1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/EHPersonalities.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/NoFolder.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <climits> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <map> 76 #include <set> 77 #include <tuple> 78 #include <utility> 79 #include <vector> 80 81 using namespace llvm; 82 using namespace PatternMatch; 83 84 #define DEBUG_TYPE "simplifycfg" 85 86 // Chosen as 2 so as to be cheap, but still to have enough power to fold 87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 88 // To catch this, we need to fold a compare and a select, hence '2' being the 89 // minimum reasonable default. 90 static cl::opt<unsigned> PHINodeFoldingThreshold( 91 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 92 cl::desc( 93 "Control the amount of phi node folding to perform (default = 2)")); 94 95 static cl::opt<bool> DupRet( 96 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 97 cl::desc("Duplicate return instructions into unconditional branches")); 98 99 static cl::opt<bool> 100 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 101 cl::desc("Sink common instructions down to the end block")); 102 103 static cl::opt<bool> HoistCondStores( 104 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 105 cl::desc("Hoist conditional stores if an unconditional store precedes")); 106 107 static cl::opt<bool> MergeCondStores( 108 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 109 cl::desc("Hoist conditional stores even if an unconditional store does not " 110 "precede - hoist multiple conditional stores into a single " 111 "predicated store")); 112 113 static cl::opt<bool> MergeCondStoresAggressively( 114 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 115 cl::desc("When merging conditional stores, do so even if the resultant " 116 "basic blocks are unlikely to be if-converted as a result")); 117 118 static cl::opt<bool> SpeculateOneExpensiveInst( 119 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 120 cl::desc("Allow exactly one expensive instruction to be speculatively " 121 "executed")); 122 123 static cl::opt<unsigned> MaxSpeculationDepth( 124 "max-speculation-depth", cl::Hidden, cl::init(10), 125 cl::desc("Limit maximum recursion depth when calculating costs of " 126 "speculatively executed instructions")); 127 128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 129 STATISTIC(NumLinearMaps, 130 "Number of switch instructions turned into linear mapping"); 131 STATISTIC(NumLookupTables, 132 "Number of switch instructions turned into lookup tables"); 133 STATISTIC( 134 NumLookupTablesHoles, 135 "Number of switch instructions turned into lookup tables (holes checked)"); 136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 137 STATISTIC(NumSinkCommons, 138 "Number of common instructions sunk down to the end block"); 139 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 140 141 namespace { 142 143 // The first field contains the value that the switch produces when a certain 144 // case group is selected, and the second field is a vector containing the 145 // cases composing the case group. 146 using SwitchCaseResultVectorTy = 147 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 148 149 // The first field contains the phi node that generates a result of the switch 150 // and the second field contains the value generated for a certain case in the 151 // switch for that PHI. 152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 153 154 /// ValueEqualityComparisonCase - Represents a case of a switch. 155 struct ValueEqualityComparisonCase { 156 ConstantInt *Value; 157 BasicBlock *Dest; 158 159 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 160 : Value(Value), Dest(Dest) {} 161 162 bool operator<(ValueEqualityComparisonCase RHS) const { 163 // Comparing pointers is ok as we only rely on the order for uniquing. 164 return Value < RHS.Value; 165 } 166 167 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 168 }; 169 170 class SimplifyCFGOpt { 171 const TargetTransformInfo &TTI; 172 const DataLayout &DL; 173 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 174 const SimplifyCFGOptions &Options; 175 bool Resimplify; 176 177 Value *isValueEqualityComparison(Instruction *TI); 178 BasicBlock *GetValueEqualityComparisonCases( 179 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 180 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 181 BasicBlock *Pred, 182 IRBuilder<> &Builder); 183 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 184 IRBuilder<> &Builder); 185 186 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 187 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 188 bool SimplifySingleResume(ResumeInst *RI); 189 bool SimplifyCommonResume(ResumeInst *RI); 190 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 191 bool SimplifyUnreachable(UnreachableInst *UI); 192 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 193 bool SimplifyIndirectBr(IndirectBrInst *IBI); 194 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 195 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 197 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 198 IRBuilder<> &Builder); 199 200 public: 201 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 202 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 203 const SimplifyCFGOptions &Opts) 204 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 205 206 bool run(BasicBlock *BB); 207 bool simplifyOnce(BasicBlock *BB); 208 209 // Helper to set Resimplify and return change indication. 210 bool requestResimplify() { 211 Resimplify = true; 212 return true; 213 } 214 }; 215 216 } // end anonymous namespace 217 218 /// Return true if it is safe to merge these two 219 /// terminator instructions together. 220 static bool 221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 222 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 223 if (SI1 == SI2) 224 return false; // Can't merge with self! 225 226 // It is not safe to merge these two switch instructions if they have a common 227 // successor, and if that successor has a PHI node, and if *that* PHI node has 228 // conflicting incoming values from the two switch blocks. 229 BasicBlock *SI1BB = SI1->getParent(); 230 BasicBlock *SI2BB = SI2->getParent(); 231 232 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 233 bool Fail = false; 234 for (BasicBlock *Succ : successors(SI2BB)) 235 if (SI1Succs.count(Succ)) 236 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 237 PHINode *PN = cast<PHINode>(BBI); 238 if (PN->getIncomingValueForBlock(SI1BB) != 239 PN->getIncomingValueForBlock(SI2BB)) { 240 if (FailBlocks) 241 FailBlocks->insert(Succ); 242 Fail = true; 243 } 244 } 245 246 return !Fail; 247 } 248 249 /// Return true if it is safe and profitable to merge these two terminator 250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 251 /// store all PHI nodes in common successors. 252 static bool 253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 254 Instruction *Cond, 255 SmallVectorImpl<PHINode *> &PhiNodes) { 256 if (SI1 == SI2) 257 return false; // Can't merge with self! 258 assert(SI1->isUnconditional() && SI2->isConditional()); 259 260 // We fold the unconditional branch if we can easily update all PHI nodes in 261 // common successors: 262 // 1> We have a constant incoming value for the conditional branch; 263 // 2> We have "Cond" as the incoming value for the unconditional branch; 264 // 3> SI2->getCondition() and Cond have same operands. 265 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 266 if (!Ci2) 267 return false; 268 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 269 Cond->getOperand(1) == Ci2->getOperand(1)) && 270 !(Cond->getOperand(0) == Ci2->getOperand(1) && 271 Cond->getOperand(1) == Ci2->getOperand(0))) 272 return false; 273 274 BasicBlock *SI1BB = SI1->getParent(); 275 BasicBlock *SI2BB = SI2->getParent(); 276 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 277 for (BasicBlock *Succ : successors(SI2BB)) 278 if (SI1Succs.count(Succ)) 279 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 280 PHINode *PN = cast<PHINode>(BBI); 281 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 282 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 283 return false; 284 PhiNodes.push_back(PN); 285 } 286 return true; 287 } 288 289 /// Update PHI nodes in Succ to indicate that there will now be entries in it 290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 291 /// will be the same as those coming in from ExistPred, an existing predecessor 292 /// of Succ. 293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 294 BasicBlock *ExistPred) { 295 for (PHINode &PN : Succ->phis()) 296 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 297 } 298 299 /// Compute an abstract "cost" of speculating the given instruction, 300 /// which is assumed to be safe to speculate. TCC_Free means cheap, 301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 302 /// expensive. 303 static unsigned ComputeSpeculationCost(const User *I, 304 const TargetTransformInfo &TTI) { 305 assert(isSafeToSpeculativelyExecute(I) && 306 "Instruction is not safe to speculatively execute!"); 307 return TTI.getUserCost(I); 308 } 309 310 /// If we have a merge point of an "if condition" as accepted above, 311 /// return true if the specified value dominates the block. We 312 /// don't handle the true generality of domination here, just a special case 313 /// which works well enough for us. 314 /// 315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 316 /// see if V (which must be an instruction) and its recursive operands 317 /// that do not dominate BB have a combined cost lower than CostRemaining and 318 /// are non-trapping. If both are true, the instruction is inserted into the 319 /// set and true is returned. 320 /// 321 /// The cost for most non-trapping instructions is defined as 1 except for 322 /// Select whose cost is 2. 323 /// 324 /// After this function returns, CostRemaining is decreased by the cost of 325 /// V plus its non-dominating operands. If that cost is greater than 326 /// CostRemaining, false is returned and CostRemaining is undefined. 327 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 328 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 329 unsigned &CostRemaining, 330 const TargetTransformInfo &TTI, 331 unsigned Depth = 0) { 332 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 333 // so limit the recursion depth. 334 // TODO: While this recursion limit does prevent pathological behavior, it 335 // would be better to track visited instructions to avoid cycles. 336 if (Depth == MaxSpeculationDepth) 337 return false; 338 339 Instruction *I = dyn_cast<Instruction>(V); 340 if (!I) { 341 // Non-instructions all dominate instructions, but not all constantexprs 342 // can be executed unconditionally. 343 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 344 if (C->canTrap()) 345 return false; 346 return true; 347 } 348 BasicBlock *PBB = I->getParent(); 349 350 // We don't want to allow weird loops that might have the "if condition" in 351 // the bottom of this block. 352 if (PBB == BB) 353 return false; 354 355 // If this instruction is defined in a block that contains an unconditional 356 // branch to BB, then it must be in the 'conditional' part of the "if 357 // statement". If not, it definitely dominates the region. 358 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 359 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 360 return true; 361 362 // If we have seen this instruction before, don't count it again. 363 if (AggressiveInsts.count(I)) 364 return true; 365 366 // Okay, it looks like the instruction IS in the "condition". Check to 367 // see if it's a cheap instruction to unconditionally compute, and if it 368 // only uses stuff defined outside of the condition. If so, hoist it out. 369 if (!isSafeToSpeculativelyExecute(I)) 370 return false; 371 372 unsigned Cost = ComputeSpeculationCost(I, TTI); 373 374 // Allow exactly one instruction to be speculated regardless of its cost 375 // (as long as it is safe to do so). 376 // This is intended to flatten the CFG even if the instruction is a division 377 // or other expensive operation. The speculation of an expensive instruction 378 // is expected to be undone in CodeGenPrepare if the speculation has not 379 // enabled further IR optimizations. 380 if (Cost > CostRemaining && 381 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 382 return false; 383 384 // Avoid unsigned wrap. 385 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 386 387 // Okay, we can only really hoist these out if their operands do 388 // not take us over the cost threshold. 389 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 390 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 391 Depth + 1)) 392 return false; 393 // Okay, it's safe to do this! Remember this instruction. 394 AggressiveInsts.insert(I); 395 return true; 396 } 397 398 /// Extract ConstantInt from value, looking through IntToPtr 399 /// and PointerNullValue. Return NULL if value is not a constant int. 400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 401 // Normal constant int. 402 ConstantInt *CI = dyn_cast<ConstantInt>(V); 403 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 404 return CI; 405 406 // This is some kind of pointer constant. Turn it into a pointer-sized 407 // ConstantInt if possible. 408 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 409 410 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 411 if (isa<ConstantPointerNull>(V)) 412 return ConstantInt::get(PtrTy, 0); 413 414 // IntToPtr const int. 415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 416 if (CE->getOpcode() == Instruction::IntToPtr) 417 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 418 // The constant is very likely to have the right type already. 419 if (CI->getType() == PtrTy) 420 return CI; 421 else 422 return cast<ConstantInt>( 423 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 424 } 425 return nullptr; 426 } 427 428 namespace { 429 430 /// Given a chain of or (||) or and (&&) comparison of a value against a 431 /// constant, this will try to recover the information required for a switch 432 /// structure. 433 /// It will depth-first traverse the chain of comparison, seeking for patterns 434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 435 /// representing the different cases for the switch. 436 /// Note that if the chain is composed of '||' it will build the set of elements 437 /// that matches the comparisons (i.e. any of this value validate the chain) 438 /// while for a chain of '&&' it will build the set elements that make the test 439 /// fail. 440 struct ConstantComparesGatherer { 441 const DataLayout &DL; 442 443 /// Value found for the switch comparison 444 Value *CompValue = nullptr; 445 446 /// Extra clause to be checked before the switch 447 Value *Extra = nullptr; 448 449 /// Set of integers to match in switch 450 SmallVector<ConstantInt *, 8> Vals; 451 452 /// Number of comparisons matched in the and/or chain 453 unsigned UsedICmps = 0; 454 455 /// Construct and compute the result for the comparison instruction Cond 456 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 457 gather(Cond); 458 } 459 460 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 461 ConstantComparesGatherer & 462 operator=(const ConstantComparesGatherer &) = delete; 463 464 private: 465 /// Try to set the current value used for the comparison, it succeeds only if 466 /// it wasn't set before or if the new value is the same as the old one 467 bool setValueOnce(Value *NewVal) { 468 if (CompValue && CompValue != NewVal) 469 return false; 470 CompValue = NewVal; 471 return (CompValue != nullptr); 472 } 473 474 /// Try to match Instruction "I" as a comparison against a constant and 475 /// populates the array Vals with the set of values that match (or do not 476 /// match depending on isEQ). 477 /// Return false on failure. On success, the Value the comparison matched 478 /// against is placed in CompValue. 479 /// If CompValue is already set, the function is expected to fail if a match 480 /// is found but the value compared to is different. 481 bool matchInstruction(Instruction *I, bool isEQ) { 482 // If this is an icmp against a constant, handle this as one of the cases. 483 ICmpInst *ICI; 484 ConstantInt *C; 485 if (!((ICI = dyn_cast<ICmpInst>(I)) && 486 (C = GetConstantInt(I->getOperand(1), DL)))) { 487 return false; 488 } 489 490 Value *RHSVal; 491 const APInt *RHSC; 492 493 // Pattern match a special case 494 // (x & ~2^z) == y --> x == y || x == y|2^z 495 // This undoes a transformation done by instcombine to fuse 2 compares. 496 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 497 // It's a little bit hard to see why the following transformations are 498 // correct. Here is a CVC3 program to verify them for 64-bit values: 499 500 /* 501 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 502 x : BITVECTOR(64); 503 y : BITVECTOR(64); 504 z : BITVECTOR(64); 505 mask : BITVECTOR(64) = BVSHL(ONE, z); 506 QUERY( (y & ~mask = y) => 507 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 508 ); 509 QUERY( (y | mask = y) => 510 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 511 ); 512 */ 513 514 // Please note that each pattern must be a dual implication (<--> or 515 // iff). One directional implication can create spurious matches. If the 516 // implication is only one-way, an unsatisfiable condition on the left 517 // side can imply a satisfiable condition on the right side. Dual 518 // implication ensures that satisfiable conditions are transformed to 519 // other satisfiable conditions and unsatisfiable conditions are 520 // transformed to other unsatisfiable conditions. 521 522 // Here is a concrete example of a unsatisfiable condition on the left 523 // implying a satisfiable condition on the right: 524 // 525 // mask = (1 << z) 526 // (x & ~mask) == y --> (x == y || x == (y | mask)) 527 // 528 // Substituting y = 3, z = 0 yields: 529 // (x & -2) == 3 --> (x == 3 || x == 2) 530 531 // Pattern match a special case: 532 /* 533 QUERY( (y & ~mask = y) => 534 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 535 ); 536 */ 537 if (match(ICI->getOperand(0), 538 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 539 APInt Mask = ~*RHSC; 540 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 541 // If we already have a value for the switch, it has to match! 542 if (!setValueOnce(RHSVal)) 543 return false; 544 545 Vals.push_back(C); 546 Vals.push_back( 547 ConstantInt::get(C->getContext(), 548 C->getValue() | Mask)); 549 UsedICmps++; 550 return true; 551 } 552 } 553 554 // Pattern match a special case: 555 /* 556 QUERY( (y | mask = y) => 557 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 558 ); 559 */ 560 if (match(ICI->getOperand(0), 561 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 562 APInt Mask = *RHSC; 563 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 564 // If we already have a value for the switch, it has to match! 565 if (!setValueOnce(RHSVal)) 566 return false; 567 568 Vals.push_back(C); 569 Vals.push_back(ConstantInt::get(C->getContext(), 570 C->getValue() & ~Mask)); 571 UsedICmps++; 572 return true; 573 } 574 } 575 576 // If we already have a value for the switch, it has to match! 577 if (!setValueOnce(ICI->getOperand(0))) 578 return false; 579 580 UsedICmps++; 581 Vals.push_back(C); 582 return ICI->getOperand(0); 583 } 584 585 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 586 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 587 ICI->getPredicate(), C->getValue()); 588 589 // Shift the range if the compare is fed by an add. This is the range 590 // compare idiom as emitted by instcombine. 591 Value *CandidateVal = I->getOperand(0); 592 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 593 Span = Span.subtract(*RHSC); 594 CandidateVal = RHSVal; 595 } 596 597 // If this is an and/!= check, then we are looking to build the set of 598 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 599 // x != 0 && x != 1. 600 if (!isEQ) 601 Span = Span.inverse(); 602 603 // If there are a ton of values, we don't want to make a ginormous switch. 604 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 605 return false; 606 } 607 608 // If we already have a value for the switch, it has to match! 609 if (!setValueOnce(CandidateVal)) 610 return false; 611 612 // Add all values from the range to the set 613 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 614 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 615 616 UsedICmps++; 617 return true; 618 } 619 620 /// Given a potentially 'or'd or 'and'd together collection of icmp 621 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 622 /// the value being compared, and stick the list constants into the Vals 623 /// vector. 624 /// One "Extra" case is allowed to differ from the other. 625 void gather(Value *V) { 626 Instruction *I = dyn_cast<Instruction>(V); 627 bool isEQ = (I->getOpcode() == Instruction::Or); 628 629 // Keep a stack (SmallVector for efficiency) for depth-first traversal 630 SmallVector<Value *, 8> DFT; 631 SmallPtrSet<Value *, 8> Visited; 632 633 // Initialize 634 Visited.insert(V); 635 DFT.push_back(V); 636 637 while (!DFT.empty()) { 638 V = DFT.pop_back_val(); 639 640 if (Instruction *I = dyn_cast<Instruction>(V)) { 641 // If it is a || (or && depending on isEQ), process the operands. 642 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 643 if (Visited.insert(I->getOperand(1)).second) 644 DFT.push_back(I->getOperand(1)); 645 if (Visited.insert(I->getOperand(0)).second) 646 DFT.push_back(I->getOperand(0)); 647 continue; 648 } 649 650 // Try to match the current instruction 651 if (matchInstruction(I, isEQ)) 652 // Match succeed, continue the loop 653 continue; 654 } 655 656 // One element of the sequence of || (or &&) could not be match as a 657 // comparison against the same value as the others. 658 // We allow only one "Extra" case to be checked before the switch 659 if (!Extra) { 660 Extra = V; 661 continue; 662 } 663 // Failed to parse a proper sequence, abort now 664 CompValue = nullptr; 665 break; 666 } 667 } 668 }; 669 670 } // end anonymous namespace 671 672 static void EraseTerminatorAndDCECond(Instruction *TI) { 673 Instruction *Cond = nullptr; 674 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 675 Cond = dyn_cast<Instruction>(SI->getCondition()); 676 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 677 if (BI->isConditional()) 678 Cond = dyn_cast<Instruction>(BI->getCondition()); 679 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 680 Cond = dyn_cast<Instruction>(IBI->getAddress()); 681 } 682 683 TI->eraseFromParent(); 684 if (Cond) 685 RecursivelyDeleteTriviallyDeadInstructions(Cond); 686 } 687 688 /// Return true if the specified terminator checks 689 /// to see if a value is equal to constant integer value. 690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 691 Value *CV = nullptr; 692 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 693 // Do not permit merging of large switch instructions into their 694 // predecessors unless there is only one predecessor. 695 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 696 CV = SI->getCondition(); 697 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 698 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 699 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 700 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 701 CV = ICI->getOperand(0); 702 } 703 704 // Unwrap any lossless ptrtoint cast. 705 if (CV) { 706 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 707 Value *Ptr = PTII->getPointerOperand(); 708 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 709 CV = Ptr; 710 } 711 } 712 return CV; 713 } 714 715 /// Given a value comparison instruction, 716 /// decode all of the 'cases' that it represents and return the 'default' block. 717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 718 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 719 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 720 Cases.reserve(SI->getNumCases()); 721 for (auto Case : SI->cases()) 722 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 723 Case.getCaseSuccessor())); 724 return SI->getDefaultDest(); 725 } 726 727 BranchInst *BI = cast<BranchInst>(TI); 728 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 729 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 730 Cases.push_back(ValueEqualityComparisonCase( 731 GetConstantInt(ICI->getOperand(1), DL), Succ)); 732 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 733 } 734 735 /// Given a vector of bb/value pairs, remove any entries 736 /// in the list that match the specified block. 737 static void 738 EliminateBlockCases(BasicBlock *BB, 739 std::vector<ValueEqualityComparisonCase> &Cases) { 740 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 741 } 742 743 /// Return true if there are any keys in C1 that exist in C2 as well. 744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 745 std::vector<ValueEqualityComparisonCase> &C2) { 746 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 747 748 // Make V1 be smaller than V2. 749 if (V1->size() > V2->size()) 750 std::swap(V1, V2); 751 752 if (V1->empty()) 753 return false; 754 if (V1->size() == 1) { 755 // Just scan V2. 756 ConstantInt *TheVal = (*V1)[0].Value; 757 for (unsigned i = 0, e = V2->size(); i != e; ++i) 758 if (TheVal == (*V2)[i].Value) 759 return true; 760 } 761 762 // Otherwise, just sort both lists and compare element by element. 763 array_pod_sort(V1->begin(), V1->end()); 764 array_pod_sort(V2->begin(), V2->end()); 765 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 766 while (i1 != e1 && i2 != e2) { 767 if ((*V1)[i1].Value == (*V2)[i2].Value) 768 return true; 769 if ((*V1)[i1].Value < (*V2)[i2].Value) 770 ++i1; 771 else 772 ++i2; 773 } 774 return false; 775 } 776 777 // Set branch weights on SwitchInst. This sets the metadata if there is at 778 // least one non-zero weight. 779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 780 // Check that there is at least one non-zero weight. Otherwise, pass 781 // nullptr to setMetadata which will erase the existing metadata. 782 MDNode *N = nullptr; 783 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 784 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 785 SI->setMetadata(LLVMContext::MD_prof, N); 786 } 787 788 // Similar to the above, but for branch and select instructions that take 789 // exactly 2 weights. 790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 791 uint32_t FalseWeight) { 792 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 793 // Check that there is at least one non-zero weight. Otherwise, pass 794 // nullptr to setMetadata which will erase the existing metadata. 795 MDNode *N = nullptr; 796 if (TrueWeight || FalseWeight) 797 N = MDBuilder(I->getParent()->getContext()) 798 .createBranchWeights(TrueWeight, FalseWeight); 799 I->setMetadata(LLVMContext::MD_prof, N); 800 } 801 802 /// If TI is known to be a terminator instruction and its block is known to 803 /// only have a single predecessor block, check to see if that predecessor is 804 /// also a value comparison with the same value, and if that comparison 805 /// determines the outcome of this comparison. If so, simplify TI. This does a 806 /// very limited form of jump threading. 807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 808 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 809 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 810 if (!PredVal) 811 return false; // Not a value comparison in predecessor. 812 813 Value *ThisVal = isValueEqualityComparison(TI); 814 assert(ThisVal && "This isn't a value comparison!!"); 815 if (ThisVal != PredVal) 816 return false; // Different predicates. 817 818 // TODO: Preserve branch weight metadata, similarly to how 819 // FoldValueComparisonIntoPredecessors preserves it. 820 821 // Find out information about when control will move from Pred to TI's block. 822 std::vector<ValueEqualityComparisonCase> PredCases; 823 BasicBlock *PredDef = 824 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 825 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 826 827 // Find information about how control leaves this block. 