1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/NoFolder.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <climits>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <map>
76 #include <set>
77 #include <tuple>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 using namespace PatternMatch;
83 
84 #define DEBUG_TYPE "simplifycfg"
85 
86 // Chosen as 2 so as to be cheap, but still to have enough power to fold
87 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
88 // To catch this, we need to fold a compare and a select, hence '2' being the
89 // minimum reasonable default.
90 static cl::opt<unsigned> PHINodeFoldingThreshold(
91     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
92     cl::desc(
93         "Control the amount of phi node folding to perform (default = 2)"));
94 
95 static cl::opt<bool> DupRet(
96     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
97     cl::desc("Duplicate return instructions into unconditional branches"));
98 
99 static cl::opt<bool>
100     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
101                cl::desc("Sink common instructions down to the end block"));
102 
103 static cl::opt<bool> HoistCondStores(
104     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
105     cl::desc("Hoist conditional stores if an unconditional store precedes"));
106 
107 static cl::opt<bool> MergeCondStores(
108     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
109     cl::desc("Hoist conditional stores even if an unconditional store does not "
110              "precede - hoist multiple conditional stores into a single "
111              "predicated store"));
112 
113 static cl::opt<bool> MergeCondStoresAggressively(
114     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
115     cl::desc("When merging conditional stores, do so even if the resultant "
116              "basic blocks are unlikely to be if-converted as a result"));
117 
118 static cl::opt<bool> SpeculateOneExpensiveInst(
119     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
120     cl::desc("Allow exactly one expensive instruction to be speculatively "
121              "executed"));
122 
123 static cl::opt<unsigned> MaxSpeculationDepth(
124     "max-speculation-depth", cl::Hidden, cl::init(10),
125     cl::desc("Limit maximum recursion depth when calculating costs of "
126              "speculatively executed instructions"));
127 
128 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
129 STATISTIC(NumLinearMaps,
130           "Number of switch instructions turned into linear mapping");
131 STATISTIC(NumLookupTables,
132           "Number of switch instructions turned into lookup tables");
133 STATISTIC(
134     NumLookupTablesHoles,
135     "Number of switch instructions turned into lookup tables (holes checked)");
136 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
137 STATISTIC(NumSinkCommons,
138           "Number of common instructions sunk down to the end block");
139 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
140 
141 namespace {
142 
143 // The first field contains the value that the switch produces when a certain
144 // case group is selected, and the second field is a vector containing the
145 // cases composing the case group.
146 using SwitchCaseResultVectorTy =
147     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
148 
149 // The first field contains the phi node that generates a result of the switch
150 // and the second field contains the value generated for a certain case in the
151 // switch for that PHI.
152 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
153 
154 /// ValueEqualityComparisonCase - Represents a case of a switch.
155 struct ValueEqualityComparisonCase {
156   ConstantInt *Value;
157   BasicBlock *Dest;
158 
159   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
160       : Value(Value), Dest(Dest) {}
161 
162   bool operator<(ValueEqualityComparisonCase RHS) const {
163     // Comparing pointers is ok as we only rely on the order for uniquing.
164     return Value < RHS.Value;
165   }
166 
167   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
168 };
169 
170 class SimplifyCFGOpt {
171   const TargetTransformInfo &TTI;
172   const DataLayout &DL;
173   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
174   const SimplifyCFGOptions &Options;
175   bool Resimplify;
176 
177   Value *isValueEqualityComparison(Instruction *TI);
178   BasicBlock *GetValueEqualityComparisonCases(
179       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
180   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
181                                                      BasicBlock *Pred,
182                                                      IRBuilder<> &Builder);
183   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
184                                            IRBuilder<> &Builder);
185 
186   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
187   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
188   bool SimplifySingleResume(ResumeInst *RI);
189   bool SimplifyCommonResume(ResumeInst *RI);
190   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
191   bool SimplifyUnreachable(UnreachableInst *UI);
192   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
193   bool SimplifyIndirectBr(IndirectBrInst *IBI);
194   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
195   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
196 
197   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
198                                              IRBuilder<> &Builder);
199 
200 public:
201   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
202                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
203                  const SimplifyCFGOptions &Opts)
204       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
205 
206   bool run(BasicBlock *BB);
207   bool simplifyOnce(BasicBlock *BB);
208 
209   // Helper to set Resimplify and return change indication.
210   bool requestResimplify() {
211     Resimplify = true;
212     return true;
213   }
214 };
215 
216 } // end anonymous namespace
217 
218 /// Return true if it is safe to merge these two
219 /// terminator instructions together.
220 static bool
221 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
222                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
223   if (SI1 == SI2)
224     return false; // Can't merge with self!
225 
226   // It is not safe to merge these two switch instructions if they have a common
227   // successor, and if that successor has a PHI node, and if *that* PHI node has
228   // conflicting incoming values from the two switch blocks.
229   BasicBlock *SI1BB = SI1->getParent();
230   BasicBlock *SI2BB = SI2->getParent();
231 
232   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
233   bool Fail = false;
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) !=
239             PN->getIncomingValueForBlock(SI2BB)) {
240           if (FailBlocks)
241             FailBlocks->insert(Succ);
242           Fail = true;
243         }
244       }
245 
246   return !Fail;
247 }
248 
249 /// Return true if it is safe and profitable to merge these two terminator
250 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
251 /// store all PHI nodes in common successors.
252 static bool
253 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
254                                 Instruction *Cond,
255                                 SmallVectorImpl<PHINode *> &PhiNodes) {
256   if (SI1 == SI2)
257     return false; // Can't merge with self!
258   assert(SI1->isUnconditional() && SI2->isConditional());
259 
260   // We fold the unconditional branch if we can easily update all PHI nodes in
261   // common successors:
262   // 1> We have a constant incoming value for the conditional branch;
263   // 2> We have "Cond" as the incoming value for the unconditional branch;
264   // 3> SI2->getCondition() and Cond have same operands.
265   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
266   if (!Ci2)
267     return false;
268   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
269         Cond->getOperand(1) == Ci2->getOperand(1)) &&
270       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
271         Cond->getOperand(1) == Ci2->getOperand(0)))
272     return false;
273 
274   BasicBlock *SI1BB = SI1->getParent();
275   BasicBlock *SI2BB = SI2->getParent();
276   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
277   for (BasicBlock *Succ : successors(SI2BB))
278     if (SI1Succs.count(Succ))
279       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
280         PHINode *PN = cast<PHINode>(BBI);
281         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
282             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
283           return false;
284         PhiNodes.push_back(PN);
285       }
286   return true;
287 }
288 
289 /// Update PHI nodes in Succ to indicate that there will now be entries in it
290 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
291 /// will be the same as those coming in from ExistPred, an existing predecessor
292 /// of Succ.
293 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
294                                   BasicBlock *ExistPred) {
295   for (PHINode &PN : Succ->phis())
296     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
297 }
298 
299 /// Compute an abstract "cost" of speculating the given instruction,
300 /// which is assumed to be safe to speculate. TCC_Free means cheap,
301 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
302 /// expensive.
303 static unsigned ComputeSpeculationCost(const User *I,
304                                        const TargetTransformInfo &TTI) {
305   assert(isSafeToSpeculativelyExecute(I) &&
306          "Instruction is not safe to speculatively execute!");
307   return TTI.getUserCost(I);
308 }
309 
310 /// If we have a merge point of an "if condition" as accepted above,
311 /// return true if the specified value dominates the block.  We
312 /// don't handle the true generality of domination here, just a special case
313 /// which works well enough for us.
314 ///
315 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
316 /// see if V (which must be an instruction) and its recursive operands
317 /// that do not dominate BB have a combined cost lower than CostRemaining and
318 /// are non-trapping.  If both are true, the instruction is inserted into the
319 /// set and true is returned.
320 ///
321 /// The cost for most non-trapping instructions is defined as 1 except for
322 /// Select whose cost is 2.
323 ///
324 /// After this function returns, CostRemaining is decreased by the cost of
325 /// V plus its non-dominating operands.  If that cost is greater than
326 /// CostRemaining, false is returned and CostRemaining is undefined.
327 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
328                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
329                                 unsigned &CostRemaining,
330                                 const TargetTransformInfo &TTI,
331                                 unsigned Depth = 0) {
332   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
333   // so limit the recursion depth.
334   // TODO: While this recursion limit does prevent pathological behavior, it
335   // would be better to track visited instructions to avoid cycles.
336   if (Depth == MaxSpeculationDepth)
337     return false;
338 
339   Instruction *I = dyn_cast<Instruction>(V);
340   if (!I) {
341     // Non-instructions all dominate instructions, but not all constantexprs
342     // can be executed unconditionally.
343     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
344       if (C->canTrap())
345         return false;
346     return true;
347   }
348   BasicBlock *PBB = I->getParent();
349 
350   // We don't want to allow weird loops that might have the "if condition" in
351   // the bottom of this block.
352   if (PBB == BB)
353     return false;
354 
355   // If this instruction is defined in a block that contains an unconditional
356   // branch to BB, then it must be in the 'conditional' part of the "if
357   // statement".  If not, it definitely dominates the region.
358   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
360     return true;
361 
362   // If we have seen this instruction before, don't count it again.
363   if (AggressiveInsts.count(I))
364     return true;
365 
366   // Okay, it looks like the instruction IS in the "condition".  Check to
367   // see if it's a cheap instruction to unconditionally compute, and if it
368   // only uses stuff defined outside of the condition.  If so, hoist it out.
369   if (!isSafeToSpeculativelyExecute(I))
370     return false;
371 
372   unsigned Cost = ComputeSpeculationCost(I, TTI);
373 
374   // Allow exactly one instruction to be speculated regardless of its cost
375   // (as long as it is safe to do so).
376   // This is intended to flatten the CFG even if the instruction is a division
377   // or other expensive operation. The speculation of an expensive instruction
378   // is expected to be undone in CodeGenPrepare if the speculation has not
379   // enabled further IR optimizations.
380   if (Cost > CostRemaining &&
381       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
382     return false;
383 
384   // Avoid unsigned wrap.
385   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
386 
387   // Okay, we can only really hoist these out if their operands do
388   // not take us over the cost threshold.
389   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
390     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
391                              Depth + 1))
392       return false;
393   // Okay, it's safe to do this!  Remember this instruction.
394   AggressiveInsts.insert(I);
395   return true;
396 }
397 
398 /// Extract ConstantInt from value, looking through IntToPtr
399 /// and PointerNullValue. Return NULL if value is not a constant int.
400 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
401   // Normal constant int.
402   ConstantInt *CI = dyn_cast<ConstantInt>(V);
403   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
404     return CI;
405 
406   // This is some kind of pointer constant. Turn it into a pointer-sized
407   // ConstantInt if possible.
408   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
409 
410   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
411   if (isa<ConstantPointerNull>(V))
412     return ConstantInt::get(PtrTy, 0);
413 
414   // IntToPtr const int.
415   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
416     if (CE->getOpcode() == Instruction::IntToPtr)
417       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
418         // The constant is very likely to have the right type already.
419         if (CI->getType() == PtrTy)
420           return CI;
421         else
422           return cast<ConstantInt>(
423               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
424       }
425   return nullptr;
426 }
427 
428 namespace {
429 
430 /// Given a chain of or (||) or and (&&) comparison of a value against a
431 /// constant, this will try to recover the information required for a switch
432 /// structure.
433 /// It will depth-first traverse the chain of comparison, seeking for patterns
434 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
435 /// representing the different cases for the switch.
436 /// Note that if the chain is composed of '||' it will build the set of elements
437 /// that matches the comparisons (i.e. any of this value validate the chain)
438 /// while for a chain of '&&' it will build the set elements that make the test
439 /// fail.
440 struct ConstantComparesGatherer {
441   const DataLayout &DL;
442 
443   /// Value found for the switch comparison
444   Value *CompValue = nullptr;
445 
446   /// Extra clause to be checked before the switch
447   Value *Extra = nullptr;
448 
449   /// Set of integers to match in switch
450   SmallVector<ConstantInt *, 8> Vals;
451 
452   /// Number of comparisons matched in the and/or chain
453   unsigned UsedICmps = 0;
454 
455   /// Construct and compute the result for the comparison instruction Cond
456   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
457     gather(Cond);
458   }
459 
460   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
461   ConstantComparesGatherer &
462   operator=(const ConstantComparesGatherer &) = delete;
463 
464 private:
465   /// Try to set the current value used for the comparison, it succeeds only if
466   /// it wasn't set before or if the new value is the same as the old one
467   bool setValueOnce(Value *NewVal) {
468     if (CompValue && CompValue != NewVal)
469       return false;
470     CompValue = NewVal;
471     return (CompValue != nullptr);
472   }
473 
474   /// Try to match Instruction "I" as a comparison against a constant and
475   /// populates the array Vals with the set of values that match (or do not
476   /// match depending on isEQ).
477   /// Return false on failure. On success, the Value the comparison matched
478   /// against is placed in CompValue.
479   /// If CompValue is already set, the function is expected to fail if a match
480   /// is found but the value compared to is different.
481   bool matchInstruction(Instruction *I, bool isEQ) {
482     // If this is an icmp against a constant, handle this as one of the cases.
483     ICmpInst *ICI;
484     ConstantInt *C;
485     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
486           (C = GetConstantInt(I->getOperand(1), DL)))) {
487       return false;
488     }
489 
490     Value *RHSVal;
491     const APInt *RHSC;
492 
493     // Pattern match a special case
494     // (x & ~2^z) == y --> x == y || x == y|2^z
495     // This undoes a transformation done by instcombine to fuse 2 compares.
496     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
497       // It's a little bit hard to see why the following transformations are
498       // correct. Here is a CVC3 program to verify them for 64-bit values:
499 
500       /*
501          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
502          x    : BITVECTOR(64);
503          y    : BITVECTOR(64);
504          z    : BITVECTOR(64);
505          mask : BITVECTOR(64) = BVSHL(ONE, z);
506          QUERY( (y & ~mask = y) =>
507                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
508          );
509          QUERY( (y |  mask = y) =>
510                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
511          );
512       */
513 
514       // Please note that each pattern must be a dual implication (<--> or
515       // iff). One directional implication can create spurious matches. If the
516       // implication is only one-way, an unsatisfiable condition on the left
517       // side can imply a satisfiable condition on the right side. Dual
518       // implication ensures that satisfiable conditions are transformed to
519       // other satisfiable conditions and unsatisfiable conditions are
520       // transformed to other unsatisfiable conditions.
521 
522       // Here is a concrete example of a unsatisfiable condition on the left
523       // implying a satisfiable condition on the right:
524       //
525       // mask = (1 << z)
526       // (x & ~mask) == y  --> (x == y || x == (y | mask))
527       //
528       // Substituting y = 3, z = 0 yields:
529       // (x & -2) == 3 --> (x == 3 || x == 2)
530 
531       // Pattern match a special case:
532       /*
533         QUERY( (y & ~mask = y) =>
534                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
535         );
536       */
537       if (match(ICI->getOperand(0),
538                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
539         APInt Mask = ~*RHSC;
540         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
541           // If we already have a value for the switch, it has to match!
542           if (!setValueOnce(RHSVal))
543             return false;
544 
545           Vals.push_back(C);
546           Vals.push_back(
547               ConstantInt::get(C->getContext(),
548                                C->getValue() | Mask));
549           UsedICmps++;
550           return true;
551         }
552       }
553 
554       // Pattern match a special case:
555       /*
556         QUERY( (y |  mask = y) =>
557                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
558         );
559       */
560       if (match(ICI->getOperand(0),
561                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
562         APInt Mask = *RHSC;
563         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
564           // If we already have a value for the switch, it has to match!
565           if (!setValueOnce(RHSVal))
566             return false;
567 
568           Vals.push_back(C);
569           Vals.push_back(ConstantInt::get(C->getContext(),
570                                           C->getValue() & ~Mask));
571           UsedICmps++;
572           return true;
573         }
574       }
575 
576       // If we already have a value for the switch, it has to match!
577       if (!setValueOnce(ICI->getOperand(0)))
578         return false;
579 
580       UsedICmps++;
581       Vals.push_back(C);
582       return ICI->getOperand(0);
583     }
584 
585     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
586     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
587         ICI->getPredicate(), C->getValue());
588 
589     // Shift the range if the compare is fed by an add. This is the range
590     // compare idiom as emitted by instcombine.
591     Value *CandidateVal = I->getOperand(0);
592     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
593       Span = Span.subtract(*RHSC);
594       CandidateVal = RHSVal;
595     }
596 
597     // If this is an and/!= check, then we are looking to build the set of
598     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
599     // x != 0 && x != 1.
600     if (!isEQ)
601       Span = Span.inverse();
602 
603     // If there are a ton of values, we don't want to make a ginormous switch.
604     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
605       return false;
606     }
607 
608     // If we already have a value for the switch, it has to match!
609     if (!setValueOnce(CandidateVal))
610       return false;
611 
612     // Add all values from the range to the set
613     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
614       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
615 
616     UsedICmps++;
617     return true;
618   }
619 
620   /// Given a potentially 'or'd or 'and'd together collection of icmp
621   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
622   /// the value being compared, and stick the list constants into the Vals
623   /// vector.
624   /// One "Extra" case is allowed to differ from the other.
625   void gather(Value *V) {
626     Instruction *I = dyn_cast<Instruction>(V);
627     bool isEQ = (I->getOpcode() == Instruction::Or);
628 
629     // Keep a stack (SmallVector for efficiency) for depth-first traversal
630     SmallVector<Value *, 8> DFT;
631     SmallPtrSet<Value *, 8> Visited;
632 
633     // Initialize
634     Visited.insert(V);
635     DFT.push_back(V);
636 
637     while (!DFT.empty()) {
638       V = DFT.pop_back_val();
639 
640       if (Instruction *I = dyn_cast<Instruction>(V)) {
641         // If it is a || (or && depending on isEQ), process the operands.
642         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
643           if (Visited.insert(I->getOperand(1)).second)
644             DFT.push_back(I->getOperand(1));
645           if (Visited.insert(I->getOperand(0)).second)
646             DFT.push_back(I->getOperand(0));
647           continue;
648         }
649 
650         // Try to match the current instruction
651         if (matchInstruction(I, isEQ))
652           // Match succeed, continue the loop
653           continue;
654       }
655 
656       // One element of the sequence of || (or &&) could not be match as a
657       // comparison against the same value as the others.
658       // We allow only one "Extra" case to be checked before the switch
659       if (!Extra) {
660         Extra = V;
661         continue;
662       }
663       // Failed to parse a proper sequence, abort now
664       CompValue = nullptr;
665       break;
666     }
667   }
668 };
669 
670 } // end anonymous namespace
671 
672 static void EraseTerminatorAndDCECond(Instruction *TI) {
673   Instruction *Cond = nullptr;
674   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
675     Cond = dyn_cast<Instruction>(SI->getCondition());
676   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
677     if (BI->isConditional())
678       Cond = dyn_cast<Instruction>(BI->getCondition());
679   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
680     Cond = dyn_cast<Instruction>(IBI->getAddress());
681   }
682 
683   TI->eraseFromParent();
684   if (Cond)
685     RecursivelyDeleteTriviallyDeadInstructions(Cond);
686 }
687 
688 /// Return true if the specified terminator checks
689 /// to see if a value is equal to constant integer value.
690 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
691   Value *CV = nullptr;
692   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
693     // Do not permit merging of large switch instructions into their
694     // predecessors unless there is only one predecessor.
695     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
696       CV = SI->getCondition();
697   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
698     if (BI->isConditional() && BI->getCondition()->hasOneUse())
699       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
700         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
701           CV = ICI->getOperand(0);
702       }
703 
704   // Unwrap any lossless ptrtoint cast.
705   if (CV) {
706     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
707       Value *Ptr = PTII->getPointerOperand();
708       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
709         CV = Ptr;
710     }
711   }
712   return CV;
713 }
714 
715 /// Given a value comparison instruction,
716 /// decode all of the 'cases' that it represents and return the 'default' block.
717 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
718     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
719   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
720     Cases.reserve(SI->getNumCases());
721     for (auto Case : SI->cases())
722       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
723                                                   Case.getCaseSuccessor()));
724     return SI->getDefaultDest();
725   }
726 
727   BranchInst *BI = cast<BranchInst>(TI);
728   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
729   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
730   Cases.push_back(ValueEqualityComparisonCase(
731       GetConstantInt(ICI->getOperand(1), DL), Succ));
732   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
733 }
734 
735 /// Given a vector of bb/value pairs, remove any entries
736 /// in the list that match the specified block.
737 static void
738 EliminateBlockCases(BasicBlock *BB,
739                     std::vector<ValueEqualityComparisonCase> &Cases) {
740   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
741 }
742 
743 /// Return true if there are any keys in C1 that exist in C2 as well.
744 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
745                           std::vector<ValueEqualityComparisonCase> &C2) {
746   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
747 
748   // Make V1 be smaller than V2.
749   if (V1->size() > V2->size())
750     std::swap(V1, V2);
751 
752   if (V1->empty())
753     return false;
754   if (V1->size() == 1) {
755     // Just scan V2.
756     ConstantInt *TheVal = (*V1)[0].Value;
757     for (unsigned i = 0, e = V2->size(); i != e; ++i)
758       if (TheVal == (*V2)[i].Value)
759         return true;
760   }
761 
762   // Otherwise, just sort both lists and compare element by element.
763   array_pod_sort(V1->begin(), V1->end());
764   array_pod_sort(V2->begin(), V2->end());
765   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
766   while (i1 != e1 && i2 != e2) {
767     if ((*V1)[i1].Value == (*V2)[i2].Value)
768       return true;
769     if ((*V1)[i1].Value < (*V2)[i2].Value)
770       ++i1;
771     else
772       ++i2;
773   }
774   return false;
775 }
776 
777 // Set branch weights on SwitchInst. This sets the metadata if there is at
778 // least one non-zero weight.
779 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
780   // Check that there is at least one non-zero weight. Otherwise, pass
781   // nullptr to setMetadata which will erase the existing metadata.
782   MDNode *N = nullptr;
783   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
784     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
785   SI->setMetadata(LLVMContext::MD_prof, N);
786 }
787 
788 // Similar to the above, but for branch and select instructions that take
789 // exactly 2 weights.
790 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
791                              uint32_t FalseWeight) {
792   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
793   // Check that there is at least one non-zero weight. Otherwise, pass
794   // nullptr to setMetadata which will erase the existing metadata.
795   MDNode *N = nullptr;
796   if (TrueWeight || FalseWeight)
797     N = MDBuilder(I->getParent()->getContext())
798             .createBranchWeights(TrueWeight, FalseWeight);
799   I->setMetadata(LLVMContext::MD_prof, N);
800 }
801 
802 /// If TI is known to be a terminator instruction and its block is known to
803 /// only have a single predecessor block, check to see if that predecessor is
804 /// also a value comparison with the same value, and if that comparison
805 /// determines the outcome of this comparison. If so, simplify TI. This does a
806 /// very limited form of jump threading.
807 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
808     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
809   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
810   if (!PredVal)
811     return false; // Not a value comparison in predecessor.
812 
813   Value *ThisVal = isValueEqualityComparison(TI);
814   assert(ThisVal && "This isn't a value comparison!!");
815   if (ThisVal != PredVal)
816     return false; // Different predicates.
817 
818   // TODO: Preserve branch weight metadata, similarly to how
819   // FoldValueComparisonIntoPredecessors preserves it.
820 
821   // Find out information about when control will move from Pred to TI's block.
822   std::vector<ValueEqualityComparisonCase> PredCases;
823   BasicBlock *PredDef =
824       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
825   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
826 
827   // Find information about how control leaves this block.
828   std::vector<ValueEqualityComparisonCase> ThisCases;
829   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
830   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
831 
832   // If TI's block is the default block from Pred's comparison, potentially
833   // simplify TI based on this knowledge.
834   if (PredDef == TI->getParent()) {
835     // If we are here, we know that the value is none of those cases listed in
836     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
837     // can simplify TI.
838     if (!ValuesOverlap(PredCases, ThisCases))
839       return false;
840 
841     if (isa<BranchInst>(TI)) {
842       // Okay, one of the successors of this condbr is dead.  Convert it to a
843       // uncond br.
844       assert(ThisCases.size() == 1 && "Branch can only have one case!");
845       // Insert the new branch.
846       Instruction *NI = Builder.CreateBr(ThisDef);
847       (void)NI;
848 
849       // Remove PHI node entries for the dead edge.
