1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 static cl::opt<unsigned> MaxSpeculationDepth( 94 "max-speculation-depth", cl::Hidden, cl::init(10), 95 cl::desc("Limit maximum recursion depth when calculating costs of " 96 "speculatively executed instructions")); 97 98 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 99 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 100 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 101 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 102 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 103 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 104 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 105 106 namespace { 107 // The first field contains the value that the switch produces when a certain 108 // case group is selected, and the second field is a vector containing the 109 // cases composing the case group. 110 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 111 SwitchCaseResultVectorTy; 112 // The first field contains the phi node that generates a result of the switch 113 // and the second field contains the value generated for a certain case in the 114 // switch for that PHI. 115 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 116 117 /// ValueEqualityComparisonCase - Represents a case of a switch. 118 struct ValueEqualityComparisonCase { 119 ConstantInt *Value; 120 BasicBlock *Dest; 121 122 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 123 : Value(Value), Dest(Dest) {} 124 125 bool operator<(ValueEqualityComparisonCase RHS) const { 126 // Comparing pointers is ok as we only rely on the order for uniquing. 127 return Value < RHS.Value; 128 } 129 130 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 131 }; 132 133 class SimplifyCFGOpt { 134 const TargetTransformInfo &TTI; 135 const DataLayout &DL; 136 unsigned BonusInstThreshold; 137 AssumptionCache *AC; 138 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 139 Value *isValueEqualityComparison(TerminatorInst *TI); 140 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 141 std::vector<ValueEqualityComparisonCase> &Cases); 142 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 143 BasicBlock *Pred, 144 IRBuilder<> &Builder); 145 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 146 IRBuilder<> &Builder); 147 148 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 149 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 150 bool SimplifySingleResume(ResumeInst *RI); 151 bool SimplifyCommonResume(ResumeInst *RI); 152 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 153 bool SimplifyUnreachable(UnreachableInst *UI); 154 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 155 bool SimplifyIndirectBr(IndirectBrInst *IBI); 156 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 157 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 158 159 public: 160 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 161 unsigned BonusInstThreshold, AssumptionCache *AC, 162 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) 163 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC), 164 LoopHeaders(LoopHeaders) {} 165 bool run(BasicBlock *BB); 166 }; 167 } 168 169 /// Return true if it is safe to merge these two 170 /// terminator instructions together. 171 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 172 if (SI1 == SI2) return false; // Can't merge with self! 173 174 // It is not safe to merge these two switch instructions if they have a common 175 // successor, and if that successor has a PHI node, and if *that* PHI node has 176 // conflicting incoming values from the two switch blocks. 177 BasicBlock *SI1BB = SI1->getParent(); 178 BasicBlock *SI2BB = SI2->getParent(); 179 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 180 181 for (BasicBlock *Succ : successors(SI2BB)) 182 if (SI1Succs.count(Succ)) 183 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 184 PHINode *PN = cast<PHINode>(BBI); 185 if (PN->getIncomingValueForBlock(SI1BB) != 186 PN->getIncomingValueForBlock(SI2BB)) 187 return false; 188 } 189 190 return true; 191 } 192 193 /// Return true if it is safe and profitable to merge these two terminator 194 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 195 /// store all PHI nodes in common successors. 196 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 197 BranchInst *SI2, 198 Instruction *Cond, 199 SmallVectorImpl<PHINode*> &PhiNodes) { 200 if (SI1 == SI2) return false; // Can't merge with self! 201 assert(SI1->isUnconditional() && SI2->isConditional()); 202 203 // We fold the unconditional branch if we can easily update all PHI nodes in 204 // common successors: 205 // 1> We have a constant incoming value for the conditional branch; 206 // 2> We have "Cond" as the incoming value for the unconditional branch; 207 // 3> SI2->getCondition() and Cond have same operands. 208 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 209 if (!Ci2) return false; 210 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 211 Cond->getOperand(1) == Ci2->getOperand(1)) && 212 !(Cond->getOperand(0) == Ci2->getOperand(1) && 213 Cond->getOperand(1) == Ci2->getOperand(0))) 214 return false; 215 216 BasicBlock *SI1BB = SI1->getParent(); 217 BasicBlock *SI2BB = SI2->getParent(); 218 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 219 for (BasicBlock *Succ : successors(SI2BB)) 220 if (SI1Succs.count(Succ)) 221 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 222 PHINode *PN = cast<PHINode>(BBI); 223 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 224 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 225 return false; 226 PhiNodes.push_back(PN); 227 } 228 return true; 229 } 230 231 /// Update PHI nodes in Succ to indicate that there will now be entries in it 232 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 233 /// will be the same as those coming in from ExistPred, an existing predecessor 234 /// of Succ. 235 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 236 BasicBlock *ExistPred) { 237 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 238 239 PHINode *PN; 240 for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I) 241 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 242 } 243 244 /// Compute an abstract "cost" of speculating the given instruction, 245 /// which is assumed to be safe to speculate. TCC_Free means cheap, 246 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 247 /// expensive. 248 static unsigned ComputeSpeculationCost(const User *I, 249 const TargetTransformInfo &TTI) { 250 assert(isSafeToSpeculativelyExecute(I) && 251 "Instruction is not safe to speculatively execute!"); 252 return TTI.getUserCost(I); 253 } 254 255 /// If we have a merge point of an "if condition" as accepted above, 256 /// return true if the specified value dominates the block. We 257 /// don't handle the true generality of domination here, just a special case 258 /// which works well enough for us. 259 /// 260 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 261 /// see if V (which must be an instruction) and its recursive operands 262 /// that do not dominate BB have a combined cost lower than CostRemaining and 263 /// are non-trapping. If both are true, the instruction is inserted into the 264 /// set and true is returned. 265 /// 266 /// The cost for most non-trapping instructions is defined as 1 except for 267 /// Select whose cost is 2. 268 /// 269 /// After this function returns, CostRemaining is decreased by the cost of 270 /// V plus its non-dominating operands. If that cost is greater than 271 /// CostRemaining, false is returned and CostRemaining is undefined. 272 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 273 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 274 unsigned &CostRemaining, 275 const TargetTransformInfo &TTI, 276 unsigned Depth = 0) { 277 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 278 // so limit the recursion depth. 279 // TODO: While this recursion limit does prevent pathological behavior, it 280 // would be better to track visited instructions to avoid cycles. 281 if (Depth == MaxSpeculationDepth) 282 return false; 283 284 Instruction *I = dyn_cast<Instruction>(V); 285 if (!I) { 286 // Non-instructions all dominate instructions, but not all constantexprs 287 // can be executed unconditionally. 288 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 289 if (C->canTrap()) 290 return false; 291 return true; 292 } 293 BasicBlock *PBB = I->getParent(); 294 295 // We don't want to allow weird loops that might have the "if condition" in 296 // the bottom of this block. 297 if (PBB == BB) return false; 298 299 // If this instruction is defined in a block that contains an unconditional 300 // branch to BB, then it must be in the 'conditional' part of the "if 301 // statement". If not, it definitely dominates the region. 302 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 303 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 304 return true; 305 306 // If we aren't allowing aggressive promotion anymore, then don't consider 307 // instructions in the 'if region'. 308 if (!AggressiveInsts) return false; 309 310 // If we have seen this instruction before, don't count it again. 311 if (AggressiveInsts->count(I)) return true; 312 313 // Okay, it looks like the instruction IS in the "condition". Check to 314 // see if it's a cheap instruction to unconditionally compute, and if it 315 // only uses stuff defined outside of the condition. If so, hoist it out. 316 if (!isSafeToSpeculativelyExecute(I)) 317 return false; 318 319 unsigned Cost = ComputeSpeculationCost(I, TTI); 320 321 // Allow exactly one instruction to be speculated regardless of its cost 322 // (as long as it is safe to do so). 323 // This is intended to flatten the CFG even if the instruction is a division 324 // or other expensive operation. The speculation of an expensive instruction 325 // is expected to be undone in CodeGenPrepare if the speculation has not 326 // enabled further IR optimizations. 327 if (Cost > CostRemaining && 328 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 329 return false; 330 331 // Avoid unsigned wrap. 332 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 333 334 // Okay, we can only really hoist these out if their operands do 335 // not take us over the cost threshold. 336 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 337 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 338 Depth + 1)) 339 return false; 340 // Okay, it's safe to do this! Remember this instruction. 341 AggressiveInsts->insert(I); 342 return true; 343 } 344 345 /// Extract ConstantInt from value, looking through IntToPtr 346 /// and PointerNullValue. Return NULL if value is not a constant int. 347 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 348 // Normal constant int. 349 ConstantInt *CI = dyn_cast<ConstantInt>(V); 350 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 351 return CI; 352 353 // This is some kind of pointer constant. Turn it into a pointer-sized 354 // ConstantInt if possible. 355 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 356 357 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 358 if (isa<ConstantPointerNull>(V)) 359 return ConstantInt::get(PtrTy, 0); 360 361 // IntToPtr const int. 362 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 363 if (CE->getOpcode() == Instruction::IntToPtr) 364 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 365 // The constant is very likely to have the right type already. 366 if (CI->getType() == PtrTy) 367 return CI; 368 else 369 return cast<ConstantInt> 370 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 371 } 372 return nullptr; 373 } 374 375 namespace { 376 377 /// Given a chain of or (||) or and (&&) comparison of a value against a 378 /// constant, this will try to recover the information required for a switch 379 /// structure. 380 /// It will depth-first traverse the chain of comparison, seeking for patterns 381 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 382 /// representing the different cases for the switch. 383 /// Note that if the chain is composed of '||' it will build the set of elements 384 /// that matches the comparisons (i.e. any of this value validate the chain) 385 /// while for a chain of '&&' it will build the set elements that make the test 386 /// fail. 387 struct ConstantComparesGatherer { 388 const DataLayout &DL; 389 Value *CompValue; /// Value found for the switch comparison 390 Value *Extra; /// Extra clause to be checked before the switch 391 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 392 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 393 394 /// Construct and compute the result for the comparison instruction Cond 395 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 396 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 397 gather(Cond); 398 } 399 400 /// Prevent copy 401 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 402 ConstantComparesGatherer & 403 operator=(const ConstantComparesGatherer &) = delete; 404 405 private: 406 407 /// Try to set the current value used for the comparison, it succeeds only if 408 /// it wasn't set before or if the new value is the same as the old one 409 bool setValueOnce(Value *NewVal) { 410 if (CompValue && CompValue != NewVal) return false; 411 CompValue = NewVal; 412 return (CompValue != nullptr); 413 } 414 415 /// Try to match Instruction "I" as a comparison against a constant and 416 /// populates the array Vals with the set of values that match (or do not 417 /// match depending on isEQ). 418 /// Return false on failure. On success, the Value the comparison matched 419 /// against is placed in CompValue. 420 /// If CompValue is already set, the function is expected to fail if a match 421 /// is found but the value compared to is different. 422 bool matchInstruction(Instruction *I, bool isEQ) { 423 // If this is an icmp against a constant, handle this as one of the cases. 424 ICmpInst *ICI; 425 ConstantInt *C; 426 if (!((ICI = dyn_cast<ICmpInst>(I)) && 427 (C = GetConstantInt(I->getOperand(1), DL)))) { 428 return false; 429 } 430 431 Value *RHSVal; 432 ConstantInt *RHSC; 433 434 // Pattern match a special case 435 // (x & ~2^z) == y --> x == y || x == y|2^z 436 // This undoes a transformation done by instcombine to fuse 2 compares. 437 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 438 if (match(ICI->getOperand(0), 439 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 440 APInt Not = ~RHSC->getValue(); 441 if (Not.isPowerOf2() && C->getValue().isPowerOf2() && 442 Not != C->getValue()) { 443 // If we already have a value for the switch, it has to match! 444 if(!setValueOnce(RHSVal)) 445 return false; 446 447 Vals.push_back(C); 448 Vals.push_back(ConstantInt::get(C->getContext(), 449 C->getValue() | Not)); 450 UsedICmps++; 451 return true; 452 } 453 } 454 455 // If we already have a value for the switch, it has to match! 456 if(!setValueOnce(ICI->getOperand(0))) 457 return false; 458 459 UsedICmps++; 460 Vals.push_back(C); 461 return ICI->getOperand(0); 462 } 463 464 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 465 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 466 ICI->getPredicate(), C->getValue()); 467 468 // Shift the range if the compare is fed by an add. This is the range 469 // compare idiom as emitted by instcombine. 470 Value *CandidateVal = I->getOperand(0); 471 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 472 Span = Span.subtract(RHSC->getValue()); 473 CandidateVal = RHSVal; 474 } 475 476 // If this is an and/!= check, then we are looking to build the set of 477 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 478 // x != 0 && x != 1. 479 if (!isEQ) 480 Span = Span.inverse(); 481 482 // If there are a ton of values, we don't want to make a ginormous switch. 483 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 484 return false; 485 } 486 487 // If we already have a value for the switch, it has to match! 488 if(!setValueOnce(CandidateVal)) 489 return false; 490 491 // Add all values from the range to the set 492 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 493 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 494 495 UsedICmps++; 496 return true; 497 498 } 499 500 /// Given a potentially 'or'd or 'and'd together collection of icmp 501 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 502 /// the value being compared, and stick the list constants into the Vals 503 /// vector. 504 /// One "Extra" case is allowed to differ from the other. 505 void gather(Value *V) { 506 Instruction *I = dyn_cast<Instruction>(V); 507 bool isEQ = (I->getOpcode() == Instruction::Or); 508 509 // Keep a stack (SmallVector for efficiency) for depth-first traversal 510 SmallVector<Value *, 8> DFT; 511 SmallPtrSet<Value *, 8> Visited; 512 513 // Initialize 514 Visited.insert(V); 515 DFT.push_back(V); 516 517 while(!DFT.empty()) { 518 V = DFT.pop_back_val(); 519 520 if (Instruction *I = dyn_cast<Instruction>(V)) { 521 // If it is a || (or && depending on isEQ), process the operands. 522 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 523 if (Visited.insert(I->getOperand(1)).second) 524 DFT.push_back(I->getOperand(1)); 525 if (Visited.insert(I->getOperand(0)).second) 526 DFT.push_back(I->getOperand(0)); 527 continue; 528 } 529 530 // Try to match the current instruction 531 if (matchInstruction(I, isEQ)) 532 // Match succeed, continue the loop 533 continue; 534 } 535 536 // One element of the sequence of || (or &&) could not be match as a 537 // comparison against the same value as the others. 538 // We allow only one "Extra" case to be checked before the switch 539 if (!Extra) { 540 Extra = V; 541 continue; 542 } 543 // Failed to parse a proper sequence, abort now 544 CompValue = nullptr; 545 break; 546 } 547 } 548 }; 549 550 } 551 552 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 553 Instruction *Cond = nullptr; 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 555 Cond = dyn_cast<Instruction>(SI->getCondition()); 556 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 557 if (BI->isConditional()) 558 Cond = dyn_cast<Instruction>(BI->getCondition()); 559 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 560 Cond = dyn_cast<Instruction>(IBI->getAddress()); 561 } 562 563 TI->eraseFromParent(); 564 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 565 } 566 567 /// Return true if the specified terminator checks 568 /// to see if a value is equal to constant integer value. 569 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 570 Value *CV = nullptr; 571 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 572 // Do not permit merging of large switch instructions into their 573 // predecessors unless there is only one predecessor. 574 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 575 pred_end(SI->getParent())) <= 128) 576 CV = SI->getCondition(); 577 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 578 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 579 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 580 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 581 CV = ICI->getOperand(0); 582 } 583 584 // Unwrap any lossless ptrtoint cast. 585 if (CV) { 586 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 587 Value *Ptr = PTII->getPointerOperand(); 588 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 589 CV = Ptr; 590 } 591 } 592 return CV; 593 } 594 595 /// Given a value comparison instruction, 596 /// decode all of the 'cases' that it represents and return the 'default' block. 597 BasicBlock *SimplifyCFGOpt:: 598 GetValueEqualityComparisonCases(TerminatorInst *TI, 599 std::vector<ValueEqualityComparisonCase> 600 &Cases) { 601 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 602 Cases.reserve(SI->getNumCases()); 603 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 604 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 605 i.getCaseSuccessor())); 606 return SI->getDefaultDest(); 607 } 608 609 BranchInst *BI = cast<BranchInst>(TI); 610 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 611 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 612 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 613 DL), 614 Succ)); 615 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 616 } 617 618 619 /// Given a vector of bb/value pairs, remove any entries 620 /// in the list that match the specified block. 621 static void EliminateBlockCases(BasicBlock *BB, 622 std::vector<ValueEqualityComparisonCase> &Cases) { 623 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 624 } 625 626 /// Return true if there are any keys in C1 that exist in C2 as well. 627 static bool 628 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 629 std::vector<ValueEqualityComparisonCase > &C2) { 630 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 631 632 // Make V1 be smaller than V2. 633 if (V1->size() > V2->size()) 634 std::swap(V1, V2); 635 636 if (V1->size() == 0) return false; 637 if (V1->size() == 1) { 638 // Just scan V2. 639 ConstantInt *TheVal = (*V1)[0].Value; 640 for (unsigned i = 0, e = V2->size(); i != e; ++i) 641 if (TheVal == (*V2)[i].Value) 642 return true; 643 } 644 645 // Otherwise, just sort both lists and compare element by element. 646 array_pod_sort(V1->begin(), V1->end()); 647 array_pod_sort(V2->begin(), V2->end()); 648 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 649 while (i1 != e1 && i2 != e2) { 650 if ((*V1)[i1].Value == (*V2)[i2].Value) 651 return true; 652 if ((*V1)[i1].Value < (*V2)[i2].Value) 653 ++i1; 654 else 655 ++i2; 656 } 657 return false; 658 } 659 660 /// If TI is known to be a terminator instruction and its block is known to 661 /// only have a single predecessor block, check to see if that predecessor is 662 /// also a value comparison with the same value, and if that comparison 663 /// determines the outcome of this comparison. If so, simplify TI. This does a 664 /// very limited form of jump threading. 665 bool SimplifyCFGOpt:: 666 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 667 BasicBlock *Pred, 668 IRBuilder<> &Builder) { 669 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 670 if (!PredVal) return false; // Not a value comparison in predecessor. 671 672 Value *ThisVal = isValueEqualityComparison(TI); 673 assert(ThisVal && "This isn't a value comparison!!"); 674 if (ThisVal != PredVal) return false; // Different predicates. 675 676 // TODO: Preserve branch weight metadata, similarly to how 677 // FoldValueComparisonIntoPredecessors preserves it. 678 679 // Find out information about when control will move from Pred to TI's block. 680 std::vector<ValueEqualityComparisonCase> PredCases; 681 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 682 PredCases); 683 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 684 685 // Find information about how control leaves this block. 686 std::vector<ValueEqualityComparisonCase> ThisCases; 687 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 688 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 689 690 // If TI's block is the default block from Pred's comparison, potentially 691 // simplify TI based on this knowledge. 692 if (PredDef == TI->getParent()) { 693 // If we are here, we know that the value is none of those cases listed in 694 // PredCases. If there are any cases in ThisCases that are in PredCases, we 695 // can simplify TI. 696 if (!ValuesOverlap(PredCases, ThisCases)) 697 return false; 698 699 if (isa<BranchInst>(TI)) { 700 // Okay, one of the successors of this condbr is dead. Convert it to a 701 // uncond br. 702 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 703 // Insert the new branch. 704 Instruction *NI = Builder.CreateBr(ThisDef); 705 (void) NI; 706 707 // Remove PHI node entries for the dead edge. 708 ThisCases[0].Dest->removePredecessor(TI->getParent()); 709 710 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 711 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 712 713 EraseTerminatorInstAndDCECond(TI); 714 return true; 715 } 716 717 SwitchInst *SI = cast<SwitchInst>(TI); 718 // Okay, TI has cases that are statically dead, prune them away. 719 SmallPtrSet<Constant*, 16> DeadCases; 720 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 721 DeadCases.insert(PredCases[i].Value); 722 723 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 724 << "Through successor TI: " << *TI); 725 726 // Collect branch weights into a vector. 727 SmallVector<uint32_t, 8> Weights; 728 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 729 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 730 if (HasWeight) 731 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 732 ++MD_i) { 733 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 734 Weights.push_back(CI->getValue().getZExtValue()); 735 } 736 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 737 --i; 738 if (DeadCases.count(i.getCaseValue())) { 739 if (HasWeight) { 740 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 741 Weights.pop_back(); 742 } 743 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 744 SI->removeCase(i); 745 } 746 } 747 if (HasWeight && Weights.size() >= 2) 748 SI->setMetadata(LLVMContext::MD_prof, 749 MDBuilder(SI->getParent()->getContext()). 