828 std::vector<ValueEqualityComparisonCase> ThisCases; 829 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 830 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 831 832 // If TI's block is the default block from Pred's comparison, potentially 833 // simplify TI based on this knowledge. 834 if (PredDef == TI->getParent()) { 835 // If we are here, we know that the value is none of those cases listed in 836 // PredCases. If there are any cases in ThisCases that are in PredCases, we 837 // can simplify TI. 838 if (!ValuesOverlap(PredCases, ThisCases)) 839 return false; 840 841 if (isa<BranchInst>(TI)) { 842 // Okay, one of the successors of this condbr is dead. Convert it to a 843 // uncond br. 844 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 845 // Insert the new branch. 846 Instruction *NI = Builder.CreateBr(ThisDef); 847 (void)NI; 848 849 // Remove PHI node entries for the dead edge. 850 ThisCases[0].Dest->removePredecessor(TI->getParent()); 851 852 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 853 << "Through successor TI: " << *TI << "Leaving: " << *NI 854 << "\n"); 855 856 EraseTerminatorAndDCECond(TI); 857 return true; 858 } 859 860 SwitchInst *SI = cast<SwitchInst>(TI); 861 // Okay, TI has cases that are statically dead, prune them away. 862 SmallPtrSet<Constant *, 16> DeadCases; 863 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 864 DeadCases.insert(PredCases[i].Value); 865 866 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 867 << "Through successor TI: " << *TI); 868 869 // Collect branch weights into a vector. 870 SmallVector<uint32_t, 8> Weights; 871 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 872 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 873 if (HasWeight) 874 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 875 ++MD_i) { 876 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 877 Weights.push_back(CI->getValue().getZExtValue()); 878 } 879 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 880 --i; 881 if (DeadCases.count(i->getCaseValue())) { 882 if (HasWeight) { 883 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 884 Weights.pop_back(); 885 } 886 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 887 SI->removeCase(i); 888 } 889 } 890 if (HasWeight && Weights.size() >= 2) 891 setBranchWeights(SI, Weights); 892 893 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 894 return true; 895 } 896 897 // Otherwise, TI's block must correspond to some matched value. Find out 898 // which value (or set of values) this is. 899 ConstantInt *TIV = nullptr; 900 BasicBlock *TIBB = TI->getParent(); 901 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 902 if (PredCases[i].Dest == TIBB) { 903 if (TIV) 904 return false; // Cannot handle multiple values coming to this block. 905 TIV = PredCases[i].Value; 906 } 907 assert(TIV && "No edge from pred to succ?"); 908 909 // Okay, we found the one constant that our value can be if we get into TI's 910 // BB. Find out which successor will unconditionally be branched to. 911 BasicBlock *TheRealDest = nullptr; 912 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 913 if (ThisCases[i].Value == TIV) { 914 TheRealDest = ThisCases[i].Dest; 915 break; 916 } 917 918 // If not handled by any explicit cases, it is handled by the default case. 919 if (!TheRealDest) 920 TheRealDest = ThisDef; 921 922 // Remove PHI node entries for dead edges. 923 BasicBlock *CheckEdge = TheRealDest; 924 for (BasicBlock *Succ : successors(TIBB)) 925 if (Succ != CheckEdge) 926 Succ->removePredecessor(TIBB); 927 else 928 CheckEdge = nullptr; 929 930 // Insert the new branch. 931 Instruction *NI = Builder.CreateBr(TheRealDest); 932 (void)NI; 933 934 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 935 << "Through successor TI: " << *TI << "Leaving: " << *NI 936 << "\n"); 937 938 EraseTerminatorAndDCECond(TI); 939 return true; 940 } 941 942 namespace { 943 944 /// This class implements a stable ordering of constant 945 /// integers that does not depend on their address. This is important for 946 /// applications that sort ConstantInt's to ensure uniqueness. 947 struct ConstantIntOrdering { 948 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 949 return LHS->getValue().ult(RHS->getValue()); 950 } 951 }; 952 953 } // end anonymous namespace 954 955 static int ConstantIntSortPredicate(ConstantInt *const *P1, 956 ConstantInt *const *P2) { 957 const ConstantInt *LHS = *P1; 958 const ConstantInt *RHS = *P2; 959 if (LHS == RHS) 960 return 0; 961 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 962 } 963 964 static inline bool HasBranchWeights(const Instruction *I) { 965 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 966 if (ProfMD && ProfMD->getOperand(0)) 967 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 968 return MDS->getString().equals("branch_weights"); 969 970 return false; 971 } 972 973 /// Get Weights of a given terminator, the default weight is at the front 974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 975 /// metadata. 976 static void GetBranchWeights(Instruction *TI, 977 SmallVectorImpl<uint64_t> &Weights) { 978 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 979 assert(MD); 980 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 982 Weights.push_back(CI->getValue().getZExtValue()); 983 } 984 985 // If TI is a conditional eq, the default case is the false case, 986 // and the corresponding branch-weight data is at index 2. We swap the 987 // default weight to be the first entry. 988 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 989 assert(Weights.size() == 2); 990 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 991 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 992 std::swap(Weights.front(), Weights.back()); 993 } 994 } 995 996 /// Keep halving the weights until all can fit in uint32_t. 997 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 998 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 999 if (Max > UINT_MAX) { 1000 unsigned Offset = 32 - countLeadingZeros(Max); 1001 for (uint64_t &I : Weights) 1002 I >>= Offset; 1003 } 1004 } 1005 1006 /// The specified terminator is a value equality comparison instruction 1007 /// (either a switch or a branch on "X == c"). 1008 /// See if any of the predecessors of the terminator block are value comparisons 1009 /// on the same value. If so, and if safe to do so, fold them together. 1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1011 IRBuilder<> &Builder) { 1012 BasicBlock *BB = TI->getParent(); 1013 Value *CV = isValueEqualityComparison(TI); // CondVal 1014 assert(CV && "Not a comparison?"); 1015 bool Changed = false; 1016 1017 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1018 while (!Preds.empty()) { 1019 BasicBlock *Pred = Preds.pop_back_val(); 1020 1021 // See if the predecessor is a comparison with the same value. 1022 Instruction *PTI = Pred->getTerminator(); 1023 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1024 1025 if (PCV == CV && TI != PTI) { 1026 SmallSetVector<BasicBlock*, 4> FailBlocks; 1027 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1028 for (auto *Succ : FailBlocks) { 1029 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1030 return false; 1031 } 1032 } 1033 1034 // Figure out which 'cases' to copy from SI to PSI. 1035 std::vector<ValueEqualityComparisonCase> BBCases; 1036 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1037 1038 std::vector<ValueEqualityComparisonCase> PredCases; 1039 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1040 1041 // Based on whether the default edge from PTI goes to BB or not, fill in 1042 // PredCases and PredDefault with the new switch cases we would like to 1043 // build. 1044 SmallVector<BasicBlock *, 8> NewSuccessors; 1045 1046 // Update the branch weight metadata along the way 1047 SmallVector<uint64_t, 8> Weights; 1048 bool PredHasWeights = HasBranchWeights(PTI); 1049 bool SuccHasWeights = HasBranchWeights(TI); 1050 1051 if (PredHasWeights) { 1052 GetBranchWeights(PTI, Weights); 1053 // branch-weight metadata is inconsistent here. 1054 if (Weights.size() != 1 + PredCases.size()) 1055 PredHasWeights = SuccHasWeights = false; 1056 } else if (SuccHasWeights) 1057 // If there are no predecessor weights but there are successor weights, 1058 // populate Weights with 1, which will later be scaled to the sum of 1059 // successor's weights 1060 Weights.assign(1 + PredCases.size(), 1); 1061 1062 SmallVector<uint64_t, 8> SuccWeights; 1063 if (SuccHasWeights) { 1064 GetBranchWeights(TI, SuccWeights); 1065 // branch-weight metadata is inconsistent here. 1066 if (SuccWeights.size() != 1 + BBCases.size()) 1067 PredHasWeights = SuccHasWeights = false; 1068 } else if (PredHasWeights) 1069 SuccWeights.assign(1 + BBCases.size(), 1); 1070 1071 if (PredDefault == BB) { 1072 // If this is the default destination from PTI, only the edges in TI 1073 // that don't occur in PTI, or that branch to BB will be activated. 1074 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1075 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1076 if (PredCases[i].Dest != BB) 1077 PTIHandled.insert(PredCases[i].Value); 1078 else { 1079 // The default destination is BB, we don't need explicit targets. 1080 std::swap(PredCases[i], PredCases.back()); 1081 1082 if (PredHasWeights || SuccHasWeights) { 1083 // Increase weight for the default case. 1084 Weights[0] += Weights[i + 1]; 1085 std::swap(Weights[i + 1], Weights.back()); 1086 Weights.pop_back(); 1087 } 1088 1089 PredCases.pop_back(); 1090 --i; 1091 --e; 1092 } 1093 1094 // Reconstruct the new switch statement we will be building. 1095 if (PredDefault != BBDefault) { 1096 PredDefault->removePredecessor(Pred); 1097 PredDefault = BBDefault; 1098 NewSuccessors.push_back(BBDefault); 1099 } 1100 1101 unsigned CasesFromPred = Weights.size(); 1102 uint64_t ValidTotalSuccWeight = 0; 1103 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1104 if (!PTIHandled.count(BBCases[i].Value) && 1105 BBCases[i].Dest != BBDefault) { 1106 PredCases.push_back(BBCases[i]); 1107 NewSuccessors.push_back(BBCases[i].Dest); 1108 if (SuccHasWeights || PredHasWeights) { 1109 // The default weight is at index 0, so weight for the ith case 1110 // should be at index i+1. Scale the cases from successor by 1111 // PredDefaultWeight (Weights[0]). 1112 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1113 ValidTotalSuccWeight += SuccWeights[i + 1]; 1114 } 1115 } 1116 1117 if (SuccHasWeights || PredHasWeights) { 1118 ValidTotalSuccWeight += SuccWeights[0]; 1119 // Scale the cases from predecessor by ValidTotalSuccWeight. 1120 for (unsigned i = 1; i < CasesFromPred; ++i) 1121 Weights[i] *= ValidTotalSuccWeight; 1122 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1123 Weights[0] *= SuccWeights[0]; 1124 } 1125 } else { 1126 // If this is not the default destination from PSI, only the edges 1127 // in SI that occur in PSI with a destination of BB will be 1128 // activated. 1129 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1130 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1131 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1132 if (PredCases[i].Dest == BB) { 1133 PTIHandled.insert(PredCases[i].Value); 1134 1135 if (PredHasWeights || SuccHasWeights) { 1136 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1137 std::swap(Weights[i + 1], Weights.back()); 1138 Weights.pop_back(); 1139 } 1140 1141 std::swap(PredCases[i], PredCases.back()); 1142 PredCases.pop_back(); 1143 --i; 1144 --e; 1145 } 1146 1147 // Okay, now we know which constants were sent to BB from the 1148 // predecessor. Figure out where they will all go now. 1149 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1150 if (PTIHandled.count(BBCases[i].Value)) { 1151 // If this is one we are capable of getting... 1152 if (PredHasWeights || SuccHasWeights) 1153 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1154 PredCases.push_back(BBCases[i]); 1155 NewSuccessors.push_back(BBCases[i].Dest); 1156 PTIHandled.erase( 1157 BBCases[i].Value); // This constant is taken care of 1158 } 1159 1160 // If there are any constants vectored to BB that TI doesn't handle, 1161 // they must go to the default destination of TI. 1162 for (ConstantInt *I : PTIHandled) { 1163 if (PredHasWeights || SuccHasWeights) 1164 Weights.push_back(WeightsForHandled[I]); 1165 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1166 NewSuccessors.push_back(BBDefault); 1167 } 1168 } 1169 1170 // Okay, at this point, we know which new successor Pred will get. Make 1171 // sure we update the number of entries in the PHI nodes for these 1172 // successors. 1173 for (BasicBlock *NewSuccessor : NewSuccessors) 1174 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1175 1176 Builder.SetInsertPoint(PTI); 1177 // Convert pointer to int before we switch. 1178 if (CV->getType()->isPointerTy()) { 1179 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1180 "magicptr"); 1181 } 1182 1183 // Now that the successors are updated, create the new Switch instruction. 1184 SwitchInst *NewSI = 1185 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1186 NewSI->setDebugLoc(PTI->getDebugLoc()); 1187 for (ValueEqualityComparisonCase &V : PredCases) 1188 NewSI->addCase(V.Value, V.Dest); 1189 1190 if (PredHasWeights || SuccHasWeights) { 1191 // Halve the weights if any of them cannot fit in an uint32_t 1192 FitWeights(Weights); 1193 1194 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1195 1196 setBranchWeights(NewSI, MDWeights); 1197 } 1198 1199 EraseTerminatorAndDCECond(PTI); 1200 1201 // Okay, last check. If BB is still a successor of PSI, then we must 1202 // have an infinite loop case. If so, add an infinitely looping block 1203 // to handle the case to preserve the behavior of the code. 1204 BasicBlock *InfLoopBlock = nullptr; 1205 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1206 if (NewSI->getSuccessor(i) == BB) { 1207 if (!InfLoopBlock) { 1208 // Insert it at the end of the function, because it's either code, 1209 // or it won't matter if it's hot. :) 1210 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1211 BB->getParent()); 1212 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1213 } 1214 NewSI->setSuccessor(i, InfLoopBlock); 1215 } 1216 1217 Changed = true; 1218 } 1219 } 1220 return Changed; 1221 } 1222 1223 // If we would need to insert a select that uses the value of this invoke 1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1225 // can't hoist the invoke, as there is nowhere to put the select in this case. 1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1227 Instruction *I1, Instruction *I2) { 1228 for (BasicBlock *Succ : successors(BB1)) { 1229 for (const PHINode &PN : Succ->phis()) { 1230 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1231 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1232 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1233 return false; 1234 } 1235 } 1236 } 1237 return true; 1238 } 1239 1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1241 1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1243 /// in the two blocks up into the branch block. The caller of this function 1244 /// guarantees that BI's block dominates BB1 and BB2. 1245 static bool HoistThenElseCodeToIf(BranchInst *BI, 1246 const TargetTransformInfo &TTI) { 1247 // This does very trivial matching, with limited scanning, to find identical 1248 // instructions in the two blocks. In particular, we don't want to get into 1249 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1250 // such, we currently just scan for obviously identical instructions in an 1251 // identical order. 1252 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1253 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1254 1255 BasicBlock::iterator BB1_Itr = BB1->begin(); 1256 BasicBlock::iterator BB2_Itr = BB2->begin(); 1257 1258 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1259 // Skip debug info if it is not identical. 1260 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1261 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1262 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1263 while (isa<DbgInfoIntrinsic>(I1)) 1264 I1 = &*BB1_Itr++; 1265 while (isa<DbgInfoIntrinsic>(I2)) 1266 I2 = &*BB2_Itr++; 1267 } 1268 // FIXME: Can we define a safety predicate for CallBr? 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1271 isa<CallBrInst>(I1)) 1272 return false; 1273 1274 BasicBlock *BIParent = BI->getParent(); 1275 1276 bool Changed = false; 1277 do { 1278 // If we are hoisting the terminator instruction, don't move one (making a 1279 // broken BB), instead clone it, and remove BI. 1280 if (I1->isTerminator()) 1281 goto HoistTerminator; 1282 1283 // If we're going to hoist a call, make sure that the two instructions we're 1284 // commoning/hoisting are both marked with musttail, or neither of them is 1285 // marked as such. Otherwise, we might end up in a situation where we hoist 1286 // from a block where the terminator is a `ret` to a block where the terminator 1287 // is a `br`, and `musttail` calls expect to be followed by a return. 1288 auto *C1 = dyn_cast<CallInst>(I1); 1289 auto *C2 = dyn_cast<CallInst>(I2); 1290 if (C1 && C2) 1291 if (C1->isMustTailCall() != C2->isMustTailCall()) 1292 return Changed; 1293 1294 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1295 return Changed; 1296 1297 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1298 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1299 // The debug location is an integral part of a debug info intrinsic 1300 // and can't be separated from it or replaced. Instead of attempting 1301 // to merge locations, simply hoist both copies of the intrinsic. 1302 BIParent->getInstList().splice(BI->getIterator(), 1303 BB1->getInstList(), I1); 1304 BIParent->getInstList().splice(BI->getIterator(), 1305 BB2->getInstList(), I2); 1306 Changed = true; 1307 } else { 1308 // For a normal instruction, we just move one to right before the branch, 1309 // then replace all uses of the other with the first. Finally, we remove 1310 // the now redundant second instruction. 1311 BIParent->getInstList().splice(BI->getIterator(), 1312 BB1->getInstList(), I1); 1313 if (!I2->use_empty()) 1314 I2->replaceAllUsesWith(I1); 1315 I1->andIRFlags(I2); 1316 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1317 LLVMContext::MD_range, 1318 LLVMContext::MD_fpmath, 1319 LLVMContext::MD_invariant_load, 1320 LLVMContext::MD_nonnull, 1321 LLVMContext::MD_invariant_group, 1322 LLVMContext::MD_align, 1323 LLVMContext::MD_dereferenceable, 1324 LLVMContext::MD_dereferenceable_or_null, 1325 LLVMContext::MD_mem_parallel_loop_access, 1326 LLVMContext::MD_access_group}; 1327 combineMetadata(I1, I2, KnownIDs, true); 1328 1329 // I1 and I2 are being combined into a single instruction. Its debug 1330 // location is the merged locations of the original instructions. 1331 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1332 1333 I2->eraseFromParent(); 1334 Changed = true; 1335 } 1336 1337 I1 = &*BB1_Itr++; 1338 I2 = &*BB2_Itr++; 1339 // Skip debug info if it is not identical. 1340 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1341 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1342 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1343 while (isa<DbgInfoIntrinsic>(I1)) 1344 I1 = &*BB1_Itr++; 1345 while (isa<DbgInfoIntrinsic>(I2)) 1346 I2 = &*BB2_Itr++; 1347 } 1348 } while (I1->isIdenticalToWhenDefined(I2)); 1349 1350 return true; 1351 1352 HoistTerminator: 1353 // It may not be possible to hoist an invoke. 1354 // FIXME: Can we define a safety predicate for CallBr? 1355 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1356 return Changed; 1357 1358 // TODO: callbr hoisting currently disabled pending further study. 1359 if (isa<CallBrInst>(I1)) 1360 return Changed; 1361 1362 for (BasicBlock *Succ : successors(BB1)) { 1363 for (PHINode &PN : Succ->phis()) { 1364 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1365 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1366 if (BB1V == BB2V) 1367 continue; 1368 1369 // Check for passingValueIsAlwaysUndefined here because we would rather 1370 // eliminate undefined control flow then converting it to a select. 1371 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1372 passingValueIsAlwaysUndefined(BB2V, &PN)) 1373 return Changed; 1374 1375 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1376 return Changed; 1377 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1378 return Changed; 1379 } 1380 } 1381 1382 // Okay, it is safe to hoist the terminator. 1383 Instruction *NT = I1->clone(); 1384 BIParent->getInstList().insert(BI->getIterator(), NT); 1385 if (!NT->getType()->isVoidTy()) { 1386 I1->replaceAllUsesWith(NT); 1387 I2->replaceAllUsesWith(NT); 1388 NT->takeName(I1); 1389 } 1390 1391 // Ensure terminator gets a debug location, even an unknown one, in case 1392 // it involves inlinable calls. 1393 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1394 1395 // PHIs created below will adopt NT's merged DebugLoc. 1396 IRBuilder<NoFolder> Builder(NT); 1397 1398 // Hoisting one of the terminators from our successor is a great thing. 1399 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1400 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1401 // nodes, so we insert select instruction to compute the final result. 1402 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1403 for (BasicBlock *Succ : successors(BB1)) { 1404 for (PHINode &PN : Succ->phis()) { 1405 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1406 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1407 if (BB1V == BB2V) 1408 continue; 1409 1410 // These values do not agree. Insert a select instruction before NT 1411 // that determines the right value. 1412 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1413 if (!SI) 1414 SI = cast<SelectInst>( 1415 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1416 BB1V->getName() + "." + BB2V->getName(), BI)); 1417 1418 // Make the PHI node use the select for all incoming values for BB1/BB2 1419 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1420 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1421 PN.setIncomingValue(i, SI); 1422 } 1423 } 1424 1425 // Update any PHI nodes in our new successors. 1426 for (BasicBlock *Succ : successors(BB1)) 1427 AddPredecessorToBlock(Succ, BIParent, BB1); 1428 1429 EraseTerminatorAndDCECond(BI); 1430 return true; 1431 } 1432 1433 // All instructions in Insts belong to different blocks that all unconditionally 1434 // branch to a common successor. Analyze each instruction and return true if it 1435 // would be possible to sink them into their successor, creating one common 1436 // instruction instead. For every value that would be required to be provided by 1437 // PHI node (because an operand varies in each input block), add to PHIOperands. 1438 static bool canSinkInstructions( 1439 ArrayRef<Instruction *> Insts, 1440 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1441 // Prune out obviously bad instructions to move. Any non-store instruction 1442 // must have exactly one use, and we check later that use is by a single, 1443 // common PHI instruction in the successor. 1444 for (auto *I : Insts) { 1445 // These instructions may change or break semantics if moved. 1446 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1447 I->getType()->isTokenTy()) 1448 return false; 1449 1450 // Conservatively return false if I is an inline-asm instruction. Sinking 1451 // and merging inline-asm instructions can potentially create arguments 1452 // that cannot satisfy the inline-asm constraints. 1453 if (const auto *C = dyn_cast<CallBase>(I)) 1454 if (C->isInlineAsm()) 1455 return false; 1456 1457 // Everything must have only one use too, apart from stores which 1458 // have no uses. 1459 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1460 return false; 1461 } 1462 1463 const Instruction *I0 = Insts.front(); 1464 for (auto *I : Insts) 1465 if (!I->isSameOperationAs(I0)) 1466 return false; 1467 1468 // All instructions in Insts are known to be the same opcode. If they aren't 1469 // stores, check the only user of each is a PHI or in the same block as the 1470 // instruction, because if a user is in the same block as an instruction 1471 // we're contemplating sinking, it must already be determined to be sinkable. 1472 if (!isa<StoreInst>(I0)) { 1473 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1474 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1475 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1476 auto *U = cast<Instruction>(*I->user_begin()); 1477 return (PNUse && 1478 PNUse->getParent() == Succ && 1479 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1480 U->getParent() == I->getParent(); 1481 })) 1482 return false; 1483 } 1484 1485 // Because SROA can't handle speculating stores of selects, try not 1486 // to sink loads or stores of allocas when we'd have to create a PHI for 1487 // the address operand. Also, because it is likely that loads or stores 1488 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1489 // This can cause code churn which can have unintended consequences down 1490 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1491 // FIXME: This is a workaround for a deficiency in SROA - see 1492 // https://llvm.org/bugs/show_bug.cgi?id=30188 1493 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1494 return isa<AllocaInst>(I->getOperand(1)); 1495 })) 1496 return false; 1497 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1498 return isa<AllocaInst>(I->getOperand(0)); 1499 })) 1500 return false; 1501 1502 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1503 if (I0->getOperand(OI)->getType()->isTokenTy()) 1504 // Don't touch any operand of token type. 1505 return false; 1506 1507 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1508 assert(I->getNumOperands() == I0->getNumOperands()); 1509 return I->getOperand(OI) == I0->getOperand(OI); 1510 }; 1511 if (!all_of(Insts, SameAsI0)) { 1512 if (!canReplaceOperandWithVariable(I0, OI)) 1513 // We can't create a PHI from this GEP. 1514 return false; 1515 // Don't create indirect calls! The called value is the final operand. 1516 if (isa<CallBase>(I0) && OI == OE - 1) { 1517 // FIXME: if the call was *already* indirect, we should do this. 1518 return false; 1519 } 1520 for (auto *I : Insts) 1521 PHIOperands[I].push_back(I->getOperand(OI)); 1522 } 1523 } 1524 return true; 1525 } 1526 1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1528 // instruction of every block in Blocks to their common successor, commoning 1529 // into one instruction. 1530 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1531 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1532 1533 // canSinkLastInstruction returning true guarantees that every block has at 1534 // least one non-terminator instruction. 1535 SmallVector<Instruction*,4> Insts; 1536 for (auto *BB : Blocks) { 1537 Instruction *I = BB->getTerminator(); 1538 do { 1539 I = I->getPrevNode(); 1540 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1541 if (!isa<DbgInfoIntrinsic>(I)) 1542 Insts.push_back(I); 1543 } 1544 1545 // The only checking we need to do now is that all users of all instructions 1546 // are the same PHI node. canSinkLastInstruction should have checked this but 1547 // it is slightly over-aggressive - it gets confused by commutative instructions 1548 // so double-check it here. 1549 Instruction *I0 = Insts.front(); 1550 if (!isa<StoreInst>(I0)) { 1551 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1552 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1553 auto *U = cast<Instruction>(*I->user_begin()); 1554 return U == PNUse; 1555 })) 1556 return false; 1557 } 1558 1559 // We don't need to do any more checking here; canSinkLastInstruction should 1560 // have done it all for us. 1561 SmallVector<Value*, 4> NewOperands; 1562 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1563 // This check is different to that in canSinkLastInstruction. There, we 1564 // cared about the global view once simplifycfg (and instcombine) have 1565 // completed - it takes into account PHIs that become trivially 1566 // simplifiable. However here we need a more local view; if an operand 1567 // differs we create a PHI and rely on instcombine to clean up the very 1568 // small mess we may make. 1569 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1570 return I->getOperand(O) != I0->getOperand(O); 1571 }); 1572 if (!NeedPHI) { 1573 NewOperands.push_back(I0->getOperand(O)); 1574 continue; 1575 } 1576 1577 // Create a new PHI in the successor block and populate it. 1578 auto *Op = I0->getOperand(O); 1579 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1580 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1581 Op->getName() + ".sink", &BBEnd->front()); 1582 for (auto *I : Insts) 1583 PN->addIncoming(I->getOperand(O), I->getParent()); 1584 NewOperands.push_back(PN); 1585 } 1586 1587 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1588 // and move it to the start of the successor block. 