1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/CFG.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/NoFolder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/Transforms/Utils/ValueMapper.h" 48 #include <algorithm> 49 #include <map> 50 #include <set> 51 using namespace llvm; 52 using namespace PatternMatch; 53 54 #define DEBUG_TYPE "simplifycfg" 55 56 // Chosen as 2 so as to be cheap, but still to have enough power to fold 57 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 58 // To catch this, we need to fold a compare and a select, hence '2' being the 59 // minimum reasonable default. 60 static cl::opt<unsigned> 61 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 62 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 63 64 static cl::opt<bool> 65 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 66 cl::desc("Duplicate return instructions into unconditional branches")); 67 68 static cl::opt<bool> 69 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 70 cl::desc("Sink common instructions down to the end block")); 71 72 static cl::opt<bool> HoistCondStores( 73 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 74 cl::desc("Hoist conditional stores if an unconditional store precedes")); 75 76 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 77 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 78 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 79 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 80 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 81 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 82 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 83 84 namespace { 85 // The first field contains the value that the switch produces when a certain 86 // case group is selected, and the second field is a vector containing the cases 87 // composing the case group. 88 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 89 SwitchCaseResultVectorTy; 90 // The first field contains the phi node that generates a result of the switch 91 // and the second field contains the value generated for a certain case in the switch 92 // for that PHI. 93 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 94 95 /// ValueEqualityComparisonCase - Represents a case of a switch. 96 struct ValueEqualityComparisonCase { 97 ConstantInt *Value; 98 BasicBlock *Dest; 99 100 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 101 : Value(Value), Dest(Dest) {} 102 103 bool operator<(ValueEqualityComparisonCase RHS) const { 104 // Comparing pointers is ok as we only rely on the order for uniquing. 105 return Value < RHS.Value; 106 } 107 108 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 109 }; 110 111 class SimplifyCFGOpt { 112 const TargetTransformInfo &TTI; 113 unsigned BonusInstThreshold; 114 const DataLayout *const DL; 115 AssumptionCache *AC; 116 Value *isValueEqualityComparison(TerminatorInst *TI); 117 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 118 std::vector<ValueEqualityComparisonCase> &Cases); 119 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 120 BasicBlock *Pred, 121 IRBuilder<> &Builder); 122 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 123 IRBuilder<> &Builder); 124 125 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 126 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 127 bool SimplifyUnreachable(UnreachableInst *UI); 128 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 129 bool SimplifyIndirectBr(IndirectBrInst *IBI); 130 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 131 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 132 133 public: 134 SimplifyCFGOpt(const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 135 const DataLayout *DL, AssumptionCache *AC) 136 : TTI(TTI), BonusInstThreshold(BonusInstThreshold), DL(DL), AC(AC) {} 137 bool run(BasicBlock *BB); 138 }; 139 } 140 141 /// SafeToMergeTerminators - Return true if it is safe to merge these two 142 /// terminator instructions together. 143 /// 144 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 145 if (SI1 == SI2) return false; // Can't merge with self! 146 147 // It is not safe to merge these two switch instructions if they have a common 148 // successor, and if that successor has a PHI node, and if *that* PHI node has 149 // conflicting incoming values from the two switch blocks. 150 BasicBlock *SI1BB = SI1->getParent(); 151 BasicBlock *SI2BB = SI2->getParent(); 152 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 153 154 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 155 if (SI1Succs.count(*I)) 156 for (BasicBlock::iterator BBI = (*I)->begin(); 157 isa<PHINode>(BBI); ++BBI) { 158 PHINode *PN = cast<PHINode>(BBI); 159 if (PN->getIncomingValueForBlock(SI1BB) != 160 PN->getIncomingValueForBlock(SI2BB)) 161 return false; 162 } 163 164 return true; 165 } 166 167 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable 168 /// to merge these two terminator instructions together, where SI1 is an 169 /// unconditional branch. PhiNodes will store all PHI nodes in common 170 /// successors. 171 /// 172 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 173 BranchInst *SI2, 174 Instruction *Cond, 175 SmallVectorImpl<PHINode*> &PhiNodes) { 176 if (SI1 == SI2) return false; // Can't merge with self! 177 assert(SI1->isUnconditional() && SI2->isConditional()); 178 179 // We fold the unconditional branch if we can easily update all PHI nodes in 180 // common successors: 181 // 1> We have a constant incoming value for the conditional branch; 182 // 2> We have "Cond" as the incoming value for the unconditional branch; 183 // 3> SI2->getCondition() and Cond have same operands. 184 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 185 if (!Ci2) return false; 186 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 187 Cond->getOperand(1) == Ci2->getOperand(1)) && 188 !(Cond->getOperand(0) == Ci2->getOperand(1) && 189 Cond->getOperand(1) == Ci2->getOperand(0))) 190 return false; 191 192 BasicBlock *SI1BB = SI1->getParent(); 193 BasicBlock *SI2BB = SI2->getParent(); 194 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 195 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 196 if (SI1Succs.count(*I)) 197 for (BasicBlock::iterator BBI = (*I)->begin(); 198 isa<PHINode>(BBI); ++BBI) { 199 PHINode *PN = cast<PHINode>(BBI); 200 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 201 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 202 return false; 203 PhiNodes.push_back(PN); 204 } 205 return true; 206 } 207 208 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will 209 /// now be entries in it from the 'NewPred' block. The values that will be 210 /// flowing into the PHI nodes will be the same as those coming in from 211 /// ExistPred, an existing predecessor of Succ. 212 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 213 BasicBlock *ExistPred) { 214 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 215 216 PHINode *PN; 217 for (BasicBlock::iterator I = Succ->begin(); 218 (PN = dyn_cast<PHINode>(I)); ++I) 219 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 220 } 221 222 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the 223 /// given instruction, which is assumed to be safe to speculate. TCC_Free means 224 /// cheap, TCC_Basic means less cheap, and TCC_Expensive means prohibitively 225 /// expensive. 226 static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL, 227 const TargetTransformInfo &TTI) { 228 assert(isSafeToSpeculativelyExecute(I, DL) && 229 "Instruction is not safe to speculatively execute!"); 230 return TTI.getUserCost(I); 231 } 232 /// DominatesMergePoint - If we have a merge point of an "if condition" as 233 /// accepted above, return true if the specified value dominates the block. We 234 /// don't handle the true generality of domination here, just a special case 235 /// which works well enough for us. 236 /// 237 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 238 /// see if V (which must be an instruction) and its recursive operands 239 /// that do not dominate BB have a combined cost lower than CostRemaining and 240 /// are non-trapping. If both are true, the instruction is inserted into the 241 /// set and true is returned. 242 /// 243 /// The cost for most non-trapping instructions is defined as 1 except for 244 /// Select whose cost is 2. 245 /// 246 /// After this function returns, CostRemaining is decreased by the cost of 247 /// V plus its non-dominating operands. If that cost is greater than 248 /// CostRemaining, false is returned and CostRemaining is undefined. 249 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 250 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 251 unsigned &CostRemaining, 252 const DataLayout *DL, 253 const TargetTransformInfo &TTI) { 254 Instruction *I = dyn_cast<Instruction>(V); 255 if (!I) { 256 // Non-instructions all dominate instructions, but not all constantexprs 257 // can be executed unconditionally. 258 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 259 if (C->canTrap()) 260 return false; 261 return true; 262 } 263 BasicBlock *PBB = I->getParent(); 264 265 // We don't want to allow weird loops that might have the "if condition" in 266 // the bottom of this block. 267 if (PBB == BB) return false; 268 269 // If this instruction is defined in a block that contains an unconditional 270 // branch to BB, then it must be in the 'conditional' part of the "if 271 // statement". If not, it definitely dominates the region. 272 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 273 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 274 return true; 275 276 // If we aren't allowing aggressive promotion anymore, then don't consider 277 // instructions in the 'if region'. 278 if (!AggressiveInsts) return false; 279 280 // If we have seen this instruction before, don't count it again. 281 if (AggressiveInsts->count(I)) return true; 282 283 // Okay, it looks like the instruction IS in the "condition". Check to 284 // see if it's a cheap instruction to unconditionally compute, and if it 285 // only uses stuff defined outside of the condition. If so, hoist it out. 286 if (!isSafeToSpeculativelyExecute(I, DL)) 287 return false; 288 289 unsigned Cost = ComputeSpeculationCost(I, DL, TTI); 290 291 if (Cost > CostRemaining) 292 return false; 293 294 CostRemaining -= Cost; 295 296 // Okay, we can only really hoist these out if their operands do 297 // not take us over the cost threshold. 298 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 299 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL, TTI)) 300 return false; 301 // Okay, it's safe to do this! Remember this instruction. 302 AggressiveInsts->insert(I); 303 return true; 304 } 305 306 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr 307 /// and PointerNullValue. Return NULL if value is not a constant int. 308 static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) { 309 // Normal constant int. 310 ConstantInt *CI = dyn_cast<ConstantInt>(V); 311 if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy()) 312 return CI; 313 314 // This is some kind of pointer constant. Turn it into a pointer-sized 315 // ConstantInt if possible. 316 IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 317 318 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 319 if (isa<ConstantPointerNull>(V)) 320 return ConstantInt::get(PtrTy, 0); 321 322 // IntToPtr const int. 323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 324 if (CE->getOpcode() == Instruction::IntToPtr) 325 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 326 // The constant is very likely to have the right type already. 327 if (CI->getType() == PtrTy) 328 return CI; 329 else 330 return cast<ConstantInt> 331 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 332 } 333 return nullptr; 334 } 335 336 namespace { 337 338 /// Given a chain of or (||) or and (&&) comparison of a value against a 339 /// constant, this will try to recover the information required for a switch 340 /// structure. 341 /// It will depth-first traverse the chain of comparison, seeking for patterns 342 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 343 /// representing the different cases for the switch. 344 /// Note that if the chain is composed of '||' it will build the set of elements 345 /// that matches the comparisons (i.e. any of this value validate the chain) 346 /// while for a chain of '&&' it will build the set elements that make the test 347 /// fail. 348 struct ConstantComparesGatherer { 349 350 Value *CompValue; /// Value found for the switch comparison 351 Value *Extra; /// Extra clause to be checked before the switch 352 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 353 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 354 355 /// Construct and compute the result for the comparison instruction Cond 356 ConstantComparesGatherer(Instruction *Cond, const DataLayout *DL) 357 : CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 358 gather(Cond, DL); 359 } 360 361 /// Prevent copy 362 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 363 ConstantComparesGatherer & 364 operator=(const ConstantComparesGatherer &) = delete; 365 366 private: 367 368 /// Try to set the current value used for the comparison, it succeeds only if 369 /// it wasn't set before or if the new value is the same as the old one 370 bool setValueOnce(Value *NewVal) { 371 if(CompValue && CompValue != NewVal) return false; 372 CompValue = NewVal; 373 return (CompValue != nullptr); 374 } 375 376 /// Try to match Instruction "I" as a comparison against a constant and 377 /// populates the array Vals with the set of values that match (or do not 378 /// match depending on isEQ). 379 /// Return false on failure. On success, the Value the comparison matched 380 /// against is placed in CompValue. 381 /// If CompValue is already set, the function is expected to fail if a match 382 /// is found but the value compared to is different. 383 bool matchInstruction(Instruction *I, const DataLayout *DL, bool isEQ) { 384 // If this is an icmp against a constant, handle this as one of the cases. 385 ICmpInst *ICI; 386 ConstantInt *C; 387 if (!((ICI = dyn_cast<ICmpInst>(I)) && 388 (C = GetConstantInt(I->getOperand(1), DL)))) { 389 return false; 390 } 391 392 Value *RHSVal; 393 ConstantInt *RHSC; 394 395 // Pattern match a special case 396 // (x & ~2^x) == y --> x == y || x == y|2^x 397 // This undoes a transformation done by instcombine to fuse 2 compares. 398 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 399 if (match(ICI->getOperand(0), 400 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 401 APInt Not = ~RHSC->getValue(); 402 if (Not.isPowerOf2()) { 403 // If we already have a value for the switch, it has to match! 404 if(!setValueOnce(RHSVal)) 405 return false; 406 407 Vals.push_back(C); 408 Vals.push_back(ConstantInt::get(C->getContext(), 409 C->getValue() | Not)); 410 UsedICmps++; 411 return true; 412 } 413 } 414 415 // If we already have a value for the switch, it has to match! 416 if(!setValueOnce(ICI->getOperand(0))) 417 return false; 418 419 UsedICmps++; 420 Vals.push_back(C); 421 return ICI->getOperand(0); 422 } 423 424 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 425 ConstantRange Span = ConstantRange::makeICmpRegion(ICI->getPredicate(), 426 C->getValue()); 427 428 // Shift the range if the compare is fed by an add. This is the range 429 // compare idiom as emitted by instcombine. 430 Value *CandidateVal = I->getOperand(0); 431 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 432 Span = Span.subtract(RHSC->getValue()); 433 CandidateVal = RHSVal; 434 } 435 436 // If this is an and/!= check, then we are looking to build the set of 437 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 438 // x != 0 && x != 1. 439 if (!isEQ) 440 Span = Span.inverse(); 441 442 // If there are a ton of values, we don't want to make a ginormous switch. 443 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 444 return false; 445 } 446 447 // If we already have a value for the switch, it has to match! 448 if(!setValueOnce(CandidateVal)) 449 return false; 450 451 // Add all values from the range to the set 452 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 453 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 454 455 UsedICmps++; 456 return true; 457 458 } 459 460 /// gather - Given a potentially 'or'd or 'and'd together collection of icmp 461 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 462 /// the value being compared, and stick the list constants into the Vals 463 /// vector. 464 /// One "Extra" case is allowed to differ from the other. 465 void gather(Value *V, const DataLayout *DL) { 466 Instruction *I = dyn_cast<Instruction>(V); 467 bool isEQ = (I->getOpcode() == Instruction::Or); 468 469 // Keep a stack (SmallVector for efficiency) for depth-first traversal 470 SmallVector<Value *, 8> DFT; 471 472 // Initialize 473 DFT.push_back(V); 474 475 while(!DFT.empty()) { 476 V = DFT.pop_back_val(); 477 478 if (Instruction *I = dyn_cast<Instruction>(V)) { 479 // If it is a || (or && depending on isEQ), process the operands. 480 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 481 DFT.push_back(I->getOperand(1)); 482 DFT.push_back(I->getOperand(0)); 483 continue; 484 } 485 486 // Try to match the current instruction 487 if (matchInstruction(I, DL, isEQ)) 488 // Match succeed, continue the loop 489 continue; 490 } 491 492 // One element of the sequence of || (or &&) could not be match as a 493 // comparison against the same value as the others. 494 // We allow only one "Extra" case to be checked before the switch 495 if (!Extra) { 496 Extra = V; 497 continue; 498 } 499 // Failed to parse a proper sequence, abort now 500 CompValue = nullptr; 501 break; 502 } 503 } 504 }; 505 506 } 507 508 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 509 Instruction *Cond = nullptr; 510 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 511 Cond = dyn_cast<Instruction>(SI->getCondition()); 512 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 513 if (BI->isConditional()) 514 Cond = dyn_cast<Instruction>(BI->getCondition()); 515 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 516 Cond = dyn_cast<Instruction>(IBI->getAddress()); 517 } 518 519 TI->eraseFromParent(); 520 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 521 } 522 523 /// isValueEqualityComparison - Return true if the specified terminator checks 524 /// to see if a value is equal to constant integer value. 525 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 526 Value *CV = nullptr; 527 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 528 // Do not permit merging of large switch instructions into their 529 // predecessors unless there is only one predecessor. 530 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 531 pred_end(SI->getParent())) <= 128) 532 CV = SI->getCondition(); 533 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 534 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 535 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) 536 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 537 CV = ICI->getOperand(0); 538 539 // Unwrap any lossless ptrtoint cast. 540 if (DL && CV) { 541 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 542 Value *Ptr = PTII->getPointerOperand(); 543 if (PTII->getType() == DL->getIntPtrType(Ptr->getType())) 544 CV = Ptr; 545 } 546 } 547 return CV; 548 } 549 550 /// GetValueEqualityComparisonCases - Given a value comparison instruction, 551 /// decode all of the 'cases' that it represents and return the 'default' block. 552 BasicBlock *SimplifyCFGOpt:: 553 GetValueEqualityComparisonCases(TerminatorInst *TI, 554 std::vector<ValueEqualityComparisonCase> 555 &Cases) { 556 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 557 Cases.reserve(SI->getNumCases()); 558 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 559 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 560 i.getCaseSuccessor())); 561 return SI->getDefaultDest(); 562 } 563 564 BranchInst *BI = cast<BranchInst>(TI); 565 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 566 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 567 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 568 DL), 569 Succ)); 570 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 571 } 572 573 574 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries 575 /// in the list that match the specified block. 576 static void EliminateBlockCases(BasicBlock *BB, 577 std::vector<ValueEqualityComparisonCase> &Cases) { 578 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 579 } 580 581 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as 582 /// well. 583 static bool 584 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 585 std::vector<ValueEqualityComparisonCase > &C2) { 586 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 587 588 // Make V1 be smaller than V2. 589 if (V1->size() > V2->size()) 590 std::swap(V1, V2); 591 592 if (V1->size() == 0) return false; 593 if (V1->size() == 1) { 594 // Just scan V2. 595 ConstantInt *TheVal = (*V1)[0].Value; 596 for (unsigned i = 0, e = V2->size(); i != e; ++i) 597 if (TheVal == (*V2)[i].Value) 598 return true; 599 } 600 601 // Otherwise, just sort both lists and compare element by element. 602 array_pod_sort(V1->begin(), V1->end()); 603 array_pod_sort(V2->begin(), V2->end()); 604 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 605 while (i1 != e1 && i2 != e2) { 606 if ((*V1)[i1].Value == (*V2)[i2].Value) 607 return true; 608 if ((*V1)[i1].Value < (*V2)[i2].Value) 609 ++i1; 610 else 611 ++i2; 612 } 613 return false; 614 } 615 616 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a 617 /// terminator instruction and its block is known to only have a single 618 /// predecessor block, check to see if that predecessor is also a value 619 /// comparison with the same value, and if that comparison determines the 620 /// outcome of this comparison. If so, simplify TI. This does a very limited 621 /// form of jump threading. 