 && 202 "Function can only handle blocks with 2 predecessors!"); 203 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0); 204 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1); 205 206 // We can only handle branches. Other control flow will be lowered to 207 // branches if possible anyway. 208 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 209 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 210 if (Pred1Br == 0 || Pred2Br == 0) 211 return 0; 212 213 // Eliminate code duplication by ensuring that Pred1Br is conditional if 214 // either are. 215 if (Pred2Br->isConditional()) { 216 // If both branches are conditional, we don't have an "if statement". In 217 // reality, we could transform this case, but since the condition will be 218 // required anyway, we stand no chance of eliminating it, so the xform is 219 // probably not profitable. 220 if (Pred1Br->isConditional()) 221 return 0; 222 223 std::swap(Pred1, Pred2); 224 std::swap(Pred1Br, Pred2Br); 225 } 226 227 if (Pred1Br->isConditional()) { 228 // The only thing we have to watch out for here is to make sure that Pred2 229 // doesn't have incoming edges from other blocks. If it does, the condition 230 // doesn't dominate BB. 231 if (Pred2->getSinglePredecessor() == 0) 232 return 0; 233 234 // If we found a conditional branch predecessor, make sure that it branches 235 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 236 if (Pred1Br->getSuccessor(0) == BB && 237 Pred1Br->getSuccessor(1) == Pred2) { 238 IfTrue = Pred1; 239 IfFalse = Pred2; 240 } else if (Pred1Br->getSuccessor(0) == Pred2 && 241 Pred1Br->getSuccessor(1) == BB) { 242 IfTrue = Pred2; 243 IfFalse = Pred1; 244 } else { 245 // We know that one arm of the conditional goes to BB, so the other must 246 // go somewhere unrelated, and this must not be an "if statement". 247 return 0; 248 } 249 250 return Pred1Br->getCondition(); 251 } 252 253 // Ok, if we got here, both predecessors end with an unconditional branch to 254 // BB. Don't panic! If both blocks only have a single (identical) 255 // predecessor, and THAT is a conditional branch, then we're all ok! 256 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 257 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor()) 258 return 0; 259 260 // Otherwise, if this is a conditional branch, then we can use it! 261 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 262 if (BI == 0) return 0; 263 264 assert(BI->isConditional() && "Two successors but not conditional?"); 265 if (BI->getSuccessor(0) == Pred1) { 266 IfTrue = Pred1; 267 IfFalse = Pred2; 268 } else { 269 IfTrue = Pred2; 270 IfFalse = Pred1; 271 } 272 return BI->getCondition(); 273 } 274 275 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the 276 /// given instruction, which is assumed to be safe to speculate. 1 means 277 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive. 278 static unsigned ComputeSpeculationCost(const User *I) { 279 assert(isSafeToSpeculativelyExecute(I) && 280 "Instruction is not safe to speculatively execute!"); 281 switch (Operator::getOpcode(I)) { 282 default: 283 // In doubt, be conservative. 284 return UINT_MAX; 285 case Instruction::GetElementPtr: 286 // GEPs are cheap if all indices are constant. 287 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 288 return UINT_MAX; 289 return 1; 290 case Instruction::Load: 291 case Instruction::Add: 292 case Instruction::Sub: 293 case Instruction::And: 294 case Instruction::Or: 295 case Instruction::Xor: 296 case Instruction::Shl: 297 case Instruction::LShr: 298 case Instruction::AShr: 299 case Instruction::ICmp: 300 case Instruction::Trunc: 301 case Instruction::ZExt: 302 case Instruction::SExt: 303 return 1; // These are all cheap. 304 305 case Instruction::Call: 306 case Instruction::Select: 307 return 2; 308 } 309 } 310 311 /// DominatesMergePoint - If we have a merge point of an "if condition" as 312 /// accepted above, return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSet<Instruction*, 4> *AggressiveInsts, 330 unsigned &CostRemaining) { 331 Instruction *I = dyn_cast<Instruction>(V); 332 if (!I) { 333 // Non-instructions all dominate instructions, but not all constantexprs 334 // can be executed unconditionally. 335 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 336 if (C->canTrap()) 337 return false; 338 return true; 339 } 340 BasicBlock *PBB = I->getParent(); 341 342 // We don't want to allow weird loops that might have the "if condition" in 343 // the bottom of this block. 344 if (PBB == BB) return false; 345 346 // If this instruction is defined in a block that contains an unconditional 347 // branch to BB, then it must be in the 'conditional' part of the "if 348 // statement". If not, it definitely dominates the region. 349 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 350 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB) 351 return true; 352 353 // If we aren't allowing aggressive promotion anymore, then don't consider 354 // instructions in the 'if region'. 355 if (AggressiveInsts == 0) return false; 356 357 // If we have seen this instruction before, don't count it again. 358 if (AggressiveInsts->count(I)) return true; 359 360 // Okay, it looks like the instruction IS in the "condition". Check to 361 // see if it's a cheap instruction to unconditionally compute, and if it 362 // only uses stuff defined outside of the condition. If so, hoist it out. 363 if (!isSafeToSpeculativelyExecute(I)) 364 return false; 365 366 unsigned Cost = ComputeSpeculationCost(I); 367 368 if (Cost > CostRemaining) 369 return false; 370 371 CostRemaining -= Cost; 372 373 // Okay, we can only really hoist these out if their operands do 374 // not take us over the cost threshold. 375 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 376 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining)) 377 return false; 378 // Okay, it's safe to do this! Remember this instruction. 379 AggressiveInsts->insert(I); 380 return true; 381 } 382 383 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 384 /// and PointerNullValue. Return NULL if value is not a constant int. 385 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) { 386 // Normal constant int. 387 ConstantInt *CI = dyn_cast<ConstantInt>(V); 388 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy()) 389 return CI; 390 391 // This is some kind of pointer constant. Turn it into a pointer-sized 392 // ConstantInt if possible. 393 IntegerType *PtrTy = TD->getIntPtrType(V->getContext()); 394 395 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 396 if (isa<ConstantPointerNull>(V)) 397 return ConstantInt::get(PtrTy, 0); 398 399 // IntToPtr const int. 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 401 if (CE->getOpcode() == Instruction::IntToPtr) 402 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 403 // The constant is very likely to have the right type already. 404 if (CI->getType() == PtrTy) 405 return CI; 406 else 407 return cast<ConstantInt> 408 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 409 } 410 return 0; 411 } 412 413 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together 414 /// collection of icmp eq/ne instructions that compare a value against a 415 /// constant, return the value being compared, and stick the constant into the 416 /// Values vector. 417 static Value * 418 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra, 419 const TargetData *TD, bool isEQ, unsigned &UsedICmps) { 420 Instruction *I = dyn_cast<Instruction>(V); 421 if (I == 0) return 0; 422 423 // If this is an icmp against a constant, handle this as one of the cases. 424 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 425 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) { 426 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 427 UsedICmps++; 428 Vals.push_back(C); 429 return I->getOperand(0); 430 } 431 432 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to 433 // the set. 434 ConstantRange Span = 435 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue()); 436 437 // If this is an and/!= check then we want to optimize "x ugt 2" into 438 // x != 0 && x != 1. 439 if (!isEQ) 440 Span = Span.inverse(); 441 442 // If there are a ton of values, we don't want to make a ginormous switch. 443 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) 444 return 0; 445 446 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 447 Vals.push_back(ConstantInt::get(V->getContext(), Tmp)); 448 UsedICmps++; 449 return I->getOperand(0); 450 } 451 return 0; 452 } 453 454 // Otherwise, we can only handle an | or &, depending on isEQ. 455 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And)) 456 return 0; 457 458 unsigned NumValsBeforeLHS = Vals.size(); 459 unsigned UsedICmpsBeforeLHS = UsedICmps; 460 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD, 461 isEQ, UsedICmps)) { 462 unsigned NumVals = Vals.size(); 463 unsigned UsedICmpsBeforeRHS = UsedICmps; 464 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 465 isEQ, UsedICmps)) { 466 if (LHS == RHS) 467 return LHS; 468 Vals.resize(NumVals); 469 UsedICmps = UsedICmpsBeforeRHS; 470 } 471 472 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet, 473 // set it and return success. 474 if (Extra == 0 || Extra == I->getOperand(1)) { 475 Extra = I->getOperand(1); 476 return LHS; 477 } 478 479 Vals.resize(NumValsBeforeLHS); 480 UsedICmps = UsedICmpsBeforeLHS; 481 return 0; 482 } 483 484 // If the LHS can't be folded in, but Extra is available and RHS can, try to 485 // use LHS as Extra. 486 if (Extra == 0 || Extra == I->getOperand(0)) { 487 Value *OldExtra = Extra; 488 Extra = I->getOperand(0); 489 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD, 490 isEQ, UsedICmps)) 491 return RHS; 492 assert(Vals.size() == NumValsBeforeLHS); 493 Extra = OldExtra; 494 } 495 496 return 0; 497 } 498 499 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 500 Instruction *Cond = 0; 501 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 502 Cond = dyn_cast<Instruction>(SI->getCondition()); 503 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 504 if (BI->isConditional()) 505 Cond = dyn_cast<Instruction>(BI->getCondition()); 506 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 507 Cond = dyn_cast<Instruction>(IBI->getAddress()); 508 } 509 510 TI->eraseFromParent(); 511 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 512 } 513 514 /// isValueEqualityComparison - Return true if the specified terminator checks 515 /// to see if a value is equal to constant integer value. 516 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 517 Value *CV = 0; 518 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 519 // Do not permit merging of large switch instructions into their 520 // predecessors unless there is only one predecessor. 521 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 522 pred_end(SI->getParent())) <= 128) 523 CV = SI->getCondition(); 524 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 525 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 526 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 527 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ || 528 ICI->getPredicate() == ICmpInst::ICMP_NE) && 529 GetConstantInt(ICI->getOperand(1), TD)) 530 CV = ICI->getOperand(0); 531 532 // Unwrap any lossless ptrtoint cast. 533 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext())) 534 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) 535 CV = PTII->getOperand(0); 536 return CV; 537 } 538 539 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 540 /// decode all of the 'cases' that it represents and return the 'default' block. 541 BasicBlock *SimplifyCFGOpt:: 542 GetValueEqualityComparisonCases(TerminatorInst *TI, 543 std::vector<ValueEqualityComparisonCase> 544 &Cases) { 545 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 546 Cases.reserve(SI->getNumCases()); 547 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 548 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 549 i.getCaseSuccessor())); 550 return SI->getDefaultDest(); 551 } 552 553 BranchInst *BI = cast<BranchInst>(TI); 554 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 555 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 556 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 557 TD), 558 Succ)); 559 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 560 } 561 562 563 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 564 /// in the list that match the specified block. 565 static void EliminateBlockCases(BasicBlock *BB, 566 std::vector<ValueEqualityComparisonCase> &Cases) { 567 for (unsigned i = 0, e = Cases.size(); i != e; ++i) 568 if (Cases[i].Dest == BB) { 569 Cases.erase(Cases.begin()+i); 570 --i; --e; 571 } 572 } 573 574 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 575 /// well. 576 static bool 577 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 578 std::vector<ValueEqualityComparisonCase > &C2) { 579 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 580 581 // Make V1 be smaller than V2. 582 if (V1->size() > V2->size()) 583 std::swap(V1, V2); 584 585 if (V1->size() == 0) return false; 586 if (V1->size() == 1) { 587 // Just scan V2. 588 ConstantInt *TheVal = (*V1)[0].Value; 589 for (unsigned i = 0, e = V2->size(); i != e; ++i) 590 if (TheVal == (*V2)[i].Value) 591 return true; 592 } 593 594 // Otherwise, just sort both lists and compare element by element. 595 array_pod_sort(V1->begin(), V1->end()); 596 array_pod_sort(V2->begin(), V2->end()); 597 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 598 while (i1 != e1 && i2 != e2) { 599 if ((*V1)[i1].Value == (*V2)[i2].Value) 600 return true; 601 if ((*V1)[i1].Value < (*V2)[i2].Value) 602 ++i1; 603 else 604 ++i2; 605 } 606 return false; 607 } 608 609 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 610 /// terminator instruction and its block is known to only have a single 611 /// predecessor block, check to see if that predecessor is also a value 612 /// comparison with the same value, and if that comparison determines the 613 /// outcome of this comparison. If so, simplify TI. This does a very limited 614 /// form of jump threading. 615 bool SimplifyCFGOpt:: 616 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 617 BasicBlock *Pred, 618 IRBuilder<> &Builder) { 619 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 620 if (!PredVal) return false; // Not a value comparison in predecessor. 621 622 Value *ThisVal = isValueEqualityComparison(TI); 623 assert(ThisVal && "This isn't a value comparison!!"); 624 if (ThisVal != PredVal) return false; // Different predicates. 625 626 // TODO: Preserve branch weight metadata, similarly to how 627 // FoldValueComparisonIntoPredecessors preserves it. 628 629 // Find out information about when control will move from Pred to TI's block. 630 std::vector<ValueEqualityComparisonCase> PredCases; 631 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 632 PredCases); 633 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 634 635 // Find information about how control leaves this block. 636 std::vector<ValueEqualityComparisonCase> ThisCases; 637 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 638 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 639 640 // If TI's block is the default block from Pred's comparison, potentially 641 // simplify TI based on this knowledge. 642 if (PredDef == TI->getParent()) { 643 // If we are here, we know that the value is none of those cases listed in 644 // PredCases. If there are any cases in ThisCases that are in PredCases, we 645 // can simplify TI. 646 if (!ValuesOverlap(PredCases, ThisCases)) 647 return false; 648 649 if (isa<BranchInst>(TI)) { 650 // Okay, one of the successors of this condbr is dead. Convert it to a 651 // uncond br. 652 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 653 // Insert the new branch. 654 Instruction *NI = Builder.CreateBr(ThisDef); 655 (void) NI; 656 657 // Remove PHI node entries for the dead edge. 658 ThisCases[0].Dest->removePredecessor(TI->getParent()); 659 660 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 661 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 662 663 EraseTerminatorInstAndDCECond(TI); 664 return true; 665 } 666 667 SwitchInst *SI = cast<SwitchInst>(TI); 668 // Okay, TI has cases that are statically dead, prune them away. 669 SmallPtrSet<Constant*, 16> DeadCases; 670 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 671 DeadCases.insert(PredCases[i].Value); 672 673 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 674 << "Through successor TI: " << *TI); 675 676 // Collect branch weights into a vector. 677 SmallVector<uint32_t, 8> Weights; 678 MDNode* MD = SI->getMetadata(LLVMContext::MD_prof); 679 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 680 if (HasWeight) 681 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 682 ++MD_i) { 683 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i)); 684 assert(CI); 685 Weights.push_back(CI->getValue().getZExtValue()); 686 } 687 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 688 --i; 689 if (DeadCases.count(i.getCaseValue())) { 690 if (HasWeight) { 691 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 692 Weights.pop_back(); 693 } 694 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 695 SI->removeCase(i); 696 } 697 } 698 if (HasWeight) 699 SI->setMetadata(LLVMContext::MD_prof, 700 MDBuilder(SI->getParent()->getContext()). 