1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <climits> 78 #include <cstddef> 79 #include <cstdint> 80 #include <iterator> 81 #include <map> 82 #include <set> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace PatternMatch; 89 90 #define DEBUG_TYPE "simplifycfg" 91 92 cl::opt<bool> llvm::RequireAndPreserveDomTree( 93 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 94 cl::init(false), 95 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 96 "into preserving DomTree,")); 97 98 // Chosen as 2 so as to be cheap, but still to have enough power to fold 99 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 100 // To catch this, we need to fold a compare and a select, hence '2' being the 101 // minimum reasonable default. 102 static cl::opt<unsigned> PHINodeFoldingThreshold( 103 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 104 cl::desc( 105 "Control the amount of phi node folding to perform (default = 2)")); 106 107 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 108 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 109 cl::desc("Control the maximal total instruction cost that we are willing " 110 "to speculatively execute to fold a 2-entry PHI node into a " 111 "select (default = 4)")); 112 113 static cl::opt<bool> DupRet( 114 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 115 cl::desc("Duplicate return instructions into unconditional branches")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> 122 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 123 cl::desc("Sink common instructions down to the end block")); 124 125 static cl::opt<bool> HoistCondStores( 126 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 127 cl::desc("Hoist conditional stores if an unconditional store precedes")); 128 129 static cl::opt<bool> MergeCondStores( 130 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 131 cl::desc("Hoist conditional stores even if an unconditional store does not " 132 "precede - hoist multiple conditional stores into a single " 133 "predicated store")); 134 135 static cl::opt<bool> MergeCondStoresAggressively( 136 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 137 cl::desc("When merging conditional stores, do so even if the resultant " 138 "basic blocks are unlikely to be if-converted as a result")); 139 140 static cl::opt<bool> SpeculateOneExpensiveInst( 141 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 142 cl::desc("Allow exactly one expensive instruction to be speculatively " 143 "executed")); 144 145 static cl::opt<unsigned> MaxSpeculationDepth( 146 "max-speculation-depth", cl::Hidden, cl::init(10), 147 cl::desc("Limit maximum recursion depth when calculating costs of " 148 "speculatively executed instructions")); 149 150 static cl::opt<int> 151 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 152 cl::desc("Max size of a block which is still considered " 153 "small enough to thread through")); 154 155 // Two is chosen to allow one negation and a logical combine. 156 static cl::opt<unsigned> 157 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 158 cl::init(2), 159 cl::desc("Maximum cost of combining conditions when " 160 "folding branches")); 161 162 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 163 STATISTIC(NumLinearMaps, 164 "Number of switch instructions turned into linear mapping"); 165 STATISTIC(NumLookupTables, 166 "Number of switch instructions turned into lookup tables"); 167 STATISTIC( 168 NumLookupTablesHoles, 169 "Number of switch instructions turned into lookup tables (holes checked)"); 170 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 171 STATISTIC(NumFoldValueComparisonIntoPredecessors, 172 "Number of value comparisons folded into predecessor basic blocks"); 173 STATISTIC(NumFoldBranchToCommonDest, 174 "Number of branches folded into predecessor basic block"); 175 STATISTIC( 176 NumHoistCommonCode, 177 "Number of common instruction 'blocks' hoisted up to the begin block"); 178 STATISTIC(NumHoistCommonInstrs, 179 "Number of common instructions hoisted up to the begin block"); 180 STATISTIC(NumSinkCommonCode, 181 "Number of common instruction 'blocks' sunk down to the end block"); 182 STATISTIC(NumSinkCommonInstrs, 183 "Number of common instructions sunk down to the end block"); 184 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 185 STATISTIC(NumInvokes, 186 "Number of invokes with empty resume blocks simplified into calls"); 187 188 namespace { 189 190 // The first field contains the value that the switch produces when a certain 191 // case group is selected, and the second field is a vector containing the 192 // cases composing the case group. 193 using SwitchCaseResultVectorTy = 194 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 195 196 // The first field contains the phi node that generates a result of the switch 197 // and the second field contains the value generated for a certain case in the 198 // switch for that PHI. 199 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 200 201 /// ValueEqualityComparisonCase - Represents a case of a switch. 202 struct ValueEqualityComparisonCase { 203 ConstantInt *Value; 204 BasicBlock *Dest; 205 206 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 207 : Value(Value), Dest(Dest) {} 208 209 bool operator<(ValueEqualityComparisonCase RHS) const { 210 // Comparing pointers is ok as we only rely on the order for uniquing. 211 return Value < RHS.Value; 212 } 213 214 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 215 }; 216 217 class SimplifyCFGOpt { 218 const TargetTransformInfo &TTI; 219 DomTreeUpdater *DTU; 220 const DataLayout &DL; 221 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 222 const SimplifyCFGOptions &Options; 223 bool Resimplify; 224 225 Value *isValueEqualityComparison(Instruction *TI); 226 BasicBlock *GetValueEqualityComparisonCases( 227 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 228 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 229 BasicBlock *Pred, 230 IRBuilder<> &Builder); 231 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 232 IRBuilder<> &Builder); 233 234 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 235 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 236 bool simplifySingleResume(ResumeInst *RI); 237 bool simplifyCommonResume(ResumeInst *RI); 238 bool simplifyCleanupReturn(CleanupReturnInst *RI); 239 bool simplifyUnreachable(UnreachableInst *UI); 240 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 241 bool simplifyIndirectBr(IndirectBrInst *IBI); 242 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 243 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 244 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 245 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 246 247 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 248 IRBuilder<> &Builder); 249 250 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 251 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 252 const TargetTransformInfo &TTI); 253 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 254 BasicBlock *TrueBB, BasicBlock *FalseBB, 255 uint32_t TrueWeight, uint32_t FalseWeight); 256 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 257 const DataLayout &DL); 258 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 259 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 260 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 261 262 public: 263 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 264 const DataLayout &DL, 265 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 266 const SimplifyCFGOptions &Opts) 267 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 268 assert((!DTU || !DTU->hasPostDomTree()) && 269 "SimplifyCFG is not yet capable of maintaining validity of a " 270 "PostDomTree, so don't ask for it."); 271 } 272 273 bool simplifyOnce(BasicBlock *BB); 274 bool simplifyOnceImpl(BasicBlock *BB); 275 bool run(BasicBlock *BB); 276 277 // Helper to set Resimplify and return change indication. 278 bool requestResimplify() { 279 Resimplify = true; 280 return true; 281 } 282 }; 283 284 } // end anonymous namespace 285 286 /// Return true if it is safe to merge these two 287 /// terminator instructions together. 288 static bool 289 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 290 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 291 if (SI1 == SI2) 292 return false; // Can't merge with self! 293 294 // It is not safe to merge these two switch instructions if they have a common 295 // successor, and if that successor has a PHI node, and if *that* PHI node has 296 // conflicting incoming values from the two switch blocks. 297 BasicBlock *SI1BB = SI1->getParent(); 298 BasicBlock *SI2BB = SI2->getParent(); 299 300 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 301 bool Fail = false; 302 for (BasicBlock *Succ : successors(SI2BB)) 303 if (SI1Succs.count(Succ)) 304 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 305 PHINode *PN = cast<PHINode>(BBI); 306 if (PN->getIncomingValueForBlock(SI1BB) != 307 PN->getIncomingValueForBlock(SI2BB)) { 308 if (FailBlocks) 309 FailBlocks->insert(Succ); 310 Fail = true; 311 } 312 } 313 314 return !Fail; 315 } 316 317 /// Return true if it is safe and profitable to merge these two terminator 318 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 319 /// store all PHI nodes in common successors. 320 static bool 321 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 322 Instruction *Cond, 323 SmallVectorImpl<PHINode *> &PhiNodes) { 324 if (SI1 == SI2) 325 return false; // Can't merge with self! 326 assert(SI1->isUnconditional() && SI2->isConditional()); 327 328 // We fold the unconditional branch if we can easily update all PHI nodes in 329 // common successors: 330 // 1> We have a constant incoming value for the conditional branch; 331 // 2> We have "Cond" as the incoming value for the unconditional branch; 332 // 3> SI2->getCondition() and Cond have same operands. 333 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 334 if (!Ci2) 335 return false; 336 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 337 Cond->getOperand(1) == Ci2->getOperand(1)) && 338 !(Cond->getOperand(0) == Ci2->getOperand(1) && 339 Cond->getOperand(1) == Ci2->getOperand(0))) 340 return false; 341 342 BasicBlock *SI1BB = SI1->getParent(); 343 BasicBlock *SI2BB = SI2->getParent(); 344 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 345 for (BasicBlock *Succ : successors(SI2BB)) 346 if (SI1Succs.count(Succ)) 347 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 348 PHINode *PN = cast<PHINode>(BBI); 349 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 350 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 351 return false; 352 PhiNodes.push_back(PN); 353 } 354 return true; 355 } 356 357 /// Update PHI nodes in Succ to indicate that there will now be entries in it 358 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 359 /// will be the same as those coming in from ExistPred, an existing predecessor 360 /// of Succ. 361 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 362 BasicBlock *ExistPred, 363 MemorySSAUpdater *MSSAU = nullptr) { 364 for (PHINode &PN : Succ->phis()) 365 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 366 if (MSSAU) 367 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 368 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 369 } 370 371 /// Compute an abstract "cost" of speculating the given instruction, 372 /// which is assumed to be safe to speculate. TCC_Free means cheap, 373 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 374 /// expensive. 