850       ThisCases[0].Dest->removePredecessor(TI->getParent());
851 
852       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
853                         << "Through successor TI: " << *TI << "Leaving: " << *NI
854                         << "\n");
855 
856       EraseTerminatorAndDCECond(TI);
857       return true;
858     }
859 
860     SwitchInst *SI = cast<SwitchInst>(TI);
861     // Okay, TI has cases that are statically dead, prune them away.
862     SmallPtrSet<Constant *, 16> DeadCases;
863     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
864       DeadCases.insert(PredCases[i].Value);
865 
866     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
867                       << "Through successor TI: " << *TI);
868 
869     // Collect branch weights into a vector.
870     SmallVector<uint32_t, 8> Weights;
871     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
872     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
873     if (HasWeight)
874       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
875            ++MD_i) {
876         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
877         Weights.push_back(CI->getValue().getZExtValue());
878       }
879     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
880       --i;
881       if (DeadCases.count(i->getCaseValue())) {
882         if (HasWeight) {
883           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
884           Weights.pop_back();
885         }
886         i->getCaseSuccessor()->removePredecessor(TI->getParent());
887         SI->removeCase(i);
888       }
889     }
890     if (HasWeight && Weights.size() >= 2)
891       setBranchWeights(SI, Weights);
892 
893     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
894     return true;
895   }
896 
897   // Otherwise, TI's block must correspond to some matched value.  Find out
898   // which value (or set of values) this is.
899   ConstantInt *TIV = nullptr;
900   BasicBlock *TIBB = TI->getParent();
901   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
902     if (PredCases[i].Dest == TIBB) {
903       if (TIV)
904         return false; // Cannot handle multiple values coming to this block.
905       TIV = PredCases[i].Value;
906     }
907   assert(TIV && "No edge from pred to succ?");
908 
909   // Okay, we found the one constant that our value can be if we get into TI's
910   // BB.  Find out which successor will unconditionally be branched to.
911   BasicBlock *TheRealDest = nullptr;
912   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
913     if (ThisCases[i].Value == TIV) {
914       TheRealDest = ThisCases[i].Dest;
915       break;
916     }
917 
918   // If not handled by any explicit cases, it is handled by the default case.
919   if (!TheRealDest)
920     TheRealDest = ThisDef;
921 
922   // Remove PHI node entries for dead edges.
923   BasicBlock *CheckEdge = TheRealDest;
924   for (BasicBlock *Succ : successors(TIBB))
925     if (Succ != CheckEdge)
926       Succ->removePredecessor(TIBB);
927     else
928       CheckEdge = nullptr;
929 
930   // Insert the new branch.
931   Instruction *NI = Builder.CreateBr(TheRealDest);
932   (void)NI;
933 
934   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
935                     << "Through successor TI: " << *TI << "Leaving: " << *NI
936                     << "\n");
937 
938   EraseTerminatorAndDCECond(TI);
939   return true;
940 }
941 
942 namespace {
943 
944 /// This class implements a stable ordering of constant
945 /// integers that does not depend on their address.  This is important for
946 /// applications that sort ConstantInt's to ensure uniqueness.
947 struct ConstantIntOrdering {
948   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
949     return LHS->getValue().ult(RHS->getValue());
950   }
951 };
952 
953 } // end anonymous namespace
954 
955 static int ConstantIntSortPredicate(ConstantInt *const *P1,
956                                     ConstantInt *const *P2) {
957   const ConstantInt *LHS = *P1;
958   const ConstantInt *RHS = *P2;
959   if (LHS == RHS)
960     return 0;
961   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
962 }
963 
964 static inline bool HasBranchWeights(const Instruction *I) {
965   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
966   if (ProfMD && ProfMD->getOperand(0))
967     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
968       return MDS->getString().equals("branch_weights");
969 
970   return false;
971 }
972 
973 /// Get Weights of a given terminator, the default weight is at the front
974 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
975 /// metadata.
976 static void GetBranchWeights(Instruction *TI,
977                              SmallVectorImpl<uint64_t> &Weights) {
978   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
979   assert(MD);
980   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
981     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
982     Weights.push_back(CI->getValue().getZExtValue());
983   }
984 
985   // If TI is a conditional eq, the default case is the false case,
986   // and the corresponding branch-weight data is at index 2. We swap the
987   // default weight to be the first entry.
988   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
989     assert(Weights.size() == 2);
990     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
991     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
992       std::swap(Weights.front(), Weights.back());
993   }
994 }
995 
996 /// Keep halving the weights until all can fit in uint32_t.
997 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
998   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
999   if (Max > UINT_MAX) {
1000     unsigned Offset = 32 - countLeadingZeros(Max);
1001     for (uint64_t &I : Weights)
1002       I >>= Offset;
1003   }
1004 }
1005 
1006 /// The specified terminator is a value equality comparison instruction
1007 /// (either a switch or a branch on "X == c").
1008 /// See if any of the predecessors of the terminator block are value comparisons
1009 /// on the same value.  If so, and if safe to do so, fold them together.
1010 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1011                                                          IRBuilder<> &Builder) {
1012   BasicBlock *BB = TI->getParent();
1013   Value *CV = isValueEqualityComparison(TI); // CondVal
1014   assert(CV && "Not a comparison?");
1015   bool Changed = false;
1016 
1017   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1018   while (!Preds.empty()) {
1019     BasicBlock *Pred = Preds.pop_back_val();
1020 
1021     // See if the predecessor is a comparison with the same value.
1022     Instruction *PTI = Pred->getTerminator();
1023     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1024 
1025     if (PCV == CV && TI != PTI) {
1026       SmallSetVector<BasicBlock*, 4> FailBlocks;
1027       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1028         for (auto *Succ : FailBlocks) {
1029           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1030             return false;
1031         }
1032       }
1033 
1034       // Figure out which 'cases' to copy from SI to PSI.
1035       std::vector<ValueEqualityComparisonCase> BBCases;
1036       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1037 
1038       std::vector<ValueEqualityComparisonCase> PredCases;
1039       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1040 
1041       // Based on whether the default edge from PTI goes to BB or not, fill in
1042       // PredCases and PredDefault with the new switch cases we would like to
1043       // build.
1044       SmallVector<BasicBlock *, 8> NewSuccessors;
1045 
1046       // Update the branch weight metadata along the way
1047       SmallVector<uint64_t, 8> Weights;
1048       bool PredHasWeights = HasBranchWeights(PTI);
1049       bool SuccHasWeights = HasBranchWeights(TI);
1050 
1051       if (PredHasWeights) {
1052         GetBranchWeights(PTI, Weights);
1053         // branch-weight metadata is inconsistent here.
1054         if (Weights.size() != 1 + PredCases.size())
1055           PredHasWeights = SuccHasWeights = false;
1056       } else if (SuccHasWeights)
1057         // If there are no predecessor weights but there are successor weights,
1058         // populate Weights with 1, which will later be scaled to the sum of
1059         // successor's weights
1060         Weights.assign(1 + PredCases.size(), 1);
1061 
1062       SmallVector<uint64_t, 8> SuccWeights;
1063       if (SuccHasWeights) {
1064         GetBranchWeights(TI, SuccWeights);
1065         // branch-weight metadata is inconsistent here.
1066         if (SuccWeights.size() != 1 + BBCases.size())
1067           PredHasWeights = SuccHasWeights = false;
1068       } else if (PredHasWeights)
1069         SuccWeights.assign(1 + BBCases.size(), 1);
1070 
1071       if (PredDefault == BB) {
1072         // If this is the default destination from PTI, only the edges in TI
1073         // that don't occur in PTI, or that branch to BB will be activated.
1074         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1075         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1076           if (PredCases[i].Dest != BB)
1077             PTIHandled.insert(PredCases[i].Value);
1078           else {
1079             // The default destination is BB, we don't need explicit targets.
1080             std::swap(PredCases[i], PredCases.back());
1081 
1082             if (PredHasWeights || SuccHasWeights) {
1083               // Increase weight for the default case.
1084               Weights[0] += Weights[i + 1];
1085               std::swap(Weights[i + 1], Weights.back());
1086               Weights.pop_back();
1087             }
1088 
1089             PredCases.pop_back();
1090             --i;
1091             --e;
1092           }
1093 
1094         // Reconstruct the new switch statement we will be building.
1095         if (PredDefault != BBDefault) {
1096           PredDefault->removePredecessor(Pred);
1097           PredDefault = BBDefault;
1098           NewSuccessors.push_back(BBDefault);
1099         }
1100 
1101         unsigned CasesFromPred = Weights.size();
1102         uint64_t ValidTotalSuccWeight = 0;
1103         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1104           if (!PTIHandled.count(BBCases[i].Value) &&
1105               BBCases[i].Dest != BBDefault) {
1106             PredCases.push_back(BBCases[i]);
1107             NewSuccessors.push_back(BBCases[i].Dest);
1108             if (SuccHasWeights || PredHasWeights) {
1109               // The default weight is at index 0, so weight for the ith case
1110               // should be at index i+1. Scale the cases from successor by
1111               // PredDefaultWeight (Weights[0]).
1112               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1113               ValidTotalSuccWeight += SuccWeights[i + 1];
1114             }
1115           }
1116 
1117         if (SuccHasWeights || PredHasWeights) {
1118           ValidTotalSuccWeight += SuccWeights[0];
1119           // Scale the cases from predecessor by ValidTotalSuccWeight.
1120           for (unsigned i = 1; i < CasesFromPred; ++i)
1121             Weights[i] *= ValidTotalSuccWeight;
1122           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1123           Weights[0] *= SuccWeights[0];
1124         }
1125       } else {
1126         // If this is not the default destination from PSI, only the edges
1127         // in SI that occur in PSI with a destination of BB will be
1128         // activated.
1129         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1130         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1131         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1132           if (PredCases[i].Dest == BB) {
1133             PTIHandled.insert(PredCases[i].Value);
1134 
1135             if (PredHasWeights || SuccHasWeights) {
1136               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1137               std::swap(Weights[i + 1], Weights.back());
1138               Weights.pop_back();
1139             }
1140 
1141             std::swap(PredCases[i], PredCases.back());
1142             PredCases.pop_back();
1143             --i;
1144             --e;
1145           }
1146 
1147         // Okay, now we know which constants were sent to BB from the
1148         // predecessor.  Figure out where they will all go now.
1149         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1150           if (PTIHandled.count(BBCases[i].Value)) {
1151             // If this is one we are capable of getting...
1152             if (PredHasWeights || SuccHasWeights)
1153               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1154             PredCases.push_back(BBCases[i]);
1155             NewSuccessors.push_back(BBCases[i].Dest);
1156             PTIHandled.erase(
1157                 BBCases[i].Value); // This constant is taken care of
1158           }
1159 
1160         // If there are any constants vectored to BB that TI doesn't handle,
1161         // they must go to the default destination of TI.
1162         for (ConstantInt *I : PTIHandled) {
1163           if (PredHasWeights || SuccHasWeights)
1164             Weights.push_back(WeightsForHandled[I]);
1165           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1166           NewSuccessors.push_back(BBDefault);
1167         }
1168       }
1169 
1170       // Okay, at this point, we know which new successor Pred will get.  Make
1171       // sure we update the number of entries in the PHI nodes for these
1172       // successors.
1173       for (BasicBlock *NewSuccessor : NewSuccessors)
1174         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1175 
1176       Builder.SetInsertPoint(PTI);
1177       // Convert pointer to int before we switch.
1178       if (CV->getType()->isPointerTy()) {
1179         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1180                                     "magicptr");
1181       }
1182 
1183       // Now that the successors are updated, create the new Switch instruction.
1184       SwitchInst *NewSI =
1185           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1186       NewSI->setDebugLoc(PTI->getDebugLoc());
1187       for (ValueEqualityComparisonCase &V : PredCases)
1188         NewSI->addCase(V.Value, V.Dest);
1189 
1190       if (PredHasWeights || SuccHasWeights) {
1191         // Halve the weights if any of them cannot fit in an uint32_t
1192         FitWeights(Weights);
1193 
1194         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1195 
1196         setBranchWeights(NewSI, MDWeights);
1197       }
1198 
1199       EraseTerminatorAndDCECond(PTI);
1200 
1201       // Okay, last check.  If BB is still a successor of PSI, then we must
1202       // have an infinite loop case.  If so, add an infinitely looping block
1203       // to handle the case to preserve the behavior of the code.
1204       BasicBlock *InfLoopBlock = nullptr;
1205       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1206         if (NewSI->getSuccessor(i) == BB) {
1207           if (!InfLoopBlock) {
1208             // Insert it at the end of the function, because it's either code,
1209             // or it won't matter if it's hot. :)
1210             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1211                                               BB->getParent());
1212             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1213           }
1214           NewSI->setSuccessor(i, InfLoopBlock);
1215         }
1216 
1217       Changed = true;
1218     }
1219   }
1220   return Changed;
1221 }
1222 
1223 // If we would need to insert a select that uses the value of this invoke
1224 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1225 // can't hoist the invoke, as there is nowhere to put the select in this case.
1226 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1227                                 Instruction *I1, Instruction *I2) {
1228   for (BasicBlock *Succ : successors(BB1)) {
1229     for (const PHINode &PN : Succ->phis()) {
1230       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1231       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1232       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1233         return false;
1234       }
1235     }
1236   }
1237   return true;
1238 }
1239 
1240 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1241 
1242 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1243 /// in the two blocks up into the branch block. The caller of this function
1244 /// guarantees that BI's block dominates BB1 and BB2.
1245 static bool HoistThenElseCodeToIf(BranchInst *BI,
1246                                   const TargetTransformInfo &TTI) {
1247   // This does very trivial matching, with limited scanning, to find identical
1248   // instructions in the two blocks.  In particular, we don't want to get into
1249   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1250   // such, we currently just scan for obviously identical instructions in an
1251   // identical order.
1252   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1253   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1254 
1255   BasicBlock::iterator BB1_Itr = BB1->begin();
1256   BasicBlock::iterator BB2_Itr = BB2->begin();
1257 
1258   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1259   // Skip debug info if it is not identical.
1260   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1261   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1262   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1263     while (isa<DbgInfoIntrinsic>(I1))
1264       I1 = &*BB1_Itr++;
1265     while (isa<DbgInfoIntrinsic>(I2))
1266       I2 = &*BB2_Itr++;
1267   }
1268   // FIXME: Can we define a safety predicate for CallBr?
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1271       isa<CallBrInst>(I1))
1272     return false;
1273 
1274   BasicBlock *BIParent = BI->getParent();
1275 
1276   bool Changed = false;
1277   do {
1278     // If we are hoisting the terminator instruction, don't move one (making a
1279     // broken BB), instead clone it, and remove BI.
1280     if (I1->isTerminator())
1281       goto HoistTerminator;
1282 
1283     // If we're going to hoist a call, make sure that the two instructions we're
1284     // commoning/hoisting are both marked with musttail, or neither of them is
1285     // marked as such. Otherwise, we might end up in a situation where we hoist
1286     // from a block where the terminator is a `ret` to a block where the terminator
1287     // is a `br`, and `musttail` calls expect to be followed by a return.
1288     auto *C1 = dyn_cast<CallInst>(I1);
1289     auto *C2 = dyn_cast<CallInst>(I2);
1290     if (C1 && C2)
1291       if (C1->isMustTailCall() != C2->isMustTailCall())
1292         return Changed;
1293 
1294     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1295       return Changed;
1296 
1297     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1298       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1299       // The debug location is an integral part of a debug info intrinsic
1300       // and can't be separated from it or replaced.  Instead of attempting
1301       // to merge locations, simply hoist both copies of the intrinsic.
1302       BIParent->getInstList().splice(BI->getIterator(),
1303                                      BB1->getInstList(), I1);
1304       BIParent->getInstList().splice(BI->getIterator(),
1305                                      BB2->getInstList(), I2);
1306       Changed = true;
1307     } else {
1308       // For a normal instruction, we just move one to right before the branch,
1309       // then replace all uses of the other with the first.  Finally, we remove
1310       // the now redundant second instruction.
1311       BIParent->getInstList().splice(BI->getIterator(),
1312                                      BB1->getInstList(), I1);
1313       if (!I2->use_empty())
1314         I2->replaceAllUsesWith(I1);
1315       I1->andIRFlags(I2);
1316       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1317                              LLVMContext::MD_range,
1318                              LLVMContext::MD_fpmath,
1319                              LLVMContext::MD_invariant_load,
1320                              LLVMContext::MD_nonnull,
1321                              LLVMContext::MD_invariant_group,
1322                              LLVMContext::MD_align,
1323                              LLVMContext::MD_dereferenceable,
1324                              LLVMContext::MD_dereferenceable_or_null,
1325                              LLVMContext::MD_mem_parallel_loop_access,
1326                              LLVMContext::MD_access_group};
1327       combineMetadata(I1, I2, KnownIDs, true);
1328 
1329       // I1 and I2 are being combined into a single instruction.  Its debug
1330       // location is the merged locations of the original instructions.
1331       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1332 
1333       I2->eraseFromParent();
1334       Changed = true;
1335     }
1336 
1337     I1 = &*BB1_Itr++;
1338     I2 = &*BB2_Itr++;
1339     // Skip debug info if it is not identical.
1340     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1341     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1342     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1343       while (isa<DbgInfoIntrinsic>(I1))
1344         I1 = &*BB1_Itr++;
1345       while (isa<DbgInfoIntrinsic>(I2))
1346         I2 = &*BB2_Itr++;
1347     }
1348   } while (I1->isIdenticalToWhenDefined(I2));
1349 
1350   return true;
1351 
1352 HoistTerminator:
1353   // It may not be possible to hoist an invoke.
1354   // FIXME: Can we define a safety predicate for CallBr?
1355   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1356     return Changed;
1357 
1358   // TODO: callbr hoisting currently disabled pending further study.
1359   if (isa<CallBrInst>(I1))
1360     return Changed;
1361 
1362   for (BasicBlock *Succ : successors(BB1)) {
1363     for (PHINode &PN : Succ->phis()) {
1364       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1365       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1366       if (BB1V == BB2V)
1367         continue;
1368 
1369       // Check for passingValueIsAlwaysUndefined here because we would rather
1370       // eliminate undefined control flow then converting it to a select.
1371       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1372           passingValueIsAlwaysUndefined(BB2V, &PN))
1373         return Changed;
1374 
1375       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1376         return Changed;
1377       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1378         return Changed;
1379     }
1380   }
1381 
1382   // Okay, it is safe to hoist the terminator.
1383   Instruction *NT = I1->clone();
1384   BIParent->getInstList().insert(BI->getIterator(), NT);
1385   if (!NT->getType()->isVoidTy()) {
1386     I1->replaceAllUsesWith(NT);
1387     I2->replaceAllUsesWith(NT);
1388     NT->takeName(I1);
1389   }
1390 
1391   // Ensure terminator gets a debug location, even an unknown one, in case
1392   // it involves inlinable calls.
1393   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1394 
1395   // PHIs created below will adopt NT's merged DebugLoc.
1396   IRBuilder<NoFolder> Builder(NT);
1397 
1398   // Hoisting one of the terminators from our successor is a great thing.
1399   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1400   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1401   // nodes, so we insert select instruction to compute the final result.
1402   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1403   for (BasicBlock *Succ : successors(BB1)) {
1404     for (PHINode &PN : Succ->phis()) {
1405       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1406       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1407       if (BB1V == BB2V)
1408         continue;
1409 
1410       // These values do not agree.  Insert a select instruction before NT
1411       // that determines the right value.
1412       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1413       if (!SI)
1414         SI = cast<SelectInst>(
1415             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1416                                  BB1V->getName() + "." + BB2V->getName(), BI));
1417 
1418       // Make the PHI node use the select for all incoming values for BB1/BB2
1419       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1420         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1421           PN.setIncomingValue(i, SI);
1422     }
1423   }
1424 
1425   // Update any PHI nodes in our new successors.
1426   for (BasicBlock *Succ : successors(BB1))
1427     AddPredecessorToBlock(Succ, BIParent, BB1);
1428 
1429   EraseTerminatorAndDCECond(BI);
1430   return true;
1431 }
1432 
1433 // All instructions in Insts belong to different blocks that all unconditionally
1434 // branch to a common successor. Analyze each instruction and return true if it
1435 // would be possible to sink them into their successor, creating one common
1436 // instruction instead. For every value that would be required to be provided by
1437 // PHI node (because an operand varies in each input block), add to PHIOperands.
1438 static bool canSinkInstructions(
1439     ArrayRef<Instruction *> Insts,
1440     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1441   // Prune out obviously bad instructions to move. Any non-store instruction
1442   // must have exactly one use, and we check later that use is by a single,
1443   // common PHI instruction in the successor.
1444   for (auto *I : Insts) {
1445     // These instructions may change or break semantics if moved.
1446     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1447         I->getType()->isTokenTy())
1448       return false;
1449 
1450     // Conservatively return false if I is an inline-asm instruction. Sinking
1451     // and merging inline-asm instructions can potentially create arguments
1452     // that cannot satisfy the inline-asm constraints.
1453     if (const auto *C = dyn_cast<CallBase>(I))
1454       if (C->isInlineAsm())
1455         return false;
1456 
1457     // Everything must have only one use too, apart from stores which
1458     // have no uses.
1459     if (!isa<StoreInst>(I) && !I->hasOneUse())
1460       return false;
1461   }
1462 
1463   const Instruction *I0 = Insts.front();
1464   for (auto *I : Insts)
1465     if (!I->isSameOperationAs(I0))
1466       return false;
1467 
1468   // All instructions in Insts are known to be the same opcode. If they aren't
1469   // stores, check the only user of each is a PHI or in the same block as the
1470   // instruction, because if a user is in the same block as an instruction
1471   // we're contemplating sinking, it must already be determined to be sinkable.
1472   if (!isa<StoreInst>(I0)) {
1473     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1474     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1475     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1476           auto *U = cast<Instruction>(*I->user_begin());
1477           return (PNUse &&
1478                   PNUse->getParent() == Succ &&
1479                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1480                  U->getParent() == I->getParent();
1481         }))
1482       return false;
1483   }
1484 
1485   // Because SROA can't handle speculating stores of selects, try not
1486   // to sink loads or stores of allocas when we'd have to create a PHI for
1487   // the address operand. Also, because it is likely that loads or stores
1488   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1489   // This can cause code churn which can have unintended consequences down
1490   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1491   // FIXME: This is a workaround for a deficiency in SROA - see
1492   // https://llvm.org/bugs/show_bug.cgi?id=30188
1493   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1494         return isa<AllocaInst>(I->getOperand(1));
1495       }))
1496     return false;
1497   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1498         return isa<AllocaInst>(I->getOperand(0));
1499       }))
1500     return false;
1501 
1502   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1503     if (I0->getOperand(OI)->getType()->isTokenTy())
1504       // Don't touch any operand of token type.
1505       return false;
1506 
1507     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1508       assert(I->getNumOperands() == I0->getNumOperands());
1509       return I->getOperand(OI) == I0->getOperand(OI);
1510     };
1511     if (!all_of(Insts, SameAsI0)) {
1512       if (!canReplaceOperandWithVariable(I0, OI))
1513         // We can't create a PHI from this GEP.
1514         return false;
1515       // Don't create indirect calls! The called value is the final operand.
1516       if (isa<CallBase>(I0) && OI == OE - 1) {
1517         // FIXME: if the call was *already* indirect, we should do this.
1518         return false;
1519       }
1520       for (auto *I : Insts)
1521         PHIOperands[I].push_back(I->getOperand(OI));
1522     }
1523   }
1524   return true;
1525 }
1526 
1527 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1528 // instruction of every block in Blocks to their common successor, commoning
1529 // into one instruction.
1530 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1531   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1532 
1533   // canSinkLastInstruction returning true guarantees that every block has at
1534   // least one non-terminator instruction.
1535   SmallVector<Instruction*,4> Insts;
1536   for (auto *BB : Blocks) {
1537     Instruction *I = BB->getTerminator();
1538     do {
1539       I = I->getPrevNode();
1540     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1541     if (!isa<DbgInfoIntrinsic>(I))
1542       Insts.push_back(I);
1543   }
1544 
1545   // The only checking we need to do now is that all users of all instructions
1546   // are the same PHI node. canSinkLastInstruction should have checked this but
1547   // it is slightly over-aggressive - it gets confused by commutative instructions
1548   // so double-check it here.
1549   Instruction *I0 = Insts.front();
1550   if (!isa<StoreInst>(I0)) {
1551     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1552     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1553           auto *U = cast<Instruction>(*I->user_begin());
1554           return U == PNUse;
1555         }))
1556       return false;
1557   }
1558 
1559   // We don't need to do any more checking here; canSinkLastInstruction should
1560   // have done it all for us.