701 createBranchWeights(Weights)); 702 703 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 704 return true; 705 } 706 707 // Otherwise, TI's block must correspond to some matched value. Find out 708 // which value (or set of values) this is. 709 ConstantInt *TIV = 0; 710 BasicBlock *TIBB = TI->getParent(); 711 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 712 if (PredCases[i].Dest == TIBB) { 713 if (TIV != 0) 714 return false; // Cannot handle multiple values coming to this block. 715 TIV = PredCases[i].Value; 716 } 717 assert(TIV && "No edge from pred to succ?"); 718 719 // Okay, we found the one constant that our value can be if we get into TI's 720 // BB. Find out which successor will unconditionally be branched to. 721 BasicBlock *TheRealDest = 0; 722 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 723 if (ThisCases[i].Value == TIV) { 724 TheRealDest = ThisCases[i].Dest; 725 break; 726 } 727 728 // If not handled by any explicit cases, it is handled by the default case. 729 if (TheRealDest == 0) TheRealDest = ThisDef; 730 731 // Remove PHI node entries for dead edges. 732 BasicBlock *CheckEdge = TheRealDest; 733 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 734 if (*SI != CheckEdge) 735 (*SI)->removePredecessor(TIBB); 736 else 737 CheckEdge = 0; 738 739 // Insert the new branch. 740 Instruction *NI = Builder.CreateBr(TheRealDest); 741 (void) NI; 742 743 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 744 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 745 746 EraseTerminatorInstAndDCECond(TI); 747 return true; 748 } 749 750 namespace { 751 /// ConstantIntOrdering - This class implements a stable ordering of constant 752 /// integers that does not depend on their address. This is important for 753 /// applications that sort ConstantInt's to ensure uniqueness. 754 struct ConstantIntOrdering { 755 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 756 return LHS->getValue().ult(RHS->getValue()); 757 } 758 }; 759 } 760 761 static int ConstantIntSortPredicate(const void *P1, const void *P2) { 762 const ConstantInt *LHS = *(const ConstantInt*const*)P1; 763 const ConstantInt *RHS = *(const ConstantInt*const*)P2; 764 if (LHS->getValue().ult(RHS->getValue())) 765 return 1; 766 if (LHS->getValue() == RHS->getValue()) 767 return 0; 768 return -1; 769 } 770 771 static inline bool HasBranchWeights(const Instruction* I) { 772 MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof); 773 if (ProfMD && ProfMD->getOperand(0)) 774 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 775 return MDS->getString().equals("branch_weights"); 776 777 return false; 778 } 779 780 /// Get Weights of a given TerminatorInst, the default weight is at the front 781 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 782 /// metadata. 783 static void GetBranchWeights(TerminatorInst *TI, 784 SmallVectorImpl<uint64_t> &Weights) { 785 MDNode* MD = TI->getMetadata(LLVMContext::MD_prof); 786 assert(MD); 787 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 788 ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i)); 789 assert(CI); 790 Weights.push_back(CI->getValue().getZExtValue()); 791 } 792 793 // If TI is a conditional eq, the default case is the false case, 794 // and the corresponding branch-weight data is at index 2. We swap the 795 // default weight to be the first entry. 796 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 797 assert(Weights.size() == 2); 798 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 799 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 800 std::swap(Weights.front(), Weights.back()); 801 } 802 } 803 804 /// Sees if any of the weights are too big for a uint32_t, and halves all the 805 /// weights if any are. 806 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 807 bool Halve = false; 808 for (unsigned i = 0; i < Weights.size(); ++i) 809 if (Weights[i] > UINT_MAX) { 810 Halve = true; 811 break; 812 } 813 814 if (! Halve) 815 return; 816 817 for (unsigned i = 0; i < Weights.size(); ++i) 818 Weights[i] /= 2; 819 } 820 821 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 822 /// equality comparison instruction (either a switch or a branch on "X == c"). 823 /// See if any of the predecessors of the terminator block are value comparisons 824 /// on the same value. If so, and if safe to do so, fold them together. 825 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 826 IRBuilder<> &Builder) { 827 BasicBlock *BB = TI->getParent(); 828 Value *CV = isValueEqualityComparison(TI); // CondVal 829 assert(CV && "Not a comparison?"); 830 bool Changed = false; 831 832 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 833 while (!Preds.empty()) { 834 BasicBlock *Pred = Preds.pop_back_val(); 835 836 // See if the predecessor is a comparison with the same value. 837 TerminatorInst *PTI = Pred->getTerminator(); 838 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 839 840 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 841 // Figure out which 'cases' to copy from SI to PSI. 842 std::vector<ValueEqualityComparisonCase> BBCases; 843 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 844 845 std::vector<ValueEqualityComparisonCase> PredCases; 846 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 847 848 // Based on whether the default edge from PTI goes to BB or not, fill in 849 // PredCases and PredDefault with the new switch cases we would like to 850 // build. 851 SmallVector<BasicBlock*, 8> NewSuccessors; 852 853 // Update the branch weight metadata along the way 854 SmallVector<uint64_t, 8> Weights; 855 bool PredHasWeights = HasBranchWeights(PTI); 856 bool SuccHasWeights = HasBranchWeights(TI); 857 858 if (PredHasWeights) { 859 GetBranchWeights(PTI, Weights); 860 // branch-weight metadata is inconsistant here. 861 if (Weights.size() != 1 + PredCases.size()) 862 PredHasWeights = SuccHasWeights = false; 863 } else if (SuccHasWeights) 864 // If there are no predecessor weights but there are successor weights, 865 // populate Weights with 1, which will later be scaled to the sum of 866 // successor's weights 867 Weights.assign(1 + PredCases.size(), 1); 868 869 SmallVector<uint64_t, 8> SuccWeights; 870 if (SuccHasWeights) { 871 GetBranchWeights(TI, SuccWeights); 872 // branch-weight metadata is inconsistant here. 873 if (SuccWeights.size() != 1 + BBCases.size()) 874 PredHasWeights = SuccHasWeights = false; 875 } else if (PredHasWeights) 876 SuccWeights.assign(1 + BBCases.size(), 1); 877 878 if (PredDefault == BB) { 879 // If this is the default destination from PTI, only the edges in TI 880 // that don't occur in PTI, or that branch to BB will be activated. 881 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 882 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 883 if (PredCases[i].Dest != BB) 884 PTIHandled.insert(PredCases[i].Value); 885 else { 886 // The default destination is BB, we don't need explicit targets. 887 std::swap(PredCases[i], PredCases.back()); 888 889 if (PredHasWeights || SuccHasWeights) { 890 // Increase weight for the default case. 891 Weights[0] += Weights[i+1]; 892 std::swap(Weights[i+1], Weights.back()); 893 Weights.pop_back(); 894 } 895 896 PredCases.pop_back(); 897 --i; --e; 898 } 899 900 // Reconstruct the new switch statement we will be building. 901 if (PredDefault != BBDefault) { 902 PredDefault->removePredecessor(Pred); 903 PredDefault = BBDefault; 904 NewSuccessors.push_back(BBDefault); 905 } 906 907 unsigned CasesFromPred = Weights.size(); 908 uint64_t ValidTotalSuccWeight = 0; 909 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 910 if (!PTIHandled.count(BBCases[i].Value) && 911 BBCases[i].Dest != BBDefault) { 912 PredCases.push_back(BBCases[i]); 913 NewSuccessors.push_back(BBCases[i].Dest); 914 if (SuccHasWeights || PredHasWeights) { 915 // The default weight is at index 0, so weight for the ith case 916 // should be at index i+1. Scale the cases from successor by 917 // PredDefaultWeight (Weights[0]). 918 Weights.push_back(Weights[0] * SuccWeights[i+1]); 919 ValidTotalSuccWeight += SuccWeights[i+1]; 920 } 921 } 922 923 if (SuccHasWeights || PredHasWeights) { 924 ValidTotalSuccWeight += SuccWeights[0]; 925 // Scale the cases from predecessor by ValidTotalSuccWeight. 926 for (unsigned i = 1; i < CasesFromPred; ++i) 927 Weights[i] *= ValidTotalSuccWeight; 928 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 929 Weights[0] *= SuccWeights[0]; 930 } 931 } else { 932 // If this is not the default destination from PSI, only the edges 933 // in SI that occur in PSI with a destination of BB will be 934 // activated. 935 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 936 std::map<ConstantInt*, uint64_t> WeightsForHandled; 937 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 938 if (PredCases[i].Dest == BB) { 939 PTIHandled.insert(PredCases[i].Value); 940 941 if (PredHasWeights || SuccHasWeights) { 942 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 943 std::swap(Weights[i+1], Weights.back()); 944 Weights.pop_back(); 945 } 946 947 std::swap(PredCases[i], PredCases.back()); 948 PredCases.pop_back(); 949 --i; --e; 950 } 951 952 // Okay, now we know which constants were sent to BB from the 953 // predecessor. Figure out where they will all go now. 954 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 955 if (PTIHandled.count(BBCases[i].Value)) { 956 // If this is one we are capable of getting... 957 if (PredHasWeights || SuccHasWeights) 958 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 959 PredCases.push_back(BBCases[i]); 960 NewSuccessors.push_back(BBCases[i].Dest); 961 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 962 } 963 964 // If there are any constants vectored to BB that TI doesn't handle, 965 // they must go to the default destination of TI. 966 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 967 PTIHandled.begin(), 968 E = PTIHandled.end(); I != E; ++I) { 969 if (PredHasWeights || SuccHasWeights) 970 Weights.push_back(WeightsForHandled[*I]); 971 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 972 NewSuccessors.push_back(BBDefault); 973 } 974 } 975 976 // Okay, at this point, we know which new successor Pred will get. Make 977 // sure we update the number of entries in the PHI nodes for these 978 // successors. 979 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 980 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 981 982 Builder.SetInsertPoint(PTI); 983 // Convert pointer to int before we switch. 984 if (CV->getType()->isPointerTy()) { 985 assert(TD && "Cannot switch on pointer without TargetData"); 986 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()), 987 "magicptr"); 988 } 989 990 // Now that the successors are updated, create the new Switch instruction. 991 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 992 PredCases.size()); 993 NewSI->setDebugLoc(PTI->getDebugLoc()); 994 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 995 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 996 997 if (PredHasWeights || SuccHasWeights) { 998 // Halve the weights if any of them cannot fit in an uint32_t 999 FitWeights(Weights); 1000 1001 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1002 1003 NewSI->setMetadata(LLVMContext::MD_prof, 1004 MDBuilder(BB->getContext()). 1005 createBranchWeights(MDWeights)); 1006 } 1007 1008 EraseTerminatorInstAndDCECond(PTI); 1009 1010 // Okay, last check. If BB is still a successor of PSI, then we must 1011 // have an infinite loop case. If so, add an infinitely looping block 1012 // to handle the case to preserve the behavior of the code. 1013 BasicBlock *InfLoopBlock = 0; 1014 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1015 if (NewSI->getSuccessor(i) == BB) { 1016 if (InfLoopBlock == 0) { 1017 // Insert it at the end of the function, because it's either code, 1018 // or it won't matter if it's hot. :) 1019 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1020 "infloop", BB->getParent()); 1021 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1022 } 1023 NewSI->setSuccessor(i, InfLoopBlock); 1024 } 1025 1026 Changed = true; 1027 } 1028 } 1029 return Changed; 1030 } 1031 1032 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1033 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1034 // would need to do this), we can't hoist the invoke, as there is nowhere 1035 // to put the select in this case. 1036 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1037 Instruction *I1, Instruction *I2) { 1038 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1039 PHINode *PN; 1040 for (BasicBlock::iterator BBI = SI->begin(); 1041 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1042 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1043 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1044 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1045 return false; 1046 } 1047 } 1048 } 1049 return true; 1050 } 1051 1052 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1053 /// BB2, hoist any common code in the two blocks up into the branch block. The 1054 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1055 static bool HoistThenElseCodeToIf(BranchInst *BI) { 1056 // This does very trivial matching, with limited scanning, to find identical 1057 // instructions in the two blocks. In particular, we don't want to get into 1058 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1059 // such, we currently just scan for obviously identical instructions in an 1060 // identical order. 1061 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1062 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1063 1064 BasicBlock::iterator BB1_Itr = BB1->begin(); 1065 BasicBlock::iterator BB2_Itr = BB2->begin(); 1066 1067 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1068 // Skip debug info if it is not identical. 1069 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1070 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1071 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1072 while (isa<DbgInfoIntrinsic>(I1)) 1073 I1 = BB1_Itr++; 1074 while (isa<DbgInfoIntrinsic>(I2)) 1075 I2 = BB2_Itr++; 1076 } 1077 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1078 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1079 return false; 1080 1081 // If we get here, we can hoist at least one instruction. 1082 BasicBlock *BIParent = BI->getParent(); 1083 1084 do { 1085 // If we are hoisting the terminator instruction, don't move one (making a 1086 // broken BB), instead clone it, and remove BI. 1087 if (isa<TerminatorInst>(I1)) 1088 goto HoistTerminator; 1089 1090 // For a normal instruction, we just move one to right before the branch, 1091 // then replace all uses of the other with the first. Finally, we remove 1092 // the now redundant second instruction. 1093 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1094 if (!I2->use_empty()) 1095 I2->replaceAllUsesWith(I1); 1096 I1->intersectOptionalDataWith(I2); 1097 I2->eraseFromParent(); 1098 1099 I1 = BB1_Itr++; 1100 I2 = BB2_Itr++; 1101 // Skip debug info if it is not identical. 1102 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1103 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1104 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1105 while (isa<DbgInfoIntrinsic>(I1)) 1106 I1 = BB1_Itr++; 1107 while (isa<DbgInfoIntrinsic>(I2)) 1108 I2 = BB2_Itr++; 1109 } 1110 } while (I1->isIdenticalToWhenDefined(I2)); 1111 1112 return true; 1113 1114 HoistTerminator: 1115 // It may not be possible to hoist an invoke. 1116 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1117 return true; 1118 1119 // Okay, it is safe to hoist the terminator. 1120 Instruction *NT = I1->clone(); 1121 BIParent->getInstList().insert(BI, NT); 1122 if (!NT->getType()->isVoidTy()) { 1123 I1->replaceAllUsesWith(NT); 1124 I2->replaceAllUsesWith(NT); 1125 NT->takeName(I1); 1126 } 1127 1128 IRBuilder<true, NoFolder> Builder(NT); 1129 // Hoisting one of the terminators from our successor is a great thing. 1130 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1131 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1132 // nodes, so we insert select instruction to compute the final result. 1133 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1134 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1135 PHINode *PN; 1136 for (BasicBlock::iterator BBI = SI->begin(); 1137 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1138 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1139 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1140 if (BB1V == BB2V) continue; 1141 1142 // These values do not agree. Insert a select instruction before NT 1143 // that determines the right value. 1144 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1145 if (SI == 0) 1146 SI = cast<SelectInst> 1147 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1148 BB1V->getName()+"."+BB2V->getName())); 1149 1150 // Make the PHI node use the select for all incoming values for BB1/BB2 1151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1152 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1153 PN->setIncomingValue(i, SI); 1154 } 1155 } 1156 1157 // Update any PHI nodes in our new successors. 