375 static unsigned ComputeSpeculationCost(const User *I, 376 const TargetTransformInfo &TTI) { 377 assert(isSafeToSpeculativelyExecute(I) && 378 "Instruction is not safe to speculatively execute!"); 379 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 380 } 381 382 /// If we have a merge point of an "if condition" as accepted above, 383 /// return true if the specified value dominates the block. We 384 /// don't handle the true generality of domination here, just a special case 385 /// which works well enough for us. 386 /// 387 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 388 /// see if V (which must be an instruction) and its recursive operands 389 /// that do not dominate BB have a combined cost lower than CostRemaining and 390 /// are non-trapping. If both are true, the instruction is inserted into the 391 /// set and true is returned. 392 /// 393 /// The cost for most non-trapping instructions is defined as 1 except for 394 /// Select whose cost is 2. 395 /// 396 /// After this function returns, CostRemaining is decreased by the cost of 397 /// V plus its non-dominating operands. If that cost is greater than 398 /// CostRemaining, false is returned and CostRemaining is undefined. 399 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 400 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 401 int &BudgetRemaining, 402 const TargetTransformInfo &TTI, 403 unsigned Depth = 0) { 404 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 405 // so limit the recursion depth. 406 // TODO: While this recursion limit does prevent pathological behavior, it 407 // would be better to track visited instructions to avoid cycles. 408 if (Depth == MaxSpeculationDepth) 409 return false; 410 411 Instruction *I = dyn_cast<Instruction>(V); 412 if (!I) { 413 // Non-instructions all dominate instructions, but not all constantexprs 414 // can be executed unconditionally. 415 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 416 if (C->canTrap()) 417 return false; 418 return true; 419 } 420 BasicBlock *PBB = I->getParent(); 421 422 // We don't want to allow weird loops that might have the "if condition" in 423 // the bottom of this block. 424 if (PBB == BB) 425 return false; 426 427 // If this instruction is defined in a block that contains an unconditional 428 // branch to BB, then it must be in the 'conditional' part of the "if 429 // statement". If not, it definitely dominates the region. 430 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 431 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 432 return true; 433 434 // If we have seen this instruction before, don't count it again. 435 if (AggressiveInsts.count(I)) 436 return true; 437 438 // Okay, it looks like the instruction IS in the "condition". Check to 439 // see if it's a cheap instruction to unconditionally compute, and if it 440 // only uses stuff defined outside of the condition. If so, hoist it out. 441 if (!isSafeToSpeculativelyExecute(I)) 442 return false; 443 444 BudgetRemaining -= ComputeSpeculationCost(I, TTI); 445 446 // Allow exactly one instruction to be speculated regardless of its cost 447 // (as long as it is safe to do so). 448 // This is intended to flatten the CFG even if the instruction is a division 449 // or other expensive operation. The speculation of an expensive instruction 450 // is expected to be undone in CodeGenPrepare if the speculation has not 451 // enabled further IR optimizations. 452 if (BudgetRemaining < 0 && 453 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 454 return false; 455 456 // Okay, we can only really hoist these out if their operands do 457 // not take us over the cost threshold. 458 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 459 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI, 460 Depth + 1)) 461 return false; 462 // Okay, it's safe to do this! Remember this instruction. 463 AggressiveInsts.insert(I); 464 return true; 465 } 466 467 /// Extract ConstantInt from value, looking through IntToPtr 468 /// and PointerNullValue. Return NULL if value is not a constant int. 469 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 470 // Normal constant int. 471 ConstantInt *CI = dyn_cast<ConstantInt>(V); 472 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 473 return CI; 474 475 // This is some kind of pointer constant. Turn it into a pointer-sized 476 // ConstantInt if possible. 477 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 478 479 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 480 if (isa<ConstantPointerNull>(V)) 481 return ConstantInt::get(PtrTy, 0); 482 483 // IntToPtr const int. 484 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 485 if (CE->getOpcode() == Instruction::IntToPtr) 486 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 487 // The constant is very likely to have the right type already. 488 if (CI->getType() == PtrTy) 489 return CI; 490 else 491 return cast<ConstantInt>( 492 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 493 } 494 return nullptr; 495 } 496 497 namespace { 498 499 /// Given a chain of or (||) or and (&&) comparison of a value against a 500 /// constant, this will try to recover the information required for a switch 501 /// structure. 502 /// It will depth-first traverse the chain of comparison, seeking for patterns 503 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 504 /// representing the different cases for the switch. 505 /// Note that if the chain is composed of '||' it will build the set of elements 506 /// that matches the comparisons (i.e. any of this value validate the chain) 507 /// while for a chain of '&&' it will build the set elements that make the test 508 /// fail. 509 struct ConstantComparesGatherer { 510 const DataLayout &DL; 511 512 /// Value found for the switch comparison 513 Value *CompValue = nullptr; 514 515 /// Extra clause to be checked before the switch 516 Value *Extra = nullptr; 517 518 /// Set of integers to match in switch 519 SmallVector<ConstantInt *, 8> Vals; 520 521 /// Number of comparisons matched in the and/or chain 522 unsigned UsedICmps = 0; 523 524 /// Construct and compute the result for the comparison instruction Cond 525 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 526 gather(Cond); 527 } 528 529 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 530 ConstantComparesGatherer & 531 operator=(const ConstantComparesGatherer &) = delete; 532 533 private: 534 /// Try to set the current value used for the comparison, it succeeds only if 535 /// it wasn't set before or if the new value is the same as the old one 536 bool setValueOnce(Value *NewVal) { 537 if (CompValue && CompValue != NewVal) 538 return false; 539 CompValue = NewVal; 540 return (CompValue != nullptr); 541 } 542 543 /// Try to match Instruction "I" as a comparison against a constant and 544 /// populates the array Vals with the set of values that match (or do not 545 /// match depending on isEQ). 546 /// Return false on failure. On success, the Value the comparison matched 547 /// against is placed in CompValue. 548 /// If CompValue is already set, the function is expected to fail if a match 549 /// is found but the value compared to is different. 550 bool matchInstruction(Instruction *I, bool isEQ) { 551 // If this is an icmp against a constant, handle this as one of the cases. 552 ICmpInst *ICI; 553 ConstantInt *C; 554 if (!((ICI = dyn_cast<ICmpInst>(I)) && 555 (C = GetConstantInt(I->getOperand(1), DL)))) { 556 return false; 557 } 558 559 Value *RHSVal; 560 const APInt *RHSC; 561 562 // Pattern match a special case 563 // (x & ~2^z) == y --> x == y || x == y|2^z 564 // This undoes a transformation done by instcombine to fuse 2 compares. 565 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 566 // It's a little bit hard to see why the following transformations are 567 // correct. Here is a CVC3 program to verify them for 64-bit values: 568 569 /* 570 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 571 x : BITVECTOR(64); 572 y : BITVECTOR(64); 573 z : BITVECTOR(64); 574 mask : BITVECTOR(64) = BVSHL(ONE, z); 575 QUERY( (y & ~mask = y) => 576 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 577 ); 578 QUERY( (y | mask = y) => 579 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 580 ); 581 */ 582 583 // Please note that each pattern must be a dual implication (<--> or 584 // iff). One directional implication can create spurious matches. If the 585 // implication is only one-way, an unsatisfiable condition on the left 586 // side can imply a satisfiable condition on the right side. Dual 587 // implication ensures that satisfiable conditions are transformed to 588 // other satisfiable conditions and unsatisfiable conditions are 589 // transformed to other unsatisfiable conditions. 590 591 // Here is a concrete example of a unsatisfiable condition on the left 592 // implying a satisfiable condition on the right: 593 // 594 // mask = (1 << z) 595 // (x & ~mask) == y --> (x == y || x == (y | mask)) 596 // 597 // Substituting y = 3, z = 0 yields: 598 // (x & -2) == 3 --> (x == 3 || x == 2) 599 600 // Pattern match a special case: 601 /* 602 QUERY( (y & ~mask = y) => 603 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 604 ); 605 */ 606 if (match(ICI->getOperand(0), 607 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 608 APInt Mask = ~*RHSC; 609 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 610 // If we already have a value for the switch, it has to match! 611 if (!setValueOnce(RHSVal)) 612 return false; 613 614 Vals.push_back(C); 615 Vals.push_back( 616 ConstantInt::get(C->getContext(), 617 C->getValue() | Mask)); 618 UsedICmps++; 619 return true; 620 } 621 } 622 623 // Pattern match a special case: 624 /* 625 QUERY( (y | mask = y) => 626 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 627 ); 628 */ 629 if (match(ICI->getOperand(0), 630 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 631 APInt Mask = *RHSC; 632 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 633 // If we already have a value for the switch, it has to match! 634 if (!setValueOnce(RHSVal)) 635 return false; 636 637 Vals.push_back(C); 638 Vals.push_back(ConstantInt::get(C->getContext(), 639 C->getValue() & ~Mask)); 640 UsedICmps++; 641 return true; 642 } 643 } 644 645 // If we already have a value for the switch, it has to match! 646 if (!setValueOnce(ICI->getOperand(0))) 647 return false; 648 649 UsedICmps++; 650 Vals.push_back(C); 651 return ICI->getOperand(0); 652 } 653 654 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 655 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 656 ICI->getPredicate(), C->getValue()); 657 658 // Shift the range if the compare is fed by an add. This is the range 659 // compare idiom as emitted by instcombine. 660 Value *CandidateVal = I->getOperand(0); 661 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 662 Span = Span.subtract(*RHSC); 663 CandidateVal = RHSVal; 664 } 665 666 // If this is an and/!= check, then we are looking to build the set of 667 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 668 // x != 0 && x != 1. 669 if (!isEQ) 670 Span = Span.inverse(); 671 672 // If there are a ton of values, we don't want to make a ginormous switch. 