1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemorySSA.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <climits> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <set> 79 #include <tuple> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 using namespace PatternMatch; 85 86 #define DEBUG_TYPE "simplifycfg" 87 88 // Chosen as 2 so as to be cheap, but still to have enough power to fold 89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 90 // To catch this, we need to fold a compare and a select, hence '2' being the 91 // minimum reasonable default. 92 static cl::opt<unsigned> PHINodeFoldingThreshold( 93 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 94 cl::desc( 95 "Control the amount of phi node folding to perform (default = 2)")); 96 97 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 98 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 99 cl::desc("Control the maximal total instruction cost that we are willing " 100 "to speculatively execute to fold a 2-entry PHI node into a " 101 "select (default = 4)")); 102 103 static cl::opt<bool> DupRet( 104 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 105 cl::desc("Duplicate return instructions into unconditional branches")); 106 107 static cl::opt<bool> 108 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 109 cl::desc("Sink common instructions down to the end block")); 110 111 static cl::opt<bool> HoistCondStores( 112 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 113 cl::desc("Hoist conditional stores if an unconditional store precedes")); 114 115 static cl::opt<bool> MergeCondStores( 116 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 117 cl::desc("Hoist conditional stores even if an unconditional store does not " 118 "precede - hoist multiple conditional stores into a single " 119 "predicated store")); 120 121 static cl::opt<bool> MergeCondStoresAggressively( 122 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 123 cl::desc("When merging conditional stores, do so even if the resultant " 124 "basic blocks are unlikely to be if-converted as a result")); 125 126 static cl::opt<bool> SpeculateOneExpensiveInst( 127 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 128 cl::desc("Allow exactly one expensive instruction to be speculatively " 129 "executed")); 130 131 static cl::opt<unsigned> MaxSpeculationDepth( 132 "max-speculation-depth", cl::Hidden, cl::init(10), 133 cl::desc("Limit maximum recursion depth when calculating costs of " 134 "speculatively executed instructions")); 135 136 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 137 STATISTIC(NumLinearMaps, 138 "Number of switch instructions turned into linear mapping"); 139 STATISTIC(NumLookupTables, 140 "Number of switch instructions turned into lookup tables"); 141 STATISTIC( 142 NumLookupTablesHoles, 143 "Number of switch instructions turned into lookup tables (holes checked)"); 144 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 145 STATISTIC(NumSinkCommons, 146 "Number of common instructions sunk down to the end block"); 147 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 148 149 namespace { 150 151 // The first field contains the value that the switch produces when a certain 152 // case group is selected, and the second field is a vector containing the 153 // cases composing the case group. 154 using SwitchCaseResultVectorTy = 155 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 156 157 // The first field contains the phi node that generates a result of the switch 158 // and the second field contains the value generated for a certain case in the 159 // switch for that PHI. 160 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 161 162 /// ValueEqualityComparisonCase - Represents a case of a switch. 163 struct ValueEqualityComparisonCase { 164 ConstantInt *Value; 165 BasicBlock *Dest; 166 167 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 168 : Value(Value), Dest(Dest) {} 169 170 bool operator<(ValueEqualityComparisonCase RHS) const { 171 // Comparing pointers is ok as we only rely on the order for uniquing. 172 return Value < RHS.Value; 173 } 174 175 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 176 }; 177 178 class SimplifyCFGOpt { 179 const TargetTransformInfo &TTI; 180 const DataLayout &DL; 181 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 182 const SimplifyCFGOptions &Options; 183 bool Resimplify; 184 185 Value *isValueEqualityComparison(Instruction *TI); 186 BasicBlock *GetValueEqualityComparisonCases( 187 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 188 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 189 BasicBlock *Pred, 190 IRBuilder<> &Builder); 191 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 192 IRBuilder<> &Builder); 193 194 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 195 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 196 bool simplifySingleResume(ResumeInst *RI); 197 bool simplifyCommonResume(ResumeInst *RI); 198 bool simplifyCleanupReturn(CleanupReturnInst *RI); 199 bool simplifyUnreachable(UnreachableInst *UI); 200 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 201 bool simplifyIndirectBr(IndirectBrInst *IBI); 202 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 203 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 204 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 205 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 206 207 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 208 IRBuilder<> &Builder); 209 210 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 211 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 212 const TargetTransformInfo &TTI); 213 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 214 BasicBlock *TrueBB, BasicBlock *FalseBB, 215 uint32_t TrueWeight, uint32_t FalseWeight); 216 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 217 const DataLayout &DL); 218 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 219 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 220 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 221 222 public: 223 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 224 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 225 const SimplifyCFGOptions &Opts) 226 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 227 228 bool run(BasicBlock *BB); 229 bool simplifyOnce(BasicBlock *BB); 230 231 // Helper to set Resimplify and return change indication. 232 bool requestResimplify() { 233 Resimplify = true; 234 return true; 235 } 236 }; 237 238 } // end anonymous namespace 239 240 /// Return true if it is safe to merge these two 241 /// terminator instructions together. 242 static bool 243 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 244 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 245 if (SI1 == SI2) 246 return false; // Can't merge with self! 247 248 // It is not safe to merge these two switch instructions if they have a common 249 // successor, and if that successor has a PHI node, and if *that* PHI node has 250 // conflicting incoming values from the two switch blocks. 251 BasicBlock *SI1BB = SI1->getParent(); 252 BasicBlock *SI2BB = SI2->getParent(); 253 254 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 255 bool Fail = false; 256 for (BasicBlock *Succ : successors(SI2BB)) 257 if (SI1Succs.count(Succ)) 258 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 259 PHINode *PN = cast<PHINode>(BBI); 260 if (PN->getIncomingValueForBlock(SI1BB) != 261 PN->getIncomingValueForBlock(SI2BB)) { 262 if (FailBlocks) 263 FailBlocks->insert(Succ); 264 Fail = true; 265 } 266 } 267 268 return !Fail; 269 } 270 271 /// Return true if it is safe and profitable to merge these two terminator 272 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 273 /// store all PHI nodes in common successors. 274 static bool 275 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 276 Instruction *Cond, 277 SmallVectorImpl<PHINode *> &PhiNodes) { 278 if (SI1 == SI2) 279 return false; // Can't merge with self! 280 assert(SI1->isUnconditional() && SI2->isConditional()); 281 282 // We fold the unconditional branch if we can easily update all PHI nodes in 283 // common successors: 284 // 1> We have a constant incoming value for the conditional branch; 285 // 2> We have "Cond" as the incoming value for the unconditional branch; 286 // 3> SI2->getCondition() and Cond have same operands. 287 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 288 if (!Ci2) 289 return false; 290 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 291 Cond->getOperand(1) == Ci2->getOperand(1)) && 292 !(Cond->getOperand(0) == Ci2->getOperand(1) && 293 Cond->getOperand(1) == Ci2->getOperand(0))) 294 return false; 295 296 BasicBlock *SI1BB = SI1->getParent(); 297 BasicBlock *SI2BB = SI2->getParent(); 298 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 299 for (BasicBlock *Succ : successors(SI2BB)) 300 if (SI1Succs.count(Succ)) 301 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 302 PHINode *PN = cast<PHINode>(BBI); 303 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 304 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 305 return false; 306 PhiNodes.push_back(PN); 307 } 308 return true; 309 } 310 311 /// Update PHI nodes in Succ to indicate that there will now be entries in it 312 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 313 /// will be the same as those coming in from ExistPred, an existing predecessor 314 /// of Succ. 315 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 316 BasicBlock *ExistPred, 317 MemorySSAUpdater *MSSAU = nullptr) { 318 for (PHINode &PN : Succ->phis()) 319 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 320 if (MSSAU) 321 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 322 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 323 } 324 325 /// Compute an abstract "cost" of speculating the given instruction, 326 /// which is assumed to be safe to speculate. TCC_Free means cheap, 327 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 328 /// expensive. 329 static unsigned ComputeSpeculationCost(const User *I, 330 const TargetTransformInfo &TTI) { 331 assert(isSafeToSpeculativelyExecute(I) && 332 "Instruction is not safe to speculatively execute!"); 333 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 334 } 335 336 /// If we have a merge point of an "if condition" as accepted above, 337 /// return true if the specified value dominates the block. We 338 /// don't handle the true generality of domination here, just a special case 339 /// which works well enough for us. 340 /// 341 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 342 /// see if V (which must be an instruction) and its recursive operands 343 /// that do not dominate BB have a combined cost lower than CostRemaining and 344 /// are non-trapping. If both are true, the instruction is inserted into the 345 /// set and true is returned. 346 /// 347 /// The cost for most non-trapping instructions is defined as 1 except for 348 /// Select whose cost is 2. 349 /// 350 /// After this function returns, CostRemaining is decreased by the cost of 351 /// V plus its non-dominating operands. If that cost is greater than 352 /// CostRemaining, false is returned and CostRemaining is undefined. 353 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 354 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 355 int &BudgetRemaining, 356 const TargetTransformInfo &TTI, 357 unsigned Depth = 0) { 358 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 359 // so limit the recursion depth. 360 // TODO: While this recursion limit does prevent pathological behavior, it 361 // would be better to track visited instructions to avoid cycles. 362 if (Depth == MaxSpeculationDepth) 363 return false; 364 365 Instruction *I = dyn_cast<Instruction>(V); 366 if (!I) { 367 // Non-instructions all dominate instructions, but not all constantexprs 368 // can be executed unconditionally. 369 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 370 if (C->canTrap()) 371 return false; 372 return true; 373 } 374 BasicBlock *PBB = I->getParent(); 375 376 // We don't want to allow weird loops that might have the "if condition" in 377 // the bottom of this block. 378 if (PBB == BB) 379 return false; 380 381 // If this instruction is defined in a block that contains an unconditional 382 // branch to BB, then it must be in the 'conditional' part of the "if 383 // statement". If not, it definitely dominates the region. 384 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 385 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 386 return true; 387 388 // If we have seen this instruction before, don't count it again. 389 if (AggressiveInsts.count(I)) 390 return true; 391 392 // Okay, it looks like the instruction IS in the "condition". Check to 393 // see if it's a cheap instruction to unconditionally compute, and if it 394 // only uses stuff defined outside of the condition. If so, hoist it out. 395 if (!isSafeToSpeculativelyExecute(I)) 396 return false; 397 398 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 399 400 // Allow exactly one instruction to be speculated regardless of its cost 401 // (as long as it is safe to do so). 402 // This is intended to flatten the CFG even if the instruction is a division 403 // or other expensive operation. The speculation of an expensive instruction 404 // is expected to be undone in CodeGenPrepare if the speculation has not 405 // enabled further IR optimizations. 406 if (BudgetRemaining < 0 && 407 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 408 return false; 409 410 // Okay, we can only really hoist these out if their operands do 411 // not take us over the cost threshold. 412 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 413 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 414 Depth + 1)) 415 return false; 416 // Okay, it's safe to do this! Remember this instruction. 417 AggressiveInsts.insert(I); 418 return true; 419 } 420 421 /// Extract ConstantInt from value, looking through IntToPtr 422 /// and PointerNullValue. Return NULL if value is not a constant int. 423 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 424 // Normal constant int. 425 ConstantInt *CI = dyn_cast<ConstantInt>(V); 426 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 427 return CI; 428 429 // This is some kind of pointer constant. Turn it into a pointer-sized 430 // ConstantInt if possible. 431 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 432 433 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 434 if (isa<ConstantPointerNull>(V)) 435 return ConstantInt::get(PtrTy, 0); 436 437 // IntToPtr const int. 438 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 439 if (CE->getOpcode() == Instruction::IntToPtr) 440 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 441 // The constant is very likely to have the right type already. 442 if (CI->getType() == PtrTy) 443 return CI; 444 else 445 return cast<ConstantInt>( 446 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 447 } 448 return nullptr; 449 } 450 451 namespace { 452 453 /// Given a chain of or (||) or and (&&) comparison of a value against a 454 /// constant, this will try to recover the information required for a switch 455 /// structure. 456 /// It will depth-first traverse the chain of comparison, seeking for patterns 457 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 458 /// representing the different cases for the switch. 459 /// Note that if the chain is composed of '||' it will build the set of elements 460 /// that matches the comparisons (i.e. any of this value validate the chain) 461 /// while for a chain of '&&' it will build the set elements that make the test 462 /// fail. 463 struct ConstantComparesGatherer { 464 const DataLayout &DL; 465 466 /// Value found for the switch comparison 467 Value *CompValue = nullptr; 468 469 /// Extra clause to be checked before the switch 470 Value *Extra = nullptr; 471 472 /// Set of integers to match in switch 473 SmallVector<ConstantInt *, 8> Vals; 474 475 /// Number of comparisons matched in the and/or chain 476 unsigned UsedICmps = 0; 477 478 /// Construct and compute the result for the comparison instruction Cond 479 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 480 gather(Cond); 481 } 482 483 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 484 ConstantComparesGatherer & 485 operator=(const ConstantComparesGatherer &) = delete; 486 487 private: 488 /// Try to set the current value used for the comparison, it succeeds only if 489 /// it wasn't set before or if the new value is the same as the old one 490 bool setValueOnce(Value *NewVal) { 491 if (CompValue && CompValue != NewVal) 492 return false; 493 CompValue = NewVal; 494 return (CompValue != nullptr); 495 } 496 497 /// Try to match Instruction "I" as a comparison against a constant and 498 /// populates the array Vals with the set of values that match (or do not 499 /// match depending on isEQ). 500 /// Return false on failure. On success, the Value the comparison matched 501 /// against is placed in CompValue. 502 /// If CompValue is already set, the function is expected to fail if a match 503 /// is found but the value compared to is different. 504 bool matchInstruction(Instruction *I, bool isEQ) { 505 // If this is an icmp against a constant, handle this as one of the cases. 506 ICmpInst *ICI; 507 ConstantInt *C; 508 if (!((ICI = dyn_cast<ICmpInst>(I)) && 509 (C = GetConstantInt(I->getOperand(1), DL)))) { 510 return false; 511 } 512 513 Value *RHSVal; 514 const APInt *RHSC; 515 516 // Pattern match a special case 517 // (x & ~2^z) == y --> x == y || x == y|2^z 518 // This undoes a transformation done by instcombine to fuse 2 compares. 519 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 520 // It's a little bit hard to see why the following transformations are 521 // correct. Here is a CVC3 program to verify them for 64-bit values: 522 523 /* 524 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 525 x : BITVECTOR(64); 526 y : BITVECTOR(64); 527 z : BITVECTOR(64); 528 mask : BITVECTOR(64) = BVSHL(ONE, z); 529 QUERY( (y & ~mask = y) => 530 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 531 ); 532 QUERY( (y | mask = y) => 533 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 534 ); 535 */ 536 537 // Please note that each pattern must be a dual implication (<--> or 538 // iff). One directional implication can create spurious matches. If the 539 // implication is only one-way, an unsatisfiable condition on the left 540 // side can imply a satisfiable condition on the right side. Dual 541 // implication ensures that satisfiable conditions are transformed to 542 // other satisfiable conditions and unsatisfiable conditions are 543 // transformed to other unsatisfiable conditions. 544 545 // Here is a concrete example of a unsatisfiable condition on the left 546 // implying a satisfiable condition on the right: 547 // 548 // mask = (1 << z) 549 // (x & ~mask) == y --> (x == y || x == (y | mask)) 550 // 551 // Substituting y = 3, z = 0 yields: 552 // (x & -2) == 3 --> (x == 3 || x == 2) 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y & ~mask = y) => 557 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = ~*RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back( 570 ConstantInt::get(C->getContext(), 571 C->getValue() | Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // Pattern match a special case: 578 /* 579 QUERY( (y | mask = y) => 580 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 581 ); 582 */ 583 if (match(ICI->getOperand(0), 584 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 585 APInt Mask = *RHSC; 586 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 587 // If we already have a value for the switch, it has to match! 588 if (!setValueOnce(RHSVal)) 589 return false; 590 591 Vals.push_back(C); 592 Vals.push_back(ConstantInt::get(C->getContext(), 593 C->getValue() & ~Mask)); 594 UsedICmps++; 595 return true; 596 } 597 } 598 599 // If we already have a value for the switch, it has to match! 600 if (!setValueOnce(ICI->getOperand(0))) 601 return false; 602 603 UsedICmps++; 604 Vals.push_back(C); 605 return ICI->getOperand(0); 606 } 607 608 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 609 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 610 ICI->getPredicate(), C->getValue()); 611 612 // Shift the range if the compare is fed by an add. This is the range 613 // compare idiom as emitted by instcombine. 614 Value *CandidateVal = I->getOperand(0); 615 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 616 Span = Span.subtract(*RHSC); 617 CandidateVal = RHSVal; 618 } 619 620 // If this is an and/!= check, then we are looking to build the set of 621 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 622 // x != 0 && x != 1. 623 if (!isEQ) 624 Span = Span.inverse(); 625 626 // If there are a ton of values, we don't want to make a ginormous switch. 627 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 628 return false; 629 } 630 631 // If we already have a value for the switch, it has to match! 632 if (!setValueOnce(CandidateVal)) 633 return false; 634 635 // Add all values from the range to the set 636 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 637 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 638 639 UsedICmps++; 640 return true; 641 } 642 643 /// Given a potentially 'or'd or 'and'd together collection of icmp 644 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 645 /// the value being compared, and stick the list constants into the Vals 646 /// vector. 647 /// One "Extra" case is allowed to differ from the other. 648 void gather(Value *V) { 649 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or); 650 651 // Keep a stack (SmallVector for efficiency) for depth-first traversal 652 SmallVector<Value *, 8> DFT; 653 SmallPtrSet<Value *, 8> Visited; 654 655 // Initialize 656 Visited.insert(V); 657 DFT.push_back(V); 658 659 while (!DFT.empty()) { 660 V = DFT.pop_back_val(); 661 662 if (Instruction *I = dyn_cast<Instruction>(V)) { 663 // If it is a || (or && depending on isEQ), process the operands. 664 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 665 if (Visited.insert(I->getOperand(1)).second) 666 DFT.push_back(I->getOperand(1)); 667 if (Visited.insert(I->getOperand(0)).second) 668 DFT.push_back(I->getOperand(0)); 669 continue; 670 } 671 672 // Try to match the current instruction 673 if (matchInstruction(I, isEQ)) 674 // Match succeed, continue the loop 675 continue; 676 } 677 678 // One element of the sequence of || (or &&) could not be match as a 679 // comparison against the same value as the others. 680 // We allow only one "Extra" case to be checked before the switch 681 if (!Extra) { 682 Extra = V; 683 continue; 684 } 685 // Failed to parse a proper sequence, abort now 686 CompValue = nullptr; 687 break; 688 } 689 } 690 }; 691 692 } // end anonymous namespace 693 694 static void EraseTerminatorAndDCECond(Instruction *TI, 695 MemorySSAUpdater *MSSAU = nullptr) { 696 Instruction *Cond = nullptr; 697 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 698 Cond = dyn_cast<Instruction>(SI->getCondition()); 699 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 700 if (BI->isConditional()) 701 Cond = dyn_cast<Instruction>(BI->getCondition()); 702 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 703 Cond = dyn_cast<Instruction>(IBI->getAddress()); 704 } 705 706 TI->eraseFromParent(); 707 if (Cond) 708 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 709 } 710 711 /// Return true if the specified terminator checks 712 /// to see if a value is equal to constant integer value. 713 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 714 Value *CV = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 // Do not permit merging of large switch instructions into their 717 // predecessors unless there is only one predecessor. 718 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 719 CV = SI->getCondition(); 720 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 721 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 722 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 723 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 724 CV = ICI->getOperand(0); 725 } 726 727 // Unwrap any lossless ptrtoint cast. 728 if (CV) { 729 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 730 Value *Ptr = PTII->getPointerOperand(); 731 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 732 CV = Ptr; 733 } 734 } 735 return CV; 736 } 737 738 /// Given a value comparison instruction, 739 /// decode all of the 'cases' that it represents and return the 'default' block. 740 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 741 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 742 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 743 Cases.reserve(SI->getNumCases()); 744 for (auto Case : SI->cases()) 745 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 746 Case.getCaseSuccessor())); 747 return SI->getDefaultDest(); 748 } 749 750 BranchInst *BI = cast<BranchInst>(TI); 751 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 752 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 753 Cases.push_back(ValueEqualityComparisonCase( 754 GetConstantInt(ICI->getOperand(1), DL), Succ)); 755 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 756 } 757 758 /// Given a vector of bb/value pairs, remove any entries 759 /// in the list that match the specified block. 760 static void 761 EliminateBlockCases(BasicBlock *BB, 762 std::vector<ValueEqualityComparisonCase> &Cases) { 763 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 764 } 765 766 /// Return true if there are any keys in C1 that exist in C2 as well. 767 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 768 std::vector<ValueEqualityComparisonCase> &C2) { 769 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 770 771 // Make V1 be smaller than V2. 772 if (V1->size() > V2->size()) 773 std::swap(V1, V2); 774 775 if (V1->empty()) 776 return false; 777 if (V1->size() == 1) { 778 // Just scan V2. 779 ConstantInt *TheVal = (*V1)[0].Value; 780 for (unsigned i = 0, e = V2->size(); i != e; ++i) 781 if (TheVal == (*V2)[i].Value) 782 return true; 783 } 784 785 // Otherwise, just sort both lists and compare element by element. 786 array_pod_sort(V1->begin(), V1->end()); 787 array_pod_sort(V2->begin(), V2->end()); 788 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 789 while (i1 != e1 && i2 != e2) { 790 if ((*V1)[i1].Value == (*V2)[i2].Value) 791 return true; 792 if ((*V1)[i1].Value < (*V2)[i2].Value) 793 ++i1; 794 else 795 ++i2; 796 } 797 return false; 798 } 799 800 // Set branch weights on SwitchInst. This sets the metadata if there is at 801 // least one non-zero weight. 802 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 803 // Check that there is at least one non-zero weight. Otherwise, pass 804 // nullptr to setMetadata which will erase the existing metadata. 805 MDNode *N = nullptr; 806 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 807 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 808 SI->setMetadata(LLVMContext::MD_prof, N); 809 } 810 811 // Similar to the above, but for branch and select instructions that take 812 // exactly 2 weights. 813 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 814 uint32_t FalseWeight) { 815 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 816 // Check that there is at least one non-zero weight. Otherwise, pass 817 // nullptr to setMetadata which will erase the existing metadata. 818 MDNode *N = nullptr; 819 if (TrueWeight || FalseWeight) 820 N = MDBuilder(I->getParent()->getContext()) 821 .createBranchWeights(TrueWeight, FalseWeight); 822 I->setMetadata(LLVMContext::MD_prof, N); 823 } 824 825 /// If TI is known to be a terminator instruction and its block is known to 826 /// only have a single predecessor block, check to see if that predecessor is 827 /// also a value comparison with the same value, and if that comparison 828 /// determines the outcome of this comparison. If so, simplify TI. This does a 829 /// very limited form of jump threading. 830 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 831 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 832 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 833 if (!PredVal) 834 return false; // Not a value comparison in predecessor. 835 836 Value *ThisVal = isValueEqualityComparison(TI); 837 assert(ThisVal && "This isn't a value comparison!!"); 838 if (ThisVal != PredVal) 839 return false; // Different predicates. 840 841 // TODO: Preserve branch weight metadata, similarly to how 842 // FoldValueComparisonIntoPredecessors preserves it. 843 844 // Find out information about when control will move from Pred to TI's block. 845 std::vector<ValueEqualityComparisonCase> PredCases; 846 BasicBlock *PredDef = 847 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 848 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 849 850 // Find information about how control leaves this block. 