1561   SmallVector<Value*, 4> NewOperands;
1562   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1563     // This check is different to that in canSinkLastInstruction. There, we
1564     // cared about the global view once simplifycfg (and instcombine) have
1565     // completed - it takes into account PHIs that become trivially
1566     // simplifiable.  However here we need a more local view; if an operand
1567     // differs we create a PHI and rely on instcombine to clean up the very
1568     // small mess we may make.
1569     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1570       return I->getOperand(O) != I0->getOperand(O);
1571     });
1572     if (!NeedPHI) {
1573       NewOperands.push_back(I0->getOperand(O));
1574       continue;
1575     }
1576 
1577     // Create a new PHI in the successor block and populate it.
1578     auto *Op = I0->getOperand(O);
1579     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1580     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1581                                Op->getName() + ".sink", &BBEnd->front());
1582     for (auto *I : Insts)
1583       PN->addIncoming(I->getOperand(O), I->getParent());
1584     NewOperands.push_back(PN);
1585   }
1586 
1587   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1588   // and move it to the start of the successor block.
1589   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1590     I0->getOperandUse(O).set(NewOperands[O]);
1591   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1592 
1593   // Update metadata and IR flags, and merge debug locations.
1594   for (auto *I : Insts)
1595     if (I != I0) {
1596       // The debug location for the "common" instruction is the merged locations
1597       // of all the commoned instructions.  We start with the original location
1598       // of the "common" instruction and iteratively merge each location in the
1599       // loop below.
1600       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1601       // However, as N-way merge for CallInst is rare, so we use simplified API
1602       // instead of using complex API for N-way merge.
1603       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1604       combineMetadataForCSE(I0, I, true);
1605       I0->andIRFlags(I);
1606     }
1607 
1608   if (!isa<StoreInst>(I0)) {
1609     // canSinkLastInstruction checked that all instructions were used by
1610     // one and only one PHI node. Find that now, RAUW it to our common
1611     // instruction and nuke it.
1612     assert(I0->hasOneUse());
1613     auto *PN = cast<PHINode>(*I0->user_begin());
1614     PN->replaceAllUsesWith(I0);
1615     PN->eraseFromParent();
1616   }
1617 
1618   // Finally nuke all instructions apart from the common instruction.
1619   for (auto *I : Insts)
1620     if (I != I0)
1621       I->eraseFromParent();
1622 
1623   return true;
1624 }
1625 
1626 namespace {
1627 
1628   // LockstepReverseIterator - Iterates through instructions
1629   // in a set of blocks in reverse order from the first non-terminator.
1630   // For example (assume all blocks have size n):
1631   //   LockstepReverseIterator I([B1, B2, B3]);
1632   //   *I-- = [B1[n], B2[n], B3[n]];
1633   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1634   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1635   //   ...
1636   class LockstepReverseIterator {
1637     ArrayRef<BasicBlock*> Blocks;
1638     SmallVector<Instruction*,4> Insts;
1639     bool Fail;
1640 
1641   public:
1642     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1643       reset();
1644     }
1645 
1646     void reset() {
1647       Fail = false;
1648       Insts.clear();
1649       for (auto *BB : Blocks) {
1650         Instruction *Inst = BB->getTerminator();
1651         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1652           Inst = Inst->getPrevNode();
1653         if (!Inst) {
1654           // Block wasn't big enough.
1655           Fail = true;
1656           return;
1657         }
1658         Insts.push_back(Inst);
1659       }
1660     }
1661 
1662     bool isValid() const {
1663       return !Fail;
1664     }
1665 
1666     void operator--() {
1667       if (Fail)
1668         return;
1669       for (auto *&Inst : Insts) {
1670         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1671           Inst = Inst->getPrevNode();
1672         // Already at beginning of block.
1673         if (!Inst) {
1674           Fail = true;
1675           return;
1676         }
1677       }
1678     }
1679 
1680     ArrayRef<Instruction*> operator * () const {
1681       return Insts;
1682     }
1683   };
1684 
1685 } // end anonymous namespace
1686 
1687 /// Check whether BB's predecessors end with unconditional branches. If it is
1688 /// true, sink any common code from the predecessors to BB.
1689 /// We also allow one predecessor to end with conditional branch (but no more
1690 /// than one).
1691 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1692   // We support two situations:
1693   //   (1) all incoming arcs are unconditional
1694   //   (2) one incoming arc is conditional
1695   //
1696   // (2) is very common in switch defaults and
1697   // else-if patterns;
1698   //
1699   //   if (a) f(1);
1700   //   else if (b) f(2);
1701   //
1702   // produces:
1703   //
1704   //       [if]
1705   //      /    \
1706   //    [f(1)] [if]
1707   //      |     | \
1708   //      |     |  |
1709   //      |  [f(2)]|
1710   //       \    | /
1711   //        [ end ]
1712   //
1713   // [end] has two unconditional predecessor arcs and one conditional. The
1714   // conditional refers to the implicit empty 'else' arc. This conditional
1715   // arc can also be caused by an empty default block in a switch.
1716   //
1717   // In this case, we attempt to sink code from all *unconditional* arcs.
1718   // If we can sink instructions from these arcs (determined during the scan
1719   // phase below) we insert a common successor for all unconditional arcs and
1720   // connect that to [end], to enable sinking:
1721   //
1722   //       [if]
1723   //      /    \
1724   //    [x(1)] [if]
1725   //      |     | \
1726   //      |     |  \
1727   //      |  [x(2)] |
1728   //       \   /    |
1729   //   [sink.split] |
1730   //         \     /
1731   //         [ end ]
1732   //
1733   SmallVector<BasicBlock*,4> UnconditionalPreds;
1734   Instruction *Cond = nullptr;
1735   for (auto *B : predecessors(BB)) {
1736     auto *T = B->getTerminator();
1737     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1738       UnconditionalPreds.push_back(B);
1739     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1740       Cond = T;
1741     else
1742       return false;
1743   }
1744   if (UnconditionalPreds.size() < 2)
1745     return false;
1746 
1747   bool Changed = false;
1748   // We take a two-step approach to tail sinking. First we scan from the end of
1749   // each block upwards in lockstep. If the n'th instruction from the end of each
1750   // block can be sunk, those instructions are added to ValuesToSink and we
1751   // carry on. If we can sink an instruction but need to PHI-merge some operands
1752   // (because they're not identical in each instruction) we add these to
1753   // PHIOperands.
1754   unsigned ScanIdx = 0;
1755   SmallPtrSet<Value*,4> InstructionsToSink;
1756   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1757   LockstepReverseIterator LRI(UnconditionalPreds);
1758   while (LRI.isValid() &&
1759          canSinkInstructions(*LRI, PHIOperands)) {
1760     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1761                       << "\n");
1762     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1763     ++ScanIdx;
1764     --LRI;
1765   }
1766 
1767   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1768     unsigned NumPHIdValues = 0;
1769     for (auto *I : *LRI)
1770       for (auto *V : PHIOperands[I])
1771         if (InstructionsToSink.count(V) == 0)
1772           ++NumPHIdValues;
1773     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1774     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1775     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1776         NumPHIInsts++;
1777 
1778     return NumPHIInsts <= 1;
1779   };
1780 
1781   if (ScanIdx > 0 && Cond) {
1782     // Check if we would actually sink anything first! This mutates the CFG and
1783     // adds an extra block. The goal in doing this is to allow instructions that
1784     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1785     // (such as trunc, add) can be sunk and predicated already. So we check that
1786     // we're going to sink at least one non-speculatable instruction.
1787     LRI.reset();
1788     unsigned Idx = 0;
1789     bool Profitable = false;
1790     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1791       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1792         Profitable = true;
1793         break;
1794       }
1795       --LRI;
1796       ++Idx;
1797     }
1798     if (!Profitable)
1799       return false;
1800 
1801     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1802     // We have a conditional edge and we're going to sink some instructions.
1803     // Insert a new block postdominating all blocks we're going to sink from.
1804     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1805       // Edges couldn't be split.
1806       return false;
1807     Changed = true;
1808   }
1809 
1810   // Now that we've analyzed all potential sinking candidates, perform the
1811   // actual sink. We iteratively sink the last non-terminator of the source
1812   // blocks into their common successor unless doing so would require too
1813   // many PHI instructions to be generated (currently only one PHI is allowed
1814   // per sunk instruction).
1815   //
1816   // We can use InstructionsToSink to discount values needing PHI-merging that will
1817   // actually be sunk in a later iteration. This allows us to be more
1818   // aggressive in what we sink. This does allow a false positive where we
1819   // sink presuming a later value will also be sunk, but stop half way through
1820   // and never actually sink it which means we produce more PHIs than intended.
1821   // This is unlikely in practice though.
1822   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1823     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1824                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1825                       << "\n");
1826 
1827     // Because we've sunk every instruction in turn, the current instruction to
1828     // sink is always at index 0.
1829     LRI.reset();
1830     if (!ProfitableToSinkInstruction(LRI)) {
1831       // Too many PHIs would be created.
1832       LLVM_DEBUG(
1833           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1834       break;
1835     }
1836 
1837     if (!sinkLastInstruction(UnconditionalPreds))
1838       return Changed;
1839     NumSinkCommons++;
1840     Changed = true;
1841   }
1842   return Changed;
1843 }
1844 
1845 /// Determine if we can hoist sink a sole store instruction out of a
1846 /// conditional block.
1847 ///
1848 /// We are looking for code like the following:
1849 ///   BrBB:
1850 ///     store i32 %add, i32* %arrayidx2
1851 ///     ... // No other stores or function calls (we could be calling a memory
1852 ///     ... // function).
1853 ///     %cmp = icmp ult %x, %y
1854 ///     br i1 %cmp, label %EndBB, label %ThenBB
1855 ///   ThenBB:
1856 ///     store i32 %add5, i32* %arrayidx2
1857 ///     br label EndBB
1858 ///   EndBB:
1859 ///     ...
1860 ///   We are going to transform this into:
1861 ///   BrBB:
1862 ///     store i32 %add, i32* %arrayidx2
1863 ///     ... //
1864 ///     %cmp = icmp ult %x, %y
1865 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1866 ///     store i32 %add.add5, i32* %arrayidx2
1867 ///     ...
1868 ///
1869 /// \return The pointer to the value of the previous store if the store can be
1870 ///         hoisted into the predecessor block. 0 otherwise.
1871 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1872                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1873   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1874   if (!StoreToHoist)
1875     return nullptr;
1876 
1877   // Volatile or atomic.
1878   if (!StoreToHoist->isSimple())
1879     return nullptr;
1880 
1881   Value *StorePtr = StoreToHoist->getPointerOperand();
1882 
1883   // Look for a store to the same pointer in BrBB.
1884   unsigned MaxNumInstToLookAt = 9;
1885   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1886     if (!MaxNumInstToLookAt)
1887       break;
1888     --MaxNumInstToLookAt;
1889 
1890     // Could be calling an instruction that affects memory like free().
1891     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1892       return nullptr;
1893 
1894     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1895       // Found the previous store make sure it stores to the same location.
1896       if (SI->getPointerOperand() == StorePtr)
1897         // Found the previous store, return its value operand.
1898         return SI->getValueOperand();
1899       return nullptr; // Unknown store.
1900     }
1901   }
1902 
1903   return nullptr;
1904 }
1905 
1906 /// Speculate a conditional basic block flattening the CFG.
1907 ///
1908 /// Note that this is a very risky transform currently. Speculating
1909 /// instructions like this is most often not desirable. Instead, there is an MI
1910 /// pass which can do it with full awareness of the resource constraints.
1911 /// However, some cases are "obvious" and we should do directly. An example of
1912 /// this is speculating a single, reasonably cheap instruction.
1913 ///
1914 /// There is only one distinct advantage to flattening the CFG at the IR level:
1915 /// it makes very common but simplistic optimizations such as are common in
1916 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1917 /// modeling their effects with easier to reason about SSA value graphs.
1918 ///
1919 ///
1920 /// An illustration of this transform is turning this IR:
1921 /// \code
1922 ///   BB:
1923 ///     %cmp = icmp ult %x, %y
1924 ///     br i1 %cmp, label %EndBB, label %ThenBB
1925 ///   ThenBB:
1926 ///     %sub = sub %x, %y
1927 ///     br label BB2
1928 ///   EndBB:
1929 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1930 ///     ...
1931 /// \endcode
1932 ///
1933 /// Into this IR:
1934 /// \code
1935 ///   BB:
1936 ///     %cmp = icmp ult %x, %y
1937 ///     %sub = sub %x, %y
1938 ///     %cond = select i1 %cmp, 0, %sub
1939 ///     ...
1940 /// \endcode
1941 ///
1942 /// \returns true if the conditional block is removed.
1943 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1944                                    const TargetTransformInfo &TTI) {
1945   // Be conservative for now. FP select instruction can often be expensive.
1946   Value *BrCond = BI->getCondition();
1947   if (isa<FCmpInst>(BrCond))
1948     return false;
1949 
1950   BasicBlock *BB = BI->getParent();
1951   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1952 
1953   // If ThenBB is actually on the false edge of the conditional branch, remember
1954   // to swap the select operands later.
1955   bool Invert = false;
1956   if (ThenBB != BI->getSuccessor(0)) {
1957     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1958     Invert = true;
1959   }
1960   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1961 
1962   // Keep a count of how many times instructions are used within ThenBB when
1963   // they are candidates for sinking into ThenBB. Specifically:
1964   // - They are defined in BB, and
1965   // - They have no side effects, and
1966   // - All of their uses are in ThenBB.
1967   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1968 
1969   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1970 
1971   unsigned SpeculationCost = 0;
1972   Value *SpeculatedStoreValue = nullptr;
1973   StoreInst *SpeculatedStore = nullptr;
1974   for (BasicBlock::iterator BBI = ThenBB->begin(),
1975                             BBE = std::prev(ThenBB->end());
1976        BBI != BBE; ++BBI) {
1977     Instruction *I = &*BBI;
1978     // Skip debug info.
1979     if (isa<DbgInfoIntrinsic>(I)) {
1980       SpeculatedDbgIntrinsics.push_back(I);
1981       continue;
1982     }
1983 
1984     // Only speculatively execute a single instruction (not counting the
1985     // terminator) for now.
1986     ++SpeculationCost;
1987     if (SpeculationCost > 1)
1988       return false;
1989 
1990     // Don't hoist the instruction if it's unsafe or expensive.
1991     if (!isSafeToSpeculativelyExecute(I) &&
1992         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1993                                   I, BB, ThenBB, EndBB))))
1994       return false;
1995     if (!SpeculatedStoreValue &&
1996         ComputeSpeculationCost(I, TTI) >
1997             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1998       return false;
1999 
2000     // Store the store speculation candidate.
2001     if (SpeculatedStoreValue)
2002       SpeculatedStore = cast<StoreInst>(I);
2003 
2004     // Do not hoist the instruction if any of its operands are defined but not
2005     // used in BB. The transformation will prevent the operand from
2006     // being sunk into the use block.
2007     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2008       Instruction *OpI = dyn_cast<Instruction>(*i);
2009       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2010         continue; // Not a candidate for sinking.
2011 
2012       ++SinkCandidateUseCounts[OpI];
2013     }
2014   }
2015 
2016   // Consider any sink candidates which are only used in ThenBB as costs for
2017   // speculation. Note, while we iterate over a DenseMap here, we are summing
2018   // and so iteration order isn't significant.
2019   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2020            I = SinkCandidateUseCounts.begin(),
2021            E = SinkCandidateUseCounts.end();
2022        I != E; ++I)
2023     if (I->first->hasNUses(I->second)) {
2024       ++SpeculationCost;
2025       if (SpeculationCost > 1)
2026         return false;
2027     }
2028 
2029   // Check that the PHI nodes can be converted to selects.
2030   bool HaveRewritablePHIs = false;
2031   for (PHINode &PN : EndBB->phis()) {
2032     Value *OrigV = PN.getIncomingValueForBlock(BB);
2033     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2034 
2035     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2036     // Skip PHIs which are trivial.
2037     if (ThenV == OrigV)
2038       continue;
2039 
2040     // Don't convert to selects if we could remove undefined behavior instead.
2041     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2042         passingValueIsAlwaysUndefined(ThenV, &PN))
2043       return false;
2044 
2045     HaveRewritablePHIs = true;
2046     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2047     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2048     if (!OrigCE && !ThenCE)
2049       continue; // Known safe and cheap.
2050 
2051     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2052         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2053       return false;
2054     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2055     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2056     unsigned MaxCost =
2057         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2058     if (OrigCost + ThenCost > MaxCost)
2059       return false;
2060 
2061     // Account for the cost of an unfolded ConstantExpr which could end up
2062     // getting expanded into Instructions.
2063     // FIXME: This doesn't account for how many operations are combined in the
2064     // constant expression.
2065     ++SpeculationCost;
2066     if (SpeculationCost > 1)
2067       return false;
2068   }
2069 
2070   // If there are no PHIs to process, bail early. This helps ensure idempotence
2071   // as well.
2072   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2073     return false;
2074 
2075   // If we get here, we can hoist the instruction and if-convert.
2076   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2077 
2078   // Insert a select of the value of the speculated store.
2079   if (SpeculatedStoreValue) {
2080     IRBuilder<NoFolder> Builder(BI);
2081     Value *TrueV = SpeculatedStore->getValueOperand();
2082     Value *FalseV = SpeculatedStoreValue;
2083     if (Invert)
2084       std::swap(TrueV, FalseV);
2085     Value *S = Builder.CreateSelect(
2086         BrCond, TrueV, FalseV, "spec.store.select", BI);
2087     SpeculatedStore->setOperand(0, S);
2088     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2089                                          SpeculatedStore->getDebugLoc());
2090   }
2091 
2092   // Metadata can be dependent on the condition we are hoisting above.
2093   // Conservatively strip all metadata on the instruction.
2094   for (auto &I : *ThenBB)
2095     I.dropUnknownNonDebugMetadata();
2096 
2097   // Hoist the instructions.
2098   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2099                            ThenBB->begin(), std::prev(ThenBB->end()));
2100 
2101   // Insert selects and rewrite the PHI operands.
2102   IRBuilder<NoFolder> Builder(BI);
2103   for (PHINode &PN : EndBB->phis()) {
2104     unsigned OrigI = PN.getBasicBlockIndex(BB);
2105     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2106     Value *OrigV = PN.getIncomingValue(OrigI);
2107     Value *ThenV = PN.getIncomingValue(ThenI);
2108 
2109     // Skip PHIs which are trivial.
2110     if (OrigV == ThenV)
2111       continue;
2112 
2113     // Create a select whose true value is the speculatively executed value and
2114     // false value is the preexisting value. Swap them if the branch
2115     // destinations were inverted.
2116     Value *TrueV = ThenV, *FalseV = OrigV;
2117     if (Invert)
2118       std::swap(TrueV, FalseV);
2119     Value *V = Builder.CreateSelect(
2120         BrCond, TrueV, FalseV, "spec.select", BI);
2121     PN.setIncomingValue(OrigI, V);
2122     PN.setIncomingValue(ThenI, V);
2123   }
2124 
2125   // Remove speculated dbg intrinsics.
2126   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2127   // dbg value for the different flows and inserting it after the select.
2128   for (Instruction *I : SpeculatedDbgIntrinsics)
2129     I->eraseFromParent();
2130 
2131   ++NumSpeculations;
2132   return true;
2133 }
2134 
2135 /// Return true if we can thread a branch across this block.
2136 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2137   unsigned Size = 0;
2138 
2139   for (Instruction &I : BB->instructionsWithoutDebug()) {
2140     if (Size > 10)
2141       return false; // Don't clone large BB's.
2142     ++Size;
2143 
2144     // We can only support instructions that do not define values that are
2145     // live outside of the current basic block.
2146     for (User *U : I.users()) {
2147       Instruction *UI = cast<Instruction>(U);
2148       if (UI->getParent() != BB || isa<PHINode>(UI))
2149         return false;
2150     }
2151 
2152     // Looks ok, continue checking.
2153   }
2154 
2155   return true;
2156 }
2157 
2158 /// If we have a conditional branch on a PHI node value that is defined in the
2159 /// same block as the branch and if any PHI entries are constants, thread edges
2160 /// corresponding to that entry to be branches to their ultimate destination.
2161 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2162                                 AssumptionCache *AC) {
2163   BasicBlock *BB = BI->getParent();
2164   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2165   // NOTE: we currently cannot transform this case if the PHI node is used
2166   // outside of the block.
2167   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2168     return false;
2169 
2170   // Degenerate case of a single entry PHI.
2171   if (PN->getNumIncomingValues() == 1) {
2172     FoldSingleEntryPHINodes(PN->getParent());
2173     return true;
2174   }
2175 
2176   // Now we know that this block has multiple preds and two succs.
2177   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2178     return false;
2179 
2180   // Can't fold blocks that contain noduplicate or convergent calls.
2181   if (any_of(*BB, [](const Instruction &I) {
2182         const CallInst *CI = dyn_cast<CallInst>(&I);
2183         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2184       }))
2185     return false;
2186 
2187   // Okay, this is a simple enough basic block.  See if any phi values are
2188   // constants.
2189   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2190     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2191     if (!CB || !CB->getType()->isIntegerTy(1))
2192       continue;
2193 
2194     // Okay, we now know that all edges from PredBB should be revectored to
2195     // branch to RealDest.
2196     BasicBlock *PredBB = PN->getIncomingBlock(i);
2197     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2198 
2199     if (RealDest == BB)
2200       continue; // Skip self loops.
2201     // Skip if the predecessor's terminator is an indirect branch.
2202     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2203       continue;
2204 
2205     // The dest block might have PHI nodes, other predecessors and other
2206     // difficult cases.  Instead of being smart about this, just insert a new
2207     // block that jumps to the destination block, effectively splitting
2208     // the edge we are about to create.
2209     BasicBlock *EdgeBB =
2210         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2211                            RealDest->getParent(), RealDest);
2212     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2213     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2214 
2215     // Update PHI nodes.
2216     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2217 
2218     // BB may have instructions that are being threaded over.  Clone these
2219     // instructions into EdgeBB.  We know that there will be no uses of the
2220     // cloned instructions outside of EdgeBB.
2221     BasicBlock::iterator InsertPt = EdgeBB->begin();
2222     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2223     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2224       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2225         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2226         continue;
2227       }
2228       // Clone the instruction.
2229       Instruction *N = BBI->clone();
2230       if (BBI->hasName())
2231         N->setName(BBI->getName() + ".c");
2232 
2233       // Update operands due to translation.
2234       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2235         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2236         if (PI != TranslateMap.end())
2237           *i = PI->second;
2238       }
2239 
2240       // Check for trivial simplification.
2241       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2242         if (!BBI->use_empty())
2243           TranslateMap[&*BBI] = V;
2244         if (!N->mayHaveSideEffects()) {
2245           N->deleteValue(); // Instruction folded away, don't need actual inst
2246           N = nullptr;
2247         }
2248       } else {
2249         if (!BBI->use_empty())
2250           TranslateMap[&*BBI] = N;
2251       }
2252       // Insert the new instruction into its new home.
2253       if (N)
2254         EdgeBB->getInstList().insert(InsertPt, N);
2255 
2256       // Register the new instruction with the assumption cache if necessary.
2257       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2258         if (II->getIntrinsicID() == Intrinsic::assume)
2259           AC->registerAssumption(II);
2260     }
2261 
2262     // Loop over all of the edges from PredBB to BB, changing them to branch
2263     // to EdgeBB instead.
2264     Instruction *PredBBTI = PredBB->getTerminator();
2265     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2266       if (PredBBTI->getSuccessor(i) == BB) {
2267         BB->removePredecessor(PredBB);
2268         PredBBTI->setSuccessor(i, EdgeBB);
2269       }
2270 
2271     // Recurse, simplifying any other constants.
2272     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2273   }
2274 
2275   return false;
2276 }
2277 
2278 /// Given a BB that starts with the specified two-entry PHI node,
2279 /// see if we can eliminate it.
2280 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2281                                 const DataLayout &DL) {
2282   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2283   // statement", which has a very simple dominance structure.  Basically, we
2284   // are trying to find the condition that is being branched on, which
2285   // subsequently causes this merge to happen.  We really want control
2286   // dependence information for this check, but simplifycfg can't keep it up
2287   // to date, and this catches most of the cases we care about anyway.