673 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 674 return false; 675 } 676 677 // If we already have a value for the switch, it has to match! 678 if (!setValueOnce(CandidateVal)) 679 return false; 680 681 // Add all values from the range to the set 682 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 683 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 684 685 UsedICmps++; 686 return true; 687 } 688 689 /// Given a potentially 'or'd or 'and'd together collection of icmp 690 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 691 /// the value being compared, and stick the list constants into the Vals 692 /// vector. 693 /// One "Extra" case is allowed to differ from the other. 694 void gather(Value *V) { 695 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 696 697 // Keep a stack (SmallVector for efficiency) for depth-first traversal 698 SmallVector<Value *, 8> DFT; 699 SmallPtrSet<Value *, 8> Visited; 700 701 // Initialize 702 Visited.insert(V); 703 DFT.push_back(V); 704 705 while (!DFT.empty()) { 706 V = DFT.pop_back_val(); 707 708 if (Instruction *I = dyn_cast<Instruction>(V)) { 709 // If it is a || (or && depending on isEQ), process the operands. 710 Value *Op0, *Op1; 711 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 712 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 713 if (Visited.insert(Op1).second) 714 DFT.push_back(Op1); 715 if (Visited.insert(Op0).second) 716 DFT.push_back(Op0); 717 718 continue; 719 } 720 721 // Try to match the current instruction 722 if (matchInstruction(I, isEQ)) 723 // Match succeed, continue the loop 724 continue; 725 } 726 727 // One element of the sequence of || (or &&) could not be match as a 728 // comparison against the same value as the others. 729 // We allow only one "Extra" case to be checked before the switch 730 if (!Extra) { 731 Extra = V; 732 continue; 733 } 734 // Failed to parse a proper sequence, abort now 735 CompValue = nullptr; 736 break; 737 } 738 } 739 }; 740 741 } // end anonymous namespace 742 743 static void EraseTerminatorAndDCECond(Instruction *TI, 744 MemorySSAUpdater *MSSAU = nullptr) { 745 Instruction *Cond = nullptr; 746 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 747 Cond = dyn_cast<Instruction>(SI->getCondition()); 748 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 749 if (BI->isConditional()) 750 Cond = dyn_cast<Instruction>(BI->getCondition()); 751 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 752 Cond = dyn_cast<Instruction>(IBI->getAddress()); 753 } 754 755 TI->eraseFromParent(); 756 if (Cond) 757 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 758 } 759 760 /// Return true if the specified terminator checks 761 /// to see if a value is equal to constant integer value. 762 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 763 Value *CV = nullptr; 764 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 765 // Do not permit merging of large switch instructions into their 766 // predecessors unless there is only one predecessor. 767 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 768 CV = SI->getCondition(); 769 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 770 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 771 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 772 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 773 CV = ICI->getOperand(0); 774 } 775 776 // Unwrap any lossless ptrtoint cast. 777 if (CV) { 778 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 779 Value *Ptr = PTII->getPointerOperand(); 780 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 781 CV = Ptr; 782 } 783 } 784 return CV; 785 } 786 787 /// Given a value comparison instruction, 788 /// decode all of the 'cases' that it represents and return the 'default' block. 789 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 790 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 791 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 792 Cases.reserve(SI->getNumCases()); 793 for (auto Case : SI->cases()) 794 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 795 Case.getCaseSuccessor())); 796 return SI->getDefaultDest(); 797 } 798 799 BranchInst *BI = cast<BranchInst>(TI); 800 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 801 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 802 Cases.push_back(ValueEqualityComparisonCase( 803 GetConstantInt(ICI->getOperand(1), DL), Succ)); 804 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 805 } 806 807 /// Given a vector of bb/value pairs, remove any entries 808 /// in the list that match the specified block. 809 static void 810 EliminateBlockCases(BasicBlock *BB, 811 std::vector<ValueEqualityComparisonCase> &Cases) { 812 llvm::erase_value(Cases, BB); 813 } 814 815 /// Return true if there are any keys in C1 that exist in C2 as well. 816 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 817 std::vector<ValueEqualityComparisonCase> &C2) { 818 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 819 820 // Make V1 be smaller than V2. 821 if (V1->size() > V2->size()) 822 std::swap(V1, V2); 823 824 if (V1->empty()) 825 return false; 826 if (V1->size() == 1) { 827 // Just scan V2. 828 ConstantInt *TheVal = (*V1)[0].Value; 829 for (unsigned i = 0, e = V2->size(); i != e; ++i) 830 if (TheVal == (*V2)[i].Value) 831 return true; 832 } 833 834 // Otherwise, just sort both lists and compare element by element. 835 array_pod_sort(V1->begin(), V1->end()); 836 array_pod_sort(V2->begin(), V2->end()); 837 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 838 while (i1 != e1 && i2 != e2) { 839 if ((*V1)[i1].Value == (*V2)[i2].Value) 840 return true; 841 if ((*V1)[i1].Value < (*V2)[i2].Value) 842 ++i1; 843 else 844 ++i2; 845 } 846 return false; 847 } 848 849 // Set branch weights on SwitchInst. This sets the metadata if there is at 850 // least one non-zero weight. 851 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 852 // Check that there is at least one non-zero weight. Otherwise, pass 853 // nullptr to setMetadata which will erase the existing metadata. 854 MDNode *N = nullptr; 855 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 856 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 857 SI->setMetadata(LLVMContext::MD_prof, N); 858 } 859 860 // Similar to the above, but for branch and select instructions that take 861 // exactly 2 weights. 862 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 863 uint32_t FalseWeight) { 864 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 865 // Check that there is at least one non-zero weight. Otherwise, pass 866 // nullptr to setMetadata which will erase the existing metadata. 867 MDNode *N = nullptr; 868 if (TrueWeight || FalseWeight) 869 N = MDBuilder(I->getParent()->getContext()) 870 .createBranchWeights(TrueWeight, FalseWeight); 871 I->setMetadata(LLVMContext::MD_prof, N); 872 } 873 874 /// If TI is known to be a terminator instruction and its block is known to 875 /// only have a single predecessor block, check to see if that predecessor is 876 /// also a value comparison with the same value, and if that comparison 877 /// determines the outcome of this comparison. If so, simplify TI. This does a 878 /// very limited form of jump threading. 879 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 880 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 881 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 882 if (!PredVal) 883 return false; // Not a value comparison in predecessor. 884 885 Value *ThisVal = isValueEqualityComparison(TI); 886 assert(ThisVal && "This isn't a value comparison!!"); 887 if (ThisVal != PredVal) 888 return false; // Different predicates. 889 890 // TODO: Preserve branch weight metadata, similarly to how 891 // FoldValueComparisonIntoPredecessors preserves it. 892 893 // Find out information about when control will move from Pred to TI's block. 894 std::vector<ValueEqualityComparisonCase> PredCases; 895 BasicBlock *PredDef = 896 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 897 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 898 899 // Find information about how control leaves this block. 900 std::vector<ValueEqualityComparisonCase> ThisCases; 901 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 902 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 903 904 // If TI's block is the default block from Pred's comparison, potentially 905 // simplify TI based on this knowledge. 906 if (PredDef == TI->getParent()) { 907 // If we are here, we know that the value is none of those cases listed in 908 // PredCases. If there are any cases in ThisCases that are in PredCases, we 909 // can simplify TI. 910 if (!ValuesOverlap(PredCases, ThisCases)) 911 return false; 912 913 if (isa<BranchInst>(TI)) { 914 // Okay, one of the successors of this condbr is dead. Convert it to a 915 // uncond br. 916 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 917 // Insert the new branch. 918 Instruction *NI = Builder.CreateBr(ThisDef); 919 (void)NI; 920 921 // Remove PHI node entries for the dead edge. 922 ThisCases[0].Dest->removePredecessor(PredDef); 923 924 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 925 << "Through successor TI: " << *TI << "Leaving: " << *NI 926 << "\n"); 927 928 EraseTerminatorAndDCECond(TI); 929 930 if (DTU) 931 DTU->applyUpdates( 932 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 933 934 return true; 935 } 936 937 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 938 // Okay, TI has cases that are statically dead, prune them away. 939 SmallPtrSet<Constant *, 16> DeadCases; 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 DeadCases.insert(PredCases[i].Value); 942 943 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 944 << "Through successor TI: " << *TI); 945 946 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 947 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 948 --i; 949 auto *Successor = i->getCaseSuccessor(); 950 ++NumPerSuccessorCases[Successor]; 951 if (DeadCases.count(i->getCaseValue())) { 952 Successor->removePredecessor(PredDef); 953 SI.removeCase(i); 954 --NumPerSuccessorCases[Successor]; 955 } 956 } 957 958 std::vector<DominatorTree::UpdateType> Updates; 959 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 960 if (I.second == 0) 961 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 962 if (DTU) 963 DTU->applyUpdates(Updates); 964 965 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 966 return true; 967 } 968 969 // Otherwise, TI's block must correspond to some matched value. Find out 970 // which value (or set of values) this is. 971 ConstantInt *TIV = nullptr; 972 BasicBlock *TIBB = TI->getParent(); 973 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 974 if (PredCases[i].Dest == TIBB) { 975 if (TIV) 976 return false; // Cannot handle multiple values coming to this block. 977 TIV = PredCases[i].Value; 978 } 979 assert(TIV && "No edge from pred to succ?"); 980 981 // Okay, we found the one constant that our value can be if we get into TI's 982 // BB. Find out which successor will unconditionally be branched to. 983 BasicBlock *TheRealDest = nullptr; 984 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 985 if (ThisCases[i].Value == TIV) { 986 TheRealDest = ThisCases[i].Dest; 987 break; 988 } 989 990 // If not handled by any explicit cases, it is handled by the default case. 991 if (!TheRealDest) 992 TheRealDest = ThisDef; 993 994 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 995 996 // Remove PHI node entries for dead edges. 