851 std::vector<ValueEqualityComparisonCase> ThisCases; 852 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 853 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 854 855 // If TI's block is the default block from Pred's comparison, potentially 856 // simplify TI based on this knowledge. 857 if (PredDef == TI->getParent()) { 858 // If we are here, we know that the value is none of those cases listed in 859 // PredCases. If there are any cases in ThisCases that are in PredCases, we 860 // can simplify TI. 861 if (!ValuesOverlap(PredCases, ThisCases)) 862 return false; 863 864 if (isa<BranchInst>(TI)) { 865 // Okay, one of the successors of this condbr is dead. Convert it to a 866 // uncond br. 867 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 868 // Insert the new branch. 869 Instruction *NI = Builder.CreateBr(ThisDef); 870 (void)NI; 871 872 // Remove PHI node entries for the dead edge. 873 ThisCases[0].Dest->removePredecessor(TI->getParent()); 874 875 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 876 << "Through successor TI: " << *TI << "Leaving: " << *NI 877 << "\n"); 878 879 EraseTerminatorAndDCECond(TI); 880 return true; 881 } 882 883 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 884 // Okay, TI has cases that are statically dead, prune them away. 885 SmallPtrSet<Constant *, 16> DeadCases; 886 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 887 DeadCases.insert(PredCases[i].Value); 888 889 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 890 << "Through successor TI: " << *TI); 891 892 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 893 --i; 894 if (DeadCases.count(i->getCaseValue())) { 895 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 896 SI.removeCase(i); 897 } 898 } 899 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 900 return true; 901 } 902 903 // Otherwise, TI's block must correspond to some matched value. Find out 904 // which value (or set of values) this is. 905 ConstantInt *TIV = nullptr; 906 BasicBlock *TIBB = TI->getParent(); 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 if (PredCases[i].Dest == TIBB) { 909 if (TIV) 910 return false; // Cannot handle multiple values coming to this block. 911 TIV = PredCases[i].Value; 912 } 913 assert(TIV && "No edge from pred to succ?"); 914 915 // Okay, we found the one constant that our value can be if we get into TI's 916 // BB. Find out which successor will unconditionally be branched to. 917 BasicBlock *TheRealDest = nullptr; 918 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 919 if (ThisCases[i].Value == TIV) { 920 TheRealDest = ThisCases[i].Dest; 921 break; 922 } 923 924 // If not handled by any explicit cases, it is handled by the default case. 925 if (!TheRealDest) 926 TheRealDest = ThisDef; 927 928 // Remove PHI node entries for dead edges. 929 BasicBlock *CheckEdge = TheRealDest; 930 for (BasicBlock *Succ : successors(TIBB)) 931 if (Succ != CheckEdge) 932 Succ->removePredecessor(TIBB); 933 else 934 CheckEdge = nullptr; 935 936 // Insert the new branch. 937 Instruction *NI = Builder.CreateBr(TheRealDest); 938 (void)NI; 939 940 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 941 << "Through successor TI: " << *TI << "Leaving: " << *NI 942 << "\n"); 943 944 EraseTerminatorAndDCECond(TI); 945 return true; 946 } 947 948 namespace { 949 950 /// This class implements a stable ordering of constant 951 /// integers that does not depend on their address. This is important for 952 /// applications that sort ConstantInt's to ensure uniqueness. 953 struct ConstantIntOrdering { 954 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 955 return LHS->getValue().ult(RHS->getValue()); 956 } 957 }; 958 959 } // end anonymous namespace 960 961 static int ConstantIntSortPredicate(ConstantInt *const *P1, 962 ConstantInt *const *P2) { 963 const ConstantInt *LHS = *P1; 964 const ConstantInt *RHS = *P2; 965 if (LHS == RHS) 966 return 0; 967 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 968 } 969 970 static inline bool HasBranchWeights(const Instruction *I) { 971 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 972 if (ProfMD && ProfMD->getOperand(0)) 973 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 974 return MDS->getString().equals("branch_weights"); 975 976 return false; 977 } 978 979 /// Get Weights of a given terminator, the default weight is at the front 980 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 981 /// metadata. 982 static void GetBranchWeights(Instruction *TI, 983 SmallVectorImpl<uint64_t> &Weights) { 984 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 985 assert(MD); 986 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 987 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 988 Weights.push_back(CI->getValue().getZExtValue()); 989 } 990 991 // If TI is a conditional eq, the default case is the false case, 992 // and the corresponding branch-weight data is at index 2. We swap the 993 // default weight to be the first entry. 994 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 995 assert(Weights.size() == 2); 996 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 997 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 998 std::swap(Weights.front(), Weights.back()); 999 } 1000 } 1001 1002 /// Keep halving the weights until all can fit in uint32_t. 1003 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1004 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1005 if (Max > UINT_MAX) { 1006 unsigned Offset = 32 - countLeadingZeros(Max); 1007 for (uint64_t &I : Weights) 1008 I >>= Offset; 1009 } 1010 } 1011 1012 /// The specified terminator is a value equality comparison instruction 1013 /// (either a switch or a branch on "X == c"). 1014 /// See if any of the predecessors of the terminator block are value comparisons 1015 /// on the same value. If so, and if safe to do so, fold them together. 1016 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1017 IRBuilder<> &Builder) { 1018 BasicBlock *BB = TI->getParent(); 1019 Value *CV = isValueEqualityComparison(TI); // CondVal 1020 assert(CV && "Not a comparison?"); 1021 bool Changed = false; 1022 1023 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1024 while (!Preds.empty()) { 1025 BasicBlock *Pred = Preds.pop_back_val(); 1026 1027 // See if the predecessor is a comparison with the same value. 1028 Instruction *PTI = Pred->getTerminator(); 1029 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1030 1031 if (PCV == CV && TI != PTI) { 1032 SmallSetVector<BasicBlock*, 4> FailBlocks; 1033 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1034 for (auto *Succ : FailBlocks) { 1035 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1036 return false; 1037 } 1038 } 1039 1040 // Figure out which 'cases' to copy from SI to PSI. 1041 std::vector<ValueEqualityComparisonCase> BBCases; 1042 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1043 1044 std::vector<ValueEqualityComparisonCase> PredCases; 1045 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1046 1047 // Based on whether the default edge from PTI goes to BB or not, fill in 1048 // PredCases and PredDefault with the new switch cases we would like to 1049 // build. 1050 SmallVector<BasicBlock *, 8> NewSuccessors; 1051 1052 // Update the branch weight metadata along the way 1053 SmallVector<uint64_t, 8> Weights; 1054 bool PredHasWeights = HasBranchWeights(PTI); 1055 bool SuccHasWeights = HasBranchWeights(TI); 1056 1057 if (PredHasWeights) { 1058 GetBranchWeights(PTI, Weights); 1059 // branch-weight metadata is inconsistent here. 1060 if (Weights.size() != 1 + PredCases.size()) 1061 PredHasWeights = SuccHasWeights = false; 1062 } else if (SuccHasWeights) 1063 // If there are no predecessor weights but there are successor weights, 1064 // populate Weights with 1, which will later be scaled to the sum of 1065 // successor's weights 1066 Weights.assign(1 + PredCases.size(), 1); 1067 1068 SmallVector<uint64_t, 8> SuccWeights; 1069 if (SuccHasWeights) { 1070 GetBranchWeights(TI, SuccWeights); 1071 // branch-weight metadata is inconsistent here. 1072 if (SuccWeights.size() != 1 + BBCases.size()) 1073 PredHasWeights = SuccHasWeights = false; 1074 } else if (PredHasWeights) 1075 SuccWeights.assign(1 + BBCases.size(), 1); 1076 1077 if (PredDefault == BB) { 1078 // If this is the default destination from PTI, only the edges in TI 1079 // that don't occur in PTI, or that branch to BB will be activated. 1080 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1081 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1082 if (PredCases[i].Dest != BB) 1083 PTIHandled.insert(PredCases[i].Value); 1084 else { 1085 // The default destination is BB, we don't need explicit targets. 1086 std::swap(PredCases[i], PredCases.back()); 1087 1088 if (PredHasWeights || SuccHasWeights) { 1089 // Increase weight for the default case. 1090 Weights[0] += Weights[i + 1]; 1091 std::swap(Weights[i + 1], Weights.back()); 1092 Weights.pop_back(); 1093 } 1094 1095 PredCases.pop_back(); 1096 --i; 1097 --e; 1098 } 1099 1100 // Reconstruct the new switch statement we will be building. 1101 if (PredDefault != BBDefault) { 1102 PredDefault->removePredecessor(Pred); 1103 PredDefault = BBDefault; 1104 NewSuccessors.push_back(BBDefault); 1105 } 1106 1107 unsigned CasesFromPred = Weights.size(); 1108 uint64_t ValidTotalSuccWeight = 0; 1109 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1110 if (!PTIHandled.count(BBCases[i].Value) && 1111 BBCases[i].Dest != BBDefault) { 1112 PredCases.push_back(BBCases[i]); 1113 NewSuccessors.push_back(BBCases[i].Dest); 1114 if (SuccHasWeights || PredHasWeights) { 1115 // The default weight is at index 0, so weight for the ith case 1116 // should be at index i+1. Scale the cases from successor by 1117 // PredDefaultWeight (Weights[0]). 1118 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1119 ValidTotalSuccWeight += SuccWeights[i + 1]; 1120 } 1121 } 1122 1123 if (SuccHasWeights || PredHasWeights) { 1124 ValidTotalSuccWeight += SuccWeights[0]; 1125 // Scale the cases from predecessor by ValidTotalSuccWeight. 1126 for (unsigned i = 1; i < CasesFromPred; ++i) 1127 Weights[i] *= ValidTotalSuccWeight; 1128 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1129 Weights[0] *= SuccWeights[0]; 1130 } 1131 } else { 1132 // If this is not the default destination from PSI, only the edges 1133 // in SI that occur in PSI with a destination of BB will be 1134 // activated. 1135 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1136 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1137 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1138 if (PredCases[i].Dest == BB) { 1139 PTIHandled.insert(PredCases[i].Value); 1140 1141 if (PredHasWeights || SuccHasWeights) { 1142 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1143 std::swap(Weights[i + 1], Weights.back()); 1144 Weights.pop_back(); 1145 } 1146 1147 std::swap(PredCases[i], PredCases.back()); 1148 PredCases.pop_back(); 1149 --i; 1150 --e; 1151 } 1152 1153 // Okay, now we know which constants were sent to BB from the 1154 // predecessor. Figure out where they will all go now. 1155 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1156 if (PTIHandled.count(BBCases[i].Value)) { 1157 // If this is one we are capable of getting... 1158 if (PredHasWeights || SuccHasWeights) 1159 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1160 PredCases.push_back(BBCases[i]); 1161 NewSuccessors.push_back(BBCases[i].Dest); 1162 PTIHandled.erase( 1163 BBCases[i].Value); // This constant is taken care of 1164 } 1165 1166 // If there are any constants vectored to BB that TI doesn't handle, 1167 // they must go to the default destination of TI. 1168 for (ConstantInt *I : PTIHandled) { 1169 if (PredHasWeights || SuccHasWeights) 1170 Weights.push_back(WeightsForHandled[I]); 1171 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1172 NewSuccessors.push_back(BBDefault); 1173 } 1174 } 1175 1176 // Okay, at this point, we know which new successor Pred will get. Make 1177 // sure we update the number of entries in the PHI nodes for these 1178 // successors. 1179 for (BasicBlock *NewSuccessor : NewSuccessors) 1180 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1181 1182 Builder.SetInsertPoint(PTI); 1183 // Convert pointer to int before we switch. 1184 if (CV->getType()->isPointerTy()) { 1185 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1186 "magicptr"); 1187 } 1188 1189 // Now that the successors are updated, create the new Switch instruction. 1190 SwitchInst *NewSI = 1191 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1192 NewSI->setDebugLoc(PTI->getDebugLoc()); 1193 for (ValueEqualityComparisonCase &V : PredCases) 1194 NewSI->addCase(V.Value, V.Dest); 1195 1196 if (PredHasWeights || SuccHasWeights) { 1197 // Halve the weights if any of them cannot fit in an uint32_t 1198 FitWeights(Weights); 1199 1200 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1201 1202 setBranchWeights(NewSI, MDWeights); 1203 } 1204 1205 EraseTerminatorAndDCECond(PTI); 1206 1207 // Okay, last check. If BB is still a successor of PSI, then we must 1208 // have an infinite loop case. If so, add an infinitely looping block 1209 // to handle the case to preserve the behavior of the code. 1210 BasicBlock *InfLoopBlock = nullptr; 1211 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1212 if (NewSI->getSuccessor(i) == BB) { 1213 if (!InfLoopBlock) { 1214 // Insert it at the end of the function, because it's either code, 1215 // or it won't matter if it's hot. :) 1216 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1217 BB->getParent()); 1218 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1219 } 1220 NewSI->setSuccessor(i, InfLoopBlock); 1221 } 1222 1223 Changed = true; 1224 } 1225 } 1226 return Changed; 1227 } 1228 1229 // If we would need to insert a select that uses the value of this invoke 1230 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1231 // can't hoist the invoke, as there is nowhere to put the select in this case. 1232 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1233 Instruction *I1, Instruction *I2) { 1234 for (BasicBlock *Succ : successors(BB1)) { 1235 for (const PHINode &PN : Succ->phis()) { 1236 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1237 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1238 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1239 return false; 1240 } 1241 } 1242 } 1243 return true; 1244 } 1245 1246 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1247 1248 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1249 /// in the two blocks up into the branch block. The caller of this function 1250 /// guarantees that BI's block dominates BB1 and BB2. 1251 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1252 const TargetTransformInfo &TTI) { 1253 // This does very trivial matching, with limited scanning, to find identical 1254 // instructions in the two blocks. In particular, we don't want to get into 1255 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1256 // such, we currently just scan for obviously identical instructions in an 1257 // identical order. 1258 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1259 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1260 1261 BasicBlock::iterator BB1_Itr = BB1->begin(); 1262 BasicBlock::iterator BB2_Itr = BB2->begin(); 1263 1264 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1265 // Skip debug info if it is not identical. 1266 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1267 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1268 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1269 while (isa<DbgInfoIntrinsic>(I1)) 1270 I1 = &*BB1_Itr++; 1271 while (isa<DbgInfoIntrinsic>(I2)) 1272 I2 = &*BB2_Itr++; 1273 } 1274 // FIXME: Can we define a safety predicate for CallBr? 1275 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1276 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1277 isa<CallBrInst>(I1)) 1278 return false; 1279 1280 BasicBlock *BIParent = BI->getParent(); 1281 1282 bool Changed = false; 1283 do { 1284 // If we are hoisting the terminator instruction, don't move one (making a 1285 // broken BB), instead clone it, and remove BI. 1286 if (I1->isTerminator()) 1287 goto HoistTerminator; 1288 1289 // If we're going to hoist a call, make sure that the two instructions we're 1290 // commoning/hoisting are both marked with musttail, or neither of them is 1291 // marked as such. Otherwise, we might end up in a situation where we hoist 1292 // from a block where the terminator is a `ret` to a block where the terminator 1293 // is a `br`, and `musttail` calls expect to be followed by a return. 1294 auto *C1 = dyn_cast<CallInst>(I1); 1295 auto *C2 = dyn_cast<CallInst>(I2); 1296 if (C1 && C2) 1297 if (C1->isMustTailCall() != C2->isMustTailCall()) 1298 return Changed; 1299 1300 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1301 return Changed; 1302 1303 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1304 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1305 // The debug location is an integral part of a debug info intrinsic 1306 // and can't be separated from it or replaced. Instead of attempting 1307 // to merge locations, simply hoist both copies of the intrinsic. 1308 BIParent->getInstList().splice(BI->getIterator(), 1309 BB1->getInstList(), I1); 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB2->getInstList(), I2); 1312 Changed = true; 1313 } else { 1314 // For a normal instruction, we just move one to right before the branch, 1315 // then replace all uses of the other with the first. Finally, we remove 1316 // the now redundant second instruction. 1317 BIParent->getInstList().splice(BI->getIterator(), 1318 BB1->getInstList(), I1); 1319 if (!I2->use_empty()) 1320 I2->replaceAllUsesWith(I1); 1321 I1->andIRFlags(I2); 1322 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1323 LLVMContext::MD_range, 1324 LLVMContext::MD_fpmath, 1325 LLVMContext::MD_invariant_load, 1326 LLVMContext::MD_nonnull, 1327 LLVMContext::MD_invariant_group, 1328 LLVMContext::MD_align, 1329 LLVMContext::MD_dereferenceable, 1330 LLVMContext::MD_dereferenceable_or_null, 1331 LLVMContext::MD_mem_parallel_loop_access, 1332 LLVMContext::MD_access_group, 1333 LLVMContext::MD_preserve_access_index}; 1334 combineMetadata(I1, I2, KnownIDs, true); 1335 1336 // I1 and I2 are being combined into a single instruction. Its debug 1337 // location is the merged locations of the original instructions. 1338 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1339 1340 I2->eraseFromParent(); 1341 Changed = true; 1342 } 1343 1344 I1 = &*BB1_Itr++; 1345 I2 = &*BB2_Itr++; 1346 // Skip debug info if it is not identical. 1347 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1348 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1349 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1350 while (isa<DbgInfoIntrinsic>(I1)) 1351 I1 = &*BB1_Itr++; 1352 while (isa<DbgInfoIntrinsic>(I2)) 1353 I2 = &*BB2_Itr++; 1354 } 1355 } while (I1->isIdenticalToWhenDefined(I2)); 1356 1357 return true; 1358 1359 HoistTerminator: 1360 // It may not be possible to hoist an invoke. 1361 // FIXME: Can we define a safety predicate for CallBr? 1362 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1363 return Changed; 1364 1365 // TODO: callbr hoisting currently disabled pending further study. 1366 if (isa<CallBrInst>(I1)) 1367 return Changed; 1368 1369 for (BasicBlock *Succ : successors(BB1)) { 1370 for (PHINode &PN : Succ->phis()) { 1371 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1372 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1373 if (BB1V == BB2V) 1374 continue; 1375 1376 // Check for passingValueIsAlwaysUndefined here because we would rather 1377 // eliminate undefined control flow then converting it to a select. 1378 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1379 passingValueIsAlwaysUndefined(BB2V, &PN)) 1380 return Changed; 1381 1382 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1383 return Changed; 1384 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1385 return Changed; 1386 } 1387 } 1388 1389 // Okay, it is safe to hoist the terminator. 1390 Instruction *NT = I1->clone(); 1391 BIParent->getInstList().insert(BI->getIterator(), NT); 1392 if (!NT->getType()->isVoidTy()) { 1393 I1->replaceAllUsesWith(NT); 1394 I2->replaceAllUsesWith(NT); 1395 NT->takeName(I1); 1396 } 1397 1398 // Ensure terminator gets a debug location, even an unknown one, in case 1399 // it involves inlinable calls. 1400 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1401 1402 // PHIs created below will adopt NT's merged DebugLoc. 1403 IRBuilder<NoFolder> Builder(NT); 1404 1405 // Hoisting one of the terminators from our successor is a great thing. 1406 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1407 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1408 // nodes, so we insert select instruction to compute the final result. 1409 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1410 for (BasicBlock *Succ : successors(BB1)) { 1411 for (PHINode &PN : Succ->phis()) { 1412 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1413 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1414 if (BB1V == BB2V) 1415 continue; 1416 1417 // These values do not agree. Insert a select instruction before NT 1418 // that determines the right value. 1419 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1420 if (!SI) { 1421 // Propagate fast-math-flags from phi node to its replacement select. 1422 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1423 if (isa<FPMathOperator>(PN)) 1424 Builder.setFastMathFlags(PN.getFastMathFlags()); 1425 1426 SI = cast<SelectInst>( 1427 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1428 BB1V->getName() + "." + BB2V->getName(), BI)); 1429 } 1430 1431 // Make the PHI node use the select for all incoming values for BB1/BB2 1432 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1433 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1434 PN.setIncomingValue(i, SI); 1435 } 1436 } 1437 1438 // Update any PHI nodes in our new successors. 1439 for (BasicBlock *Succ : successors(BB1)) 1440 AddPredecessorToBlock(Succ, BIParent, BB1); 1441 1442 EraseTerminatorAndDCECond(BI); 1443 return true; 1444 } 1445 1446 // Check lifetime markers. 1447 static bool isLifeTimeMarker(const Instruction *I) { 1448 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1449 switch (II->getIntrinsicID()) { 1450 default: 1451 break; 1452 case Intrinsic::lifetime_start: 1453 case Intrinsic::lifetime_end: 1454 return true; 1455 } 1456 } 1457 return false; 1458 } 1459 1460 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1461 // into variables. 1462 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1463 int OpIdx) { 1464 return !isa<IntrinsicInst>(I); 1465 } 1466 1467 // All instructions in Insts belong to different blocks that all unconditionally 1468 // branch to a common successor. Analyze each instruction and return true if it 1469 // would be possible to sink them into their successor, creating one common 1470 // instruction instead. For every value that would be required to be provided by 1471 // PHI node (because an operand varies in each input block), add to PHIOperands. 1472 static bool canSinkInstructions( 1473 ArrayRef<Instruction *> Insts, 1474 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1475 // Prune out obviously bad instructions to move. Each instruction must have 1476 // exactly zero or one use, and we check later that use is by a single, common 1477 // PHI instruction in the successor. 1478 bool HasUse = !Insts.front()->user_empty(); 1479 for (auto *I : Insts) { 1480 // These instructions may change or break semantics if moved. 1481 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1482 I->getType()->isTokenTy()) 1483 return false; 1484 1485 // Conservatively return false if I is an inline-asm instruction. Sinking 1486 // and merging inline-asm instructions can potentially create arguments 1487 // that cannot satisfy the inline-asm constraints. 1488 if (const auto *C = dyn_cast<CallBase>(I)) 1489 if (C->isInlineAsm()) 1490 return false; 1491 1492 // Each instruction must have zero or one use. 1493 if (HasUse && !I->hasOneUse()) 1494 return false; 1495 if (!HasUse && !I->user_empty()) 1496 return false; 1497 } 1498 1499 const Instruction *I0 = Insts.front(); 1500 for (auto *I : Insts) 1501 if (!I->isSameOperationAs(I0)) 1502 return false; 1503 1504 // All instructions in Insts are known to be the same opcode. If they have a 1505 // use, check that the only user is a PHI or in the same block as the 1506 // instruction, because if a user is in the same block as an instruction we're 1507 // contemplating sinking, it must already be determined to be sinkable. 1508 if (HasUse) { 1509 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1510 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1511 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1512 auto *U = cast<Instruction>(*I->user_begin()); 1513 return (PNUse && 1514 PNUse->getParent() == Succ && 1515 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1516 U->getParent() == I->getParent(); 1517 })) 1518 return false; 1519 } 1520 1521 // Because SROA can't handle speculating stores of selects, try not to sink 1522 // loads, stores or lifetime markers of allocas when we'd have to create a 1523 // PHI for the address operand. Also, because it is likely that loads or 1524 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1525 // them. 1526 // This can cause code churn which can have unintended consequences down 1527 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1528 // FIXME: This is a workaround for a deficiency in SROA - see 1529 // https://llvm.org/bugs/show_bug.cgi?id=30188 1530 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1531 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1532 })) 1533 return false; 1534 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1535 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1536 })) 1537 return false; 1538 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1539 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1540 })) 1541 return false; 1542 1543 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1544 Value *Op = I0->getOperand(OI); 1545 if (Op->getType()->isTokenTy()) 1546 // Don't touch any operand of token type. 1547 return false; 1548 1549 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1550 assert(I->getNumOperands() == I0->getNumOperands()); 1551 return I->getOperand(OI) == I0->getOperand(OI); 1552 }; 1553 if (!all_of(Insts, SameAsI0)) { 1554 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1555 !canReplaceOperandWithVariable(I0, OI)) 1556 // We can't create a PHI from this GEP. 1557 return false; 1558 // Don't create indirect calls! The called value is the final operand. 1559 if (isa<CallBase>(I0) && OI == OE - 1) { 1560 // FIXME: if the call was *already* indirect, we should do this. 1561 return false; 1562 } 1563 for (auto *I : Insts) 1564 PHIOperands[I].push_back(I->getOperand(OI)); 1565 } 1566 } 1567 return true; 1568 } 1569 1570 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1571 // instruction of every block in Blocks to their common successor, commoning 1572 // into one instruction. 1573 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1574 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1575 1576 // canSinkLastInstruction returning true guarantees that every block has at 1577 // least one non-terminator instruction. 1578 SmallVector<Instruction*,4> Insts; 1579 for (auto *BB : Blocks) { 1580 Instruction *I = BB->getTerminator(); 1581 do { 1582 I = I->getPrevNode(); 1583 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1584 if (!isa<DbgInfoIntrinsic>(I)) 1585 Insts.push_back(I); 1586 } 1587 1588 // The only checking we need to do now is that all users of all instructions 1589 // are the same PHI node. canSinkLastInstruction should have checked this but 1590 // it is slightly over-aggressive - it gets confused by commutative instructions 1591 // so double-check it here. 1592 Instruction *I0 = Insts.front(); 1593 if (!I0->user_empty()) { 1594 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1595 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1596 auto *U = cast<Instruction>(*I->user_begin()); 1597 return U == PNUse; 1598 })) 1599 return false; 1600 } 1601 1602 // We don't need to do any more checking here; canSinkLastInstruction should 1603 // have done it all for us. 1604 SmallVector<Value*, 4> NewOperands; 1605 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1606 // This check is different to that in canSinkLastInstruction. There, we 1607 // cared about the global view once simplifycfg (and instcombine) have 1608 // completed - it takes into account PHIs that become trivially 1609 // simplifiable. However here we need a more local view; if an operand 1610 // differs we create a PHI and rely on instcombine to clean up the very 1611 // small mess we may make. 1612 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1613 return I->getOperand(O) != I0->getOperand(O); 1614 }); 1615 if (!NeedPHI) { 1616 NewOperands.push_back(I0->getOperand(O)); 1617 continue; 1618 } 1619 1620 // Create a new PHI in the successor block and populate it. 1621 auto *Op = I0->getOperand(O); 1622 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1623 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1624 Op->getName() + ".sink", &BBEnd->front()); 1625 for (auto *I : Insts) 1626 PN->addIncoming(I->getOperand(O), I->getParent()); 1627 NewOperands.push_back(PN); 1628 } 1629 1630 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1631 // and move it to the start of the successor block. 