1589 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1590 I0->getOperandUse(O).set(NewOperands[O]); 1591 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1592 1593 // Update metadata and IR flags, and merge debug locations. 1594 for (auto *I : Insts) 1595 if (I != I0) { 1596 // The debug location for the "common" instruction is the merged locations 1597 // of all the commoned instructions. We start with the original location 1598 // of the "common" instruction and iteratively merge each location in the 1599 // loop below. 1600 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1601 // However, as N-way merge for CallInst is rare, so we use simplified API 1602 // instead of using complex API for N-way merge. 1603 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1604 combineMetadataForCSE(I0, I, true); 1605 I0->andIRFlags(I); 1606 } 1607 1608 if (!isa<StoreInst>(I0)) { 1609 // canSinkLastInstruction checked that all instructions were used by 1610 // one and only one PHI node. Find that now, RAUW it to our common 1611 // instruction and nuke it. 1612 assert(I0->hasOneUse()); 1613 auto *PN = cast<PHINode>(*I0->user_begin()); 1614 PN->replaceAllUsesWith(I0); 1615 PN->eraseFromParent(); 1616 } 1617 1618 // Finally nuke all instructions apart from the common instruction. 1619 for (auto *I : Insts) 1620 if (I != I0) 1621 I->eraseFromParent(); 1622 1623 return true; 1624 } 1625 1626 namespace { 1627 1628 // LockstepReverseIterator - Iterates through instructions 1629 // in a set of blocks in reverse order from the first non-terminator. 1630 // For example (assume all blocks have size n): 1631 // LockstepReverseIterator I([B1, B2, B3]); 1632 // *I-- = [B1[n], B2[n], B3[n]]; 1633 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1634 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1635 // ... 1636 class LockstepReverseIterator { 1637 ArrayRef<BasicBlock*> Blocks; 1638 SmallVector<Instruction*,4> Insts; 1639 bool Fail; 1640 1641 public: 1642 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1643 reset(); 1644 } 1645 1646 void reset() { 1647 Fail = false; 1648 Insts.clear(); 1649 for (auto *BB : Blocks) { 1650 Instruction *Inst = BB->getTerminator(); 1651 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1652 Inst = Inst->getPrevNode(); 1653 if (!Inst) { 1654 // Block wasn't big enough. 1655 Fail = true; 1656 return; 1657 } 1658 Insts.push_back(Inst); 1659 } 1660 } 1661 1662 bool isValid() const { 1663 return !Fail; 1664 } 1665 1666 void operator--() { 1667 if (Fail) 1668 return; 1669 for (auto *&Inst : Insts) { 1670 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1671 Inst = Inst->getPrevNode(); 1672 // Already at beginning of block. 1673 if (!Inst) { 1674 Fail = true; 1675 return; 1676 } 1677 } 1678 } 1679 1680 ArrayRef<Instruction*> operator * () const { 1681 return Insts; 1682 } 1683 }; 1684 1685 } // end anonymous namespace 1686 1687 /// Check whether BB's predecessors end with unconditional branches. If it is 1688 /// true, sink any common code from the predecessors to BB. 1689 /// We also allow one predecessor to end with conditional branch (but no more 1690 /// than one). 1691 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1692 // We support two situations: 1693 // (1) all incoming arcs are unconditional 1694 // (2) one incoming arc is conditional 1695 // 1696 // (2) is very common in switch defaults and 1697 // else-if patterns; 1698 // 1699 // if (a) f(1); 1700 // else if (b) f(2); 1701 // 1702 // produces: 1703 // 1704 // [if] 1705 // / \ 1706 // [f(1)] [if] 1707 // | | \ 1708 // | | | 1709 // | [f(2)]| 1710 // \ | / 1711 // [ end ] 1712 // 1713 // [end] has two unconditional predecessor arcs and one conditional. The 1714 // conditional refers to the implicit empty 'else' arc. This conditional 1715 // arc can also be caused by an empty default block in a switch. 1716 // 1717 // In this case, we attempt to sink code from all *unconditional* arcs. 1718 // If we can sink instructions from these arcs (determined during the scan 1719 // phase below) we insert a common successor for all unconditional arcs and 1720 // connect that to [end], to enable sinking: 1721 // 1722 // [if] 1723 // / \ 1724 // [x(1)] [if] 1725 // | | \ 1726 // | | \ 1727 // | [x(2)] | 1728 // \ / | 1729 // [sink.split] | 1730 // \ / 1731 // [ end ] 1732 // 1733 SmallVector<BasicBlock*,4> UnconditionalPreds; 1734 Instruction *Cond = nullptr; 1735 for (auto *B : predecessors(BB)) { 1736 auto *T = B->getTerminator(); 1737 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1738 UnconditionalPreds.push_back(B); 1739 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1740 Cond = T; 1741 else 1742 return false; 1743 } 1744 if (UnconditionalPreds.size() < 2) 1745 return false; 1746 1747 bool Changed = false; 1748 // We take a two-step approach to tail sinking. First we scan from the end of 1749 // each block upwards in lockstep. If the n'th instruction from the end of each 1750 // block can be sunk, those instructions are added to ValuesToSink and we 1751 // carry on. If we can sink an instruction but need to PHI-merge some operands 1752 // (because they're not identical in each instruction) we add these to 1753 // PHIOperands. 1754 unsigned ScanIdx = 0; 1755 SmallPtrSet<Value*,4> InstructionsToSink; 1756 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1757 LockstepReverseIterator LRI(UnconditionalPreds); 1758 while (LRI.isValid() && 1759 canSinkInstructions(*LRI, PHIOperands)) { 1760 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1761 << "\n"); 1762 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1763 ++ScanIdx; 1764 --LRI; 1765 } 1766 1767 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1768 unsigned NumPHIdValues = 0; 1769 for (auto *I : *LRI) 1770 for (auto *V : PHIOperands[I]) 1771 if (InstructionsToSink.count(V) == 0) 1772 ++NumPHIdValues; 1773 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1774 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1775 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1776 NumPHIInsts++; 1777 1778 return NumPHIInsts <= 1; 1779 }; 1780 1781 if (ScanIdx > 0 && Cond) { 1782 // Check if we would actually sink anything first! This mutates the CFG and 1783 // adds an extra block. The goal in doing this is to allow instructions that 1784 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1785 // (such as trunc, add) can be sunk and predicated already. So we check that 1786 // we're going to sink at least one non-speculatable instruction. 1787 LRI.reset(); 1788 unsigned Idx = 0; 1789 bool Profitable = false; 1790 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1791 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1792 Profitable = true; 1793 break; 1794 } 1795 --LRI; 1796 ++Idx; 1797 } 1798 if (!Profitable) 1799 return false; 1800 1801 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1802 // We have a conditional edge and we're going to sink some instructions. 1803 // Insert a new block postdominating all blocks we're going to sink from. 1804 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1805 // Edges couldn't be split. 1806 return false; 1807 Changed = true; 1808 } 1809 1810 // Now that we've analyzed all potential sinking candidates, perform the 1811 // actual sink. We iteratively sink the last non-terminator of the source 1812 // blocks into their common successor unless doing so would require too 1813 // many PHI instructions to be generated (currently only one PHI is allowed 1814 // per sunk instruction). 1815 // 1816 // We can use InstructionsToSink to discount values needing PHI-merging that will 1817 // actually be sunk in a later iteration. This allows us to be more 1818 // aggressive in what we sink. This does allow a false positive where we 1819 // sink presuming a later value will also be sunk, but stop half way through 1820 // and never actually sink it which means we produce more PHIs than intended. 1821 // This is unlikely in practice though. 1822 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1823 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1824 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1825 << "\n"); 1826 1827 // Because we've sunk every instruction in turn, the current instruction to 1828 // sink is always at index 0. 1829 LRI.reset(); 1830 if (!ProfitableToSinkInstruction(LRI)) { 1831 // Too many PHIs would be created. 1832 LLVM_DEBUG( 1833 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1834 break; 1835 } 1836 1837 if (!sinkLastInstruction(UnconditionalPreds)) 1838 return Changed; 1839 NumSinkCommons++; 1840 Changed = true; 1841 } 1842 return Changed; 1843 } 1844 1845 /// Determine if we can hoist sink a sole store instruction out of a 1846 /// conditional block. 1847 /// 1848 /// We are looking for code like the following: 1849 /// BrBB: 1850 /// store i32 %add, i32* %arrayidx2 1851 /// ... // No other stores or function calls (we could be calling a memory 1852 /// ... // function). 1853 /// %cmp = icmp ult %x, %y 1854 /// br i1 %cmp, label %EndBB, label %ThenBB 1855 /// ThenBB: 1856 /// store i32 %add5, i32* %arrayidx2 1857 /// br label EndBB 1858 /// EndBB: 1859 /// ... 1860 /// We are going to transform this into: 1861 /// BrBB: 1862 /// store i32 %add, i32* %arrayidx2 1863 /// ... // 1864 /// %cmp = icmp ult %x, %y 1865 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1866 /// store i32 %add.add5, i32* %arrayidx2 1867 /// ... 1868 /// 1869 /// \return The pointer to the value of the previous store if the store can be 1870 /// hoisted into the predecessor block. 0 otherwise. 1871 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1872 BasicBlock *StoreBB, BasicBlock *EndBB) { 1873 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1874 if (!StoreToHoist) 1875 return nullptr; 1876 1877 // Volatile or atomic. 1878 if (!StoreToHoist->isSimple()) 1879 return nullptr; 1880 1881 Value *StorePtr = StoreToHoist->getPointerOperand(); 1882 1883 // Look for a store to the same pointer in BrBB. 1884 unsigned MaxNumInstToLookAt = 9; 1885 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1886 if (!MaxNumInstToLookAt) 1887 break; 1888 --MaxNumInstToLookAt; 1889 1890 // Could be calling an instruction that affects memory like free(). 1891 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1892 return nullptr; 1893 1894 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1895 // Found the previous store make sure it stores to the same location. 1896 if (SI->getPointerOperand() == StorePtr) 1897 // Found the previous store, return its value operand. 1898 return SI->getValueOperand(); 1899 return nullptr; // Unknown store. 1900 } 1901 } 1902 1903 return nullptr; 1904 } 1905 1906 /// Speculate a conditional basic block flattening the CFG. 1907 /// 1908 /// Note that this is a very risky transform currently. Speculating 1909 /// instructions like this is most often not desirable. Instead, there is an MI 1910 /// pass which can do it with full awareness of the resource constraints. 1911 /// However, some cases are "obvious" and we should do directly. An example of 1912 /// this is speculating a single, reasonably cheap instruction. 1913 /// 1914 /// There is only one distinct advantage to flattening the CFG at the IR level: 1915 /// it makes very common but simplistic optimizations such as are common in 1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1917 /// modeling their effects with easier to reason about SSA value graphs. 1918 /// 1919 /// 1920 /// An illustration of this transform is turning this IR: 1921 /// \code 1922 /// BB: 1923 /// %cmp = icmp ult %x, %y 1924 /// br i1 %cmp, label %EndBB, label %ThenBB 1925 /// ThenBB: 1926 /// %sub = sub %x, %y 1927 /// br label BB2 1928 /// EndBB: 1929 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1930 /// ... 1931 /// \endcode 1932 /// 1933 /// Into this IR: 1934 /// \code 1935 /// BB: 1936 /// %cmp = icmp ult %x, %y 1937 /// %sub = sub %x, %y 1938 /// %cond = select i1 %cmp, 0, %sub 1939 /// ... 1940 /// \endcode 1941 /// 1942 /// \returns true if the conditional block is removed. 1943 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1944 const TargetTransformInfo &TTI) { 1945 // Be conservative for now. FP select instruction can often be expensive. 1946 Value *BrCond = BI->getCondition(); 1947 if (isa<FCmpInst>(BrCond)) 1948 return false; 1949 1950 BasicBlock *BB = BI->getParent(); 1951 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1952 1953 // If ThenBB is actually on the false edge of the conditional branch, remember 1954 // to swap the select operands later. 1955 bool Invert = false; 1956 if (ThenBB != BI->getSuccessor(0)) { 1957 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1958 Invert = true; 1959 } 1960 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1961 1962 // Keep a count of how many times instructions are used within ThenBB when 1963 // they are candidates for sinking into ThenBB. Specifically: 1964 // - They are defined in BB, and 1965 // - They have no side effects, and 1966 // - All of their uses are in ThenBB. 1967 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1968 1969 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1970 1971 unsigned SpeculationCost = 0; 1972 Value *SpeculatedStoreValue = nullptr; 1973 StoreInst *SpeculatedStore = nullptr; 1974 for (BasicBlock::iterator BBI = ThenBB->begin(), 1975 BBE = std::prev(ThenBB->end()); 1976 BBI != BBE; ++BBI) { 1977 Instruction *I = &*BBI; 1978 // Skip debug info. 1979 if (isa<DbgInfoIntrinsic>(I)) { 1980 SpeculatedDbgIntrinsics.push_back(I); 1981 continue; 1982 } 1983 1984 // Only speculatively execute a single instruction (not counting the 1985 // terminator) for now. 1986 ++SpeculationCost; 1987 if (SpeculationCost > 1) 1988 return false; 1989 1990 // Don't hoist the instruction if it's unsafe or expensive. 1991 if (!isSafeToSpeculativelyExecute(I) && 1992 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1993 I, BB, ThenBB, EndBB)))) 1994 return false; 1995 if (!SpeculatedStoreValue && 1996 ComputeSpeculationCost(I, TTI) > 1997 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1998 return false; 1999 2000 // Store the store speculation candidate. 2001 if (SpeculatedStoreValue) 2002 SpeculatedStore = cast<StoreInst>(I); 2003 2004 // Do not hoist the instruction if any of its operands are defined but not 2005 // used in BB. The transformation will prevent the operand from 2006 // being sunk into the use block. 2007 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2008 Instruction *OpI = dyn_cast<Instruction>(*i); 2009 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2010 continue; // Not a candidate for sinking. 2011 2012 ++SinkCandidateUseCounts[OpI]; 2013 } 2014 } 2015 2016 // Consider any sink candidates which are only used in ThenBB as costs for 2017 // speculation. Note, while we iterate over a DenseMap here, we are summing 2018 // and so iteration order isn't significant. 2019 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2020 I = SinkCandidateUseCounts.begin(), 2021 E = SinkCandidateUseCounts.end(); 2022 I != E; ++I) 2023 if (I->first->hasNUses(I->second)) { 2024 ++SpeculationCost; 2025 if (SpeculationCost > 1) 2026 return false; 2027 } 2028 2029 // Check that the PHI nodes can be converted to selects. 2030 bool HaveRewritablePHIs = false; 2031 for (PHINode &PN : EndBB->phis()) { 2032 Value *OrigV = PN.getIncomingValueForBlock(BB); 2033 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2034 2035 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2036 // Skip PHIs which are trivial. 2037 if (ThenV == OrigV) 2038 continue; 2039 2040 // Don't convert to selects if we could remove undefined behavior instead. 2041 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2042 passingValueIsAlwaysUndefined(ThenV, &PN)) 2043 return false; 2044 2045 HaveRewritablePHIs = true; 2046 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2047 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2048 if (!OrigCE && !ThenCE) 2049 continue; // Known safe and cheap. 2050 2051 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2052 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2053 return false; 2054 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2055 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2056 unsigned MaxCost = 2057 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2058 if (OrigCost + ThenCost > MaxCost) 2059 return false; 2060 2061 // Account for the cost of an unfolded ConstantExpr which could end up 2062 // getting expanded into Instructions. 2063 // FIXME: This doesn't account for how many operations are combined in the 2064 // constant expression. 2065 ++SpeculationCost; 2066 if (SpeculationCost > 1) 2067 return false; 2068 } 2069 2070 // If there are no PHIs to process, bail early. This helps ensure idempotence 2071 // as well. 2072 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2073 return false; 2074 2075 // If we get here, we can hoist the instruction and if-convert. 2076 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2077 2078 // Insert a select of the value of the speculated store. 2079 if (SpeculatedStoreValue) { 2080 IRBuilder<NoFolder> Builder(BI); 2081 Value *TrueV = SpeculatedStore->getValueOperand(); 2082 Value *FalseV = SpeculatedStoreValue; 2083 if (Invert) 2084 std::swap(TrueV, FalseV); 2085 Value *S = Builder.CreateSelect( 2086 BrCond, TrueV, FalseV, "spec.store.select", BI); 2087 SpeculatedStore->setOperand(0, S); 2088 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2089 SpeculatedStore->getDebugLoc()); 2090 } 2091 2092 // Metadata can be dependent on the condition we are hoisting above. 2093 // Conservatively strip all metadata on the instruction. 2094 for (auto &I : *ThenBB) 2095 I.dropUnknownNonDebugMetadata(); 2096 2097 // Hoist the instructions. 2098 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2099 ThenBB->begin(), std::prev(ThenBB->end())); 2100 2101 // Insert selects and rewrite the PHI operands. 2102 IRBuilder<NoFolder> Builder(BI); 2103 for (PHINode &PN : EndBB->phis()) { 2104 unsigned OrigI = PN.getBasicBlockIndex(BB); 2105 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2106 Value *OrigV = PN.getIncomingValue(OrigI); 2107 Value *ThenV = PN.getIncomingValue(ThenI); 2108 2109 // Skip PHIs which are trivial. 2110 if (OrigV == ThenV) 2111 continue; 2112 2113 // Create a select whose true value is the speculatively executed value and 2114 // false value is the preexisting value. Swap them if the branch 2115 // destinations were inverted. 2116 Value *TrueV = ThenV, *FalseV = OrigV; 2117 if (Invert) 2118 std::swap(TrueV, FalseV); 2119 Value *V = Builder.CreateSelect( 2120 BrCond, TrueV, FalseV, "spec.select", BI); 2121 PN.setIncomingValue(OrigI, V); 2122 PN.setIncomingValue(ThenI, V); 2123 } 2124 2125 // Remove speculated dbg intrinsics. 2126 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2127 // dbg value for the different flows and inserting it after the select. 2128 for (Instruction *I : SpeculatedDbgIntrinsics) 2129 I->eraseFromParent(); 2130 2131 ++NumSpeculations; 2132 return true; 2133 } 2134 2135 /// Return true if we can thread a branch across this block. 2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2137 unsigned Size = 0; 2138 2139 for (Instruction &I : BB->instructionsWithoutDebug()) { 2140 if (Size > 10) 2141 return false; // Don't clone large BB's. 2142 ++Size; 2143 2144 // We can only support instructions that do not define values that are 2145 // live outside of the current basic block. 2146 for (User *U : I.users()) { 2147 Instruction *UI = cast<Instruction>(U); 2148 if (UI->getParent() != BB || isa<PHINode>(UI)) 2149 return false; 2150 } 2151 2152 // Looks ok, continue checking. 2153 } 2154 2155 return true; 2156 } 2157 2158 /// If we have a conditional branch on a PHI node value that is defined in the 2159 /// same block as the branch and if any PHI entries are constants, thread edges 2160 /// corresponding to that entry to be branches to their ultimate destination. 2161 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2162 AssumptionCache *AC) { 2163 BasicBlock *BB = BI->getParent(); 2164 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2165 // NOTE: we currently cannot transform this case if the PHI node is used 2166 // outside of the block. 2167 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2168 return false; 2169 2170 // Degenerate case of a single entry PHI. 2171 if (PN->getNumIncomingValues() == 1) { 2172 FoldSingleEntryPHINodes(PN->getParent()); 2173 return true; 2174 } 2175 2176 // Now we know that this block has multiple preds and two succs. 2177 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2178 return false; 2179 2180 // Can't fold blocks that contain noduplicate or convergent calls. 2181 if (any_of(*BB, [](const Instruction &I) { 2182 const CallInst *CI = dyn_cast<CallInst>(&I); 2183 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2184 })) 2185 return false; 2186 2187 // Okay, this is a simple enough basic block. See if any phi values are 2188 // constants. 2189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2190 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2191 if (!CB || !CB->getType()->isIntegerTy(1)) 2192 continue; 2193 2194 // Okay, we now know that all edges from PredBB should be revectored to 2195 // branch to RealDest. 2196 BasicBlock *PredBB = PN->getIncomingBlock(i); 2197 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2198 2199 if (RealDest == BB) 2200 continue; // Skip self loops. 2201 // Skip if the predecessor's terminator is an indirect branch. 2202 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2203 continue; 2204 2205 // The dest block might have PHI nodes, other predecessors and other 2206 // difficult cases. Instead of being smart about this, just insert a new 2207 // block that jumps to the destination block, effectively splitting 2208 // the edge we are about to create. 2209 BasicBlock *EdgeBB = 2210 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2211 RealDest->getParent(), RealDest); 2212 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2213 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2214 2215 // Update PHI nodes. 2216 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2217 2218 // BB may have instructions that are being threaded over. Clone these 2219 // instructions into EdgeBB. We know that there will be no uses of the 2220 // cloned instructions outside of EdgeBB. 2221 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2222 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2223 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2224 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2225 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2226 continue; 2227 } 2228 // Clone the instruction. 2229 Instruction *N = BBI->clone(); 2230 if (BBI->hasName()) 2231 N->setName(BBI->getName() + ".c"); 2232 2233 // Update operands due to translation. 2234 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2235 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2236 if (PI != TranslateMap.end()) 2237 *i = PI->second; 2238 } 2239 2240 // Check for trivial simplification. 2241 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2242 if (!BBI->use_empty()) 2243 TranslateMap[&*BBI] = V; 2244 if (!N->mayHaveSideEffects()) { 2245 N->deleteValue(); // Instruction folded away, don't need actual inst 2246 N = nullptr; 2247 } 2248 } else { 2249 if (!BBI->use_empty()) 2250 TranslateMap[&*BBI] = N; 2251 } 2252 // Insert the new instruction into its new home. 2253 if (N) 2254 EdgeBB->getInstList().insert(InsertPt, N); 2255 2256 // Register the new instruction with the assumption cache if necessary. 2257 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2258 if (II->getIntrinsicID() == Intrinsic::assume) 2259 AC->registerAssumption(II); 2260 } 2261 2262 // Loop over all of the edges from PredBB to BB, changing them to branch 2263 // to EdgeBB instead. 2264 Instruction *PredBBTI = PredBB->getTerminator(); 2265 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2266 if (PredBBTI->getSuccessor(i) == BB) { 2267 BB->removePredecessor(PredBB); 2268 PredBBTI->setSuccessor(i, EdgeBB); 2269 } 2270 2271 // Recurse, simplifying any other constants. 2272 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2273 } 2274 2275 return false; 2276 } 2277 2278 /// Given a BB that starts with the specified two-entry PHI node, 2279 /// see if we can eliminate it. 2280 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2281 const DataLayout &DL) { 2282 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2283 // statement", which has a very simple dominance structure. Basically, we 2284 // are trying to find the condition that is being branched on, which 2285 // subsequently causes this merge to happen. We really want control 2286 // dependence information for this check, but simplifycfg can't keep it up 2287 // to date, and this catches most of the cases we care about anyway. 2288 BasicBlock *BB = PN->getParent(); 2289 const Function *Fn = BB->getParent(); 2290 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2291 return false; 2292 2293 BasicBlock *IfTrue, *IfFalse; 2294 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2295 if (!IfCond || 2296 // Don't bother if the branch will be constant folded trivially. 2297 isa<ConstantInt>(IfCond)) 2298 return false; 2299 2300 // Okay, we found that we can merge this two-entry phi node into a select. 2301 // Doing so would require us to fold *all* two entry phi nodes in this block. 2302 // At some point this becomes non-profitable (particularly if the target 2303 // doesn't support cmov's). Only do this transformation if there are two or 2304 // fewer PHI nodes in this block. 2305 unsigned NumPhis = 0; 2306 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2307 if (NumPhis > 2) 2308 return false; 2309 2310 // Loop over the PHI's seeing if we can promote them all to select 2311 // instructions. While we are at it, keep track of the instructions 2312 // that need to be moved to the dominating block. 2313 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2314 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2315 MaxCostVal1 = PHINodeFoldingThreshold; 2316 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2317 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2318 2319 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2320 PHINode *PN = cast<PHINode>(II++); 2321 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2322 PN->replaceAllUsesWith(V); 2323 PN->eraseFromParent(); 2324 continue; 2325 } 2326 2327 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2328 MaxCostVal0, TTI) || 2329 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2330 MaxCostVal1, TTI)) 2331 return false; 2332 } 2333 2334 // If we folded the first phi, PN dangles at this point. Refresh it. If 2335 // we ran out of PHIs then we simplified them all. 2336 PN = dyn_cast<PHINode>(BB->begin()); 2337 if (!PN) 2338 return true; 2339 2340 // Don't fold i1 branches on PHIs which contain binary operators. These can 2341 // often be turned into switches and other things. 