750 createBranchWeights(Weights)); 751 752 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 753 return true; 754 } 755 756 // Otherwise, TI's block must correspond to some matched value. Find out 757 // which value (or set of values) this is. 758 ConstantInt *TIV = nullptr; 759 BasicBlock *TIBB = TI->getParent(); 760 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 761 if (PredCases[i].Dest == TIBB) { 762 if (TIV) 763 return false; // Cannot handle multiple values coming to this block. 764 TIV = PredCases[i].Value; 765 } 766 assert(TIV && "No edge from pred to succ?"); 767 768 // Okay, we found the one constant that our value can be if we get into TI's 769 // BB. Find out which successor will unconditionally be branched to. 770 BasicBlock *TheRealDest = nullptr; 771 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 772 if (ThisCases[i].Value == TIV) { 773 TheRealDest = ThisCases[i].Dest; 774 break; 775 } 776 777 // If not handled by any explicit cases, it is handled by the default case. 778 if (!TheRealDest) TheRealDest = ThisDef; 779 780 // Remove PHI node entries for dead edges. 781 BasicBlock *CheckEdge = TheRealDest; 782 for (BasicBlock *Succ : successors(TIBB)) 783 if (Succ != CheckEdge) 784 Succ->removePredecessor(TIBB); 785 else 786 CheckEdge = nullptr; 787 788 // Insert the new branch. 789 Instruction *NI = Builder.CreateBr(TheRealDest); 790 (void) NI; 791 792 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 793 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 794 795 EraseTerminatorInstAndDCECond(TI); 796 return true; 797 } 798 799 namespace { 800 /// This class implements a stable ordering of constant 801 /// integers that does not depend on their address. This is important for 802 /// applications that sort ConstantInt's to ensure uniqueness. 803 struct ConstantIntOrdering { 804 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 805 return LHS->getValue().ult(RHS->getValue()); 806 } 807 }; 808 } 809 810 static int ConstantIntSortPredicate(ConstantInt *const *P1, 811 ConstantInt *const *P2) { 812 const ConstantInt *LHS = *P1; 813 const ConstantInt *RHS = *P2; 814 if (LHS == RHS) 815 return 0; 816 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 817 } 818 819 static inline bool HasBranchWeights(const Instruction* I) { 820 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 821 if (ProfMD && ProfMD->getOperand(0)) 822 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 823 return MDS->getString().equals("branch_weights"); 824 825 return false; 826 } 827 828 /// Get Weights of a given TerminatorInst, the default weight is at the front 829 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 830 /// metadata. 831 static void GetBranchWeights(TerminatorInst *TI, 832 SmallVectorImpl<uint64_t> &Weights) { 833 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 834 assert(MD); 835 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 836 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 837 Weights.push_back(CI->getValue().getZExtValue()); 838 } 839 840 // If TI is a conditional eq, the default case is the false case, 841 // and the corresponding branch-weight data is at index 2. We swap the 842 // default weight to be the first entry. 843 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 844 assert(Weights.size() == 2); 845 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 846 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 847 std::swap(Weights.front(), Weights.back()); 848 } 849 } 850 851 /// Keep halving the weights until all can fit in uint32_t. 852 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 853 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 854 if (Max > UINT_MAX) { 855 unsigned Offset = 32 - countLeadingZeros(Max); 856 for (uint64_t &I : Weights) 857 I >>= Offset; 858 } 859 } 860 861 /// The specified terminator is a value equality comparison instruction 862 /// (either a switch or a branch on "X == c"). 863 /// See if any of the predecessors of the terminator block are value comparisons 864 /// on the same value. If so, and if safe to do so, fold them together. 865 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 866 IRBuilder<> &Builder) { 867 BasicBlock *BB = TI->getParent(); 868 Value *CV = isValueEqualityComparison(TI); // CondVal 869 assert(CV && "Not a comparison?"); 870 bool Changed = false; 871 872 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 873 while (!Preds.empty()) { 874 BasicBlock *Pred = Preds.pop_back_val(); 875 876 // See if the predecessor is a comparison with the same value. 877 TerminatorInst *PTI = Pred->getTerminator(); 878 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 879 880 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 881 // Figure out which 'cases' to copy from SI to PSI. 882 std::vector<ValueEqualityComparisonCase> BBCases; 883 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 884 885 std::vector<ValueEqualityComparisonCase> PredCases; 886 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 887 888 // Based on whether the default edge from PTI goes to BB or not, fill in 889 // PredCases and PredDefault with the new switch cases we would like to 890 // build. 891 SmallVector<BasicBlock*, 8> NewSuccessors; 892 893 // Update the branch weight metadata along the way 894 SmallVector<uint64_t, 8> Weights; 895 bool PredHasWeights = HasBranchWeights(PTI); 896 bool SuccHasWeights = HasBranchWeights(TI); 897 898 if (PredHasWeights) { 899 GetBranchWeights(PTI, Weights); 900 // branch-weight metadata is inconsistent here. 901 if (Weights.size() != 1 + PredCases.size()) 902 PredHasWeights = SuccHasWeights = false; 903 } else if (SuccHasWeights) 904 // If there are no predecessor weights but there are successor weights, 905 // populate Weights with 1, which will later be scaled to the sum of 906 // successor's weights 907 Weights.assign(1 + PredCases.size(), 1); 908 909 SmallVector<uint64_t, 8> SuccWeights; 910 if (SuccHasWeights) { 911 GetBranchWeights(TI, SuccWeights); 912 // branch-weight metadata is inconsistent here. 913 if (SuccWeights.size() != 1 + BBCases.size()) 914 PredHasWeights = SuccHasWeights = false; 915 } else if (PredHasWeights) 916 SuccWeights.assign(1 + BBCases.size(), 1); 917 918 if (PredDefault == BB) { 919 // If this is the default destination from PTI, only the edges in TI 920 // that don't occur in PTI, or that branch to BB will be activated. 921 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 922 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 923 if (PredCases[i].Dest != BB) 924 PTIHandled.insert(PredCases[i].Value); 925 else { 926 // The default destination is BB, we don't need explicit targets. 927 std::swap(PredCases[i], PredCases.back()); 928 929 if (PredHasWeights || SuccHasWeights) { 930 // Increase weight for the default case. 931 Weights[0] += Weights[i+1]; 932 std::swap(Weights[i+1], Weights.back()); 933 Weights.pop_back(); 934 } 935 936 PredCases.pop_back(); 937 --i; --e; 938 } 939 940 // Reconstruct the new switch statement we will be building. 941 if (PredDefault != BBDefault) { 942 PredDefault->removePredecessor(Pred); 943 PredDefault = BBDefault; 944 NewSuccessors.push_back(BBDefault); 945 } 946 947 unsigned CasesFromPred = Weights.size(); 948 uint64_t ValidTotalSuccWeight = 0; 949 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 950 if (!PTIHandled.count(BBCases[i].Value) && 951 BBCases[i].Dest != BBDefault) { 952 PredCases.push_back(BBCases[i]); 953 NewSuccessors.push_back(BBCases[i].Dest); 954 if (SuccHasWeights || PredHasWeights) { 955 // The default weight is at index 0, so weight for the ith case 956 // should be at index i+1. Scale the cases from successor by 957 // PredDefaultWeight (Weights[0]). 958 Weights.push_back(Weights[0] * SuccWeights[i+1]); 959 ValidTotalSuccWeight += SuccWeights[i+1]; 960 } 961 } 962 963 if (SuccHasWeights || PredHasWeights) { 964 ValidTotalSuccWeight += SuccWeights[0]; 965 // Scale the cases from predecessor by ValidTotalSuccWeight. 966 for (unsigned i = 1; i < CasesFromPred; ++i) 967 Weights[i] *= ValidTotalSuccWeight; 968 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 969 Weights[0] *= SuccWeights[0]; 970 } 971 } else { 972 // If this is not the default destination from PSI, only the edges 973 // in SI that occur in PSI with a destination of BB will be 974 // activated. 975 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 976 std::map<ConstantInt*, uint64_t> WeightsForHandled; 977 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 978 if (PredCases[i].Dest == BB) { 979 PTIHandled.insert(PredCases[i].Value); 980 981 if (PredHasWeights || SuccHasWeights) { 982 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 983 std::swap(Weights[i+1], Weights.back()); 984 Weights.pop_back(); 985 } 986 987 std::swap(PredCases[i], PredCases.back()); 988 PredCases.pop_back(); 989 --i; --e; 990 } 991 992 // Okay, now we know which constants were sent to BB from the 993 // predecessor. Figure out where they will all go now. 994 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 995 if (PTIHandled.count(BBCases[i].Value)) { 996 // If this is one we are capable of getting... 997 if (PredHasWeights || SuccHasWeights) 998 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 999 PredCases.push_back(BBCases[i]); 1000 NewSuccessors.push_back(BBCases[i].Dest); 1001 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 1002 } 1003 1004 // If there are any constants vectored to BB that TI doesn't handle, 1005 // they must go to the default destination of TI. 1006 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 1007 PTIHandled.begin(), 1008 E = PTIHandled.end(); I != E; ++I) { 1009 if (PredHasWeights || SuccHasWeights) 1010 Weights.push_back(WeightsForHandled[*I]); 1011 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 1012 NewSuccessors.push_back(BBDefault); 1013 } 1014 } 1015 1016 // Okay, at this point, we know which new successor Pred will get. Make 1017 // sure we update the number of entries in the PHI nodes for these 1018 // successors. 1019 for (BasicBlock *NewSuccessor : NewSuccessors) 1020 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1021 1022 Builder.SetInsertPoint(PTI); 1023 // Convert pointer to int before we switch. 1024 if (CV->getType()->isPointerTy()) { 1025 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1026 "magicptr"); 1027 } 1028 1029 // Now that the successors are updated, create the new Switch instruction. 1030 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1031 PredCases.size()); 1032 NewSI->setDebugLoc(PTI->getDebugLoc()); 1033 for (ValueEqualityComparisonCase &V : PredCases) 1034 NewSI->addCase(V.Value, V.Dest); 1035 1036 if (PredHasWeights || SuccHasWeights) { 1037 // Halve the weights if any of them cannot fit in an uint32_t 1038 FitWeights(Weights); 1039 1040 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1041 1042 NewSI->setMetadata(LLVMContext::MD_prof, 1043 MDBuilder(BB->getContext()). 1044 createBranchWeights(MDWeights)); 1045 } 1046 1047 EraseTerminatorInstAndDCECond(PTI); 1048 1049 // Okay, last check. If BB is still a successor of PSI, then we must 1050 // have an infinite loop case. If so, add an infinitely looping block 1051 // to handle the case to preserve the behavior of the code. 1052 BasicBlock *InfLoopBlock = nullptr; 1053 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1054 if (NewSI->getSuccessor(i) == BB) { 1055 if (!InfLoopBlock) { 1056 // Insert it at the end of the function, because it's either code, 1057 // or it won't matter if it's hot. :) 1058 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1059 "infloop", BB->getParent()); 1060 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1061 } 1062 NewSI->setSuccessor(i, InfLoopBlock); 1063 } 1064 1065 Changed = true; 1066 } 1067 } 1068 return Changed; 1069 } 1070 1071 // If we would need to insert a select that uses the value of this invoke 1072 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1073 // can't hoist the invoke, as there is nowhere to put the select in this case. 1074 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1075 Instruction *I1, Instruction *I2) { 1076 for (BasicBlock *Succ : successors(BB1)) { 1077 PHINode *PN; 1078 for (BasicBlock::iterator BBI = Succ->begin(); 1079 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1080 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1081 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1082 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1083 return false; 1084 } 1085 } 1086 } 1087 return true; 1088 } 1089 1090 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1091 1092 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1093 /// in the two blocks up into the branch block. The caller of this function 1094 /// guarantees that BI's block dominates BB1 and BB2. 1095 static bool HoistThenElseCodeToIf(BranchInst *BI, 1096 const TargetTransformInfo &TTI) { 1097 // This does very trivial matching, with limited scanning, to find identical 1098 // instructions in the two blocks. In particular, we don't want to get into 1099 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1100 // such, we currently just scan for obviously identical instructions in an 1101 // identical order. 1102 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1103 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1104 1105 BasicBlock::iterator BB1_Itr = BB1->begin(); 1106 BasicBlock::iterator BB2_Itr = BB2->begin(); 1107 1108 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1109 // Skip debug info if it is not identical. 1110 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1111 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1112 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1113 while (isa<DbgInfoIntrinsic>(I1)) 1114 I1 = &*BB1_Itr++; 1115 while (isa<DbgInfoIntrinsic>(I2)) 1116 I2 = &*BB2_Itr++; 1117 } 1118 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1119 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1120 return false; 1121 1122 BasicBlock *BIParent = BI->getParent(); 1123 1124 bool Changed = false; 1125 do { 1126 // If we are hoisting the terminator instruction, don't move one (making a 1127 // broken BB), instead clone it, and remove BI. 1128 if (isa<TerminatorInst>(I1)) 1129 goto HoistTerminator; 1130 1131 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1132 return Changed; 1133 1134 // For a normal instruction, we just move one to right before the branch, 1135 // then replace all uses of the other with the first. Finally, we remove 1136 // the now redundant second instruction. 1137 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1138 if (!I2->use_empty()) 1139 I2->replaceAllUsesWith(I1); 1140 I1->intersectOptionalDataWith(I2); 1141 unsigned KnownIDs[] = { 1142 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1143 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1144 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1145 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1146 LLVMContext::MD_dereferenceable_or_null}; 1147 combineMetadata(I1, I2, KnownIDs); 1148 I2->eraseFromParent(); 1149 Changed = true; 1150 1151 I1 = &*BB1_Itr++; 1152 I2 = &*BB2_Itr++; 1153 // Skip debug info if it is not identical. 1154 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1155 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1156 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1157 while (isa<DbgInfoIntrinsic>(I1)) 1158 I1 = &*BB1_Itr++; 1159 while (isa<DbgInfoIntrinsic>(I2)) 1160 I2 = &*BB2_Itr++; 1161 } 1162 } while (I1->isIdenticalToWhenDefined(I2)); 1163 1164 return true; 1165 1166 HoistTerminator: 1167 // It may not be possible to hoist an invoke. 1168 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1169 return Changed; 1170 1171 for (BasicBlock *Succ : successors(BB1)) { 1172 PHINode *PN; 1173 for (BasicBlock::iterator BBI = Succ->begin(); 1174 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1175 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1176 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1177 if (BB1V == BB2V) 1178 continue; 1179 1180 // Check for passingValueIsAlwaysUndefined here because we would rather 1181 // eliminate undefined control flow then converting it to a select. 1182 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1183 passingValueIsAlwaysUndefined(BB2V, PN)) 1184 return Changed; 1185 1186 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1187 return Changed; 1188 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1189 return Changed; 1190 } 1191 } 1192 1193 // Okay, it is safe to hoist the terminator. 1194 Instruction *NT = I1->clone(); 1195 BIParent->getInstList().insert(BI->getIterator(), NT); 1196 if (!NT->getType()->isVoidTy()) { 1197 I1->replaceAllUsesWith(NT); 1198 I2->replaceAllUsesWith(NT); 1199 NT->takeName(I1); 1200 } 1201 1202 IRBuilder<NoFolder> Builder(NT); 1203 // Hoisting one of the terminators from our successor is a great thing. 1204 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1205 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1206 // nodes, so we insert select instruction to compute the final result. 1207 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1208 for (BasicBlock *Succ : successors(BB1)) { 1209 PHINode *PN; 1210 for (BasicBlock::iterator BBI = Succ->begin(); 1211 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1212 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1213 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1214 if (BB1V == BB2V) continue; 1215 1216 // These values do not agree. Insert a select instruction before NT 1217 // that determines the right value. 1218 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1219 if (!SI) 1220 SI = cast<SelectInst> 1221 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1222 BB1V->getName() + "." + BB2V->getName())); 1223 1224 // Make the PHI node use the select for all incoming values for BB1/BB2 1225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1226 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1227 PN->setIncomingValue(i, SI); 1228 } 1229 } 1230 1231 // Update any PHI nodes in our new successors. 1232 for (BasicBlock *Succ : successors(BB1)) 1233 AddPredecessorToBlock(Succ, BIParent, BB1); 1234 1235 EraseTerminatorInstAndDCECond(BI); 1236 return true; 1237 } 1238 1239 /// Given an unconditional branch that goes to BBEnd, 1240 /// check whether BBEnd has only two predecessors and the other predecessor 1241 /// ends with an unconditional branch. If it is true, sink any common code 1242 /// in the two predecessors to BBEnd. 1243 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1244 assert(BI1->isUnconditional()); 1245 BasicBlock *BB1 = BI1->getParent(); 1246 BasicBlock *BBEnd = BI1->getSuccessor(0); 1247 1248 // Check that BBEnd has two predecessors and the other predecessor ends with 1249 // an unconditional branch. 1250 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1251 BasicBlock *Pred0 = *PI++; 1252 if (PI == PE) // Only one predecessor. 1253 return false; 1254 BasicBlock *Pred1 = *PI++; 1255 if (PI != PE) // More than two predecessors. 1256 return false; 1257 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1258 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1259 if (!BI2 || !BI2->isUnconditional()) 1260 return false; 1261 1262 // Gather the PHI nodes in BBEnd. 1263 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1264 Instruction *FirstNonPhiInBBEnd = nullptr; 1265 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1266 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1267 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1268 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1269 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1270 } else { 1271 FirstNonPhiInBBEnd = &*I; 1272 break; 1273 } 1274 } 1275 if (!FirstNonPhiInBBEnd) 1276 return false; 1277 1278 // This does very trivial matching, with limited scanning, to find identical 1279 // instructions in the two blocks. We scan backward for obviously identical 1280 // instructions in an identical order. 1281 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1282 RE1 = BB1->getInstList().rend(), 1283 RI2 = BB2->getInstList().rbegin(), 1284 RE2 = BB2->getInstList().rend(); 1285 // Skip debug info. 1286 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1287 if (RI1 == RE1) 1288 return false; 1289 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1290 if (RI2 == RE2) 1291 return false; 1292 // Skip the unconditional branches. 1293 ++RI1; 1294 ++RI2; 1295 1296 bool Changed = false; 1297 while (RI1 != RE1 && RI2 != RE2) { 1298 // Skip debug info. 1299 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1300 if (RI1 == RE1) 1301 return Changed; 1302 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1303 if (RI2 == RE2) 1304 return Changed; 1305 1306 Instruction *I1 = &*RI1, *I2 = &*RI2; 1307 auto InstPair = std::make_pair(I1, I2); 1308 // I1 and I2 should have a single use in the same PHI node, and they 1309 // perform the same operation. 1310 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1311 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1312 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1313 I1->isEHPad() || I2->isEHPad() || 1314 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1315 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1316 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1317 !I1->hasOneUse() || !I2->hasOneUse() || 1318 !JointValueMap.count(InstPair)) 1319 return Changed; 1320 1321 // Check whether we should swap the operands of ICmpInst. 1322 // TODO: Add support of communativity. 1323 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1324 bool SwapOpnds = false; 1325 if (ICmp1 && ICmp2 && 1326 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1327 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1328 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1329 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1330 ICmp2->swapOperands(); 1331 SwapOpnds = true; 1332 } 1333 if (!I1->isSameOperationAs(I2)) { 1334 if (SwapOpnds) 1335 ICmp2->swapOperands(); 1336 return Changed; 1337 } 1338 1339 // The operands should be either the same or they need to be generated 1340 // with a PHI node after sinking. We only handle the case where there is 1341 // a single pair of different operands. 1342 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1343 unsigned Op1Idx = ~0U; 1344 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1345 if (I1->getOperand(I) == I2->getOperand(I)) 1346 continue; 1347 // Early exit if we have more-than one pair of different operands or if 1348 // we need a PHI node to replace a constant. 1349 if (Op1Idx != ~0U || 1350 isa<Constant>(I1->getOperand(I)) || 1351 isa<Constant>(I2->getOperand(I))) { 1352 // If we can't sink the instructions, undo the swapping. 1353 if (SwapOpnds) 1354 ICmp2->swapOperands(); 1355 return Changed; 1356 } 1357 DifferentOp1 = I1->getOperand(I); 1358 Op1Idx = I; 1359 DifferentOp2 = I2->getOperand(I); 1360 } 1361 1362 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1363 DEBUG(dbgs() << " " << *I2 << "\n"); 1364 1365 // We insert the pair of different operands to JointValueMap and 1366 // remove (I1, I2) from JointValueMap. 1367 if (Op1Idx != ~0U) { 1368 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1369 if (!NewPN) { 1370 NewPN = 1371 PHINode::Create(DifferentOp1->getType(), 2, 1372 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1373 NewPN->addIncoming(DifferentOp1, BB1); 1374 NewPN->addIncoming(DifferentOp2, BB2); 1375 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1376 } 1377 // I1 should use NewPN instead of DifferentOp1. 1378 I1->setOperand(Op1Idx, NewPN); 1379 } 1380 PHINode *OldPN = JointValueMap[InstPair]; 1381 JointValueMap.erase(InstPair); 1382 1383 // We need to update RE1 and RE2 if we are going to sink the first 1384 // instruction in the basic block down. 1385 bool UpdateRE1 = (I1 == &BB1->front()), UpdateRE2 = (I2 == &BB2->front()); 1386 // Sink the instruction. 1387 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1388 BB1->getInstList(), I1); 1389 if (!OldPN->use_empty()) 1390 OldPN->replaceAllUsesWith(I1); 1391 OldPN->eraseFromParent(); 1392 1393 if (!I2->use_empty()) 1394 I2->replaceAllUsesWith(I1); 1395 I1->intersectOptionalDataWith(I2); 1396 // TODO: Use combineMetadata here to preserve what metadata we can 1397 // (analogous to the hoisting case above). 