2288   BasicBlock *BB = PN->getParent();
2289   const Function *Fn = BB->getParent();
2290   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2291     return false;
2292 
2293   BasicBlock *IfTrue, *IfFalse;
2294   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2295   if (!IfCond ||
2296       // Don't bother if the branch will be constant folded trivially.
2297       isa<ConstantInt>(IfCond))
2298     return false;
2299 
2300   // Okay, we found that we can merge this two-entry phi node into a select.
2301   // Doing so would require us to fold *all* two entry phi nodes in this block.
2302   // At some point this becomes non-profitable (particularly if the target
2303   // doesn't support cmov's).  Only do this transformation if there are two or
2304   // fewer PHI nodes in this block.
2305   unsigned NumPhis = 0;
2306   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2307     if (NumPhis > 2)
2308       return false;
2309 
2310   // Loop over the PHI's seeing if we can promote them all to select
2311   // instructions.  While we are at it, keep track of the instructions
2312   // that need to be moved to the dominating block.
2313   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2314   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2315            MaxCostVal1 = PHINodeFoldingThreshold;
2316   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2317   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2318 
2319   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2320     PHINode *PN = cast<PHINode>(II++);
2321     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2322       PN->replaceAllUsesWith(V);
2323       PN->eraseFromParent();
2324       continue;
2325     }
2326 
2327     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2328                              MaxCostVal0, TTI) ||
2329         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2330                              MaxCostVal1, TTI))
2331       return false;
2332   }
2333 
2334   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2335   // we ran out of PHIs then we simplified them all.
2336   PN = dyn_cast<PHINode>(BB->begin());
2337   if (!PN)
2338     return true;
2339 
2340   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2341   // often be turned into switches and other things.
2342   if (PN->getType()->isIntegerTy(1) &&
2343       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2344        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2345        isa<BinaryOperator>(IfCond)))
2346     return false;
2347 
2348   // If all PHI nodes are promotable, check to make sure that all instructions
2349   // in the predecessor blocks can be promoted as well. If not, we won't be able
2350   // to get rid of the control flow, so it's not worth promoting to select
2351   // instructions.
2352   BasicBlock *DomBlock = nullptr;
2353   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2354   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2355   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2356     IfBlock1 = nullptr;
2357   } else {
2358     DomBlock = *pred_begin(IfBlock1);
2359     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2360       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2361         // This is not an aggressive instruction that we can promote.
2362         // Because of this, we won't be able to get rid of the control flow, so
2363         // the xform is not worth it.
2364         return false;
2365       }
2366   }
2367 
2368   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2369     IfBlock2 = nullptr;
2370   } else {
2371     DomBlock = *pred_begin(IfBlock2);
2372     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2373       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2374         // This is not an aggressive instruction that we can promote.
2375         // Because of this, we won't be able to get rid of the control flow, so
2376         // the xform is not worth it.
2377         return false;
2378       }
2379   }
2380 
2381   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2382                     << "  T: " << IfTrue->getName()
2383                     << "  F: " << IfFalse->getName() << "\n");
2384 
2385   // If we can still promote the PHI nodes after this gauntlet of tests,
2386   // do all of the PHI's now.
2387   Instruction *InsertPt = DomBlock->getTerminator();
2388   IRBuilder<NoFolder> Builder(InsertPt);
2389 
2390   // Move all 'aggressive' instructions, which are defined in the
2391   // conditional parts of the if's up to the dominating block.
2392   if (IfBlock1)
2393     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2394   if (IfBlock2)
2395     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2396 
2397   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2398     // Change the PHI node into a select instruction.
2399     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2400     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2401 
2402     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2403     PN->replaceAllUsesWith(Sel);
2404     Sel->takeName(PN);
2405     PN->eraseFromParent();
2406   }
2407 
2408   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2409   // has been flattened.  Change DomBlock to jump directly to our new block to
2410   // avoid other simplifycfg's kicking in on the diamond.
2411   Instruction *OldTI = DomBlock->getTerminator();
2412   Builder.SetInsertPoint(OldTI);
2413   Builder.CreateBr(BB);
2414   OldTI->eraseFromParent();
2415   return true;
2416 }
2417 
2418 /// If we found a conditional branch that goes to two returning blocks,
2419 /// try to merge them together into one return,
2420 /// introducing a select if the return values disagree.
2421 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2422                                            IRBuilder<> &Builder) {
2423   assert(BI->isConditional() && "Must be a conditional branch");
2424   BasicBlock *TrueSucc = BI->getSuccessor(0);
2425   BasicBlock *FalseSucc = BI->getSuccessor(1);
2426   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2427   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2428 
2429   // Check to ensure both blocks are empty (just a return) or optionally empty
2430   // with PHI nodes.  If there are other instructions, merging would cause extra
2431   // computation on one path or the other.
2432   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2433     return false;
2434   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2435     return false;
2436 
2437   Builder.SetInsertPoint(BI);
2438   // Okay, we found a branch that is going to two return nodes.  If
2439   // there is no return value for this function, just change the
2440   // branch into a return.
2441   if (FalseRet->getNumOperands() == 0) {
2442     TrueSucc->removePredecessor(BI->getParent());
2443     FalseSucc->removePredecessor(BI->getParent());
2444     Builder.CreateRetVoid();
2445     EraseTerminatorAndDCECond(BI);
2446     return true;
2447   }
2448 
2449   // Otherwise, figure out what the true and false return values are
2450   // so we can insert a new select instruction.
2451   Value *TrueValue = TrueRet->getReturnValue();
2452   Value *FalseValue = FalseRet->getReturnValue();
2453 
2454   // Unwrap any PHI nodes in the return blocks.
2455   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2456     if (TVPN->getParent() == TrueSucc)
2457       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2458   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2459     if (FVPN->getParent() == FalseSucc)
2460       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2461 
2462   // In order for this transformation to be safe, we must be able to
2463   // unconditionally execute both operands to the return.  This is
2464   // normally the case, but we could have a potentially-trapping
2465   // constant expression that prevents this transformation from being
2466   // safe.
2467   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2468     if (TCV->canTrap())
2469       return false;
2470   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2471     if (FCV->canTrap())
2472       return false;
2473 
2474   // Okay, we collected all the mapped values and checked them for sanity, and
2475   // defined to really do this transformation.  First, update the CFG.
2476   TrueSucc->removePredecessor(BI->getParent());
2477   FalseSucc->removePredecessor(BI->getParent());
2478 
2479   // Insert select instructions where needed.
2480   Value *BrCond = BI->getCondition();
2481   if (TrueValue) {
2482     // Insert a select if the results differ.
2483     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2484     } else if (isa<UndefValue>(TrueValue)) {
2485       TrueValue = FalseValue;
2486     } else {
2487       TrueValue =
2488           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2489     }
2490   }
2491 
2492   Value *RI =
2493       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2494 
2495   (void)RI;
2496 
2497   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2498                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2499                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2500 
2501   EraseTerminatorAndDCECond(BI);
2502 
2503   return true;
2504 }
2505 
2506 /// Return true if the given instruction is available
2507 /// in its predecessor block. If yes, the instruction will be removed.
2508 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2509   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2510     return false;
2511   for (Instruction &I : *PB) {
2512     Instruction *PBI = &I;
2513     // Check whether Inst and PBI generate the same value.
2514     if (Inst->isIdenticalTo(PBI)) {
2515       Inst->replaceAllUsesWith(PBI);
2516       Inst->eraseFromParent();
2517       return true;
2518     }
2519   }
2520   return false;
2521 }
2522 
2523 /// Return true if either PBI or BI has branch weight available, and store
2524 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2525 /// not have branch weight, use 1:1 as its weight.
2526 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2527                                    uint64_t &PredTrueWeight,
2528                                    uint64_t &PredFalseWeight,
2529                                    uint64_t &SuccTrueWeight,
2530                                    uint64_t &SuccFalseWeight) {
2531   bool PredHasWeights =
2532       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2533   bool SuccHasWeights =
2534       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2535   if (PredHasWeights || SuccHasWeights) {
2536     if (!PredHasWeights)
2537       PredTrueWeight = PredFalseWeight = 1;
2538     if (!SuccHasWeights)
2539       SuccTrueWeight = SuccFalseWeight = 1;
2540     return true;
2541   } else {
2542     return false;
2543   }
2544 }
2545 
2546 /// If this basic block is simple enough, and if a predecessor branches to us
2547 /// and one of our successors, fold the block into the predecessor and use
2548 /// logical operations to pick the right destination.
2549 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2550   BasicBlock *BB = BI->getParent();
2551 
2552   const unsigned PredCount = pred_size(BB);
2553 
2554   Instruction *Cond = nullptr;
2555   if (BI->isConditional())
2556     Cond = dyn_cast<Instruction>(BI->getCondition());
2557   else {
2558     // For unconditional branch, check for a simple CFG pattern, where
2559     // BB has a single predecessor and BB's successor is also its predecessor's
2560     // successor. If such pattern exists, check for CSE between BB and its
2561     // predecessor.
2562     if (BasicBlock *PB = BB->getSinglePredecessor())
2563       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2564         if (PBI->isConditional() &&
2565             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2566              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2567           for (auto I = BB->instructionsWithoutDebug().begin(),
2568                     E = BB->instructionsWithoutDebug().end();
2569                I != E;) {
2570             Instruction *Curr = &*I++;
2571             if (isa<CmpInst>(Curr)) {
2572               Cond = Curr;
2573               break;
2574             }
2575             // Quit if we can't remove this instruction.
2576             if (!tryCSEWithPredecessor(Curr, PB))
2577               return false;
2578           }
2579         }
2580 
2581     if (!Cond)
2582       return false;
2583   }
2584 
2585   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2586       Cond->getParent() != BB || !Cond->hasOneUse())
2587     return false;
2588 
2589   // Make sure the instruction after the condition is the cond branch.
2590   BasicBlock::iterator CondIt = ++Cond->getIterator();
2591 
2592   // Ignore dbg intrinsics.
2593   while (isa<DbgInfoIntrinsic>(CondIt))
2594     ++CondIt;
2595 
2596   if (&*CondIt != BI)
2597     return false;
2598 
2599   // Only allow this transformation if computing the condition doesn't involve
2600   // too many instructions and these involved instructions can be executed
2601   // unconditionally. We denote all involved instructions except the condition
2602   // as "bonus instructions", and only allow this transformation when the
2603   // number of the bonus instructions we'll need to create when cloning into
2604   // each predecessor does not exceed a certain threshold.
2605   unsigned NumBonusInsts = 0;
2606   for (auto I = BB->begin(); Cond != &*I; ++I) {
2607     // Ignore dbg intrinsics.
2608     if (isa<DbgInfoIntrinsic>(I))
2609       continue;
2610     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2611       return false;
2612     // I has only one use and can be executed unconditionally.
2613     Instruction *User = dyn_cast<Instruction>(I->user_back());
2614     if (User == nullptr || User->getParent() != BB)
2615       return false;
2616     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2617     // to use any other instruction, User must be an instruction between next(I)
2618     // and Cond.
2619 
2620     // Account for the cost of duplicating this instruction into each
2621     // predecessor.
2622     NumBonusInsts += PredCount;
2623     // Early exits once we reach the limit.
2624     if (NumBonusInsts > BonusInstThreshold)
2625       return false;
2626   }
2627 
2628   // Cond is known to be a compare or binary operator.  Check to make sure that
2629   // neither operand is a potentially-trapping constant expression.
2630   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2631     if (CE->canTrap())
2632       return false;
2633   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2634     if (CE->canTrap())
2635       return false;
2636 
2637   // Finally, don't infinitely unroll conditional loops.
2638   BasicBlock *TrueDest = BI->getSuccessor(0);
2639   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2640   if (TrueDest == BB || FalseDest == BB)
2641     return false;
2642 
2643   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2644     BasicBlock *PredBlock = *PI;
2645     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2646 
2647     // Check that we have two conditional branches.  If there is a PHI node in
2648     // the common successor, verify that the same value flows in from both
2649     // blocks.
2650     SmallVector<PHINode *, 4> PHIs;
2651     if (!PBI || PBI->isUnconditional() ||
2652         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2653         (!BI->isConditional() &&
2654          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2655       continue;
2656 
2657     // Determine if the two branches share a common destination.
2658     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2659     bool InvertPredCond = false;
2660 
2661     if (BI->isConditional()) {
2662       if (PBI->getSuccessor(0) == TrueDest) {
2663         Opc = Instruction::Or;
2664       } else if (PBI->getSuccessor(1) == FalseDest) {
2665         Opc = Instruction::And;
2666       } else if (PBI->getSuccessor(0) == FalseDest) {
2667         Opc = Instruction::And;
2668         InvertPredCond = true;
2669       } else if (PBI->getSuccessor(1) == TrueDest) {
2670         Opc = Instruction::Or;
2671         InvertPredCond = true;
2672       } else {
2673         continue;
2674       }
2675     } else {
2676       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2677         continue;
2678     }
2679 
2680     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2681     IRBuilder<> Builder(PBI);
2682 
2683     // If we need to invert the condition in the pred block to match, do so now.
2684     if (InvertPredCond) {
2685       Value *NewCond = PBI->getCondition();
2686 
2687       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2688         CmpInst *CI = cast<CmpInst>(NewCond);
2689         CI->setPredicate(CI->getInversePredicate());
2690       } else {
2691         NewCond =
2692             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2693       }
2694 
2695       PBI->setCondition(NewCond);
2696       PBI->swapSuccessors();
2697     }
2698 
2699     // If we have bonus instructions, clone them into the predecessor block.
2700     // Note that there may be multiple predecessor blocks, so we cannot move
2701     // bonus instructions to a predecessor block.
2702     ValueToValueMapTy VMap; // maps original values to cloned values
2703     // We already make sure Cond is the last instruction before BI. Therefore,
2704     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2705     // instructions.
2706     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2707       if (isa<DbgInfoIntrinsic>(BonusInst))
2708         continue;
2709       Instruction *NewBonusInst = BonusInst->clone();
2710       RemapInstruction(NewBonusInst, VMap,
2711                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2712       VMap[&*BonusInst] = NewBonusInst;
2713 
2714       // If we moved a load, we cannot any longer claim any knowledge about
2715       // its potential value. The previous information might have been valid
2716       // only given the branch precondition.
2717       // For an analogous reason, we must also drop all the metadata whose
2718       // semantics we don't understand.
2719       NewBonusInst->dropUnknownNonDebugMetadata();
2720 
2721       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2722       NewBonusInst->takeName(&*BonusInst);
2723       BonusInst->setName(BonusInst->getName() + ".old");
2724     }
2725 
2726     // Clone Cond into the predecessor basic block, and or/and the
2727     // two conditions together.
2728     Instruction *CondInPred = Cond->clone();
2729     RemapInstruction(CondInPred, VMap,
2730                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2731     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2732     CondInPred->takeName(Cond);
2733     Cond->setName(CondInPred->getName() + ".old");
2734 
2735     if (BI->isConditional()) {
2736       Instruction *NewCond = cast<Instruction>(
2737           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2738       PBI->setCondition(NewCond);
2739 
2740       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2741       bool HasWeights =
2742           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2743                                  SuccTrueWeight, SuccFalseWeight);
2744       SmallVector<uint64_t, 8> NewWeights;
2745 
2746       if (PBI->getSuccessor(0) == BB) {
2747         if (HasWeights) {
2748           // PBI: br i1 %x, BB, FalseDest
2749           // BI:  br i1 %y, TrueDest, FalseDest
2750           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2751           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2752           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2753           //               TrueWeight for PBI * FalseWeight for BI.
2754           // We assume that total weights of a BranchInst can fit into 32 bits.
2755           // Therefore, we will not have overflow using 64-bit arithmetic.
2756           NewWeights.push_back(PredFalseWeight *
2757                                    (SuccFalseWeight + SuccTrueWeight) +
2758                                PredTrueWeight * SuccFalseWeight);
2759         }
2760         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2761         PBI->setSuccessor(0, TrueDest);
2762       }
2763       if (PBI->getSuccessor(1) == BB) {
2764         if (HasWeights) {
2765           // PBI: br i1 %x, TrueDest, BB
2766           // BI:  br i1 %y, TrueDest, FalseDest
2767           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2768           //              FalseWeight for PBI * TrueWeight for BI.
2769           NewWeights.push_back(PredTrueWeight *
2770                                    (SuccFalseWeight + SuccTrueWeight) +
2771                                PredFalseWeight * SuccTrueWeight);
2772           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2773           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2774         }
2775         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2776         PBI->setSuccessor(1, FalseDest);
2777       }
2778       if (NewWeights.size() == 2) {
2779         // Halve the weights if any of them cannot fit in an uint32_t
2780         FitWeights(NewWeights);
2781 
2782         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2783                                            NewWeights.end());
2784         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2785       } else
2786         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2787     } else {
2788       // Update PHI nodes in the common successors.
2789       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2790         ConstantInt *PBI_C = cast<ConstantInt>(
2791             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2792         assert(PBI_C->getType()->isIntegerTy(1));
2793         Instruction *MergedCond = nullptr;
2794         if (PBI->getSuccessor(0) == TrueDest) {
2795           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2796           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2797           //       is false: !PBI_Cond and BI_Value
2798           Instruction *NotCond = cast<Instruction>(
2799               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2800           MergedCond = cast<Instruction>(
2801                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2802                                    "and.cond"));
2803           if (PBI_C->isOne())
2804             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2805                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2806         } else {
2807           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2808           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2809           //       is false: PBI_Cond and BI_Value
2810           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2811               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2812           if (PBI_C->isOne()) {
2813             Instruction *NotCond = cast<Instruction>(
2814                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2815             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2816                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2817           }
2818         }
2819         // Update PHI Node.
2820         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2821                                   MergedCond);
2822       }
2823       // Change PBI from Conditional to Unconditional.
2824       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2825       EraseTerminatorAndDCECond(PBI);
2826       PBI = New_PBI;
2827     }
2828 
2829     // If BI was a loop latch, it may have had associated loop metadata.
2830     // We need to copy it to the new latch, that is, PBI.
2831     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2832       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2833 
2834     // TODO: If BB is reachable from all paths through PredBlock, then we
2835     // could replace PBI's branch probabilities with BI's.
2836 
2837     // Copy any debug value intrinsics into the end of PredBlock.
2838     for (Instruction &I : *BB)
2839       if (isa<DbgInfoIntrinsic>(I))
2840         I.clone()->insertBefore(PBI);
2841 
2842     return true;
2843   }
2844   return false;
2845 }
2846 
2847 // If there is only one store in BB1 and BB2, return it, otherwise return
2848 // nullptr.
2849 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2850   StoreInst *S = nullptr;
2851   for (auto *BB : {BB1, BB2}) {
2852     if (!BB)
2853       continue;
2854     for (auto &I : *BB)
2855       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2856         if (S)
2857           // Multiple stores seen.
2858           return nullptr;
2859         else
2860           S = SI;
2861       }
2862   }
2863   return S;
2864 }
2865 
2866 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2867                                               Value *AlternativeV = nullptr) {
2868   // PHI is going to be a PHI node that allows the value V that is defined in
2869   // BB to be referenced in BB's only successor.
2870   //
2871   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2872   // doesn't matter to us what the other operand is (it'll never get used). We
2873   // could just create a new PHI with an undef incoming value, but that could
2874   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2875   // other PHI. So here we directly look for some PHI in BB's successor with V
2876   // as an incoming operand. If we find one, we use it, else we create a new
2877   // one.
2878   //
2879   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2880   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2881   // where OtherBB is the single other predecessor of BB's only successor.
2882   PHINode *PHI = nullptr;
2883   BasicBlock *Succ = BB->getSingleSuccessor();
2884 
2885   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2886     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2887       PHI = cast<PHINode>(I);
2888       if (!AlternativeV)
2889         break;
2890 
2891       assert(Succ->hasNPredecessors(2));
2892       auto PredI = pred_begin(Succ);
2893       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2894       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2895         break;
2896       PHI = nullptr;
2897     }
2898   if (PHI)
2899     return PHI;
2900 
2901   // If V is not an instruction defined in BB, just return it.
2902   if (!AlternativeV &&
2903       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2904     return V;
2905 
2906   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2907   PHI->addIncoming(V, BB);
2908   for (BasicBlock *PredBB : predecessors(Succ))
2909     if (PredBB != BB)
2910       PHI->addIncoming(
2911           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2912   return PHI;
2913 }
2914 
2915 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2916                                            BasicBlock *QTB, BasicBlock *QFB,
2917                                            BasicBlock *PostBB, Value *Address,
2918                                            bool InvertPCond, bool InvertQCond,
2919                                            const DataLayout &DL) {
2920   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2921     return Operator::getOpcode(&I) == Instruction::BitCast &&
2922            I.getType()->isPointerTy();
2923   };
2924 
2925   // If we're not in aggressive mode, we only optimize if we have some
2926   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2927   auto IsWorthwhile = [&](BasicBlock *BB) {
2928     if (!BB)
2929       return true;
2930     // Heuristic: if the block can be if-converted/phi-folded and the
2931     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2932     // thread this store.
2933     unsigned N = 0;
2934     for (auto &I : BB->instructionsWithoutDebug()) {
2935       // Cheap instructions viable for folding.
2936       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2937           isa<StoreInst>(I))
2938         ++N;
2939       // Free instructions.
2940       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2941         continue;
2942       else
2943         return false;
2944     }
2945     // The store we want to merge is counted in N, so add 1 to make sure
2946     // we're counting the instructions that would be left.
2947     return N <= (PHINodeFoldingThreshold + 1);
2948   };
2949 
2950   if (!MergeCondStoresAggressively &&
2951       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2952        !IsWorthwhile(QFB)))
2953     return false;
2954 
2955   // For every pointer, there must be exactly two stores, one coming from
2956   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2957   // store (to any address) in PTB,PFB or QTB,QFB.
2958   // FIXME: We could relax this restriction with a bit more work and performance
2959   // testing.
2960   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2961   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2962   if (!PStore || !QStore)
2963     return false;
2964 
2965   // Now check the stores are compatible.
2966   if (!QStore->isUnordered() || !PStore->isUnordered())
2967     return false;
2968 
2969   // Check that sinking the store won't cause program behavior changes. Sinking
2970   // the store out of the Q blocks won't change any behavior as we're sinking
2971   // from a block to its unconditional successor. But we're moving a store from
2972   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2973   // So we need to check that there are no aliasing loads or stores in
2974   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2975   // operations between PStore and the end of its parent block.
2976   //
2977   // The ideal way to do this is to query AliasAnalysis, but we don't
2978   // preserve AA currently so that is dangerous. Be super safe and just
2979   // check there are no other memory operations at all.
2980   for (auto &I : *QFB->getSinglePredecessor())
2981     if (I.mayReadOrWriteMemory())
2982       return false;
2983   for (auto &I : *QFB)
2984     if (&I != QStore && I.mayReadOrWriteMemory())
2985       return false;
2986   if (QTB)
2987     for (auto &I : *QTB)
2988       if (&I != QStore && I.mayReadOrWriteMemory())
2989         return false;
2990   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2991        I != E; ++I)
2992     if (&*I != PStore && I->mayReadOrWriteMemory())
2993       return false;
2994 
2995   // If PostBB has more than two predecessors, we need to split it so we can
2996   // sink the store.
2997   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2998     // We know that QFB's only successor is PostBB. And QFB has a single
2999     // predecessor. If QTB exists, then its only successor is also PostBB.
3000     // If QTB does not exist, then QFB's only predecessor has a conditional
3001     // branch to QFB and PostBB.
3002     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3003     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3004                                                "condstore.split");
3005     if (!NewBB)
3006       return false;
3007     PostBB = NewBB;
3008   }
3009 
3010   // OK, we're going to sink the stores to PostBB. The store has to be
3011   // conditional though, so first create the predicate.
3012   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3013                      ->getCondition();
3014   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3015                      ->getCondition();
3016 
3017   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3018                                                 PStore->getParent());
3019   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3020                                                 QStore->getParent(), PPHI);
3021 
3022   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3023 
3024   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3025   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3026 
3027   if (InvertPCond)
3028     PPred = QB.CreateNot(PPred);
3029   if (InvertQCond)
3030     QPred = QB.CreateNot(QPred);
3031   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3032 
3033   auto *T =
3034       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3035   QB.SetInsertPoint(T);
3036   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3037   AAMDNodes AAMD;
3038   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3039   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3040   SI->setAAMetadata(AAMD);
3041   unsigned PAlignment = PStore->getAlignment();
3042   unsigned QAlignment = QStore->getAlignment();
3043   unsigned TypeAlignment =
3044       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3045   unsigned MinAlignment;
3046   unsigned MaxAlignment;
3047   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3048   // Choose the minimum alignment. If we could prove both stores execute, we
3049   // could use biggest one.  In this case, though, we only know that one of the
3050   // stores executes.  And we don't know it's safe to take the alignment from a
3051   // store that doesn't execute.