2342 if (PN->getType()->isIntegerTy(1) && 2343 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2344 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2345 isa<BinaryOperator>(IfCond))) 2346 return false; 2347 2348 // If all PHI nodes are promotable, check to make sure that all instructions 2349 // in the predecessor blocks can be promoted as well. If not, we won't be able 2350 // to get rid of the control flow, so it's not worth promoting to select 2351 // instructions. 2352 BasicBlock *DomBlock = nullptr; 2353 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2354 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2355 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2356 IfBlock1 = nullptr; 2357 } else { 2358 DomBlock = *pred_begin(IfBlock1); 2359 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2360 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2361 // This is not an aggressive instruction that we can promote. 2362 // Because of this, we won't be able to get rid of the control flow, so 2363 // the xform is not worth it. 2364 return false; 2365 } 2366 } 2367 2368 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2369 IfBlock2 = nullptr; 2370 } else { 2371 DomBlock = *pred_begin(IfBlock2); 2372 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2373 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2374 // This is not an aggressive instruction that we can promote. 2375 // Because of this, we won't be able to get rid of the control flow, so 2376 // the xform is not worth it. 2377 return false; 2378 } 2379 } 2380 2381 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2382 << " T: " << IfTrue->getName() 2383 << " F: " << IfFalse->getName() << "\n"); 2384 2385 // If we can still promote the PHI nodes after this gauntlet of tests, 2386 // do all of the PHI's now. 2387 Instruction *InsertPt = DomBlock->getTerminator(); 2388 IRBuilder<NoFolder> Builder(InsertPt); 2389 2390 // Move all 'aggressive' instructions, which are defined in the 2391 // conditional parts of the if's up to the dominating block. 2392 if (IfBlock1) 2393 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2394 if (IfBlock2) 2395 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2396 2397 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2398 // Change the PHI node into a select instruction. 2399 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2400 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2401 2402 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2403 PN->replaceAllUsesWith(Sel); 2404 Sel->takeName(PN); 2405 PN->eraseFromParent(); 2406 } 2407 2408 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2409 // has been flattened. Change DomBlock to jump directly to our new block to 2410 // avoid other simplifycfg's kicking in on the diamond. 2411 Instruction *OldTI = DomBlock->getTerminator(); 2412 Builder.SetInsertPoint(OldTI); 2413 Builder.CreateBr(BB); 2414 OldTI->eraseFromParent(); 2415 return true; 2416 } 2417 2418 /// If we found a conditional branch that goes to two returning blocks, 2419 /// try to merge them together into one return, 2420 /// introducing a select if the return values disagree. 2421 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2422 IRBuilder<> &Builder) { 2423 assert(BI->isConditional() && "Must be a conditional branch"); 2424 BasicBlock *TrueSucc = BI->getSuccessor(0); 2425 BasicBlock *FalseSucc = BI->getSuccessor(1); 2426 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2427 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2428 2429 // Check to ensure both blocks are empty (just a return) or optionally empty 2430 // with PHI nodes. If there are other instructions, merging would cause extra 2431 // computation on one path or the other. 2432 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2433 return false; 2434 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2435 return false; 2436 2437 Builder.SetInsertPoint(BI); 2438 // Okay, we found a branch that is going to two return nodes. If 2439 // there is no return value for this function, just change the 2440 // branch into a return. 2441 if (FalseRet->getNumOperands() == 0) { 2442 TrueSucc->removePredecessor(BI->getParent()); 2443 FalseSucc->removePredecessor(BI->getParent()); 2444 Builder.CreateRetVoid(); 2445 EraseTerminatorAndDCECond(BI); 2446 return true; 2447 } 2448 2449 // Otherwise, figure out what the true and false return values are 2450 // so we can insert a new select instruction. 2451 Value *TrueValue = TrueRet->getReturnValue(); 2452 Value *FalseValue = FalseRet->getReturnValue(); 2453 2454 // Unwrap any PHI nodes in the return blocks. 2455 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2456 if (TVPN->getParent() == TrueSucc) 2457 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2458 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2459 if (FVPN->getParent() == FalseSucc) 2460 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2461 2462 // In order for this transformation to be safe, we must be able to 2463 // unconditionally execute both operands to the return. This is 2464 // normally the case, but we could have a potentially-trapping 2465 // constant expression that prevents this transformation from being 2466 // safe. 2467 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2468 if (TCV->canTrap()) 2469 return false; 2470 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2471 if (FCV->canTrap()) 2472 return false; 2473 2474 // Okay, we collected all the mapped values and checked them for sanity, and 2475 // defined to really do this transformation. First, update the CFG. 2476 TrueSucc->removePredecessor(BI->getParent()); 2477 FalseSucc->removePredecessor(BI->getParent()); 2478 2479 // Insert select instructions where needed. 2480 Value *BrCond = BI->getCondition(); 2481 if (TrueValue) { 2482 // Insert a select if the results differ. 2483 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2484 } else if (isa<UndefValue>(TrueValue)) { 2485 TrueValue = FalseValue; 2486 } else { 2487 TrueValue = 2488 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2489 } 2490 } 2491 2492 Value *RI = 2493 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2494 2495 (void)RI; 2496 2497 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2498 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2499 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2500 2501 EraseTerminatorAndDCECond(BI); 2502 2503 return true; 2504 } 2505 2506 /// Return true if the given instruction is available 2507 /// in its predecessor block. If yes, the instruction will be removed. 2508 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2509 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2510 return false; 2511 for (Instruction &I : *PB) { 2512 Instruction *PBI = &I; 2513 // Check whether Inst and PBI generate the same value. 2514 if (Inst->isIdenticalTo(PBI)) { 2515 Inst->replaceAllUsesWith(PBI); 2516 Inst->eraseFromParent(); 2517 return true; 2518 } 2519 } 2520 return false; 2521 } 2522 2523 /// Return true if either PBI or BI has branch weight available, and store 2524 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2525 /// not have branch weight, use 1:1 as its weight. 2526 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2527 uint64_t &PredTrueWeight, 2528 uint64_t &PredFalseWeight, 2529 uint64_t &SuccTrueWeight, 2530 uint64_t &SuccFalseWeight) { 2531 bool PredHasWeights = 2532 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2533 bool SuccHasWeights = 2534 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2535 if (PredHasWeights || SuccHasWeights) { 2536 if (!PredHasWeights) 2537 PredTrueWeight = PredFalseWeight = 1; 2538 if (!SuccHasWeights) 2539 SuccTrueWeight = SuccFalseWeight = 1; 2540 return true; 2541 } else { 2542 return false; 2543 } 2544 } 2545 2546 /// If this basic block is simple enough, and if a predecessor branches to us 2547 /// and one of our successors, fold the block into the predecessor and use 2548 /// logical operations to pick the right destination. 2549 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2550 BasicBlock *BB = BI->getParent(); 2551 2552 const unsigned PredCount = pred_size(BB); 2553 2554 Instruction *Cond = nullptr; 2555 if (BI->isConditional()) 2556 Cond = dyn_cast<Instruction>(BI->getCondition()); 2557 else { 2558 // For unconditional branch, check for a simple CFG pattern, where 2559 // BB has a single predecessor and BB's successor is also its predecessor's 2560 // successor. If such pattern exists, check for CSE between BB and its 2561 // predecessor. 2562 if (BasicBlock *PB = BB->getSinglePredecessor()) 2563 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2564 if (PBI->isConditional() && 2565 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2566 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2567 for (auto I = BB->instructionsWithoutDebug().begin(), 2568 E = BB->instructionsWithoutDebug().end(); 2569 I != E;) { 2570 Instruction *Curr = &*I++; 2571 if (isa<CmpInst>(Curr)) { 2572 Cond = Curr; 2573 break; 2574 } 2575 // Quit if we can't remove this instruction. 2576 if (!tryCSEWithPredecessor(Curr, PB)) 2577 return false; 2578 } 2579 } 2580 2581 if (!Cond) 2582 return false; 2583 } 2584 2585 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2586 Cond->getParent() != BB || !Cond->hasOneUse()) 2587 return false; 2588 2589 // Make sure the instruction after the condition is the cond branch. 2590 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2591 2592 // Ignore dbg intrinsics. 2593 while (isa<DbgInfoIntrinsic>(CondIt)) 2594 ++CondIt; 2595 2596 if (&*CondIt != BI) 2597 return false; 2598 2599 // Only allow this transformation if computing the condition doesn't involve 2600 // too many instructions and these involved instructions can be executed 2601 // unconditionally. We denote all involved instructions except the condition 2602 // as "bonus instructions", and only allow this transformation when the 2603 // number of the bonus instructions we'll need to create when cloning into 2604 // each predecessor does not exceed a certain threshold. 2605 unsigned NumBonusInsts = 0; 2606 for (auto I = BB->begin(); Cond != &*I; ++I) { 2607 // Ignore dbg intrinsics. 2608 if (isa<DbgInfoIntrinsic>(I)) 2609 continue; 2610 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2611 return false; 2612 // I has only one use and can be executed unconditionally. 2613 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2614 if (User == nullptr || User->getParent() != BB) 2615 return false; 2616 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2617 // to use any other instruction, User must be an instruction between next(I) 2618 // and Cond. 2619 2620 // Account for the cost of duplicating this instruction into each 2621 // predecessor. 2622 NumBonusInsts += PredCount; 2623 // Early exits once we reach the limit. 2624 if (NumBonusInsts > BonusInstThreshold) 2625 return false; 2626 } 2627 2628 // Cond is known to be a compare or binary operator. Check to make sure that 2629 // neither operand is a potentially-trapping constant expression. 2630 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2631 if (CE->canTrap()) 2632 return false; 2633 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2634 if (CE->canTrap()) 2635 return false; 2636 2637 // Finally, don't infinitely unroll conditional loops. 2638 BasicBlock *TrueDest = BI->getSuccessor(0); 2639 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2640 if (TrueDest == BB || FalseDest == BB) 2641 return false; 2642 2643 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2644 BasicBlock *PredBlock = *PI; 2645 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2646 2647 // Check that we have two conditional branches. If there is a PHI node in 2648 // the common successor, verify that the same value flows in from both 2649 // blocks. 2650 SmallVector<PHINode *, 4> PHIs; 2651 if (!PBI || PBI->isUnconditional() || 2652 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2653 (!BI->isConditional() && 2654 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2655 continue; 2656 2657 // Determine if the two branches share a common destination. 2658 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2659 bool InvertPredCond = false; 2660 2661 if (BI->isConditional()) { 2662 if (PBI->getSuccessor(0) == TrueDest) { 2663 Opc = Instruction::Or; 2664 } else if (PBI->getSuccessor(1) == FalseDest) { 2665 Opc = Instruction::And; 2666 } else if (PBI->getSuccessor(0) == FalseDest) { 2667 Opc = Instruction::And; 2668 InvertPredCond = true; 2669 } else if (PBI->getSuccessor(1) == TrueDest) { 2670 Opc = Instruction::Or; 2671 InvertPredCond = true; 2672 } else { 2673 continue; 2674 } 2675 } else { 2676 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2677 continue; 2678 } 2679 2680 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2681 IRBuilder<> Builder(PBI); 2682 2683 // If we need to invert the condition in the pred block to match, do so now. 2684 if (InvertPredCond) { 2685 Value *NewCond = PBI->getCondition(); 2686 2687 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2688 CmpInst *CI = cast<CmpInst>(NewCond); 2689 CI->setPredicate(CI->getInversePredicate()); 2690 } else { 2691 NewCond = 2692 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2693 } 2694 2695 PBI->setCondition(NewCond); 2696 PBI->swapSuccessors(); 2697 } 2698 2699 // If we have bonus instructions, clone them into the predecessor block. 2700 // Note that there may be multiple predecessor blocks, so we cannot move 2701 // bonus instructions to a predecessor block. 2702 ValueToValueMapTy VMap; // maps original values to cloned values 2703 // We already make sure Cond is the last instruction before BI. Therefore, 2704 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2705 // instructions. 2706 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2707 if (isa<DbgInfoIntrinsic>(BonusInst)) 2708 continue; 2709 Instruction *NewBonusInst = BonusInst->clone(); 2710 RemapInstruction(NewBonusInst, VMap, 2711 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2712 VMap[&*BonusInst] = NewBonusInst; 2713 2714 // If we moved a load, we cannot any longer claim any knowledge about 2715 // its potential value. The previous information might have been valid 2716 // only given the branch precondition. 2717 // For an analogous reason, we must also drop all the metadata whose 2718 // semantics we don't understand. 2719 NewBonusInst->dropUnknownNonDebugMetadata(); 2720 2721 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2722 NewBonusInst->takeName(&*BonusInst); 2723 BonusInst->setName(BonusInst->getName() + ".old"); 2724 } 2725 2726 // Clone Cond into the predecessor basic block, and or/and the 2727 // two conditions together. 2728 Instruction *CondInPred = Cond->clone(); 2729 RemapInstruction(CondInPred, VMap, 2730 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2731 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2732 CondInPred->takeName(Cond); 2733 Cond->setName(CondInPred->getName() + ".old"); 2734 2735 if (BI->isConditional()) { 2736 Instruction *NewCond = cast<Instruction>( 2737 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2738 PBI->setCondition(NewCond); 2739 2740 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2741 bool HasWeights = 2742 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2743 SuccTrueWeight, SuccFalseWeight); 2744 SmallVector<uint64_t, 8> NewWeights; 2745 2746 if (PBI->getSuccessor(0) == BB) { 2747 if (HasWeights) { 2748 // PBI: br i1 %x, BB, FalseDest 2749 // BI: br i1 %y, TrueDest, FalseDest 2750 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2751 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2752 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2753 // TrueWeight for PBI * FalseWeight for BI. 2754 // We assume that total weights of a BranchInst can fit into 32 bits. 2755 // Therefore, we will not have overflow using 64-bit arithmetic. 2756 NewWeights.push_back(PredFalseWeight * 2757 (SuccFalseWeight + SuccTrueWeight) + 2758 PredTrueWeight * SuccFalseWeight); 2759 } 2760 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2761 PBI->setSuccessor(0, TrueDest); 2762 } 2763 if (PBI->getSuccessor(1) == BB) { 2764 if (HasWeights) { 2765 // PBI: br i1 %x, TrueDest, BB 2766 // BI: br i1 %y, TrueDest, FalseDest 2767 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2768 // FalseWeight for PBI * TrueWeight for BI. 2769 NewWeights.push_back(PredTrueWeight * 2770 (SuccFalseWeight + SuccTrueWeight) + 2771 PredFalseWeight * SuccTrueWeight); 2772 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2773 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2774 } 2775 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2776 PBI->setSuccessor(1, FalseDest); 2777 } 2778 if (NewWeights.size() == 2) { 2779 // Halve the weights if any of them cannot fit in an uint32_t 2780 FitWeights(NewWeights); 2781 2782 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2783 NewWeights.end()); 2784 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2785 } else 2786 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2787 } else { 2788 // Update PHI nodes in the common successors. 2789 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2790 ConstantInt *PBI_C = cast<ConstantInt>( 2791 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2792 assert(PBI_C->getType()->isIntegerTy(1)); 2793 Instruction *MergedCond = nullptr; 2794 if (PBI->getSuccessor(0) == TrueDest) { 2795 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2796 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2797 // is false: !PBI_Cond and BI_Value 2798 Instruction *NotCond = cast<Instruction>( 2799 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2800 MergedCond = cast<Instruction>( 2801 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2802 "and.cond")); 2803 if (PBI_C->isOne()) 2804 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2805 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2806 } else { 2807 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2808 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2809 // is false: PBI_Cond and BI_Value 2810 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2811 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2812 if (PBI_C->isOne()) { 2813 Instruction *NotCond = cast<Instruction>( 2814 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2815 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2816 Instruction::Or, NotCond, MergedCond, "or.cond")); 2817 } 2818 } 2819 // Update PHI Node. 2820 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2821 MergedCond); 2822 } 2823 // Change PBI from Conditional to Unconditional. 2824 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2825 EraseTerminatorAndDCECond(PBI); 2826 PBI = New_PBI; 2827 } 2828 2829 // If BI was a loop latch, it may have had associated loop metadata. 2830 // We need to copy it to the new latch, that is, PBI. 2831 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2832 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2833 2834 // TODO: If BB is reachable from all paths through PredBlock, then we 2835 // could replace PBI's branch probabilities with BI's. 2836 2837 // Copy any debug value intrinsics into the end of PredBlock. 2838 for (Instruction &I : *BB) 2839 if (isa<DbgInfoIntrinsic>(I)) 2840 I.clone()->insertBefore(PBI); 2841 2842 return true; 2843 } 2844 return false; 2845 } 2846 2847 // If there is only one store in BB1 and BB2, return it, otherwise return 2848 // nullptr. 2849 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2850 StoreInst *S = nullptr; 2851 for (auto *BB : {BB1, BB2}) { 2852 if (!BB) 2853 continue; 2854 for (auto &I : *BB) 2855 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2856 if (S) 2857 // Multiple stores seen. 2858 return nullptr; 2859 else 2860 S = SI; 2861 } 2862 } 2863 return S; 2864 } 2865 2866 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2867 Value *AlternativeV = nullptr) { 2868 // PHI is going to be a PHI node that allows the value V that is defined in 2869 // BB to be referenced in BB's only successor. 2870 // 2871 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2872 // doesn't matter to us what the other operand is (it'll never get used). We 2873 // could just create a new PHI with an undef incoming value, but that could 2874 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2875 // other PHI. So here we directly look for some PHI in BB's successor with V 2876 // as an incoming operand. If we find one, we use it, else we create a new 2877 // one. 2878 // 2879 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2880 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2881 // where OtherBB is the single other predecessor of BB's only successor. 2882 PHINode *PHI = nullptr; 2883 BasicBlock *Succ = BB->getSingleSuccessor(); 2884 2885 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2886 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2887 PHI = cast<PHINode>(I); 2888 if (!AlternativeV) 2889 break; 2890 2891 assert(Succ->hasNPredecessors(2)); 2892 auto PredI = pred_begin(Succ); 2893 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2894 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2895 break; 2896 PHI = nullptr; 2897 } 2898 if (PHI) 2899 return PHI; 2900 2901 // If V is not an instruction defined in BB, just return it. 2902 if (!AlternativeV && 2903 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2904 return V; 2905 2906 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2907 PHI->addIncoming(V, BB); 2908 for (BasicBlock *PredBB : predecessors(Succ)) 2909 if (PredBB != BB) 2910 PHI->addIncoming( 2911 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2912 return PHI; 2913 } 2914 2915 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2916 BasicBlock *QTB, BasicBlock *QFB, 2917 BasicBlock *PostBB, Value *Address, 2918 bool InvertPCond, bool InvertQCond, 2919 const DataLayout &DL) { 2920 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2921 return Operator::getOpcode(&I) == Instruction::BitCast && 2922 I.getType()->isPointerTy(); 2923 }; 2924 2925 // If we're not in aggressive mode, we only optimize if we have some 2926 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2927 auto IsWorthwhile = [&](BasicBlock *BB) { 2928 if (!BB) 2929 return true; 2930 // Heuristic: if the block can be if-converted/phi-folded and the 2931 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2932 // thread this store. 2933 unsigned N = 0; 2934 for (auto &I : BB->instructionsWithoutDebug()) { 2935 // Cheap instructions viable for folding. 2936 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2937 isa<StoreInst>(I)) 2938 ++N; 2939 // Free instructions. 2940 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2941 continue; 2942 else 2943 return false; 2944 } 2945 // The store we want to merge is counted in N, so add 1 to make sure 2946 // we're counting the instructions that would be left. 2947 return N <= (PHINodeFoldingThreshold + 1); 2948 }; 2949 2950 if (!MergeCondStoresAggressively && 2951 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2952 !IsWorthwhile(QFB))) 2953 return false; 2954 2955 // For every pointer, there must be exactly two stores, one coming from 2956 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2957 // store (to any address) in PTB,PFB or QTB,QFB. 2958 // FIXME: We could relax this restriction with a bit more work and performance 2959 // testing. 2960 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2961 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2962 if (!PStore || !QStore) 2963 return false; 2964 2965 // Now check the stores are compatible. 2966 if (!QStore->isUnordered() || !PStore->isUnordered()) 2967 return false; 2968 2969 // Check that sinking the store won't cause program behavior changes. Sinking 2970 // the store out of the Q blocks won't change any behavior as we're sinking 2971 // from a block to its unconditional successor. But we're moving a store from 2972 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2973 // So we need to check that there are no aliasing loads or stores in 2974 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2975 // operations between PStore and the end of its parent block. 2976 // 2977 // The ideal way to do this is to query AliasAnalysis, but we don't 2978 // preserve AA currently so that is dangerous. Be super safe and just 2979 // check there are no other memory operations at all. 2980 for (auto &I : *QFB->getSinglePredecessor()) 2981 if (I.mayReadOrWriteMemory()) 2982 return false; 2983 for (auto &I : *QFB) 2984 if (&I != QStore && I.mayReadOrWriteMemory()) 2985 return false; 2986 if (QTB) 2987 for (auto &I : *QTB) 2988 if (&I != QStore && I.mayReadOrWriteMemory()) 2989 return false; 2990 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2991 I != E; ++I) 2992 if (&*I != PStore && I->mayReadOrWriteMemory()) 2993 return false; 2994 2995 // If PostBB has more than two predecessors, we need to split it so we can 2996 // sink the store. 2997 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2998 // We know that QFB's only successor is PostBB. And QFB has a single 2999 // predecessor. If QTB exists, then its only successor is also PostBB. 3000 // If QTB does not exist, then QFB's only predecessor has a conditional 3001 // branch to QFB and PostBB. 3002 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3003 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 3004 "condstore.split"); 3005 if (!NewBB) 3006 return false; 3007 PostBB = NewBB; 3008 } 3009 3010 // OK, we're going to sink the stores to PostBB. The store has to be 3011 // conditional though, so first create the predicate. 3012 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3013 ->getCondition(); 3014 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3015 ->getCondition(); 3016 3017 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3018 PStore->getParent()); 3019 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3020 QStore->getParent(), PPHI); 3021 3022 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3023 3024 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3025 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3026 3027 if (InvertPCond) 3028 PPred = QB.CreateNot(PPred); 3029 if (InvertQCond) 3030 QPred = QB.CreateNot(QPred); 3031 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3032 3033 auto *T = 3034 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3035 QB.SetInsertPoint(T); 3036 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3037 AAMDNodes AAMD; 3038 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3039 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3040 SI->setAAMetadata(AAMD); 3041 unsigned PAlignment = PStore->getAlignment(); 3042 unsigned QAlignment = QStore->getAlignment(); 3043 unsigned TypeAlignment = 3044 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3045 unsigned MinAlignment; 3046 unsigned MaxAlignment; 3047 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3048 // Choose the minimum alignment. If we could prove both stores execute, we 3049 // could use biggest one. In this case, though, we only know that one of the 3050 // stores executes. And we don't know it's safe to take the alignment from a 3051 // store that doesn't execute. 3052 if (MinAlignment != 0) { 3053 // Choose the minimum of all non-zero alignments. 3054 SI->setAlignment(MinAlignment); 3055 } else if (MaxAlignment != 0) { 3056 // Choose the minimal alignment between the non-zero alignment and the ABI 3057 // default alignment for the type of the stored value. 3058 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3059 } else { 3060 // If both alignments are zero, use ABI default alignment for the type of 3061 // the stored value. 3062 SI->setAlignment(TypeAlignment); 3063 } 3064 3065 QStore->eraseFromParent(); 3066 PStore->eraseFromParent(); 3067 3068 return true; 3069 } 3070 3071 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3072 const DataLayout &DL) { 3073 // The intention here is to find diamonds or triangles (see below) where each 3074 // conditional block contains a store to the same address. Both of these 3075 // stores are conditional, so they can't be unconditionally sunk. But it may 3076 // be profitable to speculatively sink the stores into one merged store at the 3077 // end, and predicate the merged store on the union of the two conditions of 3078 // PBI and QBI. 3079 // 3080 // This can reduce the number of stores executed if both of the conditions are 3081 // true, and can allow the blocks to become small enough to be if-converted. 