997 BasicBlock *CheckEdge = TheRealDest; 998 for (BasicBlock *Succ : successors(TIBB)) 999 if (Succ != CheckEdge) { 1000 if (Succ != TheRealDest) 1001 RemovedSuccs.insert(Succ); 1002 Succ->removePredecessor(TIBB); 1003 } else 1004 CheckEdge = nullptr; 1005 1006 // Insert the new branch. 1007 Instruction *NI = Builder.CreateBr(TheRealDest); 1008 (void)NI; 1009 1010 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1011 << "Through successor TI: " << *TI << "Leaving: " << *NI 1012 << "\n"); 1013 1014 EraseTerminatorAndDCECond(TI); 1015 if (DTU) { 1016 SmallVector<DominatorTree::UpdateType, 2> Updates; 1017 Updates.reserve(RemovedSuccs.size()); 1018 for (auto *RemovedSucc : RemovedSuccs) 1019 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1020 DTU->applyUpdates(Updates); 1021 } 1022 return true; 1023 } 1024 1025 namespace { 1026 1027 /// This class implements a stable ordering of constant 1028 /// integers that does not depend on their address. This is important for 1029 /// applications that sort ConstantInt's to ensure uniqueness. 1030 struct ConstantIntOrdering { 1031 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1032 return LHS->getValue().ult(RHS->getValue()); 1033 } 1034 }; 1035 1036 } // end anonymous namespace 1037 1038 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1039 ConstantInt *const *P2) { 1040 const ConstantInt *LHS = *P1; 1041 const ConstantInt *RHS = *P2; 1042 if (LHS == RHS) 1043 return 0; 1044 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1045 } 1046 1047 static inline bool HasBranchWeights(const Instruction *I) { 1048 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1049 if (ProfMD && ProfMD->getOperand(0)) 1050 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1051 return MDS->getString().equals("branch_weights"); 1052 1053 return false; 1054 } 1055 1056 /// Get Weights of a given terminator, the default weight is at the front 1057 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1058 /// metadata. 1059 static void GetBranchWeights(Instruction *TI, 1060 SmallVectorImpl<uint64_t> &Weights) { 1061 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1062 assert(MD); 1063 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1064 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1065 Weights.push_back(CI->getValue().getZExtValue()); 1066 } 1067 1068 // If TI is a conditional eq, the default case is the false case, 1069 // and the corresponding branch-weight data is at index 2. We swap the 1070 // default weight to be the first entry. 1071 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1072 assert(Weights.size() == 2); 1073 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1074 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1075 std::swap(Weights.front(), Weights.back()); 1076 } 1077 } 1078 1079 /// Keep halving the weights until all can fit in uint32_t. 1080 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1081 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1082 if (Max > UINT_MAX) { 1083 unsigned Offset = 32 - countLeadingZeros(Max); 1084 for (uint64_t &I : Weights) 1085 I >>= Offset; 1086 } 1087 } 1088 1089 /// The specified terminator is a value equality comparison instruction 1090 /// (either a switch or a branch on "X == c"). 1091 /// See if any of the predecessors of the terminator block are value comparisons 1092 /// on the same value. If so, and if safe to do so, fold them together. 1093 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1094 IRBuilder<> &Builder) { 1095 BasicBlock *BB = TI->getParent(); 1096 Value *CV = isValueEqualityComparison(TI); // CondVal 1097 assert(CV && "Not a comparison?"); 1098 1099 bool Changed = false; 1100 1101 auto _ = make_scope_exit([&]() { 1102 if (Changed) 1103 ++NumFoldValueComparisonIntoPredecessors; 1104 }); 1105 1106 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1107 while (!Preds.empty()) { 1108 BasicBlock *Pred = Preds.pop_back_val(); 1109 1110 // See if the predecessor is a comparison with the same value. 1111 Instruction *PTI = Pred->getTerminator(); 1112 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1113 1114 if (PCV == CV && TI != PTI) { 1115 SmallSetVector<BasicBlock*, 4> FailBlocks; 1116 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1117 for (auto *Succ : FailBlocks) { 1118 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", 1119 DTU)) 1120 return false; 1121 } 1122 } 1123 1124 std::vector<DominatorTree::UpdateType> Updates; 1125 1126 // Figure out which 'cases' to copy from SI to PSI. 1127 std::vector<ValueEqualityComparisonCase> BBCases; 1128 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1129 1130 std::vector<ValueEqualityComparisonCase> PredCases; 1131 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1132 1133 // Based on whether the default edge from PTI goes to BB or not, fill in 1134 // PredCases and PredDefault with the new switch cases we would like to 1135 // build. 1136 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1137 1138 // Update the branch weight metadata along the way 1139 SmallVector<uint64_t, 8> Weights; 1140 bool PredHasWeights = HasBranchWeights(PTI); 1141 bool SuccHasWeights = HasBranchWeights(TI); 1142 1143 if (PredHasWeights) { 1144 GetBranchWeights(PTI, Weights); 1145 // branch-weight metadata is inconsistent here. 1146 if (Weights.size() != 1 + PredCases.size()) 1147 PredHasWeights = SuccHasWeights = false; 1148 } else if (SuccHasWeights) 1149 // If there are no predecessor weights but there are successor weights, 1150 // populate Weights with 1, which will later be scaled to the sum of 1151 // successor's weights 1152 Weights.assign(1 + PredCases.size(), 1); 1153 1154 SmallVector<uint64_t, 8> SuccWeights; 1155 if (SuccHasWeights) { 1156 GetBranchWeights(TI, SuccWeights); 1157 // branch-weight metadata is inconsistent here. 1158 if (SuccWeights.size() != 1 + BBCases.size()) 1159 PredHasWeights = SuccHasWeights = false; 1160 } else if (PredHasWeights) 1161 SuccWeights.assign(1 + BBCases.size(), 1); 1162 1163 if (PredDefault == BB) { 1164 // If this is the default destination from PTI, only the edges in TI 1165 // that don't occur in PTI, or that branch to BB will be activated. 1166 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1167 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1168 if (PredCases[i].Dest != BB) 1169 PTIHandled.insert(PredCases[i].Value); 1170 else { 1171 // The default destination is BB, we don't need explicit targets. 1172 std::swap(PredCases[i], PredCases.back()); 1173 1174 if (PredHasWeights || SuccHasWeights) { 1175 // Increase weight for the default case. 1176 Weights[0] += Weights[i + 1]; 1177 std::swap(Weights[i + 1], Weights.back()); 1178 Weights.pop_back(); 1179 } 1180 1181 PredCases.pop_back(); 1182 --i; 1183 --e; 1184 } 1185 1186 // Reconstruct the new switch statement we will be building. 1187 if (PredDefault != BBDefault) { 1188 PredDefault->removePredecessor(Pred); 1189 if (PredDefault != BB) 1190 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1191 PredDefault = BBDefault; 1192 ++NewSuccessors[BBDefault]; 1193 } 1194 1195 unsigned CasesFromPred = Weights.size(); 1196 uint64_t ValidTotalSuccWeight = 0; 1197 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1198 if (!PTIHandled.count(BBCases[i].Value) && 1199 BBCases[i].Dest != BBDefault) { 1200 PredCases.push_back(BBCases[i]); 1201 ++NewSuccessors[BBCases[i].Dest]; 1202 if (SuccHasWeights || PredHasWeights) { 1203 // The default weight is at index 0, so weight for the ith case 1204 // should be at index i+1. Scale the cases from successor by 1205 // PredDefaultWeight (Weights[0]). 1206 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1207 ValidTotalSuccWeight += SuccWeights[i + 1]; 1208 } 1209 } 1210 1211 if (SuccHasWeights || PredHasWeights) { 1212 ValidTotalSuccWeight += SuccWeights[0]; 1213 // Scale the cases from predecessor by ValidTotalSuccWeight. 1214 for (unsigned i = 1; i < CasesFromPred; ++i) 1215 Weights[i] *= ValidTotalSuccWeight; 1216 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1217 Weights[0] *= SuccWeights[0]; 1218 } 1219 } else { 1220 // If this is not the default destination from PSI, only the edges 1221 // in SI that occur in PSI with a destination of BB will be 1222 // activated. 1223 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1224 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1225 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1226 if (PredCases[i].Dest == BB) { 1227 PTIHandled.insert(PredCases[i].Value); 1228 1229 if (PredHasWeights || SuccHasWeights) { 1230 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1231 std::swap(Weights[i + 1], Weights.back()); 1232 Weights.pop_back(); 1233 } 1234 1235 std::swap(PredCases[i], PredCases.back()); 1236 PredCases.pop_back(); 1237 --i; 1238 --e; 1239 } 1240 1241 // Okay, now we know which constants were sent to BB from the 1242 // predecessor. Figure out where they will all go now. 1243 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1244 if (PTIHandled.count(BBCases[i].Value)) { 1245 // If this is one we are capable of getting... 1246 if (PredHasWeights || SuccHasWeights) 1247 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1248 PredCases.push_back(BBCases[i]); 1249 ++NewSuccessors[BBCases[i].Dest]; 1250 PTIHandled.erase( 1251 BBCases[i].Value); // This constant is taken care of 1252 } 1253 1254 // If there are any constants vectored to BB that TI doesn't handle, 1255 // they must go to the default destination of TI. 1256 for (ConstantInt *I : PTIHandled) { 1257 if (PredHasWeights || SuccHasWeights) 1258 Weights.push_back(WeightsForHandled[I]); 1259 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1260 ++NewSuccessors[BBDefault]; 1261 } 1262 } 1263 1264 // Okay, at this point, we know which new successor Pred will get. Make 1265 // sure we update the number of entries in the PHI nodes for these 1266 // successors. 1267 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1268 NewSuccessors) { 1269 for (auto I : seq(0, NewSuccessor.second)) { 1270 (void)I; 1271 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1272 } 1273 if (!is_contained(successors(Pred), NewSuccessor.first)) 1274 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1275 } 1276 1277 Builder.SetInsertPoint(PTI); 1278 // Convert pointer to int before we switch. 1279 if (CV->getType()->isPointerTy()) { 1280 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1281 "magicptr"); 1282 } 1283 1284 // Now that the successors are updated, create the new Switch instruction. 