1158 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1159 AddPredecessorToBlock(*SI, BIParent, BB1); 1160 1161 EraseTerminatorInstAndDCECond(BI); 1162 return true; 1163 } 1164 1165 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1166 /// check whether BBEnd has only two predecessors and the other predecessor 1167 /// ends with an unconditional branch. If it is true, sink any common code 1168 /// in the two predecessors to BBEnd. 1169 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1170 assert(BI1->isUnconditional()); 1171 BasicBlock *BB1 = BI1->getParent(); 1172 BasicBlock *BBEnd = BI1->getSuccessor(0); 1173 1174 // Check that BBEnd has two predecessors and the other predecessor ends with 1175 // an unconditional branch. 1176 SmallVector<BasicBlock*, 16> Preds(pred_begin(BBEnd), pred_end(BBEnd)); 1177 if (Preds.size() != 2) 1178 return false; 1179 BasicBlock *BB2 = (Preds[0] == BB1) ? Preds[1] : Preds[0]; 1180 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1181 if (!BI2 || !BI2->isUnconditional()) 1182 return false; 1183 1184 // Gather the PHI nodes in BBEnd. 1185 std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2; 1186 Instruction *FirstNonPhiInBBEnd = 0; 1187 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); 1188 I != E; ++I) { 1189 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1190 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1191 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1192 MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN); 1193 } else { 1194 FirstNonPhiInBBEnd = &*I; 1195 break; 1196 } 1197 } 1198 if (!FirstNonPhiInBBEnd) 1199 return false; 1200 1201 1202 // This does very trivial matching, with limited scanning, to find identical 1203 // instructions in the two blocks. We scan backward for obviously identical 1204 // instructions in an identical order. 1205 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1206 RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(), 1207 RE2 = BB2->getInstList().rend(); 1208 // Skip debug info. 1209 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1210 if (RI1 == RE1) 1211 return false; 1212 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1213 if (RI2 == RE2) 1214 return false; 1215 // Skip the unconditional branches. 1216 ++RI1; 1217 ++RI2; 1218 1219 bool Changed = false; 1220 while (RI1 != RE1 && RI2 != RE2) { 1221 // Skip debug info. 1222 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1223 if (RI1 == RE1) 1224 return Changed; 1225 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1226 if (RI2 == RE2) 1227 return Changed; 1228 1229 Instruction *I1 = &*RI1, *I2 = &*RI2; 1230 // I1 and I2 should have a single use in the same PHI node, and they 1231 // perform the same operation. 1232 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1233 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1234 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1235 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1236 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1237 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1238 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1239 !I1->hasOneUse() || !I2->hasOneUse() || 1240 MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() || 1241 MapValueFromBB1ToBB2[I1].first != I2) 1242 return Changed; 1243 1244 // Check whether we should swap the operands of ICmpInst. 1245 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1246 bool SwapOpnds = false; 1247 if (ICmp1 && ICmp2 && 1248 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1249 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1250 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1251 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1252 ICmp2->swapOperands(); 1253 SwapOpnds = true; 1254 } 1255 if (!I1->isSameOperationAs(I2)) { 1256 if (SwapOpnds) 1257 ICmp2->swapOperands(); 1258 return Changed; 1259 } 1260 1261 // The operands should be either the same or they need to be generated 1262 // with a PHI node after sinking. We only handle the case where there is 1263 // a single pair of different operands. 1264 Value *DifferentOp1 = 0, *DifferentOp2 = 0; 1265 unsigned Op1Idx = 0; 1266 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1267 if (I1->getOperand(I) == I2->getOperand(I)) 1268 continue; 1269 // Early exit if we have more-than one pair of different operands or 1270 // the different operand is already in MapValueFromBB1ToBB2. 1271 // Early exit if we need a PHI node to replace a constant. 1272 if (DifferentOp1 || 1273 MapValueFromBB1ToBB2.find(I1->getOperand(I)) != 1274 MapValueFromBB1ToBB2.end() || 1275 isa<Constant>(I1->getOperand(I)) || 1276 isa<Constant>(I2->getOperand(I))) { 1277 // If we can't sink the instructions, undo the swapping. 1278 if (SwapOpnds) 1279 ICmp2->swapOperands(); 1280 return Changed; 1281 } 1282 DifferentOp1 = I1->getOperand(I); 1283 Op1Idx = I; 1284 DifferentOp2 = I2->getOperand(I); 1285 } 1286 1287 // We insert the pair of different operands to MapValueFromBB1ToBB2 and 1288 // remove (I1, I2) from MapValueFromBB1ToBB2. 1289 if (DifferentOp1) { 1290 PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2, 1291 DifferentOp1->getName() + ".sink", 1292 BBEnd->begin()); 1293 MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN); 1294 // I1 should use NewPN instead of DifferentOp1. 1295 I1->setOperand(Op1Idx, NewPN); 1296 NewPN->addIncoming(DifferentOp1, BB1); 1297 NewPN->addIncoming(DifferentOp2, BB2); 1298 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1299 } 1300 PHINode *OldPN = MapValueFromBB1ToBB2[I1].second; 1301 MapValueFromBB1ToBB2.erase(I1); 1302 1303 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";); 1304 DEBUG(dbgs() << " " << *I2 << "\n";); 1305 // We need to update RE1 and RE2 if we are going to sink the first 1306 // instruction in the basic block down. 1307 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1308 // Sink the instruction. 1309 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1310 if (!OldPN->use_empty()) 1311 OldPN->replaceAllUsesWith(I1); 1312 OldPN->eraseFromParent(); 1313 1314 if (!I2->use_empty()) 1315 I2->replaceAllUsesWith(I1); 1316 I1->intersectOptionalDataWith(I2); 1317 I2->eraseFromParent(); 1318 1319 if (UpdateRE1) 1320 RE1 = BB1->getInstList().rend(); 1321 if (UpdateRE2) 1322 RE2 = BB2->getInstList().rend(); 1323 FirstNonPhiInBBEnd = I1; 1324 NumSinkCommons++; 1325 Changed = true; 1326 } 1327 return Changed; 1328 } 1329 1330 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1 1331 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code 1332 /// (for now, restricted to a single instruction that's side effect free) from 1333 /// the BB1 into the branch block to speculatively execute it. 1334 /// 1335 /// Turn 1336 /// BB: 1337 /// %t1 = icmp 1338 /// br i1 %t1, label %BB1, label %BB2 1339 /// BB1: 1340 /// %t3 = add %t2, c 1341 /// br label BB2 1342 /// BB2: 1343 /// => 1344 /// BB: 1345 /// %t1 = icmp 1346 /// %t4 = add %t2, c 1347 /// %t3 = select i1 %t1, %t2, %t3 1348 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) { 1349 // Only speculatively execution a single instruction (not counting the 1350 // terminator) for now. 1351 Instruction *HInst = NULL; 1352 Instruction *Term = BB1->getTerminator(); 1353 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end(); 1354 BBI != BBE; ++BBI) { 1355 Instruction *I = BBI; 1356 // Skip debug info. 1357 if (isa<DbgInfoIntrinsic>(I)) continue; 1358 if (I == Term) break; 1359 1360 if (HInst) 1361 return false; 1362 HInst = I; 1363 } 1364 1365 BasicBlock *BIParent = BI->getParent(); 1366 1367 // Check the instruction to be hoisted, if there is one. 1368 if (HInst) { 1369 // Don't hoist the instruction if it's unsafe or expensive. 1370 if (!isSafeToSpeculativelyExecute(HInst)) 1371 return false; 1372 if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold) 1373 return false; 1374 1375 // Do not hoist the instruction if any of its operands are defined but not 1376 // used in this BB. The transformation will prevent the operand from 1377 // being sunk into the use block. 1378 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 1379 i != e; ++i) { 1380 Instruction *OpI = dyn_cast<Instruction>(*i); 1381 if (OpI && OpI->getParent() == BIParent && 1382 !OpI->mayHaveSideEffects() && 1383 !OpI->isUsedInBasicBlock(BIParent)) 1384 return false; 1385 } 1386 } 1387 1388 // Be conservative for now. FP select instruction can often be expensive. 1389 Value *BrCond = BI->getCondition(); 1390 if (isa<FCmpInst>(BrCond)) 1391 return false; 1392 1393 // If BB1 is actually on the false edge of the conditional branch, remember 1394 // to swap the select operands later. 1395 bool Invert = false; 1396 if (BB1 != BI->getSuccessor(0)) { 1397 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?"); 1398 Invert = true; 1399 } 1400 1401 // Collect interesting PHIs, and scan for hazards. 1402 SmallSetVector<std::pair<Value *, Value *>, 4> PHIs; 1403 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0); 1404 for (BasicBlock::iterator I = BB2->begin(); 1405 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1406 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1407 Value *BIParentV = PN->getIncomingValueForBlock(BIParent); 1408 1409 // Skip PHIs which are trivial. 1410 if (BB1V == BIParentV) 1411 continue; 1412 1413 // Check for saftey. 1414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) { 1415 // An unfolded ConstantExpr could end up getting expanded into 1416 // Instructions. Don't speculate this and another instruction at 1417 // the same time. 1418 if (HInst) 1419 return false; 1420 if (!isSafeToSpeculativelyExecute(CE)) 1421 return false; 1422 if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold) 1423 return false; 1424 } 1425 1426 // Ok, we may insert a select for this PHI. 1427 PHIs.insert(std::make_pair(BB1V, BIParentV)); 1428 } 1429 1430 // If there are no PHIs to process, bail early. This helps ensure idempotence 1431 // as well. 1432 if (PHIs.empty()) 1433 return false; 1434 1435 // If we get here, we can hoist the instruction and if-convert. 1436 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";); 1437 1438 // Hoist the instruction. 1439 if (HInst) 1440 BIParent->getInstList().splice(BI, BB1->getInstList(), HInst); 1441 1442 // Insert selects and rewrite the PHI operands. 1443 IRBuilder<true, NoFolder> Builder(BI); 1444 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 1445 Value *TrueV = PHIs[i].first; 1446 Value *FalseV = PHIs[i].second; 1447 1448 // Create a select whose true value is the speculatively executed value and 1449 // false value is the previously determined FalseV. 1450 SelectInst *SI; 1451 if (Invert) 1452 SI = cast<SelectInst> 1453 (Builder.CreateSelect(BrCond, FalseV, TrueV, 1454 FalseV->getName() + "." + TrueV->getName())); 1455 else 1456 SI = cast<SelectInst> 1457 (Builder.CreateSelect(BrCond, TrueV, FalseV, 1458 TrueV->getName() + "." + FalseV->getName())); 1459 1460 // Make the PHI node use the select for all incoming values for "then" and 1461 // "if" blocks. 1462 for (BasicBlock::iterator I = BB2->begin(); 1463 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1464 unsigned BB1I = PN->getBasicBlockIndex(BB1); 1465 unsigned BIParentI = PN->getBasicBlockIndex(BIParent); 1466 Value *BB1V = PN->getIncomingValue(BB1I); 1467 Value *BIParentV = PN->getIncomingValue(BIParentI); 1468 if (TrueV == BB1V && FalseV == BIParentV) { 1469 PN->setIncomingValue(BB1I, SI); 1470 PN->setIncomingValue(BIParentI, SI); 1471 } 1472 } 1473 } 1474 1475 ++NumSpeculations; 1476 return true; 1477 } 1478 1479 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1480 /// across this block. 1481 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1482 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1483 unsigned Size = 0; 1484 1485 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1486 if (isa<DbgInfoIntrinsic>(BBI)) 1487 continue; 1488 if (Size > 10) return false; // Don't clone large BB's. 1489 ++Size; 1490 1491 // We can only support instructions that do not define values that are 1492 // live outside of the current basic block. 1493 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); 1494 UI != E; ++UI) { 1495 Instruction *U = cast<Instruction>(*UI); 1496 if (U->getParent() != BB || isa<PHINode>(U)) return false; 1497 } 1498 1499 // Looks ok, continue checking. 1500 } 1501 1502 return true; 1503 } 1504 1505 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1506 /// that is defined in the same block as the branch and if any PHI entries are 1507 /// constants, thread edges corresponding to that entry to be branches to their 1508 /// ultimate destination. 1509 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) { 1510 BasicBlock *BB = BI->getParent(); 1511 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1512 // NOTE: we currently cannot transform this case if the PHI node is used 1513 // outside of the block. 1514 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1515 return false; 1516 1517 // Degenerate case of a single entry PHI. 1518 if (PN->getNumIncomingValues() == 1) { 1519 FoldSingleEntryPHINodes(PN->getParent()); 1520 return true; 1521 } 1522 1523 // Now we know that this block has multiple preds and two succs. 1524 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1525 1526 // Okay, this is a simple enough basic block. See if any phi values are 1527 // constants. 1528 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1529 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1530 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue; 1531 1532 // Okay, we now know that all edges from PredBB should be revectored to 1533 // branch to RealDest. 1534 BasicBlock *PredBB = PN->getIncomingBlock(i); 1535 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1536 1537 if (RealDest == BB) continue; // Skip self loops. 1538 // Skip if the predecessor's terminator is an indirect branch. 1539 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1540 1541 // The dest block might have PHI nodes, other predecessors and other 1542 // difficult cases. Instead of being smart about this, just insert a new 1543 // block that jumps to the destination block, effectively splitting 1544 // the edge we are about to create. 1545 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1546 RealDest->getName()+".critedge", 1547 RealDest->getParent(), RealDest); 1548 BranchInst::Create(RealDest, EdgeBB); 1549 1550 // Update PHI nodes. 1551 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1552 1553 // BB may have instructions that are being threaded over. Clone these 1554 // instructions into EdgeBB. We know that there will be no uses of the 1555 // cloned instructions outside of EdgeBB. 1556 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1557 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1558 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1559 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1560 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1561 continue; 1562 } 1563 // Clone the instruction. 1564 Instruction *N = BBI->clone(); 1565 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1566 1567 // Update operands due to translation. 1568 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1569 i != e; ++i) { 1570 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1571 if (PI != TranslateMap.end()) 1572 *i = PI->second; 1573 } 1574 1575 // Check for trivial simplification. 1576 if (Value *V = SimplifyInstruction(N, TD)) { 1577 TranslateMap[BBI] = V; 1578 delete N; // Instruction folded away, don't need actual inst 1579 } else { 1580 // Insert the new instruction into its new home. 1581 EdgeBB->getInstList().insert(InsertPt, N); 1582 if (!BBI->use_empty()) 1583 TranslateMap[BBI] = N; 1584 } 1585 } 1586 1587 // Loop over all of the edges from PredBB to BB, changing them to branch 1588 // to EdgeBB instead. 1589 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1590 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1591 if (PredBBTI->getSuccessor(i) == BB) { 1592 BB->removePredecessor(PredBB); 1593 PredBBTI->setSuccessor(i, EdgeBB); 1594 } 1595 1596 // Recurse, simplifying any other constants. 1597 return FoldCondBranchOnPHI(BI, TD) | true; 1598 } 1599 1600 return false; 1601 } 1602 1603 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1604 /// PHI node, see if we can eliminate it. 1605 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) { 1606 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1607 // statement", which has a very simple dominance structure. Basically, we 1608 // are trying to find the condition that is being branched on, which 1609 // subsequently causes this merge to happen. We really want control 1610 // dependence information for this check, but simplifycfg can't keep it up 1611 // to date, and this catches most of the cases we care about anyway. 1612 BasicBlock *BB = PN->getParent(); 1613 BasicBlock *IfTrue, *IfFalse; 1614 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1615 if (!IfCond || 1616 // Don't bother if the branch will be constant folded trivially. 1617 isa<ConstantInt>(IfCond)) 1618 return false; 1619 1620 // Okay, we found that we can merge this two-entry phi node into a select. 