3082 // This optimization will also chain, so that ladders of test-and-set 3083 // sequences can be if-converted away. 3084 // 3085 // We only deal with simple diamonds or triangles: 3086 // 3087 // PBI or PBI or a combination of the two 3088 // / \ | \ 3089 // PTB PFB | PFB 3090 // \ / | / 3091 // QBI QBI 3092 // / \ | \ 3093 // QTB QFB | QFB 3094 // \ / | / 3095 // PostBB PostBB 3096 // 3097 // We model triangles as a type of diamond with a nullptr "true" block. 3098 // Triangles are canonicalized so that the fallthrough edge is represented by 3099 // a true condition, as in the diagram above. 3100 BasicBlock *PTB = PBI->getSuccessor(0); 3101 BasicBlock *PFB = PBI->getSuccessor(1); 3102 BasicBlock *QTB = QBI->getSuccessor(0); 3103 BasicBlock *QFB = QBI->getSuccessor(1); 3104 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3105 3106 // Make sure we have a good guess for PostBB. If QTB's only successor is 3107 // QFB, then QFB is a better PostBB. 3108 if (QTB->getSingleSuccessor() == QFB) 3109 PostBB = QFB; 3110 3111 // If we couldn't find a good PostBB, stop. 3112 if (!PostBB) 3113 return false; 3114 3115 bool InvertPCond = false, InvertQCond = false; 3116 // Canonicalize fallthroughs to the true branches. 3117 if (PFB == QBI->getParent()) { 3118 std::swap(PFB, PTB); 3119 InvertPCond = true; 3120 } 3121 if (QFB == PostBB) { 3122 std::swap(QFB, QTB); 3123 InvertQCond = true; 3124 } 3125 3126 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3127 // and QFB may not. Model fallthroughs as a nullptr block. 3128 if (PTB == QBI->getParent()) 3129 PTB = nullptr; 3130 if (QTB == PostBB) 3131 QTB = nullptr; 3132 3133 // Legality bailouts. We must have at least the non-fallthrough blocks and 3134 // the post-dominating block, and the non-fallthroughs must only have one 3135 // predecessor. 3136 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3137 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3138 }; 3139 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3140 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3141 return false; 3142 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3143 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3144 return false; 3145 if (!QBI->getParent()->hasNUses(2)) 3146 return false; 3147 3148 // OK, this is a sequence of two diamonds or triangles. 3149 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3150 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3151 for (auto *BB : {PTB, PFB}) { 3152 if (!BB) 3153 continue; 3154 for (auto &I : *BB) 3155 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3156 PStoreAddresses.insert(SI->getPointerOperand()); 3157 } 3158 for (auto *BB : {QTB, QFB}) { 3159 if (!BB) 3160 continue; 3161 for (auto &I : *BB) 3162 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3163 QStoreAddresses.insert(SI->getPointerOperand()); 3164 } 3165 3166 set_intersect(PStoreAddresses, QStoreAddresses); 3167 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3168 // clear what it contains. 3169 auto &CommonAddresses = PStoreAddresses; 3170 3171 bool Changed = false; 3172 for (auto *Address : CommonAddresses) 3173 Changed |= mergeConditionalStoreToAddress( 3174 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3175 return Changed; 3176 } 3177 3178 /// If we have a conditional branch as a predecessor of another block, 3179 /// this function tries to simplify it. We know 3180 /// that PBI and BI are both conditional branches, and BI is in one of the 3181 /// successor blocks of PBI - PBI branches to BI. 3182 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3183 const DataLayout &DL) { 3184 assert(PBI->isConditional() && BI->isConditional()); 3185 BasicBlock *BB = BI->getParent(); 3186 3187 // If this block ends with a branch instruction, and if there is a 3188 // predecessor that ends on a branch of the same condition, make 3189 // this conditional branch redundant. 3190 if (PBI->getCondition() == BI->getCondition() && 3191 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3192 // Okay, the outcome of this conditional branch is statically 3193 // knowable. If this block had a single pred, handle specially. 3194 if (BB->getSinglePredecessor()) { 3195 // Turn this into a branch on constant. 3196 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3197 BI->setCondition( 3198 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3199 return true; // Nuke the branch on constant. 3200 } 3201 3202 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3203 // in the constant and simplify the block result. Subsequent passes of 3204 // simplifycfg will thread the block. 3205 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3206 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3207 PHINode *NewPN = PHINode::Create( 3208 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3209 BI->getCondition()->getName() + ".pr", &BB->front()); 3210 // Okay, we're going to insert the PHI node. Since PBI is not the only 3211 // predecessor, compute the PHI'd conditional value for all of the preds. 3212 // Any predecessor where the condition is not computable we keep symbolic. 3213 for (pred_iterator PI = PB; PI != PE; ++PI) { 3214 BasicBlock *P = *PI; 3215 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3216 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3217 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3218 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3219 NewPN->addIncoming( 3220 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3221 P); 3222 } else { 3223 NewPN->addIncoming(BI->getCondition(), P); 3224 } 3225 } 3226 3227 BI->setCondition(NewPN); 3228 return true; 3229 } 3230 } 3231 3232 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3233 if (CE->canTrap()) 3234 return false; 3235 3236 // If both branches are conditional and both contain stores to the same 3237 // address, remove the stores from the conditionals and create a conditional 3238 // merged store at the end. 3239 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3240 return true; 3241 3242 // If this is a conditional branch in an empty block, and if any 3243 // predecessors are a conditional branch to one of our destinations, 3244 // fold the conditions into logical ops and one cond br. 3245 3246 // Ignore dbg intrinsics. 3247 if (&*BB->instructionsWithoutDebug().begin() != BI) 3248 return false; 3249 3250 int PBIOp, BIOp; 3251 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3252 PBIOp = 0; 3253 BIOp = 0; 3254 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3255 PBIOp = 0; 3256 BIOp = 1; 3257 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3258 PBIOp = 1; 3259 BIOp = 0; 3260 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3261 PBIOp = 1; 3262 BIOp = 1; 3263 } else { 3264 return false; 3265 } 3266 3267 // Check to make sure that the other destination of this branch 3268 // isn't BB itself. If so, this is an infinite loop that will 3269 // keep getting unwound. 3270 if (PBI->getSuccessor(PBIOp) == BB) 3271 return false; 3272 3273 // Do not perform this transformation if it would require 3274 // insertion of a large number of select instructions. For targets 3275 // without predication/cmovs, this is a big pessimization. 3276 3277 // Also do not perform this transformation if any phi node in the common 3278 // destination block can trap when reached by BB or PBB (PR17073). In that 3279 // case, it would be unsafe to hoist the operation into a select instruction. 3280 3281 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3282 unsigned NumPhis = 0; 3283 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3284 ++II, ++NumPhis) { 3285 if (NumPhis > 2) // Disable this xform. 3286 return false; 3287 3288 PHINode *PN = cast<PHINode>(II); 3289 Value *BIV = PN->getIncomingValueForBlock(BB); 3290 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3291 if (CE->canTrap()) 3292 return false; 3293 3294 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3295 Value *PBIV = PN->getIncomingValue(PBBIdx); 3296 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3297 if (CE->canTrap()) 3298 return false; 3299 } 3300 3301 // Finally, if everything is ok, fold the branches to logical ops. 3302 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3303 3304 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3305 << "AND: " << *BI->getParent()); 3306 3307 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3308 // branch in it, where one edge (OtherDest) goes back to itself but the other 3309 // exits. We don't *know* that the program avoids the infinite loop 3310 // (even though that seems likely). If we do this xform naively, we'll end up 3311 // recursively unpeeling the loop. Since we know that (after the xform is 3312 // done) that the block *is* infinite if reached, we just make it an obviously 3313 // infinite loop with no cond branch. 3314 if (OtherDest == BB) { 3315 // Insert it at the end of the function, because it's either code, 3316 // or it won't matter if it's hot. :) 3317 BasicBlock *InfLoopBlock = 3318 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3319 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3320 OtherDest = InfLoopBlock; 3321 } 3322 3323 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3324 3325 // BI may have other predecessors. Because of this, we leave 3326 // it alone, but modify PBI. 3327 3328 // Make sure we get to CommonDest on True&True directions. 3329 Value *PBICond = PBI->getCondition(); 3330 IRBuilder<NoFolder> Builder(PBI); 3331 if (PBIOp) 3332 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3333 3334 Value *BICond = BI->getCondition(); 3335 if (BIOp) 3336 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3337 3338 // Merge the conditions. 3339 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3340 3341 // Modify PBI to branch on the new condition to the new dests. 3342 PBI->setCondition(Cond); 3343 PBI->setSuccessor(0, CommonDest); 3344 PBI->setSuccessor(1, OtherDest); 3345 3346 // Update branch weight for PBI. 3347 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3348 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3349 bool HasWeights = 3350 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3351 SuccTrueWeight, SuccFalseWeight); 3352 if (HasWeights) { 3353 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3354 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3355 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3356 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3357 // The weight to CommonDest should be PredCommon * SuccTotal + 3358 // PredOther * SuccCommon. 3359 // The weight to OtherDest should be PredOther * SuccOther. 3360 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3361 PredOther * SuccCommon, 3362 PredOther * SuccOther}; 3363 // Halve the weights if any of them cannot fit in an uint32_t 3364 FitWeights(NewWeights); 3365 3366 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3367 } 3368 3369 // OtherDest may have phi nodes. If so, add an entry from PBI's 3370 // block that are identical to the entries for BI's block. 3371 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3372 3373 // We know that the CommonDest already had an edge from PBI to 3374 // it. If it has PHIs though, the PHIs may have different 3375 // entries for BB and PBI's BB. If so, insert a select to make 3376 // them agree. 3377 for (PHINode &PN : CommonDest->phis()) { 3378 Value *BIV = PN.getIncomingValueForBlock(BB); 3379 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3380 Value *PBIV = PN.getIncomingValue(PBBIdx); 3381 if (BIV != PBIV) { 3382 // Insert a select in PBI to pick the right value. 3383 SelectInst *NV = cast<SelectInst>( 3384 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3385 PN.setIncomingValue(PBBIdx, NV); 3386 // Although the select has the same condition as PBI, the original branch 3387 // weights for PBI do not apply to the new select because the select's 3388 // 'logical' edges are incoming edges of the phi that is eliminated, not 3389 // the outgoing edges of PBI. 3390 if (HasWeights) { 3391 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3392 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3393 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3394 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3395 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3396 // The weight to PredOtherDest should be PredOther * SuccCommon. 3397 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3398 PredOther * SuccCommon}; 3399 3400 FitWeights(NewWeights); 3401 3402 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3403 } 3404 } 3405 } 3406 3407 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3408 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3409 3410 // This basic block is probably dead. We know it has at least 3411 // one fewer predecessor. 3412 return true; 3413 } 3414 3415 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3416 // true or to FalseBB if Cond is false. 3417 // Takes care of updating the successors and removing the old terminator. 3418 // Also makes sure not to introduce new successors by assuming that edges to 3419 // non-successor TrueBBs and FalseBBs aren't reachable. 3420 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3421 BasicBlock *TrueBB, BasicBlock *FalseBB, 3422 uint32_t TrueWeight, 3423 uint32_t FalseWeight) { 3424 // Remove any superfluous successor edges from the CFG. 3425 // First, figure out which successors to preserve. 3426 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3427 // successor. 3428 BasicBlock *KeepEdge1 = TrueBB; 3429 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3430 3431 // Then remove the rest. 3432 for (BasicBlock *Succ : successors(OldTerm)) { 3433 // Make sure only to keep exactly one copy of each edge. 3434 if (Succ == KeepEdge1) 3435 KeepEdge1 = nullptr; 3436 else if (Succ == KeepEdge2) 3437 KeepEdge2 = nullptr; 3438 else 3439 Succ->removePredecessor(OldTerm->getParent(), 3440 /*KeepOneInputPHIs=*/true); 3441 } 3442 3443 IRBuilder<> Builder(OldTerm); 3444 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3445 3446 // Insert an appropriate new terminator. 3447 if (!KeepEdge1 && !KeepEdge2) { 3448 if (TrueBB == FalseBB) 3449 // We were only looking for one successor, and it was present. 3450 // Create an unconditional branch to it. 3451 Builder.CreateBr(TrueBB); 3452 else { 3453 // We found both of the successors we were looking for. 3454 // Create a conditional branch sharing the condition of the select. 3455 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3456 if (TrueWeight != FalseWeight) 3457 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3458 } 3459 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3460 // Neither of the selected blocks were successors, so this 3461 // terminator must be unreachable. 3462 new UnreachableInst(OldTerm->getContext(), OldTerm); 3463 } else { 3464 // One of the selected values was a successor, but the other wasn't. 3465 // Insert an unconditional branch to the one that was found; 3466 // the edge to the one that wasn't must be unreachable. 3467 if (!KeepEdge1) 3468 // Only TrueBB was found. 3469 Builder.CreateBr(TrueBB); 3470 else 3471 // Only FalseBB was found. 3472 Builder.CreateBr(FalseBB); 3473 } 3474 3475 EraseTerminatorAndDCECond(OldTerm); 3476 return true; 3477 } 3478 3479 // Replaces 3480 // (switch (select cond, X, Y)) on constant X, Y 3481 // with a branch - conditional if X and Y lead to distinct BBs, 3482 // unconditional otherwise. 3483 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3484 // Check for constant integer values in the select. 3485 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3486 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3487 if (!TrueVal || !FalseVal) 3488 return false; 3489 3490 // Find the relevant condition and destinations. 3491 Value *Condition = Select->getCondition(); 3492 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3493 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3494 3495 // Get weight for TrueBB and FalseBB. 3496 uint32_t TrueWeight = 0, FalseWeight = 0; 3497 SmallVector<uint64_t, 8> Weights; 3498 bool HasWeights = HasBranchWeights(SI); 3499 if (HasWeights) { 3500 GetBranchWeights(SI, Weights); 3501 if (Weights.size() == 1 + SI->getNumCases()) { 3502 TrueWeight = 3503 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3504 FalseWeight = 3505 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3506 } 3507 } 3508 3509 // Perform the actual simplification. 3510 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3511 FalseWeight); 3512 } 3513 3514 // Replaces 3515 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3516 // blockaddress(@fn, BlockB))) 3517 // with 3518 // (br cond, BlockA, BlockB). 3519 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3520 // Check that both operands of the select are block addresses. 3521 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3522 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3523 if (!TBA || !FBA) 3524 return false; 3525 3526 // Extract the actual blocks. 3527 BasicBlock *TrueBB = TBA->getBasicBlock(); 3528 BasicBlock *FalseBB = FBA->getBasicBlock(); 3529 3530 // Perform the actual simplification. 3531 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3532 0); 3533 } 3534 3535 /// This is called when we find an icmp instruction 3536 /// (a seteq/setne with a constant) as the only instruction in a 3537 /// block that ends with an uncond branch. We are looking for a very specific 3538 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3539 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3540 /// default value goes to an uncond block with a seteq in it, we get something 3541 /// like: 3542 /// 3543 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3544 /// DEFAULT: 3545 /// %tmp = icmp eq i8 %A, 92 3546 /// br label %end 3547 /// end: 3548 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3549 /// 3550 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3551 /// the PHI, merging the third icmp into the switch. 3552 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3553 ICmpInst *ICI, IRBuilder<> &Builder) { 3554 BasicBlock *BB = ICI->getParent(); 3555 3556 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3557 // complex. 3558 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3559 return false; 3560 3561 Value *V = ICI->getOperand(0); 3562 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3563 3564 // The pattern we're looking for is where our only predecessor is a switch on 3565 // 'V' and this block is the default case for the switch. In this case we can 3566 // fold the compared value into the switch to simplify things. 3567 BasicBlock *Pred = BB->getSinglePredecessor(); 3568 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3569 return false; 3570 3571 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3572 if (SI->getCondition() != V) 3573 return false; 3574 3575 // If BB is reachable on a non-default case, then we simply know the value of 3576 // V in this block. Substitute it and constant fold the icmp instruction 3577 // away. 3578 if (SI->getDefaultDest() != BB) { 3579 ConstantInt *VVal = SI->findCaseDest(BB); 3580 assert(VVal && "Should have a unique destination value"); 3581 ICI->setOperand(0, VVal); 3582 3583 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3584 ICI->replaceAllUsesWith(V); 3585 ICI->eraseFromParent(); 3586 } 3587 // BB is now empty, so it is likely to simplify away. 3588 return requestResimplify(); 3589 } 3590 3591 // Ok, the block is reachable from the default dest. If the constant we're 3592 // comparing exists in one of the other edges, then we can constant fold ICI 3593 // and zap it. 3594 if (SI->findCaseValue(Cst) != SI->case_default()) { 3595 Value *V; 3596 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3597 V = ConstantInt::getFalse(BB->getContext()); 3598 else 3599 V = ConstantInt::getTrue(BB->getContext()); 3600 3601 ICI->replaceAllUsesWith(V); 3602 ICI->eraseFromParent(); 3603 // BB is now empty, so it is likely to simplify away. 3604 return requestResimplify(); 3605 } 3606 3607 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3608 // the block. 3609 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3610 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3611 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3612 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3613 return false; 3614 3615 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3616 // true in the PHI. 3617 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3618 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3619 3620 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3621 std::swap(DefaultCst, NewCst); 3622 3623 // Replace ICI (which is used by the PHI for the default value) with true or 3624 // false depending on if it is EQ or NE. 3625 ICI->replaceAllUsesWith(DefaultCst); 3626 ICI->eraseFromParent(); 3627 3628 // Okay, the switch goes to this block on a default value. Add an edge from 3629 // the switch to the merge point on the compared value. 3630 BasicBlock *NewBB = 3631 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3632 SmallVector<uint64_t, 8> Weights; 3633 bool HasWeights = HasBranchWeights(SI); 3634 if (HasWeights) { 3635 GetBranchWeights(SI, Weights); 3636 if (Weights.size() == 1 + SI->getNumCases()) { 3637 // Split weight for default case to case for "Cst". 3638 Weights[0] = (Weights[0] + 1) >> 1; 3639 Weights.push_back(Weights[0]); 3640 3641 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3642 setBranchWeights(SI, MDWeights); 3643 } 3644 } 3645 SI->addCase(Cst, NewBB); 3646 3647 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3648 Builder.SetInsertPoint(NewBB); 3649 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3650 Builder.CreateBr(SuccBlock); 3651 PHIUse->addIncoming(NewCst, NewBB); 3652 return true; 3653 } 3654 3655 /// The specified branch is a conditional branch. 3656 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3657 /// fold it into a switch instruction if so. 3658 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3659 const DataLayout &DL) { 3660 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3661 if (!Cond) 3662 return false; 3663 3664 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3665 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3666 // 'setne's and'ed together, collect them. 3667 3668 // Try to gather values from a chain of and/or to be turned into a switch 3669 ConstantComparesGatherer ConstantCompare(Cond, DL); 3670 // Unpack the result 3671 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3672 Value *CompVal = ConstantCompare.CompValue; 3673 unsigned UsedICmps = ConstantCompare.UsedICmps; 3674 Value *ExtraCase = ConstantCompare.Extra; 3675 3676 // If we didn't have a multiply compared value, fail. 3677 if (!CompVal) 3678 return false; 3679 3680 // Avoid turning single icmps into a switch. 3681 if (UsedICmps <= 1) 3682 return false; 3683 3684 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3685 3686 // There might be duplicate constants in the list, which the switch 3687 // instruction can't handle, remove them now. 3688 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3689 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3690 3691 // If Extra was used, we require at least two switch values to do the 3692 // transformation. A switch with one value is just a conditional branch. 3693 if (ExtraCase && Values.size() < 2) 3694 return false; 3695 3696 // TODO: Preserve branch weight metadata, similarly to how 3697 // FoldValueComparisonIntoPredecessors preserves it. 3698 3699 // Figure out which block is which destination. 3700 BasicBlock *DefaultBB = BI->getSuccessor(1); 3701 BasicBlock *EdgeBB = BI->getSuccessor(0); 3702 if (!TrueWhenEqual) 3703 std::swap(DefaultBB, EdgeBB); 3704 3705 BasicBlock *BB = BI->getParent(); 3706 3707 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3708 << " cases into SWITCH. BB is:\n" 3709 << *BB); 3710 3711 // If there are any extra values that couldn't be folded into the switch 3712 // then we evaluate them with an explicit branch first. Split the block 3713 // right before the condbr to handle it. 3714 if (ExtraCase) { 3715 BasicBlock *NewBB = 3716 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3717 // Remove the uncond branch added to the old block. 3718 Instruction *OldTI = BB->getTerminator(); 3719 Builder.SetInsertPoint(OldTI); 3720 3721 if (TrueWhenEqual) 3722 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3723 else 3724 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3725 3726 OldTI->eraseFromParent(); 3727 3728 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3729 // for the edge we just added. 3730 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3731 3732 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3733 << "\nEXTRABB = " << *BB); 3734 BB = NewBB; 3735 } 3736 3737 Builder.SetInsertPoint(BI); 3738 // Convert pointer to int before we switch. 3739 if (CompVal->getType()->isPointerTy()) { 3740 CompVal = Builder.CreatePtrToInt( 3741 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3742 } 3743 3744 // Create the new switch instruction now. 3745 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3746 3747 // Add all of the 'cases' to the switch instruction. 3748 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3749 New->addCase(Values[i], EdgeBB); 3750 3751 // We added edges from PI to the EdgeBB. As such, if there were any 3752 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3753 // the number of edges added. 3754 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3755 PHINode *PN = cast<PHINode>(BBI); 3756 Value *InVal = PN->getIncomingValueForBlock(BB); 3757 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3758 PN->addIncoming(InVal, BB); 3759 } 3760 3761 // Erase the old branch instruction. 3762 EraseTerminatorAndDCECond(BI); 3763 3764 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3765 return true; 3766 } 3767 3768 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3769 if (isa<PHINode>(RI->getValue())) 3770 return SimplifyCommonResume(RI); 3771 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3772 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3773 // The resume must unwind the exception that caused control to branch here. 3774 return SimplifySingleResume(RI); 3775 3776 return false; 3777 } 3778 3779 // Simplify resume that is shared by several landing pads (phi of landing pad). 3780 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3781 BasicBlock *BB = RI->getParent(); 3782 3783 // Check that there are no other instructions except for debug intrinsics 3784 // between the phi of landing pads (RI->getValue()) and resume instruction. 3785 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3786 E = RI->getIterator(); 3787 while (++I != E) 3788 if (!isa<DbgInfoIntrinsic>(I)) 3789 return false; 3790 3791 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3792 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3793 3794 // Check incoming blocks to see if any of them are trivial. 3795 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3796 Idx++) { 3797 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3798 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3799 3800 // If the block has other successors, we can not delete it because 3801 // it has other dependents. 3802 if (IncomingBB->getUniqueSuccessor() != BB) 3803 continue; 3804 3805 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3806 // Not the landing pad that caused the control to branch here. 3807 if (IncomingValue != LandingPad) 3808 continue; 3809 3810 bool isTrivial = true; 3811 3812 I = IncomingBB->getFirstNonPHI()->getIterator(); 3813 E = IncomingBB->getTerminator()->getIterator(); 3814 while (++I != E) 3815 if (!isa<DbgInfoIntrinsic>(I)) { 3816 isTrivial = false; 3817 break; 3818 } 3819 3820 if (isTrivial) 3821 TrivialUnwindBlocks.insert(IncomingBB); 3822 } 3823 3824 // If no trivial unwind blocks, don't do any simplifications. 