1285 SwitchInst *NewSI = 1286 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1287 NewSI->setDebugLoc(PTI->getDebugLoc()); 1288 for (ValueEqualityComparisonCase &V : PredCases) 1289 NewSI->addCase(V.Value, V.Dest); 1290 1291 if (PredHasWeights || SuccHasWeights) { 1292 // Halve the weights if any of them cannot fit in an uint32_t 1293 FitWeights(Weights); 1294 1295 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1296 1297 setBranchWeights(NewSI, MDWeights); 1298 } 1299 1300 EraseTerminatorAndDCECond(PTI); 1301 1302 // Okay, last check. If BB is still a successor of PSI, then we must 1303 // have an infinite loop case. If so, add an infinitely looping block 1304 // to handle the case to preserve the behavior of the code. 1305 BasicBlock *InfLoopBlock = nullptr; 1306 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1307 if (NewSI->getSuccessor(i) == BB) { 1308 if (!InfLoopBlock) { 1309 // Insert it at the end of the function, because it's either code, 1310 // or it won't matter if it's hot. :) 1311 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1312 BB->getParent()); 1313 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1314 Updates.push_back( 1315 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1316 } 1317 NewSI->setSuccessor(i, InfLoopBlock); 1318 } 1319 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 if (DTU) 1326 DTU->applyUpdates(Updates); 1327 1328 Changed = true; 1329 } 1330 } 1331 return Changed; 1332 } 1333 1334 // If we would need to insert a select that uses the value of this invoke 1335 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1336 // can't hoist the invoke, as there is nowhere to put the select in this case. 1337 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1338 Instruction *I1, Instruction *I2) { 1339 for (BasicBlock *Succ : successors(BB1)) { 1340 for (const PHINode &PN : Succ->phis()) { 1341 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1342 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1343 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1344 return false; 1345 } 1346 } 1347 } 1348 return true; 1349 } 1350 1351 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1352 1353 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1354 /// in the two blocks up into the branch block. The caller of this function 1355 /// guarantees that BI's block dominates BB1 and BB2. 1356 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1357 const TargetTransformInfo &TTI) { 1358 // This does very trivial matching, with limited scanning, to find identical 1359 // instructions in the two blocks. In particular, we don't want to get into 1360 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1361 // such, we currently just scan for obviously identical instructions in an 1362 // identical order. 1363 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1364 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1365 1366 BasicBlock::iterator BB1_Itr = BB1->begin(); 1367 BasicBlock::iterator BB2_Itr = BB2->begin(); 1368 1369 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1370 // Skip debug info if it is not identical. 1371 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1372 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1373 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1374 while (isa<DbgInfoIntrinsic>(I1)) 1375 I1 = &*BB1_Itr++; 1376 while (isa<DbgInfoIntrinsic>(I2)) 1377 I2 = &*BB2_Itr++; 1378 } 1379 // FIXME: Can we define a safety predicate for CallBr? 1380 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1381 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1382 isa<CallBrInst>(I1)) 1383 return false; 1384 1385 BasicBlock *BIParent = BI->getParent(); 1386 1387 bool Changed = false; 1388 1389 auto _ = make_scope_exit([&]() { 1390 if (Changed) 1391 ++NumHoistCommonCode; 1392 }); 1393 1394 do { 1395 // If we are hoisting the terminator instruction, don't move one (making a 1396 // broken BB), instead clone it, and remove BI. 1397 if (I1->isTerminator()) 1398 goto HoistTerminator; 1399 1400 // If we're going to hoist a call, make sure that the two instructions we're 1401 // commoning/hoisting are both marked with musttail, or neither of them is 1402 // marked as such. Otherwise, we might end up in a situation where we hoist 1403 // from a block where the terminator is a `ret` to a block where the terminator 1404 // is a `br`, and `musttail` calls expect to be followed by a return. 1405 auto *C1 = dyn_cast<CallInst>(I1); 1406 auto *C2 = dyn_cast<CallInst>(I2); 1407 if (C1 && C2) 1408 if (C1->isMustTailCall() != C2->isMustTailCall()) 1409 return Changed; 1410 1411 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1412 return Changed; 1413 1414 // If any of the two call sites has nomerge attribute, stop hoisting. 1415 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1416 if (CB1->cannotMerge()) 1417 return Changed; 1418 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1419 if (CB2->cannotMerge()) 1420 return Changed; 1421 1422 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1423 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1424 // The debug location is an integral part of a debug info intrinsic 1425 // and can't be separated from it or replaced. Instead of attempting 1426 // to merge locations, simply hoist both copies of the intrinsic. 1427 BIParent->getInstList().splice(BI->getIterator(), 1428 BB1->getInstList(), I1); 1429 BIParent->getInstList().splice(BI->getIterator(), 1430 BB2->getInstList(), I2); 1431 Changed = true; 1432 } else { 1433 // For a normal instruction, we just move one to right before the branch, 1434 // then replace all uses of the other with the first. Finally, we remove 1435 // the now redundant second instruction. 1436 BIParent->getInstList().splice(BI->getIterator(), 1437 BB1->getInstList(), I1); 1438 if (!I2->use_empty()) 1439 I2->replaceAllUsesWith(I1); 1440 I1->andIRFlags(I2); 1441 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1442 LLVMContext::MD_range, 1443 LLVMContext::MD_fpmath, 1444 LLVMContext::MD_invariant_load, 1445 LLVMContext::MD_nonnull, 1446 LLVMContext::MD_invariant_group, 1447 LLVMContext::MD_align, 1448 LLVMContext::MD_dereferenceable, 1449 LLVMContext::MD_dereferenceable_or_null, 1450 LLVMContext::MD_mem_parallel_loop_access, 1451 LLVMContext::MD_access_group, 1452 LLVMContext::MD_preserve_access_index}; 1453 combineMetadata(I1, I2, KnownIDs, true); 1454 1455 // I1 and I2 are being combined into a single instruction. Its debug 1456 // location is the merged locations of the original instructions. 1457 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1458 1459 I2->eraseFromParent(); 1460 Changed = true; 1461 } 1462 ++NumHoistCommonInstrs; 1463 1464 I1 = &*BB1_Itr++; 1465 I2 = &*BB2_Itr++; 1466 // Skip debug info if it is not identical. 1467 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1468 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1469 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1470 while (isa<DbgInfoIntrinsic>(I1)) 1471 I1 = &*BB1_Itr++; 1472 while (isa<DbgInfoIntrinsic>(I2)) 1473 I2 = &*BB2_Itr++; 1474 } 1475 } while (I1->isIdenticalToWhenDefined(I2)); 1476 1477 return true; 1478 1479 HoistTerminator: 1480 // It may not be possible to hoist an invoke. 1481 // FIXME: Can we define a safety predicate for CallBr? 1482 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1483 return Changed; 1484 1485 // TODO: callbr hoisting currently disabled pending further study. 1486 if (isa<CallBrInst>(I1)) 1487 return Changed; 1488 1489 for (BasicBlock *Succ : successors(BB1)) { 1490 for (PHINode &PN : Succ->phis()) { 1491 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1492 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1493 if (BB1V == BB2V) 1494 continue; 1495 1496 // Check for passingValueIsAlwaysUndefined here because we would rather 1497 // eliminate undefined control flow then converting it to a select. 1498 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1499 passingValueIsAlwaysUndefined(BB2V, &PN)) 1500 return Changed; 1501 1502 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1503 return Changed; 1504 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1505 return Changed; 1506 } 1507 } 1508 1509 // Okay, it is safe to hoist the terminator. 1510 Instruction *NT = I1->clone(); 1511 BIParent->getInstList().insert(BI->getIterator(), NT); 1512 if (!NT->getType()->isVoidTy()) { 1513 I1->replaceAllUsesWith(NT); 1514 I2->replaceAllUsesWith(NT); 1515 NT->takeName(I1); 1516 } 1517 Changed = true; 1518 ++NumHoistCommonInstrs; 1519 1520 // Ensure terminator gets a debug location, even an unknown one, in case 1521 // it involves inlinable calls. 1522 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1523 1524 // PHIs created below will adopt NT's merged DebugLoc. 1525 IRBuilder<NoFolder> Builder(NT); 1526 1527 // Hoisting one of the terminators from our successor is a great thing. 1528 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1529 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1530 // nodes, so we insert select instruction to compute the final result. 1531 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1532 for (BasicBlock *Succ : successors(BB1)) { 1533 for (PHINode &PN : Succ->phis()) { 1534 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1535 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1536 if (BB1V == BB2V) 1537 continue; 1538 1539 // These values do not agree. Insert a select instruction before NT 1540 // that determines the right value. 1541 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1542 if (!SI) { 1543 // Propagate fast-math-flags from phi node to its replacement select. 1544 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1545 if (isa<FPMathOperator>(PN)) 1546 Builder.setFastMathFlags(PN.getFastMathFlags()); 1547 1548 SI = cast<SelectInst>( 1549 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1550 BB1V->getName() + "." + BB2V->getName(), BI)); 1551 } 1552 1553 // Make the PHI node use the select for all incoming values for BB1/BB2 1554 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1555 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1556 PN.setIncomingValue(i, SI); 1557 } 1558 } 1559 1560 SmallVector<DominatorTree::UpdateType, 4> Updates; 1561 1562 // Update any PHI nodes in our new successors. 1563 for (BasicBlock *Succ : successors(BB1)) { 1564 AddPredecessorToBlock(Succ, BIParent, BB1); 1565 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1566 } 1567 for (BasicBlock *Succ : successors(BI)) 1568 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1569 1570 EraseTerminatorAndDCECond(BI); 1571 if (DTU) 1572 DTU->applyUpdates(Updates); 1573 return Changed; 1574 } 1575 1576 // Check lifetime markers. 1577 static bool isLifeTimeMarker(const Instruction *I) { 1578 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1579 switch (II->getIntrinsicID()) { 1580 default: 1581 break; 1582 case Intrinsic::lifetime_start: 1583 case Intrinsic::lifetime_end: 1584 return true; 1585 } 1586 } 1587 return false; 1588 } 1589 1590 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1591 // into variables. 1592 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1593 int OpIdx) { 1594 return !isa<IntrinsicInst>(I); 1595 } 1596 1597 // All instructions in Insts belong to different blocks that all unconditionally 1598 // branch to a common successor. Analyze each instruction and return true if it 1599 // would be possible to sink them into their successor, creating one common 1600 // instruction instead. For every value that would be required to be provided by 1601 // PHI node (because an operand varies in each input block), add to PHIOperands. 1602 static bool canSinkInstructions( 1603 ArrayRef<Instruction *> Insts, 1604 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1605 // Prune out obviously bad instructions to move. Each instruction must have 1606 // exactly zero or one use, and we check later that use is by a single, common 1607 // PHI instruction in the successor. 1608 bool HasUse = !Insts.front()->user_empty(); 1609 for (auto *I : Insts) { 1610 // These instructions may change or break semantics if moved. 1611 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1612 I->getType()->isTokenTy()) 1613 return false; 1614 1615 // Conservatively return false if I is an inline-asm instruction. Sinking 1616 // and merging inline-asm instructions can potentially create arguments 1617 // that cannot satisfy the inline-asm constraints. 