622 bool SimplifyCFGOpt:: 623 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 624 BasicBlock *Pred, 625 IRBuilder<> &Builder) { 626 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 627 if (!PredVal) return false; // Not a value comparison in predecessor. 628 629 Value *ThisVal = isValueEqualityComparison(TI); 630 assert(ThisVal && "This isn't a value comparison!!"); 631 if (ThisVal != PredVal) return false; // Different predicates. 632 633 // TODO: Preserve branch weight metadata, similarly to how 634 // FoldValueComparisonIntoPredecessors preserves it. 635 636 // Find out information about when control will move from Pred to TI's block. 637 std::vector<ValueEqualityComparisonCase> PredCases; 638 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 639 PredCases); 640 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 641 642 // Find information about how control leaves this block. 643 std::vector<ValueEqualityComparisonCase> ThisCases; 644 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 645 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 646 647 // If TI's block is the default block from Pred's comparison, potentially 648 // simplify TI based on this knowledge. 649 if (PredDef == TI->getParent()) { 650 // If we are here, we know that the value is none of those cases listed in 651 // PredCases. If there are any cases in ThisCases that are in PredCases, we 652 // can simplify TI. 653 if (!ValuesOverlap(PredCases, ThisCases)) 654 return false; 655 656 if (isa<BranchInst>(TI)) { 657 // Okay, one of the successors of this condbr is dead. Convert it to a 658 // uncond br. 659 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 660 // Insert the new branch. 661 Instruction *NI = Builder.CreateBr(ThisDef); 662 (void) NI; 663 664 // Remove PHI node entries for the dead edge. 665 ThisCases[0].Dest->removePredecessor(TI->getParent()); 666 667 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 668 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 669 670 EraseTerminatorInstAndDCECond(TI); 671 return true; 672 } 673 674 SwitchInst *SI = cast<SwitchInst>(TI); 675 // Okay, TI has cases that are statically dead, prune them away. 676 SmallPtrSet<Constant*, 16> DeadCases; 677 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 678 DeadCases.insert(PredCases[i].Value); 679 680 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 681 << "Through successor TI: " << *TI); 682 683 // Collect branch weights into a vector. 684 SmallVector<uint32_t, 8> Weights; 685 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 686 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 687 if (HasWeight) 688 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 689 ++MD_i) { 690 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 691 Weights.push_back(CI->getValue().getZExtValue()); 692 } 693 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 694 --i; 695 if (DeadCases.count(i.getCaseValue())) { 696 if (HasWeight) { 697 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 698 Weights.pop_back(); 699 } 700 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 701 SI->removeCase(i); 702 } 703 } 704 if (HasWeight && Weights.size() >= 2) 705 SI->setMetadata(LLVMContext::MD_prof, 706 MDBuilder(SI->getParent()->getContext()). 707 createBranchWeights(Weights)); 708 709 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 710 return true; 711 } 712 713 // Otherwise, TI's block must correspond to some matched value. Find out 714 // which value (or set of values) this is. 715 ConstantInt *TIV = nullptr; 716 BasicBlock *TIBB = TI->getParent(); 717 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 718 if (PredCases[i].Dest == TIBB) { 719 if (TIV) 720 return false; // Cannot handle multiple values coming to this block. 721 TIV = PredCases[i].Value; 722 } 723 assert(TIV && "No edge from pred to succ?"); 724 725 // Okay, we found the one constant that our value can be if we get into TI's 726 // BB. Find out which successor will unconditionally be branched to. 727 BasicBlock *TheRealDest = nullptr; 728 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 729 if (ThisCases[i].Value == TIV) { 730 TheRealDest = ThisCases[i].Dest; 731 break; 732 } 733 734 // If not handled by any explicit cases, it is handled by the default case. 735 if (!TheRealDest) TheRealDest = ThisDef; 736 737 // Remove PHI node entries for dead edges. 738 BasicBlock *CheckEdge = TheRealDest; 739 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 740 if (*SI != CheckEdge) 741 (*SI)->removePredecessor(TIBB); 742 else 743 CheckEdge = nullptr; 744 745 // Insert the new branch. 746 Instruction *NI = Builder.CreateBr(TheRealDest); 747 (void) NI; 748 749 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 750 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 751 752 EraseTerminatorInstAndDCECond(TI); 753 return true; 754 } 755 756 namespace { 757 /// ConstantIntOrdering - This class implements a stable ordering of constant 758 /// integers that does not depend on their address. This is important for 759 /// applications that sort ConstantInt's to ensure uniqueness. 760 struct ConstantIntOrdering { 761 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 762 return LHS->getValue().ult(RHS->getValue()); 763 } 764 }; 765 } 766 767 static int ConstantIntSortPredicate(ConstantInt *const *P1, 768 ConstantInt *const *P2) { 769 const ConstantInt *LHS = *P1; 770 const ConstantInt *RHS = *P2; 771 if (LHS->getValue().ult(RHS->getValue())) 772 return 1; 773 if (LHS->getValue() == RHS->getValue()) 774 return 0; 775 return -1; 776 } 777 778 static inline bool HasBranchWeights(const Instruction* I) { 779 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 780 if (ProfMD && ProfMD->getOperand(0)) 781 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 782 return MDS->getString().equals("branch_weights"); 783 784 return false; 785 } 786 787 /// Get Weights of a given TerminatorInst, the default weight is at the front 788 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 789 /// metadata. 790 static void GetBranchWeights(TerminatorInst *TI, 791 SmallVectorImpl<uint64_t> &Weights) { 792 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 793 assert(MD); 794 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 795 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 796 Weights.push_back(CI->getValue().getZExtValue()); 797 } 798 799 // If TI is a conditional eq, the default case is the false case, 800 // and the corresponding branch-weight data is at index 2. We swap the 801 // default weight to be the first entry. 802 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 803 assert(Weights.size() == 2); 804 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 805 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 806 std::swap(Weights.front(), Weights.back()); 807 } 808 } 809 810 /// Keep halving the weights until all can fit in uint32_t. 811 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 812 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 813 if (Max > UINT_MAX) { 814 unsigned Offset = 32 - countLeadingZeros(Max); 815 for (uint64_t &I : Weights) 816 I >>= Offset; 817 } 818 } 819 820 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value 821 /// equality comparison instruction (either a switch or a branch on "X == c"). 822 /// See if any of the predecessors of the terminator block are value comparisons 823 /// on the same value. If so, and if safe to do so, fold them together. 824 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 825 IRBuilder<> &Builder) { 826 BasicBlock *BB = TI->getParent(); 827 Value *CV = isValueEqualityComparison(TI); // CondVal 828 assert(CV && "Not a comparison?"); 829 bool Changed = false; 830 831 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 832 while (!Preds.empty()) { 833 BasicBlock *Pred = Preds.pop_back_val(); 834 835 // See if the predecessor is a comparison with the same value. 836 TerminatorInst *PTI = Pred->getTerminator(); 837 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 838 839 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 840 // Figure out which 'cases' to copy from SI to PSI. 841 std::vector<ValueEqualityComparisonCase> BBCases; 842 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 843 844 std::vector<ValueEqualityComparisonCase> PredCases; 845 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 846 847 // Based on whether the default edge from PTI goes to BB or not, fill in 848 // PredCases and PredDefault with the new switch cases we would like to 849 // build. 850 SmallVector<BasicBlock*, 8> NewSuccessors; 851 852 // Update the branch weight metadata along the way 853 SmallVector<uint64_t, 8> Weights; 854 bool PredHasWeights = HasBranchWeights(PTI); 855 bool SuccHasWeights = HasBranchWeights(TI); 856 857 if (PredHasWeights) { 858 GetBranchWeights(PTI, Weights); 859 // branch-weight metadata is inconsistent here. 860 if (Weights.size() != 1 + PredCases.size()) 861 PredHasWeights = SuccHasWeights = false; 862 } else if (SuccHasWeights) 863 // If there are no predecessor weights but there are successor weights, 864 // populate Weights with 1, which will later be scaled to the sum of 865 // successor's weights 866 Weights.assign(1 + PredCases.size(), 1); 867 868 SmallVector<uint64_t, 8> SuccWeights; 869 if (SuccHasWeights) { 870 GetBranchWeights(TI, SuccWeights); 871 // branch-weight metadata is inconsistent here. 872 if (SuccWeights.size() != 1 + BBCases.size()) 873 PredHasWeights = SuccHasWeights = false; 874 } else if (PredHasWeights) 875 SuccWeights.assign(1 + BBCases.size(), 1); 876 877 if (PredDefault == BB) { 878 // If this is the default destination from PTI, only the edges in TI 879 // that don't occur in PTI, or that branch to BB will be activated. 880 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 881 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 882 if (PredCases[i].Dest != BB) 883 PTIHandled.insert(PredCases[i].Value); 884 else { 885 // The default destination is BB, we don't need explicit targets. 886 std::swap(PredCases[i], PredCases.back()); 887 888 if (PredHasWeights || SuccHasWeights) { 889 // Increase weight for the default case. 890 Weights[0] += Weights[i+1]; 891 std::swap(Weights[i+1], Weights.back()); 892 Weights.pop_back(); 893 } 894 895 PredCases.pop_back(); 896 --i; --e; 897 } 898 899 // Reconstruct the new switch statement we will be building. 900 if (PredDefault != BBDefault) { 901 PredDefault->removePredecessor(Pred); 902 PredDefault = BBDefault; 903 NewSuccessors.push_back(BBDefault); 904 } 905 906 unsigned CasesFromPred = Weights.size(); 907 uint64_t ValidTotalSuccWeight = 0; 908 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 909 if (!PTIHandled.count(BBCases[i].Value) && 910 BBCases[i].Dest != BBDefault) { 911 PredCases.push_back(BBCases[i]); 912 NewSuccessors.push_back(BBCases[i].Dest); 913 if (SuccHasWeights || PredHasWeights) { 914 // The default weight is at index 0, so weight for the ith case 915 // should be at index i+1. Scale the cases from successor by 916 // PredDefaultWeight (Weights[0]). 917 Weights.push_back(Weights[0] * SuccWeights[i+1]); 918 ValidTotalSuccWeight += SuccWeights[i+1]; 919 } 920 } 921 922 if (SuccHasWeights || PredHasWeights) { 923 ValidTotalSuccWeight += SuccWeights[0]; 924 // Scale the cases from predecessor by ValidTotalSuccWeight. 925 for (unsigned i = 1; i < CasesFromPred; ++i) 926 Weights[i] *= ValidTotalSuccWeight; 927 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 928 Weights[0] *= SuccWeights[0]; 929 } 930 } else { 931 // If this is not the default destination from PSI, only the edges 932 // in SI that occur in PSI with a destination of BB will be 933 // activated. 934 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 935 std::map<ConstantInt*, uint64_t> WeightsForHandled; 936 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 937 if (PredCases[i].Dest == BB) { 938 PTIHandled.insert(PredCases[i].Value); 939 940 if (PredHasWeights || SuccHasWeights) { 941 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 942 std::swap(Weights[i+1], Weights.back()); 943 Weights.pop_back(); 944 } 945 946 std::swap(PredCases[i], PredCases.back()); 947 PredCases.pop_back(); 948 --i; --e; 949 } 950 951 // Okay, now we know which constants were sent to BB from the 952 // predecessor. Figure out where they will all go now. 953 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 954 if (PTIHandled.count(BBCases[i].Value)) { 955 // If this is one we are capable of getting... 956 if (PredHasWeights || SuccHasWeights) 957 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 958 PredCases.push_back(BBCases[i]); 959 NewSuccessors.push_back(BBCases[i].Dest); 960 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 961 } 962 963 // If there are any constants vectored to BB that TI doesn't handle, 964 // they must go to the default destination of TI. 965 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 966 PTIHandled.begin(), 967 E = PTIHandled.end(); I != E; ++I) { 968 if (PredHasWeights || SuccHasWeights) 969 Weights.push_back(WeightsForHandled[*I]); 970 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 971 NewSuccessors.push_back(BBDefault); 972 } 973 } 974 975 // Okay, at this point, we know which new successor Pred will get. Make 976 // sure we update the number of entries in the PHI nodes for these 977 // successors. 978 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i) 979 AddPredecessorToBlock(NewSuccessors[i], Pred, BB); 980 981 Builder.SetInsertPoint(PTI); 982 // Convert pointer to int before we switch. 983 if (CV->getType()->isPointerTy()) { 984 assert(DL && "Cannot switch on pointer without DataLayout"); 985 CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()), 986 "magicptr"); 987 } 988 989 // Now that the successors are updated, create the new Switch instruction. 990 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 991 PredCases.size()); 992 NewSI->setDebugLoc(PTI->getDebugLoc()); 993 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 994 NewSI->addCase(PredCases[i].Value, PredCases[i].Dest); 995 996 if (PredHasWeights || SuccHasWeights) { 997 // Halve the weights if any of them cannot fit in an uint32_t 998 FitWeights(Weights); 999 1000 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1001 1002 NewSI->setMetadata(LLVMContext::MD_prof, 1003 MDBuilder(BB->getContext()). 1004 createBranchWeights(MDWeights)); 1005 } 1006 1007 EraseTerminatorInstAndDCECond(PTI); 1008 1009 // Okay, last check. If BB is still a successor of PSI, then we must 1010 // have an infinite loop case. If so, add an infinitely looping block 1011 // to handle the case to preserve the behavior of the code. 1012 BasicBlock *InfLoopBlock = nullptr; 1013 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1014 if (NewSI->getSuccessor(i) == BB) { 1015 if (!InfLoopBlock) { 1016 // Insert it at the end of the function, because it's either code, 1017 // or it won't matter if it's hot. :) 1018 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1019 "infloop", BB->getParent()); 1020 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1021 } 1022 NewSI->setSuccessor(i, InfLoopBlock); 1023 } 1024 1025 Changed = true; 1026 } 1027 } 1028 return Changed; 1029 } 1030 1031 // isSafeToHoistInvoke - If we would need to insert a select that uses the 1032 // value of this invoke (comments in HoistThenElseCodeToIf explain why we 1033 // would need to do this), we can't hoist the invoke, as there is nowhere 1034 // to put the select in this case. 1035 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1036 Instruction *I1, Instruction *I2) { 1037 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1038 PHINode *PN; 1039 for (BasicBlock::iterator BBI = SI->begin(); 1040 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1041 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1042 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1043 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1044 return false; 1045 } 1046 } 1047 } 1048 return true; 1049 } 1050 1051 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1052 1053 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and 1054 /// BB2, hoist any common code in the two blocks up into the branch block. The 1055 /// caller of this function guarantees that BI's block dominates BB1 and BB2. 1056 static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL, 1057 const TargetTransformInfo &TTI) { 1058 // This does very trivial matching, with limited scanning, to find identical 1059 // instructions in the two blocks. In particular, we don't want to get into 1060 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1061 // such, we currently just scan for obviously identical instructions in an 1062 // identical order. 1063 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1064 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1065 1066 BasicBlock::iterator BB1_Itr = BB1->begin(); 1067 BasicBlock::iterator BB2_Itr = BB2->begin(); 1068 1069 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++; 1070 // Skip debug info if it is not identical. 1071 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1072 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1073 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1074 while (isa<DbgInfoIntrinsic>(I1)) 1075 I1 = BB1_Itr++; 1076 while (isa<DbgInfoIntrinsic>(I2)) 1077 I2 = BB2_Itr++; 1078 } 1079 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1080 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1081 return false; 1082 1083 BasicBlock *BIParent = BI->getParent(); 1084 1085 bool Changed = false; 1086 do { 1087 // If we are hoisting the terminator instruction, don't move one (making a 1088 // broken BB), instead clone it, and remove BI. 1089 if (isa<TerminatorInst>(I1)) 1090 goto HoistTerminator; 1091 1092 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1093 return Changed; 1094 1095 // For a normal instruction, we just move one to right before the branch, 1096 // then replace all uses of the other with the first. Finally, we remove 1097 // the now redundant second instruction. 1098 BIParent->getInstList().splice(BI, BB1->getInstList(), I1); 1099 if (!I2->use_empty()) 1100 I2->replaceAllUsesWith(I1); 1101 I1->intersectOptionalDataWith(I2); 1102 unsigned KnownIDs[] = { 1103 LLVMContext::MD_tbaa, 1104 LLVMContext::MD_range, 1105 LLVMContext::MD_fpmath, 1106 LLVMContext::MD_invariant_load, 1107 LLVMContext::MD_nonnull 1108 }; 1109 combineMetadata(I1, I2, KnownIDs); 1110 I2->eraseFromParent(); 1111 Changed = true; 1112 1113 I1 = BB1_Itr++; 1114 I2 = BB2_Itr++; 1115 // Skip debug info if it is not identical. 1116 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1117 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1118 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1119 while (isa<DbgInfoIntrinsic>(I1)) 1120 I1 = BB1_Itr++; 1121 while (isa<DbgInfoIntrinsic>(I2)) 1122 I2 = BB2_Itr++; 1123 } 1124 } while (I1->isIdenticalToWhenDefined(I2)); 1125 1126 return true; 1127 1128 HoistTerminator: 1129 // It may not be possible to hoist an invoke. 1130 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1131 return Changed; 1132 1133 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1134 PHINode *PN; 1135 for (BasicBlock::iterator BBI = SI->begin(); 1136 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1137 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1138 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1139 if (BB1V == BB2V) 1140 continue; 1141 1142 // Check for passingValueIsAlwaysUndefined here because we would rather 1143 // eliminate undefined control flow then converting it to a select. 1144 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1145 passingValueIsAlwaysUndefined(BB2V, PN)) 1146 return Changed; 1147 1148 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL)) 1149 return Changed; 1150 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL)) 1151 return Changed; 1152 } 1153 } 1154 1155 // Okay, it is safe to hoist the terminator. 1156 Instruction *NT = I1->clone(); 1157 BIParent->getInstList().insert(BI, NT); 1158 if (!NT->getType()->isVoidTy()) { 1159 I1->replaceAllUsesWith(NT); 1160 I2->replaceAllUsesWith(NT); 1161 NT->takeName(I1); 1162 } 1163 1164 IRBuilder<true, NoFolder> Builder(NT); 1165 // Hoisting one of the terminators from our successor is a great thing. 1166 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1167 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1168 // nodes, so we insert select instruction to compute the final result. 1169 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1170 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1171 PHINode *PN; 1172 for (BasicBlock::iterator BBI = SI->begin(); 1173 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1174 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1175 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1176 if (BB1V == BB2V) continue; 1177 1178 // These values do not agree. Insert a select instruction before NT 1179 // that determines the right value. 1180 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1181 if (!SI) 1182 SI = cast<SelectInst> 1183 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1184 BB1V->getName()+"."