3825 if (TrivialUnwindBlocks.empty()) 3826 return false; 3827 3828 // Turn all invokes that unwind here into calls. 3829 for (auto *TrivialBB : TrivialUnwindBlocks) { 3830 // Blocks that will be simplified should be removed from the phi node. 3831 // Note there could be multiple edges to the resume block, and we need 3832 // to remove them all. 3833 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3834 BB->removePredecessor(TrivialBB, true); 3835 3836 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3837 PI != PE;) { 3838 BasicBlock *Pred = *PI++; 3839 removeUnwindEdge(Pred); 3840 } 3841 3842 // In each SimplifyCFG run, only the current processed block can be erased. 3843 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3844 // of erasing TrivialBB, we only remove the branch to the common resume 3845 // block so that we can later erase the resume block since it has no 3846 // predecessors. 3847 TrivialBB->getTerminator()->eraseFromParent(); 3848 new UnreachableInst(RI->getContext(), TrivialBB); 3849 } 3850 3851 // Delete the resume block if all its predecessors have been removed. 3852 if (pred_empty(BB)) 3853 BB->eraseFromParent(); 3854 3855 return !TrivialUnwindBlocks.empty(); 3856 } 3857 3858 // Simplify resume that is only used by a single (non-phi) landing pad. 3859 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3860 BasicBlock *BB = RI->getParent(); 3861 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3862 assert(RI->getValue() == LPInst && 3863 "Resume must unwind the exception that caused control to here"); 3864 3865 // Check that there are no other instructions except for debug intrinsics. 3866 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3867 while (++I != E) 3868 if (!isa<DbgInfoIntrinsic>(I)) 3869 return false; 3870 3871 // Turn all invokes that unwind here into calls and delete the basic block. 3872 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3873 BasicBlock *Pred = *PI++; 3874 removeUnwindEdge(Pred); 3875 } 3876 3877 // The landingpad is now unreachable. Zap it. 3878 if (LoopHeaders) 3879 LoopHeaders->erase(BB); 3880 BB->eraseFromParent(); 3881 return true; 3882 } 3883 3884 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3885 // If this is a trivial cleanup pad that executes no instructions, it can be 3886 // eliminated. If the cleanup pad continues to the caller, any predecessor 3887 // that is an EH pad will be updated to continue to the caller and any 3888 // predecessor that terminates with an invoke instruction will have its invoke 3889 // instruction converted to a call instruction. If the cleanup pad being 3890 // simplified does not continue to the caller, each predecessor will be 3891 // updated to continue to the unwind destination of the cleanup pad being 3892 // simplified. 3893 BasicBlock *BB = RI->getParent(); 3894 CleanupPadInst *CPInst = RI->getCleanupPad(); 3895 if (CPInst->getParent() != BB) 3896 // This isn't an empty cleanup. 3897 return false; 3898 3899 // We cannot kill the pad if it has multiple uses. This typically arises 3900 // from unreachable basic blocks. 3901 if (!CPInst->hasOneUse()) 3902 return false; 3903 3904 // Check that there are no other instructions except for benign intrinsics. 3905 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3906 while (++I != E) { 3907 auto *II = dyn_cast<IntrinsicInst>(I); 3908 if (!II) 3909 return false; 3910 3911 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3912 switch (IntrinsicID) { 3913 case Intrinsic::dbg_declare: 3914 case Intrinsic::dbg_value: 3915 case Intrinsic::dbg_label: 3916 case Intrinsic::lifetime_end: 3917 break; 3918 default: 3919 return false; 3920 } 3921 } 3922 3923 // If the cleanup return we are simplifying unwinds to the caller, this will 3924 // set UnwindDest to nullptr. 3925 BasicBlock *UnwindDest = RI->getUnwindDest(); 3926 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3927 3928 // We're about to remove BB from the control flow. Before we do, sink any 3929 // PHINodes into the unwind destination. Doing this before changing the 3930 // control flow avoids some potentially slow checks, since we can currently 3931 // be certain that UnwindDest and BB have no common predecessors (since they 3932 // are both EH pads). 3933 if (UnwindDest) { 3934 // First, go through the PHI nodes in UnwindDest and update any nodes that 3935 // reference the block we are removing 3936 for (BasicBlock::iterator I = UnwindDest->begin(), 3937 IE = DestEHPad->getIterator(); 3938 I != IE; ++I) { 3939 PHINode *DestPN = cast<PHINode>(I); 3940 3941 int Idx = DestPN->getBasicBlockIndex(BB); 3942 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3943 assert(Idx != -1); 3944 // This PHI node has an incoming value that corresponds to a control 3945 // path through the cleanup pad we are removing. If the incoming 3946 // value is in the cleanup pad, it must be a PHINode (because we 3947 // verified above that the block is otherwise empty). Otherwise, the 3948 // value is either a constant or a value that dominates the cleanup 3949 // pad being removed. 3950 // 3951 // Because BB and UnwindDest are both EH pads, all of their 3952 // predecessors must unwind to these blocks, and since no instruction 3953 // can have multiple unwind destinations, there will be no overlap in 3954 // incoming blocks between SrcPN and DestPN. 3955 Value *SrcVal = DestPN->getIncomingValue(Idx); 3956 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3957 3958 // Remove the entry for the block we are deleting. 3959 DestPN->removeIncomingValue(Idx, false); 3960 3961 if (SrcPN && SrcPN->getParent() == BB) { 3962 // If the incoming value was a PHI node in the cleanup pad we are 3963 // removing, we need to merge that PHI node's incoming values into 3964 // DestPN. 3965 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3966 SrcIdx != SrcE; ++SrcIdx) { 3967 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3968 SrcPN->getIncomingBlock(SrcIdx)); 3969 } 3970 } else { 3971 // Otherwise, the incoming value came from above BB and 3972 // so we can just reuse it. We must associate all of BB's 3973 // predecessors with this value. 3974 for (auto *pred : predecessors(BB)) { 3975 DestPN->addIncoming(SrcVal, pred); 3976 } 3977 } 3978 } 3979 3980 // Sink any remaining PHI nodes directly into UnwindDest. 3981 Instruction *InsertPt = DestEHPad; 3982 for (BasicBlock::iterator I = BB->begin(), 3983 IE = BB->getFirstNonPHI()->getIterator(); 3984 I != IE;) { 3985 // The iterator must be incremented here because the instructions are 3986 // being moved to another block. 3987 PHINode *PN = cast<PHINode>(I++); 3988 if (PN->use_empty()) 3989 // If the PHI node has no uses, just leave it. It will be erased 3990 // when we erase BB below. 3991 continue; 3992 3993 // Otherwise, sink this PHI node into UnwindDest. 3994 // Any predecessors to UnwindDest which are not already represented 3995 // must be back edges which inherit the value from the path through 3996 // BB. In this case, the PHI value must reference itself. 3997 for (auto *pred : predecessors(UnwindDest)) 3998 if (pred != BB) 3999 PN->addIncoming(PN, pred); 4000 PN->moveBefore(InsertPt); 4001 } 4002 } 4003 4004 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4005 // The iterator must be updated here because we are removing this pred. 4006 BasicBlock *PredBB = *PI++; 4007 if (UnwindDest == nullptr) { 4008 removeUnwindEdge(PredBB); 4009 } else { 4010 Instruction *TI = PredBB->getTerminator(); 4011 TI->replaceUsesOfWith(BB, UnwindDest); 4012 } 4013 } 4014 4015 // The cleanup pad is now unreachable. Zap it. 4016 BB->eraseFromParent(); 4017 return true; 4018 } 4019 4020 // Try to merge two cleanuppads together. 4021 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4022 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4023 // with. 4024 BasicBlock *UnwindDest = RI->getUnwindDest(); 4025 if (!UnwindDest) 4026 return false; 4027 4028 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4029 // be safe to merge without code duplication. 4030 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4031 return false; 4032 4033 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4034 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4035 if (!SuccessorCleanupPad) 4036 return false; 4037 4038 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4039 // Replace any uses of the successor cleanupad with the predecessor pad 4040 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4041 // funclet bundle operands. 4042 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4043 // Remove the old cleanuppad. 4044 SuccessorCleanupPad->eraseFromParent(); 4045 // Now, we simply replace the cleanupret with a branch to the unwind 4046 // destination. 4047 BranchInst::Create(UnwindDest, RI->getParent()); 4048 RI->eraseFromParent(); 4049 4050 return true; 4051 } 4052 4053 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4054 // It is possible to transiantly have an undef cleanuppad operand because we 4055 // have deleted some, but not all, dead blocks. 4056 // Eventually, this block will be deleted. 4057 if (isa<UndefValue>(RI->getOperand(0))) 4058 return false; 4059 4060 if (mergeCleanupPad(RI)) 4061 return true; 4062 4063 if (removeEmptyCleanup(RI)) 4064 return true; 4065 4066 return false; 4067 } 4068 4069 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4070 BasicBlock *BB = RI->getParent(); 4071 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4072 return false; 4073 4074 // Find predecessors that end with branches. 4075 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4076 SmallVector<BranchInst *, 8> CondBranchPreds; 4077 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4078 BasicBlock *P = *PI; 4079 Instruction *PTI = P->getTerminator(); 4080 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4081 if (BI->isUnconditional()) 4082 UncondBranchPreds.push_back(P); 4083 else 4084 CondBranchPreds.push_back(BI); 4085 } 4086 } 4087 4088 // If we found some, do the transformation! 4089 if (!UncondBranchPreds.empty() && DupRet) { 4090 while (!UncondBranchPreds.empty()) { 4091 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4092 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4093 << "INTO UNCOND BRANCH PRED: " << *Pred); 4094 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4095 } 4096 4097 // If we eliminated all predecessors of the block, delete the block now. 4098 if (pred_empty(BB)) { 4099 // We know there are no successors, so just nuke the block. 4100 if (LoopHeaders) 4101 LoopHeaders->erase(BB); 4102 BB->eraseFromParent(); 4103 } 4104 4105 return true; 4106 } 4107 4108 // Check out all of the conditional branches going to this return 4109 // instruction. If any of them just select between returns, change the 4110 // branch itself into a select/return pair. 4111 while (!CondBranchPreds.empty()) { 4112 BranchInst *BI = CondBranchPreds.pop_back_val(); 4113 4114 // Check to see if the non-BB successor is also a return block. 4115 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4116 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4117 SimplifyCondBranchToTwoReturns(BI, Builder)) 4118 return true; 4119 } 4120 return false; 4121 } 4122 4123 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4124 BasicBlock *BB = UI->getParent(); 4125 4126 bool Changed = false; 4127 4128 // If there are any instructions immediately before the unreachable that can 4129 // be removed, do so. 4130 while (UI->getIterator() != BB->begin()) { 4131 BasicBlock::iterator BBI = UI->getIterator(); 4132 --BBI; 4133 // Do not delete instructions that can have side effects which might cause 4134 // the unreachable to not be reachable; specifically, calls and volatile 4135 // operations may have this effect. 4136 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4137 break; 4138 4139 if (BBI->mayHaveSideEffects()) { 4140 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4141 if (SI->isVolatile()) 4142 break; 4143 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4144 if (LI->isVolatile()) 4145 break; 4146 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4147 if (RMWI->isVolatile()) 4148 break; 4149 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4150 if (CXI->isVolatile()) 4151 break; 4152 } else if (isa<CatchPadInst>(BBI)) { 4153 // A catchpad may invoke exception object constructors and such, which 4154 // in some languages can be arbitrary code, so be conservative by 4155 // default. 4156 // For CoreCLR, it just involves a type test, so can be removed. 4157 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4158 EHPersonality::CoreCLR) 4159 break; 4160 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4161 !isa<LandingPadInst>(BBI)) { 4162 break; 4163 } 4164 // Note that deleting LandingPad's here is in fact okay, although it 4165 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4166 // all the predecessors of this block will be the unwind edges of Invokes, 4167 // and we can therefore guarantee this block will be erased. 4168 } 4169 4170 // Delete this instruction (any uses are guaranteed to be dead) 4171 if (!BBI->use_empty()) 4172 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4173 BBI->eraseFromParent(); 4174 Changed = true; 4175 } 4176 4177 // If the unreachable instruction is the first in the block, take a gander 4178 // at all of the predecessors of this instruction, and simplify them. 4179 if (&BB->front() != UI) 4180 return Changed; 4181 4182 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4183 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4184 Instruction *TI = Preds[i]->getTerminator(); 4185 IRBuilder<> Builder(TI); 4186 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4187 if (BI->isUnconditional()) { 4188 if (BI->getSuccessor(0) == BB) { 4189 new UnreachableInst(TI->getContext(), TI); 4190 TI->eraseFromParent(); 4191 Changed = true; 4192 } 4193 } else { 4194 if (BI->getSuccessor(0) == BB) { 4195 Builder.CreateBr(BI->getSuccessor(1)); 4196 EraseTerminatorAndDCECond(BI); 4197 } else if (BI->getSuccessor(1) == BB) { 4198 Builder.CreateBr(BI->getSuccessor(0)); 4199 EraseTerminatorAndDCECond(BI); 4200 Changed = true; 4201 } 4202 } 4203 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4204 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4205 if (i->getCaseSuccessor() != BB) { 4206 ++i; 4207 continue; 4208 } 4209 BB->removePredecessor(SI->getParent()); 4210 i = SI->removeCase(i); 4211 e = SI->case_end(); 4212 Changed = true; 4213 } 4214 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4215 if (II->getUnwindDest() == BB) { 4216 removeUnwindEdge(TI->getParent()); 4217 Changed = true; 4218 } 4219 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4220 if (CSI->getUnwindDest() == BB) { 4221 removeUnwindEdge(TI->getParent()); 4222 Changed = true; 4223 continue; 4224 } 4225 4226 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4227 E = CSI->handler_end(); 4228 I != E; ++I) { 4229 if (*I == BB) { 4230 CSI->removeHandler(I); 4231 --I; 4232 --E; 4233 Changed = true; 4234 } 4235 } 4236 if (CSI->getNumHandlers() == 0) { 4237 BasicBlock *CatchSwitchBB = CSI->getParent(); 4238 if (CSI->hasUnwindDest()) { 4239 // Redirect preds to the unwind dest 4240 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4241 } else { 4242 // Rewrite all preds to unwind to caller (or from invoke to call). 4243 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4244 for (BasicBlock *EHPred : EHPreds) 4245 removeUnwindEdge(EHPred); 4246 } 4247 // The catchswitch is no longer reachable. 4248 new UnreachableInst(CSI->getContext(), CSI); 4249 CSI->eraseFromParent(); 4250 Changed = true; 4251 } 4252 } else if (isa<CleanupReturnInst>(TI)) { 4253 new UnreachableInst(TI->getContext(), TI); 4254 TI->eraseFromParent(); 4255 Changed = true; 4256 } 4257 } 4258 4259 // If this block is now dead, remove it. 4260 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4261 // We know there are no successors, so just nuke the block. 4262 if (LoopHeaders) 4263 LoopHeaders->erase(BB); 4264 BB->eraseFromParent(); 4265 return true; 4266 } 4267 4268 return Changed; 4269 } 4270 4271 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4272 assert(Cases.size() >= 1); 4273 4274 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4275 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4276 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4277 return false; 4278 } 4279 return true; 4280 } 4281 4282 /// Turn a switch with two reachable destinations into an integer range 4283 /// comparison and branch. 4284 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4285 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4286 4287 bool HasDefault = 4288 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4289 4290 // Partition the cases into two sets with different destinations. 4291 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4292 BasicBlock *DestB = nullptr; 4293 SmallVector<ConstantInt *, 16> CasesA; 4294 SmallVector<ConstantInt *, 16> CasesB; 4295 4296 for (auto Case : SI->cases()) { 4297 BasicBlock *Dest = Case.getCaseSuccessor(); 4298 if (!DestA) 4299 DestA = Dest; 4300 if (Dest == DestA) { 4301 CasesA.push_back(Case.getCaseValue()); 4302 continue; 4303 } 4304 if (!DestB) 4305 DestB = Dest; 4306 if (Dest == DestB) { 4307 CasesB.push_back(Case.getCaseValue()); 4308 continue; 4309 } 4310 return false; // More than two destinations. 4311 } 4312 4313 assert(DestA && DestB && 4314 "Single-destination switch should have been folded."); 4315 assert(DestA != DestB); 4316 assert(DestB != SI->getDefaultDest()); 4317 assert(!CasesB.empty() && "There must be non-default cases."); 4318 assert(!CasesA.empty() || HasDefault); 4319 4320 // Figure out if one of the sets of cases form a contiguous range. 4321 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4322 BasicBlock *ContiguousDest = nullptr; 4323 BasicBlock *OtherDest = nullptr; 4324 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4325 ContiguousCases = &CasesA; 4326 ContiguousDest = DestA; 4327 OtherDest = DestB; 4328 } else if (CasesAreContiguous(CasesB)) { 4329 ContiguousCases = &CasesB; 4330 ContiguousDest = DestB; 4331 OtherDest = DestA; 4332 } else 4333 return false; 4334 4335 // Start building the compare and branch. 4336 4337 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4338 Constant *NumCases = 4339 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4340 4341 Value *Sub = SI->getCondition(); 4342 if (!Offset->isNullValue()) 4343 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4344 4345 Value *Cmp; 4346 // If NumCases overflowed, then all possible values jump to the successor. 4347 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4348 Cmp = ConstantInt::getTrue(SI->getContext()); 4349 else 4350 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4351 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4352 4353 // Update weight for the newly-created conditional branch. 4354 if (HasBranchWeights(SI)) { 4355 SmallVector<uint64_t, 8> Weights; 4356 GetBranchWeights(SI, Weights); 4357 if (Weights.size() == 1 + SI->getNumCases()) { 4358 uint64_t TrueWeight = 0; 4359 uint64_t FalseWeight = 0; 4360 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4361 if (SI->getSuccessor(I) == ContiguousDest) 4362 TrueWeight += Weights[I]; 4363 else 4364 FalseWeight += Weights[I]; 4365 } 4366 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4367 TrueWeight /= 2; 4368 FalseWeight /= 2; 4369 } 4370 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4371 } 4372 } 4373 4374 // Prune obsolete incoming values off the successors' PHI nodes. 4375 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4376 unsigned PreviousEdges = ContiguousCases->size(); 4377 if (ContiguousDest == SI->getDefaultDest()) 4378 ++PreviousEdges; 4379 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4380 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4381 } 4382 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4383 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4384 if (OtherDest == SI->getDefaultDest()) 4385 ++PreviousEdges; 4386 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4387 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4388 } 4389 4390 // Drop the switch. 4391 SI->eraseFromParent(); 4392 4393 return true; 4394 } 4395 4396 /// Compute masked bits for the condition of a switch 4397 /// and use it to remove dead cases. 4398 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4399 const DataLayout &DL) { 4400 Value *Cond = SI->getCondition(); 4401 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4402 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4403 4404 // We can also eliminate cases by determining that their values are outside of 4405 // the limited range of the condition based on how many significant (non-sign) 4406 // bits are in the condition value. 4407 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4408 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4409 4410 // Gather dead cases. 4411 SmallVector<ConstantInt *, 8> DeadCases; 4412 for (auto &Case : SI->cases()) { 4413 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4414 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4415 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4416 DeadCases.push_back(Case.getCaseValue()); 4417 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4418 << " is dead.\n"); 4419 } 4420 } 4421 4422 // If we can prove that the cases must cover all possible values, the 4423 // default destination becomes dead and we can remove it. If we know some 4424 // of the bits in the value, we can use that to more precisely compute the 4425 // number of possible unique case values. 4426 bool HasDefault = 4427 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4428 const unsigned NumUnknownBits = 4429 Bits - (Known.Zero | Known.One).countPopulation(); 4430 assert(NumUnknownBits <= Bits); 4431 if (HasDefault && DeadCases.empty() && 4432 NumUnknownBits < 64 /* avoid overflow */ && 4433 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4434 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4435 BasicBlock *NewDefault = 4436 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4437 SI->setDefaultDest(&*NewDefault); 4438 SplitBlock(&*NewDefault, &NewDefault->front()); 4439 auto *OldTI = NewDefault->getTerminator(); 4440 new UnreachableInst(SI->getContext(), OldTI); 4441 EraseTerminatorAndDCECond(OldTI); 4442 return true; 4443 } 4444 4445 SmallVector<uint64_t, 8> Weights; 4446 bool HasWeight = HasBranchWeights(SI); 4447 if (HasWeight) { 4448 GetBranchWeights(SI, Weights); 4449 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4450 } 4451 4452 // Remove dead cases from the switch. 4453 for (ConstantInt *DeadCase : DeadCases) { 4454 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4455 assert(CaseI != SI->case_default() && 4456 "Case was not found. Probably mistake in DeadCases forming."); 4457 if (HasWeight) { 4458 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4459 Weights.pop_back(); 4460 } 4461 4462 // Prune unused values from PHI nodes. 4463 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4464 SI->removeCase(CaseI); 4465 } 4466 if (HasWeight && Weights.size() >= 2) { 4467 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4468 setBranchWeights(SI, MDWeights); 4469 } 4470 4471 return !DeadCases.empty(); 4472 } 4473 4474 /// If BB would be eligible for simplification by 4475 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4476 /// by an unconditional branch), look at the phi node for BB in the successor 4477 /// block and see if the incoming value is equal to CaseValue. If so, return 4478 /// the phi node, and set PhiIndex to BB's index in the phi node. 4479 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4480 BasicBlock *BB, int *PhiIndex) { 4481 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4482 return nullptr; // BB must be empty to be a candidate for simplification. 4483 if (!BB->getSinglePredecessor()) 4484 return nullptr; // BB must be dominated by the switch. 4485 4486 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4487 if (!Branch || !Branch->isUnconditional()) 4488 return nullptr; // Terminator must be unconditional branch. 4489 4490 BasicBlock *Succ = Branch->getSuccessor(0); 4491 4492 for (PHINode &PHI : Succ->phis()) { 4493 int Idx = PHI.getBasicBlockIndex(BB); 4494 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4495 4496 Value *InValue = PHI.getIncomingValue(Idx); 4497 if (InValue != CaseValue) 4498 continue; 4499 4500 *PhiIndex = Idx; 4501 return &PHI; 4502 } 4503 4504 return nullptr; 4505 } 4506 4507 /// Try to forward the condition of a switch instruction to a phi node 4508 /// dominated by the switch, if that would mean that some of the destination 4509 /// blocks of the switch can be folded away. Return true if a change is made. 4510 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4511 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4512 4513 ForwardingNodesMap ForwardingNodes; 4514 BasicBlock *SwitchBlock = SI->getParent(); 4515 bool Changed = false; 4516 for (auto &Case : SI->cases()) { 4517 ConstantInt *CaseValue = Case.getCaseValue(); 4518 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4519 4520 // Replace phi operands in successor blocks that are using the constant case 4521 // value rather than the switch condition variable: 4522 // switchbb: 4523 // switch i32 %x, label %default [ 4524 // i32 17, label %succ 4525 // ... 4526 // succ: 4527 // %r = phi i32 ... [ 17, %switchbb ] ... 4528 // --> 4529 // %r = phi i32 ... [ %x, %switchbb ] ... 4530 4531 for (PHINode &Phi : CaseDest->phis()) { 4532 // This only works if there is exactly 1 incoming edge from the switch to 4533 // a phi. If there is >1, that means multiple cases of the switch map to 1 4534 // value in the phi, and that phi value is not the switch condition. Thus, 4535 // this transform would not make sense (the phi would be invalid because 4536 // a phi can't have different incoming values from the same block). 4537 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4538 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4539 count(Phi.blocks(), SwitchBlock) == 1) { 4540 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4541 Changed = true; 4542 } 4543 } 4544 4545 // Collect phi nodes that are indirectly using this switch's case constants. 4546 int PhiIdx; 4547 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4548 ForwardingNodes[Phi].push_back(PhiIdx); 4549 } 4550 4551 for (auto &ForwardingNode : ForwardingNodes) { 4552 PHINode *Phi = ForwardingNode.first; 4553 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4554 if (Indexes.size() < 2) 4555 continue; 4556 4557 for (int Index : Indexes) 4558 Phi->setIncomingValue(Index, SI->getCondition()); 4559 Changed = true; 4560 } 4561 4562 return Changed; 4563 } 4564 4565 /// Return true if the backend will be able to handle 4566 /// initializing an array of constants like C. 4567 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4568 if (C->isThreadDependent()) 4569 return false; 4570 if (C->isDLLImportDependent()) 4571 return false; 4572 4573 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4574 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4575 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4576 return false; 4577 4578 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4579 if (!CE->isGEPWithNoNotionalOverIndexing()) 4580 return false; 4581 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4582 return false; 4583 } 4584 4585 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4586 return false; 4587 4588 return true; 4589 } 4590 4591 /// If V is a Constant, return it. Otherwise, try to look up 4592 /// its constant value in ConstantPool, returning 0 if it's not there. 