1618 // If the instruction has nomerge attribute, return false. 1619 if (const auto *C = dyn_cast<CallBase>(I)) 1620 if (C->isInlineAsm() || C->cannotMerge()) 1621 return false; 1622 1623 // Each instruction must have zero or one use. 1624 if (HasUse && !I->hasOneUse()) 1625 return false; 1626 if (!HasUse && !I->user_empty()) 1627 return false; 1628 } 1629 1630 const Instruction *I0 = Insts.front(); 1631 for (auto *I : Insts) 1632 if (!I->isSameOperationAs(I0)) 1633 return false; 1634 1635 // All instructions in Insts are known to be the same opcode. If they have a 1636 // use, check that the only user is a PHI or in the same block as the 1637 // instruction, because if a user is in the same block as an instruction we're 1638 // contemplating sinking, it must already be determined to be sinkable. 1639 if (HasUse) { 1640 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1641 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1642 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1643 auto *U = cast<Instruction>(*I->user_begin()); 1644 return (PNUse && 1645 PNUse->getParent() == Succ && 1646 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1647 U->getParent() == I->getParent(); 1648 })) 1649 return false; 1650 } 1651 1652 // Because SROA can't handle speculating stores of selects, try not to sink 1653 // loads, stores or lifetime markers of allocas when we'd have to create a 1654 // PHI for the address operand. Also, because it is likely that loads or 1655 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1656 // them. 1657 // This can cause code churn which can have unintended consequences down 1658 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1659 // FIXME: This is a workaround for a deficiency in SROA - see 1660 // https://llvm.org/bugs/show_bug.cgi?id=30188 1661 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1662 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1663 })) 1664 return false; 1665 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1666 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1667 })) 1668 return false; 1669 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1670 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1671 })) 1672 return false; 1673 1674 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1675 Value *Op = I0->getOperand(OI); 1676 if (Op->getType()->isTokenTy()) 1677 // Don't touch any operand of token type. 1678 return false; 1679 1680 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1681 assert(I->getNumOperands() == I0->getNumOperands()); 1682 return I->getOperand(OI) == I0->getOperand(OI); 1683 }; 1684 if (!all_of(Insts, SameAsI0)) { 1685 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1686 !canReplaceOperandWithVariable(I0, OI)) 1687 // We can't create a PHI from this GEP. 1688 return false; 1689 // Don't create indirect calls! The called value is the final operand. 1690 if (isa<CallBase>(I0) && OI == OE - 1) { 1691 // FIXME: if the call was *already* indirect, we should do this. 1692 return false; 1693 } 1694 for (auto *I : Insts) 1695 PHIOperands[I].push_back(I->getOperand(OI)); 1696 } 1697 } 1698 return true; 1699 } 1700 1701 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1702 // instruction of every block in Blocks to their common successor, commoning 1703 // into one instruction. 1704 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1705 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1706 1707 // canSinkLastInstruction returning true guarantees that every block has at 1708 // least one non-terminator instruction. 1709 SmallVector<Instruction*,4> Insts; 1710 for (auto *BB : Blocks) { 1711 Instruction *I = BB->getTerminator(); 1712 do { 1713 I = I->getPrevNode(); 1714 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1715 if (!isa<DbgInfoIntrinsic>(I)) 1716 Insts.push_back(I); 1717 } 1718 1719 // The only checking we need to do now is that all users of all instructions 1720 // are the same PHI node. canSinkLastInstruction should have checked this but 1721 // it is slightly over-aggressive - it gets confused by commutative instructions 1722 // so double-check it here. 1723 Instruction *I0 = Insts.front(); 1724 if (!I0->user_empty()) { 1725 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1726 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1727 auto *U = cast<Instruction>(*I->user_begin()); 1728 return U == PNUse; 1729 })) 1730 return false; 1731 } 1732 1733 // We don't need to do any more checking here; canSinkLastInstruction should 1734 // have done it all for us. 1735 SmallVector<Value*, 4> NewOperands; 1736 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1737 // This check is different to that in canSinkLastInstruction. There, we 1738 // cared about the global view once simplifycfg (and instcombine) have 1739 // completed - it takes into account PHIs that become trivially 1740 // simplifiable. However here we need a more local view; if an operand 1741 // differs we create a PHI and rely on instcombine to clean up the very 1742 // small mess we may make. 1743 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1744 return I->getOperand(O) != I0->getOperand(O); 1745 }); 1746 if (!NeedPHI) { 1747 NewOperands.push_back(I0->getOperand(O)); 1748 continue; 1749 } 1750 1751 // Create a new PHI in the successor block and populate it. 1752 auto *Op = I0->getOperand(O); 1753 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1754 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1755 Op->getName() + ".sink", &BBEnd->front()); 1756 for (auto *I : Insts) 1757 PN->addIncoming(I->getOperand(O), I->getParent()); 1758 NewOperands.push_back(PN); 1759 } 1760 1761 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1762 // and move it to the start of the successor block. 1763 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1764 I0->getOperandUse(O).set(NewOperands[O]); 1765 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1766 1767 // Update metadata and IR flags, and merge debug locations. 1768 for (auto *I : Insts) 1769 if (I != I0) { 1770 // The debug location for the "common" instruction is the merged locations 1771 // of all the commoned instructions. We start with the original location 1772 // of the "common" instruction and iteratively merge each location in the 1773 // loop below. 1774 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1775 // However, as N-way merge for CallInst is rare, so we use simplified API 1776 // instead of using complex API for N-way merge. 1777 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1778 combineMetadataForCSE(I0, I, true); 1779 I0->andIRFlags(I); 1780 } 1781 1782 if (!I0->user_empty()) { 1783 // canSinkLastInstruction checked that all instructions were used by 1784 // one and only one PHI node. Find that now, RAUW it to our common 1785 // instruction and nuke it. 1786 auto *PN = cast<PHINode>(*I0->user_begin()); 1787 PN->replaceAllUsesWith(I0); 1788 PN->eraseFromParent(); 1789 } 1790 1791 // Finally nuke all instructions apart from the common instruction. 1792 for (auto *I : Insts) 1793 if (I != I0) 1794 I->eraseFromParent(); 1795 1796 return true; 1797 } 1798 1799 namespace { 1800 1801 // LockstepReverseIterator - Iterates through instructions 1802 // in a set of blocks in reverse order from the first non-terminator. 1803 // For example (assume all blocks have size n): 1804 // LockstepReverseIterator I([B1, B2, B3]); 1805 // *I-- = [B1[n], B2[n], B3[n]]; 1806 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1807 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1808 // ... 1809 class LockstepReverseIterator { 1810 ArrayRef<BasicBlock*> Blocks; 1811 SmallVector<Instruction*,4> Insts; 1812 bool Fail; 1813 1814 public: 1815 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1816 reset(); 1817 } 1818 1819 void reset() { 1820 Fail = false; 1821 Insts.clear(); 1822 for (auto *BB : Blocks) { 1823 Instruction *Inst = BB->getTerminator(); 1824 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1825 Inst = Inst->getPrevNode(); 1826 if (!Inst) { 1827 // Block wasn't big enough. 1828 Fail = true; 1829 return; 1830 } 1831 Insts.push_back(Inst); 1832 } 1833 } 1834 1835 bool isValid() const { 1836 return !Fail; 1837 } 1838 1839 void operator--() { 1840 if (Fail) 1841 return; 1842 for (auto *&Inst : Insts) { 1843 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1844 Inst = Inst->getPrevNode(); 1845 // Already at beginning of block. 1846 if (!Inst) { 1847 Fail = true; 1848 return; 1849 } 1850 } 1851 } 1852 1853 ArrayRef<Instruction*> operator * () const { 1854 return Insts; 1855 } 1856 }; 1857 1858 } // end anonymous namespace 1859 1860 /// Check whether BB's predecessors end with unconditional branches. If it is 1861 /// true, sink any common code from the predecessors to BB. 1862 /// We also allow one predecessor to end with conditional branch (but no more 1863 /// than one). 1864 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1865 DomTreeUpdater *DTU) { 1866 // We support two situations: 1867 // (1) all incoming arcs are unconditional 1868 // (2) one incoming arc is conditional 1869 // 1870 // (2) is very common in switch defaults and 1871 // else-if patterns; 1872 // 1873 // if (a) f(1); 1874 // else if (b) f(2); 1875 // 1876 // produces: 1877 // 1878 // [if] 1879 // / \ 1880 // [f(1)] [if] 1881 // | | \ 1882 // | | | 1883 // | [f(2)]| 1884 // \ | / 1885 // [ end ] 1886 // 1887 // [end] has two unconditional predecessor arcs and one conditional. The 1888 // conditional refers to the implicit empty 'else' arc. This conditional 1889 // arc can also be caused by an empty default block in a switch. 1890 // 1891 // In this case, we attempt to sink code from all *unconditional* arcs. 1892 // If we can sink instructions from these arcs (determined during the scan 1893 // phase below) we insert a common successor for all unconditional arcs and 1894 // connect that to [end], to enable sinking: 1895 // 1896 // [if] 1897 // / \ 1898 // [x(1)] [if] 1899 // | | \ 1900 // | | \ 1901 // | [x(2)] | 1902 // \ / | 1903 // [sink.split] | 1904 // \ / 1905 // [ end ] 1906 // 1907 SmallVector<BasicBlock*,4> UnconditionalPreds; 1908 Instruction *Cond = nullptr; 1909 for (auto *B : predecessors(BB)) { 1910 auto *T = B->getTerminator(); 1911 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1912 UnconditionalPreds.push_back(B); 1913 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1914 Cond = T; 1915 else 1916 return false; 1917 } 1918 if (UnconditionalPreds.size() < 2) 1919 return false; 1920 1921 // We take a two-step approach to tail sinking. First we scan from the end of 1922 // each block upwards in lockstep. If the n'th instruction from the end of each 1923 // block can be sunk, those instructions are added to ValuesToSink and we 1924 // carry on. If we can sink an instruction but need to PHI-merge some operands 1925 // (because they're not identical in each instruction) we add these to 1926 // PHIOperands. 1927 unsigned ScanIdx = 0; 1928 SmallPtrSet<Value*,4> InstructionsToSink; 1929 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1930 LockstepReverseIterator LRI(UnconditionalPreds); 1931 while (LRI.isValid() && 1932 canSinkInstructions(*LRI, PHIOperands)) { 1933 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1934 << "\n"); 1935 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1936 ++ScanIdx; 1937 --LRI; 1938 } 1939 1940 // If no instructions can be sunk, early-return. 