+BB2V->getName())); 1185 1186 // Make the PHI node use the select for all incoming values for BB1/BB2 1187 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1188 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1189 PN->setIncomingValue(i, SI); 1190 } 1191 } 1192 1193 // Update any PHI nodes in our new successors. 1194 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1195 AddPredecessorToBlock(*SI, BIParent, BB1); 1196 1197 EraseTerminatorInstAndDCECond(BI); 1198 return true; 1199 } 1200 1201 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd, 1202 /// check whether BBEnd has only two predecessors and the other predecessor 1203 /// ends with an unconditional branch. If it is true, sink any common code 1204 /// in the two predecessors to BBEnd. 1205 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1206 assert(BI1->isUnconditional()); 1207 BasicBlock *BB1 = BI1->getParent(); 1208 BasicBlock *BBEnd = BI1->getSuccessor(0); 1209 1210 // Check that BBEnd has two predecessors and the other predecessor ends with 1211 // an unconditional branch. 1212 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1213 BasicBlock *Pred0 = *PI++; 1214 if (PI == PE) // Only one predecessor. 1215 return false; 1216 BasicBlock *Pred1 = *PI++; 1217 if (PI != PE) // More than two predecessors. 1218 return false; 1219 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1220 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1221 if (!BI2 || !BI2->isUnconditional()) 1222 return false; 1223 1224 // Gather the PHI nodes in BBEnd. 1225 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1226 Instruction *FirstNonPhiInBBEnd = nullptr; 1227 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1228 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1229 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1230 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1231 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1232 } else { 1233 FirstNonPhiInBBEnd = &*I; 1234 break; 1235 } 1236 } 1237 if (!FirstNonPhiInBBEnd) 1238 return false; 1239 1240 // This does very trivial matching, with limited scanning, to find identical 1241 // instructions in the two blocks. We scan backward for obviously identical 1242 // instructions in an identical order. 1243 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1244 RE1 = BB1->getInstList().rend(), 1245 RI2 = BB2->getInstList().rbegin(), 1246 RE2 = BB2->getInstList().rend(); 1247 // Skip debug info. 1248 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1249 if (RI1 == RE1) 1250 return false; 1251 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1252 if (RI2 == RE2) 1253 return false; 1254 // Skip the unconditional branches. 1255 ++RI1; 1256 ++RI2; 1257 1258 bool Changed = false; 1259 while (RI1 != RE1 && RI2 != RE2) { 1260 // Skip debug info. 1261 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1262 if (RI1 == RE1) 1263 return Changed; 1264 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1265 if (RI2 == RE2) 1266 return Changed; 1267 1268 Instruction *I1 = &*RI1, *I2 = &*RI2; 1269 auto InstPair = std::make_pair(I1, I2); 1270 // I1 and I2 should have a single use in the same PHI node, and they 1271 // perform the same operation. 1272 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1273 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1274 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1275 isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) || 1276 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1277 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1278 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1279 !I1->hasOneUse() || !I2->hasOneUse() || 1280 !JointValueMap.count(InstPair)) 1281 return Changed; 1282 1283 // Check whether we should swap the operands of ICmpInst. 1284 // TODO: Add support of communativity. 1285 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1286 bool SwapOpnds = false; 1287 if (ICmp1 && ICmp2 && 1288 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1289 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1290 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1291 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1292 ICmp2->swapOperands(); 1293 SwapOpnds = true; 1294 } 1295 if (!I1->isSameOperationAs(I2)) { 1296 if (SwapOpnds) 1297 ICmp2->swapOperands(); 1298 return Changed; 1299 } 1300 1301 // The operands should be either the same or they need to be generated 1302 // with a PHI node after sinking. We only handle the case where there is 1303 // a single pair of different operands. 1304 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1305 unsigned Op1Idx = ~0U; 1306 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1307 if (I1->getOperand(I) == I2->getOperand(I)) 1308 continue; 1309 // Early exit if we have more-than one pair of different operands or if 1310 // we need a PHI node to replace a constant. 1311 if (Op1Idx != ~0U || 1312 isa<Constant>(I1->getOperand(I)) || 1313 isa<Constant>(I2->getOperand(I))) { 1314 // If we can't sink the instructions, undo the swapping. 1315 if (SwapOpnds) 1316 ICmp2->swapOperands(); 1317 return Changed; 1318 } 1319 DifferentOp1 = I1->getOperand(I); 1320 Op1Idx = I; 1321 DifferentOp2 = I2->getOperand(I); 1322 } 1323 1324 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1325 DEBUG(dbgs() << " " << *I2 << "\n"); 1326 1327 // We insert the pair of different operands to JointValueMap and 1328 // remove (I1, I2) from JointValueMap. 1329 if (Op1Idx != ~0U) { 1330 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1331 if (!NewPN) { 1332 NewPN = 1333 PHINode::Create(DifferentOp1->getType(), 2, 1334 DifferentOp1->getName() + ".sink", BBEnd->begin()); 1335 NewPN->addIncoming(DifferentOp1, BB1); 1336 NewPN->addIncoming(DifferentOp2, BB2); 1337 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1338 } 1339 // I1 should use NewPN instead of DifferentOp1. 1340 I1->setOperand(Op1Idx, NewPN); 1341 } 1342 PHINode *OldPN = JointValueMap[InstPair]; 1343 JointValueMap.erase(InstPair); 1344 1345 // We need to update RE1 and RE2 if we are going to sink the first 1346 // instruction in the basic block down. 1347 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1348 // Sink the instruction. 1349 BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1); 1350 if (!OldPN->use_empty()) 1351 OldPN->replaceAllUsesWith(I1); 1352 OldPN->eraseFromParent(); 1353 1354 if (!I2->use_empty()) 1355 I2->replaceAllUsesWith(I1); 1356 I1->intersectOptionalDataWith(I2); 1357 // TODO: Use combineMetadata here to preserve what metadata we can 1358 // (analogous to the hoisting case above). 1359 I2->eraseFromParent(); 1360 1361 if (UpdateRE1) 1362 RE1 = BB1->getInstList().rend(); 1363 if (UpdateRE2) 1364 RE2 = BB2->getInstList().rend(); 1365 FirstNonPhiInBBEnd = I1; 1366 NumSinkCommons++; 1367 Changed = true; 1368 } 1369 return Changed; 1370 } 1371 1372 /// \brief Determine if we can hoist sink a sole store instruction out of a 1373 /// conditional block. 1374 /// 1375 /// We are looking for code like the following: 1376 /// BrBB: 1377 /// store i32 %add, i32* %arrayidx2 1378 /// ... // No other stores or function calls (we could be calling a memory 1379 /// ... // function). 1380 /// %cmp = icmp ult %x, %y 1381 /// br i1 %cmp, label %EndBB, label %ThenBB 1382 /// ThenBB: 1383 /// store i32 %add5, i32* %arrayidx2 1384 /// br label EndBB 1385 /// EndBB: 1386 /// ... 1387 /// We are going to transform this into: 1388 /// BrBB: 1389 /// store i32 %add, i32* %arrayidx2 1390 /// ... // 1391 /// %cmp = icmp ult %x, %y 1392 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1393 /// store i32 %add.add5, i32* %arrayidx2 1394 /// ... 1395 /// 1396 /// \return The pointer to the value of the previous store if the store can be 1397 /// hoisted into the predecessor block. 0 otherwise. 1398 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1399 BasicBlock *StoreBB, BasicBlock *EndBB) { 1400 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1401 if (!StoreToHoist) 1402 return nullptr; 1403 1404 // Volatile or atomic. 1405 if (!StoreToHoist->isSimple()) 1406 return nullptr; 1407 1408 Value *StorePtr = StoreToHoist->getPointerOperand(); 1409 1410 // Look for a store to the same pointer in BrBB. 1411 unsigned MaxNumInstToLookAt = 10; 1412 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1413 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1414 Instruction *CurI = &*RI; 1415 1416 // Could be calling an instruction that effects memory like free(). 1417 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1418 return nullptr; 1419 1420 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1421 // Found the previous store make sure it stores to the same location. 1422 if (SI && SI->getPointerOperand() == StorePtr) 1423 // Found the previous store, return its value operand. 1424 return SI->getValueOperand(); 1425 else if (SI) 1426 return nullptr; // Unknown store. 1427 } 1428 1429 return nullptr; 1430 } 1431 1432 /// \brief Speculate a conditional basic block flattening the CFG. 1433 /// 1434 /// Note that this is a very risky transform currently. Speculating 1435 /// instructions like this is most often not desirable. Instead, there is an MI 1436 /// pass which can do it with full awareness of the resource constraints. 1437 /// However, some cases are "obvious" and we should do directly. An example of 1438 /// this is speculating a single, reasonably cheap instruction. 1439 /// 1440 /// There is only one distinct advantage to flattening the CFG at the IR level: 1441 /// it makes very common but simplistic optimizations such as are common in 1442 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1443 /// modeling their effects with easier to reason about SSA value graphs. 1444 /// 1445 /// 1446 /// An illustration of this transform is turning this IR: 1447 /// \code 1448 /// BB: 1449 /// %cmp = icmp ult %x, %y 1450 /// br i1 %cmp, label %EndBB, label %ThenBB 1451 /// ThenBB: 1452 /// %sub = sub %x, %y 1453 /// br label BB2 1454 /// EndBB: 1455 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1456 /// ... 1457 /// \endcode 1458 /// 1459 /// Into this IR: 1460 /// \code 1461 /// BB: 1462 /// %cmp = icmp ult %x, %y 1463 /// %sub = sub %x, %y 1464 /// %cond = select i1 %cmp, 0, %sub 1465 /// ... 1466 /// \endcode 1467 /// 1468 /// \returns true if the conditional block is removed. 1469 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1470 const DataLayout *DL, 1471 const TargetTransformInfo &TTI) { 1472 // Be conservative for now. FP select instruction can often be expensive. 1473 Value *BrCond = BI->getCondition(); 1474 if (isa<FCmpInst>(BrCond)) 1475 return false; 1476 1477 BasicBlock *BB = BI->getParent(); 1478 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1479 1480 // If ThenBB is actually on the false edge of the conditional branch, remember 1481 // to swap the select operands later. 1482 bool Invert = false; 1483 if (ThenBB != BI->getSuccessor(0)) { 1484 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1485 Invert = true; 1486 } 1487 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1488 1489 // Keep a count of how many times instructions are used within CondBB when 1490 // they are candidates for sinking into CondBB. Specifically: 1491 // - They are defined in BB, and 1492 // - They have no side effects, and 1493 // - All of their uses are in CondBB. 1494 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1495 1496 unsigned SpeculationCost = 0; 1497 Value *SpeculatedStoreValue = nullptr; 1498 StoreInst *SpeculatedStore = nullptr; 1499 for (BasicBlock::iterator BBI = ThenBB->begin(), 1500 BBE = std::prev(ThenBB->end()); 1501 BBI != BBE; ++BBI) { 1502 Instruction *I = BBI; 1503 // Skip debug info. 1504 if (isa<DbgInfoIntrinsic>(I)) 1505 continue; 1506 1507 // Only speculatively execution a single instruction (not counting the 1508 // terminator) for now. 1509 ++SpeculationCost; 1510 if (SpeculationCost > 1) 1511 return false; 1512 1513 // Don't hoist the instruction if it's unsafe or expensive. 1514 if (!isSafeToSpeculativelyExecute(I, DL) && 1515 !(HoistCondStores && 1516 (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB, 1517 EndBB)))) 1518 return false; 1519 if (!SpeculatedStoreValue && 1520 ComputeSpeculationCost(I, DL, TTI) > PHINodeFoldingThreshold * 1521 TargetTransformInfo::TCC_Basic) 1522 return false; 1523 1524 // Store the store speculation candidate. 1525 if (SpeculatedStoreValue) 1526 SpeculatedStore = cast<StoreInst>(I); 1527 1528 // Do not hoist the instruction if any of its operands are defined but not 1529 // used in BB. The transformation will prevent the operand from 1530 // being sunk into the use block. 1531 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1532 i != e; ++i) { 1533 Instruction *OpI = dyn_cast<Instruction>(*i); 1534 if (!OpI || OpI->getParent() != BB || 1535 OpI->mayHaveSideEffects()) 1536 continue; // Not a candidate for sinking. 1537 1538 ++SinkCandidateUseCounts[OpI]; 1539 } 1540 } 1541 1542 // Consider any sink candidates which are only used in CondBB as costs for 1543 // speculation. Note, while we iterate over a DenseMap here, we are summing 1544 // and so iteration order isn't significant. 1545 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1546 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1547 I != E; ++I) 1548 if (I->first->getNumUses() == I->second) { 1549 ++SpeculationCost; 1550 if (SpeculationCost > 1) 1551 return false; 1552 } 1553 1554 // Check that the PHI nodes can be converted to selects. 1555 bool HaveRewritablePHIs = false; 1556 for (BasicBlock::iterator I = EndBB->begin(); 1557 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1558 Value *OrigV = PN->getIncomingValueForBlock(BB); 1559 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1560 1561 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1562 // Skip PHIs which are trivial. 1563 if (ThenV == OrigV) 1564 continue; 1565 1566 // Don't convert to selects if we could remove undefined behavior instead. 1567 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1568 passingValueIsAlwaysUndefined(ThenV, PN)) 1569 return false; 1570 1571 HaveRewritablePHIs = true; 1572 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1573 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1574 if (!OrigCE && !ThenCE) 1575 continue; // Known safe and cheap. 1576 1577 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) || 1578 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL))) 1579 return false; 1580 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL, TTI) : 0; 1581 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL, TTI) : 0; 1582 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1583 TargetTransformInfo::TCC_Basic; 1584 if (OrigCost + ThenCost > MaxCost) 1585 return false; 1586 1587 // Account for the cost of an unfolded ConstantExpr which could end up 1588 // getting expanded into Instructions. 1589 // FIXME: This doesn't account for how many operations are combined in the 1590 // constant expression. 1591 ++SpeculationCost; 1592 if (SpeculationCost > 1) 1593 return false; 1594 } 1595 1596 // If there are no PHIs to process, bail early. This helps ensure idempotence 1597 // as well. 1598 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1599 return false; 1600 1601 // If we get here, we can hoist the instruction and if-convert. 1602 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1603 1604 // Insert a select of the value of the speculated store. 1605 if (SpeculatedStoreValue) { 1606 IRBuilder<true, NoFolder> Builder(BI); 1607 Value *TrueV = SpeculatedStore->getValueOperand(); 1608 Value *FalseV = SpeculatedStoreValue; 1609 if (Invert) 1610 std::swap(TrueV, FalseV); 1611 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1612 "." + FalseV->getName()); 1613 SpeculatedStore->setOperand(0, S); 1614 } 1615 1616 // Hoist the instructions. 1617 BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(), 1618 std::prev(ThenBB->end())); 1619 1620 // Insert selects and rewrite the PHI operands. 1621 IRBuilder<true, NoFolder> Builder(BI); 1622 for (BasicBlock::iterator I = EndBB->begin(); 1623 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1624 unsigned OrigI = PN->getBasicBlockIndex(BB); 1625 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1626 Value *OrigV = PN->getIncomingValue(OrigI); 1627 Value *ThenV = PN->getIncomingValue(ThenI); 1628 1629 // Skip PHIs which are trivial. 1630 if (OrigV == ThenV) 1631 continue; 1632 1633 // Create a select whose true value is the speculatively executed value and 1634 // false value is the preexisting value. Swap them if the branch 1635 // destinations were inverted. 1636 Value *TrueV = ThenV, *FalseV = OrigV; 1637 if (Invert) 1638 std::swap(TrueV, FalseV); 1639 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1640 TrueV->getName() + "." + FalseV->getName()); 1641 PN->setIncomingValue(OrigI, V); 1642 PN->setIncomingValue(ThenI, V); 1643 } 1644 1645 ++NumSpeculations; 1646 return true; 1647 } 1648 1649 /// \returns True if this block contains a CallInst with the NoDuplicate 1650 /// attribute. 1651 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1652 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1653 const CallInst *CI = dyn_cast<CallInst>(I); 1654 if (!CI) 1655 continue; 1656 if (CI->cannotDuplicate()) 1657 return true; 1658 } 1659 return false; 1660 } 1661 1662 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch 1663 /// across this block. 1664 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1665 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1666 unsigned Size = 0; 1667 1668 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1669 if (isa<DbgInfoIntrinsic>(BBI)) 1670 continue; 1671 if (Size > 10) return false; // Don't clone large BB's. 1672 ++Size; 1673 1674 // We can only support instructions that do not define values that are 1675 // live outside of the current basic block. 1676 for (User *U : BBI->users()) { 1677 Instruction *UI = cast<Instruction>(U); 1678 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1679 } 1680 1681 // Looks ok, continue checking. 1682 } 1683 1684 return true; 1685 } 1686 1687 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value 1688 /// that is defined in the same block as the branch and if any PHI entries are 1689 /// constants, thread edges corresponding to that entry to be branches to their 1690 /// ultimate destination. 1691 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) { 1692 BasicBlock *BB = BI->getParent(); 1693 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1694 // NOTE: we currently cannot transform this case if the PHI node is used 1695 // outside of the block. 1696 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1697 return false; 1698 1699 // Degenerate case of a single entry PHI. 1700 if (PN->getNumIncomingValues() == 1) { 1701 FoldSingleEntryPHINodes(PN->getParent()); 1702 return true; 1703 } 1704 1705 // Now we know that this block has multiple preds and two succs. 1706 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1707 1708 if (HasNoDuplicateCall(BB)) return false; 1709 1710 // Okay, this is a simple enough basic block. See if any phi values are 1711 // constants. 1712 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1713 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1714 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1715 1716 // Okay, we now know that all edges from PredBB should be revectored to 1717 // branch to RealDest. 1718 BasicBlock *PredBB = PN->getIncomingBlock(i); 1719 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1720 1721 if (RealDest == BB) continue; // Skip self loops. 1722 // Skip if the predecessor's terminator is an indirect branch. 1723 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1724 1725 // The dest block might have PHI nodes, other predecessors and other 1726 // difficult cases. Instead of being smart about this, just insert a new 1727 // block that jumps to the destination block, effectively splitting 1728 // the edge we are about to create. 1729 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1730 RealDest->getName()+".critedge", 1731 RealDest->getParent(), RealDest); 1732 BranchInst::Create(RealDest, EdgeBB); 1733 1734 // Update PHI nodes. 1735 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1736 1737 // BB may have instructions that are being threaded over. Clone these 1738 // instructions into EdgeBB. We know that there will be no uses of the 1739 // cloned instructions outside of EdgeBB. 1740 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1741 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1742 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1743 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1744 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1745 continue; 1746 } 1747 // Clone the instruction. 1748 Instruction *N = BBI->clone(); 1749 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1750 1751 // Update operands due to translation. 1752 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1753 i != e; ++i) { 1754 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1755 if (PI != TranslateMap.end()) 1756 *i = PI->second; 1757 } 1758 1759 // Check for trivial simplification. 1760 if (Value *V = SimplifyInstruction(N, DL)) { 1761 TranslateMap[BBI] = V; 1762 delete N; // Instruction folded away, don't need actual inst 1763 } else { 1764 // Insert the new instruction into its new home. 1765 EdgeBB->getInstList().insert(InsertPt, N); 1766 if (!BBI->use_empty()) 1767 TranslateMap[BBI] = N; 1768 } 1769 } 1770 1771 // Loop over all of the edges from PredBB to BB, changing them to branch 1772 // to EdgeBB instead. 