4593 static Constant * 4594 LookupConstant(Value *V, 4595 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4596 if (Constant *C = dyn_cast<Constant>(V)) 4597 return C; 4598 return ConstantPool.lookup(V); 4599 } 4600 4601 /// Try to fold instruction I into a constant. This works for 4602 /// simple instructions such as binary operations where both operands are 4603 /// constant or can be replaced by constants from the ConstantPool. Returns the 4604 /// resulting constant on success, 0 otherwise. 4605 static Constant * 4606 ConstantFold(Instruction *I, const DataLayout &DL, 4607 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4608 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4609 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4610 if (!A) 4611 return nullptr; 4612 if (A->isAllOnesValue()) 4613 return LookupConstant(Select->getTrueValue(), ConstantPool); 4614 if (A->isNullValue()) 4615 return LookupConstant(Select->getFalseValue(), ConstantPool); 4616 return nullptr; 4617 } 4618 4619 SmallVector<Constant *, 4> COps; 4620 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4621 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4622 COps.push_back(A); 4623 else 4624 return nullptr; 4625 } 4626 4627 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4628 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4629 COps[1], DL); 4630 } 4631 4632 return ConstantFoldInstOperands(I, COps, DL); 4633 } 4634 4635 /// Try to determine the resulting constant values in phi nodes 4636 /// at the common destination basic block, *CommonDest, for one of the case 4637 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4638 /// case), of a switch instruction SI. 4639 static bool 4640 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4641 BasicBlock **CommonDest, 4642 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4643 const DataLayout &DL, const TargetTransformInfo &TTI) { 4644 // The block from which we enter the common destination. 4645 BasicBlock *Pred = SI->getParent(); 4646 4647 // If CaseDest is empty except for some side-effect free instructions through 4648 // which we can constant-propagate the CaseVal, continue to its successor. 4649 SmallDenseMap<Value *, Constant *> ConstantPool; 4650 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4651 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4652 if (I.isTerminator()) { 4653 // If the terminator is a simple branch, continue to the next block. 4654 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4655 return false; 4656 Pred = CaseDest; 4657 CaseDest = I.getSuccessor(0); 4658 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4659 // Instruction is side-effect free and constant. 4660 4661 // If the instruction has uses outside this block or a phi node slot for 4662 // the block, it is not safe to bypass the instruction since it would then 4663 // no longer dominate all its uses. 4664 for (auto &Use : I.uses()) { 4665 User *User = Use.getUser(); 4666 if (Instruction *I = dyn_cast<Instruction>(User)) 4667 if (I->getParent() == CaseDest) 4668 continue; 4669 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4670 if (Phi->getIncomingBlock(Use) == CaseDest) 4671 continue; 4672 return false; 4673 } 4674 4675 ConstantPool.insert(std::make_pair(&I, C)); 4676 } else { 4677 break; 4678 } 4679 } 4680 4681 // If we did not have a CommonDest before, use the current one. 4682 if (!*CommonDest) 4683 *CommonDest = CaseDest; 4684 // If the destination isn't the common one, abort. 4685 if (CaseDest != *CommonDest) 4686 return false; 4687 4688 // Get the values for this case from phi nodes in the destination block. 4689 for (PHINode &PHI : (*CommonDest)->phis()) { 4690 int Idx = PHI.getBasicBlockIndex(Pred); 4691 if (Idx == -1) 4692 continue; 4693 4694 Constant *ConstVal = 4695 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4696 if (!ConstVal) 4697 return false; 4698 4699 // Be conservative about which kinds of constants we support. 4700 if (!ValidLookupTableConstant(ConstVal, TTI)) 4701 return false; 4702 4703 Res.push_back(std::make_pair(&PHI, ConstVal)); 4704 } 4705 4706 return Res.size() > 0; 4707 } 4708 4709 // Helper function used to add CaseVal to the list of cases that generate 4710 // Result. Returns the updated number of cases that generate this result. 4711 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4712 SwitchCaseResultVectorTy &UniqueResults, 4713 Constant *Result) { 4714 for (auto &I : UniqueResults) { 4715 if (I.first == Result) { 4716 I.second.push_back(CaseVal); 4717 return I.second.size(); 4718 } 4719 } 4720 UniqueResults.push_back( 4721 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4722 return 1; 4723 } 4724 4725 // Helper function that initializes a map containing 4726 // results for the PHI node of the common destination block for a switch 4727 // instruction. Returns false if multiple PHI nodes have been found or if 4728 // there is not a common destination block for the switch. 4729 static bool 4730 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4731 SwitchCaseResultVectorTy &UniqueResults, 4732 Constant *&DefaultResult, const DataLayout &DL, 4733 const TargetTransformInfo &TTI, 4734 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4735 for (auto &I : SI->cases()) { 4736 ConstantInt *CaseVal = I.getCaseValue(); 4737 4738 // Resulting value at phi nodes for this case value. 4739 SwitchCaseResultsTy Results; 4740 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4741 DL, TTI)) 4742 return false; 4743 4744 // Only one value per case is permitted. 4745 if (Results.size() > 1) 4746 return false; 4747 4748 // Add the case->result mapping to UniqueResults. 4749 const uintptr_t NumCasesForResult = 4750 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4751 4752 // Early out if there are too many cases for this result. 4753 if (NumCasesForResult > MaxCasesPerResult) 4754 return false; 4755 4756 // Early out if there are too many unique results. 4757 if (UniqueResults.size() > MaxUniqueResults) 4758 return false; 4759 4760 // Check the PHI consistency. 4761 if (!PHI) 4762 PHI = Results[0].first; 4763 else if (PHI != Results[0].first) 4764 return false; 4765 } 4766 // Find the default result value. 4767 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4768 BasicBlock *DefaultDest = SI->getDefaultDest(); 4769 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4770 DL, TTI); 4771 // If the default value is not found abort unless the default destination 4772 // is unreachable. 4773 DefaultResult = 4774 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4775 if ((!DefaultResult && 4776 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4777 return false; 4778 4779 return true; 4780 } 4781 4782 // Helper function that checks if it is possible to transform a switch with only 4783 // two cases (or two cases + default) that produces a result into a select. 4784 // Example: 4785 // switch (a) { 4786 // case 10: %0 = icmp eq i32 %a, 10 4787 // return 10; %1 = select i1 %0, i32 10, i32 4 4788 // case 20: ----> %2 = icmp eq i32 %a, 20 4789 // return 2; %3 = select i1 %2, i32 2, i32 %1 4790 // default: 4791 // return 4; 4792 // } 4793 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4794 Constant *DefaultResult, Value *Condition, 4795 IRBuilder<> &Builder) { 4796 assert(ResultVector.size() == 2 && 4797 "We should have exactly two unique results at this point"); 4798 // If we are selecting between only two cases transform into a simple 4799 // select or a two-way select if default is possible. 4800 if (ResultVector[0].second.size() == 1 && 4801 ResultVector[1].second.size() == 1) { 4802 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4803 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4804 4805 bool DefaultCanTrigger = DefaultResult; 4806 Value *SelectValue = ResultVector[1].first; 4807 if (DefaultCanTrigger) { 4808 Value *const ValueCompare = 4809 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4810 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4811 DefaultResult, "switch.select"); 4812 } 4813 Value *const ValueCompare = 4814 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4815 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4816 SelectValue, "switch.select"); 4817 } 4818 4819 return nullptr; 4820 } 4821 4822 // Helper function to cleanup a switch instruction that has been converted into 4823 // a select, fixing up PHI nodes and basic blocks. 4824 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4825 Value *SelectValue, 4826 IRBuilder<> &Builder) { 4827 BasicBlock *SelectBB = SI->getParent(); 4828 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4829 PHI->removeIncomingValue(SelectBB); 4830 PHI->addIncoming(SelectValue, SelectBB); 4831 4832 Builder.CreateBr(PHI->getParent()); 4833 4834 // Remove the switch. 4835 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4836 BasicBlock *Succ = SI->getSuccessor(i); 4837 4838 if (Succ == PHI->getParent()) 4839 continue; 4840 Succ->removePredecessor(SelectBB); 4841 } 4842 SI->eraseFromParent(); 4843 } 4844 4845 /// If the switch is only used to initialize one or more 4846 /// phi nodes in a common successor block with only two different 4847 /// constant values, replace the switch with select. 4848 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4849 const DataLayout &DL, 4850 const TargetTransformInfo &TTI) { 4851 Value *const Cond = SI->getCondition(); 4852 PHINode *PHI = nullptr; 4853 BasicBlock *CommonDest = nullptr; 4854 Constant *DefaultResult; 4855 SwitchCaseResultVectorTy UniqueResults; 4856 // Collect all the cases that will deliver the same value from the switch. 4857 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4858 DL, TTI, 2, 1)) 4859 return false; 4860 // Selects choose between maximum two values. 4861 if (UniqueResults.size() != 2) 4862 return false; 4863 assert(PHI != nullptr && "PHI for value select not found"); 4864 4865 Builder.SetInsertPoint(SI); 4866 Value *SelectValue = 4867 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4868 if (SelectValue) { 4869 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4870 return true; 4871 } 4872 // The switch couldn't be converted into a select. 4873 return false; 4874 } 4875 4876 namespace { 4877 4878 /// This class represents a lookup table that can be used to replace a switch. 4879 class SwitchLookupTable { 4880 public: 4881 /// Create a lookup table to use as a switch replacement with the contents 4882 /// of Values, using DefaultValue to fill any holes in the table. 4883 SwitchLookupTable( 4884 Module &M, uint64_t TableSize, ConstantInt *Offset, 4885 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4886 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4887 4888 /// Build instructions with Builder to retrieve the value at 4889 /// the position given by Index in the lookup table. 4890 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4891 4892 /// Return true if a table with TableSize elements of 4893 /// type ElementType would fit in a target-legal register. 4894 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4895 Type *ElementType); 4896 4897 private: 4898 // Depending on the contents of the table, it can be represented in 4899 // different ways. 4900 enum { 4901 // For tables where each element contains the same value, we just have to 4902 // store that single value and return it for each lookup. 4903 SingleValueKind, 4904 4905 // For tables where there is a linear relationship between table index 4906 // and values. We calculate the result with a simple multiplication 4907 // and addition instead of a table lookup. 4908 LinearMapKind, 4909 4910 // For small tables with integer elements, we can pack them into a bitmap 4911 // that fits into a target-legal register. Values are retrieved by 4912 // shift and mask operations. 4913 BitMapKind, 4914 4915 // The table is stored as an array of values. Values are retrieved by load 4916 // instructions from the table. 4917 ArrayKind 4918 } Kind; 4919 4920 // For SingleValueKind, this is the single value. 4921 Constant *SingleValue = nullptr; 4922 4923 // For BitMapKind, this is the bitmap. 4924 ConstantInt *BitMap = nullptr; 4925 IntegerType *BitMapElementTy = nullptr; 4926 4927 // For LinearMapKind, these are the constants used to derive the value. 4928 ConstantInt *LinearOffset = nullptr; 4929 ConstantInt *LinearMultiplier = nullptr; 4930 4931 // For ArrayKind, this is the array. 4932 GlobalVariable *Array = nullptr; 4933 }; 4934 4935 } // end anonymous namespace 4936 4937 SwitchLookupTable::SwitchLookupTable( 4938 Module &M, uint64_t TableSize, ConstantInt *Offset, 4939 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4940 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4941 assert(Values.size() && "Can't build lookup table without values!"); 4942 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4943 4944 // If all values in the table are equal, this is that value. 4945 SingleValue = Values.begin()->second; 4946 4947 Type *ValueType = Values.begin()->second->getType(); 4948 4949 // Build up the table contents. 4950 SmallVector<Constant *, 64> TableContents(TableSize); 4951 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4952 ConstantInt *CaseVal = Values[I].first; 4953 Constant *CaseRes = Values[I].second; 4954 assert(CaseRes->getType() == ValueType); 4955 4956 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4957 TableContents[Idx] = CaseRes; 4958 4959 if (CaseRes != SingleValue) 4960 SingleValue = nullptr; 4961 } 4962 4963 // Fill in any holes in the table with the default result. 4964 if (Values.size() < TableSize) { 4965 assert(DefaultValue && 4966 "Need a default value to fill the lookup table holes."); 4967 assert(DefaultValue->getType() == ValueType); 4968 for (uint64_t I = 0; I < TableSize; ++I) { 4969 if (!TableContents[I]) 4970 TableContents[I] = DefaultValue; 4971 } 4972 4973 if (DefaultValue != SingleValue) 4974 SingleValue = nullptr; 4975 } 4976 4977 // If each element in the table contains the same value, we only need to store 4978 // that single value. 4979 if (SingleValue) { 4980 Kind = SingleValueKind; 4981 return; 4982 } 4983 4984 // Check if we can derive the value with a linear transformation from the 4985 // table index. 4986 if (isa<IntegerType>(ValueType)) { 4987 bool LinearMappingPossible = true; 4988 APInt PrevVal; 4989 APInt DistToPrev; 4990 assert(TableSize >= 2 && "Should be a SingleValue table."); 4991 // Check if there is the same distance between two consecutive values. 4992 for (uint64_t I = 0; I < TableSize; ++I) { 4993 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4994 if (!ConstVal) { 4995 // This is an undef. We could deal with it, but undefs in lookup tables 4996 // are very seldom. It's probably not worth the additional complexity. 4997 LinearMappingPossible = false; 4998 break; 4999 } 5000 const APInt &Val = ConstVal->getValue(); 5001 if (I != 0) { 5002 APInt Dist = Val - PrevVal; 5003 if (I == 1) { 5004 DistToPrev = Dist; 5005 } else if (Dist != DistToPrev) { 5006 LinearMappingPossible = false; 5007 break; 5008 } 5009 } 5010 PrevVal = Val; 5011 } 5012 if (LinearMappingPossible) { 5013 LinearOffset = cast<ConstantInt>(TableContents[0]); 5014 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5015 Kind = LinearMapKind; 5016 ++NumLinearMaps; 5017 return; 5018 } 5019 } 5020 5021 // If the type is integer and the table fits in a register, build a bitmap. 5022 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5023 IntegerType *IT = cast<IntegerType>(ValueType); 5024 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5025 for (uint64_t I = TableSize; I > 0; --I) { 5026 TableInt <<= IT->getBitWidth(); 5027 // Insert values into the bitmap. Undef values are set to zero. 5028 if (!isa<UndefValue>(TableContents[I - 1])) { 5029 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5030 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5031 } 5032 } 5033 BitMap = ConstantInt::get(M.getContext(), TableInt); 5034 BitMapElementTy = IT; 5035 Kind = BitMapKind; 5036 ++NumBitMaps; 5037 return; 5038 } 5039 5040 // Store the table in an array. 5041 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5042 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5043 5044 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5045 GlobalVariable::PrivateLinkage, Initializer, 5046 "switch.table." + FuncName); 5047 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5048 // Set the alignment to that of an array items. We will be only loading one 5049 // value out of it. 5050 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5051 Kind = ArrayKind; 5052 } 5053 5054 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5055 switch (Kind) { 5056 case SingleValueKind: 5057 return SingleValue; 5058 case LinearMapKind: { 5059 // Derive the result value from the input value. 5060 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5061 false, "switch.idx.cast"); 5062 if (!LinearMultiplier->isOne()) 5063 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5064 if (!LinearOffset->isZero()) 5065 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5066 return Result; 5067 } 5068 case BitMapKind: { 5069 // Type of the bitmap (e.g. i59). 5070 IntegerType *MapTy = BitMap->getType(); 5071 5072 // Cast Index to the same type as the bitmap. 5073 // Note: The Index is <= the number of elements in the table, so 5074 // truncating it to the width of the bitmask is safe. 5075 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5076 5077 // Multiply the shift amount by the element width. 5078 ShiftAmt = Builder.CreateMul( 5079 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5080 "switch.shiftamt"); 5081 5082 // Shift down. 5083 Value *DownShifted = 5084 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5085 // Mask off. 5086 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5087 } 5088 case ArrayKind: { 5089 // Make sure the table index will not overflow when treated as signed. 5090 IntegerType *IT = cast<IntegerType>(Index->getType()); 5091 uint64_t TableSize = 5092 Array->getInitializer()->getType()->getArrayNumElements(); 5093 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5094 Index = Builder.CreateZExt( 5095 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5096 "switch.tableidx.zext"); 5097 5098 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5099 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5100 GEPIndices, "switch.gep"); 5101 return Builder.CreateLoad( 5102 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5103 "switch.load"); 5104 } 5105 } 5106 llvm_unreachable("Unknown lookup table kind!"); 5107 } 5108 5109 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5110 uint64_t TableSize, 5111 Type *ElementType) { 5112 auto *IT = dyn_cast<IntegerType>(ElementType); 5113 if (!IT) 5114 return false; 5115 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5116 // are <= 15, we could try to narrow the type. 5117 5118 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5119 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5120 return false; 5121 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5122 } 5123 5124 /// Determine whether a lookup table should be built for this switch, based on 5125 /// the number of cases, size of the table, and the types of the results. 5126 static bool 5127 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5128 const TargetTransformInfo &TTI, const DataLayout &DL, 5129 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5130 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5131 return false; // TableSize overflowed, or mul below might overflow. 5132 5133 bool AllTablesFitInRegister = true; 5134 bool HasIllegalType = false; 5135 for (const auto &I : ResultTypes) { 5136 Type *Ty = I.second; 5137 5138 // Saturate this flag to true. 5139 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5140 5141 // Saturate this flag to false. 5142 AllTablesFitInRegister = 5143 AllTablesFitInRegister && 5144 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5145 5146 // If both flags saturate, we're done. NOTE: This *only* works with 5147 // saturating flags, and all flags have to saturate first due to the 5148 // non-deterministic behavior of iterating over a dense map. 5149 if (HasIllegalType && !AllTablesFitInRegister) 5150 break; 5151 } 5152 5153 // If each table would fit in a register, we should build it anyway. 5154 if (AllTablesFitInRegister) 5155 return true; 5156 5157 // Don't build a table that doesn't fit in-register if it has illegal types. 5158 if (HasIllegalType) 5159 return false; 5160 5161 // The table density should be at least 40%. This is the same criterion as for 5162 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5163 // FIXME: Find the best cut-off. 5164 return SI->getNumCases() * 10 >= TableSize * 4; 5165 } 5166 5167 /// Try to reuse the switch table index compare. Following pattern: 5168 /// \code 5169 /// if (idx < tablesize) 5170 /// r = table[idx]; // table does not contain default_value 5171 /// else 5172 /// r = default_value; 5173 /// if (r != default_value) 5174 /// ... 5175 /// \endcode 5176 /// Is optimized to: 5177 /// \code 5178 /// cond = idx < tablesize; 5179 /// if (cond) 5180 /// r = table[idx]; 5181 /// else 5182 /// r = default_value; 5183 /// if (cond) 5184 /// ... 5185 /// \endcode 5186 /// Jump threading will then eliminate the second if(cond). 5187 static void reuseTableCompare( 5188 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5189 Constant *DefaultValue, 5190 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5191 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5192 if (!CmpInst) 5193 return; 5194 5195 // We require that the compare is in the same block as the phi so that jump 5196 // threading can do its work afterwards. 5197 if (CmpInst->getParent() != PhiBlock) 5198 return; 5199 5200 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5201 if (!CmpOp1) 5202 return; 5203 5204 Value *RangeCmp = RangeCheckBranch->getCondition(); 5205 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5206 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5207 5208 // Check if the compare with the default value is constant true or false. 5209 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5210 DefaultValue, CmpOp1, true); 5211 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5212 return; 5213 5214 // Check if the compare with the case values is distinct from the default 5215 // compare result. 5216 for (auto ValuePair : Values) { 5217 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5218 ValuePair.second, CmpOp1, true); 5219 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5220 return; 5221 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5222 "Expect true or false as compare result."); 5223 } 5224 5225 // Check if the branch instruction dominates the phi node. It's a simple 5226 // dominance check, but sufficient for our needs. 5227 // Although this check is invariant in the calling loops, it's better to do it 5228 // at this late stage. Practically we do it at most once for a switch. 5229 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5230 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5231 BasicBlock *Pred = *PI; 5232 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5233 return; 5234 } 5235 5236 if (DefaultConst == FalseConst) { 5237 // The compare yields the same result. We can replace it. 5238 CmpInst->replaceAllUsesWith(RangeCmp); 5239 ++NumTableCmpReuses; 5240 } else { 5241 // The compare yields the same result, just inverted. We can replace it. 5242 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5243 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5244 RangeCheckBranch); 5245 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5246 ++NumTableCmpReuses; 5247 } 5248 } 5249 5250 /// If the switch is only used to initialize one or more phi nodes in a common 5251 /// successor block with different constant values, replace the switch with 5252 /// lookup tables. 5253 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5254 const DataLayout &DL, 5255 const TargetTransformInfo &TTI) { 5256 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5257 5258 Function *Fn = SI->getParent()->getParent(); 5259 // Only build lookup table when we have a target that supports it or the 5260 // attribute is not set. 5261 if (!TTI.shouldBuildLookupTables() || 5262 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5263 return false; 5264 5265 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5266 // split off a dense part and build a lookup table for that. 5267 5268 // FIXME: This creates arrays of GEPs to constant strings, which means each 5269 // GEP needs a runtime relocation in PIC code. We should just build one big 5270 // string and lookup indices into that. 5271 5272 // Ignore switches with less than three cases. Lookup tables will not make 5273 // them faster, so we don't analyze them. 5274 if (SI->getNumCases() < 3) 5275 return false; 5276 5277 // Figure out the corresponding result for each case value and phi node in the 5278 // common destination, as well as the min and max case values. 5279 assert(!empty(SI->cases())); 5280 SwitchInst::CaseIt CI = SI->case_begin(); 5281 ConstantInt *MinCaseVal = CI->getCaseValue(); 5282 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5283 5284 BasicBlock *CommonDest = nullptr; 5285 5286 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5287 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5288 5289 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5290 SmallDenseMap<PHINode *, Type *> ResultTypes; 5291 SmallVector<PHINode *, 4> PHIs; 5292 5293 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5294 ConstantInt *CaseVal = CI->getCaseValue(); 5295 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5296 MinCaseVal = CaseVal; 5297 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5298 MaxCaseVal = CaseVal; 5299 5300 // Resulting value at phi nodes for this case value. 5301 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5302 ResultsTy Results; 5303 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5304 Results, DL, TTI)) 5305 return false; 5306 5307 // Append the result from this case to the list for each phi. 5308 for (const auto &I : Results) { 5309 PHINode *PHI = I.first; 5310 Constant *Value = I.second; 5311 if (!ResultLists.count(PHI)) 5312 PHIs.push_back(PHI); 5313 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5314 } 5315 } 5316 5317 // Keep track of the result types. 5318 for (PHINode *PHI : PHIs) { 5319 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5320 } 5321 5322 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5323 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5324 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5325 bool TableHasHoles = (NumResults < TableSize); 5326 5327 // If the table has holes, we need a constant result for the default case 5328 // or a bitmask that fits in a register. 5329 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5330 bool HasDefaultResults = 5331 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5332 DefaultResultsList, DL, TTI); 5333 5334 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5335 if (NeedMask) { 5336 // As an extra penalty for the validity test we require more cases. 5337 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5338 return false; 5339 if (!DL.fitsInLegalInteger(TableSize)) 5340 return false; 5341 } 5342 5343 for (const auto &I : DefaultResultsList) { 5344 PHINode *PHI = I.first; 5345 Constant *Result = I.second; 5346 DefaultResults[PHI] = Result; 5347 } 5348 5349 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5350 return false; 5351 5352 // Create the BB that does the lookups. 5353 Module &Mod = *CommonDest->getParent()->getParent(); 5354 BasicBlock *LookupBB = BasicBlock::Create( 5355 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5356 5357 // Compute the table index value. 5358 Builder.SetInsertPoint(SI); 5359 Value *TableIndex; 5360 if (MinCaseVal->isNullValue()) 5361 TableIndex = SI->getCondition(); 5362 else 5363 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5364 "switch.tableidx"); 5365 5366 // Compute the maximum table size representable by the integer type we are 5367 // switching upon. 5368 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5369 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5370 assert(MaxTableSize >= TableSize && 5371 "It is impossible for a switch to have more entries than the max " 5372 "representable value of its input integer type's size."); 5373 5374 // If the default destination is unreachable, or if the lookup table covers 5375 // all values of the conditional variable, branch directly to the lookup table 5376 // BB. Otherwise, check that the condition is within the case range. 