1621 // Doing so would require us to fold *all* two entry phi nodes in this block. 1622 // At some point this becomes non-profitable (particularly if the target 1623 // doesn't support cmov's). Only do this transformation if there are two or 1624 // fewer PHI nodes in this block. 1625 unsigned NumPhis = 0; 1626 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1627 if (NumPhis > 2) 1628 return false; 1629 1630 // Loop over the PHI's seeing if we can promote them all to select 1631 // instructions. While we are at it, keep track of the instructions 1632 // that need to be moved to the dominating block. 1633 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1634 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1635 MaxCostVal1 = PHINodeFoldingThreshold; 1636 1637 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1638 PHINode *PN = cast<PHINode>(II++); 1639 if (Value *V = SimplifyInstruction(PN, TD)) { 1640 PN->replaceAllUsesWith(V); 1641 PN->eraseFromParent(); 1642 continue; 1643 } 1644 1645 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1646 MaxCostVal0) || 1647 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1648 MaxCostVal1)) 1649 return false; 1650 } 1651 1652 // If we folded the first phi, PN dangles at this point. Refresh it. If 1653 // we ran out of PHIs then we simplified them all. 1654 PN = dyn_cast<PHINode>(BB->begin()); 1655 if (PN == 0) return true; 1656 1657 // Don't fold i1 branches on PHIs which contain binary operators. These can 1658 // often be turned into switches and other things. 1659 if (PN->getType()->isIntegerTy(1) && 1660 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1661 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1662 isa<BinaryOperator>(IfCond))) 1663 return false; 1664 1665 // If we all PHI nodes are promotable, check to make sure that all 1666 // instructions in the predecessor blocks can be promoted as well. If 1667 // not, we won't be able to get rid of the control flow, so it's not 1668 // worth promoting to select instructions. 1669 BasicBlock *DomBlock = 0; 1670 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1671 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1672 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1673 IfBlock1 = 0; 1674 } else { 1675 DomBlock = *pred_begin(IfBlock1); 1676 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1677 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1678 // This is not an aggressive instruction that we can promote. 1679 // Because of this, we won't be able to get rid of the control 1680 // flow, so the xform is not worth it. 1681 return false; 1682 } 1683 } 1684 1685 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1686 IfBlock2 = 0; 1687 } else { 1688 DomBlock = *pred_begin(IfBlock2); 1689 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1690 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1691 // This is not an aggressive instruction that we can promote. 1692 // Because of this, we won't be able to get rid of the control 1693 // flow, so the xform is not worth it. 1694 return false; 1695 } 1696 } 1697 1698 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1699 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1700 1701 // If we can still promote the PHI nodes after this gauntlet of tests, 1702 // do all of the PHI's now. 1703 Instruction *InsertPt = DomBlock->getTerminator(); 1704 IRBuilder<true, NoFolder> Builder(InsertPt); 1705 1706 // Move all 'aggressive' instructions, which are defined in the 1707 // conditional parts of the if's up to the dominating block. 1708 if (IfBlock1) 1709 DomBlock->getInstList().splice(InsertPt, 1710 IfBlock1->getInstList(), IfBlock1->begin(), 1711 IfBlock1->getTerminator()); 1712 if (IfBlock2) 1713 DomBlock->getInstList().splice(InsertPt, 1714 IfBlock2->getInstList(), IfBlock2->begin(), 1715 IfBlock2->getTerminator()); 1716 1717 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1718 // Change the PHI node into a select instruction. 1719 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1720 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1721 1722 SelectInst *NV = 1723 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1724 PN->replaceAllUsesWith(NV); 1725 NV->takeName(PN); 1726 PN->eraseFromParent(); 1727 } 1728 1729 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1730 // has been flattened. Change DomBlock to jump directly to our new block to 1731 // avoid other simplifycfg's kicking in on the diamond. 1732 TerminatorInst *OldTI = DomBlock->getTerminator(); 1733 Builder.SetInsertPoint(OldTI); 1734 Builder.CreateBr(BB); 1735 OldTI->eraseFromParent(); 1736 return true; 1737 } 1738 1739 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1740 /// to two returning blocks, try to merge them together into one return, 1741 /// introducing a select if the return values disagree. 1742 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1743 IRBuilder<> &Builder) { 1744 assert(BI->isConditional() && "Must be a conditional branch"); 1745 BasicBlock *TrueSucc = BI->getSuccessor(0); 1746 BasicBlock *FalseSucc = BI->getSuccessor(1); 1747 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1748 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1749 1750 // Check to ensure both blocks are empty (just a return) or optionally empty 1751 // with PHI nodes. If there are other instructions, merging would cause extra 1752 // computation on one path or the other. 1753 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1754 return false; 1755 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1756 return false; 1757 1758 Builder.SetInsertPoint(BI); 1759 // Okay, we found a branch that is going to two return nodes. If 1760 // there is no return value for this function, just change the 1761 // branch into a return. 1762 if (FalseRet->getNumOperands() == 0) { 1763 TrueSucc->removePredecessor(BI->getParent()); 1764 FalseSucc->removePredecessor(BI->getParent()); 1765 Builder.CreateRetVoid(); 1766 EraseTerminatorInstAndDCECond(BI); 1767 return true; 1768 } 1769 1770 // Otherwise, figure out what the true and false return values are 1771 // so we can insert a new select instruction. 1772 Value *TrueValue = TrueRet->getReturnValue(); 1773 Value *FalseValue = FalseRet->getReturnValue(); 1774 1775 // Unwrap any PHI nodes in the return blocks. 1776 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1777 if (TVPN->getParent() == TrueSucc) 1778 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1779 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1780 if (FVPN->getParent() == FalseSucc) 1781 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1782 1783 // In order for this transformation to be safe, we must be able to 1784 // unconditionally execute both operands to the return. This is 1785 // normally the case, but we could have a potentially-trapping 1786 // constant expression that prevents this transformation from being 1787 // safe. 1788 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1789 if (TCV->canTrap()) 1790 return false; 1791 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1792 if (FCV->canTrap()) 1793 return false; 1794 1795 // Okay, we collected all the mapped values and checked them for sanity, and 1796 // defined to really do this transformation. First, update the CFG. 1797 TrueSucc->removePredecessor(BI->getParent()); 1798 FalseSucc->removePredecessor(BI->getParent()); 1799 1800 // Insert select instructions where needed. 1801 Value *BrCond = BI->getCondition(); 1802 if (TrueValue) { 1803 // Insert a select if the results differ. 1804 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1805 } else if (isa<UndefValue>(TrueValue)) { 1806 TrueValue = FalseValue; 1807 } else { 1808 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1809 FalseValue, "retval"); 1810 } 1811 } 1812 1813 Value *RI = !TrueValue ? 1814 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 1815 1816 (void) RI; 1817 1818 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 1819 << "\n " << *BI << "NewRet = " << *RI 1820 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 1821 1822 EraseTerminatorInstAndDCECond(BI); 1823 1824 return true; 1825 } 1826 1827 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 1828 /// probabilities of the branch taking each edge. Fills in the two APInt 1829 /// parameters and return true, or returns false if no or invalid metadata was 1830 /// found. 1831 static bool ExtractBranchMetadata(BranchInst *BI, 1832 uint64_t &ProbTrue, uint64_t &ProbFalse) { 1833 assert(BI->isConditional() && 1834 "Looking for probabilities on unconditional branch?"); 1835 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 1836 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 1837 ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1)); 1838 ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2)); 1839 if (!CITrue || !CIFalse) return false; 1840 ProbTrue = CITrue->getValue().getZExtValue(); 1841 ProbFalse = CIFalse->getValue().getZExtValue(); 1842 return true; 1843 } 1844 1845 /// checkCSEInPredecessor - Return true if the given instruction is available 1846 /// in its predecessor block. If yes, the instruction will be removed. 1847 /// 1848 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 1849 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 1850 return false; 1851 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 1852 Instruction *PBI = &*I; 1853 // Check whether Inst and PBI generate the same value. 1854 if (Inst->isIdenticalTo(PBI)) { 1855 Inst->replaceAllUsesWith(PBI); 1856 Inst->eraseFromParent(); 1857 return true; 1858 } 1859 } 1860 return false; 1861 } 1862 1863 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 1864 /// predecessor branches to us and one of our successors, fold the block into 1865 /// the predecessor and use logical operations to pick the right destination. 1866 bool llvm::FoldBranchToCommonDest(BranchInst *BI) { 1867 BasicBlock *BB = BI->getParent(); 1868 1869 Instruction *Cond = 0; 1870 if (BI->isConditional()) 1871 Cond = dyn_cast<Instruction>(BI->getCondition()); 1872 else { 1873 // For unconditional branch, check for a simple CFG pattern, where 1874 // BB has a single predecessor and BB's successor is also its predecessor's 1875 // successor. If such pattern exisits, check for CSE between BB and its 1876 // predecessor. 1877 if (BasicBlock *PB = BB->getSinglePredecessor()) 1878 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 1879 if (PBI->isConditional() && 1880 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 1881 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 1882 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 1883 I != E; ) { 1884 Instruction *Curr = I++; 1885 if (isa<CmpInst>(Curr)) { 1886 Cond = Curr; 1887 break; 1888 } 1889 // Quit if we can't remove this instruction. 1890 if (!checkCSEInPredecessor(Curr, PB)) 1891 return false; 1892 } 1893 } 1894 1895 if (Cond == 0) 1896 return false; 1897 } 1898 1899 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 1900 Cond->getParent() != BB || !Cond->hasOneUse()) 1901 return false; 1902 1903 // Only allow this if the condition is a simple instruction that can be 1904 // executed unconditionally. It must be in the same block as the branch, and 1905 // must be at the front of the block. 1906 BasicBlock::iterator FrontIt = BB->front(); 1907 1908 // Ignore dbg intrinsics. 1909 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1910 1911 // Allow a single instruction to be hoisted in addition to the compare 1912 // that feeds the branch. We later ensure that any values that _it_ uses 1913 // were also live in the predecessor, so that we don't unnecessarily create 1914 // register pressure or inhibit out-of-order execution. 1915 Instruction *BonusInst = 0; 1916 if (&*FrontIt != Cond && 1917 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond && 1918 isSafeToSpeculativelyExecute(FrontIt)) { 1919 BonusInst = &*FrontIt; 1920 ++FrontIt; 1921 1922 // Ignore dbg intrinsics. 1923 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt; 1924 } 1925 1926 // Only a single bonus inst is allowed. 1927 if (&*FrontIt != Cond) 1928 return false; 1929 1930 // Make sure the instruction after the condition is the cond branch. 1931 BasicBlock::iterator CondIt = Cond; ++CondIt; 1932 1933 // Ingore dbg intrinsics. 1934 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 1935 1936 if (&*CondIt != BI) 1937 return false; 1938 1939 // Cond is known to be a compare or binary operator. Check to make sure that 1940 // neither operand is a potentially-trapping constant expression. 1941 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 1942 if (CE->canTrap()) 1943 return false; 1944 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 1945 if (CE->canTrap()) 1946 return false; 1947 1948 // Finally, don't infinitely unroll conditional loops. 1949 BasicBlock *TrueDest = BI->getSuccessor(0); 1950 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0; 1951 if (TrueDest == BB || FalseDest == BB) 1952 return false; 1953 1954 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1955 BasicBlock *PredBlock = *PI; 1956 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 1957 1958 // Check that we have two conditional branches. If there is a PHI node in 1959 // the common successor, verify that the same value flows in from both 1960 // blocks. 1961 SmallVector<PHINode*, 4> PHIs; 1962 if (PBI == 0 || PBI->isUnconditional() || 1963 (BI->isConditional() && 1964 !SafeToMergeTerminators(BI, PBI)) || 1965 (!BI->isConditional() && 1966 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 1967 continue; 1968 1969 // Determine if the two branches share a common destination. 1970 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 1971 bool InvertPredCond = false; 1972 1973 if (BI->isConditional()) { 1974 if (PBI->getSuccessor(0) == TrueDest) 1975 Opc = Instruction::Or; 1976 else if (PBI->getSuccessor(1) == FalseDest) 1977 Opc = Instruction::And; 1978 else if (PBI->getSuccessor(0) == FalseDest) 1979 Opc = Instruction::And, InvertPredCond = true; 1980 else if (PBI->getSuccessor(1) == TrueDest) 1981 Opc = Instruction::Or, InvertPredCond = true; 1982 else 1983 continue; 1984 } else { 1985 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 1986 continue; 1987 } 1988 1989 // Ensure that any values used in the bonus instruction are also used 1990 // by the terminator of the predecessor. This means that those values 1991 // must already have been resolved, so we won't be inhibiting the 1992 // out-of-order core by speculating them earlier. 1993 if (BonusInst) { 1994 // Collect the values used by the bonus inst 1995 SmallPtrSet<Value*, 4> UsedValues; 1996 for (Instruction::op_iterator OI = BonusInst->op_begin(), 1997 OE = BonusInst->op_end(); OI != OE; ++OI) { 1998 Value *V = *OI; 1999 if (!isa<Constant>(V)) 2000 UsedValues.insert(V); 2001 } 2002 2003 SmallVector<std::pair<Value*, unsigned>, 4> Worklist; 2004 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0)); 2005 2006 // Walk up to four levels back up the use-def chain of the predecessor's 2007 // terminator to see if all those values were used. The choice of four 2008 // levels is arbitrary, to provide a compile-time-cost bound. 2009 while (!Worklist.empty()) { 2010 std::pair<Value*, unsigned> Pair = Worklist.back(); 2011 Worklist.pop_back(); 2012 2013 if (Pair.second >= 4) continue; 2014 UsedValues.erase(Pair.first); 2015 if (UsedValues.empty()) break; 2016 2017 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) { 2018 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 2019 OI != OE; ++OI) 2020 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1)); 2021 } 2022 } 2023 2024 if (!UsedValues.empty()) return false; 2025 } 2026 2027 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2028 IRBuilder<> Builder(PBI); 2029 2030 // If we need to invert the condition in the pred block to match, do so now. 2031 if (InvertPredCond) { 2032 Value *NewCond = PBI->getCondition(); 2033 2034 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2035 CmpInst *CI = cast<CmpInst>(NewCond); 2036 CI->setPredicate(CI->getInversePredicate()); 2037 } else { 2038 NewCond = Builder.CreateNot(NewCond, 2039 PBI->getCondition()->getName()+".not"); 2040 } 2041 2042 PBI->setCondition(NewCond); 2043 PBI->swapSuccessors(); 2044 } 2045 2046 // If we have a bonus inst, clone it into the predecessor block. 2047 Instruction *NewBonus = 0; 2048 if (BonusInst) { 2049 NewBonus = BonusInst->clone(); 2050 PredBlock->getInstList().insert(PBI, NewBonus); 2051 NewBonus->takeName(BonusInst); 2052 BonusInst->setName(BonusInst->getName()+".old"); 2053 } 2054 2055 // Clone Cond into the predecessor basic block, and or/and the 2056 // two conditions together. 