1773 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1774 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1775 if (PredBBTI->getSuccessor(i) == BB) { 1776 BB->removePredecessor(PredBB); 1777 PredBBTI->setSuccessor(i, EdgeBB); 1778 } 1779 1780 // Recurse, simplifying any other constants. 1781 return FoldCondBranchOnPHI(BI, DL) | true; 1782 } 1783 1784 return false; 1785 } 1786 1787 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry 1788 /// PHI node, see if we can eliminate it. 1789 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL, 1790 const TargetTransformInfo &TTI) { 1791 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1792 // statement", which has a very simple dominance structure. Basically, we 1793 // are trying to find the condition that is being branched on, which 1794 // subsequently causes this merge to happen. We really want control 1795 // dependence information for this check, but simplifycfg can't keep it up 1796 // to date, and this catches most of the cases we care about anyway. 1797 BasicBlock *BB = PN->getParent(); 1798 BasicBlock *IfTrue, *IfFalse; 1799 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1800 if (!IfCond || 1801 // Don't bother if the branch will be constant folded trivially. 1802 isa<ConstantInt>(IfCond)) 1803 return false; 1804 1805 // Okay, we found that we can merge this two-entry phi node into a select. 1806 // Doing so would require us to fold *all* two entry phi nodes in this block. 1807 // At some point this becomes non-profitable (particularly if the target 1808 // doesn't support cmov's). Only do this transformation if there are two or 1809 // fewer PHI nodes in this block. 1810 unsigned NumPhis = 0; 1811 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1812 if (NumPhis > 2) 1813 return false; 1814 1815 // Loop over the PHI's seeing if we can promote them all to select 1816 // instructions. While we are at it, keep track of the instructions 1817 // that need to be moved to the dominating block. 1818 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1819 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1820 MaxCostVal1 = PHINodeFoldingThreshold; 1821 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1822 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1823 1824 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1825 PHINode *PN = cast<PHINode>(II++); 1826 if (Value *V = SimplifyInstruction(PN, DL)) { 1827 PN->replaceAllUsesWith(V); 1828 PN->eraseFromParent(); 1829 continue; 1830 } 1831 1832 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1833 MaxCostVal0, DL, TTI) || 1834 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1835 MaxCostVal1, DL, TTI)) 1836 return false; 1837 } 1838 1839 // If we folded the first phi, PN dangles at this point. Refresh it. If 1840 // we ran out of PHIs then we simplified them all. 1841 PN = dyn_cast<PHINode>(BB->begin()); 1842 if (!PN) return true; 1843 1844 // Don't fold i1 branches on PHIs which contain binary operators. These can 1845 // often be turned into switches and other things. 1846 if (PN->getType()->isIntegerTy(1) && 1847 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1848 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1849 isa<BinaryOperator>(IfCond))) 1850 return false; 1851 1852 // If we all PHI nodes are promotable, check to make sure that all 1853 // instructions in the predecessor blocks can be promoted as well. If 1854 // not, we won't be able to get rid of the control flow, so it's not 1855 // worth promoting to select instructions. 1856 BasicBlock *DomBlock = nullptr; 1857 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1858 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1859 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1860 IfBlock1 = nullptr; 1861 } else { 1862 DomBlock = *pred_begin(IfBlock1); 1863 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1864 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1865 // This is not an aggressive instruction that we can promote. 1866 // Because of this, we won't be able to get rid of the control 1867 // flow, so the xform is not worth it. 1868 return false; 1869 } 1870 } 1871 1872 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1873 IfBlock2 = nullptr; 1874 } else { 1875 DomBlock = *pred_begin(IfBlock2); 1876 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1877 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) { 1878 // This is not an aggressive instruction that we can promote. 1879 // Because of this, we won't be able to get rid of the control 1880 // flow, so the xform is not worth it. 1881 return false; 1882 } 1883 } 1884 1885 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1886 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1887 1888 // If we can still promote the PHI nodes after this gauntlet of tests, 1889 // do all of the PHI's now. 1890 Instruction *InsertPt = DomBlock->getTerminator(); 1891 IRBuilder<true, NoFolder> Builder(InsertPt); 1892 1893 // Move all 'aggressive' instructions, which are defined in the 1894 // conditional parts of the if's up to the dominating block. 1895 if (IfBlock1) 1896 DomBlock->getInstList().splice(InsertPt, 1897 IfBlock1->getInstList(), IfBlock1->begin(), 1898 IfBlock1->getTerminator()); 1899 if (IfBlock2) 1900 DomBlock->getInstList().splice(InsertPt, 1901 IfBlock2->getInstList(), IfBlock2->begin(), 1902 IfBlock2->getTerminator()); 1903 1904 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1905 // Change the PHI node into a select instruction. 1906 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1907 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1908 1909 SelectInst *NV = 1910 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1911 PN->replaceAllUsesWith(NV); 1912 NV->takeName(PN); 1913 PN->eraseFromParent(); 1914 } 1915 1916 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1917 // has been flattened. Change DomBlock to jump directly to our new block to 1918 // avoid other simplifycfg's kicking in on the diamond. 1919 TerminatorInst *OldTI = DomBlock->getTerminator(); 1920 Builder.SetInsertPoint(OldTI); 1921 Builder.CreateBr(BB); 1922 OldTI->eraseFromParent(); 1923 return true; 1924 } 1925 1926 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes 1927 /// to two returning blocks, try to merge them together into one return, 1928 /// introducing a select if the return values disagree. 1929 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1930 IRBuilder<> &Builder) { 1931 assert(BI->isConditional() && "Must be a conditional branch"); 1932 BasicBlock *TrueSucc = BI->getSuccessor(0); 1933 BasicBlock *FalseSucc = BI->getSuccessor(1); 1934 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1935 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1936 1937 // Check to ensure both blocks are empty (just a return) or optionally empty 1938 // with PHI nodes. If there are other instructions, merging would cause extra 1939 // computation on one path or the other. 1940 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1941 return false; 1942 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1943 return false; 1944 1945 Builder.SetInsertPoint(BI); 1946 // Okay, we found a branch that is going to two return nodes. If 1947 // there is no return value for this function, just change the 1948 // branch into a return. 1949 if (FalseRet->getNumOperands() == 0) { 1950 TrueSucc->removePredecessor(BI->getParent()); 1951 FalseSucc->removePredecessor(BI->getParent()); 1952 Builder.CreateRetVoid(); 1953 EraseTerminatorInstAndDCECond(BI); 1954 return true; 1955 } 1956 1957 // Otherwise, figure out what the true and false return values are 1958 // so we can insert a new select instruction. 1959 Value *TrueValue = TrueRet->getReturnValue(); 1960 Value *FalseValue = FalseRet->getReturnValue(); 1961 1962 // Unwrap any PHI nodes in the return blocks. 1963 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1964 if (TVPN->getParent() == TrueSucc) 1965 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1966 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1967 if (FVPN->getParent() == FalseSucc) 1968 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1969 1970 // In order for this transformation to be safe, we must be able to 1971 // unconditionally execute both operands to the return. This is 1972 // normally the case, but we could have a potentially-trapping 1973 // constant expression that prevents this transformation from being 1974 // safe. 1975 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 1976 if (TCV->canTrap()) 1977 return false; 1978 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 1979 if (FCV->canTrap()) 1980 return false; 1981 1982 // Okay, we collected all the mapped values and checked them for sanity, and 1983 // defined to really do this transformation. First, update the CFG. 1984 TrueSucc->removePredecessor(BI->getParent()); 1985 FalseSucc->removePredecessor(BI->getParent()); 1986 1987 // Insert select instructions where needed. 1988 Value *BrCond = BI->getCondition(); 1989 if (TrueValue) { 1990 // Insert a select if the results differ. 1991 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 1992 } else if (isa<UndefValue>(TrueValue)) { 1993 TrueValue = FalseValue; 1994 } else { 1995 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 1996 FalseValue, "retval"); 1997 } 1998 } 1999 2000 Value *RI = !TrueValue ? 2001 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2002 2003 (void) RI; 2004 2005 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2006 << "\n " << *BI << "NewRet = " << *RI 2007 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2008 2009 EraseTerminatorInstAndDCECond(BI); 2010 2011 return true; 2012 } 2013 2014 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the 2015 /// probabilities of the branch taking each edge. Fills in the two APInt 2016 /// parameters and return true, or returns false if no or invalid metadata was 2017 /// found. 2018 static bool ExtractBranchMetadata(BranchInst *BI, 2019 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2020 assert(BI->isConditional() && 2021 "Looking for probabilities on unconditional branch?"); 2022 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2023 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2024 ConstantInt *CITrue = 2025 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2026 ConstantInt *CIFalse = 2027 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2028 if (!CITrue || !CIFalse) return false; 2029 ProbTrue = CITrue->getValue().getZExtValue(); 2030 ProbFalse = CIFalse->getValue().getZExtValue(); 2031 return true; 2032 } 2033 2034 /// checkCSEInPredecessor - Return true if the given instruction is available 2035 /// in its predecessor block. If yes, the instruction will be removed. 2036 /// 2037 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2038 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2039 return false; 2040 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2041 Instruction *PBI = &*I; 2042 // Check whether Inst and PBI generate the same value. 2043 if (Inst->isIdenticalTo(PBI)) { 2044 Inst->replaceAllUsesWith(PBI); 2045 Inst->eraseFromParent(); 2046 return true; 2047 } 2048 } 2049 return false; 2050 } 2051 2052 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a 2053 /// predecessor branches to us and one of our successors, fold the block into 2054 /// the predecessor and use logical operations to pick the right destination. 2055 bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL, 2056 unsigned BonusInstThreshold) { 2057 BasicBlock *BB = BI->getParent(); 2058 2059 Instruction *Cond = nullptr; 2060 if (BI->isConditional()) 2061 Cond = dyn_cast<Instruction>(BI->getCondition()); 2062 else { 2063 // For unconditional branch, check for a simple CFG pattern, where 2064 // BB has a single predecessor and BB's successor is also its predecessor's 2065 // successor. If such pattern exisits, check for CSE between BB and its 2066 // predecessor. 2067 if (BasicBlock *PB = BB->getSinglePredecessor()) 2068 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2069 if (PBI->isConditional() && 2070 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2071 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2072 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2073 I != E; ) { 2074 Instruction *Curr = I++; 2075 if (isa<CmpInst>(Curr)) { 2076 Cond = Curr; 2077 break; 2078 } 2079 // Quit if we can't remove this instruction. 2080 if (!checkCSEInPredecessor(Curr, PB)) 2081 return false; 2082 } 2083 } 2084 2085 if (!Cond) 2086 return false; 2087 } 2088 2089 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2090 Cond->getParent() != BB || !Cond->hasOneUse()) 2091 return false; 2092 2093 // Make sure the instruction after the condition is the cond branch. 2094 BasicBlock::iterator CondIt = Cond; ++CondIt; 2095 2096 // Ignore dbg intrinsics. 2097 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2098 2099 if (&*CondIt != BI) 2100 return false; 2101 2102 // Only allow this transformation if computing the condition doesn't involve 2103 // too many instructions and these involved instructions can be executed 2104 // unconditionally. We denote all involved instructions except the condition 2105 // as "bonus instructions", and only allow this transformation when the 2106 // number of the bonus instructions does not exceed a certain threshold. 2107 unsigned NumBonusInsts = 0; 2108 for (auto I = BB->begin(); Cond != I; ++I) { 2109 // Ignore dbg intrinsics. 2110 if (isa<DbgInfoIntrinsic>(I)) 2111 continue; 2112 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(I, DL)) 2113 return false; 2114 // I has only one use and can be executed unconditionally. 2115 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2116 if (User == nullptr || User->getParent() != BB) 2117 return false; 2118 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2119 // to use any other instruction, User must be an instruction between next(I) 2120 // and Cond. 2121 ++NumBonusInsts; 2122 // Early exits once we reach the limit. 2123 if (NumBonusInsts > BonusInstThreshold) 2124 return false; 2125 } 2126 2127 // Cond is known to be a compare or binary operator. Check to make sure that 2128 // neither operand is a potentially-trapping constant expression. 2129 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2130 if (CE->canTrap()) 2131 return false; 2132 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2133 if (CE->canTrap()) 2134 return false; 2135 2136 // Finally, don't infinitely unroll conditional loops. 2137 BasicBlock *TrueDest = BI->getSuccessor(0); 2138 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2139 if (TrueDest == BB || FalseDest == BB) 2140 return false; 2141 2142 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2143 BasicBlock *PredBlock = *PI; 2144 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2145 2146 // Check that we have two conditional branches. If there is a PHI node in 2147 // the common successor, verify that the same value flows in from both 2148 // blocks. 2149 SmallVector<PHINode*, 4> PHIs; 2150 if (!PBI || PBI->isUnconditional() || 2151 (BI->isConditional() && 2152 !SafeToMergeTerminators(BI, PBI)) || 2153 (!BI->isConditional() && 2154 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2155 continue; 2156 2157 // Determine if the two branches share a common destination. 2158 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2159 bool InvertPredCond = false; 2160 2161 if (BI->isConditional()) { 2162 if (PBI->getSuccessor(0) == TrueDest) 2163 Opc = Instruction::Or; 2164 else if (PBI->getSuccessor(1) == FalseDest) 2165 Opc = Instruction::And; 2166 else if (PBI->getSuccessor(0) == FalseDest) 2167 Opc = Instruction::And, InvertPredCond = true; 2168 else if (PBI->getSuccessor(1) == TrueDest) 2169 Opc = Instruction::Or, InvertPredCond = true; 2170 else 2171 continue; 2172 } else { 2173 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2174 continue; 2175 } 2176 2177 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2178 IRBuilder<> Builder(PBI); 2179 2180 // If we need to invert the condition in the pred block to match, do so now. 2181 if (InvertPredCond) { 2182 Value *NewCond = PBI->getCondition(); 2183 2184 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2185 CmpInst *CI = cast<CmpInst>(NewCond); 2186 CI->setPredicate(CI->getInversePredicate()); 2187 } else { 2188 NewCond = Builder.CreateNot(NewCond, 2189 PBI->getCondition()->getName()+".not"); 2190 } 2191 2192 PBI->setCondition(NewCond); 2193 PBI->swapSuccessors(); 2194 } 2195 2196 // If we have bonus instructions, clone them into the predecessor block. 2197 // Note that there may be mutliple predecessor blocks, so we cannot move 2198 // bonus instructions to a predecessor block. 2199 ValueToValueMapTy VMap; // maps original values to cloned values 2200 // We already make sure Cond is the last instruction before BI. Therefore, 2201 // every instructions before Cond other than DbgInfoIntrinsic are bonus 2202 // instructions. 2203 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2204 if (isa<DbgInfoIntrinsic>(BonusInst)) 2205 continue; 2206 Instruction *NewBonusInst = BonusInst->clone(); 2207 RemapInstruction(NewBonusInst, VMap, 2208 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2209 VMap[BonusInst] = NewBonusInst; 2210 2211 // If we moved a load, we cannot any longer claim any knowledge about 2212 // its potential value. The previous information might have been valid 2213 // only given the branch precondition. 2214 // For an analogous reason, we must also drop all the metadata whose 2215 // semantics we don't understand. 2216 NewBonusInst->dropUnknownMetadata(LLVMContext::MD_dbg); 2217 2218 PredBlock->getInstList().insert(PBI, NewBonusInst); 2219 NewBonusInst->takeName(BonusInst); 2220 BonusInst->setName(BonusInst->getName() + ".old"); 2221 } 2222 2223 // Clone Cond into the predecessor basic block, and or/and the 2224 // two conditions together. 2225 Instruction *New = Cond->clone(); 2226 RemapInstruction(New, VMap, 2227 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2228 PredBlock->getInstList().insert(PBI, New); 2229 New->takeName(Cond); 2230 Cond->setName(New->getName() + ".old"); 2231 2232 if (BI->isConditional()) { 2233 Instruction *NewCond = 2234 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2235 New, "or.cond")); 2236 PBI->setCondition(NewCond); 2237 2238 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2239 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2240 PredFalseWeight); 2241 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2242 SuccFalseWeight); 2243 SmallVector<uint64_t, 8> NewWeights; 2244 2245 if (PBI->getSuccessor(0) == BB) { 2246 if (PredHasWeights && SuccHasWeights) { 2247 // PBI: br i1 %x, BB, FalseDest 2248 // BI: br i1 %y, TrueDest, FalseDest 2249 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2250 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2251 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2252 // TrueWeight for PBI * FalseWeight for BI. 2253 // We assume that total weights of a BranchInst can fit into 32 bits. 2254 // Therefore, we will not have overflow using 64-bit arithmetic. 2255 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2256 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2257 } 2258 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2259 PBI->setSuccessor(0, TrueDest); 2260 } 2261 if (PBI->getSuccessor(1) == BB) { 2262 if (PredHasWeights && SuccHasWeights) { 2263 // PBI: br i1 %x, TrueDest, BB 2264 // BI: br i1 %y, TrueDest, FalseDest 2265 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2266 // FalseWeight for PBI * TrueWeight for BI. 2267 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2268 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2269 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2270 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2271 } 2272 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2273 PBI->setSuccessor(1, FalseDest); 2274 } 2275 if (NewWeights.size() == 2) { 2276 // Halve the weights if any of them cannot fit in an uint32_t 2277 FitWeights(NewWeights); 2278 2279 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2280 PBI->setMetadata(LLVMContext::MD_prof, 2281 MDBuilder(BI->getContext()). 2282 createBranchWeights(MDWeights)); 2283 } else 2284 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2285 } else { 2286 // Update PHI nodes in the common successors. 2287 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2288 ConstantInt *PBI_C = cast<ConstantInt>( 2289 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2290 assert(PBI_C->getType()->isIntegerTy(1)); 2291 Instruction *MergedCond = nullptr; 2292 if (PBI->getSuccessor(0) == TrueDest) { 2293 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2294 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2295 // is false: !PBI_Cond and BI_Value 2296 Instruction *NotCond = 2297 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2298 "not.cond")); 2299 MergedCond = 2300 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2301 NotCond, New, 2302 "and.cond")); 2303 if (PBI_C->isOne()) 2304 MergedCond = 2305 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2306 PBI->getCondition(), MergedCond, 2307 "or.cond")); 2308 } else { 2309 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2310 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2311 // is false: PBI_Cond and BI_Value 2312 MergedCond = 2313 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2314 PBI->getCondition(), New, 2315 "and.cond")); 2316 if (PBI_C->isOne()) { 2317 Instruction *NotCond = 2318 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2319 "not.cond")); 2320 MergedCond = 2321 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2322 NotCond, MergedCond, 2323 "or.cond")); 2324 } 2325 } 2326 // Update PHI Node. 2327 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2328 MergedCond); 2329 } 2330 // Change PBI from Conditional to Unconditional. 