3052   if (MinAlignment != 0) {
3053     // Choose the minimum of all non-zero alignments.
3054     SI->setAlignment(MinAlignment);
3055   } else if (MaxAlignment != 0) {
3056     // Choose the minimal alignment between the non-zero alignment and the ABI
3057     // default alignment for the type of the stored value.
3058     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3059   } else {
3060     // If both alignments are zero, use ABI default alignment for the type of
3061     // the stored value.
3062     SI->setAlignment(TypeAlignment);
3063   }
3064 
3065   QStore->eraseFromParent();
3066   PStore->eraseFromParent();
3067 
3068   return true;
3069 }
3070 
3071 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3072                                    const DataLayout &DL) {
3073   // The intention here is to find diamonds or triangles (see below) where each
3074   // conditional block contains a store to the same address. Both of these
3075   // stores are conditional, so they can't be unconditionally sunk. But it may
3076   // be profitable to speculatively sink the stores into one merged store at the
3077   // end, and predicate the merged store on the union of the two conditions of
3078   // PBI and QBI.
3079   //
3080   // This can reduce the number of stores executed if both of the conditions are
3081   // true, and can allow the blocks to become small enough to be if-converted.
3082   // This optimization will also chain, so that ladders of test-and-set
3083   // sequences can be if-converted away.
3084   //
3085   // We only deal with simple diamonds or triangles:
3086   //
3087   //     PBI       or      PBI        or a combination of the two
3088   //    /   \               | \
3089   //   PTB  PFB             |  PFB
3090   //    \   /               | /
3091   //     QBI                QBI
3092   //    /  \                | \
3093   //   QTB  QFB             |  QFB
3094   //    \  /                | /
3095   //    PostBB            PostBB
3096   //
3097   // We model triangles as a type of diamond with a nullptr "true" block.
3098   // Triangles are canonicalized so that the fallthrough edge is represented by
3099   // a true condition, as in the diagram above.
3100   BasicBlock *PTB = PBI->getSuccessor(0);
3101   BasicBlock *PFB = PBI->getSuccessor(1);
3102   BasicBlock *QTB = QBI->getSuccessor(0);
3103   BasicBlock *QFB = QBI->getSuccessor(1);
3104   BasicBlock *PostBB = QFB->getSingleSuccessor();
3105 
3106   // Make sure we have a good guess for PostBB. If QTB's only successor is
3107   // QFB, then QFB is a better PostBB.
3108   if (QTB->getSingleSuccessor() == QFB)
3109     PostBB = QFB;
3110 
3111   // If we couldn't find a good PostBB, stop.
3112   if (!PostBB)
3113     return false;
3114 
3115   bool InvertPCond = false, InvertQCond = false;
3116   // Canonicalize fallthroughs to the true branches.
3117   if (PFB == QBI->getParent()) {
3118     std::swap(PFB, PTB);
3119     InvertPCond = true;
3120   }
3121   if (QFB == PostBB) {
3122     std::swap(QFB, QTB);
3123     InvertQCond = true;
3124   }
3125 
3126   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3127   // and QFB may not. Model fallthroughs as a nullptr block.
3128   if (PTB == QBI->getParent())
3129     PTB = nullptr;
3130   if (QTB == PostBB)
3131     QTB = nullptr;
3132 
3133   // Legality bailouts. We must have at least the non-fallthrough blocks and
3134   // the post-dominating block, and the non-fallthroughs must only have one
3135   // predecessor.
3136   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3137     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3138   };
3139   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3140       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3141     return false;
3142   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3143       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3144     return false;
3145   if (!QBI->getParent()->hasNUses(2))
3146     return false;
3147 
3148   // OK, this is a sequence of two diamonds or triangles.
3149   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3150   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3151   for (auto *BB : {PTB, PFB}) {
3152     if (!BB)
3153       continue;
3154     for (auto &I : *BB)
3155       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3156         PStoreAddresses.insert(SI->getPointerOperand());
3157   }
3158   for (auto *BB : {QTB, QFB}) {
3159     if (!BB)
3160       continue;
3161     for (auto &I : *BB)
3162       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3163         QStoreAddresses.insert(SI->getPointerOperand());
3164   }
3165 
3166   set_intersect(PStoreAddresses, QStoreAddresses);
3167   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3168   // clear what it contains.
3169   auto &CommonAddresses = PStoreAddresses;
3170 
3171   bool Changed = false;
3172   for (auto *Address : CommonAddresses)
3173     Changed |= mergeConditionalStoreToAddress(
3174         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3175   return Changed;
3176 }
3177 
3178 /// If we have a conditional branch as a predecessor of another block,
3179 /// this function tries to simplify it.  We know
3180 /// that PBI and BI are both conditional branches, and BI is in one of the
3181 /// successor blocks of PBI - PBI branches to BI.
3182 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3183                                            const DataLayout &DL) {
3184   assert(PBI->isConditional() && BI->isConditional());
3185   BasicBlock *BB = BI->getParent();
3186 
3187   // If this block ends with a branch instruction, and if there is a
3188   // predecessor that ends on a branch of the same condition, make
3189   // this conditional branch redundant.
3190   if (PBI->getCondition() == BI->getCondition() &&
3191       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3192     // Okay, the outcome of this conditional branch is statically
3193     // knowable.  If this block had a single pred, handle specially.
3194     if (BB->getSinglePredecessor()) {
3195       // Turn this into a branch on constant.
3196       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3197       BI->setCondition(
3198           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3199       return true; // Nuke the branch on constant.
3200     }
3201 
3202     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3203     // in the constant and simplify the block result.  Subsequent passes of
3204     // simplifycfg will thread the block.
3205     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3206       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3207       PHINode *NewPN = PHINode::Create(
3208           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3209           BI->getCondition()->getName() + ".pr", &BB->front());
3210       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3211       // predecessor, compute the PHI'd conditional value for all of the preds.
3212       // Any predecessor where the condition is not computable we keep symbolic.
3213       for (pred_iterator PI = PB; PI != PE; ++PI) {
3214         BasicBlock *P = *PI;
3215         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3216             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3217             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3218           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3219           NewPN->addIncoming(
3220               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3221               P);
3222         } else {
3223           NewPN->addIncoming(BI->getCondition(), P);
3224         }
3225       }
3226 
3227       BI->setCondition(NewPN);
3228       return true;
3229     }
3230   }
3231 
3232   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3233     if (CE->canTrap())
3234       return false;
3235 
3236   // If both branches are conditional and both contain stores to the same
3237   // address, remove the stores from the conditionals and create a conditional
3238   // merged store at the end.
3239   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3240     return true;
3241 
3242   // If this is a conditional branch in an empty block, and if any
3243   // predecessors are a conditional branch to one of our destinations,
3244   // fold the conditions into logical ops and one cond br.
3245 
3246   // Ignore dbg intrinsics.
3247   if (&*BB->instructionsWithoutDebug().begin() != BI)
3248     return false;
3249 
3250   int PBIOp, BIOp;
3251   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3252     PBIOp = 0;
3253     BIOp = 0;
3254   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3255     PBIOp = 0;
3256     BIOp = 1;
3257   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3258     PBIOp = 1;
3259     BIOp = 0;
3260   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3261     PBIOp = 1;
3262     BIOp = 1;
3263   } else {
3264     return false;
3265   }
3266 
3267   // Check to make sure that the other destination of this branch
3268   // isn't BB itself.  If so, this is an infinite loop that will
3269   // keep getting unwound.
3270   if (PBI->getSuccessor(PBIOp) == BB)
3271     return false;
3272 
3273   // Do not perform this transformation if it would require
3274   // insertion of a large number of select instructions. For targets
3275   // without predication/cmovs, this is a big pessimization.
3276 
3277   // Also do not perform this transformation if any phi node in the common
3278   // destination block can trap when reached by BB or PBB (PR17073). In that
3279   // case, it would be unsafe to hoist the operation into a select instruction.
3280 
3281   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3282   unsigned NumPhis = 0;
3283   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3284        ++II, ++NumPhis) {
3285     if (NumPhis > 2) // Disable this xform.
3286       return false;
3287 
3288     PHINode *PN = cast<PHINode>(II);
3289     Value *BIV = PN->getIncomingValueForBlock(BB);
3290     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3291       if (CE->canTrap())
3292         return false;
3293 
3294     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3295     Value *PBIV = PN->getIncomingValue(PBBIdx);
3296     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3297       if (CE->canTrap())
3298         return false;
3299   }
3300 
3301   // Finally, if everything is ok, fold the branches to logical ops.
3302   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3303 
3304   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3305                     << "AND: " << *BI->getParent());
3306 
3307   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3308   // branch in it, where one edge (OtherDest) goes back to itself but the other
3309   // exits.  We don't *know* that the program avoids the infinite loop
3310   // (even though that seems likely).  If we do this xform naively, we'll end up
3311   // recursively unpeeling the loop.  Since we know that (after the xform is
3312   // done) that the block *is* infinite if reached, we just make it an obviously
3313   // infinite loop with no cond branch.
3314   if (OtherDest == BB) {
3315     // Insert it at the end of the function, because it's either code,
3316     // or it won't matter if it's hot. :)
3317     BasicBlock *InfLoopBlock =
3318         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3319     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3320     OtherDest = InfLoopBlock;
3321   }
3322 
3323   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3324 
3325   // BI may have other predecessors.  Because of this, we leave
3326   // it alone, but modify PBI.
3327 
3328   // Make sure we get to CommonDest on True&True directions.
3329   Value *PBICond = PBI->getCondition();
3330   IRBuilder<NoFolder> Builder(PBI);
3331   if (PBIOp)
3332     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3333 
3334   Value *BICond = BI->getCondition();
3335   if (BIOp)
3336     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3337 
3338   // Merge the conditions.
3339   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3340 
3341   // Modify PBI to branch on the new condition to the new dests.
3342   PBI->setCondition(Cond);
3343   PBI->setSuccessor(0, CommonDest);
3344   PBI->setSuccessor(1, OtherDest);
3345 
3346   // Update branch weight for PBI.
3347   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3348   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3349   bool HasWeights =
3350       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3351                              SuccTrueWeight, SuccFalseWeight);
3352   if (HasWeights) {
3353     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3354     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3355     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3356     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3357     // The weight to CommonDest should be PredCommon * SuccTotal +
3358     //                                    PredOther * SuccCommon.
3359     // The weight to OtherDest should be PredOther * SuccOther.
3360     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3361                                   PredOther * SuccCommon,
3362                               PredOther * SuccOther};
3363     // Halve the weights if any of them cannot fit in an uint32_t
3364     FitWeights(NewWeights);
3365 
3366     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3367   }
3368 
3369   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3370   // block that are identical to the entries for BI's block.
3371   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3372 
3373   // We know that the CommonDest already had an edge from PBI to
3374   // it.  If it has PHIs though, the PHIs may have different
3375   // entries for BB and PBI's BB.  If so, insert a select to make
3376   // them agree.
3377   for (PHINode &PN : CommonDest->phis()) {
3378     Value *BIV = PN.getIncomingValueForBlock(BB);
3379     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3380     Value *PBIV = PN.getIncomingValue(PBBIdx);
3381     if (BIV != PBIV) {
3382       // Insert a select in PBI to pick the right value.
3383       SelectInst *NV = cast<SelectInst>(
3384           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3385       PN.setIncomingValue(PBBIdx, NV);
3386       // Although the select has the same condition as PBI, the original branch
3387       // weights for PBI do not apply to the new select because the select's
3388       // 'logical' edges are incoming edges of the phi that is eliminated, not
3389       // the outgoing edges of PBI.
3390       if (HasWeights) {
3391         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3392         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3393         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3394         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3395         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3396         // The weight to PredOtherDest should be PredOther * SuccCommon.
3397         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3398                                   PredOther * SuccCommon};
3399 
3400         FitWeights(NewWeights);
3401 
3402         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3403       }
3404     }
3405   }
3406 
3407   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3408   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3409 
3410   // This basic block is probably dead.  We know it has at least
3411   // one fewer predecessor.
3412   return true;
3413 }
3414 
3415 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3416 // true or to FalseBB if Cond is false.
3417 // Takes care of updating the successors and removing the old terminator.
3418 // Also makes sure not to introduce new successors by assuming that edges to
3419 // non-successor TrueBBs and FalseBBs aren't reachable.
3420 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3421                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3422                                        uint32_t TrueWeight,
3423                                        uint32_t FalseWeight) {
3424   // Remove any superfluous successor edges from the CFG.
3425   // First, figure out which successors to preserve.
3426   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3427   // successor.
3428   BasicBlock *KeepEdge1 = TrueBB;
3429   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3430 
3431   // Then remove the rest.
3432   for (BasicBlock *Succ : successors(OldTerm)) {
3433     // Make sure only to keep exactly one copy of each edge.
3434     if (Succ == KeepEdge1)
3435       KeepEdge1 = nullptr;
3436     else if (Succ == KeepEdge2)
3437       KeepEdge2 = nullptr;
3438     else
3439       Succ->removePredecessor(OldTerm->getParent(),
3440                               /*KeepOneInputPHIs=*/true);
3441   }
3442 
3443   IRBuilder<> Builder(OldTerm);
3444   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3445 
3446   // Insert an appropriate new terminator.
3447   if (!KeepEdge1 && !KeepEdge2) {
3448     if (TrueBB == FalseBB)
3449       // We were only looking for one successor, and it was present.
3450       // Create an unconditional branch to it.
3451       Builder.CreateBr(TrueBB);
3452     else {
3453       // We found both of the successors we were looking for.
3454       // Create a conditional branch sharing the condition of the select.
3455       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3456       if (TrueWeight != FalseWeight)
3457         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3458     }
3459   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3460     // Neither of the selected blocks were successors, so this
3461     // terminator must be unreachable.
3462     new UnreachableInst(OldTerm->getContext(), OldTerm);
3463   } else {
3464     // One of the selected values was a successor, but the other wasn't.
3465     // Insert an unconditional branch to the one that was found;
3466     // the edge to the one that wasn't must be unreachable.
3467     if (!KeepEdge1)
3468       // Only TrueBB was found.
3469       Builder.CreateBr(TrueBB);
3470     else
3471       // Only FalseBB was found.
3472       Builder.CreateBr(FalseBB);
3473   }
3474 
3475   EraseTerminatorAndDCECond(OldTerm);
3476   return true;
3477 }
3478 
3479 // Replaces
3480 //   (switch (select cond, X, Y)) on constant X, Y
3481 // with a branch - conditional if X and Y lead to distinct BBs,
3482 // unconditional otherwise.
3483 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3484   // Check for constant integer values in the select.
3485   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3486   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3487   if (!TrueVal || !FalseVal)
3488     return false;
3489 
3490   // Find the relevant condition and destinations.
3491   Value *Condition = Select->getCondition();
3492   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3493   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3494 
3495   // Get weight for TrueBB and FalseBB.
3496   uint32_t TrueWeight = 0, FalseWeight = 0;
3497   SmallVector<uint64_t, 8> Weights;
3498   bool HasWeights = HasBranchWeights(SI);
3499   if (HasWeights) {
3500     GetBranchWeights(SI, Weights);
3501     if (Weights.size() == 1 + SI->getNumCases()) {
3502       TrueWeight =
3503           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3504       FalseWeight =
3505           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3506     }
3507   }
3508 
3509   // Perform the actual simplification.
3510   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3511                                     FalseWeight);
3512 }
3513 
3514 // Replaces
3515 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3516 //                             blockaddress(@fn, BlockB)))
3517 // with
3518 //   (br cond, BlockA, BlockB).
3519 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3520   // Check that both operands of the select are block addresses.
3521   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3522   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3523   if (!TBA || !FBA)
3524     return false;
3525 
3526   // Extract the actual blocks.
3527   BasicBlock *TrueBB = TBA->getBasicBlock();
3528   BasicBlock *FalseBB = FBA->getBasicBlock();
3529 
3530   // Perform the actual simplification.
3531   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3532                                     0);
3533 }
3534 
3535 /// This is called when we find an icmp instruction
3536 /// (a seteq/setne with a constant) as the only instruction in a
3537 /// block that ends with an uncond branch.  We are looking for a very specific
3538 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3539 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3540 /// default value goes to an uncond block with a seteq in it, we get something
3541 /// like:
3542 ///
3543 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3544 /// DEFAULT:
3545 ///   %tmp = icmp eq i8 %A, 92
3546 ///   br label %end
3547 /// end:
3548 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3549 ///
3550 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3551 /// the PHI, merging the third icmp into the switch.
3552 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3553     ICmpInst *ICI, IRBuilder<> &Builder) {
3554   BasicBlock *BB = ICI->getParent();
3555 
3556   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3557   // complex.
3558   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3559     return false;
3560 
3561   Value *V = ICI->getOperand(0);
3562   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3563 
3564   // The pattern we're looking for is where our only predecessor is a switch on
3565   // 'V' and this block is the default case for the switch.  In this case we can
3566   // fold the compared value into the switch to simplify things.
3567   BasicBlock *Pred = BB->getSinglePredecessor();
3568   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3569     return false;
3570 
3571   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3572   if (SI->getCondition() != V)
3573     return false;
3574 
3575   // If BB is reachable on a non-default case, then we simply know the value of
3576   // V in this block.  Substitute it and constant fold the icmp instruction
3577   // away.
3578   if (SI->getDefaultDest() != BB) {
3579     ConstantInt *VVal = SI->findCaseDest(BB);
3580     assert(VVal && "Should have a unique destination value");
3581     ICI->setOperand(0, VVal);
3582 
3583     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3584       ICI->replaceAllUsesWith(V);
3585       ICI->eraseFromParent();
3586     }
3587     // BB is now empty, so it is likely to simplify away.
3588     return requestResimplify();
3589   }
3590 
3591   // Ok, the block is reachable from the default dest.  If the constant we're
3592   // comparing exists in one of the other edges, then we can constant fold ICI
3593   // and zap it.
3594   if (SI->findCaseValue(Cst) != SI->case_default()) {
3595     Value *V;
3596     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3597       V = ConstantInt::getFalse(BB->getContext());
3598     else
3599       V = ConstantInt::getTrue(BB->getContext());
3600 
3601     ICI->replaceAllUsesWith(V);
3602     ICI->eraseFromParent();
3603     // BB is now empty, so it is likely to simplify away.
3604     return requestResimplify();
3605   }
3606 
3607   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3608   // the block.
3609   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3610   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3611   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3612       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3613     return false;
3614 
3615   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3616   // true in the PHI.
3617   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3618   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3619 
3620   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3621     std::swap(DefaultCst, NewCst);
3622 
3623   // Replace ICI (which is used by the PHI for the default value) with true or
3624   // false depending on if it is EQ or NE.
3625   ICI->replaceAllUsesWith(DefaultCst);
3626   ICI->eraseFromParent();
3627 
3628   // Okay, the switch goes to this block on a default value.  Add an edge from
3629   // the switch to the merge point on the compared value.
3630   BasicBlock *NewBB =
3631       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3632   SmallVector<uint64_t, 8> Weights;
3633   bool HasWeights = HasBranchWeights(SI);
3634   if (HasWeights) {
3635     GetBranchWeights(SI, Weights);
3636     if (Weights.size() == 1 + SI->getNumCases()) {
3637       // Split weight for default case to case for "Cst".
3638       Weights[0] = (Weights[0] + 1) >> 1;
3639       Weights.push_back(Weights[0]);
3640 
3641       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3642       setBranchWeights(SI, MDWeights);
3643     }
3644   }
3645   SI->addCase(Cst, NewBB);
3646 
3647   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3648   Builder.SetInsertPoint(NewBB);
3649   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3650   Builder.CreateBr(SuccBlock);
3651   PHIUse->addIncoming(NewCst, NewBB);
3652   return true;
3653 }
3654 
3655 /// The specified branch is a conditional branch.
3656 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3657 /// fold it into a switch instruction if so.
3658 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3659                                       const DataLayout &DL) {
3660   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3661   if (!Cond)
3662     return false;
3663 
3664   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3665   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3666   // 'setne's and'ed together, collect them.
3667 
3668   // Try to gather values from a chain of and/or to be turned into a switch
3669   ConstantComparesGatherer ConstantCompare(Cond, DL);
3670   // Unpack the result
3671   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3672   Value *CompVal = ConstantCompare.CompValue;
3673   unsigned UsedICmps = ConstantCompare.UsedICmps;
3674   Value *ExtraCase = ConstantCompare.Extra;
3675 
3676   // If we didn't have a multiply compared value, fail.
3677   if (!CompVal)
3678     return false;
3679 
3680   // Avoid turning single icmps into a switch.
3681   if (UsedICmps <= 1)
3682     return false;
3683 
3684   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3685 
3686   // There might be duplicate constants in the list, which the switch
3687   // instruction can't handle, remove them now.
3688   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3689   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3690 
3691   // If Extra was used, we require at least two switch values to do the
3692   // transformation.  A switch with one value is just a conditional branch.
3693   if (ExtraCase && Values.size() < 2)
3694     return false;
3695 
3696   // TODO: Preserve branch weight metadata, similarly to how
3697   // FoldValueComparisonIntoPredecessors preserves it.
3698 
3699   // Figure out which block is which destination.
3700   BasicBlock *DefaultBB = BI->getSuccessor(1);
3701   BasicBlock *EdgeBB = BI->getSuccessor(0);
3702   if (!TrueWhenEqual)
3703     std::swap(DefaultBB, EdgeBB);
3704 
3705   BasicBlock *BB = BI->getParent();
3706 
3707   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3708                     << " cases into SWITCH.  BB is:\n"
3709                     << *BB);
3710 
3711   // If there are any extra values that couldn't be folded into the switch
3712   // then we evaluate them with an explicit branch first.  Split the block
3713   // right before the condbr to handle it.
3714   if (ExtraCase) {
3715     BasicBlock *NewBB =
3716         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3717     // Remove the uncond branch added to the old block.
3718     Instruction *OldTI = BB->getTerminator();
3719     Builder.SetInsertPoint(OldTI);
3720 
3721     if (TrueWhenEqual)
3722       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3723     else
3724       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3725 
3726     OldTI->eraseFromParent();
3727 
3728     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3729     // for the edge we just added.
3730     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3731 
3732     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3733                       << "\nEXTRABB = " << *BB);
3734     BB = NewBB;
3735   }
3736 
3737   Builder.SetInsertPoint(BI);
3738   // Convert pointer to int before we switch.
3739   if (CompVal->getType()->isPointerTy()) {
3740     CompVal = Builder.CreatePtrToInt(
3741         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3742   }
3743 
3744   // Create the new switch instruction now.
3745   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3746 
3747   // Add all of the 'cases' to the switch instruction.
3748   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3749     New->addCase(Values[i], EdgeBB);
3750 
3751   // We added edges from PI to the EdgeBB.  As such, if there were any
3752   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3753   // the number of edges added.
3754   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3755     PHINode *PN = cast<PHINode>(BBI);
3756     Value *InVal = PN->getIncomingValueForBlock(BB);
3757     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3758       PN->addIncoming(InVal, BB);
3759   }
3760 
3761   // Erase the old branch instruction.
3762   EraseTerminatorAndDCECond(BI);
3763 
3764   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3765   return true;
3766 }
3767 
3768 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3769   if (isa<PHINode>(RI->getValue()))
3770     return SimplifyCommonResume(RI);
3771   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3772            RI->getValue() == RI->getParent()->getFirstNonPHI())
3773     // The resume must unwind the exception that caused control to branch here.
3774     return SimplifySingleResume(RI);
3775 
3776   return false;
3777 }
3778 
3779 // Simplify resume that is shared by several landing pads (phi of landing pad).
3780 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3781   BasicBlock *BB = RI->getParent();
3782 
3783   // Check that there are no other instructions except for debug intrinsics
3784   // between the phi of landing pads (RI->getValue()) and resume instruction.
3785   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3786                        E = RI->getIterator();
3787   while (++I != E)
3788     if (!isa<DbgInfoIntrinsic>(I))
3789       return false;
3790 
3791   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3792   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3793 
3794   // Check incoming blocks to see if any of them are trivial.
3795   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3796        Idx++) {
3797     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3798     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3799 
3800     // If the block has other successors, we can not delete it because
3801     // it has other dependents.
3802     if (IncomingBB->getUniqueSuccessor() != BB)
3803       continue;
3804 
3805     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3806     // Not the landing pad that caused the control to branch here.