2057 Instruction *New = Cond->clone(); 2058 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus); 2059 PredBlock->getInstList().insert(PBI, New); 2060 New->takeName(Cond); 2061 Cond->setName(New->getName()+".old"); 2062 2063 if (BI->isConditional()) { 2064 Instruction *NewCond = 2065 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2066 New, "or.cond")); 2067 PBI->setCondition(NewCond); 2068 2069 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2070 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2071 PredFalseWeight); 2072 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2073 SuccFalseWeight); 2074 SmallVector<uint64_t, 8> NewWeights; 2075 2076 if (PBI->getSuccessor(0) == BB) { 2077 if (PredHasWeights && SuccHasWeights) { 2078 // PBI: br i1 %x, BB, FalseDest 2079 // BI: br i1 %y, TrueDest, FalseDest 2080 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2081 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2082 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2083 // TrueWeight for PBI * FalseWeight for BI. 2084 // We assume that total weights of a BranchInst can fit into 32 bits. 2085 // Therefore, we will not have overflow using 64-bit arithmetic. 2086 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2087 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2088 } 2089 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2090 PBI->setSuccessor(0, TrueDest); 2091 } 2092 if (PBI->getSuccessor(1) == BB) { 2093 if (PredHasWeights && SuccHasWeights) { 2094 // PBI: br i1 %x, TrueDest, BB 2095 // BI: br i1 %y, TrueDest, FalseDest 2096 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2097 // FalseWeight for PBI * TrueWeight for BI. 2098 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2099 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2100 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2101 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2102 } 2103 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2104 PBI->setSuccessor(1, FalseDest); 2105 } 2106 if (NewWeights.size() == 2) { 2107 // Halve the weights if any of them cannot fit in an uint32_t 2108 FitWeights(NewWeights); 2109 2110 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2111 PBI->setMetadata(LLVMContext::MD_prof, 2112 MDBuilder(BI->getContext()). 2113 createBranchWeights(MDWeights)); 2114 } else 2115 PBI->setMetadata(LLVMContext::MD_prof, NULL); 2116 } else { 2117 // Update PHI nodes in the common successors. 2118 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2119 ConstantInt *PBI_C = cast<ConstantInt>( 2120 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2121 assert(PBI_C->getType()->isIntegerTy(1)); 2122 Instruction *MergedCond = 0; 2123 if (PBI->getSuccessor(0) == TrueDest) { 2124 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2125 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2126 // is false: !PBI_Cond and BI_Value 2127 Instruction *NotCond = 2128 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2129 "not.cond")); 2130 MergedCond = 2131 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2132 NotCond, New, 2133 "and.cond")); 2134 if (PBI_C->isOne()) 2135 MergedCond = 2136 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2137 PBI->getCondition(), MergedCond, 2138 "or.cond")); 2139 } else { 2140 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2141 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2142 // is false: PBI_Cond and BI_Value 2143 MergedCond = 2144 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2145 PBI->getCondition(), New, 2146 "and.cond")); 2147 if (PBI_C->isOne()) { 2148 Instruction *NotCond = 2149 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2150 "not.cond")); 2151 MergedCond = 2152 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2153 NotCond, MergedCond, 2154 "or.cond")); 2155 } 2156 } 2157 // Update PHI Node. 2158 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2159 MergedCond); 2160 } 2161 // Change PBI from Conditional to Unconditional. 2162 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2163 EraseTerminatorInstAndDCECond(PBI); 2164 PBI = New_PBI; 2165 } 2166 2167 // TODO: If BB is reachable from all paths through PredBlock, then we 2168 // could replace PBI's branch probabilities with BI's. 2169 2170 // Copy any debug value intrinsics into the end of PredBlock. 2171 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2172 if (isa<DbgInfoIntrinsic>(*I)) 2173 I->clone()->insertBefore(PBI); 2174 2175 return true; 2176 } 2177 return false; 2178 } 2179 2180 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2181 /// predecessor of another block, this function tries to simplify it. We know 2182 /// that PBI and BI are both conditional branches, and BI is in one of the 2183 /// successor blocks of PBI - PBI branches to BI. 2184 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2185 assert(PBI->isConditional() && BI->isConditional()); 2186 BasicBlock *BB = BI->getParent(); 2187 2188 // If this block ends with a branch instruction, and if there is a 2189 // predecessor that ends on a branch of the same condition, make 2190 // this conditional branch redundant. 2191 if (PBI->getCondition() == BI->getCondition() && 2192 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2193 // Okay, the outcome of this conditional branch is statically 2194 // knowable. If this block had a single pred, handle specially. 2195 if (BB->getSinglePredecessor()) { 2196 // Turn this into a branch on constant. 2197 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2198 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2199 CondIsTrue)); 2200 return true; // Nuke the branch on constant. 2201 } 2202 2203 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2204 // in the constant and simplify the block result. Subsequent passes of 2205 // simplifycfg will thread the block. 2206 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2207 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2208 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2209 std::distance(PB, PE), 2210 BI->getCondition()->getName() + ".pr", 2211 BB->begin()); 2212 // Okay, we're going to insert the PHI node. Since PBI is not the only 2213 // predecessor, compute the PHI'd conditional value for all of the preds. 2214 // Any predecessor where the condition is not computable we keep symbolic. 2215 for (pred_iterator PI = PB; PI != PE; ++PI) { 2216 BasicBlock *P = *PI; 2217 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2218 PBI != BI && PBI->isConditional() && 2219 PBI->getCondition() == BI->getCondition() && 2220 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2221 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2222 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2223 CondIsTrue), P); 2224 } else { 2225 NewPN->addIncoming(BI->getCondition(), P); 2226 } 2227 } 2228 2229 BI->setCondition(NewPN); 2230 return true; 2231 } 2232 } 2233 2234 // If this is a conditional branch in an empty block, and if any 2235 // predecessors is a conditional branch to one of our destinations, 2236 // fold the conditions into logical ops and one cond br. 2237 BasicBlock::iterator BBI = BB->begin(); 2238 // Ignore dbg intrinsics. 2239 while (isa<DbgInfoIntrinsic>(BBI)) 2240 ++BBI; 2241 if (&*BBI != BI) 2242 return false; 2243 2244 2245 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2246 if (CE->canTrap()) 2247 return false; 2248 2249 int PBIOp, BIOp; 2250 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2251 PBIOp = BIOp = 0; 2252 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2253 PBIOp = 0, BIOp = 1; 2254 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2255 PBIOp = 1, BIOp = 0; 2256 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2257 PBIOp = BIOp = 1; 2258 else 2259 return false; 2260 2261 // Check to make sure that the other destination of this branch 2262 // isn't BB itself. If so, this is an infinite loop that will 2263 // keep getting unwound. 2264 if (PBI->getSuccessor(PBIOp) == BB) 2265 return false; 2266 2267 // Do not perform this transformation if it would require 2268 // insertion of a large number of select instructions. For targets 2269 // without predication/cmovs, this is a big pessimization. 2270 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2271 2272 unsigned NumPhis = 0; 2273 for (BasicBlock::iterator II = CommonDest->begin(); 2274 isa<PHINode>(II); ++II, ++NumPhis) 2275 if (NumPhis > 2) // Disable this xform. 2276 return false; 2277 2278 // Finally, if everything is ok, fold the branches to logical ops. 2279 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2280 2281 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2282 << "AND: " << *BI->getParent()); 2283 2284 2285 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2286 // branch in it, where one edge (OtherDest) goes back to itself but the other 2287 // exits. We don't *know* that the program avoids the infinite loop 2288 // (even though that seems likely). If we do this xform naively, we'll end up 2289 // recursively unpeeling the loop. Since we know that (after the xform is 2290 // done) that the block *is* infinite if reached, we just make it an obviously 2291 // infinite loop with no cond branch. 2292 if (OtherDest == BB) { 2293 // Insert it at the end of the function, because it's either code, 2294 // or it won't matter if it's hot. :) 2295 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2296 "infloop", BB->getParent()); 2297 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2298 OtherDest = InfLoopBlock; 2299 } 2300 2301 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2302 2303 // BI may have other predecessors. Because of this, we leave 2304 // it alone, but modify PBI. 2305 2306 // Make sure we get to CommonDest on True&True directions. 2307 Value *PBICond = PBI->getCondition(); 2308 IRBuilder<true, NoFolder> Builder(PBI); 2309 if (PBIOp) 2310 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2311 2312 Value *BICond = BI->getCondition(); 2313 if (BIOp) 2314 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2315 2316 // Merge the conditions. 2317 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2318 2319 // Modify PBI to branch on the new condition to the new dests. 2320 PBI->setCondition(Cond); 2321 PBI->setSuccessor(0, CommonDest); 2322 PBI->setSuccessor(1, OtherDest); 2323 2324 // Update branch weight for PBI. 2325 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2326 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2327 PredFalseWeight); 2328 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2329 SuccFalseWeight); 2330 if (PredHasWeights && SuccHasWeights) { 2331 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2332 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2333 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2334 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2335 // The weight to CommonDest should be PredCommon * SuccTotal + 2336 // PredOther * SuccCommon. 2337 // The weight to OtherDest should be PredOther * SuccOther. 2338 SmallVector<uint64_t, 2> NewWeights; 2339 NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) + 2340 PredOther * SuccCommon); 2341 NewWeights.push_back(PredOther * SuccOther); 2342 // Halve the weights if any of them cannot fit in an uint32_t 2343 FitWeights(NewWeights); 2344 2345 SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end()); 2346 PBI->setMetadata(LLVMContext::MD_prof, 2347 MDBuilder(BI->getContext()). 2348 createBranchWeights(MDWeights)); 2349 } 2350 2351 // OtherDest may have phi nodes. If so, add an entry from PBI's 2352 // block that are identical to the entries for BI's block. 2353 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2354 2355 // We know that the CommonDest already had an edge from PBI to 2356 // it. If it has PHIs though, the PHIs may have different 2357 // entries for BB and PBI's BB. If so, insert a select to make 2358 // them agree. 2359 PHINode *PN; 2360 for (BasicBlock::iterator II = CommonDest->begin(); 2361 (PN = dyn_cast<PHINode>(II)); ++II) { 2362 Value *BIV = PN->getIncomingValueForBlock(BB); 2363 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2364 Value *PBIV = PN->getIncomingValue(PBBIdx); 2365 if (BIV != PBIV) { 2366 // Insert a select in PBI to pick the right value. 2367 Value *NV = cast<SelectInst> 2368 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2369 PN->setIncomingValue(PBBIdx, NV); 2370 } 2371 } 2372 2373 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2374 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2375 2376 // This basic block is probably dead. We know it has at least 2377 // one fewer predecessor. 2378 return true; 2379 } 2380 2381 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2382 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2383 // Takes care of updating the successors and removing the old terminator. 2384 // Also makes sure not to introduce new successors by assuming that edges to 2385 // non-successor TrueBBs and FalseBBs aren't reachable. 2386 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2387 BasicBlock *TrueBB, BasicBlock *FalseBB, 2388 uint32_t TrueWeight, 2389 uint32_t FalseWeight){ 2390 // Remove any superfluous successor edges from the CFG. 2391 // First, figure out which successors to preserve. 2392 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2393 // successor. 2394 BasicBlock *KeepEdge1 = TrueBB; 2395 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0; 2396 2397 // Then remove the rest. 2398 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2399 BasicBlock *Succ = OldTerm->getSuccessor(I); 2400 // Make sure only to keep exactly one copy of each edge. 2401 if (Succ == KeepEdge1) 2402 KeepEdge1 = 0; 2403 else if (Succ == KeepEdge2) 2404 KeepEdge2 = 0; 2405 else 2406 Succ->removePredecessor(OldTerm->getParent()); 2407 } 2408 2409 IRBuilder<> Builder(OldTerm); 2410 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2411 2412 // Insert an appropriate new terminator. 2413 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) { 2414 if (TrueBB == FalseBB) 2415 // We were only looking for one successor, and it was present. 2416 // Create an unconditional branch to it. 2417 Builder.CreateBr(TrueBB); 2418 else { 2419 // We found both of the successors we were looking for. 2420 // Create a conditional branch sharing the condition of the select. 2421 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2422 if (TrueWeight != FalseWeight) 2423 NewBI->setMetadata(LLVMContext::MD_prof, 2424 MDBuilder(OldTerm->getContext()). 2425 createBranchWeights(TrueWeight, FalseWeight)); 2426 } 2427 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2428 // Neither of the selected blocks were successors, so this 2429 // terminator must be unreachable. 2430 new UnreachableInst(OldTerm->getContext(), OldTerm); 2431 } else { 2432 // One of the selected values was a successor, but the other wasn't. 2433 // Insert an unconditional branch to the one that was found; 2434 // the edge to the one that wasn't must be unreachable. 2435 if (KeepEdge1 == 0) 2436 // Only TrueBB was found. 2437 Builder.CreateBr(TrueBB); 2438 else 2439 // Only FalseBB was found. 2440 Builder.CreateBr(FalseBB); 2441 } 2442 2443 EraseTerminatorInstAndDCECond(OldTerm); 2444 return true; 2445 } 2446 2447 // SimplifySwitchOnSelect - Replaces 2448 // (switch (select cond, X, Y)) on constant X, Y 2449 // with a branch - conditional if X and Y lead to distinct BBs, 2450 // unconditional otherwise. 2451 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2452 // Check for constant integer values in the select. 2453 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2454 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2455 if (!TrueVal || !FalseVal) 2456 return false; 2457 2458 // Find the relevant condition and destinations. 2459 Value *Condition = Select->getCondition(); 2460 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2461 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2462 2463 // Get weight for TrueBB and FalseBB. 2464 uint32_t TrueWeight = 0, FalseWeight = 0; 2465 SmallVector<uint64_t, 8> Weights; 2466 bool HasWeights = HasBranchWeights(SI); 2467 if (HasWeights) { 2468 GetBranchWeights(SI, Weights); 2469 if (Weights.size() == 1 + SI->getNumCases()) { 2470 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2471 getSuccessorIndex()]; 2472 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2473 getSuccessorIndex()]; 2474 } 2475 } 2476 2477 // Perform the actual simplification. 2478 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2479 TrueWeight, FalseWeight); 2480 } 2481 2482 // SimplifyIndirectBrOnSelect - Replaces 2483 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2484 // blockaddress(@fn, BlockB))) 2485 // with 2486 // (br cond, BlockA, BlockB). 2487 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2488 // Check that both operands of the select are block addresses. 2489 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2490 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2491 if (!TBA || !FBA) 2492 return false; 2493 2494 // Extract the actual blocks. 2495 BasicBlock *TrueBB = TBA->getBasicBlock(); 2496 BasicBlock *FalseBB = FBA->getBasicBlock(); 2497 2498 // Perform the actual simplification. 2499 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2500 0, 0); 2501 } 2502 2503 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2504 /// instruction (a seteq/setne with a constant) as the only instruction in a 2505 /// block that ends with an uncond branch. We are looking for a very specific 2506 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2507 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2508 /// default value goes to an uncond block with a seteq in it, we get something 2509 /// like: 2510 /// 2511 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2512 /// DEFAULT: 2513 /// %tmp = icmp eq i8 %A, 92 2514 /// br label %end 2515 /// end: 2516 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2517 /// 2518 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2519 /// the PHI, merging the third icmp into the switch. 