1632 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1633 I0->getOperandUse(O).set(NewOperands[O]); 1634 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1635 1636 // Update metadata and IR flags, and merge debug locations. 1637 for (auto *I : Insts) 1638 if (I != I0) { 1639 // The debug location for the "common" instruction is the merged locations 1640 // of all the commoned instructions. We start with the original location 1641 // of the "common" instruction and iteratively merge each location in the 1642 // loop below. 1643 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1644 // However, as N-way merge for CallInst is rare, so we use simplified API 1645 // instead of using complex API for N-way merge. 1646 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1647 combineMetadataForCSE(I0, I, true); 1648 I0->andIRFlags(I); 1649 } 1650 1651 if (!I0->user_empty()) { 1652 // canSinkLastInstruction checked that all instructions were used by 1653 // one and only one PHI node. Find that now, RAUW it to our common 1654 // instruction and nuke it. 1655 auto *PN = cast<PHINode>(*I0->user_begin()); 1656 PN->replaceAllUsesWith(I0); 1657 PN->eraseFromParent(); 1658 } 1659 1660 // Finally nuke all instructions apart from the common instruction. 1661 for (auto *I : Insts) 1662 if (I != I0) 1663 I->eraseFromParent(); 1664 1665 return true; 1666 } 1667 1668 namespace { 1669 1670 // LockstepReverseIterator - Iterates through instructions 1671 // in a set of blocks in reverse order from the first non-terminator. 1672 // For example (assume all blocks have size n): 1673 // LockstepReverseIterator I([B1, B2, B3]); 1674 // *I-- = [B1[n], B2[n], B3[n]]; 1675 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1676 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1677 // ... 1678 class LockstepReverseIterator { 1679 ArrayRef<BasicBlock*> Blocks; 1680 SmallVector<Instruction*,4> Insts; 1681 bool Fail; 1682 1683 public: 1684 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1685 reset(); 1686 } 1687 1688 void reset() { 1689 Fail = false; 1690 Insts.clear(); 1691 for (auto *BB : Blocks) { 1692 Instruction *Inst = BB->getTerminator(); 1693 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1694 Inst = Inst->getPrevNode(); 1695 if (!Inst) { 1696 // Block wasn't big enough. 1697 Fail = true; 1698 return; 1699 } 1700 Insts.push_back(Inst); 1701 } 1702 } 1703 1704 bool isValid() const { 1705 return !Fail; 1706 } 1707 1708 void operator--() { 1709 if (Fail) 1710 return; 1711 for (auto *&Inst : Insts) { 1712 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1713 Inst = Inst->getPrevNode(); 1714 // Already at beginning of block. 1715 if (!Inst) { 1716 Fail = true; 1717 return; 1718 } 1719 } 1720 } 1721 1722 ArrayRef<Instruction*> operator * () const { 1723 return Insts; 1724 } 1725 }; 1726 1727 } // end anonymous namespace 1728 1729 /// Check whether BB's predecessors end with unconditional branches. If it is 1730 /// true, sink any common code from the predecessors to BB. 1731 /// We also allow one predecessor to end with conditional branch (but no more 1732 /// than one). 1733 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1734 // We support two situations: 1735 // (1) all incoming arcs are unconditional 1736 // (2) one incoming arc is conditional 1737 // 1738 // (2) is very common in switch defaults and 1739 // else-if patterns; 1740 // 1741 // if (a) f(1); 1742 // else if (b) f(2); 1743 // 1744 // produces: 1745 // 1746 // [if] 1747 // / \ 1748 // [f(1)] [if] 1749 // | | \ 1750 // | | | 1751 // | [f(2)]| 1752 // \ | / 1753 // [ end ] 1754 // 1755 // [end] has two unconditional predecessor arcs and one conditional. The 1756 // conditional refers to the implicit empty 'else' arc. This conditional 1757 // arc can also be caused by an empty default block in a switch. 1758 // 1759 // In this case, we attempt to sink code from all *unconditional* arcs. 1760 // If we can sink instructions from these arcs (determined during the scan 1761 // phase below) we insert a common successor for all unconditional arcs and 1762 // connect that to [end], to enable sinking: 1763 // 1764 // [if] 1765 // / \ 1766 // [x(1)] [if] 1767 // | | \ 1768 // | | \ 1769 // | [x(2)] | 1770 // \ / | 1771 // [sink.split] | 1772 // \ / 1773 // [ end ] 1774 // 1775 SmallVector<BasicBlock*,4> UnconditionalPreds; 1776 Instruction *Cond = nullptr; 1777 for (auto *B : predecessors(BB)) { 1778 auto *T = B->getTerminator(); 1779 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1780 UnconditionalPreds.push_back(B); 1781 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1782 Cond = T; 1783 else 1784 return false; 1785 } 1786 if (UnconditionalPreds.size() < 2) 1787 return false; 1788 1789 bool Changed = false; 1790 // We take a two-step approach to tail sinking. First we scan from the end of 1791 // each block upwards in lockstep. If the n'th instruction from the end of each 1792 // block can be sunk, those instructions are added to ValuesToSink and we 1793 // carry on. If we can sink an instruction but need to PHI-merge some operands 1794 // (because they're not identical in each instruction) we add these to 1795 // PHIOperands. 1796 unsigned ScanIdx = 0; 1797 SmallPtrSet<Value*,4> InstructionsToSink; 1798 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1799 LockstepReverseIterator LRI(UnconditionalPreds); 1800 while (LRI.isValid() && 1801 canSinkInstructions(*LRI, PHIOperands)) { 1802 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1803 << "\n"); 1804 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1805 ++ScanIdx; 1806 --LRI; 1807 } 1808 1809 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1810 unsigned NumPHIdValues = 0; 1811 for (auto *I : *LRI) 1812 for (auto *V : PHIOperands[I]) 1813 if (InstructionsToSink.count(V) == 0) 1814 ++NumPHIdValues; 1815 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1816 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1817 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1818 NumPHIInsts++; 1819 1820 return NumPHIInsts <= 1; 1821 }; 1822 1823 if (ScanIdx > 0 && Cond) { 1824 // Check if we would actually sink anything first! This mutates the CFG and 1825 // adds an extra block. The goal in doing this is to allow instructions that 1826 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1827 // (such as trunc, add) can be sunk and predicated already. So we check that 1828 // we're going to sink at least one non-speculatable instruction. 1829 LRI.reset(); 1830 unsigned Idx = 0; 1831 bool Profitable = false; 1832 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1833 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1834 Profitable = true; 1835 break; 1836 } 1837 --LRI; 1838 ++Idx; 1839 } 1840 if (!Profitable) 1841 return false; 1842 1843 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1844 // We have a conditional edge and we're going to sink some instructions. 1845 // Insert a new block postdominating all blocks we're going to sink from. 1846 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1847 // Edges couldn't be split. 1848 return false; 1849 Changed = true; 1850 } 1851 1852 // Now that we've analyzed all potential sinking candidates, perform the 1853 // actual sink. We iteratively sink the last non-terminator of the source 1854 // blocks into their common successor unless doing so would require too 1855 // many PHI instructions to be generated (currently only one PHI is allowed 1856 // per sunk instruction). 1857 // 1858 // We can use InstructionsToSink to discount values needing PHI-merging that will 1859 // actually be sunk in a later iteration. This allows us to be more 1860 // aggressive in what we sink. This does allow a false positive where we 1861 // sink presuming a later value will also be sunk, but stop half way through 1862 // and never actually sink it which means we produce more PHIs than intended. 1863 // This is unlikely in practice though. 1864 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1865 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1866 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1867 << "\n"); 1868 1869 // Because we've sunk every instruction in turn, the current instruction to 1870 // sink is always at index 0. 1871 LRI.reset(); 1872 if (!ProfitableToSinkInstruction(LRI)) { 1873 // Too many PHIs would be created. 1874 LLVM_DEBUG( 1875 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1876 break; 1877 } 1878 1879 if (!sinkLastInstruction(UnconditionalPreds)) 1880 return Changed; 1881 NumSinkCommons++; 1882 Changed = true; 1883 } 1884 return Changed; 1885 } 1886 1887 /// Determine if we can hoist sink a sole store instruction out of a 1888 /// conditional block. 1889 /// 1890 /// We are looking for code like the following: 1891 /// BrBB: 1892 /// store i32 %add, i32* %arrayidx2 1893 /// ... // No other stores or function calls (we could be calling a memory 1894 /// ... // function). 1895 /// %cmp = icmp ult %x, %y 1896 /// br i1 %cmp, label %EndBB, label %ThenBB 1897 /// ThenBB: 1898 /// store i32 %add5, i32* %arrayidx2 1899 /// br label EndBB 1900 /// EndBB: 1901 /// ... 1902 /// We are going to transform this into: 1903 /// BrBB: 1904 /// store i32 %add, i32* %arrayidx2 1905 /// ... // 1906 /// %cmp = icmp ult %x, %y 1907 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1908 /// store i32 %add.add5, i32* %arrayidx2 1909 /// ... 1910 /// 1911 /// \return The pointer to the value of the previous store if the store can be 1912 /// hoisted into the predecessor block. 0 otherwise. 1913 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1914 BasicBlock *StoreBB, BasicBlock *EndBB) { 1915 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1916 if (!StoreToHoist) 1917 return nullptr; 1918 1919 // Volatile or atomic. 1920 if (!StoreToHoist->isSimple()) 1921 return nullptr; 1922 1923 Value *StorePtr = StoreToHoist->getPointerOperand(); 1924 1925 // Look for a store to the same pointer in BrBB. 1926 unsigned MaxNumInstToLookAt = 9; 1927 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1928 if (!MaxNumInstToLookAt) 1929 break; 1930 --MaxNumInstToLookAt; 1931 1932 // Could be calling an instruction that affects memory like free(). 1933 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1934 return nullptr; 1935 1936 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1937 // Found the previous store make sure it stores to the same location. 1938 if (SI->getPointerOperand() == StorePtr) 1939 // Found the previous store, return its value operand. 1940 return SI->getValueOperand(); 1941 return nullptr; // Unknown store. 1942 } 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 /// Speculate a conditional basic block flattening the CFG. 1949 /// 1950 /// Note that this is a very risky transform currently. Speculating 1951 /// instructions like this is most often not desirable. Instead, there is an MI 1952 /// pass which can do it with full awareness of the resource constraints. 1953 /// However, some cases are "obvious" and we should do directly. An example of 1954 /// this is speculating a single, reasonably cheap instruction. 1955 /// 1956 /// There is only one distinct advantage to flattening the CFG at the IR level: 1957 /// it makes very common but simplistic optimizations such as are common in 1958 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1959 /// modeling their effects with easier to reason about SSA value graphs. 1960 /// 1961 /// 1962 /// An illustration of this transform is turning this IR: 1963 /// \code 1964 /// BB: 1965 /// %cmp = icmp ult %x, %y 1966 /// br i1 %cmp, label %EndBB, label %ThenBB 1967 /// ThenBB: 1968 /// %sub = sub %x, %y 1969 /// br label BB2 1970 /// EndBB: 1971 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1972 /// ... 1973 /// \endcode 1974 /// 1975 /// Into this IR: 1976 /// \code 1977 /// BB: 1978 /// %cmp = icmp ult %x, %y 1979 /// %sub = sub %x, %y 1980 /// %cond = select i1 %cmp, 0, %sub 1981 /// ... 1982 /// \endcode 1983 /// 1984 /// \returns true if the conditional block is removed. 1985 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1986 const TargetTransformInfo &TTI) { 1987 // Be conservative for now. FP select instruction can often be expensive. 1988 Value *BrCond = BI->getCondition(); 1989 if (isa<FCmpInst>(BrCond)) 1990 return false; 1991 1992 BasicBlock *BB = BI->getParent(); 1993 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1994 1995 // If ThenBB is actually on the false edge of the conditional branch, remember 1996 // to swap the select operands later. 1997 bool Invert = false; 1998 if (ThenBB != BI->getSuccessor(0)) { 1999 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2000 Invert = true; 2001 } 2002 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2003 2004 // Keep a count of how many times instructions are used within ThenBB when 2005 // they are candidates for sinking into ThenBB. Specifically: 2006 // - They are defined in BB, and 2007 // - They have no side effects, and 2008 // - All of their uses are in ThenBB. 2009 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2010 2011 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2012 2013 unsigned SpeculatedInstructions = 0; 2014 Value *SpeculatedStoreValue = nullptr; 2015 StoreInst *SpeculatedStore = nullptr; 2016 for (BasicBlock::iterator BBI = ThenBB->begin(), 2017 BBE = std::prev(ThenBB->end()); 2018 BBI != BBE; ++BBI) { 2019 Instruction *I = &*BBI; 2020 // Skip debug info. 2021 if (isa<DbgInfoIntrinsic>(I)) { 2022 SpeculatedDbgIntrinsics.push_back(I); 2023 continue; 2024 } 2025 2026 // Only speculatively execute a single instruction (not counting the 2027 // terminator) for now. 2028 ++SpeculatedInstructions; 2029 if (SpeculatedInstructions > 1) 2030 return false; 2031 2032 // Don't hoist the instruction if it's unsafe or expensive. 2033 if (!isSafeToSpeculativelyExecute(I) && 2034 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2035 I, BB, ThenBB, EndBB)))) 2036 return false; 2037 if (!SpeculatedStoreValue && 2038 ComputeSpeculationCost(I, TTI) > 2039 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2040 return false; 2041 2042 // Store the store speculation candidate. 2043 if (SpeculatedStoreValue) 2044 SpeculatedStore = cast<StoreInst>(I); 2045 2046 // Do not hoist the instruction if any of its operands are defined but not 2047 // used in BB. The transformation will prevent the operand from 2048 // being sunk into the use block. 2049 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2050 Instruction *OpI = dyn_cast<Instruction>(*i); 2051 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2052 continue; // Not a candidate for sinking. 2053 2054 ++SinkCandidateUseCounts[OpI]; 2055 } 2056 } 2057 2058 // Consider any sink candidates which are only used in ThenBB as costs for 2059 // speculation. Note, while we iterate over a DenseMap here, we are summing 2060 // and so iteration order isn't significant. 2061 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2062 I = SinkCandidateUseCounts.begin(), 2063 E = SinkCandidateUseCounts.end(); 2064 I != E; ++I) 2065 if (I->first->hasNUses(I->second)) { 2066 ++SpeculatedInstructions; 2067 if (SpeculatedInstructions > 1) 2068 return false; 2069 } 2070 2071 // Check that the PHI nodes can be converted to selects. 2072 bool HaveRewritablePHIs = false; 2073 for (PHINode &PN : EndBB->phis()) { 2074 Value *OrigV = PN.getIncomingValueForBlock(BB); 2075 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2076 2077 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2078 // Skip PHIs which are trivial. 2079 if (ThenV == OrigV) 2080 continue; 2081 2082 // Don't convert to selects if we could remove undefined behavior instead. 2083 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2084 passingValueIsAlwaysUndefined(ThenV, &PN)) 2085 return false; 2086 2087 HaveRewritablePHIs = true; 2088 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2089 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2090 if (!OrigCE && !ThenCE) 2091 continue; // Known safe and cheap. 2092 2093 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2094 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2095 return false; 2096 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2097 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2098 unsigned MaxCost = 2099 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2100 if (OrigCost + ThenCost > MaxCost) 2101 return false; 2102 2103 // Account for the cost of an unfolded ConstantExpr which could end up 2104 // getting expanded into Instructions. 2105 // FIXME: This doesn't account for how many operations are combined in the 2106 // constant expression. 2107 ++SpeculatedInstructions; 2108 if (SpeculatedInstructions > 1) 2109 return false; 2110 } 2111 2112 // If there are no PHIs to process, bail early. This helps ensure idempotence 2113 // as well. 2114 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2115 return false; 2116 2117 // If we get here, we can hoist the instruction and if-convert. 2118 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2119 2120 // Insert a select of the value of the speculated store. 2121 if (SpeculatedStoreValue) { 2122 IRBuilder<NoFolder> Builder(BI); 2123 Value *TrueV = SpeculatedStore->getValueOperand(); 2124 Value *FalseV = SpeculatedStoreValue; 2125 if (Invert) 2126 std::swap(TrueV, FalseV); 2127 Value *S = Builder.CreateSelect( 2128 BrCond, TrueV, FalseV, "spec.store.select", BI); 2129 SpeculatedStore->setOperand(0, S); 2130 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2131 SpeculatedStore->getDebugLoc()); 2132 } 2133 2134 // Metadata can be dependent on the condition we are hoisting above. 2135 // Conservatively strip all metadata on the instruction. 2136 for (auto &I : *ThenBB) 2137 I.dropUnknownNonDebugMetadata(); 2138 2139 // Hoist the instructions. 2140 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2141 ThenBB->begin(), std::prev(ThenBB->end())); 2142 2143 // Insert selects and rewrite the PHI operands. 2144 IRBuilder<NoFolder> Builder(BI); 2145 for (PHINode &PN : EndBB->phis()) { 2146 unsigned OrigI = PN.getBasicBlockIndex(BB); 2147 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2148 Value *OrigV = PN.getIncomingValue(OrigI); 2149 Value *ThenV = PN.getIncomingValue(ThenI); 2150 2151 // Skip PHIs which are trivial. 2152 if (OrigV == ThenV) 2153 continue; 2154 2155 // Create a select whose true value is the speculatively executed value and 2156 // false value is the pre-existing value. Swap them if the branch 2157 // destinations were inverted. 2158 Value *TrueV = ThenV, *FalseV = OrigV; 2159 if (Invert) 2160 std::swap(TrueV, FalseV); 2161 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2162 PN.setIncomingValue(OrigI, V); 2163 PN.setIncomingValue(ThenI, V); 2164 } 2165 2166 // Remove speculated dbg intrinsics. 2167 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2168 // dbg value for the different flows and inserting it after the select. 2169 for (Instruction *I : SpeculatedDbgIntrinsics) 2170 I->eraseFromParent(); 2171 2172 ++NumSpeculations; 2173 return true; 2174 } 2175 2176 /// Return true if we can thread a branch across this block. 2177 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2178 unsigned Size = 0; 2179 2180 for (Instruction &I : BB->instructionsWithoutDebug()) { 2181 if (Size > 10) 2182 return false; // Don't clone large BB's. 2183 ++Size; 2184 2185 // We can only support instructions that do not define values that are 2186 // live outside of the current basic block. 2187 for (User *U : I.users()) { 2188 Instruction *UI = cast<Instruction>(U); 2189 if (UI->getParent() != BB || isa<PHINode>(UI)) 2190 return false; 2191 } 2192 2193 // Looks ok, continue checking. 2194 } 2195 2196 return true; 2197 } 2198 2199 /// If we have a conditional branch on a PHI node value that is defined in the 2200 /// same block as the branch and if any PHI entries are constants, thread edges 2201 /// corresponding to that entry to be branches to their ultimate destination. 2202 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2203 AssumptionCache *AC) { 2204 BasicBlock *BB = BI->getParent(); 2205 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2206 // NOTE: we currently cannot transform this case if the PHI node is used 2207 // outside of the block. 2208 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2209 return false; 2210 2211 // Degenerate case of a single entry PHI. 2212 if (PN->getNumIncomingValues() == 1) { 2213 FoldSingleEntryPHINodes(PN->getParent()); 2214 return true; 2215 } 2216 2217 // Now we know that this block has multiple preds and two succs. 2218 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2219 return false; 2220 2221 // Can't fold blocks that contain noduplicate or convergent calls. 2222 if (any_of(*BB, [](const Instruction &I) { 2223 const CallInst *CI = dyn_cast<CallInst>(&I); 2224 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2225 })) 2226 return false; 2227 2228 // Okay, this is a simple enough basic block. See if any phi values are 2229 // constants. 2230 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2231 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2232 if (!CB || !CB->getType()->isIntegerTy(1)) 2233 continue; 2234 2235 // Okay, we now know that all edges from PredBB should be revectored to 2236 // branch to RealDest. 2237 BasicBlock *PredBB = PN->getIncomingBlock(i); 2238 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2239 2240 if (RealDest == BB) 2241 continue; // Skip self loops. 2242 // Skip if the predecessor's terminator is an indirect branch. 2243 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2244 continue; 2245 2246 // The dest block might have PHI nodes, other predecessors and other 2247 // difficult cases. Instead of being smart about this, just insert a new 2248 // block that jumps to the destination block, effectively splitting 2249 // the edge we are about to create. 2250 BasicBlock *EdgeBB = 2251 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2252 RealDest->getParent(), RealDest); 2253 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2254 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2255 2256 // Update PHI nodes. 2257 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2258 2259 // BB may have instructions that are being threaded over. Clone these 2260 // instructions into EdgeBB. We know that there will be no uses of the 2261 // cloned instructions outside of EdgeBB. 2262 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2263 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2264 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2265 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2266 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2267 continue; 2268 } 2269 // Clone the instruction. 2270 Instruction *N = BBI->clone(); 2271 if (BBI->hasName()) 2272 N->setName(BBI->getName() + ".c"); 2273 2274 // Update operands due to translation. 2275 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2276 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2277 if (PI != TranslateMap.end()) 2278 *i = PI->second; 2279 } 2280 2281 // Check for trivial simplification. 2282 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2283 if (!BBI->use_empty()) 2284 TranslateMap[&*BBI] = V; 2285 if (!N->mayHaveSideEffects()) { 2286 N->deleteValue(); // Instruction folded away, don't need actual inst 2287 N = nullptr; 2288 } 2289 } else { 2290 if (!BBI->use_empty()) 2291 TranslateMap[&*BBI] = N; 2292 } 2293 if (N) { 2294 // Insert the new instruction into its new home. 2295 EdgeBB->getInstList().insert(InsertPt, N); 2296 2297 // Register the new instruction with the assumption cache if necessary. 2298 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2299 AC->registerAssumption(cast<IntrinsicInst>(N)); 2300 } 2301 } 2302 2303 // Loop over all of the edges from PredBB to BB, changing them to branch 2304 // to EdgeBB instead. 2305 Instruction *PredBBTI = PredBB->getTerminator(); 2306 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2307 if (PredBBTI->getSuccessor(i) == BB) { 2308 BB->removePredecessor(PredBB); 2309 PredBBTI->setSuccessor(i, EdgeBB); 2310 } 2311 2312 // Recurse, simplifying any other constants. 2313 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2314 } 2315 2316 return false; 2317 } 2318 2319 /// Given a BB that starts with the specified two-entry PHI node, 2320 /// see if we can eliminate it. 2321 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2322 const DataLayout &DL) { 2323 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2324 // statement", which has a very simple dominance structure. Basically, we 2325 // are trying to find the condition that is being branched on, which 2326 // subsequently causes this merge to happen. We really want control 2327 // dependence information for this check, but simplifycfg can't keep it up 2328 // to date, and this catches most of the cases we care about anyway. 2329 BasicBlock *BB = PN->getParent(); 2330 const Function *Fn = BB->getParent(); 2331 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2332 return false; 2333 2334 BasicBlock *IfTrue, *IfFalse; 2335 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2336 if (!IfCond || 2337 // Don't bother if the branch will be constant folded trivially. 2338 isa<ConstantInt>(IfCond)) 2339 return false; 2340 2341 // Okay, we found that we can merge this two-entry phi node into a select. 2342 // Doing so would require us to fold *all* two entry phi nodes in this block. 2343 // At some point this becomes non-profitable (particularly if the target 2344 // doesn't support cmov's). Only do this transformation if there are two or 2345 // fewer PHI nodes in this block. 2346 unsigned NumPhis = 0; 2347 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2348 if (NumPhis > 2) 2349 return false; 2350 2351 // Loop over the PHI's seeing if we can promote them all to select 2352 // instructions. While we are at it, keep track of the instructions 2353 // that need to be moved to the dominating block. 2354 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2355 int BudgetRemaining = 2356 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2357 2358 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2359 PHINode *PN = cast<PHINode>(II++); 2360 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2361 PN->replaceAllUsesWith(V); 2362 PN->eraseFromParent(); 2363 continue; 2364 } 2365 2366 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2367 BudgetRemaining, TTI) || 2368 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2369 BudgetRemaining, TTI)) 2370 return false; 2371 } 2372 2373 // If we folded the first phi, PN dangles at this point. Refresh it. If 2374 // we ran out of PHIs then we simplified them all. 2375 PN = dyn_cast<PHINode>(BB->begin()); 2376 if (!PN) 2377 return true; 2378 2379 // Return true if at least one of these is a 'not', and another is either 2380 // a 'not' too, or a constant. 2381 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2382 if (!match(V0, m_Not(m_Value()))) 2383 std::swap(V0, V1); 2384 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2385 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2386 }; 2387 2388 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2389 // of the incoming values is an 'not' and another one is freely invertible. 2390 // These can often be turned into switches and other things. 2391 if (PN->getType()->isIntegerTy(1) && 2392 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2393 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2394 isa<BinaryOperator>(IfCond)) && 2395 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2396 PN->getIncomingValue(1))) 2397 return false; 2398 2399 // If all PHI nodes are promotable, check to make sure that all instructions 2400 // in the predecessor blocks can be promoted as well. If not, we won't be able 2401 // to get rid of the control flow, so it's not worth promoting to select 2402 // instructions. 