1941 if (ScanIdx == 0) 1942 return false; 1943 1944 bool Changed = false; 1945 1946 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1947 unsigned NumPHIdValues = 0; 1948 for (auto *I : *LRI) 1949 for (auto *V : PHIOperands[I]) 1950 if (InstructionsToSink.count(V) == 0) 1951 ++NumPHIdValues; 1952 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1953 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1954 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1955 NumPHIInsts++; 1956 1957 return NumPHIInsts <= 1; 1958 }; 1959 1960 if (Cond) { 1961 // Check if we would actually sink anything first! This mutates the CFG and 1962 // adds an extra block. The goal in doing this is to allow instructions that 1963 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1964 // (such as trunc, add) can be sunk and predicated already. So we check that 1965 // we're going to sink at least one non-speculatable instruction. 1966 LRI.reset(); 1967 unsigned Idx = 0; 1968 bool Profitable = false; 1969 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1970 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1971 Profitable = true; 1972 break; 1973 } 1974 --LRI; 1975 ++Idx; 1976 } 1977 if (!Profitable) 1978 return false; 1979 1980 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1981 // We have a conditional edge and we're going to sink some instructions. 1982 // Insert a new block postdominating all blocks we're going to sink from. 1983 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 1984 // Edges couldn't be split. 1985 return false; 1986 Changed = true; 1987 } 1988 1989 // Now that we've analyzed all potential sinking candidates, perform the 1990 // actual sink. We iteratively sink the last non-terminator of the source 1991 // blocks into their common successor unless doing so would require too 1992 // many PHI instructions to be generated (currently only one PHI is allowed 1993 // per sunk instruction). 1994 // 1995 // We can use InstructionsToSink to discount values needing PHI-merging that will 1996 // actually be sunk in a later iteration. This allows us to be more 1997 // aggressive in what we sink. This does allow a false positive where we 1998 // sink presuming a later value will also be sunk, but stop half way through 1999 // and never actually sink it which means we produce more PHIs than intended. 2000 // This is unlikely in practice though. 2001 unsigned SinkIdx = 0; 2002 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2003 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2004 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2005 << "\n"); 2006 2007 // Because we've sunk every instruction in turn, the current instruction to 2008 // sink is always at index 0. 2009 LRI.reset(); 2010 if (!ProfitableToSinkInstruction(LRI)) { 2011 // Too many PHIs would be created. 2012 LLVM_DEBUG( 2013 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2014 break; 2015 } 2016 2017 if (!sinkLastInstruction(UnconditionalPreds)) { 2018 LLVM_DEBUG( 2019 dbgs() 2020 << "SINK: stopping here, failed to actually sink instruction!\n"); 2021 break; 2022 } 2023 2024 NumSinkCommonInstrs++; 2025 Changed = true; 2026 } 2027 if (SinkIdx != 0) 2028 ++NumSinkCommonCode; 2029 return Changed; 2030 } 2031 2032 /// Determine if we can hoist sink a sole store instruction out of a 2033 /// conditional block. 2034 /// 2035 /// We are looking for code like the following: 2036 /// BrBB: 2037 /// store i32 %add, i32* %arrayidx2 2038 /// ... // No other stores or function calls (we could be calling a memory 2039 /// ... // function). 2040 /// %cmp = icmp ult %x, %y 2041 /// br i1 %cmp, label %EndBB, label %ThenBB 2042 /// ThenBB: 2043 /// store i32 %add5, i32* %arrayidx2 2044 /// br label EndBB 2045 /// EndBB: 2046 /// ... 2047 /// We are going to transform this into: 2048 /// BrBB: 2049 /// store i32 %add, i32* %arrayidx2 2050 /// ... // 2051 /// %cmp = icmp ult %x, %y 2052 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2053 /// store i32 %add.add5, i32* %arrayidx2 2054 /// ... 2055 /// 2056 /// \return The pointer to the value of the previous store if the store can be 2057 /// hoisted into the predecessor block. 0 otherwise. 2058 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2059 BasicBlock *StoreBB, BasicBlock *EndBB) { 2060 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2061 if (!StoreToHoist) 2062 return nullptr; 2063 2064 // Volatile or atomic. 2065 if (!StoreToHoist->isSimple()) 2066 return nullptr; 2067 2068 Value *StorePtr = StoreToHoist->getPointerOperand(); 2069 2070 // Look for a store to the same pointer in BrBB. 2071 unsigned MaxNumInstToLookAt = 9; 2072 // Skip pseudo probe intrinsic calls which are not really killing any memory 2073 // accesses. 2074 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2075 if (!MaxNumInstToLookAt) 2076 break; 2077 --MaxNumInstToLookAt; 2078 2079 // Could be calling an instruction that affects memory like free(). 2080 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2081 return nullptr; 2082 2083 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2084 // Found the previous store make sure it stores to the same location. 2085 if (SI->getPointerOperand() == StorePtr) 2086 // Found the previous store, return its value operand. 2087 return SI->getValueOperand(); 2088 return nullptr; // Unknown store. 2089 } 2090 } 2091 2092 return nullptr; 2093 } 2094 2095 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2096 /// converted to selects. 2097 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2098 BasicBlock *EndBB, 2099 unsigned &SpeculatedInstructions, 2100 int &BudgetRemaining, 2101 const TargetTransformInfo &TTI) { 2102 TargetTransformInfo::TargetCostKind CostKind = 2103 BB->getParent()->hasMinSize() 2104 ? TargetTransformInfo::TCK_CodeSize 2105 : TargetTransformInfo::TCK_SizeAndLatency; 2106 2107 bool HaveRewritablePHIs = false; 2108 for (PHINode &PN : EndBB->phis()) { 2109 Value *OrigV = PN.getIncomingValueForBlock(BB); 2110 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2111 2112 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2113 // Skip PHIs which are trivial. 2114 if (ThenV == OrigV) 2115 continue; 2116 2117 BudgetRemaining -= 2118 TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2119 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2120 2121 // Don't convert to selects if we could remove undefined behavior instead. 2122 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2123 passingValueIsAlwaysUndefined(ThenV, &PN)) 2124 return false; 2125 2126 HaveRewritablePHIs = true; 2127 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2128 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2129 if (!OrigCE && !ThenCE) 2130 continue; // Known safe and cheap. 2131 2132 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2133 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2134 return false; 2135 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2136 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2137 unsigned MaxCost = 2138 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2139 if (OrigCost + ThenCost > MaxCost) 2140 return false; 2141 2142 // Account for the cost of an unfolded ConstantExpr which could end up 2143 // getting expanded into Instructions. 2144 // FIXME: This doesn't account for how many operations are combined in the 2145 // constant expression. 2146 ++SpeculatedInstructions; 2147 if (SpeculatedInstructions > 1) 2148 return false; 2149 } 2150 2151 return HaveRewritablePHIs; 2152 } 2153 2154 /// Speculate a conditional basic block flattening the CFG. 2155 /// 2156 /// Note that this is a very risky transform currently. Speculating 2157 /// instructions like this is most often not desirable. Instead, there is an MI 2158 /// pass which can do it with full awareness of the resource constraints. 2159 /// However, some cases are "obvious" and we should do directly. An example of 2160 /// this is speculating a single, reasonably cheap instruction. 2161 /// 2162 /// There is only one distinct advantage to flattening the CFG at the IR level: 2163 /// it makes very common but simplistic optimizations such as are common in 2164 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2165 /// modeling their effects with easier to reason about SSA value graphs. 2166 /// 2167 /// 2168 /// An illustration of this transform is turning this IR: 2169 /// \code 2170 /// BB: 2171 /// %cmp = icmp ult %x, %y 2172 /// br i1 %cmp, label %EndBB, label %ThenBB 2173 /// ThenBB: 2174 /// %sub = sub %x, %y 2175 /// br label BB2 2176 /// EndBB: 2177 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2178 /// ... 2179 /// \endcode 2180 /// 2181 /// Into this IR: 2182 /// \code 2183 /// BB: 2184 /// %cmp = icmp ult %x, %y 2185 /// %sub = sub %x, %y 2186 /// %cond = select i1 %cmp, 0, %sub 2187 /// ... 2188 /// \endcode 2189 /// 2190 /// \returns true if the conditional block is removed. 2191 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2192 const TargetTransformInfo &TTI) { 2193 // Be conservative for now. FP select instruction can often be expensive. 2194 Value *BrCond = BI->getCondition(); 2195 if (isa<FCmpInst>(BrCond)) 2196 return false; 2197 2198 BasicBlock *BB = BI->getParent(); 2199 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2200 int BudgetRemaining = 2201 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2202 2203 // If ThenBB is actually on the false edge of the conditional branch, remember 2204 // to swap the select operands later. 2205 bool Invert = false; 2206 if (ThenBB != BI->getSuccessor(0)) { 2207 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2208 Invert = true; 2209 } 2210 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2211 2212 // Keep a count of how many times instructions are used within ThenBB when 2213 // they are candidates for sinking into ThenBB. Specifically: 2214 // - They are defined in BB, and 2215 // - They have no side effects, and 2216 // - All of their uses are in ThenBB. 2217 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2218 2219 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2220 2221 unsigned SpeculatedInstructions = 0; 2222 Value *SpeculatedStoreValue = nullptr; 2223 StoreInst *SpeculatedStore = nullptr; 2224 for (BasicBlock::iterator BBI = ThenBB->begin(), 2225 BBE = std::prev(ThenBB->end()); 2226 BBI != BBE; ++BBI) { 2227 Instruction *I = &*BBI; 2228 // Skip debug info. 2229 if (isa<DbgInfoIntrinsic>(I)) { 2230 SpeculatedDbgIntrinsics.push_back(I); 2231 continue; 2232 } 2233 2234 // Skip pseudo probes. The consequence is we lose track of the branch 2235 // probability for ThenBB, which is fine since the optimization here takes 2236 // place regardless of the branch probability. 2237 if (isa<PseudoProbeInst>(I)) { 2238 SpeculatedDbgIntrinsics.push_back(I); 2239 continue; 2240 } 2241 2242 // Only speculatively execute a single instruction (not counting the 2243 // terminator) for now. 2244 ++SpeculatedInstructions; 2245 if (SpeculatedInstructions > 1) 2246 return false; 2247 2248 // Don't hoist the instruction if it's unsafe or expensive. 2249 if (!isSafeToSpeculativelyExecute(I) && 2250 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2251 I, BB, ThenBB, EndBB)))) 2252 return false; 2253 if (!SpeculatedStoreValue && 2254 ComputeSpeculationCost(I, TTI) > 2255 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2256 return false; 2257 2258 // Store the store speculation candidate. 