2520 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 2521 const TargetData *TD, 2522 IRBuilder<> &Builder) { 2523 BasicBlock *BB = ICI->getParent(); 2524 2525 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2526 // complex. 2527 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2528 2529 Value *V = ICI->getOperand(0); 2530 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2531 2532 // The pattern we're looking for is where our only predecessor is a switch on 2533 // 'V' and this block is the default case for the switch. In this case we can 2534 // fold the compared value into the switch to simplify things. 2535 BasicBlock *Pred = BB->getSinglePredecessor(); 2536 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false; 2537 2538 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2539 if (SI->getCondition() != V) 2540 return false; 2541 2542 // If BB is reachable on a non-default case, then we simply know the value of 2543 // V in this block. Substitute it and constant fold the icmp instruction 2544 // away. 2545 if (SI->getDefaultDest() != BB) { 2546 ConstantInt *VVal = SI->findCaseDest(BB); 2547 assert(VVal && "Should have a unique destination value"); 2548 ICI->setOperand(0, VVal); 2549 2550 if (Value *V = SimplifyInstruction(ICI, TD)) { 2551 ICI->replaceAllUsesWith(V); 2552 ICI->eraseFromParent(); 2553 } 2554 // BB is now empty, so it is likely to simplify away. 2555 return SimplifyCFG(BB) | true; 2556 } 2557 2558 // Ok, the block is reachable from the default dest. If the constant we're 2559 // comparing exists in one of the other edges, then we can constant fold ICI 2560 // and zap it. 2561 if (SI->findCaseValue(Cst) != SI->case_default()) { 2562 Value *V; 2563 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2564 V = ConstantInt::getFalse(BB->getContext()); 2565 else 2566 V = ConstantInt::getTrue(BB->getContext()); 2567 2568 ICI->replaceAllUsesWith(V); 2569 ICI->eraseFromParent(); 2570 // BB is now empty, so it is likely to simplify away. 2571 return SimplifyCFG(BB) | true; 2572 } 2573 2574 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2575 // the block. 2576 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2577 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back()); 2578 if (PHIUse == 0 || PHIUse != &SuccBlock->front() || 2579 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2580 return false; 2581 2582 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2583 // true in the PHI. 2584 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2585 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2586 2587 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2588 std::swap(DefaultCst, NewCst); 2589 2590 // Replace ICI (which is used by the PHI for the default value) with true or 2591 // false depending on if it is EQ or NE. 2592 ICI->replaceAllUsesWith(DefaultCst); 2593 ICI->eraseFromParent(); 2594 2595 // Okay, the switch goes to this block on a default value. Add an edge from 2596 // the switch to the merge point on the compared value. 2597 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2598 BB->getParent(), BB); 2599 SmallVector<uint64_t, 8> Weights; 2600 bool HasWeights = HasBranchWeights(SI); 2601 if (HasWeights) { 2602 GetBranchWeights(SI, Weights); 2603 if (Weights.size() == 1 + SI->getNumCases()) { 2604 // Split weight for default case to case for "Cst". 2605 Weights[0] = (Weights[0]+1) >> 1; 2606 Weights.push_back(Weights[0]); 2607 2608 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2609 SI->setMetadata(LLVMContext::MD_prof, 2610 MDBuilder(SI->getContext()). 2611 createBranchWeights(MDWeights)); 2612 } 2613 } 2614 SI->addCase(Cst, NewBB); 2615 2616 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2617 Builder.SetInsertPoint(NewBB); 2618 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2619 Builder.CreateBr(SuccBlock); 2620 PHIUse->addIncoming(NewCst, NewBB); 2621 return true; 2622 } 2623 2624 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2625 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2626 /// fold it into a switch instruction if so. 2627 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD, 2628 IRBuilder<> &Builder) { 2629 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2630 if (Cond == 0) return false; 2631 2632 2633 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2634 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2635 // 'setne's and'ed together, collect them. 2636 Value *CompVal = 0; 2637 std::vector<ConstantInt*> Values; 2638 bool TrueWhenEqual = true; 2639 Value *ExtraCase = 0; 2640 unsigned UsedICmps = 0; 2641 2642 if (Cond->getOpcode() == Instruction::Or) { 2643 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true, 2644 UsedICmps); 2645 } else if (Cond->getOpcode() == Instruction::And) { 2646 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false, 2647 UsedICmps); 2648 TrueWhenEqual = false; 2649 } 2650 2651 // If we didn't have a multiply compared value, fail. 2652 if (CompVal == 0) return false; 2653 2654 // Avoid turning single icmps into a switch. 2655 if (UsedICmps <= 1) 2656 return false; 2657 2658 // There might be duplicate constants in the list, which the switch 2659 // instruction can't handle, remove them now. 2660 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2661 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2662 2663 // If Extra was used, we require at least two switch values to do the 2664 // transformation. A switch with one value is just an cond branch. 2665 if (ExtraCase && Values.size() < 2) return false; 2666 2667 // TODO: Preserve branch weight metadata, similarly to how 2668 // FoldValueComparisonIntoPredecessors preserves it. 2669 2670 // Figure out which block is which destination. 2671 BasicBlock *DefaultBB = BI->getSuccessor(1); 2672 BasicBlock *EdgeBB = BI->getSuccessor(0); 2673 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2674 2675 BasicBlock *BB = BI->getParent(); 2676 2677 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2678 << " cases into SWITCH. BB is:\n" << *BB); 2679 2680 // If there are any extra values that couldn't be folded into the switch 2681 // then we evaluate them with an explicit branch first. Split the block 2682 // right before the condbr to handle it. 2683 if (ExtraCase) { 2684 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2685 // Remove the uncond branch added to the old block. 2686 TerminatorInst *OldTI = BB->getTerminator(); 2687 Builder.SetInsertPoint(OldTI); 2688 2689 if (TrueWhenEqual) 2690 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2691 else 2692 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2693 2694 OldTI->eraseFromParent(); 2695 2696 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2697 // for the edge we just added. 2698 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2699 2700 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2701 << "\nEXTRABB = " << *BB); 2702 BB = NewBB; 2703 } 2704 2705 Builder.SetInsertPoint(BI); 2706 // Convert pointer to int before we switch. 2707 if (CompVal->getType()->isPointerTy()) { 2708 assert(TD && "Cannot switch on pointer without TargetData"); 2709 CompVal = Builder.CreatePtrToInt(CompVal, 2710 TD->getIntPtrType(CompVal->getContext()), 2711 "magicptr"); 2712 } 2713 2714 // Create the new switch instruction now. 2715 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2716 2717 // Add all of the 'cases' to the switch instruction. 2718 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2719 New->addCase(Values[i], EdgeBB); 2720 2721 // We added edges from PI to the EdgeBB. As such, if there were any 2722 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2723 // the number of edges added. 2724 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2725 isa<PHINode>(BBI); ++BBI) { 2726 PHINode *PN = cast<PHINode>(BBI); 2727 Value *InVal = PN->getIncomingValueForBlock(BB); 2728 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2729 PN->addIncoming(InVal, BB); 2730 } 2731 2732 // Erase the old branch instruction. 2733 EraseTerminatorInstAndDCECond(BI); 2734 2735 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2736 return true; 2737 } 2738 2739 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2740 // If this is a trivial landing pad that just continues unwinding the caught 2741 // exception then zap the landing pad, turning its invokes into calls. 2742 BasicBlock *BB = RI->getParent(); 2743 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2744 if (RI->getValue() != LPInst) 2745 // Not a landing pad, or the resume is not unwinding the exception that 2746 // caused control to branch here. 2747 return false; 2748 2749 // Check that there are no other instructions except for debug intrinsics. 2750 BasicBlock::iterator I = LPInst, E = RI; 2751 while (++I != E) 2752 if (!isa<DbgInfoIntrinsic>(I)) 2753 return false; 2754 2755 // Turn all invokes that unwind here into calls and delete the basic block. 2756 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2757 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2758 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2759 // Insert a call instruction before the invoke. 2760 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2761 Call->takeName(II); 2762 Call->setCallingConv(II->getCallingConv()); 2763 Call->setAttributes(II->getAttributes()); 2764 Call->setDebugLoc(II->getDebugLoc()); 2765 2766 // Anything that used the value produced by the invoke instruction now uses 2767 // the value produced by the call instruction. Note that we do this even 2768 // for void functions and calls with no uses so that the callgraph edge is 2769 // updated. 2770 II->replaceAllUsesWith(Call); 2771 BB->removePredecessor(II->getParent()); 2772 2773 // Insert a branch to the normal destination right before the invoke. 2774 BranchInst::Create(II->getNormalDest(), II); 2775 2776 // Finally, delete the invoke instruction! 2777 II->eraseFromParent(); 2778 } 2779 2780 // The landingpad is now unreachable. Zap it. 2781 BB->eraseFromParent(); 2782 return true; 2783 } 2784 2785 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2786 BasicBlock *BB = RI->getParent(); 2787 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2788 2789 // Find predecessors that end with branches. 2790 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2791 SmallVector<BranchInst*, 8> CondBranchPreds; 2792 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2793 BasicBlock *P = *PI; 2794 TerminatorInst *PTI = P->getTerminator(); 2795 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2796 if (BI->isUnconditional()) 2797 UncondBranchPreds.push_back(P); 2798 else 2799 CondBranchPreds.push_back(BI); 2800 } 2801 } 2802 2803 // If we found some, do the transformation! 2804 if (!UncondBranchPreds.empty() && DupRet) { 2805 while (!UncondBranchPreds.empty()) { 2806 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2807 DEBUG(dbgs() << "FOLDING: " << *BB 2808 << "INTO UNCOND BRANCH PRED: " << *Pred); 2809 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2810 } 2811 2812 // If we eliminated all predecessors of the block, delete the block now. 2813 if (pred_begin(BB) == pred_end(BB)) 2814 // We know there are no successors, so just nuke the block. 2815 BB->eraseFromParent(); 2816 2817 return true; 2818 } 2819 2820 // Check out all of the conditional branches going to this return 2821 // instruction. If any of them just select between returns, change the 2822 // branch itself into a select/return pair. 2823 while (!CondBranchPreds.empty()) { 2824 BranchInst *BI = CondBranchPreds.pop_back_val(); 2825 2826 // Check to see if the non-BB successor is also a return block. 2827 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 2828 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 2829 SimplifyCondBranchToTwoReturns(BI, Builder)) 2830 return true; 2831 } 2832 return false; 2833 } 2834 2835 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 2836 BasicBlock *BB = UI->getParent(); 2837 2838 bool Changed = false; 2839 2840 // If there are any instructions immediately before the unreachable that can 2841 // be removed, do so. 2842 while (UI != BB->begin()) { 2843 BasicBlock::iterator BBI = UI; 2844 --BBI; 2845 // Do not delete instructions that can have side effects which might cause 2846 // the unreachable to not be reachable; specifically, calls and volatile 2847 // operations may have this effect. 2848 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 2849 2850 if (BBI->mayHaveSideEffects()) { 2851 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 2852 if (SI->isVolatile()) 2853 break; 2854 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 2855 if (LI->isVolatile()) 2856 break; 2857 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 2858 if (RMWI->isVolatile()) 2859 break; 2860 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 2861 if (CXI->isVolatile()) 2862 break; 2863 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 2864 !isa<LandingPadInst>(BBI)) { 2865 break; 2866 } 2867 // Note that deleting LandingPad's here is in fact okay, although it 2868 // involves a bit of subtle reasoning. If this inst is a LandingPad, 2869 // all the predecessors of this block will be the unwind edges of Invokes, 2870 // and we can therefore guarantee this block will be erased. 2871 } 2872 2873 // Delete this instruction (any uses are guaranteed to be dead) 2874 if (!BBI->use_empty()) 2875 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 2876 BBI->eraseFromParent(); 2877 Changed = true; 2878 } 2879 2880 // If the unreachable instruction is the first in the block, take a gander 2881 // at all of the predecessors of this instruction, and simplify them. 2882 if (&BB->front() != UI) return Changed; 2883 2884 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 2885 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 2886 TerminatorInst *TI = Preds[i]->getTerminator(); 2887 IRBuilder<> Builder(TI); 2888 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2889 if (BI->isUnconditional()) { 2890 if (BI->getSuccessor(0) == BB) { 2891 new UnreachableInst(TI->getContext(), TI); 2892 TI->eraseFromParent(); 2893 Changed = true; 2894 } 2895 } else { 2896 if (BI->getSuccessor(0) == BB) { 2897 Builder.CreateBr(BI->getSuccessor(1)); 2898 EraseTerminatorInstAndDCECond(BI); 2899 } else if (BI->getSuccessor(1) == BB) { 2900 Builder.CreateBr(BI->getSuccessor(0)); 2901 EraseTerminatorInstAndDCECond(BI); 2902 Changed = true; 2903 } 2904 } 2905 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2906 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2907 i != e; ++i) 2908 if (i.getCaseSuccessor() == BB) { 2909 BB->removePredecessor(SI->getParent()); 2910 SI->removeCase(i); 2911 --i; --e; 2912 Changed = true; 2913 } 2914 // If the default value is unreachable, figure out the most popular 2915 // destination and make it the default. 2916 if (SI->getDefaultDest() == BB) { 2917 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity; 2918 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2919 i != e; ++i) { 2920 std::pair<unsigned, unsigned> &entry = 2921 Popularity[i.getCaseSuccessor()]; 2922 if (entry.first == 0) { 2923 entry.first = 1; 2924 entry.second = i.getCaseIndex(); 2925 } else { 2926 entry.first++; 2927 } 2928 } 2929 2930 // Find the most popular block. 2931 unsigned MaxPop = 0; 2932 unsigned MaxIndex = 0; 2933 BasicBlock *MaxBlock = 0; 2934 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator 2935 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) { 2936 if (I->second.first > MaxPop || 2937 (I->second.first == MaxPop && MaxIndex > I->second.second)) { 2938 MaxPop = I->second.first; 2939 MaxIndex = I->second.second; 2940 MaxBlock = I->first; 2941 } 2942 } 2943 if (MaxBlock) { 2944 // Make this the new default, allowing us to delete any explicit 2945 // edges to it. 2946 SI->setDefaultDest(MaxBlock); 2947 Changed = true; 2948 2949 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from 2950 // it. 2951 if (isa<PHINode>(MaxBlock->begin())) 2952 for (unsigned i = 0; i != MaxPop-1; ++i) 2953 MaxBlock->removePredecessor(SI->getParent()); 2954 2955 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2956 i != e; ++i) 2957 if (i.getCaseSuccessor() == MaxBlock) { 2958 SI->removeCase(i); 2959 --i; --e; 2960 } 2961 } 2962 } 2963 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 2964 if (II->getUnwindDest() == BB) { 2965 // Convert the invoke to a call instruction. This would be a good 2966 // place to note that the call does not throw though. 2967 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 2968 II->removeFromParent(); // Take out of symbol table 2969 2970 // Insert the call now... 2971 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 2972 Builder.SetInsertPoint(BI); 2973 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 2974 Args, II->getName()); 2975 CI->setCallingConv(II->getCallingConv()); 2976 CI->setAttributes(II->getAttributes()); 2977 // If the invoke produced a value, the call does now instead. 