2403 BasicBlock *DomBlock = nullptr; 2404 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2405 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2406 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2407 IfBlock1 = nullptr; 2408 } else { 2409 DomBlock = *pred_begin(IfBlock1); 2410 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2411 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2412 // This is not an aggressive instruction that we can promote. 2413 // Because of this, we won't be able to get rid of the control flow, so 2414 // the xform is not worth it. 2415 return false; 2416 } 2417 } 2418 2419 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2420 IfBlock2 = nullptr; 2421 } else { 2422 DomBlock = *pred_begin(IfBlock2); 2423 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2424 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2425 // This is not an aggressive instruction that we can promote. 2426 // Because of this, we won't be able to get rid of the control flow, so 2427 // the xform is not worth it. 2428 return false; 2429 } 2430 } 2431 assert(DomBlock && "Failed to find root DomBlock"); 2432 2433 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2434 << " T: " << IfTrue->getName() 2435 << " F: " << IfFalse->getName() << "\n"); 2436 2437 // If we can still promote the PHI nodes after this gauntlet of tests, 2438 // do all of the PHI's now. 2439 Instruction *InsertPt = DomBlock->getTerminator(); 2440 IRBuilder<NoFolder> Builder(InsertPt); 2441 2442 // Move all 'aggressive' instructions, which are defined in the 2443 // conditional parts of the if's up to the dominating block. 2444 if (IfBlock1) 2445 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2446 if (IfBlock2) 2447 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2448 2449 // Propagate fast-math-flags from phi nodes to replacement selects. 2450 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2451 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2452 if (isa<FPMathOperator>(PN)) 2453 Builder.setFastMathFlags(PN->getFastMathFlags()); 2454 2455 // Change the PHI node into a select instruction. 2456 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2457 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2458 2459 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2460 PN->replaceAllUsesWith(Sel); 2461 Sel->takeName(PN); 2462 PN->eraseFromParent(); 2463 } 2464 2465 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2466 // has been flattened. Change DomBlock to jump directly to our new block to 2467 // avoid other simplifycfg's kicking in on the diamond. 2468 Instruction *OldTI = DomBlock->getTerminator(); 2469 Builder.SetInsertPoint(OldTI); 2470 Builder.CreateBr(BB); 2471 OldTI->eraseFromParent(); 2472 return true; 2473 } 2474 2475 /// If we found a conditional branch that goes to two returning blocks, 2476 /// try to merge them together into one return, 2477 /// introducing a select if the return values disagree. 2478 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2479 IRBuilder<> &Builder) { 2480 assert(BI->isConditional() && "Must be a conditional branch"); 2481 BasicBlock *TrueSucc = BI->getSuccessor(0); 2482 BasicBlock *FalseSucc = BI->getSuccessor(1); 2483 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2484 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2485 2486 // Check to ensure both blocks are empty (just a return) or optionally empty 2487 // with PHI nodes. If there are other instructions, merging would cause extra 2488 // computation on one path or the other. 2489 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2490 return false; 2491 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2492 return false; 2493 2494 Builder.SetInsertPoint(BI); 2495 // Okay, we found a branch that is going to two return nodes. If 2496 // there is no return value for this function, just change the 2497 // branch into a return. 2498 if (FalseRet->getNumOperands() == 0) { 2499 TrueSucc->removePredecessor(BI->getParent()); 2500 FalseSucc->removePredecessor(BI->getParent()); 2501 Builder.CreateRetVoid(); 2502 EraseTerminatorAndDCECond(BI); 2503 return true; 2504 } 2505 2506 // Otherwise, figure out what the true and false return values are 2507 // so we can insert a new select instruction. 2508 Value *TrueValue = TrueRet->getReturnValue(); 2509 Value *FalseValue = FalseRet->getReturnValue(); 2510 2511 // Unwrap any PHI nodes in the return blocks. 2512 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2513 if (TVPN->getParent() == TrueSucc) 2514 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2515 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2516 if (FVPN->getParent() == FalseSucc) 2517 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2518 2519 // In order for this transformation to be safe, we must be able to 2520 // unconditionally execute both operands to the return. This is 2521 // normally the case, but we could have a potentially-trapping 2522 // constant expression that prevents this transformation from being 2523 // safe. 2524 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2525 if (TCV->canTrap()) 2526 return false; 2527 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2528 if (FCV->canTrap()) 2529 return false; 2530 2531 // Okay, we collected all the mapped values and checked them for sanity, and 2532 // defined to really do this transformation. First, update the CFG. 2533 TrueSucc->removePredecessor(BI->getParent()); 2534 FalseSucc->removePredecessor(BI->getParent()); 2535 2536 // Insert select instructions where needed. 2537 Value *BrCond = BI->getCondition(); 2538 if (TrueValue) { 2539 // Insert a select if the results differ. 2540 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2541 } else if (isa<UndefValue>(TrueValue)) { 2542 TrueValue = FalseValue; 2543 } else { 2544 TrueValue = 2545 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2546 } 2547 } 2548 2549 Value *RI = 2550 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2551 2552 (void)RI; 2553 2554 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2555 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2556 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2557 2558 EraseTerminatorAndDCECond(BI); 2559 2560 return true; 2561 } 2562 2563 /// Return true if the given instruction is available 2564 /// in its predecessor block. If yes, the instruction will be removed. 2565 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2566 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2567 return false; 2568 for (Instruction &I : *PB) { 2569 Instruction *PBI = &I; 2570 // Check whether Inst and PBI generate the same value. 2571 if (Inst->isIdenticalTo(PBI)) { 2572 Inst->replaceAllUsesWith(PBI); 2573 Inst->eraseFromParent(); 2574 return true; 2575 } 2576 } 2577 return false; 2578 } 2579 2580 /// Return true if either PBI or BI has branch weight available, and store 2581 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2582 /// not have branch weight, use 1:1 as its weight. 2583 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2584 uint64_t &PredTrueWeight, 2585 uint64_t &PredFalseWeight, 2586 uint64_t &SuccTrueWeight, 2587 uint64_t &SuccFalseWeight) { 2588 bool PredHasWeights = 2589 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2590 bool SuccHasWeights = 2591 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2592 if (PredHasWeights || SuccHasWeights) { 2593 if (!PredHasWeights) 2594 PredTrueWeight = PredFalseWeight = 1; 2595 if (!SuccHasWeights) 2596 SuccTrueWeight = SuccFalseWeight = 1; 2597 return true; 2598 } else { 2599 return false; 2600 } 2601 } 2602 2603 /// If this basic block is simple enough, and if a predecessor branches to us 2604 /// and one of our successors, fold the block into the predecessor and use 2605 /// logical operations to pick the right destination. 2606 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, 2607 unsigned BonusInstThreshold) { 2608 BasicBlock *BB = BI->getParent(); 2609 2610 const unsigned PredCount = pred_size(BB); 2611 2612 Instruction *Cond = nullptr; 2613 if (BI->isConditional()) 2614 Cond = dyn_cast<Instruction>(BI->getCondition()); 2615 else { 2616 // For unconditional branch, check for a simple CFG pattern, where 2617 // BB has a single predecessor and BB's successor is also its predecessor's 2618 // successor. If such pattern exists, check for CSE between BB and its 2619 // predecessor. 2620 if (BasicBlock *PB = BB->getSinglePredecessor()) 2621 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2622 if (PBI->isConditional() && 2623 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2624 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2625 for (auto I = BB->instructionsWithoutDebug().begin(), 2626 E = BB->instructionsWithoutDebug().end(); 2627 I != E;) { 2628 Instruction *Curr = &*I++; 2629 if (isa<CmpInst>(Curr)) { 2630 Cond = Curr; 2631 break; 2632 } 2633 // Quit if we can't remove this instruction. 2634 if (!tryCSEWithPredecessor(Curr, PB)) 2635 return false; 2636 } 2637 } 2638 2639 if (!Cond) 2640 return false; 2641 } 2642 2643 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2644 Cond->getParent() != BB || !Cond->hasOneUse()) 2645 return false; 2646 2647 // Make sure the instruction after the condition is the cond branch. 2648 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2649 2650 // Ignore dbg intrinsics. 2651 while (isa<DbgInfoIntrinsic>(CondIt)) 2652 ++CondIt; 2653 2654 if (&*CondIt != BI) 2655 return false; 2656 2657 // Only allow this transformation if computing the condition doesn't involve 2658 // too many instructions and these involved instructions can be executed 2659 // unconditionally. We denote all involved instructions except the condition 2660 // as "bonus instructions", and only allow this transformation when the 2661 // number of the bonus instructions we'll need to create when cloning into 2662 // each predecessor does not exceed a certain threshold. 2663 unsigned NumBonusInsts = 0; 2664 for (auto I = BB->begin(); Cond != &*I; ++I) { 2665 // Ignore dbg intrinsics. 2666 if (isa<DbgInfoIntrinsic>(I)) 2667 continue; 2668 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2669 return false; 2670 // I has only one use and can be executed unconditionally. 2671 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2672 if (User == nullptr || User->getParent() != BB) 2673 return false; 2674 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2675 // to use any other instruction, User must be an instruction between next(I) 2676 // and Cond. 2677 2678 // Account for the cost of duplicating this instruction into each 2679 // predecessor. 2680 NumBonusInsts += PredCount; 2681 // Early exits once we reach the limit. 2682 if (NumBonusInsts > BonusInstThreshold) 2683 return false; 2684 } 2685 2686 // Cond is known to be a compare or binary operator. Check to make sure that 2687 // neither operand is a potentially-trapping constant expression. 2688 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2689 if (CE->canTrap()) 2690 return false; 2691 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2692 if (CE->canTrap()) 2693 return false; 2694 2695 // Finally, don't infinitely unroll conditional loops. 2696 BasicBlock *TrueDest = BI->getSuccessor(0); 2697 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2698 if (TrueDest == BB || FalseDest == BB) 2699 return false; 2700 2701 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2702 BasicBlock *PredBlock = *PI; 2703 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2704 2705 // Check that we have two conditional branches. If there is a PHI node in 2706 // the common successor, verify that the same value flows in from both 2707 // blocks. 2708 SmallVector<PHINode *, 4> PHIs; 2709 if (!PBI || PBI->isUnconditional() || 2710 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2711 (!BI->isConditional() && 2712 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2713 continue; 2714 2715 // Determine if the two branches share a common destination. 2716 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2717 bool InvertPredCond = false; 2718 2719 if (BI->isConditional()) { 2720 if (PBI->getSuccessor(0) == TrueDest) { 2721 Opc = Instruction::Or; 2722 } else if (PBI->getSuccessor(1) == FalseDest) { 2723 Opc = Instruction::And; 2724 } else if (PBI->getSuccessor(0) == FalseDest) { 2725 Opc = Instruction::And; 2726 InvertPredCond = true; 2727 } else if (PBI->getSuccessor(1) == TrueDest) { 2728 Opc = Instruction::Or; 2729 InvertPredCond = true; 2730 } else { 2731 continue; 2732 } 2733 } else { 2734 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2735 continue; 2736 } 2737 2738 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2739 IRBuilder<> Builder(PBI); 2740 2741 // If we need to invert the condition in the pred block to match, do so now. 2742 if (InvertPredCond) { 2743 Value *NewCond = PBI->getCondition(); 2744 2745 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2746 CmpInst *CI = cast<CmpInst>(NewCond); 2747 CI->setPredicate(CI->getInversePredicate()); 2748 } else { 2749 NewCond = 2750 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2751 } 2752 2753 PBI->setCondition(NewCond); 2754 PBI->swapSuccessors(); 2755 } 2756 2757 // If we have bonus instructions, clone them into the predecessor block. 2758 // Note that there may be multiple predecessor blocks, so we cannot move 2759 // bonus instructions to a predecessor block. 2760 ValueToValueMapTy VMap; // maps original values to cloned values 2761 // We already make sure Cond is the last instruction before BI. Therefore, 2762 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2763 // instructions. 2764 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2765 if (isa<DbgInfoIntrinsic>(BonusInst)) 2766 continue; 2767 Instruction *NewBonusInst = BonusInst->clone(); 2768 RemapInstruction(NewBonusInst, VMap, 2769 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2770 VMap[&*BonusInst] = NewBonusInst; 2771 2772 // If we moved a load, we cannot any longer claim any knowledge about 2773 // its potential value. The previous information might have been valid 2774 // only given the branch precondition. 2775 // For an analogous reason, we must also drop all the metadata whose 2776 // semantics we don't understand. 2777 NewBonusInst->dropUnknownNonDebugMetadata(); 2778 2779 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2780 NewBonusInst->takeName(&*BonusInst); 2781 BonusInst->setName(BonusInst->getName() + ".old"); 2782 } 2783 2784 // Clone Cond into the predecessor basic block, and or/and the 2785 // two conditions together. 2786 Instruction *CondInPred = Cond->clone(); 2787 RemapInstruction(CondInPred, VMap, 2788 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2789 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2790 CondInPred->takeName(Cond); 2791 Cond->setName(CondInPred->getName() + ".old"); 2792 2793 if (BI->isConditional()) { 2794 Instruction *NewCond = cast<Instruction>( 2795 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2796 PBI->setCondition(NewCond); 2797 2798 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2799 bool HasWeights = 2800 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2801 SuccTrueWeight, SuccFalseWeight); 2802 SmallVector<uint64_t, 8> NewWeights; 2803 2804 if (PBI->getSuccessor(0) == BB) { 2805 if (HasWeights) { 2806 // PBI: br i1 %x, BB, FalseDest 2807 // BI: br i1 %y, TrueDest, FalseDest 2808 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2809 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2810 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2811 // TrueWeight for PBI * FalseWeight for BI. 2812 // We assume that total weights of a BranchInst can fit into 32 bits. 2813 // Therefore, we will not have overflow using 64-bit arithmetic. 2814 NewWeights.push_back(PredFalseWeight * 2815 (SuccFalseWeight + SuccTrueWeight) + 2816 PredTrueWeight * SuccFalseWeight); 2817 } 2818 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); 2819 PBI->setSuccessor(0, TrueDest); 2820 } 2821 if (PBI->getSuccessor(1) == BB) { 2822 if (HasWeights) { 2823 // PBI: br i1 %x, TrueDest, BB 2824 // BI: br i1 %y, TrueDest, FalseDest 2825 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2826 // FalseWeight for PBI * TrueWeight for BI. 2827 NewWeights.push_back(PredTrueWeight * 2828 (SuccFalseWeight + SuccTrueWeight) + 2829 PredFalseWeight * SuccTrueWeight); 2830 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2831 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2832 } 2833 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); 2834 PBI->setSuccessor(1, FalseDest); 2835 } 2836 if (NewWeights.size() == 2) { 2837 // Halve the weights if any of them cannot fit in an uint32_t 2838 FitWeights(NewWeights); 2839 2840 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2841 NewWeights.end()); 2842 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2843 } else 2844 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2845 } else { 2846 // Update PHI nodes in the common successors. 2847 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2848 ConstantInt *PBI_C = cast<ConstantInt>( 2849 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2850 assert(PBI_C->getType()->isIntegerTy(1)); 2851 Instruction *MergedCond = nullptr; 2852 if (PBI->getSuccessor(0) == TrueDest) { 2853 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2854 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2855 // is false: !PBI_Cond and BI_Value 2856 Instruction *NotCond = cast<Instruction>( 2857 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2858 MergedCond = cast<Instruction>( 2859 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2860 "and.cond")); 2861 if (PBI_C->isOne()) 2862 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2863 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2864 } else { 2865 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2866 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2867 // is false: PBI_Cond and BI_Value 2868 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2869 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2870 if (PBI_C->isOne()) { 2871 Instruction *NotCond = cast<Instruction>( 2872 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2873 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2874 Instruction::Or, NotCond, MergedCond, "or.cond")); 2875 } 2876 } 2877 // Update PHI Node. 2878 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 2879 } 2880 2881 // PBI is changed to branch to TrueDest below. Remove itself from 2882 // potential phis from all other successors. 2883 if (MSSAU) 2884 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); 2885 2886 // Change PBI from Conditional to Unconditional. 2887 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2888 EraseTerminatorAndDCECond(PBI, MSSAU); 2889 PBI = New_PBI; 2890 } 2891 2892 // If BI was a loop latch, it may have had associated loop metadata. 2893 // We need to copy it to the new latch, that is, PBI. 2894 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2895 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2896 2897 // TODO: If BB is reachable from all paths through PredBlock, then we 2898 // could replace PBI's branch probabilities with BI's. 2899 2900 // Copy any debug value intrinsics into the end of PredBlock. 2901 for (Instruction &I : *BB) { 2902 if (isa<DbgInfoIntrinsic>(I)) { 2903 Instruction *NewI = I.clone(); 2904 RemapInstruction(NewI, VMap, 2905 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2906 NewI->insertBefore(PBI); 2907 } 2908 } 2909 2910 return true; 2911 } 2912 return false; 2913 } 2914 2915 // If there is only one store in BB1 and BB2, return it, otherwise return 2916 // nullptr. 2917 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2918 StoreInst *S = nullptr; 2919 for (auto *BB : {BB1, BB2}) { 2920 if (!BB) 2921 continue; 2922 for (auto &I : *BB) 2923 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2924 if (S) 2925 // Multiple stores seen. 2926 return nullptr; 2927 else 2928 S = SI; 2929 } 2930 } 2931 return S; 2932 } 2933 2934 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2935 Value *AlternativeV = nullptr) { 2936 // PHI is going to be a PHI node that allows the value V that is defined in 2937 // BB to be referenced in BB's only successor. 2938 // 2939 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2940 // doesn't matter to us what the other operand is (it'll never get used). We 2941 // could just create a new PHI with an undef incoming value, but that could 2942 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2943 // other PHI. So here we directly look for some PHI in BB's successor with V 2944 // as an incoming operand. If we find one, we use it, else we create a new 2945 // one. 2946 // 2947 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2948 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2949 // where OtherBB is the single other predecessor of BB's only successor. 2950 PHINode *PHI = nullptr; 2951 BasicBlock *Succ = BB->getSingleSuccessor(); 2952 2953 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2954 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2955 PHI = cast<PHINode>(I); 2956 if (!AlternativeV) 2957 break; 2958 2959 assert(Succ->hasNPredecessors(2)); 2960 auto PredI = pred_begin(Succ); 2961 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2962 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2963 break; 2964 PHI = nullptr; 2965 } 2966 if (PHI) 2967 return PHI; 2968 2969 // If V is not an instruction defined in BB, just return it. 2970 if (!AlternativeV && 2971 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2972 return V; 2973 2974 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2975 PHI->addIncoming(V, BB); 2976 for (BasicBlock *PredBB : predecessors(Succ)) 2977 if (PredBB != BB) 2978 PHI->addIncoming( 2979 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2980 return PHI; 2981 } 2982 2983 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2984 BasicBlock *QTB, BasicBlock *QFB, 2985 BasicBlock *PostBB, Value *Address, 2986 bool InvertPCond, bool InvertQCond, 2987 const DataLayout &DL, 2988 const TargetTransformInfo &TTI) { 2989 // For every pointer, there must be exactly two stores, one coming from 2990 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2991 // store (to any address) in PTB,PFB or QTB,QFB. 2992 // FIXME: We could relax this restriction with a bit more work and performance 2993 // testing. 2994 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2995 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2996 if (!PStore || !QStore) 2997 return false; 2998 2999 // Now check the stores are compatible. 3000 if (!QStore->isUnordered() || !PStore->isUnordered()) 3001 return false; 3002 3003 // Check that sinking the store won't cause program behavior changes. Sinking 3004 // the store out of the Q blocks won't change any behavior as we're sinking 3005 // from a block to its unconditional successor. But we're moving a store from 3006 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3007 // So we need to check that there are no aliasing loads or stores in 3008 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3009 // operations between PStore and the end of its parent block. 3010 // 3011 // The ideal way to do this is to query AliasAnalysis, but we don't 3012 // preserve AA currently so that is dangerous. Be super safe and just 3013 // check there are no other memory operations at all. 3014 for (auto &I : *QFB->getSinglePredecessor()) 3015 if (I.mayReadOrWriteMemory()) 3016 return false; 3017 for (auto &I : *QFB) 3018 if (&I != QStore && I.mayReadOrWriteMemory()) 3019 return false; 3020 if (QTB) 3021 for (auto &I : *QTB) 3022 if (&I != QStore && I.mayReadOrWriteMemory()) 3023 return false; 3024 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3025 I != E; ++I) 3026 if (&*I != PStore && I->mayReadOrWriteMemory()) 3027 return false; 3028 3029 // If we're not in aggressive mode, we only optimize if we have some 3030 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3031 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3032 if (!BB) 3033 return true; 3034 // Heuristic: if the block can be if-converted/phi-folded and the 3035 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3036 // thread this store. 3037 int BudgetRemaining = 3038 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3039 for (auto &I : BB->instructionsWithoutDebug()) { 3040 // Consider terminator instruction to be free. 3041 if (I.isTerminator()) 3042 continue; 3043 // If this is one the stores that we want to speculate out of this BB, 3044 // then don't count it's cost, consider it to be free. 3045 if (auto *S = dyn_cast<StoreInst>(&I)) 3046 if (llvm::find(FreeStores, S)) 3047 continue; 3048 // Else, we have a white-list of instructions that we are ak speculating. 3049 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3050 return false; // Not in white-list - not worthwhile folding. 3051 // And finally, if this is a non-free instruction that we are okay 3052 // speculating, ensure that we consider the speculation budget. 3053 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3054 if (BudgetRemaining < 0) 3055 return false; // Eagerly refuse to fold as soon as we're out of budget. 3056 } 3057 assert(BudgetRemaining >= 0 && 3058 "When we run out of budget we will eagerly return from within the " 3059 "per-instruction loop."); 3060 return true; 3061 }; 3062 3063 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore}; 3064 if (!MergeCondStoresAggressively && 3065 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3066 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3067 return false; 3068 3069 // If PostBB has more than two predecessors, we need to split it so we can 3070 // sink the store. 3071 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3072 // We know that QFB's only successor is PostBB. And QFB has a single 3073 // predecessor. If QTB exists, then its only successor is also PostBB. 3074 // If QTB does not exist, then QFB's only predecessor has a conditional 3075 // branch to QFB and PostBB. 3076 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3077 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3078 "condstore.split"); 3079 if (!NewBB) 3080 return false; 3081 PostBB = NewBB; 3082 } 3083 3084 // OK, we're going to sink the stores to PostBB. The store has to be 3085 // conditional though, so first create the predicate. 3086 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3087 ->getCondition(); 3088 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3089 ->getCondition(); 3090 3091 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3092 PStore->getParent()); 3093 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3094 QStore->getParent(), PPHI); 3095 3096 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3097 3098 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3099 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3100 3101 if (InvertPCond) 3102 PPred = QB.CreateNot(PPred); 3103 if (InvertQCond) 3104 QPred = QB.CreateNot(QPred); 3105 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3106 3107 auto *T = 3108 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3109 QB.SetInsertPoint(T); 3110 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3111 AAMDNodes AAMD; 3112 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3113 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3114 SI->setAAMetadata(AAMD); 3115 unsigned PAlignment = PStore->getAlignment(); 3116 unsigned QAlignment = QStore->getAlignment(); 3117 unsigned TypeAlignment = 3118 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3119 unsigned MinAlignment; 3120 unsigned MaxAlignment; 3121 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3122 // Choose the minimum alignment. If we could prove both stores execute, we 3123 // could use biggest one. In this case, though, we only know that one of the 3124 // stores executes. And we don't know it's safe to take the alignment from a 3125 // store that doesn't execute. 3126 if (MinAlignment != 0) { 3127 // Choose the minimum of all non-zero alignments. 3128 SI->setAlignment(Align(MinAlignment)); 3129 } else if (MaxAlignment != 0) { 3130 // Choose the minimal alignment between the non-zero alignment and the ABI 3131 // default alignment for the type of the stored value. 3132 SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment))); 3133 } else { 3134 // If both alignments are zero, use ABI default alignment for the type of 3135 // the stored value. 