1398 I2->eraseFromParent(); 1399 1400 if (UpdateRE1) 1401 RE1 = BB1->getInstList().rend(); 1402 if (UpdateRE2) 1403 RE2 = BB2->getInstList().rend(); 1404 FirstNonPhiInBBEnd = &*I1; 1405 NumSinkCommons++; 1406 Changed = true; 1407 } 1408 return Changed; 1409 } 1410 1411 /// \brief Determine if we can hoist sink a sole store instruction out of a 1412 /// conditional block. 1413 /// 1414 /// We are looking for code like the following: 1415 /// BrBB: 1416 /// store i32 %add, i32* %arrayidx2 1417 /// ... // No other stores or function calls (we could be calling a memory 1418 /// ... // function). 1419 /// %cmp = icmp ult %x, %y 1420 /// br i1 %cmp, label %EndBB, label %ThenBB 1421 /// ThenBB: 1422 /// store i32 %add5, i32* %arrayidx2 1423 /// br label EndBB 1424 /// EndBB: 1425 /// ... 1426 /// We are going to transform this into: 1427 /// BrBB: 1428 /// store i32 %add, i32* %arrayidx2 1429 /// ... // 1430 /// %cmp = icmp ult %x, %y 1431 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1432 /// store i32 %add.add5, i32* %arrayidx2 1433 /// ... 1434 /// 1435 /// \return The pointer to the value of the previous store if the store can be 1436 /// hoisted into the predecessor block. 0 otherwise. 1437 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1438 BasicBlock *StoreBB, BasicBlock *EndBB) { 1439 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1440 if (!StoreToHoist) 1441 return nullptr; 1442 1443 // Volatile or atomic. 1444 if (!StoreToHoist->isSimple()) 1445 return nullptr; 1446 1447 Value *StorePtr = StoreToHoist->getPointerOperand(); 1448 1449 // Look for a store to the same pointer in BrBB. 1450 unsigned MaxNumInstToLookAt = 10; 1451 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1452 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1453 Instruction *CurI = &*RI; 1454 1455 // Could be calling an instruction that effects memory like free(). 1456 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1457 return nullptr; 1458 1459 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1460 // Found the previous store make sure it stores to the same location. 1461 if (SI && SI->getPointerOperand() == StorePtr) 1462 // Found the previous store, return its value operand. 1463 return SI->getValueOperand(); 1464 else if (SI) 1465 return nullptr; // Unknown store. 1466 } 1467 1468 return nullptr; 1469 } 1470 1471 /// \brief Speculate a conditional basic block flattening the CFG. 1472 /// 1473 /// Note that this is a very risky transform currently. Speculating 1474 /// instructions like this is most often not desirable. Instead, there is an MI 1475 /// pass which can do it with full awareness of the resource constraints. 1476 /// However, some cases are "obvious" and we should do directly. An example of 1477 /// this is speculating a single, reasonably cheap instruction. 1478 /// 1479 /// There is only one distinct advantage to flattening the CFG at the IR level: 1480 /// it makes very common but simplistic optimizations such as are common in 1481 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1482 /// modeling their effects with easier to reason about SSA value graphs. 1483 /// 1484 /// 1485 /// An illustration of this transform is turning this IR: 1486 /// \code 1487 /// BB: 1488 /// %cmp = icmp ult %x, %y 1489 /// br i1 %cmp, label %EndBB, label %ThenBB 1490 /// ThenBB: 1491 /// %sub = sub %x, %y 1492 /// br label BB2 1493 /// EndBB: 1494 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1495 /// ... 1496 /// \endcode 1497 /// 1498 /// Into this IR: 1499 /// \code 1500 /// BB: 1501 /// %cmp = icmp ult %x, %y 1502 /// %sub = sub %x, %y 1503 /// %cond = select i1 %cmp, 0, %sub 1504 /// ... 1505 /// \endcode 1506 /// 1507 /// \returns true if the conditional block is removed. 1508 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1509 const TargetTransformInfo &TTI) { 1510 // Be conservative for now. FP select instruction can often be expensive. 1511 Value *BrCond = BI->getCondition(); 1512 if (isa<FCmpInst>(BrCond)) 1513 return false; 1514 1515 BasicBlock *BB = BI->getParent(); 1516 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1517 1518 // If ThenBB is actually on the false edge of the conditional branch, remember 1519 // to swap the select operands later. 1520 bool Invert = false; 1521 if (ThenBB != BI->getSuccessor(0)) { 1522 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1523 Invert = true; 1524 } 1525 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1526 1527 // Keep a count of how many times instructions are used within CondBB when 1528 // they are candidates for sinking into CondBB. Specifically: 1529 // - They are defined in BB, and 1530 // - They have no side effects, and 1531 // - All of their uses are in CondBB. 1532 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1533 1534 unsigned SpeculationCost = 0; 1535 Value *SpeculatedStoreValue = nullptr; 1536 StoreInst *SpeculatedStore = nullptr; 1537 for (BasicBlock::iterator BBI = ThenBB->begin(), 1538 BBE = std::prev(ThenBB->end()); 1539 BBI != BBE; ++BBI) { 1540 Instruction *I = &*BBI; 1541 // Skip debug info. 1542 if (isa<DbgInfoIntrinsic>(I)) 1543 continue; 1544 1545 // Only speculatively execute a single instruction (not counting the 1546 // terminator) for now. 1547 ++SpeculationCost; 1548 if (SpeculationCost > 1) 1549 return false; 1550 1551 // Don't hoist the instruction if it's unsafe or expensive. 1552 if (!isSafeToSpeculativelyExecute(I) && 1553 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1554 I, BB, ThenBB, EndBB)))) 1555 return false; 1556 if (!SpeculatedStoreValue && 1557 ComputeSpeculationCost(I, TTI) > 1558 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1559 return false; 1560 1561 // Store the store speculation candidate. 1562 if (SpeculatedStoreValue) 1563 SpeculatedStore = cast<StoreInst>(I); 1564 1565 // Do not hoist the instruction if any of its operands are defined but not 1566 // used in BB. The transformation will prevent the operand from 1567 // being sunk into the use block. 1568 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1569 i != e; ++i) { 1570 Instruction *OpI = dyn_cast<Instruction>(*i); 1571 if (!OpI || OpI->getParent() != BB || 1572 OpI->mayHaveSideEffects()) 1573 continue; // Not a candidate for sinking. 1574 1575 ++SinkCandidateUseCounts[OpI]; 1576 } 1577 } 1578 1579 // Consider any sink candidates which are only used in CondBB as costs for 1580 // speculation. Note, while we iterate over a DenseMap here, we are summing 1581 // and so iteration order isn't significant. 1582 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1583 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1584 I != E; ++I) 1585 if (I->first->getNumUses() == I->second) { 1586 ++SpeculationCost; 1587 if (SpeculationCost > 1) 1588 return false; 1589 } 1590 1591 // Check that the PHI nodes can be converted to selects. 1592 bool HaveRewritablePHIs = false; 1593 for (BasicBlock::iterator I = EndBB->begin(); 1594 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1595 Value *OrigV = PN->getIncomingValueForBlock(BB); 1596 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1597 1598 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1599 // Skip PHIs which are trivial. 1600 if (ThenV == OrigV) 1601 continue; 1602 1603 // Don't convert to selects if we could remove undefined behavior instead. 1604 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1605 passingValueIsAlwaysUndefined(ThenV, PN)) 1606 return false; 1607 1608 HaveRewritablePHIs = true; 1609 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1610 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1611 if (!OrigCE && !ThenCE) 1612 continue; // Known safe and cheap. 1613 1614 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1615 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1616 return false; 1617 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1618 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1619 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1620 TargetTransformInfo::TCC_Basic; 1621 if (OrigCost + ThenCost > MaxCost) 1622 return false; 1623 1624 // Account for the cost of an unfolded ConstantExpr which could end up 1625 // getting expanded into Instructions. 1626 // FIXME: This doesn't account for how many operations are combined in the 1627 // constant expression. 1628 ++SpeculationCost; 1629 if (SpeculationCost > 1) 1630 return false; 1631 } 1632 1633 // If there are no PHIs to process, bail early. This helps ensure idempotence 1634 // as well. 1635 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1636 return false; 1637 1638 // If we get here, we can hoist the instruction and if-convert. 1639 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1640 1641 // Insert a select of the value of the speculated store. 1642 if (SpeculatedStoreValue) { 1643 IRBuilder<NoFolder> Builder(BI); 1644 Value *TrueV = SpeculatedStore->getValueOperand(); 1645 Value *FalseV = SpeculatedStoreValue; 1646 if (Invert) 1647 std::swap(TrueV, FalseV); 1648 Value *S = Builder.CreateSelect( 1649 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1650 SpeculatedStore->setOperand(0, S); 1651 } 1652 1653 // Metadata can be dependent on the condition we are hoisting above. 1654 // Conservatively strip all metadata on the instruction. 1655 for (auto &I: *ThenBB) 1656 I.dropUnknownNonDebugMetadata(); 1657 1658 // Hoist the instructions. 1659 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1660 ThenBB->begin(), std::prev(ThenBB->end())); 1661 1662 // Insert selects and rewrite the PHI operands. 1663 IRBuilder<NoFolder> Builder(BI); 1664 for (BasicBlock::iterator I = EndBB->begin(); 1665 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1666 unsigned OrigI = PN->getBasicBlockIndex(BB); 1667 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1668 Value *OrigV = PN->getIncomingValue(OrigI); 1669 Value *ThenV = PN->getIncomingValue(ThenI); 1670 1671 // Skip PHIs which are trivial. 1672 if (OrigV == ThenV) 1673 continue; 1674 1675 // Create a select whose true value is the speculatively executed value and 1676 // false value is the preexisting value. Swap them if the branch 1677 // destinations were inverted. 1678 Value *TrueV = ThenV, *FalseV = OrigV; 1679 if (Invert) 1680 std::swap(TrueV, FalseV); 1681 Value *V = Builder.CreateSelect( 1682 BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI); 1683 PN->setIncomingValue(OrigI, V); 1684 PN->setIncomingValue(ThenI, V); 1685 } 1686 1687 ++NumSpeculations; 1688 return true; 1689 } 1690 1691 /// Return true if we can thread a branch across this block. 1692 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1693 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1694 unsigned Size = 0; 1695 1696 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1697 if (isa<DbgInfoIntrinsic>(BBI)) 1698 continue; 1699 if (Size > 10) return false; // Don't clone large BB's. 1700 ++Size; 1701 1702 // We can only support instructions that do not define values that are 1703 // live outside of the current basic block. 1704 for (User *U : BBI->users()) { 1705 Instruction *UI = cast<Instruction>(U); 1706 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1707 } 1708 1709 // Looks ok, continue checking. 1710 } 1711 1712 return true; 1713 } 1714 1715 /// If we have a conditional branch on a PHI node value that is defined in the 1716 /// same block as the branch and if any PHI entries are constants, thread edges 1717 /// corresponding to that entry to be branches to their ultimate destination. 1718 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1719 BasicBlock *BB = BI->getParent(); 1720 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1721 // NOTE: we currently cannot transform this case if the PHI node is used 1722 // outside of the block. 1723 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1724 return false; 1725 1726 // Degenerate case of a single entry PHI. 1727 if (PN->getNumIncomingValues() == 1) { 1728 FoldSingleEntryPHINodes(PN->getParent()); 1729 return true; 1730 } 1731 1732 // Now we know that this block has multiple preds and two succs. 1733 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1734 1735 // Can't fold blocks that contain noduplicate or convergent calls. 1736 if (llvm::any_of(*BB, [](const Instruction &I) { 1737 const CallInst *CI = dyn_cast<CallInst>(&I); 1738 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 1739 })) 1740 return false; 1741 1742 // Okay, this is a simple enough basic block. See if any phi values are 1743 // constants. 1744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1745 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1746 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1747 1748 // Okay, we now know that all edges from PredBB should be revectored to 1749 // branch to RealDest. 1750 BasicBlock *PredBB = PN->getIncomingBlock(i); 1751 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1752 1753 if (RealDest == BB) continue; // Skip self loops. 1754 // Skip if the predecessor's terminator is an indirect branch. 1755 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1756 1757 // The dest block might have PHI nodes, other predecessors and other 1758 // difficult cases. Instead of being smart about this, just insert a new 1759 // block that jumps to the destination block, effectively splitting 1760 // the edge we are about to create. 1761 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1762 RealDest->getName()+".critedge", 1763 RealDest->getParent(), RealDest); 1764 BranchInst::Create(RealDest, EdgeBB); 1765 1766 // Update PHI nodes. 1767 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1768 1769 // BB may have instructions that are being threaded over. Clone these 1770 // instructions into EdgeBB. We know that there will be no uses of the 1771 // cloned instructions outside of EdgeBB. 1772 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1773 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1774 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1775 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1776 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1777 continue; 1778 } 1779 // Clone the instruction. 1780 Instruction *N = BBI->clone(); 1781 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1782 1783 // Update operands due to translation. 1784 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1785 i != e; ++i) { 1786 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1787 if (PI != TranslateMap.end()) 1788 *i = PI->second; 1789 } 1790 1791 // Check for trivial simplification. 1792 if (Value *V = SimplifyInstruction(N, DL)) { 1793 TranslateMap[&*BBI] = V; 1794 delete N; // Instruction folded away, don't need actual inst 1795 } else { 1796 // Insert the new instruction into its new home. 1797 EdgeBB->getInstList().insert(InsertPt, N); 1798 if (!BBI->use_empty()) 1799 TranslateMap[&*BBI] = N; 1800 } 1801 } 1802 1803 // Loop over all of the edges from PredBB to BB, changing them to branch 1804 // to EdgeBB instead. 1805 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1806 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1807 if (PredBBTI->getSuccessor(i) == BB) { 1808 BB->removePredecessor(PredBB); 1809 PredBBTI->setSuccessor(i, EdgeBB); 1810 } 1811 1812 // Recurse, simplifying any other constants. 1813 return FoldCondBranchOnPHI(BI, DL) | true; 1814 } 1815 1816 return false; 1817 } 1818 1819 /// Given a BB that starts with the specified two-entry PHI node, 1820 /// see if we can eliminate it. 1821 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1822 const DataLayout &DL) { 1823 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1824 // statement", which has a very simple dominance structure. Basically, we 1825 // are trying to find the condition that is being branched on, which 1826 // subsequently causes this merge to happen. We really want control 1827 // dependence information for this check, but simplifycfg can't keep it up 1828 // to date, and this catches most of the cases we care about anyway. 1829 BasicBlock *BB = PN->getParent(); 1830 BasicBlock *IfTrue, *IfFalse; 1831 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1832 if (!IfCond || 1833 // Don't bother if the branch will be constant folded trivially. 1834 isa<ConstantInt>(IfCond)) 1835 return false; 1836 1837 // Okay, we found that we can merge this two-entry phi node into a select. 1838 // Doing so would require us to fold *all* two entry phi nodes in this block. 1839 // At some point this becomes non-profitable (particularly if the target 1840 // doesn't support cmov's). Only do this transformation if there are two or 1841 // fewer PHI nodes in this block. 1842 unsigned NumPhis = 0; 1843 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1844 if (NumPhis > 2) 1845 return false; 1846 1847 // Loop over the PHI's seeing if we can promote them all to select 1848 // instructions. While we are at it, keep track of the instructions 1849 // that need to be moved to the dominating block. 1850 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1851 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1852 MaxCostVal1 = PHINodeFoldingThreshold; 1853 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1854 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1855 1856 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1857 PHINode *PN = cast<PHINode>(II++); 1858 if (Value *V = SimplifyInstruction(PN, DL)) { 1859 PN->replaceAllUsesWith(V); 1860 PN->eraseFromParent(); 1861 continue; 1862 } 1863 1864 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1865 MaxCostVal0, TTI) || 1866 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1867 MaxCostVal1, TTI)) 1868 return false; 1869 } 1870 1871 // If we folded the first phi, PN dangles at this point. Refresh it. If 1872 // we ran out of PHIs then we simplified them all. 1873 PN = dyn_cast<PHINode>(BB->begin()); 1874 if (!PN) return true; 1875 1876 // Don't fold i1 branches on PHIs which contain binary operators. These can 1877 // often be turned into switches and other things. 1878 if (PN->getType()->isIntegerTy(1) && 1879 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1880 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1881 isa<BinaryOperator>(IfCond))) 1882 return false; 1883 1884 // If all PHI nodes are promotable, check to make sure that all instructions 1885 // in the predecessor blocks can be promoted as well. If not, we won't be able 1886 // to get rid of the control flow, so it's not worth promoting to select 1887 // instructions. 1888 BasicBlock *DomBlock = nullptr; 1889 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1890 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1891 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1892 IfBlock1 = nullptr; 1893 } else { 1894 DomBlock = *pred_begin(IfBlock1); 1895 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1896 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1897 // This is not an aggressive instruction that we can promote. 1898 // Because of this, we won't be able to get rid of the control flow, so 1899 // the xform is not worth it. 1900 return false; 1901 } 1902 } 1903 1904 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1905 IfBlock2 = nullptr; 1906 } else { 1907 DomBlock = *pred_begin(IfBlock2); 1908 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1909 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1910 // This is not an aggressive instruction that we can promote. 1911 // Because of this, we won't be able to get rid of the control flow, so 1912 // the xform is not worth it. 1913 return false; 1914 } 1915 } 1916 1917 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1918 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1919 1920 // If we can still promote the PHI nodes after this gauntlet of tests, 1921 // do all of the PHI's now. 1922 Instruction *InsertPt = DomBlock->getTerminator(); 1923 IRBuilder<NoFolder> Builder(InsertPt); 1924 1925 // Move all 'aggressive' instructions, which are defined in the 1926 // conditional parts of the if's up to the dominating block. 1927 if (IfBlock1) 1928 DomBlock->getInstList().splice(InsertPt->getIterator(), 1929 IfBlock1->getInstList(), IfBlock1->begin(), 1930 IfBlock1->getTerminator()->getIterator()); 1931 if (IfBlock2) 1932 DomBlock->getInstList().splice(InsertPt->getIterator(), 1933 IfBlock2->getInstList(), IfBlock2->begin(), 1934 IfBlock2->getTerminator()->getIterator()); 1935 1936 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1937 // Change the PHI node into a select instruction. 1938 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1939 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1940 1941 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 1942 PN->replaceAllUsesWith(Sel); 1943 Sel->takeName(PN); 1944 PN->eraseFromParent(); 1945 } 1946 1947 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1948 // has been flattened. Change DomBlock to jump directly to our new block to 1949 // avoid other simplifycfg's kicking in on the diamond. 1950 TerminatorInst *OldTI = DomBlock->getTerminator(); 1951 Builder.SetInsertPoint(OldTI); 1952 Builder.CreateBr(BB); 1953 OldTI->eraseFromParent(); 1954 return true; 1955 } 1956 1957 /// If we found a conditional branch that goes to two returning blocks, 1958 /// try to merge them together into one return, 1959 /// introducing a select if the return values disagree. 1960 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1961 IRBuilder<> &Builder) { 1962 assert(BI->isConditional() && "Must be a conditional branch"); 1963 BasicBlock *TrueSucc = BI->getSuccessor(0); 1964 BasicBlock *FalseSucc = BI->getSuccessor(1); 1965 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1966 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1967 1968 // Check to ensure both blocks are empty (just a return) or optionally empty 1969 // with PHI nodes. If there are other instructions, merging would cause extra 1970 // computation on one path or the other. 1971 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1972 return false; 1973 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1974 return false; 1975 1976 Builder.SetInsertPoint(BI); 1977 // Okay, we found a branch that is going to two return nodes. If 1978 // there is no return value for this function, just change the 1979 // branch into a return. 1980 if (FalseRet->getNumOperands() == 0) { 1981 TrueSucc->removePredecessor(BI->getParent()); 1982 FalseSucc->removePredecessor(BI->getParent()); 1983 Builder.CreateRetVoid(); 1984 EraseTerminatorInstAndDCECond(BI); 1985 return true; 1986 } 1987 1988 // Otherwise, figure out what the true and false return values are 1989 // so we can insert a new select instruction. 1990 Value *TrueValue = TrueRet->getReturnValue(); 1991 Value *FalseValue = FalseRet->getReturnValue(); 1992 1993 // Unwrap any PHI nodes in the return blocks. 1994 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1995 if (TVPN->getParent() == TrueSucc) 1996 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1997 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1998 if (FVPN->getParent() == FalseSucc) 1999 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2000 2001 // In order for this transformation to be safe, we must be able to 2002 // unconditionally execute both operands to the return. This is 2003 // normally the case, but we could have a potentially-trapping 2004 // constant expression that prevents this transformation from being 2005 // safe. 2006 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2007 if (TCV->canTrap()) 2008 return false; 2009 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2010 if (FCV->canTrap()) 2011 return false; 2012 2013 // Okay, we collected all the mapped values and checked them for sanity, and 2014 // defined to really do this transformation. First, update the CFG. 2015 TrueSucc->removePredecessor(BI->getParent()); 2016 FalseSucc->removePredecessor(BI->getParent()); 2017 2018 // Insert select instructions where needed. 2019 Value *BrCond = BI->getCondition(); 2020 if (TrueValue) { 2021 // Insert a select if the results differ. 2022 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2023 } else if (isa<UndefValue>(TrueValue)) { 2024 TrueValue = FalseValue; 2025 } else { 2026 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2027 FalseValue, "retval"); 2028 } 2029 } 2030 2031 Value *RI = !TrueValue ? 2032 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2033 2034 (void) RI; 2035 2036 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2037 << "\n " << *BI << "NewRet = " << *RI 2038 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2039 2040 EraseTerminatorInstAndDCECond(BI); 2041 2042 return true; 2043 } 2044 2045 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2046 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2047 /// or returns false if no or invalid metadata was found. 