2331 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2332 EraseTerminatorInstAndDCECond(PBI); 2333 PBI = New_PBI; 2334 } 2335 2336 // TODO: If BB is reachable from all paths through PredBlock, then we 2337 // could replace PBI's branch probabilities with BI's. 2338 2339 // Copy any debug value intrinsics into the end of PredBlock. 2340 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2341 if (isa<DbgInfoIntrinsic>(*I)) 2342 I->clone()->insertBefore(PBI); 2343 2344 return true; 2345 } 2346 return false; 2347 } 2348 2349 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a 2350 /// predecessor of another block, this function tries to simplify it. We know 2351 /// that PBI and BI are both conditional branches, and BI is in one of the 2352 /// successor blocks of PBI - PBI branches to BI. 2353 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) { 2354 assert(PBI->isConditional() && BI->isConditional()); 2355 BasicBlock *BB = BI->getParent(); 2356 2357 // If this block ends with a branch instruction, and if there is a 2358 // predecessor that ends on a branch of the same condition, make 2359 // this conditional branch redundant. 2360 if (PBI->getCondition() == BI->getCondition() && 2361 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2362 // Okay, the outcome of this conditional branch is statically 2363 // knowable. If this block had a single pred, handle specially. 2364 if (BB->getSinglePredecessor()) { 2365 // Turn this into a branch on constant. 2366 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2367 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2368 CondIsTrue)); 2369 return true; // Nuke the branch on constant. 2370 } 2371 2372 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2373 // in the constant and simplify the block result. Subsequent passes of 2374 // simplifycfg will thread the block. 2375 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2376 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2377 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()), 2378 std::distance(PB, PE), 2379 BI->getCondition()->getName() + ".pr", 2380 BB->begin()); 2381 // Okay, we're going to insert the PHI node. Since PBI is not the only 2382 // predecessor, compute the PHI'd conditional value for all of the preds. 2383 // Any predecessor where the condition is not computable we keep symbolic. 2384 for (pred_iterator PI = PB; PI != PE; ++PI) { 2385 BasicBlock *P = *PI; 2386 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2387 PBI != BI && PBI->isConditional() && 2388 PBI->getCondition() == BI->getCondition() && 2389 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2390 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2391 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2392 CondIsTrue), P); 2393 } else { 2394 NewPN->addIncoming(BI->getCondition(), P); 2395 } 2396 } 2397 2398 BI->setCondition(NewPN); 2399 return true; 2400 } 2401 } 2402 2403 // If this is a conditional branch in an empty block, and if any 2404 // predecessors are a conditional branch to one of our destinations, 2405 // fold the conditions into logical ops and one cond br. 2406 BasicBlock::iterator BBI = BB->begin(); 2407 // Ignore dbg intrinsics. 2408 while (isa<DbgInfoIntrinsic>(BBI)) 2409 ++BBI; 2410 if (&*BBI != BI) 2411 return false; 2412 2413 2414 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2415 if (CE->canTrap()) 2416 return false; 2417 2418 int PBIOp, BIOp; 2419 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2420 PBIOp = BIOp = 0; 2421 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2422 PBIOp = 0, BIOp = 1; 2423 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2424 PBIOp = 1, BIOp = 0; 2425 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2426 PBIOp = BIOp = 1; 2427 else 2428 return false; 2429 2430 // Check to make sure that the other destination of this branch 2431 // isn't BB itself. If so, this is an infinite loop that will 2432 // keep getting unwound. 2433 if (PBI->getSuccessor(PBIOp) == BB) 2434 return false; 2435 2436 // Do not perform this transformation if it would require 2437 // insertion of a large number of select instructions. For targets 2438 // without predication/cmovs, this is a big pessimization. 2439 2440 // Also do not perform this transformation if any phi node in the common 2441 // destination block can trap when reached by BB or PBB (PR17073). In that 2442 // case, it would be unsafe to hoist the operation into a select instruction. 2443 2444 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2445 unsigned NumPhis = 0; 2446 for (BasicBlock::iterator II = CommonDest->begin(); 2447 isa<PHINode>(II); ++II, ++NumPhis) { 2448 if (NumPhis > 2) // Disable this xform. 2449 return false; 2450 2451 PHINode *PN = cast<PHINode>(II); 2452 Value *BIV = PN->getIncomingValueForBlock(BB); 2453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2454 if (CE->canTrap()) 2455 return false; 2456 2457 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2458 Value *PBIV = PN->getIncomingValue(PBBIdx); 2459 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2460 if (CE->canTrap()) 2461 return false; 2462 } 2463 2464 // Finally, if everything is ok, fold the branches to logical ops. 2465 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2466 2467 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2468 << "AND: " << *BI->getParent()); 2469 2470 2471 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2472 // branch in it, where one edge (OtherDest) goes back to itself but the other 2473 // exits. We don't *know* that the program avoids the infinite loop 2474 // (even though that seems likely). If we do this xform naively, we'll end up 2475 // recursively unpeeling the loop. Since we know that (after the xform is 2476 // done) that the block *is* infinite if reached, we just make it an obviously 2477 // infinite loop with no cond branch. 2478 if (OtherDest == BB) { 2479 // Insert it at the end of the function, because it's either code, 2480 // or it won't matter if it's hot. :) 2481 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2482 "infloop", BB->getParent()); 2483 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2484 OtherDest = InfLoopBlock; 2485 } 2486 2487 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2488 2489 // BI may have other predecessors. Because of this, we leave 2490 // it alone, but modify PBI. 2491 2492 // Make sure we get to CommonDest on True&True directions. 2493 Value *PBICond = PBI->getCondition(); 2494 IRBuilder<true, NoFolder> Builder(PBI); 2495 if (PBIOp) 2496 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2497 2498 Value *BICond = BI->getCondition(); 2499 if (BIOp) 2500 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2501 2502 // Merge the conditions. 2503 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2504 2505 // Modify PBI to branch on the new condition to the new dests. 2506 PBI->setCondition(Cond); 2507 PBI->setSuccessor(0, CommonDest); 2508 PBI->setSuccessor(1, OtherDest); 2509 2510 // Update branch weight for PBI. 2511 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2512 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2513 PredFalseWeight); 2514 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2515 SuccFalseWeight); 2516 if (PredHasWeights && SuccHasWeights) { 2517 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2518 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2519 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2520 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2521 // The weight to CommonDest should be PredCommon * SuccTotal + 2522 // PredOther * SuccCommon. 2523 // The weight to OtherDest should be PredOther * SuccOther. 2524 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2525 PredOther * SuccCommon, 2526 PredOther * SuccOther}; 2527 // Halve the weights if any of them cannot fit in an uint32_t 2528 FitWeights(NewWeights); 2529 2530 PBI->setMetadata(LLVMContext::MD_prof, 2531 MDBuilder(BI->getContext()) 2532 .createBranchWeights(NewWeights[0], NewWeights[1])); 2533 } 2534 2535 // OtherDest may have phi nodes. If so, add an entry from PBI's 2536 // block that are identical to the entries for BI's block. 2537 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2538 2539 // We know that the CommonDest already had an edge from PBI to 2540 // it. If it has PHIs though, the PHIs may have different 2541 // entries for BB and PBI's BB. If so, insert a select to make 2542 // them agree. 2543 PHINode *PN; 2544 for (BasicBlock::iterator II = CommonDest->begin(); 2545 (PN = dyn_cast<PHINode>(II)); ++II) { 2546 Value *BIV = PN->getIncomingValueForBlock(BB); 2547 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2548 Value *PBIV = PN->getIncomingValue(PBBIdx); 2549 if (BIV != PBIV) { 2550 // Insert a select in PBI to pick the right value. 2551 Value *NV = cast<SelectInst> 2552 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2553 PN->setIncomingValue(PBBIdx, NV); 2554 } 2555 } 2556 2557 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2558 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2559 2560 // This basic block is probably dead. We know it has at least 2561 // one fewer predecessor. 2562 return true; 2563 } 2564 2565 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a 2566 // branch to TrueBB if Cond is true or to FalseBB if Cond is false. 2567 // Takes care of updating the successors and removing the old terminator. 2568 // Also makes sure not to introduce new successors by assuming that edges to 2569 // non-successor TrueBBs and FalseBBs aren't reachable. 2570 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2571 BasicBlock *TrueBB, BasicBlock *FalseBB, 2572 uint32_t TrueWeight, 2573 uint32_t FalseWeight){ 2574 // Remove any superfluous successor edges from the CFG. 2575 // First, figure out which successors to preserve. 2576 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2577 // successor. 2578 BasicBlock *KeepEdge1 = TrueBB; 2579 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2580 2581 // Then remove the rest. 2582 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) { 2583 BasicBlock *Succ = OldTerm->getSuccessor(I); 2584 // Make sure only to keep exactly one copy of each edge. 2585 if (Succ == KeepEdge1) 2586 KeepEdge1 = nullptr; 2587 else if (Succ == KeepEdge2) 2588 KeepEdge2 = nullptr; 2589 else 2590 Succ->removePredecessor(OldTerm->getParent()); 2591 } 2592 2593 IRBuilder<> Builder(OldTerm); 2594 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2595 2596 // Insert an appropriate new terminator. 2597 if (!KeepEdge1 && !KeepEdge2) { 2598 if (TrueBB == FalseBB) 2599 // We were only looking for one successor, and it was present. 2600 // Create an unconditional branch to it. 2601 Builder.CreateBr(TrueBB); 2602 else { 2603 // We found both of the successors we were looking for. 2604 // Create a conditional branch sharing the condition of the select. 2605 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2606 if (TrueWeight != FalseWeight) 2607 NewBI->setMetadata(LLVMContext::MD_prof, 2608 MDBuilder(OldTerm->getContext()). 2609 createBranchWeights(TrueWeight, FalseWeight)); 2610 } 2611 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2612 // Neither of the selected blocks were successors, so this 2613 // terminator must be unreachable. 2614 new UnreachableInst(OldTerm->getContext(), OldTerm); 2615 } else { 2616 // One of the selected values was a successor, but the other wasn't. 2617 // Insert an unconditional branch to the one that was found; 2618 // the edge to the one that wasn't must be unreachable. 2619 if (!KeepEdge1) 2620 // Only TrueBB was found. 2621 Builder.CreateBr(TrueBB); 2622 else 2623 // Only FalseBB was found. 2624 Builder.CreateBr(FalseBB); 2625 } 2626 2627 EraseTerminatorInstAndDCECond(OldTerm); 2628 return true; 2629 } 2630 2631 // SimplifySwitchOnSelect - Replaces 2632 // (switch (select cond, X, Y)) on constant X, Y 2633 // with a branch - conditional if X and Y lead to distinct BBs, 2634 // unconditional otherwise. 2635 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2636 // Check for constant integer values in the select. 2637 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2638 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2639 if (!TrueVal || !FalseVal) 2640 return false; 2641 2642 // Find the relevant condition and destinations. 2643 Value *Condition = Select->getCondition(); 2644 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2645 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2646 2647 // Get weight for TrueBB and FalseBB. 2648 uint32_t TrueWeight = 0, FalseWeight = 0; 2649 SmallVector<uint64_t, 8> Weights; 2650 bool HasWeights = HasBranchWeights(SI); 2651 if (HasWeights) { 2652 GetBranchWeights(SI, Weights); 2653 if (Weights.size() == 1 + SI->getNumCases()) { 2654 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2655 getSuccessorIndex()]; 2656 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2657 getSuccessorIndex()]; 2658 } 2659 } 2660 2661 // Perform the actual simplification. 2662 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2663 TrueWeight, FalseWeight); 2664 } 2665 2666 // SimplifyIndirectBrOnSelect - Replaces 2667 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2668 // blockaddress(@fn, BlockB))) 2669 // with 2670 // (br cond, BlockA, BlockB). 2671 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2672 // Check that both operands of the select are block addresses. 2673 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2674 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 2675 if (!TBA || !FBA) 2676 return false; 2677 2678 // Extract the actual blocks. 2679 BasicBlock *TrueBB = TBA->getBasicBlock(); 2680 BasicBlock *FalseBB = FBA->getBasicBlock(); 2681 2682 // Perform the actual simplification. 2683 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 2684 0, 0); 2685 } 2686 2687 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp 2688 /// instruction (a seteq/setne with a constant) as the only instruction in a 2689 /// block that ends with an uncond branch. We are looking for a very specific 2690 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 2691 /// this case, we merge the first two "or's of icmp" into a switch, but then the 2692 /// default value goes to an uncond block with a seteq in it, we get something 2693 /// like: 2694 /// 2695 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 2696 /// DEFAULT: 2697 /// %tmp = icmp eq i8 %A, 92 2698 /// br label %end 2699 /// end: 2700 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 2701 /// 2702 /// We prefer to split the edge to 'end' so that there is a true/false entry to 2703 /// the PHI, merging the third icmp into the switch. 2704 static bool TryToSimplifyUncondBranchWithICmpInIt( 2705 ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, 2706 unsigned BonusInstThreshold, const DataLayout *DL, AssumptionCache *AC) { 2707 BasicBlock *BB = ICI->getParent(); 2708 2709 // If the block has any PHIs in it or the icmp has multiple uses, it is too 2710 // complex. 2711 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 2712 2713 Value *V = ICI->getOperand(0); 2714 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 2715 2716 // The pattern we're looking for is where our only predecessor is a switch on 2717 // 'V' and this block is the default case for the switch. In this case we can 2718 // fold the compared value into the switch to simplify things. 2719 BasicBlock *Pred = BB->getSinglePredecessor(); 2720 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 2721 2722 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 2723 if (SI->getCondition() != V) 2724 return false; 2725 2726 // If BB is reachable on a non-default case, then we simply know the value of 2727 // V in this block. Substitute it and constant fold the icmp instruction 2728 // away. 2729 if (SI->getDefaultDest() != BB) { 2730 ConstantInt *VVal = SI->findCaseDest(BB); 2731 assert(VVal && "Should have a unique destination value"); 2732 ICI->setOperand(0, VVal); 2733 2734 if (Value *V = SimplifyInstruction(ICI, DL)) { 2735 ICI->replaceAllUsesWith(V); 2736 ICI->eraseFromParent(); 2737 } 2738 // BB is now empty, so it is likely to simplify away. 2739 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 2740 } 2741 2742 // Ok, the block is reachable from the default dest. If the constant we're 2743 // comparing exists in one of the other edges, then we can constant fold ICI 2744 // and zap it. 2745 if (SI->findCaseValue(Cst) != SI->case_default()) { 2746 Value *V; 2747 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2748 V = ConstantInt::getFalse(BB->getContext()); 2749 else 2750 V = ConstantInt::getTrue(BB->getContext()); 2751 2752 ICI->replaceAllUsesWith(V); 2753 ICI->eraseFromParent(); 2754 // BB is now empty, so it is likely to simplify away. 2755 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 2756 } 2757 2758 // The use of the icmp has to be in the 'end' block, by the only PHI node in 2759 // the block. 2760 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 2761 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 2762 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 2763 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 2764 return false; 2765 2766 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 2767 // true in the PHI. 2768 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 2769 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 2770 2771 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 2772 std::swap(DefaultCst, NewCst); 2773 2774 // Replace ICI (which is used by the PHI for the default value) with true or 2775 // false depending on if it is EQ or NE. 2776 ICI->replaceAllUsesWith(DefaultCst); 2777 ICI->eraseFromParent(); 2778 2779 // Okay, the switch goes to this block on a default value. Add an edge from 2780 // the switch to the merge point on the compared value. 2781 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 2782 BB->getParent(), BB); 2783 SmallVector<uint64_t, 8> Weights; 2784 bool HasWeights = HasBranchWeights(SI); 2785 if (HasWeights) { 2786 GetBranchWeights(SI, Weights); 2787 if (Weights.size() == 1 + SI->getNumCases()) { 2788 // Split weight for default case to case for "Cst". 2789 Weights[0] = (Weights[0]+1) >> 1; 2790 Weights.push_back(Weights[0]); 2791 2792 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 2793 SI->setMetadata(LLVMContext::MD_prof, 2794 MDBuilder(SI->getContext()). 2795 createBranchWeights(MDWeights)); 2796 } 2797 } 2798 SI->addCase(Cst, NewBB); 2799 2800 // NewBB branches to the phi block, add the uncond branch and the phi entry. 2801 Builder.SetInsertPoint(NewBB); 2802 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 2803 Builder.CreateBr(SuccBlock); 2804 PHIUse->addIncoming(NewCst, NewBB); 2805 return true; 2806 } 2807 2808 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch. 2809 /// Check to see if it is branching on an or/and chain of icmp instructions, and 2810 /// fold it into a switch instruction if so. 2811 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL, 2812 IRBuilder<> &Builder) { 2813 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 2814 if (!Cond) return false; 2815 2816 // Change br (X == 0 | X == 1), T, F into a switch instruction. 2817 // If this is a bunch of seteq's or'd together, or if it's a bunch of 2818 // 'setne's and'ed together, collect them. 2819 2820 // Try to gather values from a chain of and/or to be turned into a switch 2821 ConstantComparesGatherer ConstantCompare(Cond, DL); 2822 // Unpack the result 2823 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 2824 Value *CompVal = ConstantCompare.CompValue; 2825 unsigned UsedICmps = ConstantCompare.UsedICmps; 2826 Value *ExtraCase = ConstantCompare.Extra; 2827 2828 // If we didn't have a multiply compared value, fail. 2829 if (!CompVal) return false; 2830 2831 // Avoid turning single icmps into a switch. 2832 if (UsedICmps <= 1) 2833 return false; 2834 2835 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 2836 2837 // There might be duplicate constants in the list, which the switch 2838 // instruction can't handle, remove them now. 2839 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 2840 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 2841 2842 // If Extra was used, we require at least two switch values to do the 2843 // transformation. A switch with one value is just an cond branch. 2844 if (ExtraCase && Values.size() < 2) return false; 2845 2846 // TODO: Preserve branch weight metadata, similarly to how 2847 // FoldValueComparisonIntoPredecessors preserves it. 2848 2849 // Figure out which block is which destination. 2850 BasicBlock *DefaultBB = BI->getSuccessor(1); 2851 BasicBlock *EdgeBB = BI->getSuccessor(0); 2852 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 2853 2854 BasicBlock *BB = BI->getParent(); 2855 2856 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 2857 << " cases into SWITCH. BB is:\n" << *BB); 2858 2859 // If there are any extra values that couldn't be folded into the switch 2860 // then we evaluate them with an explicit branch first. Split the block 2861 // right before the condbr to handle it. 2862 if (ExtraCase) { 2863 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test"); 2864 // Remove the uncond branch added to the old block. 