3807     if (IncomingValue != LandingPad)
3808       continue;
3809 
3810     bool isTrivial = true;
3811 
3812     I = IncomingBB->getFirstNonPHI()->getIterator();
3813     E = IncomingBB->getTerminator()->getIterator();
3814     while (++I != E)
3815       if (!isa<DbgInfoIntrinsic>(I)) {
3816         isTrivial = false;
3817         break;
3818       }
3819 
3820     if (isTrivial)
3821       TrivialUnwindBlocks.insert(IncomingBB);
3822   }
3823 
3824   // If no trivial unwind blocks, don't do any simplifications.
3825   if (TrivialUnwindBlocks.empty())
3826     return false;
3827 
3828   // Turn all invokes that unwind here into calls.
3829   for (auto *TrivialBB : TrivialUnwindBlocks) {
3830     // Blocks that will be simplified should be removed from the phi node.
3831     // Note there could be multiple edges to the resume block, and we need
3832     // to remove them all.
3833     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3834       BB->removePredecessor(TrivialBB, true);
3835 
3836     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3837          PI != PE;) {
3838       BasicBlock *Pred = *PI++;
3839       removeUnwindEdge(Pred);
3840     }
3841 
3842     // In each SimplifyCFG run, only the current processed block can be erased.
3843     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3844     // of erasing TrivialBB, we only remove the branch to the common resume
3845     // block so that we can later erase the resume block since it has no
3846     // predecessors.
3847     TrivialBB->getTerminator()->eraseFromParent();
3848     new UnreachableInst(RI->getContext(), TrivialBB);
3849   }
3850 
3851   // Delete the resume block if all its predecessors have been removed.
3852   if (pred_empty(BB))
3853     BB->eraseFromParent();
3854 
3855   return !TrivialUnwindBlocks.empty();
3856 }
3857 
3858 // Simplify resume that is only used by a single (non-phi) landing pad.
3859 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3860   BasicBlock *BB = RI->getParent();
3861   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3862   assert(RI->getValue() == LPInst &&
3863          "Resume must unwind the exception that caused control to here");
3864 
3865   // Check that there are no other instructions except for debug intrinsics.
3866   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3867   while (++I != E)
3868     if (!isa<DbgInfoIntrinsic>(I))
3869       return false;
3870 
3871   // Turn all invokes that unwind here into calls and delete the basic block.
3872   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3873     BasicBlock *Pred = *PI++;
3874     removeUnwindEdge(Pred);
3875   }
3876 
3877   // The landingpad is now unreachable.  Zap it.
3878   if (LoopHeaders)
3879     LoopHeaders->erase(BB);
3880   BB->eraseFromParent();
3881   return true;
3882 }
3883 
3884 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3885   // If this is a trivial cleanup pad that executes no instructions, it can be
3886   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3887   // that is an EH pad will be updated to continue to the caller and any
3888   // predecessor that terminates with an invoke instruction will have its invoke
3889   // instruction converted to a call instruction.  If the cleanup pad being
3890   // simplified does not continue to the caller, each predecessor will be
3891   // updated to continue to the unwind destination of the cleanup pad being
3892   // simplified.
3893   BasicBlock *BB = RI->getParent();
3894   CleanupPadInst *CPInst = RI->getCleanupPad();
3895   if (CPInst->getParent() != BB)
3896     // This isn't an empty cleanup.
3897     return false;
3898 
3899   // We cannot kill the pad if it has multiple uses.  This typically arises
3900   // from unreachable basic blocks.
3901   if (!CPInst->hasOneUse())
3902     return false;
3903 
3904   // Check that there are no other instructions except for benign intrinsics.
3905   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3906   while (++I != E) {
3907     auto *II = dyn_cast<IntrinsicInst>(I);
3908     if (!II)
3909       return false;
3910 
3911     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3912     switch (IntrinsicID) {
3913     case Intrinsic::dbg_declare:
3914     case Intrinsic::dbg_value:
3915     case Intrinsic::dbg_label:
3916     case Intrinsic::lifetime_end:
3917       break;
3918     default:
3919       return false;
3920     }
3921   }
3922 
3923   // If the cleanup return we are simplifying unwinds to the caller, this will
3924   // set UnwindDest to nullptr.
3925   BasicBlock *UnwindDest = RI->getUnwindDest();
3926   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3927 
3928   // We're about to remove BB from the control flow.  Before we do, sink any
3929   // PHINodes into the unwind destination.  Doing this before changing the
3930   // control flow avoids some potentially slow checks, since we can currently
3931   // be certain that UnwindDest and BB have no common predecessors (since they
3932   // are both EH pads).
3933   if (UnwindDest) {
3934     // First, go through the PHI nodes in UnwindDest and update any nodes that
3935     // reference the block we are removing
3936     for (BasicBlock::iterator I = UnwindDest->begin(),
3937                               IE = DestEHPad->getIterator();
3938          I != IE; ++I) {
3939       PHINode *DestPN = cast<PHINode>(I);
3940 
3941       int Idx = DestPN->getBasicBlockIndex(BB);
3942       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3943       assert(Idx != -1);
3944       // This PHI node has an incoming value that corresponds to a control
3945       // path through the cleanup pad we are removing.  If the incoming
3946       // value is in the cleanup pad, it must be a PHINode (because we
3947       // verified above that the block is otherwise empty).  Otherwise, the
3948       // value is either a constant or a value that dominates the cleanup
3949       // pad being removed.
3950       //
3951       // Because BB and UnwindDest are both EH pads, all of their
3952       // predecessors must unwind to these blocks, and since no instruction
3953       // can have multiple unwind destinations, there will be no overlap in
3954       // incoming blocks between SrcPN and DestPN.
3955       Value *SrcVal = DestPN->getIncomingValue(Idx);
3956       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3957 
3958       // Remove the entry for the block we are deleting.
3959       DestPN->removeIncomingValue(Idx, false);
3960 
3961       if (SrcPN && SrcPN->getParent() == BB) {
3962         // If the incoming value was a PHI node in the cleanup pad we are
3963         // removing, we need to merge that PHI node's incoming values into
3964         // DestPN.
3965         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3966              SrcIdx != SrcE; ++SrcIdx) {
3967           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3968                               SrcPN->getIncomingBlock(SrcIdx));
3969         }
3970       } else {
3971         // Otherwise, the incoming value came from above BB and
3972         // so we can just reuse it.  We must associate all of BB's
3973         // predecessors with this value.
3974         for (auto *pred : predecessors(BB)) {
3975           DestPN->addIncoming(SrcVal, pred);
3976         }
3977       }
3978     }
3979 
3980     // Sink any remaining PHI nodes directly into UnwindDest.
3981     Instruction *InsertPt = DestEHPad;
3982     for (BasicBlock::iterator I = BB->begin(),
3983                               IE = BB->getFirstNonPHI()->getIterator();
3984          I != IE;) {
3985       // The iterator must be incremented here because the instructions are
3986       // being moved to another block.
3987       PHINode *PN = cast<PHINode>(I++);
3988       if (PN->use_empty())
3989         // If the PHI node has no uses, just leave it.  It will be erased
3990         // when we erase BB below.
3991         continue;
3992 
3993       // Otherwise, sink this PHI node into UnwindDest.
3994       // Any predecessors to UnwindDest which are not already represented
3995       // must be back edges which inherit the value from the path through
3996       // BB.  In this case, the PHI value must reference itself.
3997       for (auto *pred : predecessors(UnwindDest))
3998         if (pred != BB)
3999           PN->addIncoming(PN, pred);
4000       PN->moveBefore(InsertPt);
4001     }
4002   }
4003 
4004   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4005     // The iterator must be updated here because we are removing this pred.
4006     BasicBlock *PredBB = *PI++;
4007     if (UnwindDest == nullptr) {
4008       removeUnwindEdge(PredBB);
4009     } else {
4010       Instruction *TI = PredBB->getTerminator();
4011       TI->replaceUsesOfWith(BB, UnwindDest);
4012     }
4013   }
4014 
4015   // The cleanup pad is now unreachable.  Zap it.
4016   BB->eraseFromParent();
4017   return true;
4018 }
4019 
4020 // Try to merge two cleanuppads together.
4021 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4022   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4023   // with.
4024   BasicBlock *UnwindDest = RI->getUnwindDest();
4025   if (!UnwindDest)
4026     return false;
4027 
4028   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4029   // be safe to merge without code duplication.
4030   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4031     return false;
4032 
4033   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4034   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4035   if (!SuccessorCleanupPad)
4036     return false;
4037 
4038   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4039   // Replace any uses of the successor cleanupad with the predecessor pad
4040   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4041   // funclet bundle operands.
4042   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4043   // Remove the old cleanuppad.
4044   SuccessorCleanupPad->eraseFromParent();
4045   // Now, we simply replace the cleanupret with a branch to the unwind
4046   // destination.
4047   BranchInst::Create(UnwindDest, RI->getParent());
4048   RI->eraseFromParent();
4049 
4050   return true;
4051 }
4052 
4053 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4054   // It is possible to transiantly have an undef cleanuppad operand because we
4055   // have deleted some, but not all, dead blocks.
4056   // Eventually, this block will be deleted.
4057   if (isa<UndefValue>(RI->getOperand(0)))
4058     return false;
4059 
4060   if (mergeCleanupPad(RI))
4061     return true;
4062 
4063   if (removeEmptyCleanup(RI))
4064     return true;
4065 
4066   return false;
4067 }
4068 
4069 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4070   BasicBlock *BB = RI->getParent();
4071   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4072     return false;
4073 
4074   // Find predecessors that end with branches.
4075   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4076   SmallVector<BranchInst *, 8> CondBranchPreds;
4077   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4078     BasicBlock *P = *PI;
4079     Instruction *PTI = P->getTerminator();
4080     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4081       if (BI->isUnconditional())
4082         UncondBranchPreds.push_back(P);
4083       else
4084         CondBranchPreds.push_back(BI);
4085     }
4086   }
4087 
4088   // If we found some, do the transformation!
4089   if (!UncondBranchPreds.empty() && DupRet) {
4090     while (!UncondBranchPreds.empty()) {
4091       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4092       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4093                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4094       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4095     }
4096 
4097     // If we eliminated all predecessors of the block, delete the block now.
4098     if (pred_empty(BB)) {
4099       // We know there are no successors, so just nuke the block.
4100       if (LoopHeaders)
4101         LoopHeaders->erase(BB);
4102       BB->eraseFromParent();
4103     }
4104 
4105     return true;
4106   }
4107 
4108   // Check out all of the conditional branches going to this return
4109   // instruction.  If any of them just select between returns, change the
4110   // branch itself into a select/return pair.
4111   while (!CondBranchPreds.empty()) {
4112     BranchInst *BI = CondBranchPreds.pop_back_val();
4113 
4114     // Check to see if the non-BB successor is also a return block.
4115     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4116         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4117         SimplifyCondBranchToTwoReturns(BI, Builder))
4118       return true;
4119   }
4120   return false;
4121 }
4122 
4123 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4124   BasicBlock *BB = UI->getParent();
4125 
4126   bool Changed = false;
4127 
4128   // If there are any instructions immediately before the unreachable that can
4129   // be removed, do so.
4130   while (UI->getIterator() != BB->begin()) {
4131     BasicBlock::iterator BBI = UI->getIterator();
4132     --BBI;
4133     // Do not delete instructions that can have side effects which might cause
4134     // the unreachable to not be reachable; specifically, calls and volatile
4135     // operations may have this effect.
4136     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4137       break;
4138 
4139     if (BBI->mayHaveSideEffects()) {
4140       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4141         if (SI->isVolatile())
4142           break;
4143       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4144         if (LI->isVolatile())
4145           break;
4146       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4147         if (RMWI->isVolatile())
4148           break;
4149       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4150         if (CXI->isVolatile())
4151           break;
4152       } else if (isa<CatchPadInst>(BBI)) {
4153         // A catchpad may invoke exception object constructors and such, which
4154         // in some languages can be arbitrary code, so be conservative by
4155         // default.
4156         // For CoreCLR, it just involves a type test, so can be removed.
4157         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4158             EHPersonality::CoreCLR)
4159           break;
4160       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4161                  !isa<LandingPadInst>(BBI)) {
4162         break;
4163       }
4164       // Note that deleting LandingPad's here is in fact okay, although it
4165       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4166       // all the predecessors of this block will be the unwind edges of Invokes,
4167       // and we can therefore guarantee this block will be erased.
4168     }
4169 
4170     // Delete this instruction (any uses are guaranteed to be dead)
4171     if (!BBI->use_empty())
4172       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4173     BBI->eraseFromParent();
4174     Changed = true;
4175   }
4176 
4177   // If the unreachable instruction is the first in the block, take a gander
4178   // at all of the predecessors of this instruction, and simplify them.
4179   if (&BB->front() != UI)
4180     return Changed;
4181 
4182   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4183   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4184     Instruction *TI = Preds[i]->getTerminator();
4185     IRBuilder<> Builder(TI);
4186     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4187       if (BI->isUnconditional()) {
4188         if (BI->getSuccessor(0) == BB) {
4189           new UnreachableInst(TI->getContext(), TI);
4190           TI->eraseFromParent();
4191           Changed = true;
4192         }
4193       } else {
4194         if (BI->getSuccessor(0) == BB) {
4195           Builder.CreateBr(BI->getSuccessor(1));
4196           EraseTerminatorAndDCECond(BI);
4197         } else if (BI->getSuccessor(1) == BB) {
4198           Builder.CreateBr(BI->getSuccessor(0));
4199           EraseTerminatorAndDCECond(BI);
4200           Changed = true;
4201         }
4202       }
4203     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4204       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4205         if (i->getCaseSuccessor() != BB) {
4206           ++i;
4207           continue;
4208         }
4209         BB->removePredecessor(SI->getParent());
4210         i = SI->removeCase(i);
4211         e = SI->case_end();
4212         Changed = true;
4213       }
4214     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4215       if (II->getUnwindDest() == BB) {
4216         removeUnwindEdge(TI->getParent());
4217         Changed = true;
4218       }
4219     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4220       if (CSI->getUnwindDest() == BB) {
4221         removeUnwindEdge(TI->getParent());
4222         Changed = true;
4223         continue;
4224       }
4225 
4226       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4227                                              E = CSI->handler_end();
4228            I != E; ++I) {
4229         if (*I == BB) {
4230           CSI->removeHandler(I);
4231           --I;
4232           --E;
4233           Changed = true;
4234         }
4235       }
4236       if (CSI->getNumHandlers() == 0) {
4237         BasicBlock *CatchSwitchBB = CSI->getParent();
4238         if (CSI->hasUnwindDest()) {
4239           // Redirect preds to the unwind dest
4240           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4241         } else {
4242           // Rewrite all preds to unwind to caller (or from invoke to call).
4243           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4244           for (BasicBlock *EHPred : EHPreds)
4245             removeUnwindEdge(EHPred);
4246         }
4247         // The catchswitch is no longer reachable.
4248         new UnreachableInst(CSI->getContext(), CSI);
4249         CSI->eraseFromParent();
4250         Changed = true;
4251       }
4252     } else if (isa<CleanupReturnInst>(TI)) {
4253       new UnreachableInst(TI->getContext(), TI);
4254       TI->eraseFromParent();
4255       Changed = true;
4256     }
4257   }
4258 
4259   // If this block is now dead, remove it.
4260   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4261     // We know there are no successors, so just nuke the block.
4262     if (LoopHeaders)
4263       LoopHeaders->erase(BB);
4264     BB->eraseFromParent();
4265     return true;
4266   }
4267 
4268   return Changed;
4269 }
4270 
4271 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4272   assert(Cases.size() >= 1);
4273 
4274   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4275   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4276     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4277       return false;
4278   }
4279   return true;
4280 }
4281 
4282 /// Turn a switch with two reachable destinations into an integer range
4283 /// comparison and branch.
4284 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4285   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4286 
4287   bool HasDefault =
4288       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4289 
4290   // Partition the cases into two sets with different destinations.
4291   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4292   BasicBlock *DestB = nullptr;
4293   SmallVector<ConstantInt *, 16> CasesA;
4294   SmallVector<ConstantInt *, 16> CasesB;
4295 
4296   for (auto Case : SI->cases()) {
4297     BasicBlock *Dest = Case.getCaseSuccessor();
4298     if (!DestA)
4299       DestA = Dest;
4300     if (Dest == DestA) {
4301       CasesA.push_back(Case.getCaseValue());
4302       continue;
4303     }
4304     if (!DestB)
4305       DestB = Dest;
4306     if (Dest == DestB) {
4307       CasesB.push_back(Case.getCaseValue());
4308       continue;
4309     }
4310     return false; // More than two destinations.
4311   }
4312 
4313   assert(DestA && DestB &&
4314          "Single-destination switch should have been folded.");
4315   assert(DestA != DestB);
4316   assert(DestB != SI->getDefaultDest());
4317   assert(!CasesB.empty() && "There must be non-default cases.");
4318   assert(!CasesA.empty() || HasDefault);
4319 
4320   // Figure out if one of the sets of cases form a contiguous range.
4321   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4322   BasicBlock *ContiguousDest = nullptr;
4323   BasicBlock *OtherDest = nullptr;
4324   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4325     ContiguousCases = &CasesA;
4326     ContiguousDest = DestA;
4327     OtherDest = DestB;
4328   } else if (CasesAreContiguous(CasesB)) {
4329     ContiguousCases = &CasesB;
4330     ContiguousDest = DestB;
4331     OtherDest = DestA;
4332   } else
4333     return false;
4334 
4335   // Start building the compare and branch.
4336 
4337   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4338   Constant *NumCases =
4339       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4340 
4341   Value *Sub = SI->getCondition();
4342   if (!Offset->isNullValue())
4343     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4344 
4345   Value *Cmp;
4346   // If NumCases overflowed, then all possible values jump to the successor.
4347   if (NumCases->isNullValue() && !ContiguousCases->empty())
4348     Cmp = ConstantInt::getTrue(SI->getContext());
4349   else
4350     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4351   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4352 
4353   // Update weight for the newly-created conditional branch.
4354   if (HasBranchWeights(SI)) {
4355     SmallVector<uint64_t, 8> Weights;
4356     GetBranchWeights(SI, Weights);
4357     if (Weights.size() == 1 + SI->getNumCases()) {
4358       uint64_t TrueWeight = 0;
4359       uint64_t FalseWeight = 0;
4360       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4361         if (SI->getSuccessor(I) == ContiguousDest)
4362           TrueWeight += Weights[I];
4363         else
4364           FalseWeight += Weights[I];
4365       }
4366       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4367         TrueWeight /= 2;
4368         FalseWeight /= 2;
4369       }
4370       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4371     }
4372   }
4373 
4374   // Prune obsolete incoming values off the successors' PHI nodes.
4375   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4376     unsigned PreviousEdges = ContiguousCases->size();
4377     if (ContiguousDest == SI->getDefaultDest())
4378       ++PreviousEdges;
4379     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4380       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4381   }
4382   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4383     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4384     if (OtherDest == SI->getDefaultDest())
4385       ++PreviousEdges;
4386     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4387       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4388   }
4389 
4390   // Drop the switch.
4391   SI->eraseFromParent();
4392 
4393   return true;
4394 }
4395 
4396 /// Compute masked bits for the condition of a switch
4397 /// and use it to remove dead cases.
4398 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4399                                      const DataLayout &DL) {
4400   Value *Cond = SI->getCondition();
4401   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4402   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4403 
4404   // We can also eliminate cases by determining that their values are outside of
4405   // the limited range of the condition based on how many significant (non-sign)
4406   // bits are in the condition value.
4407   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4408   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4409 
4410   // Gather dead cases.
4411   SmallVector<ConstantInt *, 8> DeadCases;
4412   for (auto &Case : SI->cases()) {
4413     const APInt &CaseVal = Case.getCaseValue()->getValue();
4414     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4415         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4416       DeadCases.push_back(Case.getCaseValue());
4417       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4418                         << " is dead.\n");
4419     }
4420   }
4421 
4422   // If we can prove that the cases must cover all possible values, the
4423   // default destination becomes dead and we can remove it.  If we know some
4424   // of the bits in the value, we can use that to more precisely compute the
4425   // number of possible unique case values.
4426   bool HasDefault =
4427       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4428   const unsigned NumUnknownBits =
4429       Bits - (Known.Zero | Known.One).countPopulation();
4430   assert(NumUnknownBits <= Bits);
4431   if (HasDefault && DeadCases.empty() &&
4432       NumUnknownBits < 64 /* avoid overflow */ &&
4433       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4434     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4435     BasicBlock *NewDefault =
4436         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4437     SI->setDefaultDest(&*NewDefault);
4438     SplitBlock(&*NewDefault, &NewDefault->front());
4439     auto *OldTI = NewDefault->getTerminator();
4440     new UnreachableInst(SI->getContext(), OldTI);
4441     EraseTerminatorAndDCECond(OldTI);
4442     return true;
4443   }
4444 
4445   SmallVector<uint64_t, 8> Weights;
4446   bool HasWeight = HasBranchWeights(SI);
4447   if (HasWeight) {
4448     GetBranchWeights(SI, Weights);
4449     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4450   }
4451 
4452   // Remove dead cases from the switch.
4453   for (ConstantInt *DeadCase : DeadCases) {
4454     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4455     assert(CaseI != SI->case_default() &&
4456            "Case was not found. Probably mistake in DeadCases forming.");
4457     if (HasWeight) {
4458       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4459       Weights.pop_back();
4460     }
4461 
4462     // Prune unused values from PHI nodes.
4463     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4464     SI->removeCase(CaseI);
4465   }
4466   if (HasWeight && Weights.size() >= 2) {
4467     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4468     setBranchWeights(SI, MDWeights);
4469   }
4470 
4471   return !DeadCases.empty();
4472 }
4473 
4474 /// If BB would be eligible for simplification by
4475 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4476 /// by an unconditional branch), look at the phi node for BB in the successor
4477 /// block and see if the incoming value is equal to CaseValue. If so, return
4478 /// the phi node, and set PhiIndex to BB's index in the phi node.
4479 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4480                                               BasicBlock *BB, int *PhiIndex) {
4481   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4482     return nullptr; // BB must be empty to be a candidate for simplification.
4483   if (!BB->getSinglePredecessor())
4484     return nullptr; // BB must be dominated by the switch.
4485 
4486   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4487   if (!Branch || !Branch->isUnconditional())
4488     return nullptr; // Terminator must be unconditional branch.
4489 
4490   BasicBlock *Succ = Branch->getSuccessor(0);
4491 
4492   for (PHINode &PHI : Succ->phis()) {
4493     int Idx = PHI.getBasicBlockIndex(BB);
4494     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4495 
4496     Value *InValue = PHI.getIncomingValue(Idx);
4497     if (InValue != CaseValue)
4498       continue;
4499 
4500     *PhiIndex = Idx;
4501     return &PHI;
4502   }
4503 
4504   return nullptr;
4505 }
4506 
4507 /// Try to forward the condition of a switch instruction to a phi node
4508 /// dominated by the switch, if that would mean that some of the destination
4509 /// blocks of the switch can be folded away. Return true if a change is made.
4510 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4511   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4512 
4513   ForwardingNodesMap ForwardingNodes;
4514   BasicBlock *SwitchBlock = SI->getParent();
4515   bool Changed = false;
4516   for (auto &Case : SI->cases()) {
4517     ConstantInt *CaseValue = Case.getCaseValue();
4518     BasicBlock *CaseDest = Case.getCaseSuccessor();
4519 
4520     // Replace phi operands in successor blocks that are using the constant case
4521     // value rather than the switch condition variable:
4522     //   switchbb:
4523     //   switch i32 %x, label %default [
4524     //     i32 17, label %succ
4525     //   ...
4526     //   succ:
4527     //     %r = phi i32 ... [ 17, %switchbb ] ...
4528     // -->
4529     //     %r = phi i32 ... [ %x, %switchbb ] ...
4530 
4531     for (PHINode &Phi : CaseDest->phis()) {
4532       // This only works if there is exactly 1 incoming edge from the switch to
4533       // a phi. If there is >1, that means multiple cases of the switch map to 1
4534       // value in the phi, and that phi value is not the switch condition. Thus,
4535       // this transform would not make sense (the phi would be invalid because
4536       // a phi can't have different incoming values from the same block).
4537       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4538       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4539           count(Phi.blocks(), SwitchBlock) == 1) {
4540         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4541         Changed = true;
4542       }
4543     }
4544 
4545     // Collect phi nodes that are indirectly using this switch's case constants.