2048 static bool ExtractBranchMetadata(BranchInst *BI, 2049 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2050 assert(BI->isConditional() && 2051 "Looking for probabilities on unconditional branch?"); 2052 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2053 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2054 ConstantInt *CITrue = 2055 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2056 ConstantInt *CIFalse = 2057 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2058 if (!CITrue || !CIFalse) return false; 2059 ProbTrue = CITrue->getValue().getZExtValue(); 2060 ProbFalse = CIFalse->getValue().getZExtValue(); 2061 return true; 2062 } 2063 2064 /// Return true if the given instruction is available 2065 /// in its predecessor block. If yes, the instruction will be removed. 2066 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2067 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2068 return false; 2069 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2070 Instruction *PBI = &*I; 2071 // Check whether Inst and PBI generate the same value. 2072 if (Inst->isIdenticalTo(PBI)) { 2073 Inst->replaceAllUsesWith(PBI); 2074 Inst->eraseFromParent(); 2075 return true; 2076 } 2077 } 2078 return false; 2079 } 2080 2081 /// If this basic block is simple enough, and if a predecessor branches to us 2082 /// and one of our successors, fold the block into the predecessor and use 2083 /// logical operations to pick the right destination. 2084 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2085 BasicBlock *BB = BI->getParent(); 2086 2087 Instruction *Cond = nullptr; 2088 if (BI->isConditional()) 2089 Cond = dyn_cast<Instruction>(BI->getCondition()); 2090 else { 2091 // For unconditional branch, check for a simple CFG pattern, where 2092 // BB has a single predecessor and BB's successor is also its predecessor's 2093 // successor. If such pattern exisits, check for CSE between BB and its 2094 // predecessor. 2095 if (BasicBlock *PB = BB->getSinglePredecessor()) 2096 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2097 if (PBI->isConditional() && 2098 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2099 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2100 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2101 I != E; ) { 2102 Instruction *Curr = &*I++; 2103 if (isa<CmpInst>(Curr)) { 2104 Cond = Curr; 2105 break; 2106 } 2107 // Quit if we can't remove this instruction. 2108 if (!checkCSEInPredecessor(Curr, PB)) 2109 return false; 2110 } 2111 } 2112 2113 if (!Cond) 2114 return false; 2115 } 2116 2117 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2118 Cond->getParent() != BB || !Cond->hasOneUse()) 2119 return false; 2120 2121 // Make sure the instruction after the condition is the cond branch. 2122 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2123 2124 // Ignore dbg intrinsics. 2125 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2126 2127 if (&*CondIt != BI) 2128 return false; 2129 2130 // Only allow this transformation if computing the condition doesn't involve 2131 // too many instructions and these involved instructions can be executed 2132 // unconditionally. We denote all involved instructions except the condition 2133 // as "bonus instructions", and only allow this transformation when the 2134 // number of the bonus instructions does not exceed a certain threshold. 2135 unsigned NumBonusInsts = 0; 2136 for (auto I = BB->begin(); Cond != &*I; ++I) { 2137 // Ignore dbg intrinsics. 2138 if (isa<DbgInfoIntrinsic>(I)) 2139 continue; 2140 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2141 return false; 2142 // I has only one use and can be executed unconditionally. 2143 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2144 if (User == nullptr || User->getParent() != BB) 2145 return false; 2146 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2147 // to use any other instruction, User must be an instruction between next(I) 2148 // and Cond. 2149 ++NumBonusInsts; 2150 // Early exits once we reach the limit. 2151 if (NumBonusInsts > BonusInstThreshold) 2152 return false; 2153 } 2154 2155 // Cond is known to be a compare or binary operator. Check to make sure that 2156 // neither operand is a potentially-trapping constant expression. 2157 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2158 if (CE->canTrap()) 2159 return false; 2160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2161 if (CE->canTrap()) 2162 return false; 2163 2164 // Finally, don't infinitely unroll conditional loops. 2165 BasicBlock *TrueDest = BI->getSuccessor(0); 2166 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2167 if (TrueDest == BB || FalseDest == BB) 2168 return false; 2169 2170 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2171 BasicBlock *PredBlock = *PI; 2172 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2173 2174 // Check that we have two conditional branches. If there is a PHI node in 2175 // the common successor, verify that the same value flows in from both 2176 // blocks. 2177 SmallVector<PHINode*, 4> PHIs; 2178 if (!PBI || PBI->isUnconditional() || 2179 (BI->isConditional() && 2180 !SafeToMergeTerminators(BI, PBI)) || 2181 (!BI->isConditional() && 2182 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2183 continue; 2184 2185 // Determine if the two branches share a common destination. 2186 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2187 bool InvertPredCond = false; 2188 2189 if (BI->isConditional()) { 2190 if (PBI->getSuccessor(0) == TrueDest) { 2191 Opc = Instruction::Or; 2192 } else if (PBI->getSuccessor(1) == FalseDest) { 2193 Opc = Instruction::And; 2194 } else if (PBI->getSuccessor(0) == FalseDest) { 2195 Opc = Instruction::And; 2196 InvertPredCond = true; 2197 } else if (PBI->getSuccessor(1) == TrueDest) { 2198 Opc = Instruction::Or; 2199 InvertPredCond = true; 2200 } else { 2201 continue; 2202 } 2203 } else { 2204 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2205 continue; 2206 } 2207 2208 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2209 IRBuilder<> Builder(PBI); 2210 2211 // If we need to invert the condition in the pred block to match, do so now. 2212 if (InvertPredCond) { 2213 Value *NewCond = PBI->getCondition(); 2214 2215 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2216 CmpInst *CI = cast<CmpInst>(NewCond); 2217 CI->setPredicate(CI->getInversePredicate()); 2218 } else { 2219 NewCond = Builder.CreateNot(NewCond, 2220 PBI->getCondition()->getName()+".not"); 2221 } 2222 2223 PBI->setCondition(NewCond); 2224 PBI->swapSuccessors(); 2225 } 2226 2227 // If we have bonus instructions, clone them into the predecessor block. 2228 // Note that there may be multiple predecessor blocks, so we cannot move 2229 // bonus instructions to a predecessor block. 2230 ValueToValueMapTy VMap; // maps original values to cloned values 2231 // We already make sure Cond is the last instruction before BI. Therefore, 2232 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2233 // instructions. 2234 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2235 if (isa<DbgInfoIntrinsic>(BonusInst)) 2236 continue; 2237 Instruction *NewBonusInst = BonusInst->clone(); 2238 RemapInstruction(NewBonusInst, VMap, 2239 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2240 VMap[&*BonusInst] = NewBonusInst; 2241 2242 // If we moved a load, we cannot any longer claim any knowledge about 2243 // its potential value. The previous information might have been valid 2244 // only given the branch precondition. 2245 // For an analogous reason, we must also drop all the metadata whose 2246 // semantics we don't understand. 2247 NewBonusInst->dropUnknownNonDebugMetadata(); 2248 2249 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2250 NewBonusInst->takeName(&*BonusInst); 2251 BonusInst->setName(BonusInst->getName() + ".old"); 2252 } 2253 2254 // Clone Cond into the predecessor basic block, and or/and the 2255 // two conditions together. 2256 Instruction *New = Cond->clone(); 2257 RemapInstruction(New, VMap, 2258 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2259 PredBlock->getInstList().insert(PBI->getIterator(), New); 2260 New->takeName(Cond); 2261 Cond->setName(New->getName() + ".old"); 2262 2263 if (BI->isConditional()) { 2264 Instruction *NewCond = 2265 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2266 New, "or.cond")); 2267 PBI->setCondition(NewCond); 2268 2269 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2270 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2271 PredFalseWeight); 2272 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2273 SuccFalseWeight); 2274 SmallVector<uint64_t, 8> NewWeights; 2275 2276 if (PBI->getSuccessor(0) == BB) { 2277 if (PredHasWeights && SuccHasWeights) { 2278 // PBI: br i1 %x, BB, FalseDest 2279 // BI: br i1 %y, TrueDest, FalseDest 2280 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2281 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2282 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2283 // TrueWeight for PBI * FalseWeight for BI. 2284 // We assume that total weights of a BranchInst can fit into 32 bits. 2285 // Therefore, we will not have overflow using 64-bit arithmetic. 2286 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2287 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2288 } 2289 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2290 PBI->setSuccessor(0, TrueDest); 2291 } 2292 if (PBI->getSuccessor(1) == BB) { 2293 if (PredHasWeights && SuccHasWeights) { 2294 // PBI: br i1 %x, TrueDest, BB 2295 // BI: br i1 %y, TrueDest, FalseDest 2296 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2297 // FalseWeight for PBI * TrueWeight for BI. 2298 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2299 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2300 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2301 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2302 } 2303 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2304 PBI->setSuccessor(1, FalseDest); 2305 } 2306 if (NewWeights.size() == 2) { 2307 // Halve the weights if any of them cannot fit in an uint32_t 2308 FitWeights(NewWeights); 2309 2310 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2311 PBI->setMetadata(LLVMContext::MD_prof, 2312 MDBuilder(BI->getContext()). 2313 createBranchWeights(MDWeights)); 2314 } else 2315 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2316 } else { 2317 // Update PHI nodes in the common successors. 2318 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2319 ConstantInt *PBI_C = cast<ConstantInt>( 2320 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2321 assert(PBI_C->getType()->isIntegerTy(1)); 2322 Instruction *MergedCond = nullptr; 2323 if (PBI->getSuccessor(0) == TrueDest) { 2324 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2325 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2326 // is false: !PBI_Cond and BI_Value 2327 Instruction *NotCond = 2328 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2329 "not.cond")); 2330 MergedCond = 2331 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2332 NotCond, New, 2333 "and.cond")); 2334 if (PBI_C->isOne()) 2335 MergedCond = 2336 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2337 PBI->getCondition(), MergedCond, 2338 "or.cond")); 2339 } else { 2340 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2341 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2342 // is false: PBI_Cond and BI_Value 2343 MergedCond = 2344 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2345 PBI->getCondition(), New, 2346 "and.cond")); 2347 if (PBI_C->isOne()) { 2348 Instruction *NotCond = 2349 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2350 "not.cond")); 2351 MergedCond = 2352 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2353 NotCond, MergedCond, 2354 "or.cond")); 2355 } 2356 } 2357 // Update PHI Node. 2358 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2359 MergedCond); 2360 } 2361 // Change PBI from Conditional to Unconditional. 2362 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2363 EraseTerminatorInstAndDCECond(PBI); 2364 PBI = New_PBI; 2365 } 2366 2367 // TODO: If BB is reachable from all paths through PredBlock, then we 2368 // could replace PBI's branch probabilities with BI's. 2369 2370 // Copy any debug value intrinsics into the end of PredBlock. 2371 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2372 if (isa<DbgInfoIntrinsic>(*I)) 2373 I->clone()->insertBefore(PBI); 2374 2375 return true; 2376 } 2377 return false; 2378 } 2379 2380 // If there is only one store in BB1 and BB2, return it, otherwise return 2381 // nullptr. 2382 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2383 StoreInst *S = nullptr; 2384 for (auto *BB : {BB1, BB2}) { 2385 if (!BB) 2386 continue; 2387 for (auto &I : *BB) 2388 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2389 if (S) 2390 // Multiple stores seen. 2391 return nullptr; 2392 else 2393 S = SI; 2394 } 2395 } 2396 return S; 2397 } 2398 2399 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2400 Value *AlternativeV = nullptr) { 2401 // PHI is going to be a PHI node that allows the value V that is defined in 2402 // BB to be referenced in BB's only successor. 2403 // 2404 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2405 // doesn't matter to us what the other operand is (it'll never get used). We 2406 // could just create a new PHI with an undef incoming value, but that could 2407 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2408 // other PHI. So here we directly look for some PHI in BB's successor with V 2409 // as an incoming operand. If we find one, we use it, else we create a new 2410 // one. 2411 // 2412 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2413 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2414 // where OtherBB is the single other predecessor of BB's only successor. 2415 PHINode *PHI = nullptr; 2416 BasicBlock *Succ = BB->getSingleSuccessor(); 2417 2418 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2419 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2420 PHI = cast<PHINode>(I); 2421 if (!AlternativeV) 2422 break; 2423 2424 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2425 auto PredI = pred_begin(Succ); 2426 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2427 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2428 break; 2429 PHI = nullptr; 2430 } 2431 if (PHI) 2432 return PHI; 2433 2434 // If V is not an instruction defined in BB, just return it. 2435 if (!AlternativeV && 2436 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2437 return V; 2438 2439 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2440 PHI->addIncoming(V, BB); 2441 for (BasicBlock *PredBB : predecessors(Succ)) 2442 if (PredBB != BB) 2443 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2444 PredBB); 2445 return PHI; 2446 } 2447 2448 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2449 BasicBlock *QTB, BasicBlock *QFB, 2450 BasicBlock *PostBB, Value *Address, 2451 bool InvertPCond, bool InvertQCond) { 2452 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2453 return Operator::getOpcode(&I) == Instruction::BitCast && 2454 I.getType()->isPointerTy(); 2455 }; 2456 2457 // If we're not in aggressive mode, we only optimize if we have some 2458 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2459 auto IsWorthwhile = [&](BasicBlock *BB) { 2460 if (!BB) 2461 return true; 2462 // Heuristic: if the block can be if-converted/phi-folded and the 2463 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2464 // thread this store. 2465 unsigned N = 0; 2466 for (auto &I : *BB) { 2467 // Cheap instructions viable for folding. 2468 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2469 isa<StoreInst>(I)) 2470 ++N; 2471 // Free instructions. 2472 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2473 IsaBitcastOfPointerType(I)) 2474 continue; 2475 else 2476 return false; 2477 } 2478 return N <= PHINodeFoldingThreshold; 2479 }; 2480 2481 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2482 !IsWorthwhile(PFB) || 2483 !IsWorthwhile(QTB) || 2484 !IsWorthwhile(QFB))) 2485 return false; 2486 2487 // For every pointer, there must be exactly two stores, one coming from 2488 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2489 // store (to any address) in PTB,PFB or QTB,QFB. 2490 // FIXME: We could relax this restriction with a bit more work and performance 2491 // testing. 2492 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2493 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2494 if (!PStore || !QStore) 2495 return false; 2496 2497 // Now check the stores are compatible. 2498 if (!QStore->isUnordered() || !PStore->isUnordered()) 2499 return false; 2500 2501 // Check that sinking the store won't cause program behavior changes. Sinking 2502 // the store out of the Q blocks won't change any behavior as we're sinking 2503 // from a block to its unconditional successor. But we're moving a store from 2504 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2505 // So we need to check that there are no aliasing loads or stores in 2506 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2507 // operations between PStore and the end of its parent block. 2508 // 2509 // The ideal way to do this is to query AliasAnalysis, but we don't 2510 // preserve AA currently so that is dangerous. Be super safe and just 2511 // check there are no other memory operations at all. 2512 for (auto &I : *QFB->getSinglePredecessor()) 2513 if (I.mayReadOrWriteMemory()) 2514 return false; 2515 for (auto &I : *QFB) 2516 if (&I != QStore && I.mayReadOrWriteMemory()) 2517 return false; 2518 if (QTB) 2519 for (auto &I : *QTB) 2520 if (&I != QStore && I.mayReadOrWriteMemory()) 2521 return false; 2522 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2523 I != E; ++I) 2524 if (&*I != PStore && I->mayReadOrWriteMemory()) 2525 return false; 2526 2527 // OK, we're going to sink the stores to PostBB. The store has to be 2528 // conditional though, so first create the predicate. 2529 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2530 ->getCondition(); 2531 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2532 ->getCondition(); 2533 2534 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2535 PStore->getParent()); 2536 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2537 QStore->getParent(), PPHI); 2538 2539 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2540 2541 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2542 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2543 2544 if (InvertPCond) 2545 PPred = QB.CreateNot(PPred); 2546 if (InvertQCond) 2547 QPred = QB.CreateNot(QPred); 2548 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2549 2550 auto *T = 2551 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2552 QB.SetInsertPoint(T); 2553 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2554 AAMDNodes AAMD; 2555 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2556 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2557 SI->setAAMetadata(AAMD); 2558 2559 QStore->eraseFromParent(); 2560 PStore->eraseFromParent(); 2561 2562 return true; 2563 } 2564 2565 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2566 // The intention here is to find diamonds or triangles (see below) where each 2567 // conditional block contains a store to the same address. Both of these 2568 // stores are conditional, so they can't be unconditionally sunk. But it may 2569 // be profitable to speculatively sink the stores into one merged store at the 2570 // end, and predicate the merged store on the union of the two conditions of 2571 // PBI and QBI. 2572 // 2573 // This can reduce the number of stores executed if both of the conditions are 2574 // true, and can allow the blocks to become small enough to be if-converted. 2575 // This optimization will also chain, so that ladders of test-and-set 2576 // sequences can be if-converted away. 2577 // 2578 // We only deal with simple diamonds or triangles: 2579 // 2580 // PBI or PBI or a combination of the two 2581 // / \ | \ 2582 // PTB PFB | PFB 2583 // \ / | / 2584 // QBI QBI 2585 // / \ | \ 2586 // QTB QFB | QFB 2587 // \ / | / 2588 // PostBB PostBB 2589 // 2590 // We model triangles as a type of diamond with a nullptr "true" block. 2591 // Triangles are canonicalized so that the fallthrough edge is represented by 2592 // a true condition, as in the diagram above. 2593 // 2594 BasicBlock *PTB = PBI->getSuccessor(0); 2595 BasicBlock *PFB = PBI->getSuccessor(1); 2596 BasicBlock *QTB = QBI->getSuccessor(0); 2597 BasicBlock *QFB = QBI->getSuccessor(1); 2598 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2599 2600 bool InvertPCond = false, InvertQCond = false; 2601 // Canonicalize fallthroughs to the true branches. 2602 if (PFB == QBI->getParent()) { 2603 std::swap(PFB, PTB); 2604 InvertPCond = true; 2605 } 2606 if (QFB == PostBB) { 2607 std::swap(QFB, QTB); 2608 InvertQCond = true; 2609 } 2610 2611 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2612 // and QFB may not. Model fallthroughs as a nullptr block. 2613 if (PTB == QBI->getParent()) 2614 PTB = nullptr; 2615 if (QTB == PostBB) 2616 QTB = nullptr; 2617 2618 // Legality bailouts. We must have at least the non-fallthrough blocks and 2619 // the post-dominating block, and the non-fallthroughs must only have one 2620 // predecessor. 2621 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2622 return BB->getSinglePredecessor() == P && 2623 BB->getSingleSuccessor() == S; 2624 }; 2625 if (!PostBB || 2626 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2627 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2628 return false; 2629 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2630 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2631 return false; 2632 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2633 return false; 2634 2635 // OK, this is a sequence of two diamonds or triangles. 2636 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2637 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2638 for (auto *BB : {PTB, PFB}) { 2639 if (!BB) 2640 continue; 2641 for (auto &I : *BB) 2642 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2643 PStoreAddresses.insert(SI->getPointerOperand()); 2644 } 2645 for (auto *BB : {QTB, QFB}) { 2646 if (!BB) 2647 continue; 2648 for (auto &I : *BB) 2649 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2650 QStoreAddresses.insert(SI->getPointerOperand()); 2651 } 2652 2653 set_intersect(PStoreAddresses, QStoreAddresses); 2654 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2655 // clear what it contains. 2656 auto &CommonAddresses = PStoreAddresses; 2657 2658 bool Changed = false; 2659 for (auto *Address : CommonAddresses) 2660 Changed |= mergeConditionalStoreToAddress( 2661 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2662 return Changed; 2663 } 2664 2665 /// If we have a conditional branch as a predecessor of another block, 2666 /// this function tries to simplify it. We know 2667 /// that PBI and BI are both conditional branches, and BI is in one of the 2668 /// successor blocks of PBI - PBI branches to BI. 2669 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2670 const DataLayout &DL) { 2671 assert(PBI->isConditional() && BI->isConditional()); 2672 BasicBlock *BB = BI->getParent(); 2673 2674 // If this block ends with a branch instruction, and if there is a 2675 // predecessor that ends on a branch of the same condition, make 2676 // this conditional branch redundant. 2677 if (PBI->getCondition() == BI->getCondition() && 2678 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2679 // Okay, the outcome of this conditional branch is statically 2680 // knowable. If this block had a single pred, handle specially. 2681 if (BB->getSinglePredecessor()) { 2682 // Turn this into a branch on constant. 2683 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2684 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2685 CondIsTrue)); 2686 return true; // Nuke the branch on constant. 2687 } 2688 2689 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2690 // in the constant and simplify the block result. Subsequent passes of 2691 // simplifycfg will thread the block. 2692 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2693 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2694 PHINode *NewPN = PHINode::Create( 2695 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2696 BI->getCondition()->getName() + ".pr", &BB->front()); 2697 // Okay, we're going to insert the PHI node. Since PBI is not the only 2698 // predecessor, compute the PHI'd conditional value for all of the preds. 2699 // Any predecessor where the condition is not computable we keep symbolic. 