2978 II->replaceAllUsesWith(CI); 2979 delete II; 2980 Changed = true; 2981 } 2982 } 2983 } 2984 2985 // If this block is now dead, remove it. 2986 if (pred_begin(BB) == pred_end(BB) && 2987 BB != &BB->getParent()->getEntryBlock()) { 2988 // We know there are no successors, so just nuke the block. 2989 BB->eraseFromParent(); 2990 return true; 2991 } 2992 2993 return Changed; 2994 } 2995 2996 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a 2997 /// integer range comparison into a sub, an icmp and a branch. 2998 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 2999 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3000 3001 // Make sure all cases point to the same destination and gather the values. 3002 SmallVector<ConstantInt *, 16> Cases; 3003 SwitchInst::CaseIt I = SI->case_begin(); 3004 Cases.push_back(I.getCaseValue()); 3005 SwitchInst::CaseIt PrevI = I++; 3006 for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) { 3007 if (PrevI.getCaseSuccessor() != I.getCaseSuccessor()) 3008 return false; 3009 Cases.push_back(I.getCaseValue()); 3010 } 3011 assert(Cases.size() == SI->getNumCases() && "Not all cases gathered"); 3012 3013 // Sort the case values, then check if they form a range we can transform. 3014 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3015 for (unsigned I = 1, E = Cases.size(); I != E; ++I) { 3016 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1) 3017 return false; 3018 } 3019 3020 Constant *Offset = ConstantExpr::getNeg(Cases.back()); 3021 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()); 3022 3023 Value *Sub = SI->getCondition(); 3024 if (!Offset->isNullValue()) 3025 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off"); 3026 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3027 BranchInst *NewBI = Builder.CreateCondBr( 3028 Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest()); 3029 3030 // Update weight for the newly-created conditional branch. 3031 SmallVector<uint64_t, 8> Weights; 3032 bool HasWeights = HasBranchWeights(SI); 3033 if (HasWeights) { 3034 GetBranchWeights(SI, Weights); 3035 if (Weights.size() == 1 + SI->getNumCases()) { 3036 // Combine all weights for the cases to be the true weight of NewBI. 3037 // We assume that the sum of all weights for a Terminator can fit into 32 3038 // bits. 3039 uint32_t NewTrueWeight = 0; 3040 for (unsigned I = 1, E = Weights.size(); I != E; ++I) 3041 NewTrueWeight += (uint32_t)Weights[I]; 3042 NewBI->setMetadata(LLVMContext::MD_prof, 3043 MDBuilder(SI->getContext()). 3044 createBranchWeights(NewTrueWeight, 3045 (uint32_t)Weights[0])); 3046 } 3047 } 3048 3049 // Prune obsolete incoming values off the successor's PHI nodes. 3050 for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin(); 3051 isa<PHINode>(BBI); ++BBI) { 3052 for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I) 3053 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3054 } 3055 SI->eraseFromParent(); 3056 3057 return true; 3058 } 3059 3060 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3061 /// and use it to remove dead cases. 3062 static bool EliminateDeadSwitchCases(SwitchInst *SI) { 3063 Value *Cond = SI->getCondition(); 3064 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth(); 3065 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3066 ComputeMaskedBits(Cond, KnownZero, KnownOne); 3067 3068 // Gather dead cases. 3069 SmallVector<ConstantInt*, 8> DeadCases; 3070 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3071 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3072 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3073 DeadCases.push_back(I.getCaseValue()); 3074 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3075 << I.getCaseValue() << "' is dead.\n"); 3076 } 3077 } 3078 3079 SmallVector<uint64_t, 8> Weights; 3080 bool HasWeight = HasBranchWeights(SI); 3081 if (HasWeight) { 3082 GetBranchWeights(SI, Weights); 3083 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3084 } 3085 3086 // Remove dead cases from the switch. 3087 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3088 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3089 assert(Case != SI->case_default() && 3090 "Case was not found. Probably mistake in DeadCases forming."); 3091 if (HasWeight) { 3092 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3093 Weights.pop_back(); 3094 } 3095 3096 // Prune unused values from PHI nodes. 3097 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3098 SI->removeCase(Case); 3099 } 3100 if (HasWeight) { 3101 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3102 SI->setMetadata(LLVMContext::MD_prof, 3103 MDBuilder(SI->getParent()->getContext()). 3104 createBranchWeights(MDWeights)); 3105 } 3106 3107 return !DeadCases.empty(); 3108 } 3109 3110 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3111 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3112 /// by an unconditional branch), look at the phi node for BB in the successor 3113 /// block and see if the incoming value is equal to CaseValue. If so, return 3114 /// the phi node, and set PhiIndex to BB's index in the phi node. 3115 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3116 BasicBlock *BB, 3117 int *PhiIndex) { 3118 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3119 return NULL; // BB must be empty to be a candidate for simplification. 3120 if (!BB->getSinglePredecessor()) 3121 return NULL; // BB must be dominated by the switch. 3122 3123 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3124 if (!Branch || !Branch->isUnconditional()) 3125 return NULL; // Terminator must be unconditional branch. 3126 3127 BasicBlock *Succ = Branch->getSuccessor(0); 3128 3129 BasicBlock::iterator I = Succ->begin(); 3130 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3131 int Idx = PHI->getBasicBlockIndex(BB); 3132 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3133 3134 Value *InValue = PHI->getIncomingValue(Idx); 3135 if (InValue != CaseValue) continue; 3136 3137 *PhiIndex = Idx; 3138 return PHI; 3139 } 3140 3141 return NULL; 3142 } 3143 3144 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3145 /// instruction to a phi node dominated by the switch, if that would mean that 3146 /// some of the destination blocks of the switch can be folded away. 3147 /// Returns true if a change is made. 3148 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3149 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3150 ForwardingNodesMap ForwardingNodes; 3151 3152 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3153 ConstantInt *CaseValue = I.getCaseValue(); 3154 BasicBlock *CaseDest = I.getCaseSuccessor(); 3155 3156 int PhiIndex; 3157 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3158 &PhiIndex); 3159 if (!PHI) continue; 3160 3161 ForwardingNodes[PHI].push_back(PhiIndex); 3162 } 3163 3164 bool Changed = false; 3165 3166 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3167 E = ForwardingNodes.end(); I != E; ++I) { 3168 PHINode *Phi = I->first; 3169 SmallVector<int,4> &Indexes = I->second; 3170 3171 if (Indexes.size() < 2) continue; 3172 3173 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3174 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3175 Changed = true; 3176 } 3177 3178 return Changed; 3179 } 3180 3181 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3182 /// initializing an array of constants like C. 3183 static bool ValidLookupTableConstant(Constant *C) { 3184 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3185 return CE->isGEPWithNoNotionalOverIndexing(); 3186 3187 return isa<ConstantFP>(C) || 3188 isa<ConstantInt>(C) || 3189 isa<ConstantPointerNull>(C) || 3190 isa<GlobalValue>(C) || 3191 isa<UndefValue>(C); 3192 } 3193 3194 /// GetCaseResulsts - Try to determine the resulting constant values in phi 3195 /// nodes at the common destination basic block for one of the case 3196 /// destinations of a switch instruction. 3197 static bool GetCaseResults(SwitchInst *SI, 3198 BasicBlock *CaseDest, 3199 BasicBlock **CommonDest, 3200 SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) { 3201 // The block from which we enter the common destination. 3202 BasicBlock *Pred = SI->getParent(); 3203 3204 // If CaseDest is empty, continue to its successor. 3205 if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() && 3206 !isa<PHINode>(CaseDest->begin())) { 3207 3208 TerminatorInst *Terminator = CaseDest->getTerminator(); 3209 if (Terminator->getNumSuccessors() != 1) 3210 return false; 3211 3212 Pred = CaseDest; 3213 CaseDest = Terminator->getSuccessor(0); 3214 } 3215 3216 // If we did not have a CommonDest before, use the current one. 3217 if (!*CommonDest) 3218 *CommonDest = CaseDest; 3219 // If the destination isn't the common one, abort. 3220 if (CaseDest != *CommonDest) 3221 return false; 3222 3223 // Get the values for this case from phi nodes in the destination block. 3224 BasicBlock::iterator I = (*CommonDest)->begin(); 3225 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3226 int Idx = PHI->getBasicBlockIndex(Pred); 3227 if (Idx == -1) 3228 continue; 3229 3230 Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx)); 3231 if (!ConstVal) 3232 return false; 3233 3234 // Be conservative about which kinds of constants we support. 3235 if (!ValidLookupTableConstant(ConstVal)) 3236 return false; 3237 3238 Res.push_back(std::make_pair(PHI, ConstVal)); 3239 } 3240 3241 return true; 3242 } 3243 3244 namespace { 3245 /// SwitchLookupTable - This class represents a lookup table that can be used 3246 /// to replace a switch. 3247 class SwitchLookupTable { 3248 public: 3249 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3250 /// with the contents of Values, using DefaultValue to fill any holes in the 3251 /// table. 3252 SwitchLookupTable(Module &M, 3253 uint64_t TableSize, 3254 ConstantInt *Offset, 3255 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3256 Constant *DefaultValue, 3257 const TargetData *TD); 3258 3259 /// BuildLookup - Build instructions with Builder to retrieve the value at 3260 /// the position given by Index in the lookup table. 3261 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3262 3263 /// WouldFitInRegister - Return true if a table with TableSize elements of 3264 /// type ElementType would fit in a target-legal register. 3265 static bool WouldFitInRegister(const TargetData *TD, 3266 uint64_t TableSize, 3267 const Type *ElementType); 3268 3269 private: 3270 // Depending on the contents of the table, it can be represented in 3271 // different ways. 3272 enum { 3273 // For tables where each element contains the same value, we just have to 3274 // store that single value and return it for each lookup. 3275 SingleValueKind, 3276 3277 // For small tables with integer elements, we can pack them into a bitmap 3278 // that fits into a target-legal register. Values are retrieved by 3279 // shift and mask operations. 3280 BitMapKind, 3281 3282 // The table is stored as an array of values. Values are retrieved by load 3283 // instructions from the table. 3284 ArrayKind 3285 } Kind; 3286 3287 // For SingleValueKind, this is the single value. 3288 Constant *SingleValue; 3289 3290 // For BitMapKind, this is the bitmap. 3291 ConstantInt *BitMap; 3292 IntegerType *BitMapElementTy; 3293 3294 // For ArrayKind, this is the array. 3295 GlobalVariable *Array; 3296 }; 3297 } 3298 3299 SwitchLookupTable::SwitchLookupTable(Module &M, 3300 uint64_t TableSize, 3301 ConstantInt *Offset, 3302 const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values, 3303 Constant *DefaultValue, 3304 const TargetData *TD) { 3305 assert(Values.size() && "Can't build lookup table without values!"); 3306 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3307 3308 // If all values in the table are equal, this is that value. 3309 SingleValue = Values.begin()->second; 3310 3311 // Build up the table contents. 3312 SmallVector<Constant*, 64> TableContents(TableSize); 3313 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3314 ConstantInt *CaseVal = Values[I].first; 3315 Constant *CaseRes = Values[I].second; 3316 assert(CaseRes->getType() == DefaultValue->getType()); 3317 3318 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3319 .getLimitedValue(); 3320 TableContents[Idx] = CaseRes; 3321 3322 if (CaseRes != SingleValue) 3323 SingleValue = NULL; 3324 } 3325 3326 // Fill in any holes in the table with the default result. 3327 if (Values.size() < TableSize) { 3328 for (uint64_t I = 0; I < TableSize; ++I) { 3329 if (!TableContents[I]) 3330 TableContents[I] = DefaultValue; 3331 } 3332 3333 if (DefaultValue != SingleValue) 3334 SingleValue = NULL; 3335 } 3336 3337 // If each element in the table contains the same value, we only need to store 3338 // that single value. 3339 if (SingleValue) { 3340 Kind = SingleValueKind; 3341 return; 3342 } 3343 3344 // If the type is integer and the table fits in a register, build a bitmap. 3345 if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) { 3346 IntegerType *IT = cast<IntegerType>(DefaultValue->getType()); 3347 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3348 for (uint64_t I = TableSize; I > 0; --I) { 3349 TableInt <<= IT->getBitWidth(); 3350 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3351 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3352 } 3353 BitMap = ConstantInt::get(M.getContext(), TableInt); 3354 BitMapElementTy = IT; 3355 Kind = BitMapKind; 3356 ++NumBitMaps; 3357 return; 3358 } 3359 3360 // Store the table in an array. 3361 ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize); 3362 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3363 3364 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3365 GlobalVariable::PrivateLinkage, 3366 Initializer, 3367 "switch.table"); 3368 Array->setUnnamedAddr(true); 3369 Kind = ArrayKind; 3370 } 3371 3372 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3373 switch (Kind) { 3374 case SingleValueKind: 3375 return SingleValue; 3376 case BitMapKind: { 3377 // Type of the bitmap (e.g. i59). 3378 IntegerType *MapTy = BitMap->getType(); 3379 3380 // Cast Index to the same type as the bitmap. 3381 // Note: The Index is <= the number of elements in the table, so 3382 // truncating it to the width of the bitmask is safe. 3383 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3384 3385 // Multiply the shift amount by the element width. 3386 ShiftAmt = Builder.CreateMul(ShiftAmt, 3387 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3388 "switch.shiftamt"); 3389 3390 // Shift down. 3391 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3392 "switch.downshift"); 3393 // Mask off. 3394 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3395 "switch.masked"); 3396 } 3397 case ArrayKind: { 3398 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3399 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3400 "switch.gep"); 3401 return Builder.CreateLoad(GEP, "switch.load"); 3402 } 3403 } 3404 llvm_unreachable("Unknown lookup table kind!"); 3405 } 3406 3407 bool SwitchLookupTable::WouldFitInRegister(const TargetData *TD, 3408 uint64_t TableSize, 3409 const Type *ElementType) { 3410 if (!TD) 3411 return false; 3412 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3413 if (!IT) 3414 return false; 3415 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3416 // are <= 15, we could try to narrow the type. 3417 3418 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3419 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3420 return false; 3421 return TD->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3422 } 3423 3424 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3425 /// for this switch, based on the number of caes, size of the table and the 3426 /// types of the results. 3427 static bool ShouldBuildLookupTable(SwitchInst *SI, 3428 uint64_t TableSize, 3429 const TargetData *TD, 3430 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3431 // The table density should be at least 40%. This is the same criterion as for 3432 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3433 // FIXME: Find the best cut-off. 3434 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3435 return false; // TableSize overflowed, or mul below might overflow. 3436 if (SI->getNumCases() * 10 >= TableSize * 4) 3437 return true; 3438 3439 // If each table would fit in a register, we should build it anyway. 3440 for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(), 3441 E = ResultTypes.end(); I != E; ++I) { 3442 if (!SwitchLookupTable::WouldFitInRegister(TD, TableSize, I->second)) 3443 return false; 3444 } 3445 return true; 3446 } 3447 3448 /// SwitchToLookupTable - If the switch is only used to initialize one or more 3449 /// phi nodes in a common successor block with different constant values, 3450 /// replace the switch with lookup tables. 3451 static bool SwitchToLookupTable(SwitchInst *SI, 3452 IRBuilder<> &Builder, 3453 const TargetData* TD) { 3454 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3455 // FIXME: Handle unreachable cases. 