3136 SI->setAlignment(Align(TypeAlignment)); 3137 } 3138 3139 QStore->eraseFromParent(); 3140 PStore->eraseFromParent(); 3141 3142 return true; 3143 } 3144 3145 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3146 const DataLayout &DL, 3147 const TargetTransformInfo &TTI) { 3148 // The intention here is to find diamonds or triangles (see below) where each 3149 // conditional block contains a store to the same address. Both of these 3150 // stores are conditional, so they can't be unconditionally sunk. But it may 3151 // be profitable to speculatively sink the stores into one merged store at the 3152 // end, and predicate the merged store on the union of the two conditions of 3153 // PBI and QBI. 3154 // 3155 // This can reduce the number of stores executed if both of the conditions are 3156 // true, and can allow the blocks to become small enough to be if-converted. 3157 // This optimization will also chain, so that ladders of test-and-set 3158 // sequences can be if-converted away. 3159 // 3160 // We only deal with simple diamonds or triangles: 3161 // 3162 // PBI or PBI or a combination of the two 3163 // / \ | \ 3164 // PTB PFB | PFB 3165 // \ / | / 3166 // QBI QBI 3167 // / \ | \ 3168 // QTB QFB | QFB 3169 // \ / | / 3170 // PostBB PostBB 3171 // 3172 // We model triangles as a type of diamond with a nullptr "true" block. 3173 // Triangles are canonicalized so that the fallthrough edge is represented by 3174 // a true condition, as in the diagram above. 3175 BasicBlock *PTB = PBI->getSuccessor(0); 3176 BasicBlock *PFB = PBI->getSuccessor(1); 3177 BasicBlock *QTB = QBI->getSuccessor(0); 3178 BasicBlock *QFB = QBI->getSuccessor(1); 3179 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3180 3181 // Make sure we have a good guess for PostBB. If QTB's only successor is 3182 // QFB, then QFB is a better PostBB. 3183 if (QTB->getSingleSuccessor() == QFB) 3184 PostBB = QFB; 3185 3186 // If we couldn't find a good PostBB, stop. 3187 if (!PostBB) 3188 return false; 3189 3190 bool InvertPCond = false, InvertQCond = false; 3191 // Canonicalize fallthroughs to the true branches. 3192 if (PFB == QBI->getParent()) { 3193 std::swap(PFB, PTB); 3194 InvertPCond = true; 3195 } 3196 if (QFB == PostBB) { 3197 std::swap(QFB, QTB); 3198 InvertQCond = true; 3199 } 3200 3201 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3202 // and QFB may not. Model fallthroughs as a nullptr block. 3203 if (PTB == QBI->getParent()) 3204 PTB = nullptr; 3205 if (QTB == PostBB) 3206 QTB = nullptr; 3207 3208 // Legality bailouts. We must have at least the non-fallthrough blocks and 3209 // the post-dominating block, and the non-fallthroughs must only have one 3210 // predecessor. 3211 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3212 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3213 }; 3214 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3215 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3216 return false; 3217 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3218 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3219 return false; 3220 if (!QBI->getParent()->hasNUses(2)) 3221 return false; 3222 3223 // OK, this is a sequence of two diamonds or triangles. 3224 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3225 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3226 for (auto *BB : {PTB, PFB}) { 3227 if (!BB) 3228 continue; 3229 for (auto &I : *BB) 3230 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3231 PStoreAddresses.insert(SI->getPointerOperand()); 3232 } 3233 for (auto *BB : {QTB, QFB}) { 3234 if (!BB) 3235 continue; 3236 for (auto &I : *BB) 3237 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3238 QStoreAddresses.insert(SI->getPointerOperand()); 3239 } 3240 3241 set_intersect(PStoreAddresses, QStoreAddresses); 3242 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3243 // clear what it contains. 3244 auto &CommonAddresses = PStoreAddresses; 3245 3246 bool Changed = false; 3247 for (auto *Address : CommonAddresses) 3248 Changed |= mergeConditionalStoreToAddress( 3249 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI); 3250 return Changed; 3251 } 3252 3253 3254 /// If the previous block ended with a widenable branch, determine if reusing 3255 /// the target block is profitable and legal. This will have the effect of 3256 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3257 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 3258 // TODO: This can be generalized in two important ways: 3259 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3260 // values from the PBI edge. 3261 // 2) We can sink side effecting instructions into BI's fallthrough 3262 // successor provided they doesn't contribute to computation of 3263 // BI's condition. 3264 Value *CondWB, *WC; 3265 BasicBlock *IfTrueBB, *IfFalseBB; 3266 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3267 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3268 return false; 3269 if (!IfFalseBB->phis().empty()) 3270 return false; // TODO 3271 // Use lambda to lazily compute expensive condition after cheap ones. 3272 auto NoSideEffects = [](BasicBlock &BB) { 3273 return !llvm::any_of(BB, [](const Instruction &I) { 3274 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3275 }); 3276 }; 3277 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3278 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3279 NoSideEffects(*BI->getParent())) { 3280 BI->getSuccessor(1)->removePredecessor(BI->getParent()); 3281 BI->setSuccessor(1, IfFalseBB); 3282 return true; 3283 } 3284 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3285 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3286 NoSideEffects(*BI->getParent())) { 3287 BI->getSuccessor(0)->removePredecessor(BI->getParent()); 3288 BI->setSuccessor(0, IfFalseBB); 3289 return true; 3290 } 3291 return false; 3292 } 3293 3294 /// If we have a conditional branch as a predecessor of another block, 3295 /// this function tries to simplify it. We know 3296 /// that PBI and BI are both conditional branches, and BI is in one of the 3297 /// successor blocks of PBI - PBI branches to BI. 3298 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3299 const DataLayout &DL, 3300 const TargetTransformInfo &TTI) { 3301 assert(PBI->isConditional() && BI->isConditional()); 3302 BasicBlock *BB = BI->getParent(); 3303 3304 // If this block ends with a branch instruction, and if there is a 3305 // predecessor that ends on a branch of the same condition, make 3306 // this conditional branch redundant. 3307 if (PBI->getCondition() == BI->getCondition() && 3308 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3309 // Okay, the outcome of this conditional branch is statically 3310 // knowable. If this block had a single pred, handle specially. 3311 if (BB->getSinglePredecessor()) { 3312 // Turn this into a branch on constant. 3313 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3314 BI->setCondition( 3315 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3316 return true; // Nuke the branch on constant. 3317 } 3318 3319 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3320 // in the constant and simplify the block result. Subsequent passes of 3321 // simplifycfg will thread the block. 3322 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3323 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3324 PHINode *NewPN = PHINode::Create( 3325 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3326 BI->getCondition()->getName() + ".pr", &BB->front()); 3327 // Okay, we're going to insert the PHI node. Since PBI is not the only 3328 // predecessor, compute the PHI'd conditional value for all of the preds. 3329 // Any predecessor where the condition is not computable we keep symbolic. 3330 for (pred_iterator PI = PB; PI != PE; ++PI) { 3331 BasicBlock *P = *PI; 3332 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3333 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3334 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3335 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3336 NewPN->addIncoming( 3337 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3338 P); 3339 } else { 3340 NewPN->addIncoming(BI->getCondition(), P); 3341 } 3342 } 3343 3344 BI->setCondition(NewPN); 3345 return true; 3346 } 3347 } 3348 3349 // If the previous block ended with a widenable branch, determine if reusing 3350 // the target block is profitable and legal. This will have the effect of 3351 // "widening" PBI, but doesn't require us to reason about hosting safety. 3352 if (tryWidenCondBranchToCondBranch(PBI, BI)) 3353 return true; 3354 3355 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3356 if (CE->canTrap()) 3357 return false; 3358 3359 // If both branches are conditional and both contain stores to the same 3360 // address, remove the stores from the conditionals and create a conditional 3361 // merged store at the end. 3362 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI)) 3363 return true; 3364 3365 // If this is a conditional branch in an empty block, and if any 3366 // predecessors are a conditional branch to one of our destinations, 3367 // fold the conditions into logical ops and one cond br. 3368 3369 // Ignore dbg intrinsics. 3370 if (&*BB->instructionsWithoutDebug().begin() != BI) 3371 return false; 3372 3373 int PBIOp, BIOp; 3374 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3375 PBIOp = 0; 3376 BIOp = 0; 3377 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3378 PBIOp = 0; 3379 BIOp = 1; 3380 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3381 PBIOp = 1; 3382 BIOp = 0; 3383 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3384 PBIOp = 1; 3385 BIOp = 1; 3386 } else { 3387 return false; 3388 } 3389 3390 // Check to make sure that the other destination of this branch 3391 // isn't BB itself. If so, this is an infinite loop that will 3392 // keep getting unwound. 3393 if (PBI->getSuccessor(PBIOp) == BB) 3394 return false; 3395 3396 // Do not perform this transformation if it would require 3397 // insertion of a large number of select instructions. For targets 3398 // without predication/cmovs, this is a big pessimization. 3399 3400 // Also do not perform this transformation if any phi node in the common 3401 // destination block can trap when reached by BB or PBB (PR17073). In that 3402 // case, it would be unsafe to hoist the operation into a select instruction. 3403 3404 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3405 unsigned NumPhis = 0; 3406 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3407 ++II, ++NumPhis) { 3408 if (NumPhis > 2) // Disable this xform. 3409 return false; 3410 3411 PHINode *PN = cast<PHINode>(II); 3412 Value *BIV = PN->getIncomingValueForBlock(BB); 3413 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3414 if (CE->canTrap()) 3415 return false; 3416 3417 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3418 Value *PBIV = PN->getIncomingValue(PBBIdx); 3419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3420 if (CE->canTrap()) 3421 return false; 3422 } 3423 3424 // Finally, if everything is ok, fold the branches to logical ops. 3425 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3426 3427 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3428 << "AND: " << *BI->getParent()); 3429 3430 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3431 // branch in it, where one edge (OtherDest) goes back to itself but the other 3432 // exits. We don't *know* that the program avoids the infinite loop 3433 // (even though that seems likely). If we do this xform naively, we'll end up 3434 // recursively unpeeling the loop. Since we know that (after the xform is 3435 // done) that the block *is* infinite if reached, we just make it an obviously 3436 // infinite loop with no cond branch. 3437 if (OtherDest == BB) { 3438 // Insert it at the end of the function, because it's either code, 3439 // or it won't matter if it's hot. :) 3440 BasicBlock *InfLoopBlock = 3441 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3442 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3443 OtherDest = InfLoopBlock; 3444 } 3445 3446 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3447 3448 // BI may have other predecessors. Because of this, we leave 3449 // it alone, but modify PBI. 3450 3451 // Make sure we get to CommonDest on True&True directions. 3452 Value *PBICond = PBI->getCondition(); 3453 IRBuilder<NoFolder> Builder(PBI); 3454 if (PBIOp) 3455 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3456 3457 Value *BICond = BI->getCondition(); 3458 if (BIOp) 3459 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3460 3461 // Merge the conditions. 3462 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3463 3464 // Modify PBI to branch on the new condition to the new dests. 3465 PBI->setCondition(Cond); 3466 PBI->setSuccessor(0, CommonDest); 3467 PBI->setSuccessor(1, OtherDest); 3468 3469 // Update branch weight for PBI. 3470 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3471 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3472 bool HasWeights = 3473 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3474 SuccTrueWeight, SuccFalseWeight); 3475 if (HasWeights) { 3476 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3477 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3478 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3479 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3480 // The weight to CommonDest should be PredCommon * SuccTotal + 3481 // PredOther * SuccCommon. 3482 // The weight to OtherDest should be PredOther * SuccOther. 3483 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3484 PredOther * SuccCommon, 3485 PredOther * SuccOther}; 3486 // Halve the weights if any of them cannot fit in an uint32_t 3487 FitWeights(NewWeights); 3488 3489 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3490 } 3491 3492 // OtherDest may have phi nodes. If so, add an entry from PBI's 3493 // block that are identical to the entries for BI's block. 3494 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3495 3496 // We know that the CommonDest already had an edge from PBI to 3497 // it. If it has PHIs though, the PHIs may have different 3498 // entries for BB and PBI's BB. If so, insert a select to make 3499 // them agree. 3500 for (PHINode &PN : CommonDest->phis()) { 3501 Value *BIV = PN.getIncomingValueForBlock(BB); 3502 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3503 Value *PBIV = PN.getIncomingValue(PBBIdx); 3504 if (BIV != PBIV) { 3505 // Insert a select in PBI to pick the right value. 3506 SelectInst *NV = cast<SelectInst>( 3507 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3508 PN.setIncomingValue(PBBIdx, NV); 3509 // Although the select has the same condition as PBI, the original branch 3510 // weights for PBI do not apply to the new select because the select's 3511 // 'logical' edges are incoming edges of the phi that is eliminated, not 3512 // the outgoing edges of PBI. 3513 if (HasWeights) { 3514 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3515 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3516 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3517 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3518 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3519 // The weight to PredOtherDest should be PredOther * SuccCommon. 3520 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3521 PredOther * SuccCommon}; 3522 3523 FitWeights(NewWeights); 3524 3525 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3526 } 3527 } 3528 } 3529 3530 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3531 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3532 3533 // This basic block is probably dead. We know it has at least 3534 // one fewer predecessor. 3535 return true; 3536 } 3537 3538 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3539 // true or to FalseBB if Cond is false. 3540 // Takes care of updating the successors and removing the old terminator. 3541 // Also makes sure not to introduce new successors by assuming that edges to 3542 // non-successor TrueBBs and FalseBBs aren't reachable. 3543 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3544 Value *Cond, BasicBlock *TrueBB, 3545 BasicBlock *FalseBB, 3546 uint32_t TrueWeight, 3547 uint32_t FalseWeight) { 3548 // Remove any superfluous successor edges from the CFG. 3549 // First, figure out which successors to preserve. 3550 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3551 // successor. 3552 BasicBlock *KeepEdge1 = TrueBB; 3553 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3554 3555 // Then remove the rest. 3556 for (BasicBlock *Succ : successors(OldTerm)) { 3557 // Make sure only to keep exactly one copy of each edge. 3558 if (Succ == KeepEdge1) 3559 KeepEdge1 = nullptr; 3560 else if (Succ == KeepEdge2) 3561 KeepEdge2 = nullptr; 3562 else 3563 Succ->removePredecessor(OldTerm->getParent(), 3564 /*KeepOneInputPHIs=*/true); 3565 } 3566 3567 IRBuilder<> Builder(OldTerm); 3568 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3569 3570 // Insert an appropriate new terminator. 3571 if (!KeepEdge1 && !KeepEdge2) { 3572 if (TrueBB == FalseBB) 3573 // We were only looking for one successor, and it was present. 3574 // Create an unconditional branch to it. 3575 Builder.CreateBr(TrueBB); 3576 else { 3577 // We found both of the successors we were looking for. 3578 // Create a conditional branch sharing the condition of the select. 3579 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3580 if (TrueWeight != FalseWeight) 3581 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3582 } 3583 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3584 // Neither of the selected blocks were successors, so this 3585 // terminator must be unreachable. 3586 new UnreachableInst(OldTerm->getContext(), OldTerm); 3587 } else { 3588 // One of the selected values was a successor, but the other wasn't. 3589 // Insert an unconditional branch to the one that was found; 3590 // the edge to the one that wasn't must be unreachable. 3591 if (!KeepEdge1) 3592 // Only TrueBB was found. 3593 Builder.CreateBr(TrueBB); 3594 else 3595 // Only FalseBB was found. 3596 Builder.CreateBr(FalseBB); 3597 } 3598 3599 EraseTerminatorAndDCECond(OldTerm); 3600 return true; 3601 } 3602 3603 // Replaces 3604 // (switch (select cond, X, Y)) on constant X, Y 3605 // with a branch - conditional if X and Y lead to distinct BBs, 3606 // unconditional otherwise. 3607 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3608 SelectInst *Select) { 3609 // Check for constant integer values in the select. 3610 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3611 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3612 if (!TrueVal || !FalseVal) 3613 return false; 3614 3615 // Find the relevant condition and destinations. 3616 Value *Condition = Select->getCondition(); 3617 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3618 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3619 3620 // Get weight for TrueBB and FalseBB. 3621 uint32_t TrueWeight = 0, FalseWeight = 0; 3622 SmallVector<uint64_t, 8> Weights; 3623 bool HasWeights = HasBranchWeights(SI); 3624 if (HasWeights) { 3625 GetBranchWeights(SI, Weights); 3626 if (Weights.size() == 1 + SI->getNumCases()) { 3627 TrueWeight = 3628 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3629 FalseWeight = 3630 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3631 } 3632 } 3633 3634 // Perform the actual simplification. 3635 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3636 FalseWeight); 3637 } 3638 3639 // Replaces 3640 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3641 // blockaddress(@fn, BlockB))) 3642 // with 3643 // (br cond, BlockA, BlockB). 3644 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3645 SelectInst *SI) { 3646 // Check that both operands of the select are block addresses. 3647 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3648 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3649 if (!TBA || !FBA) 3650 return false; 3651 3652 // Extract the actual blocks. 3653 BasicBlock *TrueBB = TBA->getBasicBlock(); 3654 BasicBlock *FalseBB = FBA->getBasicBlock(); 3655 3656 // Perform the actual simplification. 3657 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3658 0); 3659 } 3660 3661 /// This is called when we find an icmp instruction 3662 /// (a seteq/setne with a constant) as the only instruction in a 3663 /// block that ends with an uncond branch. We are looking for a very specific 3664 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3665 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3666 /// default value goes to an uncond block with a seteq in it, we get something 3667 /// like: 3668 /// 3669 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3670 /// DEFAULT: 3671 /// %tmp = icmp eq i8 %A, 92 3672 /// br label %end 3673 /// end: 3674 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3675 /// 3676 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3677 /// the PHI, merging the third icmp into the switch. 3678 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3679 ICmpInst *ICI, IRBuilder<> &Builder) { 3680 BasicBlock *BB = ICI->getParent(); 3681 3682 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3683 // complex. 3684 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3685 return false; 3686 3687 Value *V = ICI->getOperand(0); 3688 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3689 3690 // The pattern we're looking for is where our only predecessor is a switch on 3691 // 'V' and this block is the default case for the switch. In this case we can 3692 // fold the compared value into the switch to simplify things. 3693 BasicBlock *Pred = BB->getSinglePredecessor(); 3694 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3695 return false; 3696 3697 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3698 if (SI->getCondition() != V) 3699 return false; 3700 3701 // If BB is reachable on a non-default case, then we simply know the value of 3702 // V in this block. Substitute it and constant fold the icmp instruction 3703 // away. 3704 if (SI->getDefaultDest() != BB) { 3705 ConstantInt *VVal = SI->findCaseDest(BB); 3706 assert(VVal && "Should have a unique destination value"); 3707 ICI->setOperand(0, VVal); 3708 3709 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3710 ICI->replaceAllUsesWith(V); 3711 ICI->eraseFromParent(); 3712 } 3713 // BB is now empty, so it is likely to simplify away. 3714 return requestResimplify(); 3715 } 3716 3717 // Ok, the block is reachable from the default dest. If the constant we're 3718 // comparing exists in one of the other edges, then we can constant fold ICI 3719 // and zap it. 3720 if (SI->findCaseValue(Cst) != SI->case_default()) { 3721 Value *V; 3722 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3723 V = ConstantInt::getFalse(BB->getContext()); 3724 else 3725 V = ConstantInt::getTrue(BB->getContext()); 3726 3727 ICI->replaceAllUsesWith(V); 3728 ICI->eraseFromParent(); 3729 // BB is now empty, so it is likely to simplify away. 3730 return requestResimplify(); 3731 } 3732 3733 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3734 // the block. 3735 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3736 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3737 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3738 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3739 return false; 3740 3741 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3742 // true in the PHI. 3743 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3744 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3745 3746 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3747 std::swap(DefaultCst, NewCst); 3748 3749 // Replace ICI (which is used by the PHI for the default value) with true or 3750 // false depending on if it is EQ or NE. 3751 ICI->replaceAllUsesWith(DefaultCst); 3752 ICI->eraseFromParent(); 3753 3754 // Okay, the switch goes to this block on a default value. Add an edge from 3755 // the switch to the merge point on the compared value. 3756 BasicBlock *NewBB = 3757 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3758 { 3759 SwitchInstProfUpdateWrapper SIW(*SI); 3760 auto W0 = SIW.getSuccessorWeight(0); 3761 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 3762 if (W0) { 3763 NewW = ((uint64_t(*W0) + 1) >> 1); 3764 SIW.setSuccessorWeight(0, *NewW); 3765 } 3766 SIW.addCase(Cst, NewBB, NewW); 3767 } 3768 3769 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3770 Builder.SetInsertPoint(NewBB); 3771 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3772 Builder.CreateBr(SuccBlock); 3773 PHIUse->addIncoming(NewCst, NewBB); 3774 return true; 3775 } 3776 3777 /// The specified branch is a conditional branch. 3778 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3779 /// fold it into a switch instruction if so. 3780 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 3781 IRBuilder<> &Builder, 3782 const DataLayout &DL) { 3783 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3784 if (!Cond) 3785 return false; 3786 3787 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3788 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3789 // 'setne's and'ed together, collect them. 3790 3791 // Try to gather values from a chain of and/or to be turned into a switch 3792 ConstantComparesGatherer ConstantCompare(Cond, DL); 3793 // Unpack the result 3794 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3795 Value *CompVal = ConstantCompare.CompValue; 3796 unsigned UsedICmps = ConstantCompare.UsedICmps; 3797 Value *ExtraCase = ConstantCompare.Extra; 3798 3799 // If we didn't have a multiply compared value, fail. 3800 if (!CompVal) 3801 return false; 3802 3803 // Avoid turning single icmps into a switch. 3804 if (UsedICmps <= 1) 3805 return false; 3806 3807 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3808 3809 // There might be duplicate constants in the list, which the switch 3810 // instruction can't handle, remove them now. 3811 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3812 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3813 3814 // If Extra was used, we require at least two switch values to do the 3815 // transformation. A switch with one value is just a conditional branch. 3816 if (ExtraCase && Values.size() < 2) 3817 return false; 3818 3819 // TODO: Preserve branch weight metadata, similarly to how 3820 // FoldValueComparisonIntoPredecessors preserves it. 3821 3822 // Figure out which block is which destination. 3823 BasicBlock *DefaultBB = BI->getSuccessor(1); 3824 BasicBlock *EdgeBB = BI->getSuccessor(0); 3825 if (!TrueWhenEqual) 3826 std::swap(DefaultBB, EdgeBB); 3827 3828 BasicBlock *BB = BI->getParent(); 3829 3830 // MSAN does not like undefs as branch condition which can be introduced 3831 // with "explicit branch". 3832 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 3833 return false; 3834 3835 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3836 << " cases into SWITCH. BB is:\n" 3837 << *BB); 3838 3839 // If there are any extra values that couldn't be folded into the switch 3840 // then we evaluate them with an explicit branch first. Split the block 3841 // right before the condbr to handle it. 3842 if (ExtraCase) { 3843 BasicBlock *NewBB = 3844 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3845 // Remove the uncond branch added to the old block. 3846 Instruction *OldTI = BB->getTerminator(); 3847 Builder.SetInsertPoint(OldTI); 3848 3849 if (TrueWhenEqual) 3850 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3851 else 3852 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3853 3854 OldTI->eraseFromParent(); 3855 3856 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3857 // for the edge we just added. 3858 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3859 3860 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3861 << "\nEXTRABB = " << *BB); 3862 BB = NewBB; 3863 } 3864 3865 Builder.SetInsertPoint(BI); 3866 // Convert pointer to int before we switch. 3867 if (CompVal->getType()->isPointerTy()) { 3868 CompVal = Builder.CreatePtrToInt( 3869 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3870 } 3871 3872 // Create the new switch instruction now. 3873 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3874 3875 // Add all of the 'cases' to the switch instruction. 3876 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3877 New->addCase(Values[i], EdgeBB); 3878 3879 // We added edges from PI to the EdgeBB. As such, if there were any 3880 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3881 // the number of edges added. 3882 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3883 PHINode *PN = cast<PHINode>(BBI); 3884 Value *InVal = PN->getIncomingValueForBlock(BB); 3885 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3886 PN->addIncoming(InVal, BB); 3887 } 3888 3889 // Erase the old branch instruction. 