2700 for (pred_iterator PI = PB; PI != PE; ++PI) { 2701 BasicBlock *P = *PI; 2702 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2703 PBI != BI && PBI->isConditional() && 2704 PBI->getCondition() == BI->getCondition() && 2705 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2706 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2707 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2708 CondIsTrue), P); 2709 } else { 2710 NewPN->addIncoming(BI->getCondition(), P); 2711 } 2712 } 2713 2714 BI->setCondition(NewPN); 2715 return true; 2716 } 2717 } 2718 2719 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2720 if (CE->canTrap()) 2721 return false; 2722 2723 // If BI is reached from the true path of PBI and PBI's condition implies 2724 // BI's condition, we know the direction of the BI branch. 2725 if (PBI->getSuccessor(0) == BI->getParent() && 2726 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2727 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2728 BB->getSinglePredecessor()) { 2729 // Turn this into a branch on constant. 2730 auto *OldCond = BI->getCondition(); 2731 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2732 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2733 return true; // Nuke the branch on constant. 2734 } 2735 2736 // If both branches are conditional and both contain stores to the same 2737 // address, remove the stores from the conditionals and create a conditional 2738 // merged store at the end. 2739 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2740 return true; 2741 2742 // If this is a conditional branch in an empty block, and if any 2743 // predecessors are a conditional branch to one of our destinations, 2744 // fold the conditions into logical ops and one cond br. 2745 BasicBlock::iterator BBI = BB->begin(); 2746 // Ignore dbg intrinsics. 2747 while (isa<DbgInfoIntrinsic>(BBI)) 2748 ++BBI; 2749 if (&*BBI != BI) 2750 return false; 2751 2752 int PBIOp, BIOp; 2753 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2754 PBIOp = 0; 2755 BIOp = 0; 2756 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2757 PBIOp = 0; 2758 BIOp = 1; 2759 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2760 PBIOp = 1; 2761 BIOp = 0; 2762 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2763 PBIOp = 1; 2764 BIOp = 1; 2765 } else { 2766 return false; 2767 } 2768 2769 // Check to make sure that the other destination of this branch 2770 // isn't BB itself. If so, this is an infinite loop that will 2771 // keep getting unwound. 2772 if (PBI->getSuccessor(PBIOp) == BB) 2773 return false; 2774 2775 // Do not perform this transformation if it would require 2776 // insertion of a large number of select instructions. For targets 2777 // without predication/cmovs, this is a big pessimization. 2778 2779 // Also do not perform this transformation if any phi node in the common 2780 // destination block can trap when reached by BB or PBB (PR17073). In that 2781 // case, it would be unsafe to hoist the operation into a select instruction. 2782 2783 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2784 unsigned NumPhis = 0; 2785 for (BasicBlock::iterator II = CommonDest->begin(); 2786 isa<PHINode>(II); ++II, ++NumPhis) { 2787 if (NumPhis > 2) // Disable this xform. 2788 return false; 2789 2790 PHINode *PN = cast<PHINode>(II); 2791 Value *BIV = PN->getIncomingValueForBlock(BB); 2792 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2793 if (CE->canTrap()) 2794 return false; 2795 2796 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2797 Value *PBIV = PN->getIncomingValue(PBBIdx); 2798 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2799 if (CE->canTrap()) 2800 return false; 2801 } 2802 2803 // Finally, if everything is ok, fold the branches to logical ops. 2804 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2805 2806 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2807 << "AND: " << *BI->getParent()); 2808 2809 2810 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2811 // branch in it, where one edge (OtherDest) goes back to itself but the other 2812 // exits. We don't *know* that the program avoids the infinite loop 2813 // (even though that seems likely). If we do this xform naively, we'll end up 2814 // recursively unpeeling the loop. Since we know that (after the xform is 2815 // done) that the block *is* infinite if reached, we just make it an obviously 2816 // infinite loop with no cond branch. 2817 if (OtherDest == BB) { 2818 // Insert it at the end of the function, because it's either code, 2819 // or it won't matter if it's hot. :) 2820 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2821 "infloop", BB->getParent()); 2822 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2823 OtherDest = InfLoopBlock; 2824 } 2825 2826 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2827 2828 // BI may have other predecessors. Because of this, we leave 2829 // it alone, but modify PBI. 2830 2831 // Make sure we get to CommonDest on True&True directions. 2832 Value *PBICond = PBI->getCondition(); 2833 IRBuilder<NoFolder> Builder(PBI); 2834 if (PBIOp) 2835 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2836 2837 Value *BICond = BI->getCondition(); 2838 if (BIOp) 2839 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2840 2841 // Merge the conditions. 2842 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2843 2844 // Modify PBI to branch on the new condition to the new dests. 2845 PBI->setCondition(Cond); 2846 PBI->setSuccessor(0, CommonDest); 2847 PBI->setSuccessor(1, OtherDest); 2848 2849 // Update branch weight for PBI. 2850 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2851 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2852 PredFalseWeight); 2853 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2854 SuccFalseWeight); 2855 if (PredHasWeights && SuccHasWeights) { 2856 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2857 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2858 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2859 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2860 // The weight to CommonDest should be PredCommon * SuccTotal + 2861 // PredOther * SuccCommon. 2862 // The weight to OtherDest should be PredOther * SuccOther. 2863 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2864 PredOther * SuccCommon, 2865 PredOther * SuccOther}; 2866 // Halve the weights if any of them cannot fit in an uint32_t 2867 FitWeights(NewWeights); 2868 2869 PBI->setMetadata(LLVMContext::MD_prof, 2870 MDBuilder(BI->getContext()) 2871 .createBranchWeights(NewWeights[0], NewWeights[1])); 2872 } 2873 2874 // OtherDest may have phi nodes. If so, add an entry from PBI's 2875 // block that are identical to the entries for BI's block. 2876 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2877 2878 // We know that the CommonDest already had an edge from PBI to 2879 // it. If it has PHIs though, the PHIs may have different 2880 // entries for BB and PBI's BB. If so, insert a select to make 2881 // them agree. 2882 PHINode *PN; 2883 for (BasicBlock::iterator II = CommonDest->begin(); 2884 (PN = dyn_cast<PHINode>(II)); ++II) { 2885 Value *BIV = PN->getIncomingValueForBlock(BB); 2886 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2887 Value *PBIV = PN->getIncomingValue(PBBIdx); 2888 if (BIV != PBIV) { 2889 // Insert a select in PBI to pick the right value. 2890 Value *NV = cast<SelectInst> 2891 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 2892 PN->setIncomingValue(PBBIdx, NV); 2893 } 2894 } 2895 2896 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2897 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2898 2899 // This basic block is probably dead. We know it has at least 2900 // one fewer predecessor. 2901 return true; 2902 } 2903 2904 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2905 // true or to FalseBB if Cond is false. 2906 // Takes care of updating the successors and removing the old terminator. 2907 // Also makes sure not to introduce new successors by assuming that edges to 2908 // non-successor TrueBBs and FalseBBs aren't reachable. 2909 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2910 BasicBlock *TrueBB, BasicBlock *FalseBB, 2911 uint32_t TrueWeight, 2912 uint32_t FalseWeight){ 2913 // Remove any superfluous successor edges from the CFG. 2914 // First, figure out which successors to preserve. 2915 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2916 // successor. 2917 BasicBlock *KeepEdge1 = TrueBB; 2918 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2919 2920 // Then remove the rest. 2921 for (BasicBlock *Succ : OldTerm->successors()) { 2922 // Make sure only to keep exactly one copy of each edge. 2923 if (Succ == KeepEdge1) 2924 KeepEdge1 = nullptr; 2925 else if (Succ == KeepEdge2) 2926 KeepEdge2 = nullptr; 2927 else 2928 Succ->removePredecessor(OldTerm->getParent(), 2929 /*DontDeleteUselessPHIs=*/true); 2930 } 2931 2932 IRBuilder<> Builder(OldTerm); 2933 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2934 2935 // Insert an appropriate new terminator. 2936 if (!KeepEdge1 && !KeepEdge2) { 2937 if (TrueBB == FalseBB) 2938 // We were only looking for one successor, and it was present. 2939 // Create an unconditional branch to it. 2940 Builder.CreateBr(TrueBB); 2941 else { 2942 // We found both of the successors we were looking for. 2943 // Create a conditional branch sharing the condition of the select. 2944 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2945 if (TrueWeight != FalseWeight) 2946 NewBI->setMetadata(LLVMContext::MD_prof, 2947 MDBuilder(OldTerm->getContext()). 2948 createBranchWeights(TrueWeight, FalseWeight)); 2949 } 2950 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2951 // Neither of the selected blocks were successors, so this 2952 // terminator must be unreachable. 2953 new UnreachableInst(OldTerm->getContext(), OldTerm); 2954 } else { 2955 // One of the selected values was a successor, but the other wasn't. 2956 // Insert an unconditional branch to the one that was found; 2957 // the edge to the one that wasn't must be unreachable. 2958 if (!KeepEdge1) 2959 // Only TrueBB was found. 2960 Builder.CreateBr(TrueBB); 2961 else 2962 // Only FalseBB was found. 2963 Builder.CreateBr(FalseBB); 2964 } 2965 2966 EraseTerminatorInstAndDCECond(OldTerm); 2967 return true; 2968 } 2969 2970 // Replaces 2971 // (switch (select cond, X, Y)) on constant X, Y 2972 // with a branch - conditional if X and Y lead to distinct BBs, 2973 // unconditional otherwise. 2974 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2975 // Check for constant integer values in the select. 2976 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2977 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2978 if (!TrueVal || !FalseVal) 2979 return false; 2980 2981 // Find the relevant condition and destinations. 2982 Value *Condition = Select->getCondition(); 2983 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2984 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2985 2986 // Get weight for TrueBB and FalseBB. 2987 uint32_t TrueWeight = 0, FalseWeight = 0; 2988 SmallVector<uint64_t, 8> Weights; 2989 bool HasWeights = HasBranchWeights(SI); 2990 if (HasWeights) { 2991 GetBranchWeights(SI, Weights); 2992 if (Weights.size() == 1 + SI->getNumCases()) { 2993 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2994 getSuccessorIndex()]; 2995 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2996 getSuccessorIndex()]; 2997 } 2998 } 2999 3000 // Perform the actual simplification. 3001 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 3002 TrueWeight, FalseWeight); 3003 } 3004 3005 // Replaces 3006 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3007 // blockaddress(@fn, BlockB))) 3008 // with 3009 // (br cond, BlockA, BlockB). 3010 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3011 // Check that both operands of the select are block addresses. 3012 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3013 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3014 if (!TBA || !FBA) 3015 return false; 3016 3017 // Extract the actual blocks. 3018 BasicBlock *TrueBB = TBA->getBasicBlock(); 3019 BasicBlock *FalseBB = FBA->getBasicBlock(); 3020 3021 // Perform the actual simplification. 3022 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3023 0, 0); 3024 } 3025 3026 /// This is called when we find an icmp instruction 3027 /// (a seteq/setne with a constant) as the only instruction in a 3028 /// block that ends with an uncond branch. We are looking for a very specific 3029 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3030 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3031 /// default value goes to an uncond block with a seteq in it, we get something 3032 /// like: 3033 /// 3034 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3035 /// DEFAULT: 3036 /// %tmp = icmp eq i8 %A, 92 3037 /// br label %end 3038 /// end: 3039 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3040 /// 3041 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3042 /// the PHI, merging the third icmp into the switch. 3043 static bool TryToSimplifyUncondBranchWithICmpInIt( 3044 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3045 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3046 AssumptionCache *AC) { 3047 BasicBlock *BB = ICI->getParent(); 3048 3049 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3050 // complex. 3051 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3052 3053 Value *V = ICI->getOperand(0); 3054 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3055 3056 // The pattern we're looking for is where our only predecessor is a switch on 3057 // 'V' and this block is the default case for the switch. In this case we can 3058 // fold the compared value into the switch to simplify things. 3059 BasicBlock *Pred = BB->getSinglePredecessor(); 3060 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3061 3062 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3063 if (SI->getCondition() != V) 3064 return false; 3065 3066 // If BB is reachable on a non-default case, then we simply know the value of 3067 // V in this block. Substitute it and constant fold the icmp instruction 3068 // away. 3069 if (SI->getDefaultDest() != BB) { 3070 ConstantInt *VVal = SI->findCaseDest(BB); 3071 assert(VVal && "Should have a unique destination value"); 3072 ICI->setOperand(0, VVal); 3073 3074 if (Value *V = SimplifyInstruction(ICI, DL)) { 3075 ICI->replaceAllUsesWith(V); 3076 ICI->eraseFromParent(); 3077 } 3078 // BB is now empty, so it is likely to simplify away. 3079 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3080 } 3081 3082 // Ok, the block is reachable from the default dest. If the constant we're 3083 // comparing exists in one of the other edges, then we can constant fold ICI 3084 // and zap it. 3085 if (SI->findCaseValue(Cst) != SI->case_default()) { 3086 Value *V; 3087 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3088 V = ConstantInt::getFalse(BB->getContext()); 3089 else 3090 V = ConstantInt::getTrue(BB->getContext()); 3091 3092 ICI->replaceAllUsesWith(V); 3093 ICI->eraseFromParent(); 3094 // BB is now empty, so it is likely to simplify away. 3095 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3096 } 3097 3098 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3099 // the block. 3100 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3101 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3102 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3103 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3104 return false; 3105 3106 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3107 // true in the PHI. 3108 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3109 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3110 3111 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3112 std::swap(DefaultCst, NewCst); 3113 3114 // Replace ICI (which is used by the PHI for the default value) with true or 3115 // false depending on if it is EQ or NE. 3116 ICI->replaceAllUsesWith(DefaultCst); 3117 ICI->eraseFromParent(); 3118 3119 // Okay, the switch goes to this block on a default value. Add an edge from 3120 // the switch to the merge point on the compared value. 3121 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3122 BB->getParent(), BB); 3123 SmallVector<uint64_t, 8> Weights; 3124 bool HasWeights = HasBranchWeights(SI); 3125 if (HasWeights) { 3126 GetBranchWeights(SI, Weights); 3127 if (Weights.size() == 1 + SI->getNumCases()) { 3128 // Split weight for default case to case for "Cst". 3129 Weights[0] = (Weights[0]+1) >> 1; 3130 Weights.push_back(Weights[0]); 3131 3132 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3133 SI->setMetadata(LLVMContext::MD_prof, 3134 MDBuilder(SI->getContext()). 3135 createBranchWeights(MDWeights)); 3136 } 3137 } 3138 SI->addCase(Cst, NewBB); 3139 3140 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3141 Builder.SetInsertPoint(NewBB); 3142 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3143 Builder.CreateBr(SuccBlock); 3144 PHIUse->addIncoming(NewCst, NewBB); 3145 return true; 3146 } 3147 3148 /// The specified branch is a conditional branch. 3149 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3150 /// fold it into a switch instruction if so. 3151 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3152 const DataLayout &DL) { 3153 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3154 if (!Cond) return false; 3155 3156 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3157 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3158 // 'setne's and'ed together, collect them. 3159 3160 // Try to gather values from a chain of and/or to be turned into a switch 3161 ConstantComparesGatherer ConstantCompare(Cond, DL); 3162 // Unpack the result 3163 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3164 Value *CompVal = ConstantCompare.CompValue; 3165 unsigned UsedICmps = ConstantCompare.UsedICmps; 3166 Value *ExtraCase = ConstantCompare.Extra; 3167 3168 // If we didn't have a multiply compared value, fail. 3169 if (!CompVal) return false; 3170 3171 // Avoid turning single icmps into a switch. 3172 if (UsedICmps <= 1) 3173 return false; 3174 3175 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3176 3177 // There might be duplicate constants in the list, which the switch 3178 // instruction can't handle, remove them now. 3179 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3180 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3181 3182 // If Extra was used, we require at least two switch values to do the 3183 // transformation. A switch with one value is just a conditional branch. 3184 if (ExtraCase && Values.size() < 2) return false; 3185 3186 // TODO: Preserve branch weight metadata, similarly to how 3187 // FoldValueComparisonIntoPredecessors preserves it. 3188 3189 // Figure out which block is which destination. 3190 BasicBlock *DefaultBB = BI->getSuccessor(1); 3191 BasicBlock *EdgeBB = BI->getSuccessor(0); 3192 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3193 3194 BasicBlock *BB = BI->getParent(); 3195 3196 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3197 << " cases into SWITCH. BB is:\n" << *BB); 3198 3199 // If there are any extra values that couldn't be folded into the switch 3200 // then we evaluate them with an explicit branch first. Split the block 3201 // right before the condbr to handle it. 3202 if (ExtraCase) { 3203 BasicBlock *NewBB = 3204 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3205 // Remove the uncond branch added to the old block. 3206 TerminatorInst *OldTI = BB->getTerminator(); 3207 Builder.SetInsertPoint(OldTI); 3208 3209 if (TrueWhenEqual) 3210 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3211 else 3212 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3213 3214 OldTI->eraseFromParent(); 3215 3216 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3217 // for the edge we just added. 3218 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3219 3220 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3221 << "\nEXTRABB = " << *BB); 3222 BB = NewBB; 3223 } 3224 3225 Builder.SetInsertPoint(BI); 3226 // Convert pointer to int before we switch. 3227 if (CompVal->getType()->isPointerTy()) { 3228 CompVal = Builder.CreatePtrToInt( 3229 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3230 } 3231 3232 // Create the new switch instruction now. 3233 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3234 3235 // Add all of the 'cases' to the switch instruction. 3236 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3237 New->addCase(Values[i], EdgeBB); 3238 3239 // We added edges from PI to the EdgeBB. As such, if there were any 3240 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3241 // the number of edges added. 3242 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3243 isa<PHINode>(BBI); ++BBI) { 3244 PHINode *PN = cast<PHINode>(BBI); 3245 Value *InVal = PN->getIncomingValueForBlock(BB); 3246 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3247 PN->addIncoming(InVal, BB); 3248 } 3249 3250 // Erase the old branch instruction. 3251 EraseTerminatorInstAndDCECond(BI); 3252 3253 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3254 return true; 3255 } 3256 3257 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3258 if (isa<PHINode>(RI->getValue())) 3259 return SimplifyCommonResume(RI); 3260 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3261 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3262 // The resume must unwind the exception that caused control to branch here. 3263 return SimplifySingleResume(RI); 3264 3265 return false; 3266 } 3267 3268 // Simplify resume that is shared by several landing pads (phi of landing pad). 3269 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3270 BasicBlock *BB = RI->getParent(); 3271 3272 // Check that there are no other instructions except for debug intrinsics 3273 // between the phi of landing pads (RI->getValue()) and resume instruction. 3274 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3275 E = RI->getIterator(); 3276 while (++I != E) 3277 if (!isa<DbgInfoIntrinsic>(I)) 3278 return false; 3279 3280 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3281 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3282 3283 // Check incoming blocks to see if any of them are trivial. 3284 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3285 Idx != End; Idx++) { 3286 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3287 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3288 3289 // If the block has other successors, we can not delete it because 3290 // it has other dependents. 3291 if (IncomingBB->getUniqueSuccessor() != BB) 3292 continue; 3293 3294 auto *LandingPad = 3295 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3296 // Not the landing pad that caused the control to branch here. 3297 if (IncomingValue != LandingPad) 3298 continue; 3299 3300 bool isTrivial = true; 3301 3302 I = IncomingBB->getFirstNonPHI()->getIterator(); 3303 E = IncomingBB->getTerminator()->getIterator(); 3304 while (++I != E) 3305 if (!isa<DbgInfoIntrinsic>(I)) { 3306 isTrivial = false; 3307 break; 3308 } 3309 3310 if (isTrivial) 3311 TrivialUnwindBlocks.insert(IncomingBB); 3312 } 3313 3314 // If no trivial unwind blocks, don't do any simplifications. 3315 if (TrivialUnwindBlocks.empty()) return false; 3316 3317 // Turn all invokes that unwind here into calls. 3318 for (auto *TrivialBB : TrivialUnwindBlocks) { 3319 // Blocks that will be simplified should be removed from the phi node. 3320 // Note there could be multiple edges to the resume block, and we need 3321 // to remove them all. 3322 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3323 BB->removePredecessor(TrivialBB, true); 3324 3325 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3326 PI != PE;) { 3327 BasicBlock *Pred = *PI++; 3328 removeUnwindEdge(Pred); 3329 } 3330 3331 // In each SimplifyCFG run, only the current processed block can be erased. 3332 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3333 // of erasing TrivialBB, we only remove the branch to the common resume 3334 // block so that we can later erase the resume block since it has no 3335 // predecessors. 3336 TrivialBB->getTerminator()->eraseFromParent(); 3337 new UnreachableInst(RI->getContext(), TrivialBB); 3338 } 3339 3340 // Delete the resume block if all its predecessors have been removed. 3341 if (pred_empty(BB)) 3342 BB->eraseFromParent(); 3343 3344 return !TrivialUnwindBlocks.empty(); 3345 } 3346 3347 // Simplify resume that is only used by a single (non-phi) landing pad. 3348 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3349 BasicBlock *BB = RI->getParent(); 3350 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3351 assert (RI->getValue() == LPInst && 3352 "Resume must unwind the exception that caused control to here"); 3353 3354 // Check that there are no other instructions except for debug intrinsics. 