2865 TerminatorInst *OldTI = BB->getTerminator(); 2866 Builder.SetInsertPoint(OldTI); 2867 2868 if (TrueWhenEqual) 2869 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 2870 else 2871 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 2872 2873 OldTI->eraseFromParent(); 2874 2875 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 2876 // for the edge we just added. 2877 AddPredecessorToBlock(EdgeBB, BB, NewBB); 2878 2879 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 2880 << "\nEXTRABB = " << *BB); 2881 BB = NewBB; 2882 } 2883 2884 Builder.SetInsertPoint(BI); 2885 // Convert pointer to int before we switch. 2886 if (CompVal->getType()->isPointerTy()) { 2887 assert(DL && "Cannot switch on pointer without DataLayout"); 2888 CompVal = Builder.CreatePtrToInt(CompVal, 2889 DL->getIntPtrType(CompVal->getType()), 2890 "magicptr"); 2891 } 2892 2893 // Create the new switch instruction now. 2894 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 2895 2896 // Add all of the 'cases' to the switch instruction. 2897 for (unsigned i = 0, e = Values.size(); i != e; ++i) 2898 New->addCase(Values[i], EdgeBB); 2899 2900 // We added edges from PI to the EdgeBB. As such, if there were any 2901 // PHI nodes in EdgeBB, they need entries to be added corresponding to 2902 // the number of edges added. 2903 for (BasicBlock::iterator BBI = EdgeBB->begin(); 2904 isa<PHINode>(BBI); ++BBI) { 2905 PHINode *PN = cast<PHINode>(BBI); 2906 Value *InVal = PN->getIncomingValueForBlock(BB); 2907 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 2908 PN->addIncoming(InVal, BB); 2909 } 2910 2911 // Erase the old branch instruction. 2912 EraseTerminatorInstAndDCECond(BI); 2913 2914 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 2915 return true; 2916 } 2917 2918 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 2919 // If this is a trivial landing pad that just continues unwinding the caught 2920 // exception then zap the landing pad, turning its invokes into calls. 2921 BasicBlock *BB = RI->getParent(); 2922 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 2923 if (RI->getValue() != LPInst) 2924 // Not a landing pad, or the resume is not unwinding the exception that 2925 // caused control to branch here. 2926 return false; 2927 2928 // Check that there are no other instructions except for debug intrinsics. 2929 BasicBlock::iterator I = LPInst, E = RI; 2930 while (++I != E) 2931 if (!isa<DbgInfoIntrinsic>(I)) 2932 return false; 2933 2934 // Turn all invokes that unwind here into calls and delete the basic block. 2935 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 2936 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator()); 2937 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 2938 // Insert a call instruction before the invoke. 2939 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II); 2940 Call->takeName(II); 2941 Call->setCallingConv(II->getCallingConv()); 2942 Call->setAttributes(II->getAttributes()); 2943 Call->setDebugLoc(II->getDebugLoc()); 2944 2945 // Anything that used the value produced by the invoke instruction now uses 2946 // the value produced by the call instruction. Note that we do this even 2947 // for void functions and calls with no uses so that the callgraph edge is 2948 // updated. 2949 II->replaceAllUsesWith(Call); 2950 BB->removePredecessor(II->getParent()); 2951 2952 // Insert a branch to the normal destination right before the invoke. 2953 BranchInst::Create(II->getNormalDest(), II); 2954 2955 // Finally, delete the invoke instruction! 2956 II->eraseFromParent(); 2957 } 2958 2959 // The landingpad is now unreachable. Zap it. 2960 BB->eraseFromParent(); 2961 return true; 2962 } 2963 2964 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 2965 BasicBlock *BB = RI->getParent(); 2966 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 2967 2968 // Find predecessors that end with branches. 2969 SmallVector<BasicBlock*, 8> UncondBranchPreds; 2970 SmallVector<BranchInst*, 8> CondBranchPreds; 2971 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2972 BasicBlock *P = *PI; 2973 TerminatorInst *PTI = P->getTerminator(); 2974 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 2975 if (BI->isUnconditional()) 2976 UncondBranchPreds.push_back(P); 2977 else 2978 CondBranchPreds.push_back(BI); 2979 } 2980 } 2981 2982 // If we found some, do the transformation! 2983 if (!UncondBranchPreds.empty() && DupRet) { 2984 while (!UncondBranchPreds.empty()) { 2985 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 2986 DEBUG(dbgs() << "FOLDING: " << *BB 2987 << "INTO UNCOND BRANCH PRED: " << *Pred); 2988 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 2989 } 2990 2991 // If we eliminated all predecessors of the block, delete the block now. 2992 if (pred_empty(BB)) 2993 // We know there are no successors, so just nuke the block. 2994 BB->eraseFromParent(); 2995 2996 return true; 2997 } 2998 2999 // Check out all of the conditional branches going to this return 3000 // instruction. If any of them just select between returns, change the 3001 // branch itself into a select/return pair. 3002 while (!CondBranchPreds.empty()) { 3003 BranchInst *BI = CondBranchPreds.pop_back_val(); 3004 3005 // Check to see if the non-BB successor is also a return block. 3006 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3007 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3008 SimplifyCondBranchToTwoReturns(BI, Builder)) 3009 return true; 3010 } 3011 return false; 3012 } 3013 3014 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3015 BasicBlock *BB = UI->getParent(); 3016 3017 bool Changed = false; 3018 3019 // If there are any instructions immediately before the unreachable that can 3020 // be removed, do so. 3021 while (UI != BB->begin()) { 3022 BasicBlock::iterator BBI = UI; 3023 --BBI; 3024 // Do not delete instructions that can have side effects which might cause 3025 // the unreachable to not be reachable; specifically, calls and volatile 3026 // operations may have this effect. 3027 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3028 3029 if (BBI->mayHaveSideEffects()) { 3030 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 3031 if (SI->isVolatile()) 3032 break; 3033 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 3034 if (LI->isVolatile()) 3035 break; 3036 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3037 if (RMWI->isVolatile()) 3038 break; 3039 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3040 if (CXI->isVolatile()) 3041 break; 3042 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3043 !isa<LandingPadInst>(BBI)) { 3044 break; 3045 } 3046 // Note that deleting LandingPad's here is in fact okay, although it 3047 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3048 // all the predecessors of this block will be the unwind edges of Invokes, 3049 // and we can therefore guarantee this block will be erased. 3050 } 3051 3052 // Delete this instruction (any uses are guaranteed to be dead) 3053 if (!BBI->use_empty()) 3054 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3055 BBI->eraseFromParent(); 3056 Changed = true; 3057 } 3058 3059 // If the unreachable instruction is the first in the block, take a gander 3060 // at all of the predecessors of this instruction, and simplify them. 3061 if (&BB->front() != UI) return Changed; 3062 3063 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3064 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3065 TerminatorInst *TI = Preds[i]->getTerminator(); 3066 IRBuilder<> Builder(TI); 3067 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3068 if (BI->isUnconditional()) { 3069 if (BI->getSuccessor(0) == BB) { 3070 new UnreachableInst(TI->getContext(), TI); 3071 TI->eraseFromParent(); 3072 Changed = true; 3073 } 3074 } else { 3075 if (BI->getSuccessor(0) == BB) { 3076 Builder.CreateBr(BI->getSuccessor(1)); 3077 EraseTerminatorInstAndDCECond(BI); 3078 } else if (BI->getSuccessor(1) == BB) { 3079 Builder.CreateBr(BI->getSuccessor(0)); 3080 EraseTerminatorInstAndDCECond(BI); 3081 Changed = true; 3082 } 3083 } 3084 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3085 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3086 i != e; ++i) 3087 if (i.getCaseSuccessor() == BB) { 3088 BB->removePredecessor(SI->getParent()); 3089 SI->removeCase(i); 3090 --i; --e; 3091 Changed = true; 3092 } 3093 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) { 3094 if (II->getUnwindDest() == BB) { 3095 // Convert the invoke to a call instruction. This would be a good 3096 // place to note that the call does not throw though. 3097 BranchInst *BI = Builder.CreateBr(II->getNormalDest()); 3098 II->removeFromParent(); // Take out of symbol table 3099 3100 // Insert the call now... 3101 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3); 3102 Builder.SetInsertPoint(BI); 3103 CallInst *CI = Builder.CreateCall(II->getCalledValue(), 3104 Args, II->getName()); 3105 CI->setCallingConv(II->getCallingConv()); 3106 CI->setAttributes(II->getAttributes()); 3107 // If the invoke produced a value, the call does now instead. 3108 II->replaceAllUsesWith(CI); 3109 delete II; 3110 Changed = true; 3111 } 3112 } 3113 } 3114 3115 // If this block is now dead, remove it. 3116 if (pred_empty(BB) && 3117 BB != &BB->getParent()->getEntryBlock()) { 3118 // We know there are no successors, so just nuke the block. 3119 BB->eraseFromParent(); 3120 return true; 3121 } 3122 3123 return Changed; 3124 } 3125 3126 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3127 assert(Cases.size() >= 1); 3128 3129 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3130 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3131 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3132 return false; 3133 } 3134 return true; 3135 } 3136 3137 /// Turn a switch with two reachable destinations into an integer range 3138 /// comparison and branch. 3139 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3140 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3141 3142 bool HasDefault = 3143 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3144 3145 // Partition the cases into two sets with different destinations. 3146 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3147 BasicBlock *DestB = nullptr; 3148 SmallVector <ConstantInt *, 16> CasesA; 3149 SmallVector <ConstantInt *, 16> CasesB; 3150 3151 for (SwitchInst::CaseIt I : SI->cases()) { 3152 BasicBlock *Dest = I.getCaseSuccessor(); 3153 if (!DestA) DestA = Dest; 3154 if (Dest == DestA) { 3155 CasesA.push_back(I.getCaseValue()); 3156 continue; 3157 } 3158 if (!DestB) DestB = Dest; 3159 if (Dest == DestB) { 3160 CasesB.push_back(I.getCaseValue()); 3161 continue; 3162 } 3163 return false; // More than two destinations. 3164 } 3165 3166 assert(DestA && DestB && "Single-destination switch should have been folded."); 3167 assert(DestA != DestB); 3168 assert(DestB != SI->getDefaultDest()); 3169 assert(!CasesB.empty() && "There must be non-default cases."); 3170 assert(!CasesA.empty() || HasDefault); 3171 3172 // Figure out if one of the sets of cases form a contiguous range. 3173 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3174 BasicBlock *ContiguousDest = nullptr; 3175 BasicBlock *OtherDest = nullptr; 3176 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3177 ContiguousCases = &CasesA; 3178 ContiguousDest = DestA; 3179 OtherDest = DestB; 3180 } else if (CasesAreContiguous(CasesB)) { 3181 ContiguousCases = &CasesB; 3182 ContiguousDest = DestB; 3183 OtherDest = DestA; 3184 } else 3185 return false; 3186 3187 // Start building the compare and branch. 3188 3189 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3190 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3191 3192 Value *Sub = SI->getCondition(); 3193 if (!Offset->isNullValue()) 3194 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3195 3196 Value *Cmp; 3197 // If NumCases overflowed, then all possible values jump to the successor. 3198 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3199 Cmp = ConstantInt::getTrue(SI->getContext()); 3200 else 3201 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3202 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3203 3204 // Update weight for the newly-created conditional branch. 3205 if (HasBranchWeights(SI)) { 3206 SmallVector<uint64_t, 8> Weights; 3207 GetBranchWeights(SI, Weights); 3208 if (Weights.size() == 1 + SI->getNumCases()) { 3209 uint64_t TrueWeight = 0; 3210 uint64_t FalseWeight = 0; 3211 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3212 if (SI->getSuccessor(I) == ContiguousDest) 3213 TrueWeight += Weights[I]; 3214 else 3215 FalseWeight += Weights[I]; 3216 } 3217 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3218 TrueWeight /= 2; 3219 FalseWeight /= 2; 3220 } 3221 NewBI->setMetadata(LLVMContext::MD_prof, 3222 MDBuilder(SI->getContext()).createBranchWeights( 3223 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3224 } 3225 } 3226 3227 // Prune obsolete incoming values off the successors' PHI nodes. 3228 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3229 unsigned PreviousEdges = ContiguousCases->size(); 3230 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3231 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3232 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3233 } 3234 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3235 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3236 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3237 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3238 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3239 } 3240 3241 // Drop the switch. 3242 SI->eraseFromParent(); 3243 3244 return true; 3245 } 3246 3247 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch 3248 /// and use it to remove dead cases. 3249 static bool EliminateDeadSwitchCases(SwitchInst *SI, const DataLayout *DL, 3250 AssumptionCache *AC) { 3251 Value *Cond = SI->getCondition(); 3252 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3253 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3254 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3255 3256 // Gather dead cases. 3257 SmallVector<ConstantInt*, 8> DeadCases; 3258 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3259 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3260 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3261 DeadCases.push_back(I.getCaseValue()); 3262 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3263 << I.getCaseValue() << "' is dead.\n"); 3264 } 3265 } 3266 3267 SmallVector<uint64_t, 8> Weights; 3268 bool HasWeight = HasBranchWeights(SI); 3269 if (HasWeight) { 3270 GetBranchWeights(SI, Weights); 3271 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3272 } 3273 3274 // Remove dead cases from the switch. 3275 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3276 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3277 assert(Case != SI->case_default() && 3278 "Case was not found. Probably mistake in DeadCases forming."); 3279 if (HasWeight) { 3280 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3281 Weights.pop_back(); 3282 } 3283 3284 // Prune unused values from PHI nodes. 3285 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3286 SI->removeCase(Case); 3287 } 3288 if (HasWeight && Weights.size() >= 2) { 3289 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3290 SI->setMetadata(LLVMContext::MD_prof, 3291 MDBuilder(SI->getParent()->getContext()). 3292 createBranchWeights(MDWeights)); 3293 } 3294 3295 return !DeadCases.empty(); 3296 } 3297 3298 /// FindPHIForConditionForwarding - If BB would be eligible for simplification 3299 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3300 /// by an unconditional branch), look at the phi node for BB in the successor 3301 /// block and see if the incoming value is equal to CaseValue. If so, return 3302 /// the phi node, and set PhiIndex to BB's index in the phi node. 3303 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3304 BasicBlock *BB, 3305 int *PhiIndex) { 3306 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3307 return nullptr; // BB must be empty to be a candidate for simplification. 3308 if (!BB->getSinglePredecessor()) 3309 return nullptr; // BB must be dominated by the switch. 3310 3311 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3312 if (!Branch || !Branch->isUnconditional()) 3313 return nullptr; // Terminator must be unconditional branch. 3314 3315 BasicBlock *Succ = Branch->getSuccessor(0); 3316 3317 BasicBlock::iterator I = Succ->begin(); 3318 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3319 int Idx = PHI->getBasicBlockIndex(BB); 3320 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3321 3322 Value *InValue = PHI->getIncomingValue(Idx); 3323 if (InValue != CaseValue) continue; 3324 3325 *PhiIndex = Idx; 3326 return PHI; 3327 } 3328 3329 return nullptr; 3330 } 3331 3332 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch 3333 /// instruction to a phi node dominated by the switch, if that would mean that 3334 /// some of the destination blocks of the switch can be folded away. 3335 /// Returns true if a change is made. 3336 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3337 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3338 ForwardingNodesMap ForwardingNodes; 3339 3340 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3341 ConstantInt *CaseValue = I.getCaseValue(); 3342 BasicBlock *CaseDest = I.getCaseSuccessor(); 3343 3344 int PhiIndex; 3345 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3346 &PhiIndex); 3347 if (!PHI) continue; 3348 3349 ForwardingNodes[PHI].push_back(PhiIndex); 3350 } 3351 3352 bool Changed = false; 3353 3354 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3355 E = ForwardingNodes.end(); I != E; ++I) { 3356 PHINode *Phi = I->first; 3357 SmallVectorImpl<int> &Indexes = I->second; 3358 3359 if (Indexes.size() < 2) continue; 3360 3361 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3362 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3363 Changed = true; 3364 } 3365 3366 return Changed; 3367 } 3368 3369 /// ValidLookupTableConstant - Return true if the backend will be able to handle 3370 /// initializing an array of constants like C. 3371 static bool ValidLookupTableConstant(Constant *C) { 3372 if (C->isThreadDependent()) 3373 return false; 3374 if (C->isDLLImportDependent()) 3375 return false; 3376 3377 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3378 return CE->isGEPWithNoNotionalOverIndexing(); 3379 3380 return isa<ConstantFP>(C) || 3381 isa<ConstantInt>(C) || 3382 isa<ConstantPointerNull>(C) || 3383 isa<GlobalValue>(C) || 3384 isa<UndefValue>(C); 3385 } 3386 3387 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up 3388 /// its constant value in ConstantPool, returning 0 if it's not there. 3389 static Constant *LookupConstant(Value *V, 3390 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3391 if (Constant *C = dyn_cast<Constant>(V)) 3392 return C; 3393 return ConstantPool.lookup(V); 3394 } 3395 3396 /// ConstantFold - Try to fold instruction I into a constant. This works for 3397 /// simple instructions such as binary operations where both operands are 3398 /// constant or can be replaced by constants from the ConstantPool. Returns the 3399 /// resulting constant on success, 0 otherwise. 3400 static Constant * 3401 ConstantFold(Instruction *I, 3402 const SmallDenseMap<Value *, Constant *> &ConstantPool, 3403 const DataLayout *DL) { 3404 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3405 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3406 if (!A) 3407 return nullptr; 3408 if (A->isAllOnesValue()) 3409 return LookupConstant(Select->getTrueValue(), ConstantPool); 3410 if (A->isNullValue()) 3411 return LookupConstant(Select->getFalseValue(), ConstantPool); 3412 return nullptr; 3413 } 3414 3415 SmallVector<Constant *, 4> COps; 3416 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3417 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3418 COps.push_back(A); 3419 else 3420 return nullptr; 3421 } 3422 3423 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) 3424 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3425 COps[1], DL); 3426 3427 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL); 3428 } 3429 3430 /// GetCaseResults - Try to determine the resulting constant values in phi nodes 3431 /// at the common destination basic block, *CommonDest, for one of the case 3432 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3433 /// case), of a switch instruction SI. 3434 static bool 3435 GetCaseResults(SwitchInst *SI, 3436 ConstantInt *CaseVal, 3437 BasicBlock *CaseDest, 3438 BasicBlock **CommonDest, 3439 SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res, 3440 const DataLayout *DL) { 3441 // The block from which we enter the common destination. 3442 BasicBlock *Pred = SI->getParent(); 3443 3444 // If CaseDest is empty except for some side-effect free instructions through 3445 // which we can constant-propagate the CaseVal, continue to its successor. 3446 SmallDenseMap<Value*, Constant*> ConstantPool; 3447 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 3448 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 3449 ++I) { 3450 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 3451 // If the terminator is a simple branch, continue to the next block. 3452 if (T->getNumSuccessors() != 1) 3453 return false; 3454 Pred = CaseDest; 3455 CaseDest = T->getSuccessor(0); 3456 } else if (isa<DbgInfoIntrinsic>(I)) { 3457 // Skip debug intrinsic. 3458 continue; 3459 } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) { 3460 // Instruction is side-effect free and constant. 