3890 EraseTerminatorAndDCECond(BI); 3891 3892 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3893 return true; 3894 } 3895 3896 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3897 if (isa<PHINode>(RI->getValue())) 3898 return simplifyCommonResume(RI); 3899 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3900 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3901 // The resume must unwind the exception that caused control to branch here. 3902 return simplifySingleResume(RI); 3903 3904 return false; 3905 } 3906 3907 // Simplify resume that is shared by several landing pads (phi of landing pad). 3908 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 3909 BasicBlock *BB = RI->getParent(); 3910 3911 // Check that there are no other instructions except for debug intrinsics 3912 // between the phi of landing pads (RI->getValue()) and resume instruction. 3913 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3914 E = RI->getIterator(); 3915 while (++I != E) 3916 if (!isa<DbgInfoIntrinsic>(I)) 3917 return false; 3918 3919 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3920 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3921 3922 // Check incoming blocks to see if any of them are trivial. 3923 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3924 Idx++) { 3925 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3926 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3927 3928 // If the block has other successors, we can not delete it because 3929 // it has other dependents. 3930 if (IncomingBB->getUniqueSuccessor() != BB) 3931 continue; 3932 3933 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3934 // Not the landing pad that caused the control to branch here. 3935 if (IncomingValue != LandingPad) 3936 continue; 3937 3938 bool isTrivial = true; 3939 3940 I = IncomingBB->getFirstNonPHI()->getIterator(); 3941 E = IncomingBB->getTerminator()->getIterator(); 3942 while (++I != E) 3943 if (!isa<DbgInfoIntrinsic>(I)) { 3944 isTrivial = false; 3945 break; 3946 } 3947 3948 if (isTrivial) 3949 TrivialUnwindBlocks.insert(IncomingBB); 3950 } 3951 3952 // If no trivial unwind blocks, don't do any simplifications. 3953 if (TrivialUnwindBlocks.empty()) 3954 return false; 3955 3956 // Turn all invokes that unwind here into calls. 3957 for (auto *TrivialBB : TrivialUnwindBlocks) { 3958 // Blocks that will be simplified should be removed from the phi node. 3959 // Note there could be multiple edges to the resume block, and we need 3960 // to remove them all. 3961 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3962 BB->removePredecessor(TrivialBB, true); 3963 3964 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3965 PI != PE;) { 3966 BasicBlock *Pred = *PI++; 3967 removeUnwindEdge(Pred); 3968 } 3969 3970 // In each SimplifyCFG run, only the current processed block can be erased. 3971 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3972 // of erasing TrivialBB, we only remove the branch to the common resume 3973 // block so that we can later erase the resume block since it has no 3974 // predecessors. 3975 TrivialBB->getTerminator()->eraseFromParent(); 3976 new UnreachableInst(RI->getContext(), TrivialBB); 3977 } 3978 3979 // Delete the resume block if all its predecessors have been removed. 3980 if (pred_empty(BB)) 3981 BB->eraseFromParent(); 3982 3983 return !TrivialUnwindBlocks.empty(); 3984 } 3985 3986 // Check if cleanup block is empty 3987 static bool isCleanupBlockEmpty(Instruction *Inst, Instruction *RI) { 3988 BasicBlock::iterator I = Inst->getIterator(), E = RI->getIterator(); 3989 while (++I != E) { 3990 auto *II = dyn_cast<IntrinsicInst>(I); 3991 if (!II) 3992 return false; 3993 3994 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3995 switch (IntrinsicID) { 3996 case Intrinsic::dbg_declare: 3997 case Intrinsic::dbg_value: 3998 case Intrinsic::dbg_label: 3999 case Intrinsic::lifetime_end: 4000 break; 4001 default: 4002 return false; 4003 } 4004 } 4005 return true; 4006 } 4007 4008 // Simplify resume that is only used by a single (non-phi) landing pad. 4009 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4010 BasicBlock *BB = RI->getParent(); 4011 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4012 assert(RI->getValue() == LPInst && 4013 "Resume must unwind the exception that caused control to here"); 4014 4015 // Check that there are no other instructions except for debug intrinsics. 4016 if (!isCleanupBlockEmpty(LPInst, RI)) 4017 return false; 4018 4019 // Turn all invokes that unwind here into calls and delete the basic block. 4020 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4021 BasicBlock *Pred = *PI++; 4022 removeUnwindEdge(Pred); 4023 } 4024 4025 // The landingpad is now unreachable. Zap it. 4026 if (LoopHeaders) 4027 LoopHeaders->erase(BB); 4028 BB->eraseFromParent(); 4029 return true; 4030 } 4031 4032 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 4033 // If this is a trivial cleanup pad that executes no instructions, it can be 4034 // eliminated. If the cleanup pad continues to the caller, any predecessor 4035 // that is an EH pad will be updated to continue to the caller and any 4036 // predecessor that terminates with an invoke instruction will have its invoke 4037 // instruction converted to a call instruction. If the cleanup pad being 4038 // simplified does not continue to the caller, each predecessor will be 4039 // updated to continue to the unwind destination of the cleanup pad being 4040 // simplified. 4041 BasicBlock *BB = RI->getParent(); 4042 CleanupPadInst *CPInst = RI->getCleanupPad(); 4043 if (CPInst->getParent() != BB) 4044 // This isn't an empty cleanup. 4045 return false; 4046 4047 // We cannot kill the pad if it has multiple uses. This typically arises 4048 // from unreachable basic blocks. 4049 if (!CPInst->hasOneUse()) 4050 return false; 4051 4052 // Check that there are no other instructions except for benign intrinsics. 4053 if (!isCleanupBlockEmpty(CPInst, RI)) 4054 return false; 4055 4056 // If the cleanup return we are simplifying unwinds to the caller, this will 4057 // set UnwindDest to nullptr. 4058 BasicBlock *UnwindDest = RI->getUnwindDest(); 4059 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4060 4061 // We're about to remove BB from the control flow. Before we do, sink any 4062 // PHINodes into the unwind destination. Doing this before changing the 4063 // control flow avoids some potentially slow checks, since we can currently 4064 // be certain that UnwindDest and BB have no common predecessors (since they 4065 // are both EH pads). 4066 if (UnwindDest) { 4067 // First, go through the PHI nodes in UnwindDest and update any nodes that 4068 // reference the block we are removing 4069 for (BasicBlock::iterator I = UnwindDest->begin(), 4070 IE = DestEHPad->getIterator(); 4071 I != IE; ++I) { 4072 PHINode *DestPN = cast<PHINode>(I); 4073 4074 int Idx = DestPN->getBasicBlockIndex(BB); 4075 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4076 assert(Idx != -1); 4077 // This PHI node has an incoming value that corresponds to a control 4078 // path through the cleanup pad we are removing. If the incoming 4079 // value is in the cleanup pad, it must be a PHINode (because we 4080 // verified above that the block is otherwise empty). Otherwise, the 4081 // value is either a constant or a value that dominates the cleanup 4082 // pad being removed. 4083 // 4084 // Because BB and UnwindDest are both EH pads, all of their 4085 // predecessors must unwind to these blocks, and since no instruction 4086 // can have multiple unwind destinations, there will be no overlap in 4087 // incoming blocks between SrcPN and DestPN. 4088 Value *SrcVal = DestPN->getIncomingValue(Idx); 4089 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4090 4091 // Remove the entry for the block we are deleting. 4092 DestPN->removeIncomingValue(Idx, false); 4093 4094 if (SrcPN && SrcPN->getParent() == BB) { 4095 // If the incoming value was a PHI node in the cleanup pad we are 4096 // removing, we need to merge that PHI node's incoming values into 4097 // DestPN. 4098 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4099 SrcIdx != SrcE; ++SrcIdx) { 4100 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4101 SrcPN->getIncomingBlock(SrcIdx)); 4102 } 4103 } else { 4104 // Otherwise, the incoming value came from above BB and 4105 // so we can just reuse it. We must associate all of BB's 4106 // predecessors with this value. 4107 for (auto *pred : predecessors(BB)) { 4108 DestPN->addIncoming(SrcVal, pred); 4109 } 4110 } 4111 } 4112 4113 // Sink any remaining PHI nodes directly into UnwindDest. 4114 Instruction *InsertPt = DestEHPad; 4115 for (BasicBlock::iterator I = BB->begin(), 4116 IE = BB->getFirstNonPHI()->getIterator(); 4117 I != IE;) { 4118 // The iterator must be incremented here because the instructions are 4119 // being moved to another block. 4120 PHINode *PN = cast<PHINode>(I++); 4121 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4122 // If the PHI node has no uses or all of its uses are in this basic 4123 // block (meaning they are debug or lifetime intrinsics), just leave 4124 // it. It will be erased when we erase BB below. 4125 continue; 4126 4127 // Otherwise, sink this PHI node into UnwindDest. 4128 // Any predecessors to UnwindDest which are not already represented 4129 // must be back edges which inherit the value from the path through 4130 // BB. In this case, the PHI value must reference itself. 4131 for (auto *pred : predecessors(UnwindDest)) 4132 if (pred != BB) 4133 PN->addIncoming(PN, pred); 4134 PN->moveBefore(InsertPt); 4135 } 4136 } 4137 4138 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4139 // The iterator must be updated here because we are removing this pred. 4140 BasicBlock *PredBB = *PI++; 4141 if (UnwindDest == nullptr) { 4142 removeUnwindEdge(PredBB); 4143 } else { 4144 Instruction *TI = PredBB->getTerminator(); 4145 TI->replaceUsesOfWith(BB, UnwindDest); 4146 } 4147 } 4148 4149 // The cleanup pad is now unreachable. Zap it. 4150 BB->eraseFromParent(); 4151 return true; 4152 } 4153 4154 // Try to merge two cleanuppads together. 4155 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4156 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4157 // with. 4158 BasicBlock *UnwindDest = RI->getUnwindDest(); 4159 if (!UnwindDest) 4160 return false; 4161 4162 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4163 // be safe to merge without code duplication. 4164 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4165 return false; 4166 4167 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4168 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4169 if (!SuccessorCleanupPad) 4170 return false; 4171 4172 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4173 // Replace any uses of the successor cleanupad with the predecessor pad 4174 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4175 // funclet bundle operands. 4176 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4177 // Remove the old cleanuppad. 4178 SuccessorCleanupPad->eraseFromParent(); 4179 // Now, we simply replace the cleanupret with a branch to the unwind 4180 // destination. 4181 BranchInst::Create(UnwindDest, RI->getParent()); 4182 RI->eraseFromParent(); 4183 4184 return true; 4185 } 4186 4187 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4188 // It is possible to transiantly have an undef cleanuppad operand because we 4189 // have deleted some, but not all, dead blocks. 4190 // Eventually, this block will be deleted. 4191 if (isa<UndefValue>(RI->getOperand(0))) 4192 return false; 4193 4194 if (mergeCleanupPad(RI)) 4195 return true; 4196 4197 if (removeEmptyCleanup(RI)) 4198 return true; 4199 4200 return false; 4201 } 4202 4203 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4204 BasicBlock *BB = RI->getParent(); 4205 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4206 return false; 4207 4208 // Find predecessors that end with branches. 4209 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4210 SmallVector<BranchInst *, 8> CondBranchPreds; 4211 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4212 BasicBlock *P = *PI; 4213 Instruction *PTI = P->getTerminator(); 4214 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4215 if (BI->isUnconditional()) 4216 UncondBranchPreds.push_back(P); 4217 else 4218 CondBranchPreds.push_back(BI); 4219 } 4220 } 4221 4222 // If we found some, do the transformation! 4223 if (!UncondBranchPreds.empty() && DupRet) { 4224 while (!UncondBranchPreds.empty()) { 4225 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4226 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4227 << "INTO UNCOND BRANCH PRED: " << *Pred); 4228 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4229 } 4230 4231 // If we eliminated all predecessors of the block, delete the block now. 4232 if (pred_empty(BB)) { 4233 // We know there are no successors, so just nuke the block. 4234 if (LoopHeaders) 4235 LoopHeaders->erase(BB); 4236 BB->eraseFromParent(); 4237 } 4238 4239 return true; 4240 } 4241 4242 // Check out all of the conditional branches going to this return 4243 // instruction. If any of them just select between returns, change the 4244 // branch itself into a select/return pair. 4245 while (!CondBranchPreds.empty()) { 4246 BranchInst *BI = CondBranchPreds.pop_back_val(); 4247 4248 // Check to see if the non-BB successor is also a return block. 4249 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4250 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4251 SimplifyCondBranchToTwoReturns(BI, Builder)) 4252 return true; 4253 } 4254 return false; 4255 } 4256 4257 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4258 BasicBlock *BB = UI->getParent(); 4259 4260 bool Changed = false; 4261 4262 // If there are any instructions immediately before the unreachable that can 4263 // be removed, do so. 4264 while (UI->getIterator() != BB->begin()) { 4265 BasicBlock::iterator BBI = UI->getIterator(); 4266 --BBI; 4267 // Do not delete instructions that can have side effects which might cause 4268 // the unreachable to not be reachable; specifically, calls and volatile 4269 // operations may have this effect. 4270 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4271 break; 4272 4273 if (BBI->mayHaveSideEffects()) { 4274 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4275 if (SI->isVolatile()) 4276 break; 4277 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4278 if (LI->isVolatile()) 4279 break; 4280 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4281 if (RMWI->isVolatile()) 4282 break; 4283 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4284 if (CXI->isVolatile()) 4285 break; 4286 } else if (isa<CatchPadInst>(BBI)) { 4287 // A catchpad may invoke exception object constructors and such, which 4288 // in some languages can be arbitrary code, so be conservative by 4289 // default. 4290 // For CoreCLR, it just involves a type test, so can be removed. 4291 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4292 EHPersonality::CoreCLR) 4293 break; 4294 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4295 !isa<LandingPadInst>(BBI)) { 4296 break; 4297 } 4298 // Note that deleting LandingPad's here is in fact okay, although it 4299 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4300 // all the predecessors of this block will be the unwind edges of Invokes, 4301 // and we can therefore guarantee this block will be erased. 4302 } 4303 4304 // Delete this instruction (any uses are guaranteed to be dead) 4305 if (!BBI->use_empty()) 4306 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4307 BBI->eraseFromParent(); 4308 Changed = true; 4309 } 4310 4311 // If the unreachable instruction is the first in the block, take a gander 4312 // at all of the predecessors of this instruction, and simplify them. 4313 if (&BB->front() != UI) 4314 return Changed; 4315 4316 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4317 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4318 Instruction *TI = Preds[i]->getTerminator(); 4319 IRBuilder<> Builder(TI); 4320 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4321 if (BI->isUnconditional()) { 4322 assert(BI->getSuccessor(0) == BB && "Incorrect CFG"); 4323 new UnreachableInst(TI->getContext(), TI); 4324 TI->eraseFromParent(); 4325 Changed = true; 4326 } else { 4327 Value* Cond = BI->getCondition(); 4328 if (BI->getSuccessor(0) == BB) { 4329 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4330 Builder.CreateBr(BI->getSuccessor(1)); 4331 } else { 4332 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4333 Builder.CreateAssumption(Cond); 4334 Builder.CreateBr(BI->getSuccessor(0)); 4335 } 4336 EraseTerminatorAndDCECond(BI); 4337 Changed = true; 4338 } 4339 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4340 SwitchInstProfUpdateWrapper SU(*SI); 4341 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4342 if (i->getCaseSuccessor() != BB) { 4343 ++i; 4344 continue; 4345 } 4346 BB->removePredecessor(SU->getParent()); 4347 i = SU.removeCase(i); 4348 e = SU->case_end(); 4349 Changed = true; 4350 } 4351 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4352 if (II->getUnwindDest() == BB) { 4353 removeUnwindEdge(TI->getParent()); 4354 Changed = true; 4355 } 4356 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4357 if (CSI->getUnwindDest() == BB) { 4358 removeUnwindEdge(TI->getParent()); 4359 Changed = true; 4360 continue; 4361 } 4362 4363 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4364 E = CSI->handler_end(); 4365 I != E; ++I) { 4366 if (*I == BB) { 4367 CSI->removeHandler(I); 4368 --I; 4369 --E; 4370 Changed = true; 4371 } 4372 } 4373 if (CSI->getNumHandlers() == 0) { 4374 BasicBlock *CatchSwitchBB = CSI->getParent(); 4375 if (CSI->hasUnwindDest()) { 4376 // Redirect preds to the unwind dest 4377 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4378 } else { 4379 // Rewrite all preds to unwind to caller (or from invoke to call). 4380 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4381 for (BasicBlock *EHPred : EHPreds) 4382 removeUnwindEdge(EHPred); 4383 } 4384 // The catchswitch is no longer reachable. 4385 new UnreachableInst(CSI->getContext(), CSI); 4386 CSI->eraseFromParent(); 4387 Changed = true; 4388 } 4389 } else if (isa<CleanupReturnInst>(TI)) { 4390 new UnreachableInst(TI->getContext(), TI); 4391 TI->eraseFromParent(); 4392 Changed = true; 4393 } 4394 } 4395 4396 // If this block is now dead, remove it. 4397 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4398 // We know there are no successors, so just nuke the block. 4399 if (LoopHeaders) 4400 LoopHeaders->erase(BB); 4401 BB->eraseFromParent(); 4402 return true; 4403 } 4404 4405 return Changed; 4406 } 4407 4408 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4409 assert(Cases.size() >= 1); 4410 4411 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4412 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4413 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4414 return false; 4415 } 4416 return true; 4417 } 4418 4419 static void createUnreachableSwitchDefault(SwitchInst *Switch) { 4420 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4421 BasicBlock *NewDefaultBlock = 4422 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), ""); 4423 Switch->setDefaultDest(&*NewDefaultBlock); 4424 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front()); 4425 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4426 new UnreachableInst(Switch->getContext(), NewTerminator); 4427 EraseTerminatorAndDCECond(NewTerminator); 4428 } 4429 4430 /// Turn a switch with two reachable destinations into an integer range 4431 /// comparison and branch. 4432 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4433 IRBuilder<> &Builder) { 4434 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4435 4436 bool HasDefault = 4437 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4438 4439 // Partition the cases into two sets with different destinations. 4440 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4441 BasicBlock *DestB = nullptr; 4442 SmallVector<ConstantInt *, 16> CasesA; 4443 SmallVector<ConstantInt *, 16> CasesB; 4444 4445 for (auto Case : SI->cases()) { 4446 BasicBlock *Dest = Case.getCaseSuccessor(); 4447 if (!DestA) 4448 DestA = Dest; 4449 if (Dest == DestA) { 4450 CasesA.push_back(Case.getCaseValue()); 4451 continue; 4452 } 4453 if (!DestB) 4454 DestB = Dest; 4455 if (Dest == DestB) { 4456 CasesB.push_back(Case.getCaseValue()); 4457 continue; 4458 } 4459 return false; // More than two destinations. 4460 } 4461 4462 assert(DestA && DestB && 4463 "Single-destination switch should have been folded."); 4464 assert(DestA != DestB); 4465 assert(DestB != SI->getDefaultDest()); 4466 assert(!CasesB.empty() && "There must be non-default cases."); 4467 assert(!CasesA.empty() || HasDefault); 4468 4469 // Figure out if one of the sets of cases form a contiguous range. 4470 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4471 BasicBlock *ContiguousDest = nullptr; 4472 BasicBlock *OtherDest = nullptr; 4473 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4474 ContiguousCases = &CasesA; 4475 ContiguousDest = DestA; 4476 OtherDest = DestB; 4477 } else if (CasesAreContiguous(CasesB)) { 4478 ContiguousCases = &CasesB; 4479 ContiguousDest = DestB; 4480 OtherDest = DestA; 4481 } else 4482 return false; 4483 4484 // Start building the compare and branch. 4485 4486 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4487 Constant *NumCases = 4488 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4489 4490 Value *Sub = SI->getCondition(); 4491 if (!Offset->isNullValue()) 4492 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4493 4494 Value *Cmp; 4495 // If NumCases overflowed, then all possible values jump to the successor. 4496 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4497 Cmp = ConstantInt::getTrue(SI->getContext()); 4498 else 4499 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4500 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4501 4502 // Update weight for the newly-created conditional branch. 4503 if (HasBranchWeights(SI)) { 4504 SmallVector<uint64_t, 8> Weights; 4505 GetBranchWeights(SI, Weights); 4506 if (Weights.size() == 1 + SI->getNumCases()) { 4507 uint64_t TrueWeight = 0; 4508 uint64_t FalseWeight = 0; 4509 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4510 if (SI->getSuccessor(I) == ContiguousDest) 4511 TrueWeight += Weights[I]; 4512 else 4513 FalseWeight += Weights[I]; 4514 } 4515 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4516 TrueWeight /= 2; 4517 FalseWeight /= 2; 4518 } 4519 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4520 } 4521 } 4522 4523 // Prune obsolete incoming values off the successors' PHI nodes. 4524 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4525 unsigned PreviousEdges = ContiguousCases->size(); 4526 if (ContiguousDest == SI->getDefaultDest()) 4527 ++PreviousEdges; 4528 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4529 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4530 } 4531 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4532 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4533 if (OtherDest == SI->getDefaultDest()) 4534 ++PreviousEdges; 4535 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4536 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4537 } 4538 4539 // Clean up the default block - it may have phis or other instructions before 4540 // the unreachable terminator. 4541 if (!HasDefault) 4542 createUnreachableSwitchDefault(SI); 4543 4544 // Drop the switch. 4545 SI->eraseFromParent(); 4546 4547 return true; 4548 } 4549 4550 /// Compute masked bits for the condition of a switch 4551 /// and use it to remove dead cases. 4552 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4553 const DataLayout &DL) { 4554 Value *Cond = SI->getCondition(); 4555 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4556 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4557 4558 // We can also eliminate cases by determining that their values are outside of 4559 // the limited range of the condition based on how many significant (non-sign) 4560 // bits are in the condition value. 4561 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4562 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4563 4564 // Gather dead cases. 4565 SmallVector<ConstantInt *, 8> DeadCases; 4566 for (auto &Case : SI->cases()) { 4567 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4568 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4569 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4570 DeadCases.push_back(Case.getCaseValue()); 4571 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4572 << " is dead.\n"); 4573 } 4574 } 4575 4576 // If we can prove that the cases must cover all possible values, the 4577 // default destination becomes dead and we can remove it. If we know some 4578 // of the bits in the value, we can use that to more precisely compute the 4579 // number of possible unique case values. 4580 bool HasDefault = 4581 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4582 const unsigned NumUnknownBits = 4583 Bits - (Known.Zero | Known.One).countPopulation(); 4584 assert(NumUnknownBits <= Bits); 4585 if (HasDefault && DeadCases.empty() && 4586 NumUnknownBits < 64 /* avoid overflow */ && 4587 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4588 createUnreachableSwitchDefault(SI); 4589 return true; 4590 } 4591 4592 if (DeadCases.empty()) 4593 return false; 4594 4595 SwitchInstProfUpdateWrapper SIW(*SI); 4596 for (ConstantInt *DeadCase : DeadCases) { 4597 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4598 assert(CaseI != SI->case_default() && 4599 "Case was not found. Probably mistake in DeadCases forming."); 4600 // Prune unused values from PHI nodes. 4601 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4602 SIW.removeCase(CaseI); 4603 } 4604 4605 return true; 4606 } 4607 4608 /// If BB would be eligible for simplification by 4609 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4610 /// by an unconditional branch), look at the phi node for BB in the successor 4611 /// block and see if the incoming value is equal to CaseValue. If so, return 4612 /// the phi node, and set PhiIndex to BB's index in the phi node. 4613 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4614 BasicBlock *BB, int *PhiIndex) { 4615 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4616 return nullptr; // BB must be empty to be a candidate for simplification. 4617 if (!BB->getSinglePredecessor()) 4618 return nullptr; // BB must be dominated by the switch. 4619 4620 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4621 if (!Branch || !Branch->isUnconditional()) 4622 return nullptr; // Terminator must be unconditional branch. 4623 4624 BasicBlock *Succ = Branch->getSuccessor(0); 4625 4626 for (PHINode &PHI : Succ->phis()) { 4627 int Idx = PHI.getBasicBlockIndex(BB); 4628 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4629 4630 Value *InValue = PHI.getIncomingValue(Idx); 4631 if (InValue != CaseValue) 4632 continue; 4633 4634 *PhiIndex = Idx; 4635 return &PHI; 4636 } 4637 4638 return nullptr; 4639 } 4640 4641 /// Try to forward the condition of a switch instruction to a phi node 4642 /// dominated by the switch, if that would mean that some of the destination 4643 /// blocks of the switch can be folded away. Return true if a change is made. 4644 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4645 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4646 4647 ForwardingNodesMap ForwardingNodes; 4648 BasicBlock *SwitchBlock = SI->getParent(); 4649 bool Changed = false; 4650 for (auto &Case : SI->cases()) { 4651 ConstantInt *CaseValue = Case.getCaseValue(); 4652 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4653 4654 // Replace phi operands in successor blocks that are using the constant case 4655 // value rather than the switch condition variable: 4656 // switchbb: 4657 // switch i32 %x, label %default [ 4658 // i32 17, label %succ 4659 // ... 4660 // succ: 4661 // %r = phi i32 ... [ 17, %switchbb ] ... 4662 // --> 4663 // %r = phi i32 ... [ %x, %switchbb ] ... 4664 4665 for (PHINode &Phi : CaseDest->phis()) { 4666 // This only works if there is exactly 1 incoming edge from the switch to 4667 // a phi. If there is >1, that means multiple cases of the switch map to 1 4668 // value in the phi, and that phi value is not the switch condition. Thus, 4669 // this transform would not make sense (the phi would be invalid because 4670 // a phi can't have different incoming values from the same block). 4671 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4672 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4673 count(Phi.blocks(), SwitchBlock) == 1) { 4674 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4675 Changed = true; 4676 } 4677 } 4678 4679 // Collect phi nodes that are indirectly using this switch's case constants. 