3355 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3356 while (++I != E) 3357 if (!isa<DbgInfoIntrinsic>(I)) 3358 return false; 3359 3360 // Turn all invokes that unwind here into calls and delete the basic block. 3361 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3362 BasicBlock *Pred = *PI++; 3363 removeUnwindEdge(Pred); 3364 } 3365 3366 // The landingpad is now unreachable. Zap it. 3367 BB->eraseFromParent(); 3368 if (LoopHeaders) LoopHeaders->erase(BB); 3369 return true; 3370 } 3371 3372 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3373 // If this is a trivial cleanup pad that executes no instructions, it can be 3374 // eliminated. If the cleanup pad continues to the caller, any predecessor 3375 // that is an EH pad will be updated to continue to the caller and any 3376 // predecessor that terminates with an invoke instruction will have its invoke 3377 // instruction converted to a call instruction. If the cleanup pad being 3378 // simplified does not continue to the caller, each predecessor will be 3379 // updated to continue to the unwind destination of the cleanup pad being 3380 // simplified. 3381 BasicBlock *BB = RI->getParent(); 3382 CleanupPadInst *CPInst = RI->getCleanupPad(); 3383 if (CPInst->getParent() != BB) 3384 // This isn't an empty cleanup. 3385 return false; 3386 3387 // Check that there are no other instructions except for debug intrinsics. 3388 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3389 while (++I != E) 3390 if (!isa<DbgInfoIntrinsic>(I)) 3391 return false; 3392 3393 // If the cleanup return we are simplifying unwinds to the caller, this will 3394 // set UnwindDest to nullptr. 3395 BasicBlock *UnwindDest = RI->getUnwindDest(); 3396 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3397 3398 // We're about to remove BB from the control flow. Before we do, sink any 3399 // PHINodes into the unwind destination. Doing this before changing the 3400 // control flow avoids some potentially slow checks, since we can currently 3401 // be certain that UnwindDest and BB have no common predecessors (since they 3402 // are both EH pads). 3403 if (UnwindDest) { 3404 // First, go through the PHI nodes in UnwindDest and update any nodes that 3405 // reference the block we are removing 3406 for (BasicBlock::iterator I = UnwindDest->begin(), 3407 IE = DestEHPad->getIterator(); 3408 I != IE; ++I) { 3409 PHINode *DestPN = cast<PHINode>(I); 3410 3411 int Idx = DestPN->getBasicBlockIndex(BB); 3412 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3413 assert(Idx != -1); 3414 // This PHI node has an incoming value that corresponds to a control 3415 // path through the cleanup pad we are removing. If the incoming 3416 // value is in the cleanup pad, it must be a PHINode (because we 3417 // verified above that the block is otherwise empty). Otherwise, the 3418 // value is either a constant or a value that dominates the cleanup 3419 // pad being removed. 3420 // 3421 // Because BB and UnwindDest are both EH pads, all of their 3422 // predecessors must unwind to these blocks, and since no instruction 3423 // can have multiple unwind destinations, there will be no overlap in 3424 // incoming blocks between SrcPN and DestPN. 3425 Value *SrcVal = DestPN->getIncomingValue(Idx); 3426 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3427 3428 // Remove the entry for the block we are deleting. 3429 DestPN->removeIncomingValue(Idx, false); 3430 3431 if (SrcPN && SrcPN->getParent() == BB) { 3432 // If the incoming value was a PHI node in the cleanup pad we are 3433 // removing, we need to merge that PHI node's incoming values into 3434 // DestPN. 3435 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3436 SrcIdx != SrcE; ++SrcIdx) { 3437 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3438 SrcPN->getIncomingBlock(SrcIdx)); 3439 } 3440 } else { 3441 // Otherwise, the incoming value came from above BB and 3442 // so we can just reuse it. We must associate all of BB's 3443 // predecessors with this value. 3444 for (auto *pred : predecessors(BB)) { 3445 DestPN->addIncoming(SrcVal, pred); 3446 } 3447 } 3448 } 3449 3450 // Sink any remaining PHI nodes directly into UnwindDest. 3451 Instruction *InsertPt = DestEHPad; 3452 for (BasicBlock::iterator I = BB->begin(), 3453 IE = BB->getFirstNonPHI()->getIterator(); 3454 I != IE;) { 3455 // The iterator must be incremented here because the instructions are 3456 // being moved to another block. 3457 PHINode *PN = cast<PHINode>(I++); 3458 if (PN->use_empty()) 3459 // If the PHI node has no uses, just leave it. It will be erased 3460 // when we erase BB below. 3461 continue; 3462 3463 // Otherwise, sink this PHI node into UnwindDest. 3464 // Any predecessors to UnwindDest which are not already represented 3465 // must be back edges which inherit the value from the path through 3466 // BB. In this case, the PHI value must reference itself. 3467 for (auto *pred : predecessors(UnwindDest)) 3468 if (pred != BB) 3469 PN->addIncoming(PN, pred); 3470 PN->moveBefore(InsertPt); 3471 } 3472 } 3473 3474 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3475 // The iterator must be updated here because we are removing this pred. 3476 BasicBlock *PredBB = *PI++; 3477 if (UnwindDest == nullptr) { 3478 removeUnwindEdge(PredBB); 3479 } else { 3480 TerminatorInst *TI = PredBB->getTerminator(); 3481 TI->replaceUsesOfWith(BB, UnwindDest); 3482 } 3483 } 3484 3485 // The cleanup pad is now unreachable. Zap it. 3486 BB->eraseFromParent(); 3487 return true; 3488 } 3489 3490 // Try to merge two cleanuppads together. 3491 static bool mergeCleanupPad(CleanupReturnInst *RI) { 3492 // Skip any cleanuprets which unwind to caller, there is nothing to merge 3493 // with. 3494 BasicBlock *UnwindDest = RI->getUnwindDest(); 3495 if (!UnwindDest) 3496 return false; 3497 3498 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 3499 // be safe to merge without code duplication. 3500 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 3501 return false; 3502 3503 // Verify that our cleanuppad's unwind destination is another cleanuppad. 3504 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 3505 if (!SuccessorCleanupPad) 3506 return false; 3507 3508 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 3509 // Replace any uses of the successor cleanupad with the predecessor pad 3510 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 3511 // funclet bundle operands. 3512 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 3513 // Remove the old cleanuppad. 3514 SuccessorCleanupPad->eraseFromParent(); 3515 // Now, we simply replace the cleanupret with a branch to the unwind 3516 // destination. 3517 BranchInst::Create(UnwindDest, RI->getParent()); 3518 RI->eraseFromParent(); 3519 3520 return true; 3521 } 3522 3523 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3524 // It is possible to transiantly have an undef cleanuppad operand because we 3525 // have deleted some, but not all, dead blocks. 3526 // Eventually, this block will be deleted. 3527 if (isa<UndefValue>(RI->getOperand(0))) 3528 return false; 3529 3530 if (removeEmptyCleanup(RI)) 3531 return true; 3532 3533 if (mergeCleanupPad(RI)) 3534 return true; 3535 3536 return false; 3537 } 3538 3539 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3540 BasicBlock *BB = RI->getParent(); 3541 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3542 3543 // Find predecessors that end with branches. 3544 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3545 SmallVector<BranchInst*, 8> CondBranchPreds; 3546 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3547 BasicBlock *P = *PI; 3548 TerminatorInst *PTI = P->getTerminator(); 3549 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3550 if (BI->isUnconditional()) 3551 UncondBranchPreds.push_back(P); 3552 else 3553 CondBranchPreds.push_back(BI); 3554 } 3555 } 3556 3557 // If we found some, do the transformation! 3558 if (!UncondBranchPreds.empty() && DupRet) { 3559 while (!UncondBranchPreds.empty()) { 3560 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3561 DEBUG(dbgs() << "FOLDING: " << *BB 3562 << "INTO UNCOND BRANCH PRED: " << *Pred); 3563 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3564 } 3565 3566 // If we eliminated all predecessors of the block, delete the block now. 3567 if (pred_empty(BB)) { 3568 // We know there are no successors, so just nuke the block. 3569 BB->eraseFromParent(); 3570 if (LoopHeaders) LoopHeaders->erase(BB); 3571 } 3572 3573 return true; 3574 } 3575 3576 // Check out all of the conditional branches going to this return 3577 // instruction. If any of them just select between returns, change the 3578 // branch itself into a select/return pair. 3579 while (!CondBranchPreds.empty()) { 3580 BranchInst *BI = CondBranchPreds.pop_back_val(); 3581 3582 // Check to see if the non-BB successor is also a return block. 3583 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3584 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3585 SimplifyCondBranchToTwoReturns(BI, Builder)) 3586 return true; 3587 } 3588 return false; 3589 } 3590 3591 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3592 BasicBlock *BB = UI->getParent(); 3593 3594 bool Changed = false; 3595 3596 // If there are any instructions immediately before the unreachable that can 3597 // be removed, do so. 3598 while (UI->getIterator() != BB->begin()) { 3599 BasicBlock::iterator BBI = UI->getIterator(); 3600 --BBI; 3601 // Do not delete instructions that can have side effects which might cause 3602 // the unreachable to not be reachable; specifically, calls and volatile 3603 // operations may have this effect. 3604 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3605 3606 if (BBI->mayHaveSideEffects()) { 3607 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3608 if (SI->isVolatile()) 3609 break; 3610 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3611 if (LI->isVolatile()) 3612 break; 3613 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3614 if (RMWI->isVolatile()) 3615 break; 3616 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3617 if (CXI->isVolatile()) 3618 break; 3619 } else if (isa<CatchPadInst>(BBI)) { 3620 // A catchpad may invoke exception object constructors and such, which 3621 // in some languages can be arbitrary code, so be conservative by 3622 // default. 3623 // For CoreCLR, it just involves a type test, so can be removed. 3624 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3625 EHPersonality::CoreCLR) 3626 break; 3627 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3628 !isa<LandingPadInst>(BBI)) { 3629 break; 3630 } 3631 // Note that deleting LandingPad's here is in fact okay, although it 3632 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3633 // all the predecessors of this block will be the unwind edges of Invokes, 3634 // and we can therefore guarantee this block will be erased. 3635 } 3636 3637 // Delete this instruction (any uses are guaranteed to be dead) 3638 if (!BBI->use_empty()) 3639 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3640 BBI->eraseFromParent(); 3641 Changed = true; 3642 } 3643 3644 // If the unreachable instruction is the first in the block, take a gander 3645 // at all of the predecessors of this instruction, and simplify them. 3646 if (&BB->front() != UI) return Changed; 3647 3648 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3649 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3650 TerminatorInst *TI = Preds[i]->getTerminator(); 3651 IRBuilder<> Builder(TI); 3652 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3653 if (BI->isUnconditional()) { 3654 if (BI->getSuccessor(0) == BB) { 3655 new UnreachableInst(TI->getContext(), TI); 3656 TI->eraseFromParent(); 3657 Changed = true; 3658 } 3659 } else { 3660 if (BI->getSuccessor(0) == BB) { 3661 Builder.CreateBr(BI->getSuccessor(1)); 3662 EraseTerminatorInstAndDCECond(BI); 3663 } else if (BI->getSuccessor(1) == BB) { 3664 Builder.CreateBr(BI->getSuccessor(0)); 3665 EraseTerminatorInstAndDCECond(BI); 3666 Changed = true; 3667 } 3668 } 3669 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3670 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3671 i != e; ++i) 3672 if (i.getCaseSuccessor() == BB) { 3673 BB->removePredecessor(SI->getParent()); 3674 SI->removeCase(i); 3675 --i; --e; 3676 Changed = true; 3677 } 3678 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3679 if (II->getUnwindDest() == BB) { 3680 removeUnwindEdge(TI->getParent()); 3681 Changed = true; 3682 } 3683 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3684 if (CSI->getUnwindDest() == BB) { 3685 removeUnwindEdge(TI->getParent()); 3686 Changed = true; 3687 continue; 3688 } 3689 3690 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3691 E = CSI->handler_end(); 3692 I != E; ++I) { 3693 if (*I == BB) { 3694 CSI->removeHandler(I); 3695 --I; 3696 --E; 3697 Changed = true; 3698 } 3699 } 3700 if (CSI->getNumHandlers() == 0) { 3701 BasicBlock *CatchSwitchBB = CSI->getParent(); 3702 if (CSI->hasUnwindDest()) { 3703 // Redirect preds to the unwind dest 3704 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3705 } else { 3706 // Rewrite all preds to unwind to caller (or from invoke to call). 3707 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3708 for (BasicBlock *EHPred : EHPreds) 3709 removeUnwindEdge(EHPred); 3710 } 3711 // The catchswitch is no longer reachable. 3712 new UnreachableInst(CSI->getContext(), CSI); 3713 CSI->eraseFromParent(); 3714 Changed = true; 3715 } 3716 } else if (isa<CleanupReturnInst>(TI)) { 3717 new UnreachableInst(TI->getContext(), TI); 3718 TI->eraseFromParent(); 3719 Changed = true; 3720 } 3721 } 3722 3723 // If this block is now dead, remove it. 3724 if (pred_empty(BB) && 3725 BB != &BB->getParent()->getEntryBlock()) { 3726 // We know there are no successors, so just nuke the block. 3727 BB->eraseFromParent(); 3728 if (LoopHeaders) LoopHeaders->erase(BB); 3729 return true; 3730 } 3731 3732 return Changed; 3733 } 3734 3735 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3736 assert(Cases.size() >= 1); 3737 3738 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3739 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3740 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3741 return false; 3742 } 3743 return true; 3744 } 3745 3746 /// Turn a switch with two reachable destinations into an integer range 3747 /// comparison and branch. 3748 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3749 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3750 3751 bool HasDefault = 3752 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3753 3754 // Partition the cases into two sets with different destinations. 3755 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3756 BasicBlock *DestB = nullptr; 3757 SmallVector <ConstantInt *, 16> CasesA; 3758 SmallVector <ConstantInt *, 16> CasesB; 3759 3760 for (SwitchInst::CaseIt I : SI->cases()) { 3761 BasicBlock *Dest = I.getCaseSuccessor(); 3762 if (!DestA) DestA = Dest; 3763 if (Dest == DestA) { 3764 CasesA.push_back(I.getCaseValue()); 3765 continue; 3766 } 3767 if (!DestB) DestB = Dest; 3768 if (Dest == DestB) { 3769 CasesB.push_back(I.getCaseValue()); 3770 continue; 3771 } 3772 return false; // More than two destinations. 3773 } 3774 3775 assert(DestA && DestB && "Single-destination switch should have been folded."); 3776 assert(DestA != DestB); 3777 assert(DestB != SI->getDefaultDest()); 3778 assert(!CasesB.empty() && "There must be non-default cases."); 3779 assert(!CasesA.empty() || HasDefault); 3780 3781 // Figure out if one of the sets of cases form a contiguous range. 3782 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3783 BasicBlock *ContiguousDest = nullptr; 3784 BasicBlock *OtherDest = nullptr; 3785 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3786 ContiguousCases = &CasesA; 3787 ContiguousDest = DestA; 3788 OtherDest = DestB; 3789 } else if (CasesAreContiguous(CasesB)) { 3790 ContiguousCases = &CasesB; 3791 ContiguousDest = DestB; 3792 OtherDest = DestA; 3793 } else 3794 return false; 3795 3796 // Start building the compare and branch. 3797 3798 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3799 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3800 3801 Value *Sub = SI->getCondition(); 3802 if (!Offset->isNullValue()) 3803 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3804 3805 Value *Cmp; 3806 // If NumCases overflowed, then all possible values jump to the successor. 3807 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3808 Cmp = ConstantInt::getTrue(SI->getContext()); 3809 else 3810 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3811 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3812 3813 // Update weight for the newly-created conditional branch. 3814 if (HasBranchWeights(SI)) { 3815 SmallVector<uint64_t, 8> Weights; 3816 GetBranchWeights(SI, Weights); 3817 if (Weights.size() == 1 + SI->getNumCases()) { 3818 uint64_t TrueWeight = 0; 3819 uint64_t FalseWeight = 0; 3820 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3821 if (SI->getSuccessor(I) == ContiguousDest) 3822 TrueWeight += Weights[I]; 3823 else 3824 FalseWeight += Weights[I]; 3825 } 3826 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3827 TrueWeight /= 2; 3828 FalseWeight /= 2; 3829 } 3830 NewBI->setMetadata(LLVMContext::MD_prof, 3831 MDBuilder(SI->getContext()).createBranchWeights( 3832 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3833 } 3834 } 3835 3836 // Prune obsolete incoming values off the successors' PHI nodes. 3837 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3838 unsigned PreviousEdges = ContiguousCases->size(); 3839 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3840 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3841 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3842 } 3843 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3844 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3845 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3846 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3847 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3848 } 3849 3850 // Drop the switch. 3851 SI->eraseFromParent(); 3852 3853 return true; 3854 } 3855 3856 /// Compute masked bits for the condition of a switch 3857 /// and use it to remove dead cases. 3858 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3859 const DataLayout &DL) { 3860 Value *Cond = SI->getCondition(); 3861 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3862 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3863 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3864 3865 // Gather dead cases. 3866 SmallVector<ConstantInt*, 8> DeadCases; 3867 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3868 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3869 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3870 DeadCases.push_back(I.getCaseValue()); 3871 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3872 << I.getCaseValue() << "' is dead.\n"); 3873 } 3874 } 3875 3876 // If we can prove that the cases must cover all possible values, the 3877 // default destination becomes dead and we can remove it. If we know some 3878 // of the bits in the value, we can use that to more precisely compute the 3879 // number of possible unique case values. 3880 bool HasDefault = 3881 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3882 const unsigned NumUnknownBits = Bits - 3883 (KnownZero.Or(KnownOne)).countPopulation(); 3884 assert(NumUnknownBits <= Bits); 3885 if (HasDefault && DeadCases.empty() && 3886 NumUnknownBits < 64 /* avoid overflow */ && 3887 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3888 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3889 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3890 SI->getParent(), ""); 3891 SI->setDefaultDest(&*NewDefault); 3892 SplitBlock(&*NewDefault, &NewDefault->front()); 3893 auto *OldTI = NewDefault->getTerminator(); 3894 new UnreachableInst(SI->getContext(), OldTI); 3895 EraseTerminatorInstAndDCECond(OldTI); 3896 return true; 3897 } 3898 3899 SmallVector<uint64_t, 8> Weights; 3900 bool HasWeight = HasBranchWeights(SI); 3901 if (HasWeight) { 3902 GetBranchWeights(SI, Weights); 3903 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3904 } 3905 3906 // Remove dead cases from the switch. 3907 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3908 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3909 assert(Case != SI->case_default() && 3910 "Case was not found. Probably mistake in DeadCases forming."); 3911 if (HasWeight) { 3912 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3913 Weights.pop_back(); 3914 } 3915 3916 // Prune unused values from PHI nodes. 3917 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3918 SI->removeCase(Case); 3919 } 3920 if (HasWeight && Weights.size() >= 2) { 3921 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3922 SI->setMetadata(LLVMContext::MD_prof, 3923 MDBuilder(SI->getParent()->getContext()). 3924 createBranchWeights(MDWeights)); 3925 } 3926 3927 return !DeadCases.empty(); 3928 } 3929 3930 /// If BB would be eligible for simplification by 3931 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3932 /// by an unconditional branch), look at the phi node for BB in the successor 3933 /// block and see if the incoming value is equal to CaseValue. If so, return 3934 /// the phi node, and set PhiIndex to BB's index in the phi node. 3935 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3936 BasicBlock *BB, 3937 int *PhiIndex) { 3938 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3939 return nullptr; // BB must be empty to be a candidate for simplification. 3940 if (!BB->getSinglePredecessor()) 3941 return nullptr; // BB must be dominated by the switch. 3942 3943 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3944 if (!Branch || !Branch->isUnconditional()) 3945 return nullptr; // Terminator must be unconditional branch. 3946 3947 BasicBlock *Succ = Branch->getSuccessor(0); 3948 3949 BasicBlock::iterator I = Succ->begin(); 3950 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3951 int Idx = PHI->getBasicBlockIndex(BB); 3952 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3953 3954 Value *InValue = PHI->getIncomingValue(Idx); 3955 if (InValue != CaseValue) continue; 3956 3957 *PhiIndex = Idx; 3958 return PHI; 3959 } 3960 3961 return nullptr; 3962 } 3963 3964 /// Try to forward the condition of a switch instruction to a phi node 3965 /// dominated by the switch, if that would mean that some of the destination 3966 /// blocks of the switch can be folded away. 3967 /// Returns true if a change is made. 3968 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3969 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3970 ForwardingNodesMap ForwardingNodes; 3971 3972 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3973 ConstantInt *CaseValue = I.getCaseValue(); 3974 BasicBlock *CaseDest = I.getCaseSuccessor(); 3975 3976 int PhiIndex; 3977 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3978 &PhiIndex); 3979 if (!PHI) continue; 3980 3981 ForwardingNodes[PHI].push_back(PhiIndex); 3982 } 3983 3984 bool Changed = false; 3985 3986 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3987 E = ForwardingNodes.end(); I != E; ++I) { 3988 PHINode *Phi = I->first; 3989 SmallVectorImpl<int> &Indexes = I->second; 3990 3991 if (Indexes.size() < 2) continue; 3992 3993 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3994 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3995 Changed = true; 3996 } 3997 3998 return Changed; 3999 } 4000 4001 /// Return true if the backend will be able to handle 4002 /// initializing an array of constants like C. 4003 static bool ValidLookupTableConstant(Constant *C) { 4004 if (C->isThreadDependent()) 4005 return false; 4006 if (C->isDLLImportDependent()) 4007 return false; 4008 4009 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 4010 return CE->isGEPWithNoNotionalOverIndexing(); 4011 4012 return isa<ConstantFP>(C) || 4013 isa<ConstantInt>(C) || 4014 isa<ConstantPointerNull>(C) || 4015 isa<GlobalValue>(C) || 4016 isa<UndefValue>(C); 4017 } 4018 4019 /// If V is a Constant, return it. Otherwise, try to look up 4020 /// its constant value in ConstantPool, returning 0 if it's not there. 4021 static Constant *LookupConstant(Value *V, 4022 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 4023 if (Constant *C = dyn_cast<Constant>(V)) 4024 return C; 4025 return ConstantPool.lookup(V); 4026 } 4027 4028 /// Try to fold instruction I into a constant. This works for 4029 /// simple instructions such as binary operations where both operands are 4030 /// constant or can be replaced by constants from the ConstantPool. Returns the 4031 /// resulting constant on success, 0 otherwise. 