3461 3462 // If the instruction has uses outside this block or a phi node slot for 3463 // the block, it is not safe to bypass the instruction since it would then 3464 // no longer dominate all its uses. 3465 for (auto &Use : I->uses()) { 3466 User *User = Use.getUser(); 3467 if (Instruction *I = dyn_cast<Instruction>(User)) 3468 if (I->getParent() == CaseDest) 3469 continue; 3470 if (PHINode *Phi = dyn_cast<PHINode>(User)) 3471 if (Phi->getIncomingBlock(Use) == CaseDest) 3472 continue; 3473 return false; 3474 } 3475 3476 ConstantPool.insert(std::make_pair(I, C)); 3477 } else { 3478 break; 3479 } 3480 } 3481 3482 // If we did not have a CommonDest before, use the current one. 3483 if (!*CommonDest) 3484 *CommonDest = CaseDest; 3485 // If the destination isn't the common one, abort. 3486 if (CaseDest != *CommonDest) 3487 return false; 3488 3489 // Get the values for this case from phi nodes in the destination block. 3490 BasicBlock::iterator I = (*CommonDest)->begin(); 3491 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3492 int Idx = PHI->getBasicBlockIndex(Pred); 3493 if (Idx == -1) 3494 continue; 3495 3496 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 3497 ConstantPool); 3498 if (!ConstVal) 3499 return false; 3500 3501 // Be conservative about which kinds of constants we support. 3502 if (!ValidLookupTableConstant(ConstVal)) 3503 return false; 3504 3505 Res.push_back(std::make_pair(PHI, ConstVal)); 3506 } 3507 3508 return Res.size() > 0; 3509 } 3510 3511 // MapCaseToResult - Helper function used to 3512 // add CaseVal to the list of cases that generate Result. 3513 static void MapCaseToResult(ConstantInt *CaseVal, 3514 SwitchCaseResultVectorTy &UniqueResults, 3515 Constant *Result) { 3516 for (auto &I : UniqueResults) { 3517 if (I.first == Result) { 3518 I.second.push_back(CaseVal); 3519 return; 3520 } 3521 } 3522 UniqueResults.push_back(std::make_pair(Result, 3523 SmallVector<ConstantInt*, 4>(1, CaseVal))); 3524 } 3525 3526 // InitializeUniqueCases - Helper function that initializes a map containing 3527 // results for the PHI node of the common destination block for a switch 3528 // instruction. Returns false if multiple PHI nodes have been found or if 3529 // there is not a common destination block for the switch. 3530 static bool InitializeUniqueCases( 3531 SwitchInst *SI, const DataLayout *DL, PHINode *&PHI, 3532 BasicBlock *&CommonDest, 3533 SwitchCaseResultVectorTy &UniqueResults, 3534 Constant *&DefaultResult) { 3535 for (auto &I : SI->cases()) { 3536 ConstantInt *CaseVal = I.getCaseValue(); 3537 3538 // Resulting value at phi nodes for this case value. 3539 SwitchCaseResultsTy Results; 3540 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 3541 DL)) 3542 return false; 3543 3544 // Only one value per case is permitted 3545 if (Results.size() > 1) 3546 return false; 3547 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 3548 3549 // Check the PHI consistency. 3550 if (!PHI) 3551 PHI = Results[0].first; 3552 else if (PHI != Results[0].first) 3553 return false; 3554 } 3555 // Find the default result value. 3556 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 3557 BasicBlock *DefaultDest = SI->getDefaultDest(); 3558 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 3559 DL); 3560 // If the default value is not found abort unless the default destination 3561 // is unreachable. 3562 DefaultResult = 3563 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 3564 if ((!DefaultResult && 3565 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 3566 return false; 3567 3568 return true; 3569 } 3570 3571 // ConvertTwoCaseSwitch - Helper function that checks if it is possible to 3572 // transform a switch with only two cases (or two cases + default) 3573 // that produces a result into a value select. 3574 // Example: 3575 // switch (a) { 3576 // case 10: %0 = icmp eq i32 %a, 10 3577 // return 10; %1 = select i1 %0, i32 10, i32 4 3578 // case 20: ----> %2 = icmp eq i32 %a, 20 3579 // return 2; %3 = select i1 %2, i32 2, i32 %1 3580 // default: 3581 // return 4; 3582 // } 3583 static Value * 3584 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 3585 Constant *DefaultResult, Value *Condition, 3586 IRBuilder<> &Builder) { 3587 assert(ResultVector.size() == 2 && 3588 "We should have exactly two unique results at this point"); 3589 // If we are selecting between only two cases transform into a simple 3590 // select or a two-way select if default is possible. 3591 if (ResultVector[0].second.size() == 1 && 3592 ResultVector[1].second.size() == 1) { 3593 ConstantInt *const FirstCase = ResultVector[0].second[0]; 3594 ConstantInt *const SecondCase = ResultVector[1].second[0]; 3595 3596 bool DefaultCanTrigger = DefaultResult; 3597 Value *SelectValue = ResultVector[1].first; 3598 if (DefaultCanTrigger) { 3599 Value *const ValueCompare = 3600 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 3601 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 3602 DefaultResult, "switch.select"); 3603 } 3604 Value *const ValueCompare = 3605 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 3606 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 3607 "switch.select"); 3608 } 3609 3610 return nullptr; 3611 } 3612 3613 // RemoveSwitchAfterSelectConversion - Helper function to cleanup a switch 3614 // instruction that has been converted into a select, fixing up PHI nodes and 3615 // basic blocks. 3616 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 3617 Value *SelectValue, 3618 IRBuilder<> &Builder) { 3619 BasicBlock *SelectBB = SI->getParent(); 3620 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 3621 PHI->removeIncomingValue(SelectBB); 3622 PHI->addIncoming(SelectValue, SelectBB); 3623 3624 Builder.CreateBr(PHI->getParent()); 3625 3626 // Remove the switch. 3627 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 3628 BasicBlock *Succ = SI->getSuccessor(i); 3629 3630 if (Succ == PHI->getParent()) 3631 continue; 3632 Succ->removePredecessor(SelectBB); 3633 } 3634 SI->eraseFromParent(); 3635 } 3636 3637 /// SwitchToSelect - If the switch is only used to initialize one or more 3638 /// phi nodes in a common successor block with only two different 3639 /// constant values, replace the switch with select. 3640 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 3641 const DataLayout *DL, AssumptionCache *AC) { 3642 Value *const Cond = SI->getCondition(); 3643 PHINode *PHI = nullptr; 3644 BasicBlock *CommonDest = nullptr; 3645 Constant *DefaultResult; 3646 SwitchCaseResultVectorTy UniqueResults; 3647 // Collect all the cases that will deliver the same value from the switch. 3648 if (!InitializeUniqueCases(SI, DL, PHI, CommonDest, UniqueResults, 3649 DefaultResult)) 3650 return false; 3651 // Selects choose between maximum two values. 3652 if (UniqueResults.size() != 2) 3653 return false; 3654 assert(PHI != nullptr && "PHI for value select not found"); 3655 3656 Builder.SetInsertPoint(SI); 3657 Value *SelectValue = ConvertTwoCaseSwitch( 3658 UniqueResults, 3659 DefaultResult, Cond, Builder); 3660 if (SelectValue) { 3661 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 3662 return true; 3663 } 3664 // The switch couldn't be converted into a select. 3665 return false; 3666 } 3667 3668 namespace { 3669 /// SwitchLookupTable - This class represents a lookup table that can be used 3670 /// to replace a switch. 3671 class SwitchLookupTable { 3672 public: 3673 /// SwitchLookupTable - Create a lookup table to use as a switch replacement 3674 /// with the contents of Values, using DefaultValue to fill any holes in the 3675 /// table. 3676 SwitchLookupTable(Module &M, 3677 uint64_t TableSize, 3678 ConstantInt *Offset, 3679 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3680 Constant *DefaultValue, 3681 const DataLayout *DL); 3682 3683 /// BuildLookup - Build instructions with Builder to retrieve the value at 3684 /// the position given by Index in the lookup table. 3685 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 3686 3687 /// WouldFitInRegister - Return true if a table with TableSize elements of 3688 /// type ElementType would fit in a target-legal register. 3689 static bool WouldFitInRegister(const DataLayout *DL, 3690 uint64_t TableSize, 3691 const Type *ElementType); 3692 3693 private: 3694 // Depending on the contents of the table, it can be represented in 3695 // different ways. 3696 enum { 3697 // For tables where each element contains the same value, we just have to 3698 // store that single value and return it for each lookup. 3699 SingleValueKind, 3700 3701 // For tables where there is a linear relationship between table index 3702 // and values. We calculate the result with a simple multiplication 3703 // and addition instead of a table lookup. 3704 LinearMapKind, 3705 3706 // For small tables with integer elements, we can pack them into a bitmap 3707 // that fits into a target-legal register. Values are retrieved by 3708 // shift and mask operations. 3709 BitMapKind, 3710 3711 // The table is stored as an array of values. Values are retrieved by load 3712 // instructions from the table. 3713 ArrayKind 3714 } Kind; 3715 3716 // For SingleValueKind, this is the single value. 3717 Constant *SingleValue; 3718 3719 // For BitMapKind, this is the bitmap. 3720 ConstantInt *BitMap; 3721 IntegerType *BitMapElementTy; 3722 3723 // For LinearMapKind, these are the constants used to derive the value. 3724 ConstantInt *LinearOffset; 3725 ConstantInt *LinearMultiplier; 3726 3727 // For ArrayKind, this is the array. 3728 GlobalVariable *Array; 3729 }; 3730 } 3731 3732 SwitchLookupTable::SwitchLookupTable(Module &M, 3733 uint64_t TableSize, 3734 ConstantInt *Offset, 3735 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values, 3736 Constant *DefaultValue, 3737 const DataLayout *DL) 3738 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 3739 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 3740 assert(Values.size() && "Can't build lookup table without values!"); 3741 assert(TableSize >= Values.size() && "Can't fit values in table!"); 3742 3743 // If all values in the table are equal, this is that value. 3744 SingleValue = Values.begin()->second; 3745 3746 Type *ValueType = Values.begin()->second->getType(); 3747 3748 // Build up the table contents. 3749 SmallVector<Constant*, 64> TableContents(TableSize); 3750 for (size_t I = 0, E = Values.size(); I != E; ++I) { 3751 ConstantInt *CaseVal = Values[I].first; 3752 Constant *CaseRes = Values[I].second; 3753 assert(CaseRes->getType() == ValueType); 3754 3755 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 3756 .getLimitedValue(); 3757 TableContents[Idx] = CaseRes; 3758 3759 if (CaseRes != SingleValue) 3760 SingleValue = nullptr; 3761 } 3762 3763 // Fill in any holes in the table with the default result. 3764 if (Values.size() < TableSize) { 3765 assert(DefaultValue && 3766 "Need a default value to fill the lookup table holes."); 3767 assert(DefaultValue->getType() == ValueType); 3768 for (uint64_t I = 0; I < TableSize; ++I) { 3769 if (!TableContents[I]) 3770 TableContents[I] = DefaultValue; 3771 } 3772 3773 if (DefaultValue != SingleValue) 3774 SingleValue = nullptr; 3775 } 3776 3777 // If each element in the table contains the same value, we only need to store 3778 // that single value. 3779 if (SingleValue) { 3780 Kind = SingleValueKind; 3781 return; 3782 } 3783 3784 // Check if we can derive the value with a linear transformation from the 3785 // table index. 3786 if (isa<IntegerType>(ValueType)) { 3787 bool LinearMappingPossible = true; 3788 APInt PrevVal; 3789 APInt DistToPrev; 3790 assert(TableSize >= 2 && "Should be a SingleValue table."); 3791 // Check if there is the same distance between two consecutive values. 3792 for (uint64_t I = 0; I < TableSize; ++I) { 3793 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 3794 if (!ConstVal) { 3795 // This is an undef. We could deal with it, but undefs in lookup tables 3796 // are very seldom. It's probably not worth the additional complexity. 3797 LinearMappingPossible = false; 3798 break; 3799 } 3800 APInt Val = ConstVal->getValue(); 3801 if (I != 0) { 3802 APInt Dist = Val - PrevVal; 3803 if (I == 1) { 3804 DistToPrev = Dist; 3805 } else if (Dist != DistToPrev) { 3806 LinearMappingPossible = false; 3807 break; 3808 } 3809 } 3810 PrevVal = Val; 3811 } 3812 if (LinearMappingPossible) { 3813 LinearOffset = cast<ConstantInt>(TableContents[0]); 3814 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 3815 Kind = LinearMapKind; 3816 ++NumLinearMaps; 3817 return; 3818 } 3819 } 3820 3821 // If the type is integer and the table fits in a register, build a bitmap. 3822 if (WouldFitInRegister(DL, TableSize, ValueType)) { 3823 IntegerType *IT = cast<IntegerType>(ValueType); 3824 APInt TableInt(TableSize * IT->getBitWidth(), 0); 3825 for (uint64_t I = TableSize; I > 0; --I) { 3826 TableInt <<= IT->getBitWidth(); 3827 // Insert values into the bitmap. Undef values are set to zero. 3828 if (!isa<UndefValue>(TableContents[I - 1])) { 3829 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 3830 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 3831 } 3832 } 3833 BitMap = ConstantInt::get(M.getContext(), TableInt); 3834 BitMapElementTy = IT; 3835 Kind = BitMapKind; 3836 ++NumBitMaps; 3837 return; 3838 } 3839 3840 // Store the table in an array. 3841 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 3842 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 3843 3844 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 3845 GlobalVariable::PrivateLinkage, 3846 Initializer, 3847 "switch.table"); 3848 Array->setUnnamedAddr(true); 3849 Kind = ArrayKind; 3850 } 3851 3852 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 3853 switch (Kind) { 3854 case SingleValueKind: 3855 return SingleValue; 3856 case LinearMapKind: { 3857 // Derive the result value from the input value. 3858 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 3859 false, "switch.idx.cast"); 3860 if (!LinearMultiplier->isOne()) 3861 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 3862 if (!LinearOffset->isZero()) 3863 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 3864 return Result; 3865 } 3866 case BitMapKind: { 3867 // Type of the bitmap (e.g. i59). 3868 IntegerType *MapTy = BitMap->getType(); 3869 3870 // Cast Index to the same type as the bitmap. 3871 // Note: The Index is <= the number of elements in the table, so 3872 // truncating it to the width of the bitmask is safe. 3873 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 3874 3875 // Multiply the shift amount by the element width. 3876 ShiftAmt = Builder.CreateMul(ShiftAmt, 3877 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 3878 "switch.shiftamt"); 3879 3880 // Shift down. 3881 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 3882 "switch.downshift"); 3883 // Mask off. 3884 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 3885 "switch.masked"); 3886 } 3887 case ArrayKind: { 3888 // Make sure the table index will not overflow when treated as signed. 3889 IntegerType *IT = cast<IntegerType>(Index->getType()); 3890 uint64_t TableSize = Array->getInitializer()->getType() 3891 ->getArrayNumElements(); 3892 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 3893 Index = Builder.CreateZExt(Index, 3894 IntegerType::get(IT->getContext(), 3895 IT->getBitWidth() + 1), 3896 "switch.tableidx.zext"); 3897 3898 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 3899 Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices, 3900 "switch.gep"); 3901 return Builder.CreateLoad(GEP, "switch.load"); 3902 } 3903 } 3904 llvm_unreachable("Unknown lookup table kind!"); 3905 } 3906 3907 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL, 3908 uint64_t TableSize, 3909 const Type *ElementType) { 3910 if (!DL) 3911 return false; 3912 const IntegerType *IT = dyn_cast<IntegerType>(ElementType); 3913 if (!IT) 3914 return false; 3915 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 3916 // are <= 15, we could try to narrow the type. 3917 3918 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 3919 if (TableSize >= UINT_MAX/IT->getBitWidth()) 3920 return false; 3921 return DL->fitsInLegalInteger(TableSize * IT->getBitWidth()); 3922 } 3923 3924 /// ShouldBuildLookupTable - Determine whether a lookup table should be built 3925 /// for this switch, based on the number of cases, size of the table and the 3926 /// types of the results. 3927 static bool ShouldBuildLookupTable(SwitchInst *SI, 3928 uint64_t TableSize, 3929 const TargetTransformInfo &TTI, 3930 const DataLayout *DL, 3931 const SmallDenseMap<PHINode*, Type*>& ResultTypes) { 3932 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 3933 return false; // TableSize overflowed, or mul below might overflow. 3934 3935 bool AllTablesFitInRegister = true; 3936 bool HasIllegalType = false; 3937 for (const auto &I : ResultTypes) { 3938 Type *Ty = I.second; 3939 3940 // Saturate this flag to true. 3941 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 3942 3943 // Saturate this flag to false. 3944 AllTablesFitInRegister = AllTablesFitInRegister && 3945 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 3946 3947 // If both flags saturate, we're done. NOTE: This *only* works with 3948 // saturating flags, and all flags have to saturate first due to the 3949 // non-deterministic behavior of iterating over a dense map. 3950 if (HasIllegalType && !AllTablesFitInRegister) 3951 break; 3952 } 3953 3954 // If each table would fit in a register, we should build it anyway. 3955 if (AllTablesFitInRegister) 3956 return true; 3957 3958 // Don't build a table that doesn't fit in-register if it has illegal types. 3959 if (HasIllegalType) 3960 return false; 3961 3962 // The table density should be at least 40%. This is the same criterion as for 3963 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 3964 // FIXME: Find the best cut-off. 3965 return SI->getNumCases() * 10 >= TableSize * 4; 3966 } 3967 3968 /// Try to reuse the switch table index compare. Following pattern: 3969 /// \code 3970 /// if (idx < tablesize) 3971 /// r = table[idx]; // table does not contain default_value 3972 /// else 3973 /// r = default_value; 3974 /// if (r != default_value) 3975 /// ... 3976 /// \endcode 3977 /// Is optimized to: 3978 /// \code 3979 /// cond = idx < tablesize; 3980 /// if (cond) 3981 /// r = table[idx]; 3982 /// else 3983 /// r = default_value; 3984 /// if (cond) 3985 /// ... 3986 /// \endcode 3987 /// Jump threading will then eliminate the second if(cond). 3988 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 3989 BranchInst *RangeCheckBranch, Constant *DefaultValue, 3990 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 3991 3992 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 3993 if (!CmpInst) 3994 return; 3995 3996 // We require that the compare is in the same block as the phi so that jump 3997 // threading can do its work afterwards. 3998 if (CmpInst->getParent() != PhiBlock) 3999 return; 4000 4001 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4002 if (!CmpOp1) 4003 return; 4004 4005 Value *RangeCmp = RangeCheckBranch->getCondition(); 4006 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4007 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4008 4009 // Check if the compare with the default value is constant true or false. 4010 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4011 DefaultValue, CmpOp1, true); 4012 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4013 return; 4014 4015 // Check if the compare with the case values is distinct from the default 4016 // compare result. 4017 for (auto ValuePair : Values) { 4018 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4019 ValuePair.second, CmpOp1, true); 4020 if (!CaseConst || CaseConst == DefaultConst) 4021 return; 4022 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4023 "Expect true or false as compare result."); 4024 } 4025 4026 // Check if the branch instruction dominates the phi node. It's a simple 4027 // dominance check, but sufficient for our needs. 4028 // Although this check is invariant in the calling loops, it's better to do it 4029 // at this late stage. Practically we do it at most once for a switch. 4030 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4031 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4032 BasicBlock *Pred = *PI; 4033 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4034 return; 4035 } 4036 4037 if (DefaultConst == FalseConst) { 4038 // The compare yields the same result. We can replace it. 4039 CmpInst->replaceAllUsesWith(RangeCmp); 4040 ++NumTableCmpReuses; 4041 } else { 4042 // The compare yields the same result, just inverted. We can replace it. 4043 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4044 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4045 RangeCheckBranch); 4046 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4047 ++NumTableCmpReuses; 4048 } 4049 } 4050 4051 /// SwitchToLookupTable - If the switch is only used to initialize one or more 4052 /// phi nodes in a common successor block with different constant values, 4053 /// replace the switch with lookup tables. 4054 static bool SwitchToLookupTable(SwitchInst *SI, 4055 IRBuilder<> &Builder, 4056 const TargetTransformInfo &TTI, 4057 const DataLayout* DL) { 4058 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4059 4060 // Only build lookup table when we have a target that supports it. 4061 if (!TTI.shouldBuildLookupTables()) 4062 return false; 4063 4064 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4065 // split off a dense part and build a lookup table for that. 4066 4067 // FIXME: This creates arrays of GEPs to constant strings, which means each 4068 // GEP needs a runtime relocation in PIC code. We should just build one big 4069 // string and lookup indices into that. 4070 4071 // Ignore switches with less than three cases. Lookup tables will not make them 4072 // faster, so we don't analyze them. 4073 if (SI->getNumCases() < 3) 4074 return false; 4075 4076 // Figure out the corresponding result for each case value and phi node in the 4077 // common destination, as well as the the min and max case values. 