4680 int PhiIdx; 4681 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4682 ForwardingNodes[Phi].push_back(PhiIdx); 4683 } 4684 4685 for (auto &ForwardingNode : ForwardingNodes) { 4686 PHINode *Phi = ForwardingNode.first; 4687 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4688 if (Indexes.size() < 2) 4689 continue; 4690 4691 for (int Index : Indexes) 4692 Phi->setIncomingValue(Index, SI->getCondition()); 4693 Changed = true; 4694 } 4695 4696 return Changed; 4697 } 4698 4699 /// Return true if the backend will be able to handle 4700 /// initializing an array of constants like C. 4701 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4702 if (C->isThreadDependent()) 4703 return false; 4704 if (C->isDLLImportDependent()) 4705 return false; 4706 4707 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4708 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4709 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4710 return false; 4711 4712 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4713 if (!CE->isGEPWithNoNotionalOverIndexing()) 4714 return false; 4715 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4716 return false; 4717 } 4718 4719 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4720 return false; 4721 4722 return true; 4723 } 4724 4725 /// If V is a Constant, return it. Otherwise, try to look up 4726 /// its constant value in ConstantPool, returning 0 if it's not there. 4727 static Constant * 4728 LookupConstant(Value *V, 4729 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4730 if (Constant *C = dyn_cast<Constant>(V)) 4731 return C; 4732 return ConstantPool.lookup(V); 4733 } 4734 4735 /// Try to fold instruction I into a constant. This works for 4736 /// simple instructions such as binary operations where both operands are 4737 /// constant or can be replaced by constants from the ConstantPool. Returns the 4738 /// resulting constant on success, 0 otherwise. 4739 static Constant * 4740 ConstantFold(Instruction *I, const DataLayout &DL, 4741 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4742 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4743 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4744 if (!A) 4745 return nullptr; 4746 if (A->isAllOnesValue()) 4747 return LookupConstant(Select->getTrueValue(), ConstantPool); 4748 if (A->isNullValue()) 4749 return LookupConstant(Select->getFalseValue(), ConstantPool); 4750 return nullptr; 4751 } 4752 4753 SmallVector<Constant *, 4> COps; 4754 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4755 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4756 COps.push_back(A); 4757 else 4758 return nullptr; 4759 } 4760 4761 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4762 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4763 COps[1], DL); 4764 } 4765 4766 return ConstantFoldInstOperands(I, COps, DL); 4767 } 4768 4769 /// Try to determine the resulting constant values in phi nodes 4770 /// at the common destination basic block, *CommonDest, for one of the case 4771 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4772 /// case), of a switch instruction SI. 4773 static bool 4774 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4775 BasicBlock **CommonDest, 4776 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4777 const DataLayout &DL, const TargetTransformInfo &TTI) { 4778 // The block from which we enter the common destination. 4779 BasicBlock *Pred = SI->getParent(); 4780 4781 // If CaseDest is empty except for some side-effect free instructions through 4782 // which we can constant-propagate the CaseVal, continue to its successor. 4783 SmallDenseMap<Value *, Constant *> ConstantPool; 4784 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4785 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4786 if (I.isTerminator()) { 4787 // If the terminator is a simple branch, continue to the next block. 4788 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4789 return false; 4790 Pred = CaseDest; 4791 CaseDest = I.getSuccessor(0); 4792 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4793 // Instruction is side-effect free and constant. 4794 4795 // If the instruction has uses outside this block or a phi node slot for 4796 // the block, it is not safe to bypass the instruction since it would then 4797 // no longer dominate all its uses. 4798 for (auto &Use : I.uses()) { 4799 User *User = Use.getUser(); 4800 if (Instruction *I = dyn_cast<Instruction>(User)) 4801 if (I->getParent() == CaseDest) 4802 continue; 4803 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4804 if (Phi->getIncomingBlock(Use) == CaseDest) 4805 continue; 4806 return false; 4807 } 4808 4809 ConstantPool.insert(std::make_pair(&I, C)); 4810 } else { 4811 break; 4812 } 4813 } 4814 4815 // If we did not have a CommonDest before, use the current one. 4816 if (!*CommonDest) 4817 *CommonDest = CaseDest; 4818 // If the destination isn't the common one, abort. 4819 if (CaseDest != *CommonDest) 4820 return false; 4821 4822 // Get the values for this case from phi nodes in the destination block. 4823 for (PHINode &PHI : (*CommonDest)->phis()) { 4824 int Idx = PHI.getBasicBlockIndex(Pred); 4825 if (Idx == -1) 4826 continue; 4827 4828 Constant *ConstVal = 4829 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4830 if (!ConstVal) 4831 return false; 4832 4833 // Be conservative about which kinds of constants we support. 4834 if (!ValidLookupTableConstant(ConstVal, TTI)) 4835 return false; 4836 4837 Res.push_back(std::make_pair(&PHI, ConstVal)); 4838 } 4839 4840 return Res.size() > 0; 4841 } 4842 4843 // Helper function used to add CaseVal to the list of cases that generate 4844 // Result. Returns the updated number of cases that generate this result. 4845 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4846 SwitchCaseResultVectorTy &UniqueResults, 4847 Constant *Result) { 4848 for (auto &I : UniqueResults) { 4849 if (I.first == Result) { 4850 I.second.push_back(CaseVal); 4851 return I.second.size(); 4852 } 4853 } 4854 UniqueResults.push_back( 4855 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4856 return 1; 4857 } 4858 4859 // Helper function that initializes a map containing 4860 // results for the PHI node of the common destination block for a switch 4861 // instruction. Returns false if multiple PHI nodes have been found or if 4862 // there is not a common destination block for the switch. 4863 static bool 4864 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4865 SwitchCaseResultVectorTy &UniqueResults, 4866 Constant *&DefaultResult, const DataLayout &DL, 4867 const TargetTransformInfo &TTI, 4868 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4869 for (auto &I : SI->cases()) { 4870 ConstantInt *CaseVal = I.getCaseValue(); 4871 4872 // Resulting value at phi nodes for this case value. 4873 SwitchCaseResultsTy Results; 4874 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4875 DL, TTI)) 4876 return false; 4877 4878 // Only one value per case is permitted. 4879 if (Results.size() > 1) 4880 return false; 4881 4882 // Add the case->result mapping to UniqueResults. 4883 const uintptr_t NumCasesForResult = 4884 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4885 4886 // Early out if there are too many cases for this result. 4887 if (NumCasesForResult > MaxCasesPerResult) 4888 return false; 4889 4890 // Early out if there are too many unique results. 4891 if (UniqueResults.size() > MaxUniqueResults) 4892 return false; 4893 4894 // Check the PHI consistency. 4895 if (!PHI) 4896 PHI = Results[0].first; 4897 else if (PHI != Results[0].first) 4898 return false; 4899 } 4900 // Find the default result value. 4901 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4902 BasicBlock *DefaultDest = SI->getDefaultDest(); 4903 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4904 DL, TTI); 4905 // If the default value is not found abort unless the default destination 4906 // is unreachable. 4907 DefaultResult = 4908 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4909 if ((!DefaultResult && 4910 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4911 return false; 4912 4913 return true; 4914 } 4915 4916 // Helper function that checks if it is possible to transform a switch with only 4917 // two cases (or two cases + default) that produces a result into a select. 4918 // Example: 4919 // switch (a) { 4920 // case 10: %0 = icmp eq i32 %a, 10 4921 // return 10; %1 = select i1 %0, i32 10, i32 4 4922 // case 20: ----> %2 = icmp eq i32 %a, 20 4923 // return 2; %3 = select i1 %2, i32 2, i32 %1 4924 // default: 4925 // return 4; 4926 // } 4927 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4928 Constant *DefaultResult, Value *Condition, 4929 IRBuilder<> &Builder) { 4930 assert(ResultVector.size() == 2 && 4931 "We should have exactly two unique results at this point"); 4932 // If we are selecting between only two cases transform into a simple 4933 // select or a two-way select if default is possible. 4934 if (ResultVector[0].second.size() == 1 && 4935 ResultVector[1].second.size() == 1) { 4936 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4937 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4938 4939 bool DefaultCanTrigger = DefaultResult; 4940 Value *SelectValue = ResultVector[1].first; 4941 if (DefaultCanTrigger) { 4942 Value *const ValueCompare = 4943 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4944 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4945 DefaultResult, "switch.select"); 4946 } 4947 Value *const ValueCompare = 4948 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4949 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4950 SelectValue, "switch.select"); 4951 } 4952 4953 return nullptr; 4954 } 4955 4956 // Helper function to cleanup a switch instruction that has been converted into 4957 // a select, fixing up PHI nodes and basic blocks. 4958 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4959 Value *SelectValue, 4960 IRBuilder<> &Builder) { 4961 BasicBlock *SelectBB = SI->getParent(); 4962 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4963 PHI->removeIncomingValue(SelectBB); 4964 PHI->addIncoming(SelectValue, SelectBB); 4965 4966 Builder.CreateBr(PHI->getParent()); 4967 4968 // Remove the switch. 4969 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4970 BasicBlock *Succ = SI->getSuccessor(i); 4971 4972 if (Succ == PHI->getParent()) 4973 continue; 4974 Succ->removePredecessor(SelectBB); 4975 } 4976 SI->eraseFromParent(); 4977 } 4978 4979 /// If the switch is only used to initialize one or more 4980 /// phi nodes in a common successor block with only two different 4981 /// constant values, replace the switch with select. 4982 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4983 const DataLayout &DL, 4984 const TargetTransformInfo &TTI) { 4985 Value *const Cond = SI->getCondition(); 4986 PHINode *PHI = nullptr; 4987 BasicBlock *CommonDest = nullptr; 4988 Constant *DefaultResult; 4989 SwitchCaseResultVectorTy UniqueResults; 4990 // Collect all the cases that will deliver the same value from the switch. 4991 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4992 DL, TTI, 2, 1)) 4993 return false; 4994 // Selects choose between maximum two values. 4995 if (UniqueResults.size() != 2) 4996 return false; 4997 assert(PHI != nullptr && "PHI for value select not found"); 4998 4999 Builder.SetInsertPoint(SI); 5000 Value *SelectValue = 5001 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5002 if (SelectValue) { 5003 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 5004 return true; 5005 } 5006 // The switch couldn't be converted into a select. 5007 return false; 5008 } 5009 5010 namespace { 5011 5012 /// This class represents a lookup table that can be used to replace a switch. 5013 class SwitchLookupTable { 5014 public: 5015 /// Create a lookup table to use as a switch replacement with the contents 5016 /// of Values, using DefaultValue to fill any holes in the table. 5017 SwitchLookupTable( 5018 Module &M, uint64_t TableSize, ConstantInt *Offset, 5019 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5020 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5021 5022 /// Build instructions with Builder to retrieve the value at 5023 /// the position given by Index in the lookup table. 5024 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5025 5026 /// Return true if a table with TableSize elements of 5027 /// type ElementType would fit in a target-legal register. 5028 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5029 Type *ElementType); 5030 5031 private: 5032 // Depending on the contents of the table, it can be represented in 5033 // different ways. 5034 enum { 5035 // For tables where each element contains the same value, we just have to 5036 // store that single value and return it for each lookup. 5037 SingleValueKind, 5038 5039 // For tables where there is a linear relationship between table index 5040 // and values. We calculate the result with a simple multiplication 5041 // and addition instead of a table lookup. 5042 LinearMapKind, 5043 5044 // For small tables with integer elements, we can pack them into a bitmap 5045 // that fits into a target-legal register. Values are retrieved by 5046 // shift and mask operations. 5047 BitMapKind, 5048 5049 // The table is stored as an array of values. Values are retrieved by load 5050 // instructions from the table. 5051 ArrayKind 5052 } Kind; 5053 5054 // For SingleValueKind, this is the single value. 5055 Constant *SingleValue = nullptr; 5056 5057 // For BitMapKind, this is the bitmap. 5058 ConstantInt *BitMap = nullptr; 5059 IntegerType *BitMapElementTy = nullptr; 5060 5061 // For LinearMapKind, these are the constants used to derive the value. 5062 ConstantInt *LinearOffset = nullptr; 5063 ConstantInt *LinearMultiplier = nullptr; 5064 5065 // For ArrayKind, this is the array. 5066 GlobalVariable *Array = nullptr; 5067 }; 5068 5069 } // end anonymous namespace 5070 5071 SwitchLookupTable::SwitchLookupTable( 5072 Module &M, uint64_t TableSize, ConstantInt *Offset, 5073 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5074 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5075 assert(Values.size() && "Can't build lookup table without values!"); 5076 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5077 5078 // If all values in the table are equal, this is that value. 5079 SingleValue = Values.begin()->second; 5080 5081 Type *ValueType = Values.begin()->second->getType(); 5082 5083 // Build up the table contents. 5084 SmallVector<Constant *, 64> TableContents(TableSize); 5085 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5086 ConstantInt *CaseVal = Values[I].first; 5087 Constant *CaseRes = Values[I].second; 5088 assert(CaseRes->getType() == ValueType); 5089 5090 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5091 TableContents[Idx] = CaseRes; 5092 5093 if (CaseRes != SingleValue) 5094 SingleValue = nullptr; 5095 } 5096 5097 // Fill in any holes in the table with the default result. 5098 if (Values.size() < TableSize) { 5099 assert(DefaultValue && 5100 "Need a default value to fill the lookup table holes."); 5101 assert(DefaultValue->getType() == ValueType); 5102 for (uint64_t I = 0; I < TableSize; ++I) { 5103 if (!TableContents[I]) 5104 TableContents[I] = DefaultValue; 5105 } 5106 5107 if (DefaultValue != SingleValue) 5108 SingleValue = nullptr; 5109 } 5110 5111 // If each element in the table contains the same value, we only need to store 5112 // that single value. 5113 if (SingleValue) { 5114 Kind = SingleValueKind; 5115 return; 5116 } 5117 5118 // Check if we can derive the value with a linear transformation from the 5119 // table index. 5120 if (isa<IntegerType>(ValueType)) { 5121 bool LinearMappingPossible = true; 5122 APInt PrevVal; 5123 APInt DistToPrev; 5124 assert(TableSize >= 2 && "Should be a SingleValue table."); 5125 // Check if there is the same distance between two consecutive values. 5126 for (uint64_t I = 0; I < TableSize; ++I) { 5127 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5128 if (!ConstVal) { 5129 // This is an undef. We could deal with it, but undefs in lookup tables 5130 // are very seldom. It's probably not worth the additional complexity. 5131 LinearMappingPossible = false; 5132 break; 5133 } 5134 const APInt &Val = ConstVal->getValue(); 5135 if (I != 0) { 5136 APInt Dist = Val - PrevVal; 5137 if (I == 1) { 5138 DistToPrev = Dist; 5139 } else if (Dist != DistToPrev) { 5140 LinearMappingPossible = false; 5141 break; 5142 } 5143 } 5144 PrevVal = Val; 5145 } 5146 if (LinearMappingPossible) { 5147 LinearOffset = cast<ConstantInt>(TableContents[0]); 5148 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5149 Kind = LinearMapKind; 5150 ++NumLinearMaps; 5151 return; 5152 } 5153 } 5154 5155 // If the type is integer and the table fits in a register, build a bitmap. 5156 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5157 IntegerType *IT = cast<IntegerType>(ValueType); 5158 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5159 for (uint64_t I = TableSize; I > 0; --I) { 5160 TableInt <<= IT->getBitWidth(); 5161 // Insert values into the bitmap. Undef values are set to zero. 5162 if (!isa<UndefValue>(TableContents[I - 1])) { 5163 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5164 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5165 } 5166 } 5167 BitMap = ConstantInt::get(M.getContext(), TableInt); 5168 BitMapElementTy = IT; 5169 Kind = BitMapKind; 5170 ++NumBitMaps; 5171 return; 5172 } 5173 5174 // Store the table in an array. 5175 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5176 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5177 5178 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5179 GlobalVariable::PrivateLinkage, Initializer, 5180 "switch.table." + FuncName); 5181 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5182 // Set the alignment to that of an array items. We will be only loading one 5183 // value out of it. 5184 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5185 Kind = ArrayKind; 5186 } 5187 5188 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5189 switch (Kind) { 5190 case SingleValueKind: 5191 return SingleValue; 5192 case LinearMapKind: { 5193 // Derive the result value from the input value. 5194 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5195 false, "switch.idx.cast"); 5196 if (!LinearMultiplier->isOne()) 5197 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5198 if (!LinearOffset->isZero()) 5199 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5200 return Result; 5201 } 5202 case BitMapKind: { 5203 // Type of the bitmap (e.g. i59). 5204 IntegerType *MapTy = BitMap->getType(); 5205 5206 // Cast Index to the same type as the bitmap. 5207 // Note: The Index is <= the number of elements in the table, so 5208 // truncating it to the width of the bitmask is safe. 5209 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5210 5211 // Multiply the shift amount by the element width. 5212 ShiftAmt = Builder.CreateMul( 5213 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5214 "switch.shiftamt"); 5215 5216 // Shift down. 5217 Value *DownShifted = 5218 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5219 // Mask off. 5220 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5221 } 5222 case ArrayKind: { 5223 // Make sure the table index will not overflow when treated as signed. 5224 IntegerType *IT = cast<IntegerType>(Index->getType()); 5225 uint64_t TableSize = 5226 Array->getInitializer()->getType()->getArrayNumElements(); 5227 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5228 Index = Builder.CreateZExt( 5229 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5230 "switch.tableidx.zext"); 5231 5232 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5233 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5234 GEPIndices, "switch.gep"); 5235 return Builder.CreateLoad( 5236 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5237 "switch.load"); 5238 } 5239 } 5240 llvm_unreachable("Unknown lookup table kind!"); 5241 } 5242 5243 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5244 uint64_t TableSize, 5245 Type *ElementType) { 5246 auto *IT = dyn_cast<IntegerType>(ElementType); 5247 if (!IT) 5248 return false; 5249 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5250 // are <= 15, we could try to narrow the type. 5251 5252 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5253 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5254 return false; 5255 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5256 } 5257 5258 /// Determine whether a lookup table should be built for this switch, based on 5259 /// the number of cases, size of the table, and the types of the results. 5260 static bool 5261 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5262 const TargetTransformInfo &TTI, const DataLayout &DL, 5263 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5264 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5265 return false; // TableSize overflowed, or mul below might overflow. 5266 5267 bool AllTablesFitInRegister = true; 5268 bool HasIllegalType = false; 5269 for (const auto &I : ResultTypes) { 5270 Type *Ty = I.second; 5271 5272 // Saturate this flag to true. 5273 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5274 5275 // Saturate this flag to false. 5276 AllTablesFitInRegister = 5277 AllTablesFitInRegister && 5278 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5279 5280 // If both flags saturate, we're done. NOTE: This *only* works with 5281 // saturating flags, and all flags have to saturate first due to the 5282 // non-deterministic behavior of iterating over a dense map. 5283 if (HasIllegalType && !AllTablesFitInRegister) 5284 break; 5285 } 5286 5287 // If each table would fit in a register, we should build it anyway. 5288 if (AllTablesFitInRegister) 5289 return true; 5290 5291 // Don't build a table that doesn't fit in-register if it has illegal types. 5292 if (HasIllegalType) 5293 return false; 5294 5295 // The table density should be at least 40%. This is the same criterion as for 5296 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5297 // FIXME: Find the best cut-off. 5298 return SI->getNumCases() * 10 >= TableSize * 4; 5299 } 5300 5301 /// Try to reuse the switch table index compare. Following pattern: 5302 /// \code 5303 /// if (idx < tablesize) 5304 /// r = table[idx]; // table does not contain default_value 5305 /// else 5306 /// r = default_value; 5307 /// if (r != default_value) 5308 /// ... 5309 /// \endcode 5310 /// Is optimized to: 5311 /// \code 5312 /// cond = idx < tablesize; 5313 /// if (cond) 5314 /// r = table[idx]; 5315 /// else 5316 /// r = default_value; 5317 /// if (cond) 5318 /// ... 5319 /// \endcode 5320 /// Jump threading will then eliminate the second if(cond). 5321 static void reuseTableCompare( 5322 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5323 Constant *DefaultValue, 5324 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5325 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5326 if (!CmpInst) 5327 return; 5328 5329 // We require that the compare is in the same block as the phi so that jump 5330 // threading can do its work afterwards. 5331 if (CmpInst->getParent() != PhiBlock) 5332 return; 5333 5334 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5335 if (!CmpOp1) 5336 return; 5337 5338 Value *RangeCmp = RangeCheckBranch->getCondition(); 5339 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5340 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5341 5342 // Check if the compare with the default value is constant true or false. 5343 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5344 DefaultValue, CmpOp1, true); 5345 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5346 return; 5347 5348 // Check if the compare with the case values is distinct from the default 5349 // compare result. 5350 for (auto ValuePair : Values) { 5351 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5352 ValuePair.second, CmpOp1, true); 5353 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5354 return; 5355 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5356 "Expect true or false as compare result."); 5357 } 5358 5359 // Check if the branch instruction dominates the phi node. It's a simple 5360 // dominance check, but sufficient for our needs. 5361 // Although this check is invariant in the calling loops, it's better to do it 5362 // at this late stage. Practically we do it at most once for a switch. 5363 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5364 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5365 BasicBlock *Pred = *PI; 5366 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5367 return; 5368 } 5369 5370 if (DefaultConst == FalseConst) { 5371 // The compare yields the same result. We can replace it. 5372 CmpInst->replaceAllUsesWith(RangeCmp); 5373 ++NumTableCmpReuses; 5374 } else { 5375 // The compare yields the same result, just inverted. We can replace it. 5376 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5377 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5378 RangeCheckBranch); 5379 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5380 ++NumTableCmpReuses; 5381 } 5382 } 5383 5384 /// If the switch is only used to initialize one or more phi nodes in a common 5385 /// successor block with different constant values, replace the switch with 5386 /// lookup tables. 5387 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5388 const DataLayout &DL, 5389 const TargetTransformInfo &TTI) { 5390 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5391 5392 Function *Fn = SI->getParent()->getParent(); 5393 // Only build lookup table when we have a target that supports it or the 5394 // attribute is not set. 5395 if (!TTI.shouldBuildLookupTables() || 5396 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5397 return false; 5398 5399 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5400 // split off a dense part and build a lookup table for that. 5401 5402 // FIXME: This creates arrays of GEPs to constant strings, which means each 5403 // GEP needs a runtime relocation in PIC code. We should just build one big 5404 // string and lookup indices into that. 5405 5406 // Ignore switches with less than three cases. Lookup tables will not make 5407 // them faster, so we don't analyze them. 5408 if (SI->getNumCases() < 3) 5409 return false; 5410 5411 // Figure out the corresponding result for each case value and phi node in the 5412 // common destination, as well as the min and max case values. 5413 assert(!SI->cases().empty()); 5414 SwitchInst::CaseIt CI = SI->case_begin(); 5415 ConstantInt *MinCaseVal = CI->getCaseValue(); 5416 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5417 5418 BasicBlock *CommonDest = nullptr; 5419 5420 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5421 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5422 5423 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5424 SmallDenseMap<PHINode *, Type *> ResultTypes; 5425 SmallVector<PHINode *, 4> PHIs; 5426 5427 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5428 ConstantInt *CaseVal = CI->getCaseValue(); 5429 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5430 MinCaseVal = CaseVal; 5431 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5432 MaxCaseVal = CaseVal; 5433 5434 // Resulting value at phi nodes for this case value. 5435 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5436 ResultsTy Results; 5437 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5438 Results, DL, TTI)) 5439 return false; 5440 5441 // Append the result from this case to the list for each phi. 5442 for (const auto &I : Results) { 5443 PHINode *PHI = I.first; 5444 Constant *Value = I.second; 5445 if (!ResultLists.count(PHI)) 5446 PHIs.push_back(PHI); 5447 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5448 } 5449 } 5450 5451 // Keep track of the result types. 5452 for (PHINode *PHI : PHIs) { 5453 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5454 } 5455 5456 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5457 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5458 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5459 bool TableHasHoles = (NumResults < TableSize); 5460 5461 // If the table has holes, we need a constant result for the default case 5462 // or a bitmask that fits in a register. 5463 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5464 bool HasDefaultResults = 5465 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5466 DefaultResultsList, DL, TTI); 5467 5468 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5469 if (NeedMask) { 5470 // As an extra penalty for the validity test we require more cases. 5471 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5472 return false; 5473 if (!DL.fitsInLegalInteger(TableSize)) 5474 return false; 5475 } 5476 5477 for (const auto &I : DefaultResultsList) { 5478 PHINode *PHI = I.first; 5479 Constant *Result = I.second; 5480 DefaultResults[PHI] = Result; 5481 } 5482 5483 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5484 return false; 5485 5486 // Create the BB that does the lookups. 