4032 static Constant * 4033 ConstantFold(Instruction *I, const DataLayout &DL, 4034 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4035 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4036 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4037 if (!A) 4038 return nullptr; 4039 if (A->isAllOnesValue()) 4040 return LookupConstant(Select->getTrueValue(), ConstantPool); 4041 if (A->isNullValue()) 4042 return LookupConstant(Select->getFalseValue(), ConstantPool); 4043 return nullptr; 4044 } 4045 4046 SmallVector<Constant *, 4> COps; 4047 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4048 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4049 COps.push_back(A); 4050 else 4051 return nullptr; 4052 } 4053 4054 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4055 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4056 COps[1], DL); 4057 } 4058 4059 return ConstantFoldInstOperands(I, COps, DL); 4060 } 4061 4062 /// Try to determine the resulting constant values in phi nodes 4063 /// at the common destination basic block, *CommonDest, for one of the case 4064 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4065 /// case), of a switch instruction SI. 4066 static bool 4067 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4068 BasicBlock **CommonDest, 4069 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4070 const DataLayout &DL) { 4071 // The block from which we enter the common destination. 4072 BasicBlock *Pred = SI->getParent(); 4073 4074 // If CaseDest is empty except for some side-effect free instructions through 4075 // which we can constant-propagate the CaseVal, continue to its successor. 4076 SmallDenseMap<Value*, Constant*> ConstantPool; 4077 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4078 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4079 ++I) { 4080 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4081 // If the terminator is a simple branch, continue to the next block. 4082 if (T->getNumSuccessors() != 1) 4083 return false; 4084 Pred = CaseDest; 4085 CaseDest = T->getSuccessor(0); 4086 } else if (isa<DbgInfoIntrinsic>(I)) { 4087 // Skip debug intrinsic. 4088 continue; 4089 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4090 // Instruction is side-effect free and constant. 4091 4092 // If the instruction has uses outside this block or a phi node slot for 4093 // the block, it is not safe to bypass the instruction since it would then 4094 // no longer dominate all its uses. 4095 for (auto &Use : I->uses()) { 4096 User *User = Use.getUser(); 4097 if (Instruction *I = dyn_cast<Instruction>(User)) 4098 if (I->getParent() == CaseDest) 4099 continue; 4100 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4101 if (Phi->getIncomingBlock(Use) == CaseDest) 4102 continue; 4103 return false; 4104 } 4105 4106 ConstantPool.insert(std::make_pair(&*I, C)); 4107 } else { 4108 break; 4109 } 4110 } 4111 4112 // If we did not have a CommonDest before, use the current one. 4113 if (!*CommonDest) 4114 *CommonDest = CaseDest; 4115 // If the destination isn't the common one, abort. 4116 if (CaseDest != *CommonDest) 4117 return false; 4118 4119 // Get the values for this case from phi nodes in the destination block. 4120 BasicBlock::iterator I = (*CommonDest)->begin(); 4121 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4122 int Idx = PHI->getBasicBlockIndex(Pred); 4123 if (Idx == -1) 4124 continue; 4125 4126 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4127 ConstantPool); 4128 if (!ConstVal) 4129 return false; 4130 4131 // Be conservative about which kinds of constants we support. 4132 if (!ValidLookupTableConstant(ConstVal)) 4133 return false; 4134 4135 Res.push_back(std::make_pair(PHI, ConstVal)); 4136 } 4137 4138 return Res.size() > 0; 4139 } 4140 4141 // Helper function used to add CaseVal to the list of cases that generate 4142 // Result. 4143 static void MapCaseToResult(ConstantInt *CaseVal, 4144 SwitchCaseResultVectorTy &UniqueResults, 4145 Constant *Result) { 4146 for (auto &I : UniqueResults) { 4147 if (I.first == Result) { 4148 I.second.push_back(CaseVal); 4149 return; 4150 } 4151 } 4152 UniqueResults.push_back(std::make_pair(Result, 4153 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4154 } 4155 4156 // Helper function that initializes a map containing 4157 // results for the PHI node of the common destination block for a switch 4158 // instruction. Returns false if multiple PHI nodes have been found or if 4159 // there is not a common destination block for the switch. 4160 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4161 BasicBlock *&CommonDest, 4162 SwitchCaseResultVectorTy &UniqueResults, 4163 Constant *&DefaultResult, 4164 const DataLayout &DL) { 4165 for (auto &I : SI->cases()) { 4166 ConstantInt *CaseVal = I.getCaseValue(); 4167 4168 // Resulting value at phi nodes for this case value. 4169 SwitchCaseResultsTy Results; 4170 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4171 DL)) 4172 return false; 4173 4174 // Only one value per case is permitted 4175 if (Results.size() > 1) 4176 return false; 4177 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4178 4179 // Check the PHI consistency. 4180 if (!PHI) 4181 PHI = Results[0].first; 4182 else if (PHI != Results[0].first) 4183 return false; 4184 } 4185 // Find the default result value. 4186 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4187 BasicBlock *DefaultDest = SI->getDefaultDest(); 4188 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4189 DL); 4190 // If the default value is not found abort unless the default destination 4191 // is unreachable. 4192 DefaultResult = 4193 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4194 if ((!DefaultResult && 4195 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4196 return false; 4197 4198 return true; 4199 } 4200 4201 // Helper function that checks if it is possible to transform a switch with only 4202 // two cases (or two cases + default) that produces a result into a select. 4203 // Example: 4204 // switch (a) { 4205 // case 10: %0 = icmp eq i32 %a, 10 4206 // return 10; %1 = select i1 %0, i32 10, i32 4 4207 // case 20: ----> %2 = icmp eq i32 %a, 20 4208 // return 2; %3 = select i1 %2, i32 2, i32 %1 4209 // default: 4210 // return 4; 4211 // } 4212 static Value * 4213 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4214 Constant *DefaultResult, Value *Condition, 4215 IRBuilder<> &Builder) { 4216 assert(ResultVector.size() == 2 && 4217 "We should have exactly two unique results at this point"); 4218 // If we are selecting between only two cases transform into a simple 4219 // select or a two-way select if default is possible. 4220 if (ResultVector[0].second.size() == 1 && 4221 ResultVector[1].second.size() == 1) { 4222 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4223 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4224 4225 bool DefaultCanTrigger = DefaultResult; 4226 Value *SelectValue = ResultVector[1].first; 4227 if (DefaultCanTrigger) { 4228 Value *const ValueCompare = 4229 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4230 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4231 DefaultResult, "switch.select"); 4232 } 4233 Value *const ValueCompare = 4234 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4235 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4236 "switch.select"); 4237 } 4238 4239 return nullptr; 4240 } 4241 4242 // Helper function to cleanup a switch instruction that has been converted into 4243 // a select, fixing up PHI nodes and basic blocks. 4244 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4245 Value *SelectValue, 4246 IRBuilder<> &Builder) { 4247 BasicBlock *SelectBB = SI->getParent(); 4248 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4249 PHI->removeIncomingValue(SelectBB); 4250 PHI->addIncoming(SelectValue, SelectBB); 4251 4252 Builder.CreateBr(PHI->getParent()); 4253 4254 // Remove the switch. 4255 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4256 BasicBlock *Succ = SI->getSuccessor(i); 4257 4258 if (Succ == PHI->getParent()) 4259 continue; 4260 Succ->removePredecessor(SelectBB); 4261 } 4262 SI->eraseFromParent(); 4263 } 4264 4265 /// If the switch is only used to initialize one or more 4266 /// phi nodes in a common successor block with only two different 4267 /// constant values, replace the switch with select. 4268 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4269 AssumptionCache *AC, const DataLayout &DL) { 4270 Value *const Cond = SI->getCondition(); 4271 PHINode *PHI = nullptr; 4272 BasicBlock *CommonDest = nullptr; 4273 Constant *DefaultResult; 4274 SwitchCaseResultVectorTy UniqueResults; 4275 // Collect all the cases that will deliver the same value from the switch. 4276 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4277 DL)) 4278 return false; 4279 // Selects choose between maximum two values. 4280 if (UniqueResults.size() != 2) 4281 return false; 4282 assert(PHI != nullptr && "PHI for value select not found"); 4283 4284 Builder.SetInsertPoint(SI); 4285 Value *SelectValue = ConvertTwoCaseSwitch( 4286 UniqueResults, 4287 DefaultResult, Cond, Builder); 4288 if (SelectValue) { 4289 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4290 return true; 4291 } 4292 // The switch couldn't be converted into a select. 4293 return false; 4294 } 4295 4296 namespace { 4297 /// This class represents a lookup table that can be used to replace a switch. 4298 class SwitchLookupTable { 4299 public: 4300 /// Create a lookup table to use as a switch replacement with the contents 4301 /// of Values, using DefaultValue to fill any holes in the table. 4302 SwitchLookupTable( 4303 Module &M, uint64_t TableSize, ConstantInt *Offset, 4304 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4305 Constant *DefaultValue, const DataLayout &DL); 4306 4307 /// Build instructions with Builder to retrieve the value at 4308 /// the position given by Index in the lookup table. 4309 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4310 4311 /// Return true if a table with TableSize elements of 4312 /// type ElementType would fit in a target-legal register. 4313 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4314 Type *ElementType); 4315 4316 private: 4317 // Depending on the contents of the table, it can be represented in 4318 // different ways. 4319 enum { 4320 // For tables where each element contains the same value, we just have to 4321 // store that single value and return it for each lookup. 4322 SingleValueKind, 4323 4324 // For tables where there is a linear relationship between table index 4325 // and values. We calculate the result with a simple multiplication 4326 // and addition instead of a table lookup. 4327 LinearMapKind, 4328 4329 // For small tables with integer elements, we can pack them into a bitmap 4330 // that fits into a target-legal register. Values are retrieved by 4331 // shift and mask operations. 4332 BitMapKind, 4333 4334 // The table is stored as an array of values. Values are retrieved by load 4335 // instructions from the table. 4336 ArrayKind 4337 } Kind; 4338 4339 // For SingleValueKind, this is the single value. 4340 Constant *SingleValue; 4341 4342 // For BitMapKind, this is the bitmap. 4343 ConstantInt *BitMap; 4344 IntegerType *BitMapElementTy; 4345 4346 // For LinearMapKind, these are the constants used to derive the value. 4347 ConstantInt *LinearOffset; 4348 ConstantInt *LinearMultiplier; 4349 4350 // For ArrayKind, this is the array. 4351 GlobalVariable *Array; 4352 }; 4353 } 4354 4355 SwitchLookupTable::SwitchLookupTable( 4356 Module &M, uint64_t TableSize, ConstantInt *Offset, 4357 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4358 Constant *DefaultValue, const DataLayout &DL) 4359 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4360 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4361 assert(Values.size() && "Can't build lookup table without values!"); 4362 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4363 4364 // If all values in the table are equal, this is that value. 4365 SingleValue = Values.begin()->second; 4366 4367 Type *ValueType = Values.begin()->second->getType(); 4368 4369 // Build up the table contents. 4370 SmallVector<Constant*, 64> TableContents(TableSize); 4371 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4372 ConstantInt *CaseVal = Values[I].first; 4373 Constant *CaseRes = Values[I].second; 4374 assert(CaseRes->getType() == ValueType); 4375 4376 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4377 .getLimitedValue(); 4378 TableContents[Idx] = CaseRes; 4379 4380 if (CaseRes != SingleValue) 4381 SingleValue = nullptr; 4382 } 4383 4384 // Fill in any holes in the table with the default result. 4385 if (Values.size() < TableSize) { 4386 assert(DefaultValue && 4387 "Need a default value to fill the lookup table holes."); 4388 assert(DefaultValue->getType() == ValueType); 4389 for (uint64_t I = 0; I < TableSize; ++I) { 4390 if (!TableContents[I]) 4391 TableContents[I] = DefaultValue; 4392 } 4393 4394 if (DefaultValue != SingleValue) 4395 SingleValue = nullptr; 4396 } 4397 4398 // If each element in the table contains the same value, we only need to store 4399 // that single value. 4400 if (SingleValue) { 4401 Kind = SingleValueKind; 4402 return; 4403 } 4404 4405 // Check if we can derive the value with a linear transformation from the 4406 // table index. 4407 if (isa<IntegerType>(ValueType)) { 4408 bool LinearMappingPossible = true; 4409 APInt PrevVal; 4410 APInt DistToPrev; 4411 assert(TableSize >= 2 && "Should be a SingleValue table."); 4412 // Check if there is the same distance between two consecutive values. 4413 for (uint64_t I = 0; I < TableSize; ++I) { 4414 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4415 if (!ConstVal) { 4416 // This is an undef. We could deal with it, but undefs in lookup tables 4417 // are very seldom. It's probably not worth the additional complexity. 4418 LinearMappingPossible = false; 4419 break; 4420 } 4421 APInt Val = ConstVal->getValue(); 4422 if (I != 0) { 4423 APInt Dist = Val - PrevVal; 4424 if (I == 1) { 4425 DistToPrev = Dist; 4426 } else if (Dist != DistToPrev) { 4427 LinearMappingPossible = false; 4428 break; 4429 } 4430 } 4431 PrevVal = Val; 4432 } 4433 if (LinearMappingPossible) { 4434 LinearOffset = cast<ConstantInt>(TableContents[0]); 4435 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4436 Kind = LinearMapKind; 4437 ++NumLinearMaps; 4438 return; 4439 } 4440 } 4441 4442 // If the type is integer and the table fits in a register, build a bitmap. 4443 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4444 IntegerType *IT = cast<IntegerType>(ValueType); 4445 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4446 for (uint64_t I = TableSize; I > 0; --I) { 4447 TableInt <<= IT->getBitWidth(); 4448 // Insert values into the bitmap. Undef values are set to zero. 4449 if (!isa<UndefValue>(TableContents[I - 1])) { 4450 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4451 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4452 } 4453 } 4454 BitMap = ConstantInt::get(M.getContext(), TableInt); 4455 BitMapElementTy = IT; 4456 Kind = BitMapKind; 4457 ++NumBitMaps; 4458 return; 4459 } 4460 4461 // Store the table in an array. 4462 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4463 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4464 4465 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4466 GlobalVariable::PrivateLinkage, 4467 Initializer, 4468 "switch.table"); 4469 Array->setUnnamedAddr(true); 4470 Kind = ArrayKind; 4471 } 4472 4473 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4474 switch (Kind) { 4475 case SingleValueKind: 4476 return SingleValue; 4477 case LinearMapKind: { 4478 // Derive the result value from the input value. 4479 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4480 false, "switch.idx.cast"); 4481 if (!LinearMultiplier->isOne()) 4482 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4483 if (!LinearOffset->isZero()) 4484 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4485 return Result; 4486 } 4487 case BitMapKind: { 4488 // Type of the bitmap (e.g. i59). 4489 IntegerType *MapTy = BitMap->getType(); 4490 4491 // Cast Index to the same type as the bitmap. 4492 // Note: The Index is <= the number of elements in the table, so 4493 // truncating it to the width of the bitmask is safe. 4494 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4495 4496 // Multiply the shift amount by the element width. 4497 ShiftAmt = Builder.CreateMul(ShiftAmt, 4498 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4499 "switch.shiftamt"); 4500 4501 // Shift down. 4502 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4503 "switch.downshift"); 4504 // Mask off. 4505 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4506 "switch.masked"); 4507 } 4508 case ArrayKind: { 4509 // Make sure the table index will not overflow when treated as signed. 4510 IntegerType *IT = cast<IntegerType>(Index->getType()); 4511 uint64_t TableSize = Array->getInitializer()->getType() 4512 ->getArrayNumElements(); 4513 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4514 Index = Builder.CreateZExt(Index, 4515 IntegerType::get(IT->getContext(), 4516 IT->getBitWidth() + 1), 4517 "switch.tableidx.zext"); 4518 4519 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4520 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4521 GEPIndices, "switch.gep"); 4522 return Builder.CreateLoad(GEP, "switch.load"); 4523 } 4524 } 4525 llvm_unreachable("Unknown lookup table kind!"); 4526 } 4527 4528 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4529 uint64_t TableSize, 4530 Type *ElementType) { 4531 auto *IT = dyn_cast<IntegerType>(ElementType); 4532 if (!IT) 4533 return false; 4534 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4535 // are <= 15, we could try to narrow the type. 4536 4537 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4538 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4539 return false; 4540 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4541 } 4542 4543 /// Determine whether a lookup table should be built for this switch, based on 4544 /// the number of cases, size of the table, and the types of the results. 4545 static bool 4546 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4547 const TargetTransformInfo &TTI, const DataLayout &DL, 4548 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4549 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4550 return false; // TableSize overflowed, or mul below might overflow. 4551 4552 bool AllTablesFitInRegister = true; 4553 bool HasIllegalType = false; 4554 for (const auto &I : ResultTypes) { 4555 Type *Ty = I.second; 4556 4557 // Saturate this flag to true. 4558 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4559 4560 // Saturate this flag to false. 4561 AllTablesFitInRegister = AllTablesFitInRegister && 4562 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4563 4564 // If both flags saturate, we're done. NOTE: This *only* works with 4565 // saturating flags, and all flags have to saturate first due to the 4566 // non-deterministic behavior of iterating over a dense map. 4567 if (HasIllegalType && !AllTablesFitInRegister) 4568 break; 4569 } 4570 4571 // If each table would fit in a register, we should build it anyway. 4572 if (AllTablesFitInRegister) 4573 return true; 4574 4575 // Don't build a table that doesn't fit in-register if it has illegal types. 4576 if (HasIllegalType) 4577 return false; 4578 4579 // The table density should be at least 40%. This is the same criterion as for 4580 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4581 // FIXME: Find the best cut-off. 4582 return SI->getNumCases() * 10 >= TableSize * 4; 4583 } 4584 4585 /// Try to reuse the switch table index compare. Following pattern: 4586 /// \code 4587 /// if (idx < tablesize) 4588 /// r = table[idx]; // table does not contain default_value 4589 /// else 4590 /// r = default_value; 4591 /// if (r != default_value) 4592 /// ... 4593 /// \endcode 4594 /// Is optimized to: 4595 /// \code 4596 /// cond = idx < tablesize; 4597 /// if (cond) 4598 /// r = table[idx]; 4599 /// else 4600 /// r = default_value; 4601 /// if (cond) 4602 /// ... 4603 /// \endcode 4604 /// Jump threading will then eliminate the second if(cond). 4605 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4606 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4607 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4608 4609 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4610 if (!CmpInst) 4611 return; 4612 4613 // We require that the compare is in the same block as the phi so that jump 4614 // threading can do its work afterwards. 4615 if (CmpInst->getParent() != PhiBlock) 4616 return; 4617 4618 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4619 if (!CmpOp1) 4620 return; 4621 4622 Value *RangeCmp = RangeCheckBranch->getCondition(); 4623 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4624 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4625 4626 // Check if the compare with the default value is constant true or false. 4627 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4628 DefaultValue, CmpOp1, true); 4629 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4630 return; 4631 4632 // Check if the compare with the case values is distinct from the default 4633 // compare result. 4634 for (auto ValuePair : Values) { 4635 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4636 ValuePair.second, CmpOp1, true); 4637 if (!CaseConst || CaseConst == DefaultConst) 4638 return; 4639 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4640 "Expect true or false as compare result."); 4641 } 4642 4643 // Check if the branch instruction dominates the phi node. It's a simple 4644 // dominance check, but sufficient for our needs. 4645 // Although this check is invariant in the calling loops, it's better to do it 4646 // at this late stage. Practically we do it at most once for a switch. 4647 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4648 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4649 BasicBlock *Pred = *PI; 4650 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4651 return; 4652 } 4653 4654 if (DefaultConst == FalseConst) { 4655 // The compare yields the same result. We can replace it. 4656 CmpInst->replaceAllUsesWith(RangeCmp); 4657 ++NumTableCmpReuses; 4658 } else { 4659 // The compare yields the same result, just inverted. We can replace it. 4660 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4661 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4662 RangeCheckBranch); 4663 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4664 ++NumTableCmpReuses; 4665 } 4666 } 4667 4668 /// If the switch is only used to initialize one or more phi nodes in a common 4669 /// successor block with different constant values, replace the switch with 4670 /// lookup tables. 4671 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4672 const DataLayout &DL, 4673 const TargetTransformInfo &TTI) { 4674 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4675 4676 // Only build lookup table when we have a target that supports it. 4677 if (!TTI.shouldBuildLookupTables()) 4678 return false; 4679 4680 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4681 // split off a dense part and build a lookup table for that. 4682 4683 // FIXME: This creates arrays of GEPs to constant strings, which means each 4684 // GEP needs a runtime relocation in PIC code. We should just build one big 4685 // string and lookup indices into that. 4686 4687 // Ignore switches with less than three cases. Lookup tables will not make them 4688 // faster, so we don't analyze them. 4689 if (SI->getNumCases() < 3) 4690 return false; 4691 4692 // Figure out the corresponding result for each case value and phi node in the 4693 // common destination, as well as the min and max case values. 4694 assert(SI->case_begin() != SI->case_end()); 4695 SwitchInst::CaseIt CI = SI->case_begin(); 4696 ConstantInt *MinCaseVal = CI.getCaseValue(); 4697 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4698 4699 BasicBlock *CommonDest = nullptr; 4700 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4701 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4702 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4703 SmallDenseMap<PHINode*, Type*> ResultTypes; 4704 SmallVector<PHINode*, 4> PHIs; 4705 4706 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4707 ConstantInt *CaseVal = CI.getCaseValue(); 4708 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4709 MinCaseVal = CaseVal; 4710 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4711 MaxCaseVal = CaseVal; 4712 4713 // Resulting value at phi nodes for this case value. 4714 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4715 ResultsTy Results; 4716 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4717 Results, DL)) 4718 return false; 4719 4720 // Append the result from this case to the list for each phi. 4721 for (const auto &I : Results) { 4722 PHINode *PHI = I.first; 4723 Constant *Value = I.second; 4724 if (!ResultLists.count(PHI)) 4725 PHIs.push_back(PHI); 4726 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4727 } 4728 } 4729 4730 // Keep track of the result types. 