5377 const bool DefaultIsReachable = 5378 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5379 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5380 BranchInst *RangeCheckBranch = nullptr; 5381 5382 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5383 Builder.CreateBr(LookupBB); 5384 // Note: We call removeProdecessor later since we need to be able to get the 5385 // PHI value for the default case in case we're using a bit mask. 5386 } else { 5387 Value *Cmp = Builder.CreateICmpULT( 5388 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5389 RangeCheckBranch = 5390 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5391 } 5392 5393 // Populate the BB that does the lookups. 5394 Builder.SetInsertPoint(LookupBB); 5395 5396 if (NeedMask) { 5397 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5398 // re-purposed to do the hole check, and we create a new LookupBB. 5399 BasicBlock *MaskBB = LookupBB; 5400 MaskBB->setName("switch.hole_check"); 5401 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5402 CommonDest->getParent(), CommonDest); 5403 5404 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5405 // unnecessary illegal types. 5406 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5407 APInt MaskInt(TableSizePowOf2, 0); 5408 APInt One(TableSizePowOf2, 1); 5409 // Build bitmask; fill in a 1 bit for every case. 5410 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5411 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5412 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5413 .getLimitedValue(); 5414 MaskInt |= One << Idx; 5415 } 5416 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5417 5418 // Get the TableIndex'th bit of the bitmask. 5419 // If this bit is 0 (meaning hole) jump to the default destination, 5420 // else continue with table lookup. 5421 IntegerType *MapTy = TableMask->getType(); 5422 Value *MaskIndex = 5423 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5424 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5425 Value *LoBit = Builder.CreateTrunc( 5426 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5427 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5428 5429 Builder.SetInsertPoint(LookupBB); 5430 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5431 } 5432 5433 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5434 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5435 // do not delete PHINodes here. 5436 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5437 /*KeepOneInputPHIs=*/true); 5438 } 5439 5440 bool ReturnedEarly = false; 5441 for (PHINode *PHI : PHIs) { 5442 const ResultListTy &ResultList = ResultLists[PHI]; 5443 5444 // If using a bitmask, use any value to fill the lookup table holes. 5445 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5446 StringRef FuncName = Fn->getName(); 5447 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5448 FuncName); 5449 5450 Value *Result = Table.BuildLookup(TableIndex, Builder); 5451 5452 // If the result is used to return immediately from the function, we want to 5453 // do that right here. 5454 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5455 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5456 Builder.CreateRet(Result); 5457 ReturnedEarly = true; 5458 break; 5459 } 5460 5461 // Do a small peephole optimization: re-use the switch table compare if 5462 // possible. 5463 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5464 BasicBlock *PhiBlock = PHI->getParent(); 5465 // Search for compare instructions which use the phi. 5466 for (auto *User : PHI->users()) { 5467 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5468 } 5469 } 5470 5471 PHI->addIncoming(Result, LookupBB); 5472 } 5473 5474 if (!ReturnedEarly) 5475 Builder.CreateBr(CommonDest); 5476 5477 // Remove the switch. 5478 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5479 BasicBlock *Succ = SI->getSuccessor(i); 5480 5481 if (Succ == SI->getDefaultDest()) 5482 continue; 5483 Succ->removePredecessor(SI->getParent()); 5484 } 5485 SI->eraseFromParent(); 5486 5487 ++NumLookupTables; 5488 if (NeedMask) 5489 ++NumLookupTablesHoles; 5490 return true; 5491 } 5492 5493 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5494 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5495 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5496 uint64_t Range = Diff + 1; 5497 uint64_t NumCases = Values.size(); 5498 // 40% is the default density for building a jump table in optsize/minsize mode. 5499 uint64_t MinDensity = 40; 5500 5501 return NumCases * 100 >= Range * MinDensity; 5502 } 5503 5504 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5505 /// of cases. 5506 /// 5507 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5508 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5509 /// 5510 /// This converts a sparse switch into a dense switch which allows better 5511 /// lowering and could also allow transforming into a lookup table. 5512 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5513 const DataLayout &DL, 5514 const TargetTransformInfo &TTI) { 5515 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5516 if (CondTy->getIntegerBitWidth() > 64 || 5517 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5518 return false; 5519 // Only bother with this optimization if there are more than 3 switch cases; 5520 // SDAG will only bother creating jump tables for 4 or more cases. 5521 if (SI->getNumCases() < 4) 5522 return false; 5523 5524 // This transform is agnostic to the signedness of the input or case values. We 5525 // can treat the case values as signed or unsigned. We can optimize more common 5526 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5527 // as signed. 5528 SmallVector<int64_t,4> Values; 5529 for (auto &C : SI->cases()) 5530 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5531 llvm::sort(Values); 5532 5533 // If the switch is already dense, there's nothing useful to do here. 5534 if (isSwitchDense(Values)) 5535 return false; 5536 5537 // First, transform the values such that they start at zero and ascend. 5538 int64_t Base = Values[0]; 5539 for (auto &V : Values) 5540 V -= (uint64_t)(Base); 5541 5542 // Now we have signed numbers that have been shifted so that, given enough 5543 // precision, there are no negative values. Since the rest of the transform 5544 // is bitwise only, we switch now to an unsigned representation. 5545 uint64_t GCD = 0; 5546 for (auto &V : Values) 5547 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5548 5549 // This transform can be done speculatively because it is so cheap - it results 5550 // in a single rotate operation being inserted. This can only happen if the 5551 // factor extracted is a power of 2. 5552 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5553 // inverse of GCD and then perform this transform. 5554 // FIXME: It's possible that optimizing a switch on powers of two might also 5555 // be beneficial - flag values are often powers of two and we could use a CLZ 5556 // as the key function. 5557 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5558 // No common divisor found or too expensive to compute key function. 5559 return false; 5560 5561 unsigned Shift = Log2_64(GCD); 5562 for (auto &V : Values) 5563 V = (int64_t)((uint64_t)V >> Shift); 5564 5565 if (!isSwitchDense(Values)) 5566 // Transform didn't create a dense switch. 5567 return false; 5568 5569 // The obvious transform is to shift the switch condition right and emit a 5570 // check that the condition actually cleanly divided by GCD, i.e. 5571 // C & (1 << Shift - 1) == 0 5572 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5573 // 5574 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5575 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5576 // are nonzero then the switch condition will be very large and will hit the 5577 // default case. 5578 5579 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5580 Builder.SetInsertPoint(SI); 5581 auto *ShiftC = ConstantInt::get(Ty, Shift); 5582 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5583 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5584 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5585 auto *Rot = Builder.CreateOr(LShr, Shl); 5586 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5587 5588 for (auto Case : SI->cases()) { 5589 auto *Orig = Case.getCaseValue(); 5590 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5591 Case.setValue( 5592 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5593 } 5594 return true; 5595 } 5596 5597 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5598 BasicBlock *BB = SI->getParent(); 5599 5600 if (isValueEqualityComparison(SI)) { 5601 // If we only have one predecessor, and if it is a branch on this value, 5602 // see if that predecessor totally determines the outcome of this switch. 5603 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5604 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5605 return requestResimplify(); 5606 5607 Value *Cond = SI->getCondition(); 5608 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5609 if (SimplifySwitchOnSelect(SI, Select)) 5610 return requestResimplify(); 5611 5612 // If the block only contains the switch, see if we can fold the block 5613 // away into any preds. 5614 if (SI == &*BB->instructionsWithoutDebug().begin()) 5615 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5616 return requestResimplify(); 5617 } 5618 5619 // Try to transform the switch into an icmp and a branch. 5620 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5621 return requestResimplify(); 5622 5623 // Remove unreachable cases. 5624 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5625 return requestResimplify(); 5626 5627 if (switchToSelect(SI, Builder, DL, TTI)) 5628 return requestResimplify(); 5629 5630 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5631 return requestResimplify(); 5632 5633 // The conversion from switch to lookup tables results in difficult-to-analyze 5634 // code and makes pruning branches much harder. This is a problem if the 5635 // switch expression itself can still be restricted as a result of inlining or 5636 // CVP. Therefore, only apply this transformation during late stages of the 5637 // optimisation pipeline. 5638 if (Options.ConvertSwitchToLookupTable && 5639 SwitchToLookupTable(SI, Builder, DL, TTI)) 5640 return requestResimplify(); 5641 5642 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5643 return requestResimplify(); 5644 5645 return false; 5646 } 5647 5648 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5649 BasicBlock *BB = IBI->getParent(); 5650 bool Changed = false; 5651 5652 // Eliminate redundant destinations. 5653 SmallPtrSet<Value *, 8> Succs; 5654 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5655 BasicBlock *Dest = IBI->getDestination(i); 5656 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5657 Dest->removePredecessor(BB); 5658 IBI->removeDestination(i); 5659 --i; 5660 --e; 5661 Changed = true; 5662 } 5663 } 5664 5665 if (IBI->getNumDestinations() == 0) { 5666 // If the indirectbr has no successors, change it to unreachable. 5667 new UnreachableInst(IBI->getContext(), IBI); 5668 EraseTerminatorAndDCECond(IBI); 5669 return true; 5670 } 5671 5672 if (IBI->getNumDestinations() == 1) { 5673 // If the indirectbr has one successor, change it to a direct branch. 5674 BranchInst::Create(IBI->getDestination(0), IBI); 5675 EraseTerminatorAndDCECond(IBI); 5676 return true; 5677 } 5678 5679 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5680 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5681 return requestResimplify(); 5682 } 5683 return Changed; 5684 } 5685 5686 /// Given an block with only a single landing pad and a unconditional branch 5687 /// try to find another basic block which this one can be merged with. This 5688 /// handles cases where we have multiple invokes with unique landing pads, but 5689 /// a shared handler. 5690 /// 5691 /// We specifically choose to not worry about merging non-empty blocks 5692 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5693 /// practice, the optimizer produces empty landing pad blocks quite frequently 5694 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5695 /// sinking in this file) 5696 /// 5697 /// This is primarily a code size optimization. We need to avoid performing 5698 /// any transform which might inhibit optimization (such as our ability to 5699 /// specialize a particular handler via tail commoning). We do this by not 5700 /// merging any blocks which require us to introduce a phi. Since the same 5701 /// values are flowing through both blocks, we don't lose any ability to 5702 /// specialize. If anything, we make such specialization more likely. 5703 /// 5704 /// TODO - This transformation could remove entries from a phi in the target 5705 /// block when the inputs in the phi are the same for the two blocks being 5706 /// merged. In some cases, this could result in removal of the PHI entirely. 5707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5708 BasicBlock *BB) { 5709 auto Succ = BB->getUniqueSuccessor(); 5710 assert(Succ); 5711 // If there's a phi in the successor block, we'd likely have to introduce 5712 // a phi into the merged landing pad block. 5713 if (isa<PHINode>(*Succ->begin())) 5714 return false; 5715 5716 for (BasicBlock *OtherPred : predecessors(Succ)) { 5717 if (BB == OtherPred) 5718 continue; 5719 BasicBlock::iterator I = OtherPred->begin(); 5720 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5721 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5722 continue; 5723 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5724 ; 5725 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5726 if (!BI2 || !BI2->isIdenticalTo(BI)) 5727 continue; 5728 5729 // We've found an identical block. Update our predecessors to take that 5730 // path instead and make ourselves dead. 5731 SmallPtrSet<BasicBlock *, 16> Preds; 5732 Preds.insert(pred_begin(BB), pred_end(BB)); 5733 for (BasicBlock *Pred : Preds) { 5734 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5735 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5736 "unexpected successor"); 5737 II->setUnwindDest(OtherPred); 5738 } 5739 5740 // The debug info in OtherPred doesn't cover the merged control flow that 5741 // used to go through BB. We need to delete it or update it. 5742 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5743 Instruction &Inst = *I; 5744 I++; 5745 if (isa<DbgInfoIntrinsic>(Inst)) 5746 Inst.eraseFromParent(); 5747 } 5748 5749 SmallPtrSet<BasicBlock *, 16> Succs; 5750 Succs.insert(succ_begin(BB), succ_end(BB)); 5751 for (BasicBlock *Succ : Succs) { 5752 Succ->removePredecessor(BB); 5753 } 5754 5755 IRBuilder<> Builder(BI); 5756 Builder.CreateUnreachable(); 5757 BI->eraseFromParent(); 5758 return true; 5759 } 5760 return false; 5761 } 5762 5763 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5764 IRBuilder<> &Builder) { 5765 BasicBlock *BB = BI->getParent(); 5766 BasicBlock *Succ = BI->getSuccessor(0); 5767 5768 // If the Terminator is the only non-phi instruction, simplify the block. 5769 // If LoopHeader is provided, check if the block or its successor is a loop 5770 // header. (This is for early invocations before loop simplify and 5771 // vectorization to keep canonical loop forms for nested loops. These blocks 5772 // can be eliminated when the pass is invoked later in the back-end.) 5773 // Note that if BB has only one predecessor then we do not introduce new 5774 // backedge, so we can eliminate BB. 5775 bool NeedCanonicalLoop = 5776 Options.NeedCanonicalLoop && 5777 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 5778 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5779 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5780 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5781 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5782 return true; 5783 5784 // If the only instruction in the block is a seteq/setne comparison against a 5785 // constant, try to simplify the block. 5786 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5787 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5788 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5789 ; 5790 if (I->isTerminator() && 5791 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5792 return true; 5793 } 5794 5795 // See if we can merge an empty landing pad block with another which is 5796 // equivalent. 5797 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5798 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5799 ; 5800 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5801 return true; 5802 } 5803 5804 // If this basic block is ONLY a compare and a branch, and if a predecessor 5805 // branches to us and our successor, fold the comparison into the 5806 // predecessor and use logical operations to update the incoming value 5807 // for PHI nodes in common successor. 5808 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5809 return requestResimplify(); 5810 return false; 5811 } 5812 5813 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5814 BasicBlock *PredPred = nullptr; 5815 for (auto *P : predecessors(BB)) { 5816 BasicBlock *PPred = P->getSinglePredecessor(); 5817 if (!PPred || (PredPred && PredPred != PPred)) 5818 return nullptr; 5819 PredPred = PPred; 5820 } 5821 return PredPred; 5822 } 5823 5824 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5825 BasicBlock *BB = BI->getParent(); 5826 const Function *Fn = BB->getParent(); 5827 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5828 return false; 5829 5830 // Conditional branch 5831 if (isValueEqualityComparison(BI)) { 5832 // If we only have one predecessor, and if it is a branch on this value, 5833 // see if that predecessor totally determines the outcome of this 5834 // switch. 5835 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5836 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5837 return requestResimplify(); 5838 5839 // This block must be empty, except for the setcond inst, if it exists. 5840 // Ignore dbg intrinsics. 5841 auto I = BB->instructionsWithoutDebug().begin(); 5842 if (&*I == BI) { 5843 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5844 return requestResimplify(); 5845 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5846 ++I; 5847 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5848 return requestResimplify(); 5849 } 5850 } 5851 5852 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5853 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5854 return true; 5855 5856 // If this basic block has dominating predecessor blocks and the dominating 5857 // blocks' conditions imply BI's condition, we know the direction of BI. 5858 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 5859 if (Imp) { 5860 // Turn this into a branch on constant. 5861 auto *OldCond = BI->getCondition(); 5862 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 5863 : ConstantInt::getFalse(BB->getContext()); 5864 BI->setCondition(TorF); 5865 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5866 return requestResimplify(); 5867 } 5868 5869 // If this basic block is ONLY a compare and a branch, and if a predecessor 5870 // branches to us and one of our successors, fold the comparison into the 5871 // predecessor and use logical operations to pick the right destination. 5872 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5873 return requestResimplify(); 5874 5875 // We have a conditional branch to two blocks that are only reachable 5876 // from BI. We know that the condbr dominates the two blocks, so see if 5877 // there is any identical code in the "then" and "else" blocks. If so, we 5878 // can hoist it up to the branching block. 5879 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5880 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5881 if (HoistThenElseCodeToIf(BI, TTI)) 5882 return requestResimplify(); 5883 } else { 5884 // If Successor #1 has multiple preds, we may be able to conditionally 5885 // execute Successor #0 if it branches to Successor #1. 5886 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5887 if (Succ0TI->getNumSuccessors() == 1 && 5888 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5889 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5890 return requestResimplify(); 5891 } 5892 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5893 // If Successor #0 has multiple preds, we may be able to conditionally 5894 // execute Successor #1 if it branches to Successor #0. 5895 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5896 if (Succ1TI->getNumSuccessors() == 1 && 5897 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5898 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5899 return requestResimplify(); 5900 } 5901 5902 // If this is a branch on a phi node in the current block, thread control 5903 // through this block if any PHI node entries are constants. 5904 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5905 if (PN->getParent() == BI->getParent()) 5906 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5907 return requestResimplify(); 5908 5909 // Scan predecessor blocks for conditional branches. 5910 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5911 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5912 if (PBI != BI && PBI->isConditional()) 5913 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5914 return requestResimplify(); 5915 5916 // Look for diamond patterns. 5917 if (MergeCondStores) 5918 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5919 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5920 if (PBI != BI && PBI->isConditional()) 5921 if (mergeConditionalStores(PBI, BI, DL)) 5922 return requestResimplify(); 5923 5924 return false; 5925 } 5926 5927 /// Check if passing a value to an instruction will cause undefined behavior. 5928 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5929 Constant *C = dyn_cast<Constant>(V); 5930 if (!C) 5931 return false; 5932 5933 if (I->use_empty()) 5934 return false; 5935 5936 if (C->isNullValue() || isa<UndefValue>(C)) { 5937 // Only look at the first use, avoid hurting compile time with long uselists 5938 User *Use = *I->user_begin(); 5939 5940 // Now make sure that there are no instructions in between that can alter 5941 // control flow (eg. calls) 5942 for (BasicBlock::iterator 5943 i = ++BasicBlock::iterator(I), 5944 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5945 i != UI; ++i) 5946 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5947 return false; 5948 5949 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5950 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5951 if (GEP->getPointerOperand() == I) 5952 return passingValueIsAlwaysUndefined(V, GEP); 5953 5954 // Look through bitcasts. 5955 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5956 return passingValueIsAlwaysUndefined(V, BC); 5957 5958 // Load from null is undefined. 5959 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5960 if (!LI->isVolatile()) 5961 return !NullPointerIsDefined(LI->getFunction(), 5962 LI->getPointerAddressSpace()); 5963 5964 // Store to null is undefined. 5965 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5966 if (!SI->isVolatile()) 5967 return (!NullPointerIsDefined(SI->getFunction(), 5968 SI->getPointerAddressSpace())) && 5969 SI->getPointerOperand() == I; 5970 5971 // A call to null is undefined. 5972 if (auto CS = CallSite(Use)) 5973 return !NullPointerIsDefined(CS->getFunction()) && 5974 CS.getCalledValue() == I; 5975 } 5976 return false; 5977 } 5978 5979 /// If BB has an incoming value that will always trigger undefined behavior 5980 /// (eg. null pointer dereference), remove the branch leading here. 5981 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5982 for (PHINode &PHI : BB->phis()) 5983 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5984 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5985 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5986 IRBuilder<> Builder(T); 5987 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5988 BB->removePredecessor(PHI.getIncomingBlock(i)); 5989 // Turn uncoditional branches into unreachables and remove the dead 5990 // destination from conditional branches. 5991 if (BI->isUnconditional()) 5992 Builder.CreateUnreachable(); 5993 else 5994 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5995 : BI->getSuccessor(0)); 5996 BI->eraseFromParent(); 5997 return true; 5998 } 5999 // TODO: SwitchInst. 6000 } 6001 6002 return false; 6003 } 6004 6005 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6006 bool Changed = false; 6007 6008 assert(BB && BB->getParent() && "Block not embedded in function!"); 6009 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6010 6011 // Remove basic blocks that have no predecessors (except the entry block)... 6012 // or that just have themself as a predecessor. These are unreachable. 6013 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6014 BB->getSinglePredecessor() == BB) { 6015 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6016 DeleteDeadBlock(BB); 6017 return true; 6018 } 6019 6020 // Check to see if we can constant propagate this terminator instruction 6021 // away... 6022 Changed |= ConstantFoldTerminator(BB, true); 6023 6024 // Check for and eliminate duplicate PHI nodes in this block. 6025 Changed |= EliminateDuplicatePHINodes(BB); 6026 6027 // Check for and remove branches that will always cause undefined behavior. 6028 Changed |= removeUndefIntroducingPredecessor(BB); 6029 6030 // Merge basic blocks into their predecessor if there is only one distinct 6031 // pred, and if there is only one distinct successor of the predecessor, and 6032 // if there are no PHI nodes. 6033 if (MergeBlockIntoPredecessor(BB)) 6034 return true; 6035 6036 if (SinkCommon && Options.SinkCommonInsts) 6037 Changed |= SinkCommonCodeFromPredecessors(BB); 6038 6039 IRBuilder<> Builder(BB); 6040 6041 // If there is a trivial two-entry PHI node in this basic block, and we can 6042 // eliminate it, do so now. 6043 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6044 if (PN->getNumIncomingValues() == 2) 6045 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6046 6047 Builder.SetInsertPoint(BB->getTerminator()); 6048 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6049 if (BI->isUnconditional()) { 6050 if (SimplifyUncondBranch(BI, Builder)) 6051 return true; 6052 } else { 6053 if (SimplifyCondBranch(BI, Builder)) 6054 return true; 6055 } 6056 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6057 if (SimplifyReturn(RI, Builder)) 6058 return true; 6059 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6060 if (SimplifyResume(RI, Builder)) 6061 return true; 6062 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6063 if (SimplifyCleanupReturn(RI)) 6064 return true; 6065 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6066 if (SimplifySwitch(SI, Builder)) 6067 return true; 6068 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6069 if (SimplifyUnreachable(UI)) 6070 return true; 6071 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6072 if (SimplifyIndirectBr(IBI)) 6073 return true; 6074 } 6075 6076 return Changed; 6077 } 6078 6079 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6080 bool Changed = false; 6081 6082 // Repeated simplify BB as long as resimplification is requested. 6083 do { 6084 Resimplify = false; 6085 6086 // Perform one round of simplifcation. Resimplify flag will be set if 6087 // another iteration is requested. 6088 Changed |= simplifyOnce(BB); 6089 } while (Resimplify); 6090 6091 return Changed; 6092 } 6093 6094 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6095 const SimplifyCFGOptions &Options, 6096 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6097 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6098 Options) 6099 .run(BB); 6100 } 6101