5487 Module &Mod = *CommonDest->getParent()->getParent(); 5488 BasicBlock *LookupBB = BasicBlock::Create( 5489 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5490 5491 // Compute the table index value. 5492 Builder.SetInsertPoint(SI); 5493 Value *TableIndex; 5494 if (MinCaseVal->isNullValue()) 5495 TableIndex = SI->getCondition(); 5496 else 5497 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5498 "switch.tableidx"); 5499 5500 // Compute the maximum table size representable by the integer type we are 5501 // switching upon. 5502 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5503 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5504 assert(MaxTableSize >= TableSize && 5505 "It is impossible for a switch to have more entries than the max " 5506 "representable value of its input integer type's size."); 5507 5508 // If the default destination is unreachable, or if the lookup table covers 5509 // all values of the conditional variable, branch directly to the lookup table 5510 // BB. Otherwise, check that the condition is within the case range. 5511 const bool DefaultIsReachable = 5512 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5513 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5514 BranchInst *RangeCheckBranch = nullptr; 5515 5516 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5517 Builder.CreateBr(LookupBB); 5518 // Note: We call removeProdecessor later since we need to be able to get the 5519 // PHI value for the default case in case we're using a bit mask. 5520 } else { 5521 Value *Cmp = Builder.CreateICmpULT( 5522 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5523 RangeCheckBranch = 5524 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5525 } 5526 5527 // Populate the BB that does the lookups. 5528 Builder.SetInsertPoint(LookupBB); 5529 5530 if (NeedMask) { 5531 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5532 // re-purposed to do the hole check, and we create a new LookupBB. 5533 BasicBlock *MaskBB = LookupBB; 5534 MaskBB->setName("switch.hole_check"); 5535 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5536 CommonDest->getParent(), CommonDest); 5537 5538 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5539 // unnecessary illegal types. 5540 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5541 APInt MaskInt(TableSizePowOf2, 0); 5542 APInt One(TableSizePowOf2, 1); 5543 // Build bitmask; fill in a 1 bit for every case. 5544 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5545 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5546 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5547 .getLimitedValue(); 5548 MaskInt |= One << Idx; 5549 } 5550 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5551 5552 // Get the TableIndex'th bit of the bitmask. 5553 // If this bit is 0 (meaning hole) jump to the default destination, 5554 // else continue with table lookup. 5555 IntegerType *MapTy = TableMask->getType(); 5556 Value *MaskIndex = 5557 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5558 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5559 Value *LoBit = Builder.CreateTrunc( 5560 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5561 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5562 5563 Builder.SetInsertPoint(LookupBB); 5564 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5565 } 5566 5567 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5568 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5569 // do not delete PHINodes here. 5570 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5571 /*KeepOneInputPHIs=*/true); 5572 } 5573 5574 bool ReturnedEarly = false; 5575 for (PHINode *PHI : PHIs) { 5576 const ResultListTy &ResultList = ResultLists[PHI]; 5577 5578 // If using a bitmask, use any value to fill the lookup table holes. 5579 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5580 StringRef FuncName = Fn->getName(); 5581 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5582 FuncName); 5583 5584 Value *Result = Table.BuildLookup(TableIndex, Builder); 5585 5586 // If the result is used to return immediately from the function, we want to 5587 // do that right here. 5588 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5589 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5590 Builder.CreateRet(Result); 5591 ReturnedEarly = true; 5592 break; 5593 } 5594 5595 // Do a small peephole optimization: re-use the switch table compare if 5596 // possible. 5597 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5598 BasicBlock *PhiBlock = PHI->getParent(); 5599 // Search for compare instructions which use the phi. 5600 for (auto *User : PHI->users()) { 5601 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5602 } 5603 } 5604 5605 PHI->addIncoming(Result, LookupBB); 5606 } 5607 5608 if (!ReturnedEarly) 5609 Builder.CreateBr(CommonDest); 5610 5611 // Remove the switch. 5612 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5613 BasicBlock *Succ = SI->getSuccessor(i); 5614 5615 if (Succ == SI->getDefaultDest()) 5616 continue; 5617 Succ->removePredecessor(SI->getParent()); 5618 } 5619 SI->eraseFromParent(); 5620 5621 ++NumLookupTables; 5622 if (NeedMask) 5623 ++NumLookupTablesHoles; 5624 return true; 5625 } 5626 5627 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5628 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5629 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5630 uint64_t Range = Diff + 1; 5631 uint64_t NumCases = Values.size(); 5632 // 40% is the default density for building a jump table in optsize/minsize mode. 5633 uint64_t MinDensity = 40; 5634 5635 return NumCases * 100 >= Range * MinDensity; 5636 } 5637 5638 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5639 /// of cases. 5640 /// 5641 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5642 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5643 /// 5644 /// This converts a sparse switch into a dense switch which allows better 5645 /// lowering and could also allow transforming into a lookup table. 5646 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5647 const DataLayout &DL, 5648 const TargetTransformInfo &TTI) { 5649 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5650 if (CondTy->getIntegerBitWidth() > 64 || 5651 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5652 return false; 5653 // Only bother with this optimization if there are more than 3 switch cases; 5654 // SDAG will only bother creating jump tables for 4 or more cases. 5655 if (SI->getNumCases() < 4) 5656 return false; 5657 5658 // This transform is agnostic to the signedness of the input or case values. We 5659 // can treat the case values as signed or unsigned. We can optimize more common 5660 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5661 // as signed. 5662 SmallVector<int64_t,4> Values; 5663 for (auto &C : SI->cases()) 5664 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5665 llvm::sort(Values); 5666 5667 // If the switch is already dense, there's nothing useful to do here. 5668 if (isSwitchDense(Values)) 5669 return false; 5670 5671 // First, transform the values such that they start at zero and ascend. 5672 int64_t Base = Values[0]; 5673 for (auto &V : Values) 5674 V -= (uint64_t)(Base); 5675 5676 // Now we have signed numbers that have been shifted so that, given enough 5677 // precision, there are no negative values. Since the rest of the transform 5678 // is bitwise only, we switch now to an unsigned representation. 5679 5680 // This transform can be done speculatively because it is so cheap - it 5681 // results in a single rotate operation being inserted. 5682 // FIXME: It's possible that optimizing a switch on powers of two might also 5683 // be beneficial - flag values are often powers of two and we could use a CLZ 5684 // as the key function. 5685 5686 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 5687 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 5688 // less than 64. 5689 unsigned Shift = 64; 5690 for (auto &V : Values) 5691 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 5692 assert(Shift < 64); 5693 if (Shift > 0) 5694 for (auto &V : Values) 5695 V = (int64_t)((uint64_t)V >> Shift); 5696 5697 if (!isSwitchDense(Values)) 5698 // Transform didn't create a dense switch. 5699 return false; 5700 5701 // The obvious transform is to shift the switch condition right and emit a 5702 // check that the condition actually cleanly divided by GCD, i.e. 5703 // C & (1 << Shift - 1) == 0 5704 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5705 // 5706 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5707 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5708 // are nonzero then the switch condition will be very large and will hit the 5709 // default case. 5710 5711 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5712 Builder.SetInsertPoint(SI); 5713 auto *ShiftC = ConstantInt::get(Ty, Shift); 5714 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5715 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5716 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5717 auto *Rot = Builder.CreateOr(LShr, Shl); 5718 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5719 5720 for (auto Case : SI->cases()) { 5721 auto *Orig = Case.getCaseValue(); 5722 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5723 Case.setValue( 5724 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5725 } 5726 return true; 5727 } 5728 5729 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5730 BasicBlock *BB = SI->getParent(); 5731 5732 if (isValueEqualityComparison(SI)) { 5733 // If we only have one predecessor, and if it is a branch on this value, 5734 // see if that predecessor totally determines the outcome of this switch. 5735 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5736 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5737 return requestResimplify(); 5738 5739 Value *Cond = SI->getCondition(); 5740 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5741 if (SimplifySwitchOnSelect(SI, Select)) 5742 return requestResimplify(); 5743 5744 // If the block only contains the switch, see if we can fold the block 5745 // away into any preds. 5746 if (SI == &*BB->instructionsWithoutDebug().begin()) 5747 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5748 return requestResimplify(); 5749 } 5750 5751 // Try to transform the switch into an icmp and a branch. 5752 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5753 return requestResimplify(); 5754 5755 // Remove unreachable cases. 5756 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5757 return requestResimplify(); 5758 5759 if (switchToSelect(SI, Builder, DL, TTI)) 5760 return requestResimplify(); 5761 5762 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5763 return requestResimplify(); 5764 5765 // The conversion from switch to lookup tables results in difficult-to-analyze 5766 // code and makes pruning branches much harder. This is a problem if the 5767 // switch expression itself can still be restricted as a result of inlining or 5768 // CVP. Therefore, only apply this transformation during late stages of the 5769 // optimisation pipeline. 5770 if (Options.ConvertSwitchToLookupTable && 5771 SwitchToLookupTable(SI, Builder, DL, TTI)) 5772 return requestResimplify(); 5773 5774 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5775 return requestResimplify(); 5776 5777 return false; 5778 } 5779 5780 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 5781 BasicBlock *BB = IBI->getParent(); 5782 bool Changed = false; 5783 5784 // Eliminate redundant destinations. 5785 SmallPtrSet<Value *, 8> Succs; 5786 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5787 BasicBlock *Dest = IBI->getDestination(i); 5788 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5789 Dest->removePredecessor(BB); 5790 IBI->removeDestination(i); 5791 --i; 5792 --e; 5793 Changed = true; 5794 } 5795 } 5796 5797 if (IBI->getNumDestinations() == 0) { 5798 // If the indirectbr has no successors, change it to unreachable. 5799 new UnreachableInst(IBI->getContext(), IBI); 5800 EraseTerminatorAndDCECond(IBI); 5801 return true; 5802 } 5803 5804 if (IBI->getNumDestinations() == 1) { 5805 // If the indirectbr has one successor, change it to a direct branch. 5806 BranchInst::Create(IBI->getDestination(0), IBI); 5807 EraseTerminatorAndDCECond(IBI); 5808 return true; 5809 } 5810 5811 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5812 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5813 return requestResimplify(); 5814 } 5815 return Changed; 5816 } 5817 5818 /// Given an block with only a single landing pad and a unconditional branch 5819 /// try to find another basic block which this one can be merged with. This 5820 /// handles cases where we have multiple invokes with unique landing pads, but 5821 /// a shared handler. 5822 /// 5823 /// We specifically choose to not worry about merging non-empty blocks 5824 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5825 /// practice, the optimizer produces empty landing pad blocks quite frequently 5826 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5827 /// sinking in this file) 5828 /// 5829 /// This is primarily a code size optimization. We need to avoid performing 5830 /// any transform which might inhibit optimization (such as our ability to 5831 /// specialize a particular handler via tail commoning). We do this by not 5832 /// merging any blocks which require us to introduce a phi. Since the same 5833 /// values are flowing through both blocks, we don't lose any ability to 5834 /// specialize. If anything, we make such specialization more likely. 5835 /// 5836 /// TODO - This transformation could remove entries from a phi in the target 5837 /// block when the inputs in the phi are the same for the two blocks being 5838 /// merged. In some cases, this could result in removal of the PHI entirely. 5839 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5840 BasicBlock *BB) { 5841 auto Succ = BB->getUniqueSuccessor(); 5842 assert(Succ); 5843 // If there's a phi in the successor block, we'd likely have to introduce 5844 // a phi into the merged landing pad block. 5845 if (isa<PHINode>(*Succ->begin())) 5846 return false; 5847 5848 for (BasicBlock *OtherPred : predecessors(Succ)) { 5849 if (BB == OtherPred) 5850 continue; 5851 BasicBlock::iterator I = OtherPred->begin(); 5852 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5853 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5854 continue; 5855 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5856 ; 5857 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5858 if (!BI2 || !BI2->isIdenticalTo(BI)) 5859 continue; 5860 5861 // We've found an identical block. Update our predecessors to take that 5862 // path instead and make ourselves dead. 5863 SmallPtrSet<BasicBlock *, 16> Preds; 5864 Preds.insert(pred_begin(BB), pred_end(BB)); 5865 for (BasicBlock *Pred : Preds) { 5866 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5867 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5868 "unexpected successor"); 5869 II->setUnwindDest(OtherPred); 5870 } 5871 5872 // The debug info in OtherPred doesn't cover the merged control flow that 5873 // used to go through BB. We need to delete it or update it. 5874 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5875 Instruction &Inst = *I; 5876 I++; 5877 if (isa<DbgInfoIntrinsic>(Inst)) 5878 Inst.eraseFromParent(); 5879 } 5880 5881 SmallPtrSet<BasicBlock *, 16> Succs; 5882 Succs.insert(succ_begin(BB), succ_end(BB)); 5883 for (BasicBlock *Succ : Succs) { 5884 Succ->removePredecessor(BB); 5885 } 5886 5887 IRBuilder<> Builder(BI); 5888 Builder.CreateUnreachable(); 5889 BI->eraseFromParent(); 5890 return true; 5891 } 5892 return false; 5893 } 5894 5895 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 5896 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 5897 : simplifyCondBranch(Branch, Builder); 5898 } 5899 5900 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 5901 IRBuilder<> &Builder) { 5902 BasicBlock *BB = BI->getParent(); 5903 BasicBlock *Succ = BI->getSuccessor(0); 5904 5905 // If the Terminator is the only non-phi instruction, simplify the block. 5906 // If LoopHeader is provided, check if the block or its successor is a loop 5907 // header. (This is for early invocations before loop simplify and 5908 // vectorization to keep canonical loop forms for nested loops. These blocks 5909 // can be eliminated when the pass is invoked later in the back-end.) 5910 // Note that if BB has only one predecessor then we do not introduce new 5911 // backedge, so we can eliminate BB. 5912 bool NeedCanonicalLoop = 5913 Options.NeedCanonicalLoop && 5914 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5915 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5916 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5917 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5918 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5919 return true; 5920 5921 // If the only instruction in the block is a seteq/setne comparison against a 5922 // constant, try to simplify the block. 5923 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5924 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5925 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5926 ; 5927 if (I->isTerminator() && 5928 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5929 return true; 5930 } 5931 5932 // See if we can merge an empty landing pad block with another which is 5933 // equivalent. 5934 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5935 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5936 ; 5937 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5938 return true; 5939 } 5940 5941 // If this basic block is ONLY a compare and a branch, and if a predecessor 5942 // branches to us and our successor, fold the comparison into the 5943 // predecessor and use logical operations to update the incoming value 5944 // for PHI nodes in common successor. 5945 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 5946 return requestResimplify(); 5947 return false; 5948 } 5949 5950 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5951 BasicBlock *PredPred = nullptr; 5952 for (auto *P : predecessors(BB)) { 5953 BasicBlock *PPred = P->getSinglePredecessor(); 5954 if (!PPred || (PredPred && PredPred != PPred)) 5955 return nullptr; 5956 PredPred = PPred; 5957 } 5958 return PredPred; 5959 } 5960 5961 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5962 BasicBlock *BB = BI->getParent(); 5963 const Function *Fn = BB->getParent(); 5964 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5965 return false; 5966 5967 // Conditional branch 5968 if (isValueEqualityComparison(BI)) { 5969 // If we only have one predecessor, and if it is a branch on this value, 5970 // see if that predecessor totally determines the outcome of this 5971 // switch. 5972 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5973 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5974 return requestResimplify(); 5975 5976 // This block must be empty, except for the setcond inst, if it exists. 5977 // Ignore dbg intrinsics. 5978 auto I = BB->instructionsWithoutDebug().begin(); 5979 if (&*I == BI) { 5980 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5981 return requestResimplify(); 5982 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5983 ++I; 5984 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5985 return requestResimplify(); 5986 } 5987 } 5988 5989 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5990 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5991 return true; 5992 5993 // If this basic block has dominating predecessor blocks and the dominating 5994 // blocks' conditions imply BI's condition, we know the direction of BI. 5995 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5996 if (Imp) { 5997 // Turn this into a branch on constant. 5998 auto *OldCond = BI->getCondition(); 5999 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6000 : ConstantInt::getFalse(BB->getContext()); 6001 BI->setCondition(TorF); 6002 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6003 return requestResimplify(); 6004 } 6005 6006 // If this basic block is ONLY a compare and a branch, and if a predecessor 6007 // branches to us and one of our successors, fold the comparison into the 6008 // predecessor and use logical operations to pick the right destination. 6009 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) 6010 return requestResimplify(); 6011 6012 // We have a conditional branch to two blocks that are only reachable 6013 // from BI. We know that the condbr dominates the two blocks, so see if 6014 // there is any identical code in the "then" and "else" blocks. If so, we 6015 // can hoist it up to the branching block. 6016 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6017 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6018 if (HoistThenElseCodeToIf(BI, TTI)) 6019 return requestResimplify(); 6020 } else { 6021 // If Successor #1 has multiple preds, we may be able to conditionally 6022 // execute Successor #0 if it branches to Successor #1. 6023 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6024 if (Succ0TI->getNumSuccessors() == 1 && 6025 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6026 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6027 return requestResimplify(); 6028 } 6029 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6030 // If Successor #0 has multiple preds, we may be able to conditionally 6031 // execute Successor #1 if it branches to Successor #0. 6032 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6033 if (Succ1TI->getNumSuccessors() == 1 && 6034 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6035 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6036 return requestResimplify(); 6037 } 6038 6039 // If this is a branch on a phi node in the current block, thread control 6040 // through this block if any PHI node entries are constants. 6041 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6042 if (PN->getParent() == BI->getParent()) 6043 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 6044 return requestResimplify(); 6045 6046 // Scan predecessor blocks for conditional branches. 6047 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6048 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6049 if (PBI != BI && PBI->isConditional()) 6050 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI)) 6051 return requestResimplify(); 6052 6053 // Look for diamond patterns. 6054 if (MergeCondStores) 6055 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6056 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6057 if (PBI != BI && PBI->isConditional()) 6058 if (mergeConditionalStores(PBI, BI, DL, TTI)) 6059 return requestResimplify(); 6060 6061 return false; 6062 } 6063 6064 /// Check if passing a value to an instruction will cause undefined behavior. 6065 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 6066 Constant *C = dyn_cast<Constant>(V); 6067 if (!C) 6068 return false; 6069 6070 if (I->use_empty()) 6071 return false; 6072 6073 if (C->isNullValue() || isa<UndefValue>(C)) { 6074 // Only look at the first use, avoid hurting compile time with long uselists 6075 User *Use = *I->user_begin(); 6076 6077 // Now make sure that there are no instructions in between that can alter 6078 // control flow (eg. calls) 6079 for (BasicBlock::iterator 6080 i = ++BasicBlock::iterator(I), 6081 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6082 i != UI; ++i) 6083 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6084 return false; 6085 6086 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6087 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6088 if (GEP->getPointerOperand() == I) 6089 return passingValueIsAlwaysUndefined(V, GEP); 6090 6091 // Look through bitcasts. 6092 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6093 return passingValueIsAlwaysUndefined(V, BC); 6094 6095 // Load from null is undefined. 6096 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6097 if (!LI->isVolatile()) 6098 return !NullPointerIsDefined(LI->getFunction(), 6099 LI->getPointerAddressSpace()); 6100 6101 // Store to null is undefined. 6102 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6103 if (!SI->isVolatile()) 6104 return (!NullPointerIsDefined(SI->getFunction(), 6105 SI->getPointerAddressSpace())) && 6106 SI->getPointerOperand() == I; 6107 6108 // A call to null is undefined. 6109 if (auto *CB = dyn_cast<CallBase>(Use)) 6110 return !NullPointerIsDefined(CB->getFunction()) && 6111 CB->getCalledOperand() == I; 6112 } 6113 return false; 6114 } 6115 6116 /// If BB has an incoming value that will always trigger undefined behavior 6117 /// (eg. null pointer dereference), remove the branch leading here. 6118 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 6119 for (PHINode &PHI : BB->phis()) 6120 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6121 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6122 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 6123 IRBuilder<> Builder(T); 6124 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6125 BB->removePredecessor(PHI.getIncomingBlock(i)); 6126 // Turn uncoditional branches into unreachables and remove the dead 6127 // destination from conditional branches. 6128 if (BI->isUnconditional()) 6129 Builder.CreateUnreachable(); 6130 else 6131 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6132 : BI->getSuccessor(0)); 6133 BI->eraseFromParent(); 6134 return true; 6135 } 6136 // TODO: SwitchInst. 6137 } 6138 6139 return false; 6140 } 6141 6142 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6143 bool Changed = false; 6144 6145 assert(BB && BB->getParent() && "Block not embedded in function!"); 6146 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6147 6148 // Remove basic blocks that have no predecessors (except the entry block)... 6149 // or that just have themself as a predecessor. These are unreachable. 6150 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6151 BB->getSinglePredecessor() == BB) { 6152 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6153 DeleteDeadBlock(BB); 6154 return true; 6155 } 6156 6157 // Check to see if we can constant propagate this terminator instruction 6158 // away... 6159 Changed |= ConstantFoldTerminator(BB, true); 6160 6161 // Check for and eliminate duplicate PHI nodes in this block. 6162 Changed |= EliminateDuplicatePHINodes(BB); 6163 6164 // Check for and remove branches that will always cause undefined behavior. 6165 Changed |= removeUndefIntroducingPredecessor(BB); 6166 6167 // Merge basic blocks into their predecessor if there is only one distinct 6168 // pred, and if there is only one distinct successor of the predecessor, and 6169 // if there are no PHI nodes. 6170 if (MergeBlockIntoPredecessor(BB)) 6171 return true; 6172 6173 if (SinkCommon && Options.SinkCommonInsts) 6174 Changed |= SinkCommonCodeFromPredecessors(BB); 6175 6176 IRBuilder<> Builder(BB); 6177 6178 // If there is a trivial two-entry PHI node in this basic block, and we can 6179 // eliminate it, do so now. 6180 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6181 if (PN->getNumIncomingValues() == 2) 6182 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6183 6184 Instruction *Terminator = BB->getTerminator(); 6185 Builder.SetInsertPoint(Terminator); 6186 switch (Terminator->getOpcode()) { 6187 case Instruction::Br: 6188 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6189 break; 6190 case Instruction::Ret: 6191 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6192 break; 6193 case Instruction::Resume: 6194 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6195 break; 6196 case Instruction::CleanupRet: 6197 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6198 break; 6199 case Instruction::Switch: 6200 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6201 break; 6202 case Instruction::Unreachable: 6203 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6204 break; 6205 case Instruction::IndirectBr: 6206 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6207 break; 6208 } 6209 6210 return Changed; 6211 } 6212 6213 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6214 bool Changed = false; 6215 6216 // Repeated simplify BB as long as resimplification is requested. 6217 do { 6218 Resimplify = false; 6219 6220 // Perform one round of simplifcation. Resimplify flag will be set if 6221 // another iteration is requested. 6222 Changed |= simplifyOnce(BB); 6223 } while (Resimplify); 6224 6225 return Changed; 6226 } 6227 6228 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6229 const SimplifyCFGOptions &Options, 6230 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6231 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6232 Options) 6233 .run(BB); 6234 } 6235