4546     int PhiIdx;
4547     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4548       ForwardingNodes[Phi].push_back(PhiIdx);
4549   }
4550 
4551   for (auto &ForwardingNode : ForwardingNodes) {
4552     PHINode *Phi = ForwardingNode.first;
4553     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4554     if (Indexes.size() < 2)
4555       continue;
4556 
4557     for (int Index : Indexes)
4558       Phi->setIncomingValue(Index, SI->getCondition());
4559     Changed = true;
4560   }
4561 
4562   return Changed;
4563 }
4564 
4565 /// Return true if the backend will be able to handle
4566 /// initializing an array of constants like C.
4567 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4568   if (C->isThreadDependent())
4569     return false;
4570   if (C->isDLLImportDependent())
4571     return false;
4572 
4573   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4574       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4575       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4576     return false;
4577 
4578   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4579     if (!CE->isGEPWithNoNotionalOverIndexing())
4580       return false;
4581     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4582       return false;
4583   }
4584 
4585   if (!TTI.shouldBuildLookupTablesForConstant(C))
4586     return false;
4587 
4588   return true;
4589 }
4590 
4591 /// If V is a Constant, return it. Otherwise, try to look up
4592 /// its constant value in ConstantPool, returning 0 if it's not there.
4593 static Constant *
4594 LookupConstant(Value *V,
4595                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4596   if (Constant *C = dyn_cast<Constant>(V))
4597     return C;
4598   return ConstantPool.lookup(V);
4599 }
4600 
4601 /// Try to fold instruction I into a constant. This works for
4602 /// simple instructions such as binary operations where both operands are
4603 /// constant or can be replaced by constants from the ConstantPool. Returns the
4604 /// resulting constant on success, 0 otherwise.
4605 static Constant *
4606 ConstantFold(Instruction *I, const DataLayout &DL,
4607              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4608   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4609     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4610     if (!A)
4611       return nullptr;
4612     if (A->isAllOnesValue())
4613       return LookupConstant(Select->getTrueValue(), ConstantPool);
4614     if (A->isNullValue())
4615       return LookupConstant(Select->getFalseValue(), ConstantPool);
4616     return nullptr;
4617   }
4618 
4619   SmallVector<Constant *, 4> COps;
4620   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4621     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4622       COps.push_back(A);
4623     else
4624       return nullptr;
4625   }
4626 
4627   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4628     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4629                                            COps[1], DL);
4630   }
4631 
4632   return ConstantFoldInstOperands(I, COps, DL);
4633 }
4634 
4635 /// Try to determine the resulting constant values in phi nodes
4636 /// at the common destination basic block, *CommonDest, for one of the case
4637 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4638 /// case), of a switch instruction SI.
4639 static bool
4640 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4641                BasicBlock **CommonDest,
4642                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4643                const DataLayout &DL, const TargetTransformInfo &TTI) {
4644   // The block from which we enter the common destination.
4645   BasicBlock *Pred = SI->getParent();
4646 
4647   // If CaseDest is empty except for some side-effect free instructions through
4648   // which we can constant-propagate the CaseVal, continue to its successor.
4649   SmallDenseMap<Value *, Constant *> ConstantPool;
4650   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4651   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4652     if (I.isTerminator()) {
4653       // If the terminator is a simple branch, continue to the next block.
4654       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4655         return false;
4656       Pred = CaseDest;
4657       CaseDest = I.getSuccessor(0);
4658     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4659       // Instruction is side-effect free and constant.
4660 
4661       // If the instruction has uses outside this block or a phi node slot for
4662       // the block, it is not safe to bypass the instruction since it would then
4663       // no longer dominate all its uses.
4664       for (auto &Use : I.uses()) {
4665         User *User = Use.getUser();
4666         if (Instruction *I = dyn_cast<Instruction>(User))
4667           if (I->getParent() == CaseDest)
4668             continue;
4669         if (PHINode *Phi = dyn_cast<PHINode>(User))
4670           if (Phi->getIncomingBlock(Use) == CaseDest)
4671             continue;
4672         return false;
4673       }
4674 
4675       ConstantPool.insert(std::make_pair(&I, C));
4676     } else {
4677       break;
4678     }
4679   }
4680 
4681   // If we did not have a CommonDest before, use the current one.
4682   if (!*CommonDest)
4683     *CommonDest = CaseDest;
4684   // If the destination isn't the common one, abort.
4685   if (CaseDest != *CommonDest)
4686     return false;
4687 
4688   // Get the values for this case from phi nodes in the destination block.
4689   for (PHINode &PHI : (*CommonDest)->phis()) {
4690     int Idx = PHI.getBasicBlockIndex(Pred);
4691     if (Idx == -1)
4692       continue;
4693 
4694     Constant *ConstVal =
4695         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4696     if (!ConstVal)
4697       return false;
4698 
4699     // Be conservative about which kinds of constants we support.
4700     if (!ValidLookupTableConstant(ConstVal, TTI))
4701       return false;
4702 
4703     Res.push_back(std::make_pair(&PHI, ConstVal));
4704   }
4705 
4706   return Res.size() > 0;
4707 }
4708 
4709 // Helper function used to add CaseVal to the list of cases that generate
4710 // Result. Returns the updated number of cases that generate this result.
4711 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4712                                  SwitchCaseResultVectorTy &UniqueResults,
4713                                  Constant *Result) {
4714   for (auto &I : UniqueResults) {
4715     if (I.first == Result) {
4716       I.second.push_back(CaseVal);
4717       return I.second.size();
4718     }
4719   }
4720   UniqueResults.push_back(
4721       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4722   return 1;
4723 }
4724 
4725 // Helper function that initializes a map containing
4726 // results for the PHI node of the common destination block for a switch
4727 // instruction. Returns false if multiple PHI nodes have been found or if
4728 // there is not a common destination block for the switch.
4729 static bool
4730 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4731                       SwitchCaseResultVectorTy &UniqueResults,
4732                       Constant *&DefaultResult, const DataLayout &DL,
4733                       const TargetTransformInfo &TTI,
4734                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4735   for (auto &I : SI->cases()) {
4736     ConstantInt *CaseVal = I.getCaseValue();
4737 
4738     // Resulting value at phi nodes for this case value.
4739     SwitchCaseResultsTy Results;
4740     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4741                         DL, TTI))
4742       return false;
4743 
4744     // Only one value per case is permitted.
4745     if (Results.size() > 1)
4746       return false;
4747 
4748     // Add the case->result mapping to UniqueResults.
4749     const uintptr_t NumCasesForResult =
4750         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4751 
4752     // Early out if there are too many cases for this result.
4753     if (NumCasesForResult > MaxCasesPerResult)
4754       return false;
4755 
4756     // Early out if there are too many unique results.
4757     if (UniqueResults.size() > MaxUniqueResults)
4758       return false;
4759 
4760     // Check the PHI consistency.
4761     if (!PHI)
4762       PHI = Results[0].first;
4763     else if (PHI != Results[0].first)
4764       return false;
4765   }
4766   // Find the default result value.
4767   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4768   BasicBlock *DefaultDest = SI->getDefaultDest();
4769   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4770                  DL, TTI);
4771   // If the default value is not found abort unless the default destination
4772   // is unreachable.
4773   DefaultResult =
4774       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4775   if ((!DefaultResult &&
4776        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4777     return false;
4778 
4779   return true;
4780 }
4781 
4782 // Helper function that checks if it is possible to transform a switch with only
4783 // two cases (or two cases + default) that produces a result into a select.
4784 // Example:
4785 // switch (a) {
4786 //   case 10:                %0 = icmp eq i32 %a, 10
4787 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4788 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4789 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4790 //   default:
4791 //     return 4;
4792 // }
4793 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4794                                    Constant *DefaultResult, Value *Condition,
4795                                    IRBuilder<> &Builder) {
4796   assert(ResultVector.size() == 2 &&
4797          "We should have exactly two unique results at this point");
4798   // If we are selecting between only two cases transform into a simple
4799   // select or a two-way select if default is possible.
4800   if (ResultVector[0].second.size() == 1 &&
4801       ResultVector[1].second.size() == 1) {
4802     ConstantInt *const FirstCase = ResultVector[0].second[0];
4803     ConstantInt *const SecondCase = ResultVector[1].second[0];
4804 
4805     bool DefaultCanTrigger = DefaultResult;
4806     Value *SelectValue = ResultVector[1].first;
4807     if (DefaultCanTrigger) {
4808       Value *const ValueCompare =
4809           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4810       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4811                                          DefaultResult, "switch.select");
4812     }
4813     Value *const ValueCompare =
4814         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4815     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4816                                 SelectValue, "switch.select");
4817   }
4818 
4819   return nullptr;
4820 }
4821 
4822 // Helper function to cleanup a switch instruction that has been converted into
4823 // a select, fixing up PHI nodes and basic blocks.
4824 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4825                                               Value *SelectValue,
4826                                               IRBuilder<> &Builder) {
4827   BasicBlock *SelectBB = SI->getParent();
4828   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4829     PHI->removeIncomingValue(SelectBB);
4830   PHI->addIncoming(SelectValue, SelectBB);
4831 
4832   Builder.CreateBr(PHI->getParent());
4833 
4834   // Remove the switch.
4835   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4836     BasicBlock *Succ = SI->getSuccessor(i);
4837 
4838     if (Succ == PHI->getParent())
4839       continue;
4840     Succ->removePredecessor(SelectBB);
4841   }
4842   SI->eraseFromParent();
4843 }
4844 
4845 /// If the switch is only used to initialize one or more
4846 /// phi nodes in a common successor block with only two different
4847 /// constant values, replace the switch with select.
4848 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4849                            const DataLayout &DL,
4850                            const TargetTransformInfo &TTI) {
4851   Value *const Cond = SI->getCondition();
4852   PHINode *PHI = nullptr;
4853   BasicBlock *CommonDest = nullptr;
4854   Constant *DefaultResult;
4855   SwitchCaseResultVectorTy UniqueResults;
4856   // Collect all the cases that will deliver the same value from the switch.
4857   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4858                              DL, TTI, 2, 1))
4859     return false;
4860   // Selects choose between maximum two values.
4861   if (UniqueResults.size() != 2)
4862     return false;
4863   assert(PHI != nullptr && "PHI for value select not found");
4864 
4865   Builder.SetInsertPoint(SI);
4866   Value *SelectValue =
4867       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4868   if (SelectValue) {
4869     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4870     return true;
4871   }
4872   // The switch couldn't be converted into a select.
4873   return false;
4874 }
4875 
4876 namespace {
4877 
4878 /// This class represents a lookup table that can be used to replace a switch.
4879 class SwitchLookupTable {
4880 public:
4881   /// Create a lookup table to use as a switch replacement with the contents
4882   /// of Values, using DefaultValue to fill any holes in the table.
4883   SwitchLookupTable(
4884       Module &M, uint64_t TableSize, ConstantInt *Offset,
4885       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4886       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4887 
4888   /// Build instructions with Builder to retrieve the value at
4889   /// the position given by Index in the lookup table.
4890   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4891 
4892   /// Return true if a table with TableSize elements of
4893   /// type ElementType would fit in a target-legal register.
4894   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4895                                  Type *ElementType);
4896 
4897 private:
4898   // Depending on the contents of the table, it can be represented in
4899   // different ways.
4900   enum {
4901     // For tables where each element contains the same value, we just have to
4902     // store that single value and return it for each lookup.
4903     SingleValueKind,
4904 
4905     // For tables where there is a linear relationship between table index
4906     // and values. We calculate the result with a simple multiplication
4907     // and addition instead of a table lookup.
4908     LinearMapKind,
4909 
4910     // For small tables with integer elements, we can pack them into a bitmap
4911     // that fits into a target-legal register. Values are retrieved by
4912     // shift and mask operations.
4913     BitMapKind,
4914 
4915     // The table is stored as an array of values. Values are retrieved by load
4916     // instructions from the table.
4917     ArrayKind
4918   } Kind;
4919 
4920   // For SingleValueKind, this is the single value.
4921   Constant *SingleValue = nullptr;
4922 
4923   // For BitMapKind, this is the bitmap.
4924   ConstantInt *BitMap = nullptr;
4925   IntegerType *BitMapElementTy = nullptr;
4926 
4927   // For LinearMapKind, these are the constants used to derive the value.
4928   ConstantInt *LinearOffset = nullptr;
4929   ConstantInt *LinearMultiplier = nullptr;
4930 
4931   // For ArrayKind, this is the array.
4932   GlobalVariable *Array = nullptr;
4933 };
4934 
4935 } // end anonymous namespace
4936 
4937 SwitchLookupTable::SwitchLookupTable(
4938     Module &M, uint64_t TableSize, ConstantInt *Offset,
4939     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4940     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4941   assert(Values.size() && "Can't build lookup table without values!");
4942   assert(TableSize >= Values.size() && "Can't fit values in table!");
4943 
4944   // If all values in the table are equal, this is that value.
4945   SingleValue = Values.begin()->second;
4946 
4947   Type *ValueType = Values.begin()->second->getType();
4948 
4949   // Build up the table contents.
4950   SmallVector<Constant *, 64> TableContents(TableSize);
4951   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4952     ConstantInt *CaseVal = Values[I].first;
4953     Constant *CaseRes = Values[I].second;
4954     assert(CaseRes->getType() == ValueType);
4955 
4956     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4957     TableContents[Idx] = CaseRes;
4958 
4959     if (CaseRes != SingleValue)
4960       SingleValue = nullptr;
4961   }
4962 
4963   // Fill in any holes in the table with the default result.
4964   if (Values.size() < TableSize) {
4965     assert(DefaultValue &&
4966            "Need a default value to fill the lookup table holes.");
4967     assert(DefaultValue->getType() == ValueType);
4968     for (uint64_t I = 0; I < TableSize; ++I) {
4969       if (!TableContents[I])
4970         TableContents[I] = DefaultValue;
4971     }
4972 
4973     if (DefaultValue != SingleValue)
4974       SingleValue = nullptr;
4975   }
4976 
4977   // If each element in the table contains the same value, we only need to store
4978   // that single value.
4979   if (SingleValue) {
4980     Kind = SingleValueKind;
4981     return;
4982   }
4983 
4984   // Check if we can derive the value with a linear transformation from the
4985   // table index.
4986   if (isa<IntegerType>(ValueType)) {
4987     bool LinearMappingPossible = true;
4988     APInt PrevVal;
4989     APInt DistToPrev;
4990     assert(TableSize >= 2 && "Should be a SingleValue table.");
4991     // Check if there is the same distance between two consecutive values.
4992     for (uint64_t I = 0; I < TableSize; ++I) {
4993       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4994       if (!ConstVal) {
4995         // This is an undef. We could deal with it, but undefs in lookup tables
4996         // are very seldom. It's probably not worth the additional complexity.
4997         LinearMappingPossible = false;
4998         break;
4999       }
5000       const APInt &Val = ConstVal->getValue();
5001       if (I != 0) {
5002         APInt Dist = Val - PrevVal;
5003         if (I == 1) {
5004           DistToPrev = Dist;
5005         } else if (Dist != DistToPrev) {
5006           LinearMappingPossible = false;
5007           break;
5008         }
5009       }
5010       PrevVal = Val;
5011     }
5012     if (LinearMappingPossible) {
5013       LinearOffset = cast<ConstantInt>(TableContents[0]);
5014       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5015       Kind = LinearMapKind;
5016       ++NumLinearMaps;
5017       return;
5018     }
5019   }
5020 
5021   // If the type is integer and the table fits in a register, build a bitmap.
5022   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5023     IntegerType *IT = cast<IntegerType>(ValueType);
5024     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5025     for (uint64_t I = TableSize; I > 0; --I) {
5026       TableInt <<= IT->getBitWidth();
5027       // Insert values into the bitmap. Undef values are set to zero.
5028       if (!isa<UndefValue>(TableContents[I - 1])) {
5029         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5030         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5031       }
5032     }
5033     BitMap = ConstantInt::get(M.getContext(), TableInt);
5034     BitMapElementTy = IT;
5035     Kind = BitMapKind;
5036     ++NumBitMaps;
5037     return;
5038   }
5039 
5040   // Store the table in an array.
5041   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5042   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5043 
5044   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5045                              GlobalVariable::PrivateLinkage, Initializer,
5046                              "switch.table." + FuncName);
5047   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5048   // Set the alignment to that of an array items. We will be only loading one
5049   // value out of it.
5050   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5051   Kind = ArrayKind;
5052 }
5053 
5054 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5055   switch (Kind) {
5056   case SingleValueKind:
5057     return SingleValue;
5058   case LinearMapKind: {
5059     // Derive the result value from the input value.
5060     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5061                                           false, "switch.idx.cast");
5062     if (!LinearMultiplier->isOne())
5063       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5064     if (!LinearOffset->isZero())
5065       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5066     return Result;
5067   }
5068   case BitMapKind: {
5069     // Type of the bitmap (e.g. i59).
5070     IntegerType *MapTy = BitMap->getType();
5071 
5072     // Cast Index to the same type as the bitmap.
5073     // Note: The Index is <= the number of elements in the table, so
5074     // truncating it to the width of the bitmask is safe.
5075     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5076 
5077     // Multiply the shift amount by the element width.
5078     ShiftAmt = Builder.CreateMul(
5079         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5080         "switch.shiftamt");
5081 
5082     // Shift down.
5083     Value *DownShifted =
5084         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5085     // Mask off.
5086     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5087   }
5088   case ArrayKind: {
5089     // Make sure the table index will not overflow when treated as signed.
5090     IntegerType *IT = cast<IntegerType>(Index->getType());
5091     uint64_t TableSize =
5092         Array->getInitializer()->getType()->getArrayNumElements();
5093     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5094       Index = Builder.CreateZExt(
5095           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5096           "switch.tableidx.zext");
5097 
5098     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5099     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5100                                            GEPIndices, "switch.gep");
5101     return Builder.CreateLoad(
5102         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5103         "switch.load");
5104   }
5105   }
5106   llvm_unreachable("Unknown lookup table kind!");
5107 }
5108 
5109 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5110                                            uint64_t TableSize,
5111                                            Type *ElementType) {
5112   auto *IT = dyn_cast<IntegerType>(ElementType);
5113   if (!IT)
5114     return false;
5115   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5116   // are <= 15, we could try to narrow the type.
5117 
5118   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5119   if (TableSize >= UINT_MAX / IT->getBitWidth())
5120     return false;
5121   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5122 }
5123 
5124 /// Determine whether a lookup table should be built for this switch, based on
5125 /// the number of cases, size of the table, and the types of the results.
5126 static bool
5127 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5128                        const TargetTransformInfo &TTI, const DataLayout &DL,
5129                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5130   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5131     return false; // TableSize overflowed, or mul below might overflow.
5132 
5133   bool AllTablesFitInRegister = true;
5134   bool HasIllegalType = false;
5135   for (const auto &I : ResultTypes) {
5136     Type *Ty = I.second;
5137 
5138     // Saturate this flag to true.
5139     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5140 
5141     // Saturate this flag to false.
5142     AllTablesFitInRegister =
5143         AllTablesFitInRegister &&
5144         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5145 
5146     // If both flags saturate, we're done. NOTE: This *only* works with
5147     // saturating flags, and all flags have to saturate first due to the
5148     // non-deterministic behavior of iterating over a dense map.
5149     if (HasIllegalType && !AllTablesFitInRegister)
5150       break;
5151   }
5152 
5153   // If each table would fit in a register, we should build it anyway.
5154   if (AllTablesFitInRegister)
5155     return true;
5156 
5157   // Don't build a table that doesn't fit in-register if it has illegal types.
5158   if (HasIllegalType)
5159     return false;
5160 
5161   // The table density should be at least 40%. This is the same criterion as for
5162   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5163   // FIXME: Find the best cut-off.
5164   return SI->getNumCases() * 10 >= TableSize * 4;
5165 }
5166 
5167 /// Try to reuse the switch table index compare. Following pattern:
5168 /// \code
5169 ///     if (idx < tablesize)
5170 ///        r = table[idx]; // table does not contain default_value
5171 ///     else
5172 ///        r = default_value;
5173 ///     if (r != default_value)
5174 ///        ...
5175 /// \endcode
5176 /// Is optimized to:
5177 /// \code
5178 ///     cond = idx < tablesize;
5179 ///     if (cond)
5180 ///        r = table[idx];
5181 ///     else
5182 ///        r = default_value;
5183 ///     if (cond)
5184 ///        ...
5185 /// \endcode
5186 /// Jump threading will then eliminate the second if(cond).
5187 static void reuseTableCompare(
5188     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5189     Constant *DefaultValue,
5190     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5191   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5192   if (!CmpInst)
5193     return;
5194 
5195   // We require that the compare is in the same block as the phi so that jump
5196   // threading can do its work afterwards.
5197   if (CmpInst->getParent() != PhiBlock)
5198     return;
5199 
5200   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5201   if (!CmpOp1)
5202     return;
5203 
5204   Value *RangeCmp = RangeCheckBranch->getCondition();
5205   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5206   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5207 
5208   // Check if the compare with the default value is constant true or false.
5209   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5210                                                  DefaultValue, CmpOp1, true);
5211   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5212     return;
5213 
5214   // Check if the compare with the case values is distinct from the default
5215   // compare result.
5216   for (auto ValuePair : Values) {
5217     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5218                                                 ValuePair.second, CmpOp1, true);
5219     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5220       return;
5221     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5222            "Expect true or false as compare result.");
5223   }
5224 
5225   // Check if the branch instruction dominates the phi node. It's a simple
5226   // dominance check, but sufficient for our needs.
5227   // Although this check is invariant in the calling loops, it's better to do it
5228   // at this late stage. Practically we do it at most once for a switch.
5229   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5230   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5231     BasicBlock *Pred = *PI;
5232     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5233       return;
5234   }
5235 
5236   if (DefaultConst == FalseConst) {
5237     // The compare yields the same result. We can replace it.
5238     CmpInst->replaceAllUsesWith(RangeCmp);
5239     ++NumTableCmpReuses;
5240   } else {
5241     // The compare yields the same result, just inverted. We can replace it.
5242     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5243         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5244         RangeCheckBranch);
5245     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5246     ++NumTableCmpReuses;
5247   }
5248 }
5249 
5250 /// If the switch is only used to initialize one or more phi nodes in a common
5251 /// successor block with different constant values, replace the switch with
5252 /// lookup tables.
5253 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5254                                 const DataLayout &DL,
5255                                 const TargetTransformInfo &TTI) {
5256   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5257 
5258   Function *Fn = SI->getParent()->getParent();
5259   // Only build lookup table when we have a target that supports it or the
5260   // attribute is not set.
5261   if (!TTI.shouldBuildLookupTables() ||
5262       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5263     return false;
5264 
5265   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5266   // split off a dense part and build a lookup table for that.
5267 
5268   // FIXME: This creates arrays of GEPs to constant strings, which means each
5269   // GEP needs a runtime relocation in PIC code. We should just build one big
5270   // string and lookup indices into that.
5271 
5272   // Ignore switches with less than three cases. Lookup tables will not make
5273   // them faster, so we don't analyze them.
5274   if (SI->getNumCases() < 3)
5275     return false;
5276 
5277   // Figure out the corresponding result for each case value and phi node in the
5278   // common destination, as well as the min and max case values.
5279   assert(!empty(SI->cases()));
5280   SwitchInst::CaseIt CI = SI->case_begin();
5281   ConstantInt *MinCaseVal = CI->getCaseValue();
5282   ConstantInt *MaxCaseVal = CI->getCaseValue();
5283 
5284   BasicBlock *CommonDest = nullptr;
5285 
5286   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5287   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5288 
5289   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5290   SmallDenseMap<PHINode *, Type *> ResultTypes;
5291   SmallVector<PHINode *, 4> PHIs;
5292 
5293   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5294     ConstantInt *CaseVal = CI->getCaseValue();
5295     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5296       MinCaseVal = CaseVal;
5297     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5298       MaxCaseVal = CaseVal;
5299 
5300     // Resulting value at phi nodes for this case value.
5301     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5302     ResultsTy Results;
5303     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5304                         Results, DL, TTI))
5305       return false;
5306 
5307     // Append the result from this case to the list for each phi.
5308     for (const auto &I : Results) {
5309       PHINode *PHI = I.first;
5310       Constant *Value = I.second;
5311       if (!ResultLists.count(PHI))
5312         PHIs.push_back(PHI);
5313       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5314     }
5315   }
5316 
5317   // Keep track of the result types.