4731 for (PHINode *PHI : PHIs) { 4732 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4733 } 4734 4735 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4736 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4737 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4738 bool TableHasHoles = (NumResults < TableSize); 4739 4740 // If the table has holes, we need a constant result for the default case 4741 // or a bitmask that fits in a register. 4742 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4743 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4744 &CommonDest, DefaultResultsList, DL); 4745 4746 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4747 if (NeedMask) { 4748 // As an extra penalty for the validity test we require more cases. 4749 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4750 return false; 4751 if (!DL.fitsInLegalInteger(TableSize)) 4752 return false; 4753 } 4754 4755 for (const auto &I : DefaultResultsList) { 4756 PHINode *PHI = I.first; 4757 Constant *Result = I.second; 4758 DefaultResults[PHI] = Result; 4759 } 4760 4761 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4762 return false; 4763 4764 // Create the BB that does the lookups. 4765 Module &Mod = *CommonDest->getParent()->getParent(); 4766 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4767 "switch.lookup", 4768 CommonDest->getParent(), 4769 CommonDest); 4770 4771 // Compute the table index value. 4772 Builder.SetInsertPoint(SI); 4773 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4774 "switch.tableidx"); 4775 4776 // Compute the maximum table size representable by the integer type we are 4777 // switching upon. 4778 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4779 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4780 assert(MaxTableSize >= TableSize && 4781 "It is impossible for a switch to have more entries than the max " 4782 "representable value of its input integer type's size."); 4783 4784 // If the default destination is unreachable, or if the lookup table covers 4785 // all values of the conditional variable, branch directly to the lookup table 4786 // BB. Otherwise, check that the condition is within the case range. 4787 const bool DefaultIsReachable = 4788 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4789 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4790 BranchInst *RangeCheckBranch = nullptr; 4791 4792 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4793 Builder.CreateBr(LookupBB); 4794 // Note: We call removeProdecessor later since we need to be able to get the 4795 // PHI value for the default case in case we're using a bit mask. 4796 } else { 4797 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4798 MinCaseVal->getType(), TableSize)); 4799 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4800 } 4801 4802 // Populate the BB that does the lookups. 4803 Builder.SetInsertPoint(LookupBB); 4804 4805 if (NeedMask) { 4806 // Before doing the lookup we do the hole check. 4807 // The LookupBB is therefore re-purposed to do the hole check 4808 // and we create a new LookupBB. 4809 BasicBlock *MaskBB = LookupBB; 4810 MaskBB->setName("switch.hole_check"); 4811 LookupBB = BasicBlock::Create(Mod.getContext(), 4812 "switch.lookup", 4813 CommonDest->getParent(), 4814 CommonDest); 4815 4816 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4817 // unnecessary illegal types. 4818 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4819 APInt MaskInt(TableSizePowOf2, 0); 4820 APInt One(TableSizePowOf2, 1); 4821 // Build bitmask; fill in a 1 bit for every case. 4822 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4823 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4824 uint64_t Idx = (ResultList[I].first->getValue() - 4825 MinCaseVal->getValue()).getLimitedValue(); 4826 MaskInt |= One << Idx; 4827 } 4828 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4829 4830 // Get the TableIndex'th bit of the bitmask. 4831 // If this bit is 0 (meaning hole) jump to the default destination, 4832 // else continue with table lookup. 4833 IntegerType *MapTy = TableMask->getType(); 4834 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4835 "switch.maskindex"); 4836 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4837 "switch.shifted"); 4838 Value *LoBit = Builder.CreateTrunc(Shifted, 4839 Type::getInt1Ty(Mod.getContext()), 4840 "switch.lobit"); 4841 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4842 4843 Builder.SetInsertPoint(LookupBB); 4844 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4845 } 4846 4847 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4848 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4849 // do not delete PHINodes here. 4850 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4851 /*DontDeleteUselessPHIs=*/true); 4852 } 4853 4854 bool ReturnedEarly = false; 4855 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4856 PHINode *PHI = PHIs[I]; 4857 const ResultListTy &ResultList = ResultLists[PHI]; 4858 4859 // If using a bitmask, use any value to fill the lookup table holes. 4860 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4861 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4862 4863 Value *Result = Table.BuildLookup(TableIndex, Builder); 4864 4865 // If the result is used to return immediately from the function, we want to 4866 // do that right here. 4867 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4868 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4869 Builder.CreateRet(Result); 4870 ReturnedEarly = true; 4871 break; 4872 } 4873 4874 // Do a small peephole optimization: re-use the switch table compare if 4875 // possible. 4876 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4877 BasicBlock *PhiBlock = PHI->getParent(); 4878 // Search for compare instructions which use the phi. 4879 for (auto *User : PHI->users()) { 4880 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4881 } 4882 } 4883 4884 PHI->addIncoming(Result, LookupBB); 4885 } 4886 4887 if (!ReturnedEarly) 4888 Builder.CreateBr(CommonDest); 4889 4890 // Remove the switch. 4891 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4892 BasicBlock *Succ = SI->getSuccessor(i); 4893 4894 if (Succ == SI->getDefaultDest()) 4895 continue; 4896 Succ->removePredecessor(SI->getParent()); 4897 } 4898 SI->eraseFromParent(); 4899 4900 ++NumLookupTables; 4901 if (NeedMask) 4902 ++NumLookupTablesHoles; 4903 return true; 4904 } 4905 4906 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4907 BasicBlock *BB = SI->getParent(); 4908 4909 if (isValueEqualityComparison(SI)) { 4910 // If we only have one predecessor, and if it is a branch on this value, 4911 // see if that predecessor totally determines the outcome of this switch. 4912 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4913 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4914 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4915 4916 Value *Cond = SI->getCondition(); 4917 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4918 if (SimplifySwitchOnSelect(SI, Select)) 4919 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4920 4921 // If the block only contains the switch, see if we can fold the block 4922 // away into any preds. 4923 BasicBlock::iterator BBI = BB->begin(); 4924 // Ignore dbg intrinsics. 4925 while (isa<DbgInfoIntrinsic>(BBI)) 4926 ++BBI; 4927 if (SI == &*BBI) 4928 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4929 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4930 } 4931 4932 // Try to transform the switch into an icmp and a branch. 4933 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4934 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4935 4936 // Remove unreachable cases. 4937 if (EliminateDeadSwitchCases(SI, AC, DL)) 4938 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4939 4940 if (SwitchToSelect(SI, Builder, AC, DL)) 4941 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4942 4943 if (ForwardSwitchConditionToPHI(SI)) 4944 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4945 4946 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4947 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4948 4949 return false; 4950 } 4951 4952 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4953 BasicBlock *BB = IBI->getParent(); 4954 bool Changed = false; 4955 4956 // Eliminate redundant destinations. 4957 SmallPtrSet<Value *, 8> Succs; 4958 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4959 BasicBlock *Dest = IBI->getDestination(i); 4960 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4961 Dest->removePredecessor(BB); 4962 IBI->removeDestination(i); 4963 --i; --e; 4964 Changed = true; 4965 } 4966 } 4967 4968 if (IBI->getNumDestinations() == 0) { 4969 // If the indirectbr has no successors, change it to unreachable. 4970 new UnreachableInst(IBI->getContext(), IBI); 4971 EraseTerminatorInstAndDCECond(IBI); 4972 return true; 4973 } 4974 4975 if (IBI->getNumDestinations() == 1) { 4976 // If the indirectbr has one successor, change it to a direct branch. 4977 BranchInst::Create(IBI->getDestination(0), IBI); 4978 EraseTerminatorInstAndDCECond(IBI); 4979 return true; 4980 } 4981 4982 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4983 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4984 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4985 } 4986 return Changed; 4987 } 4988 4989 /// Given an block with only a single landing pad and a unconditional branch 4990 /// try to find another basic block which this one can be merged with. This 4991 /// handles cases where we have multiple invokes with unique landing pads, but 4992 /// a shared handler. 4993 /// 4994 /// We specifically choose to not worry about merging non-empty blocks 4995 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4996 /// practice, the optimizer produces empty landing pad blocks quite frequently 4997 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4998 /// sinking in this file) 4999 /// 5000 /// This is primarily a code size optimization. We need to avoid performing 5001 /// any transform which might inhibit optimization (such as our ability to 5002 /// specialize a particular handler via tail commoning). We do this by not 5003 /// merging any blocks which require us to introduce a phi. Since the same 5004 /// values are flowing through both blocks, we don't loose any ability to 5005 /// specialize. If anything, we make such specialization more likely. 5006 /// 5007 /// TODO - This transformation could remove entries from a phi in the target 5008 /// block when the inputs in the phi are the same for the two blocks being 5009 /// merged. In some cases, this could result in removal of the PHI entirely. 5010 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5011 BasicBlock *BB) { 5012 auto Succ = BB->getUniqueSuccessor(); 5013 assert(Succ); 5014 // If there's a phi in the successor block, we'd likely have to introduce 5015 // a phi into the merged landing pad block. 5016 if (isa<PHINode>(*Succ->begin())) 5017 return false; 5018 5019 for (BasicBlock *OtherPred : predecessors(Succ)) { 5020 if (BB == OtherPred) 5021 continue; 5022 BasicBlock::iterator I = OtherPred->begin(); 5023 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5024 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5025 continue; 5026 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5027 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5028 if (!BI2 || !BI2->isIdenticalTo(BI)) 5029 continue; 5030 5031 // We've found an identical block. Update our predecessors to take that 5032 // path instead and make ourselves dead. 5033 SmallSet<BasicBlock *, 16> Preds; 5034 Preds.insert(pred_begin(BB), pred_end(BB)); 5035 for (BasicBlock *Pred : Preds) { 5036 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5037 assert(II->getNormalDest() != BB && 5038 II->getUnwindDest() == BB && "unexpected successor"); 5039 II->setUnwindDest(OtherPred); 5040 } 5041 5042 // The debug info in OtherPred doesn't cover the merged control flow that 5043 // used to go through BB. We need to delete it or update it. 5044 for (auto I = OtherPred->begin(), E = OtherPred->end(); 5045 I != E;) { 5046 Instruction &Inst = *I; I++; 5047 if (isa<DbgInfoIntrinsic>(Inst)) 5048 Inst.eraseFromParent(); 5049 } 5050 5051 SmallSet<BasicBlock *, 16> Succs; 5052 Succs.insert(succ_begin(BB), succ_end(BB)); 5053 for (BasicBlock *Succ : Succs) { 5054 Succ->removePredecessor(BB); 5055 } 5056 5057 IRBuilder<> Builder(BI); 5058 Builder.CreateUnreachable(); 5059 BI->eraseFromParent(); 5060 return true; 5061 } 5062 return false; 5063 } 5064 5065 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 5066 BasicBlock *BB = BI->getParent(); 5067 5068 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5069 return true; 5070 5071 // If the Terminator is the only non-phi instruction, simplify the block. 5072 // if LoopHeader is provided, check if the block is a loop header 5073 // (This is for early invocations before loop simplify and vectorization 5074 // to keep canonical loop forms for nested loops. 5075 // These blocks can be eliminated when the pass is invoked later 5076 // in the back-end.) 5077 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5078 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5079 (!LoopHeaders || !LoopHeaders->count(BB)) && 5080 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5081 return true; 5082 5083 // If the only instruction in the block is a seteq/setne comparison 5084 // against a constant, try to simplify the block. 5085 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5086 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5087 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5088 ; 5089 if (I->isTerminator() && 5090 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5091 BonusInstThreshold, AC)) 5092 return true; 5093 } 5094 5095 // See if we can merge an empty landing pad block with another which is 5096 // equivalent. 5097 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5098 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5099 if (I->isTerminator() && 5100 TryToMergeLandingPad(LPad, BI, BB)) 5101 return true; 5102 } 5103 5104 // If this basic block is ONLY a compare and a branch, and if a predecessor 5105 // branches to us and our successor, fold the comparison into the 5106 // predecessor and use logical operations to update the incoming value 5107 // for PHI nodes in common successor. 5108 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5109 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5110 return false; 5111 } 5112 5113 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5114 BasicBlock *PredPred = nullptr; 5115 for (auto *P : predecessors(BB)) { 5116 BasicBlock *PPred = P->getSinglePredecessor(); 5117 if (!PPred || (PredPred && PredPred != PPred)) 5118 return nullptr; 5119 PredPred = PPred; 5120 } 5121 return PredPred; 5122 } 5123 5124 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5125 BasicBlock *BB = BI->getParent(); 5126 5127 // Conditional branch 5128 if (isValueEqualityComparison(BI)) { 5129 // If we only have one predecessor, and if it is a branch on this value, 5130 // see if that predecessor totally determines the outcome of this 5131 // switch. 5132 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5133 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5134 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5135 5136 // This block must be empty, except for the setcond inst, if it exists. 5137 // Ignore dbg intrinsics. 5138 BasicBlock::iterator I = BB->begin(); 5139 // Ignore dbg intrinsics. 5140 while (isa<DbgInfoIntrinsic>(I)) 5141 ++I; 5142 if (&*I == BI) { 5143 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5144 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5145 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5146 ++I; 5147 // Ignore dbg intrinsics. 5148 while (isa<DbgInfoIntrinsic>(I)) 5149 ++I; 5150 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5151 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5152 } 5153 } 5154 5155 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5156 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5157 return true; 5158 5159 // If this basic block is ONLY a compare and a branch, and if a predecessor 5160 // branches to us and one of our successors, fold the comparison into the 5161 // predecessor and use logical operations to pick the right destination. 5162 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5163 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5164 5165 // We have a conditional branch to two blocks that are only reachable 5166 // from BI. We know that the condbr dominates the two blocks, so see if 5167 // there is any identical code in the "then" and "else" blocks. If so, we 5168 // can hoist it up to the branching block. 5169 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5170 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5171 if (HoistThenElseCodeToIf(BI, TTI)) 5172 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5173 } else { 5174 // If Successor #1 has multiple preds, we may be able to conditionally 5175 // execute Successor #0 if it branches to Successor #1. 5176 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5177 if (Succ0TI->getNumSuccessors() == 1 && 5178 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5179 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5180 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5181 } 5182 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5183 // If Successor #0 has multiple preds, we may be able to conditionally 5184 // execute Successor #1 if it branches to Successor #0. 5185 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5186 if (Succ1TI->getNumSuccessors() == 1 && 5187 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5188 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5189 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5190 } 5191 5192 // If this is a branch on a phi node in the current block, thread control 5193 // through this block if any PHI node entries are constants. 5194 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5195 if (PN->getParent() == BI->getParent()) 5196 if (FoldCondBranchOnPHI(BI, DL)) 5197 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5198 5199 // Scan predecessor blocks for conditional branches. 5200 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5201 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5202 if (PBI != BI && PBI->isConditional()) 5203 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5204 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5205 5206 // Look for diamond patterns. 5207 if (MergeCondStores) 5208 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5209 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5210 if (PBI != BI && PBI->isConditional()) 5211 if (mergeConditionalStores(PBI, BI)) 5212 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5213 5214 return false; 5215 } 5216 5217 /// Check if passing a value to an instruction will cause undefined behavior. 5218 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5219 Constant *C = dyn_cast<Constant>(V); 5220 if (!C) 5221 return false; 5222 5223 if (I->use_empty()) 5224 return false; 5225 5226 if (C->isNullValue()) { 5227 // Only look at the first use, avoid hurting compile time with long uselists 5228 User *Use = *I->user_begin(); 5229 5230 // Now make sure that there are no instructions in between that can alter 5231 // control flow (eg. calls) 5232 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5233 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5234 return false; 5235 5236 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5237 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5238 if (GEP->getPointerOperand() == I) 5239 return passingValueIsAlwaysUndefined(V, GEP); 5240 5241 // Look through bitcasts. 5242 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5243 return passingValueIsAlwaysUndefined(V, BC); 5244 5245 // Load from null is undefined. 5246 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5247 if (!LI->isVolatile()) 5248 return LI->getPointerAddressSpace() == 0; 5249 5250 // Store to null is undefined. 5251 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5252 if (!SI->isVolatile()) 5253 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5254 } 5255 return false; 5256 } 5257 5258 /// If BB has an incoming value that will always trigger undefined behavior 5259 /// (eg. null pointer dereference), remove the branch leading here. 5260 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5261 for (BasicBlock::iterator i = BB->begin(); 5262 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5263 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5264 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5265 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5266 IRBuilder<> Builder(T); 5267 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5268 BB->removePredecessor(PHI->getIncomingBlock(i)); 5269 // Turn uncoditional branches into unreachables and remove the dead 5270 // destination from conditional branches. 5271 if (BI->isUnconditional()) 5272 Builder.CreateUnreachable(); 5273 else 5274 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5275 BI->getSuccessor(0)); 5276 BI->eraseFromParent(); 5277 return true; 5278 } 5279 // TODO: SwitchInst. 5280 } 5281 5282 return false; 5283 } 5284 5285 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5286 bool Changed = false; 5287 5288 assert(BB && BB->getParent() && "Block not embedded in function!"); 5289 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5290 5291 // Remove basic blocks that have no predecessors (except the entry block)... 5292 // or that just have themself as a predecessor. These are unreachable. 5293 if ((pred_empty(BB) && 5294 BB != &BB->getParent()->getEntryBlock()) || 5295 BB->getSinglePredecessor() == BB) { 5296 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5297 DeleteDeadBlock(BB); 5298 return true; 5299 } 5300 5301 // Check to see if we can constant propagate this terminator instruction 5302 // away... 5303 Changed |= ConstantFoldTerminator(BB, true); 5304 5305 // Check for and eliminate duplicate PHI nodes in this block. 5306 Changed |= EliminateDuplicatePHINodes(BB); 5307 5308 // Check for and remove branches that will always cause undefined behavior. 5309 Changed |= removeUndefIntroducingPredecessor(BB); 5310 5311 // Merge basic blocks into their predecessor if there is only one distinct 5312 // pred, and if there is only one distinct successor of the predecessor, and 5313 // if there are no PHI nodes. 5314 // 5315 if (MergeBlockIntoPredecessor(BB)) 5316 return true; 5317 5318 IRBuilder<> Builder(BB); 5319 5320 // If there is a trivial two-entry PHI node in this basic block, and we can 5321 // eliminate it, do so now. 5322 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5323 if (PN->getNumIncomingValues() == 2) 5324 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5325 5326 Builder.SetInsertPoint(BB->getTerminator()); 5327 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5328 if (BI->isUnconditional()) { 5329 if (SimplifyUncondBranch(BI, Builder)) return true; 5330 } else { 5331 if (SimplifyCondBranch(BI, Builder)) return true; 5332 } 5333 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5334 if (SimplifyReturn(RI, Builder)) return true; 5335 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5336 if (SimplifyResume(RI, Builder)) return true; 5337 } else if (CleanupReturnInst *RI = 5338 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5339 if (SimplifyCleanupReturn(RI)) return true; 5340 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5341 if (SimplifySwitch(SI, Builder)) return true; 5342 } else if (UnreachableInst *UI = 5343 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5344 if (SimplifyUnreachable(UI)) return true; 5345 } else if (IndirectBrInst *IBI = 5346 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5347 if (SimplifyIndirectBr(IBI)) return true; 5348 } 5349 5350 return Changed; 5351 } 5352 5353 /// This function is used to do simplification of a CFG. 5354 /// For example, it adjusts branches to branches to eliminate the extra hop, 5355 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5356 /// of the CFG. It returns true if a modification was made. 5357 /// 5358 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5359 unsigned BonusInstThreshold, AssumptionCache *AC, 5360 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 5361 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5362 BonusInstThreshold, AC, LoopHeaders).run(BB); 5363 } 5364