4078 assert(SI->case_begin() != SI->case_end()); 4079 SwitchInst::CaseIt CI = SI->case_begin(); 4080 ConstantInt *MinCaseVal = CI.getCaseValue(); 4081 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4082 4083 BasicBlock *CommonDest = nullptr; 4084 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4085 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4086 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4087 SmallDenseMap<PHINode*, Type*> ResultTypes; 4088 SmallVector<PHINode*, 4> PHIs; 4089 4090 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4091 ConstantInt *CaseVal = CI.getCaseValue(); 4092 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4093 MinCaseVal = CaseVal; 4094 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4095 MaxCaseVal = CaseVal; 4096 4097 // Resulting value at phi nodes for this case value. 4098 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4099 ResultsTy Results; 4100 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4101 Results, DL)) 4102 return false; 4103 4104 // Append the result from this case to the list for each phi. 4105 for (const auto &I : Results) { 4106 PHINode *PHI = I.first; 4107 Constant *Value = I.second; 4108 if (!ResultLists.count(PHI)) 4109 PHIs.push_back(PHI); 4110 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4111 } 4112 } 4113 4114 // Keep track of the result types. 4115 for (PHINode *PHI : PHIs) { 4116 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4117 } 4118 4119 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4120 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4121 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4122 bool TableHasHoles = (NumResults < TableSize); 4123 4124 // If the table has holes, we need a constant result for the default case 4125 // or a bitmask that fits in a register. 4126 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4127 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4128 &CommonDest, DefaultResultsList, DL); 4129 4130 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4131 if (NeedMask) { 4132 // As an extra penalty for the validity test we require more cases. 4133 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4134 return false; 4135 if (!(DL && DL->fitsInLegalInteger(TableSize))) 4136 return false; 4137 } 4138 4139 for (const auto &I : DefaultResultsList) { 4140 PHINode *PHI = I.first; 4141 Constant *Result = I.second; 4142 DefaultResults[PHI] = Result; 4143 } 4144 4145 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4146 return false; 4147 4148 // Create the BB that does the lookups. 4149 Module &Mod = *CommonDest->getParent()->getParent(); 4150 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4151 "switch.lookup", 4152 CommonDest->getParent(), 4153 CommonDest); 4154 4155 // Compute the table index value. 4156 Builder.SetInsertPoint(SI); 4157 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4158 "switch.tableidx"); 4159 4160 // Compute the maximum table size representable by the integer type we are 4161 // switching upon. 4162 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4163 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4164 assert(MaxTableSize >= TableSize && 4165 "It is impossible for a switch to have more entries than the max " 4166 "representable value of its input integer type's size."); 4167 4168 // If the default destination is unreachable, or if the lookup table covers 4169 // all values of the conditional variable, branch directly to the lookup table 4170 // BB. Otherwise, check that the condition is within the case range. 4171 const bool DefaultIsReachable = 4172 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4173 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4174 BranchInst *RangeCheckBranch = nullptr; 4175 4176 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4177 Builder.CreateBr(LookupBB); 4178 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4179 // do not delete PHINodes here. 4180 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4181 /*DontDeleteUselessPHIs=*/true); 4182 } else { 4183 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4184 MinCaseVal->getType(), TableSize)); 4185 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4186 } 4187 4188 // Populate the BB that does the lookups. 4189 Builder.SetInsertPoint(LookupBB); 4190 4191 if (NeedMask) { 4192 // Before doing the lookup we do the hole check. 4193 // The LookupBB is therefore re-purposed to do the hole check 4194 // and we create a new LookupBB. 4195 BasicBlock *MaskBB = LookupBB; 4196 MaskBB->setName("switch.hole_check"); 4197 LookupBB = BasicBlock::Create(Mod.getContext(), 4198 "switch.lookup", 4199 CommonDest->getParent(), 4200 CommonDest); 4201 4202 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4203 // unnecessary illegal types. 4204 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4205 APInt MaskInt(TableSizePowOf2, 0); 4206 APInt One(TableSizePowOf2, 1); 4207 // Build bitmask; fill in a 1 bit for every case. 4208 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4209 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4210 uint64_t Idx = (ResultList[I].first->getValue() - 4211 MinCaseVal->getValue()).getLimitedValue(); 4212 MaskInt |= One << Idx; 4213 } 4214 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4215 4216 // Get the TableIndex'th bit of the bitmask. 4217 // If this bit is 0 (meaning hole) jump to the default destination, 4218 // else continue with table lookup. 4219 IntegerType *MapTy = TableMask->getType(); 4220 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4221 "switch.maskindex"); 4222 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4223 "switch.shifted"); 4224 Value *LoBit = Builder.CreateTrunc(Shifted, 4225 Type::getInt1Ty(Mod.getContext()), 4226 "switch.lobit"); 4227 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4228 4229 Builder.SetInsertPoint(LookupBB); 4230 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4231 } 4232 4233 bool ReturnedEarly = false; 4234 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4235 PHINode *PHI = PHIs[I]; 4236 const ResultListTy &ResultList = ResultLists[PHI]; 4237 4238 // If using a bitmask, use any value to fill the lookup table holes. 4239 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4240 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4241 4242 Value *Result = Table.BuildLookup(TableIndex, Builder); 4243 4244 // If the result is used to return immediately from the function, we want to 4245 // do that right here. 4246 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4247 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4248 Builder.CreateRet(Result); 4249 ReturnedEarly = true; 4250 break; 4251 } 4252 4253 // Do a small peephole optimization: re-use the switch table compare if 4254 // possible. 4255 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4256 BasicBlock *PhiBlock = PHI->getParent(); 4257 // Search for compare instructions which use the phi. 4258 for (auto *User : PHI->users()) { 4259 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4260 } 4261 } 4262 4263 PHI->addIncoming(Result, LookupBB); 4264 } 4265 4266 if (!ReturnedEarly) 4267 Builder.CreateBr(CommonDest); 4268 4269 // Remove the switch. 4270 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4271 BasicBlock *Succ = SI->getSuccessor(i); 4272 4273 if (Succ == SI->getDefaultDest()) 4274 continue; 4275 Succ->removePredecessor(SI->getParent()); 4276 } 4277 SI->eraseFromParent(); 4278 4279 ++NumLookupTables; 4280 if (NeedMask) 4281 ++NumLookupTablesHoles; 4282 return true; 4283 } 4284 4285 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4286 BasicBlock *BB = SI->getParent(); 4287 4288 if (isValueEqualityComparison(SI)) { 4289 // If we only have one predecessor, and if it is a branch on this value, 4290 // see if that predecessor totally determines the outcome of this switch. 4291 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4292 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4293 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4294 4295 Value *Cond = SI->getCondition(); 4296 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4297 if (SimplifySwitchOnSelect(SI, Select)) 4298 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4299 4300 // If the block only contains the switch, see if we can fold the block 4301 // away into any preds. 4302 BasicBlock::iterator BBI = BB->begin(); 4303 // Ignore dbg intrinsics. 4304 while (isa<DbgInfoIntrinsic>(BBI)) 4305 ++BBI; 4306 if (SI == &*BBI) 4307 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4308 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4309 } 4310 4311 // Try to transform the switch into an icmp and a branch. 4312 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4313 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4314 4315 // Remove unreachable cases. 4316 if (EliminateDeadSwitchCases(SI, DL, AC)) 4317 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4318 4319 if (SwitchToSelect(SI, Builder, DL, AC)) 4320 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4321 4322 if (ForwardSwitchConditionToPHI(SI)) 4323 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4324 4325 if (SwitchToLookupTable(SI, Builder, TTI, DL)) 4326 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4327 4328 return false; 4329 } 4330 4331 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4332 BasicBlock *BB = IBI->getParent(); 4333 bool Changed = false; 4334 4335 // Eliminate redundant destinations. 4336 SmallPtrSet<Value *, 8> Succs; 4337 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4338 BasicBlock *Dest = IBI->getDestination(i); 4339 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4340 Dest->removePredecessor(BB); 4341 IBI->removeDestination(i); 4342 --i; --e; 4343 Changed = true; 4344 } 4345 } 4346 4347 if (IBI->getNumDestinations() == 0) { 4348 // If the indirectbr has no successors, change it to unreachable. 4349 new UnreachableInst(IBI->getContext(), IBI); 4350 EraseTerminatorInstAndDCECond(IBI); 4351 return true; 4352 } 4353 4354 if (IBI->getNumDestinations() == 1) { 4355 // If the indirectbr has one successor, change it to a direct branch. 4356 BranchInst::Create(IBI->getDestination(0), IBI); 4357 EraseTerminatorInstAndDCECond(IBI); 4358 return true; 4359 } 4360 4361 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4362 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4363 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4364 } 4365 return Changed; 4366 } 4367 4368 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4369 BasicBlock *BB = BI->getParent(); 4370 4371 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 4372 return true; 4373 4374 // If the Terminator is the only non-phi instruction, simplify the block. 4375 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(); 4376 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 4377 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 4378 return true; 4379 4380 // If the only instruction in the block is a seteq/setne comparison 4381 // against a constant, try to simplify the block. 4382 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 4383 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 4384 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 4385 ; 4386 if (I->isTerminator() && 4387 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, 4388 BonusInstThreshold, DL, AC)) 4389 return true; 4390 } 4391 4392 // If this basic block is ONLY a compare and a branch, and if a predecessor 4393 // branches to us and our successor, fold the comparison into the 4394 // predecessor and use logical operations to update the incoming value 4395 // for PHI nodes in common successor. 4396 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4397 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4398 return false; 4399 } 4400 4401 4402 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 4403 BasicBlock *BB = BI->getParent(); 4404 4405 // Conditional branch 4406 if (isValueEqualityComparison(BI)) { 4407 // If we only have one predecessor, and if it is a branch on this value, 4408 // see if that predecessor totally determines the outcome of this 4409 // switch. 4410 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4411 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 4412 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4413 4414 // This block must be empty, except for the setcond inst, if it exists. 4415 // Ignore dbg intrinsics. 4416 BasicBlock::iterator I = BB->begin(); 4417 // Ignore dbg intrinsics. 4418 while (isa<DbgInfoIntrinsic>(I)) 4419 ++I; 4420 if (&*I == BI) { 4421 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 4422 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4423 } else if (&*I == cast<Instruction>(BI->getCondition())){ 4424 ++I; 4425 // Ignore dbg intrinsics. 4426 while (isa<DbgInfoIntrinsic>(I)) 4427 ++I; 4428 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 4429 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4430 } 4431 } 4432 4433 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 4434 if (SimplifyBranchOnICmpChain(BI, DL, Builder)) 4435 return true; 4436 4437 // If this basic block is ONLY a compare and a branch, and if a predecessor 4438 // branches to us and one of our successors, fold the comparison into the 4439 // predecessor and use logical operations to pick the right destination. 4440 if (FoldBranchToCommonDest(BI, DL, BonusInstThreshold)) 4441 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4442 4443 // We have a conditional branch to two blocks that are only reachable 4444 // from BI. We know that the condbr dominates the two blocks, so see if 4445 // there is any identical code in the "then" and "else" blocks. If so, we 4446 // can hoist it up to the branching block. 4447 if (BI->getSuccessor(0)->getSinglePredecessor()) { 4448 if (BI->getSuccessor(1)->getSinglePredecessor()) { 4449 if (HoistThenElseCodeToIf(BI, DL, TTI)) 4450 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4451 } else { 4452 // If Successor #1 has multiple preds, we may be able to conditionally 4453 // execute Successor #0 if it branches to Successor #1. 4454 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 4455 if (Succ0TI->getNumSuccessors() == 1 && 4456 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 4457 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL, TTI)) 4458 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4459 } 4460 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 4461 // If Successor #0 has multiple preds, we may be able to conditionally 4462 // execute Successor #1 if it branches to Successor #0. 4463 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 4464 if (Succ1TI->getNumSuccessors() == 1 && 4465 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 4466 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL, TTI)) 4467 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4468 } 4469 4470 // If this is a branch on a phi node in the current block, thread control 4471 // through this block if any PHI node entries are constants. 4472 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 4473 if (PN->getParent() == BI->getParent()) 4474 if (FoldCondBranchOnPHI(BI, DL)) 4475 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4476 4477 // Scan predecessor blocks for conditional branches. 4478 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 4479 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 4480 if (PBI != BI && PBI->isConditional()) 4481 if (SimplifyCondBranchToCondBranch(PBI, BI)) 4482 return SimplifyCFG(BB, TTI, BonusInstThreshold, DL, AC) | true; 4483 4484 return false; 4485 } 4486 4487 /// Check if passing a value to an instruction will cause undefined behavior. 4488 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 4489 Constant *C = dyn_cast<Constant>(V); 4490 if (!C) 4491 return false; 4492 4493 if (I->use_empty()) 4494 return false; 4495 4496 if (C->isNullValue()) { 4497 // Only look at the first use, avoid hurting compile time with long uselists 4498 User *Use = *I->user_begin(); 4499 4500 // Now make sure that there are no instructions in between that can alter 4501 // control flow (eg. calls) 4502 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 4503 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 4504 return false; 4505 4506 // Look through GEPs. A load from a GEP derived from NULL is still undefined 4507 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 4508 if (GEP->getPointerOperand() == I) 4509 return passingValueIsAlwaysUndefined(V, GEP); 4510 4511 // Look through bitcasts. 4512 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 4513 return passingValueIsAlwaysUndefined(V, BC); 4514 4515 // Load from null is undefined. 4516 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 4517 if (!LI->isVolatile()) 4518 return LI->getPointerAddressSpace() == 0; 4519 4520 // Store to null is undefined. 4521 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 4522 if (!SI->isVolatile()) 4523 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 4524 } 4525 return false; 4526 } 4527 4528 /// If BB has an incoming value that will always trigger undefined behavior 4529 /// (eg. null pointer dereference), remove the branch leading here. 4530 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 4531 for (BasicBlock::iterator i = BB->begin(); 4532 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 4533 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 4534 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 4535 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 4536 IRBuilder<> Builder(T); 4537 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 4538 BB->removePredecessor(PHI->getIncomingBlock(i)); 4539 // Turn uncoditional branches into unreachables and remove the dead 4540 // destination from conditional branches. 4541 if (BI->isUnconditional()) 4542 Builder.CreateUnreachable(); 4543 else 4544 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 4545 BI->getSuccessor(0)); 4546 BI->eraseFromParent(); 4547 return true; 4548 } 4549 // TODO: SwitchInst. 4550 } 4551 4552 return false; 4553 } 4554 4555 bool SimplifyCFGOpt::run(BasicBlock *BB) { 4556 bool Changed = false; 4557 4558 assert(BB && BB->getParent() && "Block not embedded in function!"); 4559 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 4560 4561 // Remove basic blocks that have no predecessors (except the entry block)... 4562 // or that just have themself as a predecessor. These are unreachable. 4563 if ((pred_empty(BB) && 4564 BB != &BB->getParent()->getEntryBlock()) || 4565 BB->getSinglePredecessor() == BB) { 4566 DEBUG(dbgs() << "Removing BB: \n" << *BB); 4567 DeleteDeadBlock(BB); 4568 return true; 4569 } 4570 4571 // Check to see if we can constant propagate this terminator instruction 4572 // away... 4573 Changed |= ConstantFoldTerminator(BB, true); 4574 4575 // Check for and eliminate duplicate PHI nodes in this block. 4576 Changed |= EliminateDuplicatePHINodes(BB); 4577 4578 // Check for and remove branches that will always cause undefined behavior. 4579 Changed |= removeUndefIntroducingPredecessor(BB); 4580 4581 // Merge basic blocks into their predecessor if there is only one distinct 4582 // pred, and if there is only one distinct successor of the predecessor, and 4583 // if there are no PHI nodes. 4584 // 4585 if (MergeBlockIntoPredecessor(BB)) 4586 return true; 4587 4588 IRBuilder<> Builder(BB); 4589 4590 // If there is a trivial two-entry PHI node in this basic block, and we can 4591 // eliminate it, do so now. 4592 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 4593 if (PN->getNumIncomingValues() == 2) 4594 Changed |= FoldTwoEntryPHINode(PN, DL, TTI); 4595 4596 Builder.SetInsertPoint(BB->getTerminator()); 4597 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 4598 if (BI->isUnconditional()) { 4599 if (SimplifyUncondBranch(BI, Builder)) return true; 4600 } else { 4601 if (SimplifyCondBranch(BI, Builder)) return true; 4602 } 4603 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 4604 if (SimplifyReturn(RI, Builder)) return true; 4605 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 4606 if (SimplifyResume(RI, Builder)) return true; 4607 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 4608 if (SimplifySwitch(SI, Builder)) return true; 4609 } else if (UnreachableInst *UI = 4610 dyn_cast<UnreachableInst>(BB->getTerminator())) { 4611 if (SimplifyUnreachable(UI)) return true; 4612 } else if (IndirectBrInst *IBI = 4613 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 4614 if (SimplifyIndirectBr(IBI)) return true; 4615 } 4616 4617 return Changed; 4618 } 4619 4620 /// SimplifyCFG - This function is used to do simplification of a CFG. For 4621 /// example, it adjusts branches to branches to eliminate the extra hop, it 4622 /// eliminates unreachable basic blocks, and does other "peephole" optimization 4623 /// of the CFG. It returns true if a modification was made. 4624 /// 4625 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 4626 unsigned BonusInstThreshold, const DataLayout *DL, 4627 AssumptionCache *AC) { 4628 return SimplifyCFGOpt(TTI, BonusInstThreshold, DL, AC).run(BB); 4629 } 4630