5318   for (PHINode *PHI : PHIs) {
5319     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5320   }
5321 
5322   uint64_t NumResults = ResultLists[PHIs[0]].size();
5323   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5324   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5325   bool TableHasHoles = (NumResults < TableSize);
5326 
5327   // If the table has holes, we need a constant result for the default case
5328   // or a bitmask that fits in a register.
5329   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5330   bool HasDefaultResults =
5331       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5332                      DefaultResultsList, DL, TTI);
5333 
5334   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5335   if (NeedMask) {
5336     // As an extra penalty for the validity test we require more cases.
5337     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5338       return false;
5339     if (!DL.fitsInLegalInteger(TableSize))
5340       return false;
5341   }
5342 
5343   for (const auto &I : DefaultResultsList) {
5344     PHINode *PHI = I.first;
5345     Constant *Result = I.second;
5346     DefaultResults[PHI] = Result;
5347   }
5348 
5349   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5350     return false;
5351 
5352   // Create the BB that does the lookups.
5353   Module &Mod = *CommonDest->getParent()->getParent();
5354   BasicBlock *LookupBB = BasicBlock::Create(
5355       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5356 
5357   // Compute the table index value.
5358   Builder.SetInsertPoint(SI);
5359   Value *TableIndex;
5360   if (MinCaseVal->isNullValue())
5361     TableIndex = SI->getCondition();
5362   else
5363     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5364                                    "switch.tableidx");
5365 
5366   // Compute the maximum table size representable by the integer type we are
5367   // switching upon.
5368   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5369   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5370   assert(MaxTableSize >= TableSize &&
5371          "It is impossible for a switch to have more entries than the max "
5372          "representable value of its input integer type's size.");
5373 
5374   // If the default destination is unreachable, or if the lookup table covers
5375   // all values of the conditional variable, branch directly to the lookup table
5376   // BB. Otherwise, check that the condition is within the case range.
5377   const bool DefaultIsReachable =
5378       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5379   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5380   BranchInst *RangeCheckBranch = nullptr;
5381 
5382   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5383     Builder.CreateBr(LookupBB);
5384     // Note: We call removeProdecessor later since we need to be able to get the
5385     // PHI value for the default case in case we're using a bit mask.
5386   } else {
5387     Value *Cmp = Builder.CreateICmpULT(
5388         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5389     RangeCheckBranch =
5390         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5391   }
5392 
5393   // Populate the BB that does the lookups.
5394   Builder.SetInsertPoint(LookupBB);
5395 
5396   if (NeedMask) {
5397     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5398     // re-purposed to do the hole check, and we create a new LookupBB.
5399     BasicBlock *MaskBB = LookupBB;
5400     MaskBB->setName("switch.hole_check");
5401     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5402                                   CommonDest->getParent(), CommonDest);
5403 
5404     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5405     // unnecessary illegal types.
5406     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5407     APInt MaskInt(TableSizePowOf2, 0);
5408     APInt One(TableSizePowOf2, 1);
5409     // Build bitmask; fill in a 1 bit for every case.
5410     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5411     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5412       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5413                          .getLimitedValue();
5414       MaskInt |= One << Idx;
5415     }
5416     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5417 
5418     // Get the TableIndex'th bit of the bitmask.
5419     // If this bit is 0 (meaning hole) jump to the default destination,
5420     // else continue with table lookup.
5421     IntegerType *MapTy = TableMask->getType();
5422     Value *MaskIndex =
5423         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5424     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5425     Value *LoBit = Builder.CreateTrunc(
5426         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5427     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5428 
5429     Builder.SetInsertPoint(LookupBB);
5430     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5431   }
5432 
5433   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5434     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5435     // do not delete PHINodes here.
5436     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5437                                             /*KeepOneInputPHIs=*/true);
5438   }
5439 
5440   bool ReturnedEarly = false;
5441   for (PHINode *PHI : PHIs) {
5442     const ResultListTy &ResultList = ResultLists[PHI];
5443 
5444     // If using a bitmask, use any value to fill the lookup table holes.
5445     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5446     StringRef FuncName = Fn->getName();
5447     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5448                             FuncName);
5449 
5450     Value *Result = Table.BuildLookup(TableIndex, Builder);
5451 
5452     // If the result is used to return immediately from the function, we want to
5453     // do that right here.
5454     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5455         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5456       Builder.CreateRet(Result);
5457       ReturnedEarly = true;
5458       break;
5459     }
5460 
5461     // Do a small peephole optimization: re-use the switch table compare if
5462     // possible.
5463     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5464       BasicBlock *PhiBlock = PHI->getParent();
5465       // Search for compare instructions which use the phi.
5466       for (auto *User : PHI->users()) {
5467         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5468       }
5469     }
5470 
5471     PHI->addIncoming(Result, LookupBB);
5472   }
5473 
5474   if (!ReturnedEarly)
5475     Builder.CreateBr(CommonDest);
5476 
5477   // Remove the switch.
5478   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5479     BasicBlock *Succ = SI->getSuccessor(i);
5480 
5481     if (Succ == SI->getDefaultDest())
5482       continue;
5483     Succ->removePredecessor(SI->getParent());
5484   }
5485   SI->eraseFromParent();
5486 
5487   ++NumLookupTables;
5488   if (NeedMask)
5489     ++NumLookupTablesHoles;
5490   return true;
5491 }
5492 
5493 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5494   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5495   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5496   uint64_t Range = Diff + 1;
5497   uint64_t NumCases = Values.size();
5498   // 40% is the default density for building a jump table in optsize/minsize mode.
5499   uint64_t MinDensity = 40;
5500 
5501   return NumCases * 100 >= Range * MinDensity;
5502 }
5503 
5504 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5505 /// of cases.
5506 ///
5507 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5508 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5509 ///
5510 /// This converts a sparse switch into a dense switch which allows better
5511 /// lowering and could also allow transforming into a lookup table.
5512 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5513                               const DataLayout &DL,
5514                               const TargetTransformInfo &TTI) {
5515   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5516   if (CondTy->getIntegerBitWidth() > 64 ||
5517       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5518     return false;
5519   // Only bother with this optimization if there are more than 3 switch cases;
5520   // SDAG will only bother creating jump tables for 4 or more cases.
5521   if (SI->getNumCases() < 4)
5522     return false;
5523 
5524   // This transform is agnostic to the signedness of the input or case values. We
5525   // can treat the case values as signed or unsigned. We can optimize more common
5526   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5527   // as signed.
5528   SmallVector<int64_t,4> Values;
5529   for (auto &C : SI->cases())
5530     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5531   llvm::sort(Values);
5532 
5533   // If the switch is already dense, there's nothing useful to do here.
5534   if (isSwitchDense(Values))
5535     return false;
5536 
5537   // First, transform the values such that they start at zero and ascend.
5538   int64_t Base = Values[0];
5539   for (auto &V : Values)
5540     V -= (uint64_t)(Base);
5541 
5542   // Now we have signed numbers that have been shifted so that, given enough
5543   // precision, there are no negative values. Since the rest of the transform
5544   // is bitwise only, we switch now to an unsigned representation.
5545   uint64_t GCD = 0;
5546   for (auto &V : Values)
5547     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5548 
5549   // This transform can be done speculatively because it is so cheap - it results
5550   // in a single rotate operation being inserted. This can only happen if the
5551   // factor extracted is a power of 2.
5552   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5553   // inverse of GCD and then perform this transform.
5554   // FIXME: It's possible that optimizing a switch on powers of two might also
5555   // be beneficial - flag values are often powers of two and we could use a CLZ
5556   // as the key function.
5557   if (GCD <= 1 || !isPowerOf2_64(GCD))
5558     // No common divisor found or too expensive to compute key function.
5559     return false;
5560 
5561   unsigned Shift = Log2_64(GCD);
5562   for (auto &V : Values)
5563     V = (int64_t)((uint64_t)V >> Shift);
5564 
5565   if (!isSwitchDense(Values))
5566     // Transform didn't create a dense switch.
5567     return false;
5568 
5569   // The obvious transform is to shift the switch condition right and emit a
5570   // check that the condition actually cleanly divided by GCD, i.e.
5571   //   C & (1 << Shift - 1) == 0
5572   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5573   //
5574   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5575   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5576   // are nonzero then the switch condition will be very large and will hit the
5577   // default case.
5578 
5579   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5580   Builder.SetInsertPoint(SI);
5581   auto *ShiftC = ConstantInt::get(Ty, Shift);
5582   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5583   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5584   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5585   auto *Rot = Builder.CreateOr(LShr, Shl);
5586   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5587 
5588   for (auto Case : SI->cases()) {
5589     auto *Orig = Case.getCaseValue();
5590     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5591     Case.setValue(
5592         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5593   }
5594   return true;
5595 }
5596 
5597 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5598   BasicBlock *BB = SI->getParent();
5599 
5600   if (isValueEqualityComparison(SI)) {
5601     // If we only have one predecessor, and if it is a branch on this value,
5602     // see if that predecessor totally determines the outcome of this switch.
5603     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5604       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5605         return requestResimplify();
5606 
5607     Value *Cond = SI->getCondition();
5608     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5609       if (SimplifySwitchOnSelect(SI, Select))
5610         return requestResimplify();
5611 
5612     // If the block only contains the switch, see if we can fold the block
5613     // away into any preds.
5614     if (SI == &*BB->instructionsWithoutDebug().begin())
5615       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5616         return requestResimplify();
5617   }
5618 
5619   // Try to transform the switch into an icmp and a branch.
5620   if (TurnSwitchRangeIntoICmp(SI, Builder))
5621     return requestResimplify();
5622 
5623   // Remove unreachable cases.
5624   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5625     return requestResimplify();
5626 
5627   if (switchToSelect(SI, Builder, DL, TTI))
5628     return requestResimplify();
5629 
5630   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5631     return requestResimplify();
5632 
5633   // The conversion from switch to lookup tables results in difficult-to-analyze
5634   // code and makes pruning branches much harder. This is a problem if the
5635   // switch expression itself can still be restricted as a result of inlining or
5636   // CVP. Therefore, only apply this transformation during late stages of the
5637   // optimisation pipeline.
5638   if (Options.ConvertSwitchToLookupTable &&
5639       SwitchToLookupTable(SI, Builder, DL, TTI))
5640     return requestResimplify();
5641 
5642   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5643     return requestResimplify();
5644 
5645   return false;
5646 }
5647 
5648 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5649   BasicBlock *BB = IBI->getParent();
5650   bool Changed = false;
5651 
5652   // Eliminate redundant destinations.
5653   SmallPtrSet<Value *, 8> Succs;
5654   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5655     BasicBlock *Dest = IBI->getDestination(i);
5656     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5657       Dest->removePredecessor(BB);
5658       IBI->removeDestination(i);
5659       --i;
5660       --e;
5661       Changed = true;
5662     }
5663   }
5664 
5665   if (IBI->getNumDestinations() == 0) {
5666     // If the indirectbr has no successors, change it to unreachable.
5667     new UnreachableInst(IBI->getContext(), IBI);
5668     EraseTerminatorAndDCECond(IBI);
5669     return true;
5670   }
5671 
5672   if (IBI->getNumDestinations() == 1) {
5673     // If the indirectbr has one successor, change it to a direct branch.
5674     BranchInst::Create(IBI->getDestination(0), IBI);
5675     EraseTerminatorAndDCECond(IBI);
5676     return true;
5677   }
5678 
5679   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5680     if (SimplifyIndirectBrOnSelect(IBI, SI))
5681       return requestResimplify();
5682   }
5683   return Changed;
5684 }
5685 
5686 /// Given an block with only a single landing pad and a unconditional branch
5687 /// try to find another basic block which this one can be merged with.  This
5688 /// handles cases where we have multiple invokes with unique landing pads, but
5689 /// a shared handler.
5690 ///
5691 /// We specifically choose to not worry about merging non-empty blocks
5692 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5693 /// practice, the optimizer produces empty landing pad blocks quite frequently
5694 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5695 /// sinking in this file)
5696 ///
5697 /// This is primarily a code size optimization.  We need to avoid performing
5698 /// any transform which might inhibit optimization (such as our ability to
5699 /// specialize a particular handler via tail commoning).  We do this by not
5700 /// merging any blocks which require us to introduce a phi.  Since the same
5701 /// values are flowing through both blocks, we don't lose any ability to
5702 /// specialize.  If anything, we make such specialization more likely.
5703 ///
5704 /// TODO - This transformation could remove entries from a phi in the target
5705 /// block when the inputs in the phi are the same for the two blocks being
5706 /// merged.  In some cases, this could result in removal of the PHI entirely.
5707 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5708                                  BasicBlock *BB) {
5709   auto Succ = BB->getUniqueSuccessor();
5710   assert(Succ);
5711   // If there's a phi in the successor block, we'd likely have to introduce
5712   // a phi into the merged landing pad block.
5713   if (isa<PHINode>(*Succ->begin()))
5714     return false;
5715 
5716   for (BasicBlock *OtherPred : predecessors(Succ)) {
5717     if (BB == OtherPred)
5718       continue;
5719     BasicBlock::iterator I = OtherPred->begin();
5720     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5721     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5722       continue;
5723     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5724       ;
5725     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5726     if (!BI2 || !BI2->isIdenticalTo(BI))
5727       continue;
5728 
5729     // We've found an identical block.  Update our predecessors to take that
5730     // path instead and make ourselves dead.
5731     SmallPtrSet<BasicBlock *, 16> Preds;
5732     Preds.insert(pred_begin(BB), pred_end(BB));
5733     for (BasicBlock *Pred : Preds) {
5734       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5735       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5736              "unexpected successor");
5737       II->setUnwindDest(OtherPred);
5738     }
5739 
5740     // The debug info in OtherPred doesn't cover the merged control flow that
5741     // used to go through BB.  We need to delete it or update it.
5742     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5743       Instruction &Inst = *I;
5744       I++;
5745       if (isa<DbgInfoIntrinsic>(Inst))
5746         Inst.eraseFromParent();
5747     }
5748 
5749     SmallPtrSet<BasicBlock *, 16> Succs;
5750     Succs.insert(succ_begin(BB), succ_end(BB));
5751     for (BasicBlock *Succ : Succs) {
5752       Succ->removePredecessor(BB);
5753     }
5754 
5755     IRBuilder<> Builder(BI);
5756     Builder.CreateUnreachable();
5757     BI->eraseFromParent();
5758     return true;
5759   }
5760   return false;
5761 }
5762 
5763 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5764                                           IRBuilder<> &Builder) {
5765   BasicBlock *BB = BI->getParent();
5766   BasicBlock *Succ = BI->getSuccessor(0);
5767 
5768   // If the Terminator is the only non-phi instruction, simplify the block.
5769   // If LoopHeader is provided, check if the block or its successor is a loop
5770   // header. (This is for early invocations before loop simplify and
5771   // vectorization to keep canonical loop forms for nested loops. These blocks
5772   // can be eliminated when the pass is invoked later in the back-end.)
5773   // Note that if BB has only one predecessor then we do not introduce new
5774   // backedge, so we can eliminate BB.
5775   bool NeedCanonicalLoop =
5776       Options.NeedCanonicalLoop &&
5777       (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5778        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5779   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5780   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5781       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5782     return true;
5783 
5784   // If the only instruction in the block is a seteq/setne comparison against a
5785   // constant, try to simplify the block.
5786   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5787     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5788       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5789         ;
5790       if (I->isTerminator() &&
5791           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5792         return true;
5793     }
5794 
5795   // See if we can merge an empty landing pad block with another which is
5796   // equivalent.
5797   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5798     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5799       ;
5800     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5801       return true;
5802   }
5803 
5804   // If this basic block is ONLY a compare and a branch, and if a predecessor
5805   // branches to us and our successor, fold the comparison into the
5806   // predecessor and use logical operations to update the incoming value
5807   // for PHI nodes in common successor.
5808   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5809     return requestResimplify();
5810   return false;
5811 }
5812 
5813 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5814   BasicBlock *PredPred = nullptr;
5815   for (auto *P : predecessors(BB)) {
5816     BasicBlock *PPred = P->getSinglePredecessor();
5817     if (!PPred || (PredPred && PredPred != PPred))
5818       return nullptr;
5819     PredPred = PPred;
5820   }
5821   return PredPred;
5822 }
5823 
5824 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5825   BasicBlock *BB = BI->getParent();
5826   const Function *Fn = BB->getParent();
5827   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5828     return false;
5829 
5830   // Conditional branch
5831   if (isValueEqualityComparison(BI)) {
5832     // If we only have one predecessor, and if it is a branch on this value,
5833     // see if that predecessor totally determines the outcome of this
5834     // switch.
5835     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5836       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5837         return requestResimplify();
5838 
5839     // This block must be empty, except for the setcond inst, if it exists.
5840     // Ignore dbg intrinsics.
5841     auto I = BB->instructionsWithoutDebug().begin();
5842     if (&*I == BI) {
5843       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5844         return requestResimplify();
5845     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5846       ++I;
5847       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5848         return requestResimplify();
5849     }
5850   }
5851 
5852   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5853   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5854     return true;
5855 
5856   // If this basic block has dominating predecessor blocks and the dominating
5857   // blocks' conditions imply BI's condition, we know the direction of BI.
5858   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5859   if (Imp) {
5860     // Turn this into a branch on constant.
5861     auto *OldCond = BI->getCondition();
5862     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5863                              : ConstantInt::getFalse(BB->getContext());
5864     BI->setCondition(TorF);
5865     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5866     return requestResimplify();
5867   }
5868 
5869   // If this basic block is ONLY a compare and a branch, and if a predecessor
5870   // branches to us and one of our successors, fold the comparison into the
5871   // predecessor and use logical operations to pick the right destination.
5872   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5873     return requestResimplify();
5874 
5875   // We have a conditional branch to two blocks that are only reachable
5876   // from BI.  We know that the condbr dominates the two blocks, so see if
5877   // there is any identical code in the "then" and "else" blocks.  If so, we
5878   // can hoist it up to the branching block.
5879   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5880     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5881       if (HoistThenElseCodeToIf(BI, TTI))
5882         return requestResimplify();
5883     } else {
5884       // If Successor #1 has multiple preds, we may be able to conditionally
5885       // execute Successor #0 if it branches to Successor #1.
5886       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5887       if (Succ0TI->getNumSuccessors() == 1 &&
5888           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5889         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5890           return requestResimplify();
5891     }
5892   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5893     // If Successor #0 has multiple preds, we may be able to conditionally
5894     // execute Successor #1 if it branches to Successor #0.
5895     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5896     if (Succ1TI->getNumSuccessors() == 1 &&
5897         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5898       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5899         return requestResimplify();
5900   }
5901 
5902   // If this is a branch on a phi node in the current block, thread control
5903   // through this block if any PHI node entries are constants.
5904   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5905     if (PN->getParent() == BI->getParent())
5906       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5907         return requestResimplify();
5908 
5909   // Scan predecessor blocks for conditional branches.
5910   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5911     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5912       if (PBI != BI && PBI->isConditional())
5913         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5914           return requestResimplify();
5915 
5916   // Look for diamond patterns.
5917   if (MergeCondStores)
5918     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5919       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5920         if (PBI != BI && PBI->isConditional())
5921           if (mergeConditionalStores(PBI, BI, DL))
5922             return requestResimplify();
5923 
5924   return false;
5925 }
5926 
5927 /// Check if passing a value to an instruction will cause undefined behavior.
5928 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5929   Constant *C = dyn_cast<Constant>(V);
5930   if (!C)
5931     return false;
5932 
5933   if (I->use_empty())
5934     return false;
5935 
5936   if (C->isNullValue() || isa<UndefValue>(C)) {
5937     // Only look at the first use, avoid hurting compile time with long uselists
5938     User *Use = *I->user_begin();
5939 
5940     // Now make sure that there are no instructions in between that can alter
5941     // control flow (eg. calls)
5942     for (BasicBlock::iterator
5943              i = ++BasicBlock::iterator(I),
5944              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5945          i != UI; ++i)
5946       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5947         return false;
5948 
5949     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5950     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5951       if (GEP->getPointerOperand() == I)
5952         return passingValueIsAlwaysUndefined(V, GEP);
5953 
5954     // Look through bitcasts.
5955     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5956       return passingValueIsAlwaysUndefined(V, BC);
5957 
5958     // Load from null is undefined.
5959     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5960       if (!LI->isVolatile())
5961         return !NullPointerIsDefined(LI->getFunction(),
5962                                      LI->getPointerAddressSpace());
5963 
5964     // Store to null is undefined.
5965     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5966       if (!SI->isVolatile())
5967         return (!NullPointerIsDefined(SI->getFunction(),
5968                                       SI->getPointerAddressSpace())) &&
5969                SI->getPointerOperand() == I;
5970 
5971     // A call to null is undefined.
5972     if (auto CS = CallSite(Use))
5973       return !NullPointerIsDefined(CS->getFunction()) &&
5974              CS.getCalledValue() == I;
5975   }
5976   return false;
5977 }
5978 
5979 /// If BB has an incoming value that will always trigger undefined behavior
5980 /// (eg. null pointer dereference), remove the branch leading here.
5981 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5982   for (PHINode &PHI : BB->phis())
5983     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5984       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5985         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5986         IRBuilder<> Builder(T);
5987         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5988           BB->removePredecessor(PHI.getIncomingBlock(i));
5989           // Turn uncoditional branches into unreachables and remove the dead
5990           // destination from conditional branches.
5991           if (BI->isUnconditional())
5992             Builder.CreateUnreachable();
5993           else
5994             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5995                                                        : BI->getSuccessor(0));
5996           BI->eraseFromParent();
5997           return true;
5998         }
5999         // TODO: SwitchInst.
6000       }
6001 
6002   return false;
6003 }
6004 
6005 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6006   bool Changed = false;
6007 
6008   assert(BB && BB->getParent() && "Block not embedded in function!");
6009   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6010 
6011   // Remove basic blocks that have no predecessors (except the entry block)...
6012   // or that just have themself as a predecessor.  These are unreachable.
6013   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6014       BB->getSinglePredecessor() == BB) {
6015     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6016     DeleteDeadBlock(BB);
6017     return true;
6018   }
6019 
6020   // Check to see if we can constant propagate this terminator instruction
6021   // away...
6022   Changed |= ConstantFoldTerminator(BB, true);
6023 
6024   // Check for and eliminate duplicate PHI nodes in this block.
6025   Changed |= EliminateDuplicatePHINodes(BB);
6026 
6027   // Check for and remove branches that will always cause undefined behavior.
6028   Changed |= removeUndefIntroducingPredecessor(BB);
6029 
6030   // Merge basic blocks into their predecessor if there is only one distinct
6031   // pred, and if there is only one distinct successor of the predecessor, and
6032   // if there are no PHI nodes.
6033   if (MergeBlockIntoPredecessor(BB))
6034     return true;
6035 
6036   if (SinkCommon && Options.SinkCommonInsts)
6037     Changed |= SinkCommonCodeFromPredecessors(BB);
6038 
6039   IRBuilder<> Builder(BB);
6040 
6041   // If there is a trivial two-entry PHI node in this basic block, and we can
6042   // eliminate it, do so now.
6043   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6044     if (PN->getNumIncomingValues() == 2)
6045       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6046 
6047   Builder.SetInsertPoint(BB->getTerminator());
6048   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6049     if (BI->isUnconditional()) {
6050       if (SimplifyUncondBranch(BI, Builder))
6051         return true;
6052     } else {
6053       if (SimplifyCondBranch(BI, Builder))
6054         return true;
6055     }
6056   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6057     if (SimplifyReturn(RI, Builder))
6058       return true;
6059   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6060     if (SimplifyResume(RI, Builder))
6061       return true;
6062   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6063     if (SimplifyCleanupReturn(RI))
6064       return true;
6065   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6066     if (SimplifySwitch(SI, Builder))
6067       return true;
6068   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6069     if (SimplifyUnreachable(UI))
6070       return true;
6071   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6072     if (SimplifyIndirectBr(IBI))
6073       return true;
6074   }
6075 
6076   return Changed;
6077 }
6078 
6079 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6080   bool Changed = false;
6081 
6082   // Repeated simplify BB as long as resimplification is requested.
6083   do {
6084     Resimplify = false;
6085 
6086     // Perform one round of simplifcation. Resimplify flag will be set if
6087     // another iteration is requested.
6088     Changed |= simplifyOnce(BB);
6089   } while (Resimplify);
6090 
6091   return Changed;
6092 }
6093 
6094 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6095                        const SimplifyCFGOptions &Options,
6096                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6097   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6098                         Options)
6099       .run(BB);
6100 }
6101