3456 3457 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 3458 // split off a dense part and build a lookup table for that. 3459 3460 // FIXME: This creates arrays of GEPs to constant strings, which means each 3461 // GEP needs a runtime relocation in PIC code. We should just build one big 3462 // string and lookup indices into that. 3463 3464 // Ignore the switch if the number of cases is too small. 3465 // This is similar to the check when building jump tables in 3466 // SelectionDAGBuilder::handleJTSwitchCase. 3467 // FIXME: Determine the best cut-off. 3468 if (SI->getNumCases() < 4) 3469 return false; 3470 3471 // Figure out the corresponding result for each case value and phi node in the 3472 // common destination, as well as the the min and max case values. 3473 assert(SI->case_begin() != SI->case_end()); 3474 SwitchInst::CaseIt CI = SI->case_begin(); 3475 ConstantInt *MinCaseVal = CI.getCaseValue(); 3476 ConstantInt *MaxCaseVal = CI.getCaseValue(); 3477 3478 BasicBlock *CommonDest = NULL; 3479 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 3480 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 3481 SmallDenseMap<PHINode*, Constant*> DefaultResults; 3482 SmallDenseMap<PHINode*, Type*> ResultTypes; 3483 SmallVector<PHINode*, 4> PHIs; 3484 3485 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 3486 ConstantInt *CaseVal = CI.getCaseValue(); 3487 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 3488 MinCaseVal = CaseVal; 3489 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 3490 MaxCaseVal = CaseVal; 3491 3492 // Resulting value at phi nodes for this case value. 3493 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 3494 ResultsTy Results; 3495 if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results)) 3496 return false; 3497 3498 // Append the result from this case to the list for each phi. 3499 for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) { 3500 if (!ResultLists.count(I->first)) 3501 PHIs.push_back(I->first); 3502 ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second)); 3503 } 3504 } 3505 3506 // Get the resulting values for the default case. 3507 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 3508 if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList)) 3509 return false; 3510 for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) { 3511 PHINode *PHI = DefaultResultsList[I].first; 3512 Constant *Result = DefaultResultsList[I].second; 3513 DefaultResults[PHI] = Result; 3514 ResultTypes[PHI] = Result->getType(); 3515 } 3516 3517 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 3518 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 3519 if (!ShouldBuildLookupTable(SI, TableSize, TD, ResultTypes)) 3520 return false; 3521 3522 // Create the BB that does the lookups. 3523 Module &Mod = *CommonDest->getParent()->getParent(); 3524 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 3525 "switch.lookup", 3526 CommonDest->getParent(), 3527 CommonDest); 3528 3529 // Check whether the condition value is within the case range, and branch to 3530 // the new BB. 3531 Builder.SetInsertPoint(SI); 3532 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 3533 "switch.tableidx"); 3534 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 3535 MinCaseVal->getType(), TableSize)); 3536 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 3537 3538 // Populate the BB that does the lookups. 3539 Builder.SetInsertPoint(LookupBB); 3540 bool ReturnedEarly = false; 3541 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 3542 PHINode *PHI = PHIs[I]; 3543 3544 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI], 3545 DefaultResults[PHI], TD); 3546 3547 Value *Result = Table.BuildLookup(TableIndex, Builder); 3548 3549 // If the result is used to return immediately from the function, we want to 3550 // do that right here. 3551 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) && 3552 *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) { 3553 Builder.CreateRet(Result); 3554 ReturnedEarly = true; 3555 break; 3556 } 3557 3558 PHI->addIncoming(Result, LookupBB); 3559 } 3560 3561 if (!ReturnedEarly) 3562 Builder.CreateBr(CommonDest); 3563 3564 // Remove the switch. 3565 for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) { 3566 BasicBlock *Succ = SI->getSuccessor(i); 3567 if (Succ == SI->getDefaultDest()) continue; 3568 Succ->removePredecessor(SI->getParent()); 3569 } 3570 SI->eraseFromParent(); 3571 3572 ++NumLookupTables; 3573 return true; 3574 } 3575 3576 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 3577 // If this switch is too complex to want to look at, ignore it. 3578 if (!isValueEqualityComparison(SI)) 3579 return false; 3580 3581 BasicBlock *BB = SI->getParent(); 3582 3583 // If we only have one predecessor, and if it is a branch on this value, 3584 // see if that predecessor totally determines the outcome of this switch. 3585 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3586 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 3587 return SimplifyCFG(BB) | true; 3588 3589 Value *Cond = SI->getCondition(); 3590 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 3591 if (SimplifySwitchOnSelect(SI, Select)) 3592 return SimplifyCFG(BB) | true; 3593 3594 // If the block only contains the switch, see if we can fold the block 3595 // away into any preds. 3596 BasicBlock::iterator BBI = BB->begin(); 3597 // Ignore dbg intrinsics. 3598 while (isa<DbgInfoIntrinsic>(BBI)) 3599 ++BBI; 3600 if (SI == &*BBI) 3601 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 3602 return SimplifyCFG(BB) | true; 3603 3604 // Try to transform the switch into an icmp and a branch. 3605 if (TurnSwitchRangeIntoICmp(SI, Builder)) 3606 return SimplifyCFG(BB) | true; 3607 3608 // Remove unreachable cases. 3609 if (EliminateDeadSwitchCases(SI)) 3610 return SimplifyCFG(BB) | true; 3611 3612 if (ForwardSwitchConditionToPHI(SI)) 3613 return SimplifyCFG(BB) | true; 3614 3615 if (SwitchToLookupTable(SI, Builder, TD)) 3616 return SimplifyCFG(BB) | true; 3617 3618 return false; 3619 } 3620 3621 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 3622 BasicBlock *BB = IBI->getParent(); 3623 bool Changed = false; 3624 3625 // Eliminate redundant destinations. 3626 SmallPtrSet<Value *, 8> Succs; 3627 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 3628 BasicBlock *Dest = IBI->getDestination(i); 3629 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) { 3630 Dest->removePredecessor(BB); 3631 IBI->removeDestination(i); 3632 --i; --e; 3633 Changed = true; 3634 } 3635 } 3636 3637 if (IBI->getNumDestinations() == 0) { 3638 // If the indirectbr has no successors, change it to unreachable. 3639 new UnreachableInst(IBI->getContext(), IBI); 3640 EraseTerminatorInstAndDCECond(IBI); 3641 return true; 3642 } 3643 3644 if (IBI->getNumDestinations() == 1) { 3645 // If the indirectbr has one successor, change it to a direct branch. 3646 BranchInst::Create(IBI->getDestination(0), IBI); 3647 EraseTerminatorInstAndDCECond(IBI); 3648 return true; 3649 } 3650 3651 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 3652 if (SimplifyIndirectBrOnSelect(IBI, SI)) 3653 return SimplifyCFG(BB) | true; 3654 } 3655 return Changed; 3656 } 3657 3658 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 3659 BasicBlock *BB = BI->getParent(); 3660 3661 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 3662 return true; 3663 3664 // If the Terminator is the only non-phi instruction, simplify the block. 3665 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime(); 3666 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 3667 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 3668 return true; 3669 3670 // If the only instruction in the block is a seteq/setne comparison 3671 // against a constant, try to simplify the block. 3672 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 3673 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 3674 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 3675 ; 3676 if (I->isTerminator() && 3677 TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder)) 3678 return true; 3679 } 3680 3681 // If this basic block is ONLY a compare and a branch, and if a predecessor 3682 // branches to us and our successor, fold the comparison into the 3683 // predecessor and use logical operations to update the incoming value 3684 // for PHI nodes in common successor. 3685 if (FoldBranchToCommonDest(BI)) 3686 return SimplifyCFG(BB) | true; 3687 return false; 3688 } 3689 3690 3691 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 3692 BasicBlock *BB = BI->getParent(); 3693 3694 // Conditional branch 3695 if (isValueEqualityComparison(BI)) { 3696 // If we only have one predecessor, and if it is a branch on this value, 3697 // see if that predecessor totally determines the outcome of this 3698 // switch. 3699 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 3700 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 3701 return SimplifyCFG(BB) | true; 3702 3703 // This block must be empty, except for the setcond inst, if it exists. 3704 // Ignore dbg intrinsics. 3705 BasicBlock::iterator I = BB->begin(); 3706 // Ignore dbg intrinsics. 3707 while (isa<DbgInfoIntrinsic>(I)) 3708 ++I; 3709 if (&*I == BI) { 3710 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 3711 return SimplifyCFG(BB) | true; 3712 } else if (&*I == cast<Instruction>(BI->getCondition())){ 3713 ++I; 3714 // Ignore dbg intrinsics. 3715 while (isa<DbgInfoIntrinsic>(I)) 3716 ++I; 3717 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 3718 return SimplifyCFG(BB) | true; 3719 } 3720 } 3721 3722 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 3723 if (SimplifyBranchOnICmpChain(BI, TD, Builder)) 3724 return true; 3725 3726 // If this basic block is ONLY a compare and a branch, and if a predecessor 3727 // branches to us and one of our successors, fold the comparison into the 3728 // predecessor and use logical operations to pick the right destination. 3729 if (FoldBranchToCommonDest(BI)) 3730 return SimplifyCFG(BB) | true; 3731 3732 // We have a conditional branch to two blocks that are only reachable 3733 // from BI. We know that the condbr dominates the two blocks, so see if 3734 // there is any identical code in the "then" and "else" blocks. If so, we 3735 // can hoist it up to the branching block. 3736 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) { 3737 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3738 if (HoistThenElseCodeToIf(BI)) 3739 return SimplifyCFG(BB) | true; 3740 } else { 3741 // If Successor #1 has multiple preds, we may be able to conditionally 3742 // execute Successor #0 if it branches to successor #1. 3743 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 3744 if (Succ0TI->getNumSuccessors() == 1 && 3745 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 3746 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0))) 3747 return SimplifyCFG(BB) | true; 3748 } 3749 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) { 3750 // If Successor #0 has multiple preds, we may be able to conditionally 3751 // execute Successor #1 if it branches to successor #0. 3752 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 3753 if (Succ1TI->getNumSuccessors() == 1 && 3754 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 3755 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1))) 3756 return SimplifyCFG(BB) | true; 3757 } 3758 3759 // If this is a branch on a phi node in the current block, thread control 3760 // through this block if any PHI node entries are constants. 3761 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 3762 if (PN->getParent() == BI->getParent()) 3763 if (FoldCondBranchOnPHI(BI, TD)) 3764 return SimplifyCFG(BB) | true; 3765 3766 // Scan predecessor blocks for conditional branches. 3767 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 3768 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 3769 if (PBI != BI && PBI->isConditional()) 3770 if (SimplifyCondBranchToCondBranch(PBI, BI)) 3771 return SimplifyCFG(BB) | true; 3772 3773 return false; 3774 } 3775 3776 /// Check if passing a value to an instruction will cause undefined behavior. 3777 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 3778 Constant *C = dyn_cast<Constant>(V); 3779 if (!C) 3780 return false; 3781 3782 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time 3783 return false; 3784 3785 if (C->isNullValue()) { 3786 Instruction *Use = I->use_back(); 3787 3788 // Now make sure that there are no instructions in between that can alter 3789 // control flow (eg. calls) 3790 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 3791 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 3792 return false; 3793 3794 // Look through GEPs. A load from a GEP derived from NULL is still undefined 3795 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 3796 if (GEP->getPointerOperand() == I) 3797 return passingValueIsAlwaysUndefined(V, GEP); 3798 3799 // Look through bitcasts. 3800 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 3801 return passingValueIsAlwaysUndefined(V, BC); 3802 3803 // Load from null is undefined. 3804 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 3805 return LI->getPointerAddressSpace() == 0; 3806 3807 // Store to null is undefined. 3808 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 3809 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 3810 } 3811 return false; 3812 } 3813 3814 /// If BB has an incoming value that will always trigger undefined behavior 3815 /// (eg. null pointer dereference), remove the branch leading here. 3816 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 3817 for (BasicBlock::iterator i = BB->begin(); 3818 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 3819 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 3820 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 3821 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 3822 IRBuilder<> Builder(T); 3823 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 3824 BB->removePredecessor(PHI->getIncomingBlock(i)); 3825 // Turn uncoditional branches into unreachables and remove the dead 3826 // destination from conditional branches. 3827 if (BI->isUnconditional()) 3828 Builder.CreateUnreachable(); 3829 else 3830 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 3831 BI->getSuccessor(0)); 3832 BI->eraseFromParent(); 3833 return true; 3834 } 3835 // TODO: SwitchInst. 3836 } 3837 3838 return false; 3839 } 3840 3841 bool SimplifyCFGOpt::run(BasicBlock *BB) { 3842 bool Changed = false; 3843 3844 assert(BB && BB->getParent() && "Block not embedded in function!"); 3845 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 3846 3847 // Remove basic blocks that have no predecessors (except the entry block)... 3848 // or that just have themself as a predecessor. These are unreachable. 3849 if ((pred_begin(BB) == pred_end(BB) && 3850 BB != &BB->getParent()->getEntryBlock()) || 3851 BB->getSinglePredecessor() == BB) { 3852 DEBUG(dbgs() << "Removing BB: \n" << *BB); 3853 DeleteDeadBlock(BB); 3854 return true; 3855 } 3856 3857 // Check to see if we can constant propagate this terminator instruction 3858 // away... 3859 Changed |= ConstantFoldTerminator(BB, true); 3860 3861 // Check for and eliminate duplicate PHI nodes in this block. 3862 Changed |= EliminateDuplicatePHINodes(BB); 3863 3864 // Check for and remove branches that will always cause undefined behavior. 3865 Changed |= removeUndefIntroducingPredecessor(BB); 3866 3867 // Merge basic blocks into their predecessor if there is only one distinct 3868 // pred, and if there is only one distinct successor of the predecessor, and 3869 // if there are no PHI nodes. 3870 // 3871 if (MergeBlockIntoPredecessor(BB)) 3872 return true; 3873 3874 IRBuilder<> Builder(BB); 3875 3876 // If there is a trivial two-entry PHI node in this basic block, and we can 3877 // eliminate it, do so now. 3878 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 3879 if (PN->getNumIncomingValues() == 2) 3880 Changed |= FoldTwoEntryPHINode(PN, TD); 3881 3882 Builder.SetInsertPoint(BB->getTerminator()); 3883 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 3884 if (BI->isUnconditional()) { 3885 if (SimplifyUncondBranch(BI, Builder)) return true; 3886 } else { 3887 if (SimplifyCondBranch(BI, Builder)) return true; 3888 } 3889 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 3890 if (SimplifyReturn(RI, Builder)) return true; 3891 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 3892 if (SimplifyResume(RI, Builder)) return true; 3893 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 3894 if (SimplifySwitch(SI, Builder)) return true; 3895 } else if (UnreachableInst *UI = 3896 dyn_cast<UnreachableInst>(BB->getTerminator())) { 3897 if (SimplifyUnreachable(UI)) return true; 3898 } else if (IndirectBrInst *IBI = 3899 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 3900 if (SimplifyIndirectBr(IBI)) return true; 3901 } 3902 3903 return Changed; 3904 } 3905 3906 /// SimplifyCFG - This function is used to do simplification of a CFG. For 3907 /// example, it adjusts branches to branches to eliminate the extra hop, it 3908 /// eliminates unreachable basic blocks, and does other "peephole" optimization 3909 /// of the CFG. It returns true if a modification was made. 3910 /// 3911 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) { 3912 return SimplifyCFGOpt(TD).run(BB); 3913 } 3914