2259 if (SpeculatedStoreValue) 2260 SpeculatedStore = cast<StoreInst>(I); 2261 2262 // Do not hoist the instruction if any of its operands are defined but not 2263 // used in BB. The transformation will prevent the operand from 2264 // being sunk into the use block. 2265 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 2266 Instruction *OpI = dyn_cast<Instruction>(*i); 2267 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2268 continue; // Not a candidate for sinking. 2269 2270 ++SinkCandidateUseCounts[OpI]; 2271 } 2272 } 2273 2274 // Consider any sink candidates which are only used in ThenBB as costs for 2275 // speculation. Note, while we iterate over a DenseMap here, we are summing 2276 // and so iteration order isn't significant. 2277 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2278 I = SinkCandidateUseCounts.begin(), 2279 E = SinkCandidateUseCounts.end(); 2280 I != E; ++I) 2281 if (I->first->hasNUses(I->second)) { 2282 ++SpeculatedInstructions; 2283 if (SpeculatedInstructions > 1) 2284 return false; 2285 } 2286 2287 // Check that we can insert the selects and that it's not too expensive to do 2288 // so. 2289 bool Convert = SpeculatedStore != nullptr; 2290 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2291 SpeculatedInstructions, 2292 BudgetRemaining, TTI); 2293 if (!Convert || BudgetRemaining < 0) 2294 return false; 2295 2296 // If we get here, we can hoist the instruction and if-convert. 2297 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2298 2299 // Insert a select of the value of the speculated store. 2300 if (SpeculatedStoreValue) { 2301 IRBuilder<NoFolder> Builder(BI); 2302 Value *TrueV = SpeculatedStore->getValueOperand(); 2303 Value *FalseV = SpeculatedStoreValue; 2304 if (Invert) 2305 std::swap(TrueV, FalseV); 2306 Value *S = Builder.CreateSelect( 2307 BrCond, TrueV, FalseV, "spec.store.select", BI); 2308 SpeculatedStore->setOperand(0, S); 2309 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2310 SpeculatedStore->getDebugLoc()); 2311 } 2312 2313 // Metadata can be dependent on the condition we are hoisting above. 2314 // Conservatively strip all metadata on the instruction. Drop the debug loc 2315 // to avoid making it appear as if the condition is a constant, which would 2316 // be misleading while debugging. 2317 for (auto &I : *ThenBB) { 2318 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2319 I.setDebugLoc(DebugLoc()); 2320 I.dropUnknownNonDebugMetadata(); 2321 } 2322 2323 // Hoist the instructions. 2324 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2325 ThenBB->begin(), std::prev(ThenBB->end())); 2326 2327 // Insert selects and rewrite the PHI operands. 2328 IRBuilder<NoFolder> Builder(BI); 2329 for (PHINode &PN : EndBB->phis()) { 2330 unsigned OrigI = PN.getBasicBlockIndex(BB); 2331 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2332 Value *OrigV = PN.getIncomingValue(OrigI); 2333 Value *ThenV = PN.getIncomingValue(ThenI); 2334 2335 // Skip PHIs which are trivial. 2336 if (OrigV == ThenV) 2337 continue; 2338 2339 // Create a select whose true value is the speculatively executed value and 2340 // false value is the pre-existing value. Swap them if the branch 2341 // destinations were inverted. 2342 Value *TrueV = ThenV, *FalseV = OrigV; 2343 if (Invert) 2344 std::swap(TrueV, FalseV); 2345 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2346 PN.setIncomingValue(OrigI, V); 2347 PN.setIncomingValue(ThenI, V); 2348 } 2349 2350 // Remove speculated dbg intrinsics. 2351 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2352 // dbg value for the different flows and inserting it after the select. 2353 for (Instruction *I : SpeculatedDbgIntrinsics) 2354 I->eraseFromParent(); 2355 2356 ++NumSpeculations; 2357 return true; 2358 } 2359 2360 /// Return true if we can thread a branch across this block. 2361 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2362 int Size = 0; 2363 2364 for (Instruction &I : BB->instructionsWithoutDebug()) { 2365 if (Size > MaxSmallBlockSize) 2366 return false; // Don't clone large BB's. 2367 2368 // Can't fold blocks that contain noduplicate or convergent calls. 2369 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2370 if (CI->cannotDuplicate() || CI->isConvergent()) 2371 return false; 2372 2373 // We will delete Phis while threading, so Phis should not be accounted in 2374 // block's size 2375 if (!isa<PHINode>(I)) 2376 ++Size; 2377 2378 // We can only support instructions that do not define values that are 2379 // live outside of the current basic block. 2380 for (User *U : I.users()) { 2381 Instruction *UI = cast<Instruction>(U); 2382 if (UI->getParent() != BB || isa<PHINode>(UI)) 2383 return false; 2384 } 2385 2386 // Looks ok, continue checking. 2387 } 2388 2389 return true; 2390 } 2391 2392 /// If we have a conditional branch on a PHI node value that is defined in the 2393 /// same block as the branch and if any PHI entries are constants, thread edges 2394 /// corresponding to that entry to be branches to their ultimate destination. 2395 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2396 const DataLayout &DL, AssumptionCache *AC) { 2397 BasicBlock *BB = BI->getParent(); 2398 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2399 // NOTE: we currently cannot transform this case if the PHI node is used 2400 // outside of the block. 2401 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2402 return false; 2403 2404 // Degenerate case of a single entry PHI. 2405 if (PN->getNumIncomingValues() == 1) { 2406 FoldSingleEntryPHINodes(PN->getParent()); 2407 return true; 2408 } 2409 2410 // Now we know that this block has multiple preds and two succs. 2411 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2412 return false; 2413 2414 // Okay, this is a simple enough basic block. See if any phi values are 2415 // constants. 2416 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2417 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2418 if (!CB || !CB->getType()->isIntegerTy(1)) 2419 continue; 2420 2421 // Okay, we now know that all edges from PredBB should be revectored to 2422 // branch to RealDest. 2423 BasicBlock *PredBB = PN->getIncomingBlock(i); 2424 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2425 2426 if (RealDest == BB) 2427 continue; // Skip self loops. 2428 // Skip if the predecessor's terminator is an indirect branch. 2429 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2430 continue; 2431 2432 SmallVector<DominatorTree::UpdateType, 3> Updates; 2433 2434 // The dest block might have PHI nodes, other predecessors and other 2435 // difficult cases. Instead of being smart about this, just insert a new 2436 // block that jumps to the destination block, effectively splitting 2437 // the edge we are about to create. 2438 BasicBlock *EdgeBB = 2439 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2440 RealDest->getParent(), RealDest); 2441 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2442 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2443 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2444 2445 // Update PHI nodes. 2446 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2447 2448 // BB may have instructions that are being threaded over. Clone these 2449 // instructions into EdgeBB. We know that there will be no uses of the 2450 // cloned instructions outside of EdgeBB. 2451 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2452 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2453 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2454 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2455 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2456 continue; 2457 } 2458 // Clone the instruction. 2459 Instruction *N = BBI->clone(); 2460 if (BBI->hasName()) 2461 N->setName(BBI->getName() + ".c"); 2462 2463 // Update operands due to translation. 2464 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2465 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2466 if (PI != TranslateMap.end()) 2467 *i = PI->second; 2468 } 2469 2470 // Check for trivial simplification. 2471 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2472 if (!BBI->use_empty()) 2473 TranslateMap[&*BBI] = V; 2474 if (!N->mayHaveSideEffects()) { 2475 N->deleteValue(); // Instruction folded away, don't need actual inst 2476 N = nullptr; 2477 } 2478 } else { 2479 if (!BBI->use_empty()) 2480 TranslateMap[&*BBI] = N; 2481 } 2482 if (N) { 2483 // Insert the new instruction into its new home. 2484 EdgeBB->getInstList().insert(InsertPt, N); 2485 2486 // Register the new instruction with the assumption cache if necessary. 2487 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2488 AC->registerAssumption(cast<IntrinsicInst>(N)); 2489 } 2490 } 2491 2492 // Loop over all of the edges from PredBB to BB, changing them to branch 2493 // to EdgeBB instead. 2494 Instruction *PredBBTI = PredBB->getTerminator(); 2495 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2496 if (PredBBTI->getSuccessor(i) == BB) { 2497 BB->removePredecessor(PredBB); 2498 PredBBTI->setSuccessor(i, EdgeBB); 2499 } 2500 2501 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2502 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2503 2504 if (DTU) 2505 DTU->applyUpdates(Updates); 2506 2507 // Recurse, simplifying any other constants. 2508 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2509 } 2510 2511 return false; 2512 } 2513 2514 /// Given a BB that starts with the specified two-entry PHI node, 2515 /// see if we can eliminate it. 2516 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2517 DomTreeUpdater *DTU, const DataLayout &DL) { 2518 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2519 // statement", which has a very simple dominance structure. Basically, we 2520 // are trying to find the condition that is being branched on, which 2521 // subsequently causes this merge to happen. We really want control 2522 // dependence information for this check, but simplifycfg can't keep it up 2523 // to date, and this catches most of the cases we care about anyway. 2524 BasicBlock *BB = PN->getParent(); 2525 2526 BasicBlock *IfTrue, *IfFalse; 2527 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2528 if (!IfCond || 2529 // Don't bother if the branch will be constant folded trivially. 2530 isa<ConstantInt>(IfCond)) 2531 return false; 2532 2533 // Okay, we found that we can merge this two-entry phi node into a select. 2534 // Doing so would require us to fold *all* two entry phi nodes in this block. 2535 // At some point this becomes non-profitable (particularly if the target 2536 // doesn't support cmov's). Only do this transformation if there are two or 2537 // fewer PHI nodes in this block. 2538 unsigned NumPhis = 0; 2539 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2540 if (NumPhis > 2) 2541 return false; 2542 2543 // Loop over the PHI's seeing if we can promote them all to select 2544 // instructions. While we are at it, keep track of the instructions 2545 // that need to be moved to the dominating block. 2546 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2547 int BudgetRemaining = 2548 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2549 2550 bool Changed = false; 2551 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2552 PHINode *PN = cast<PHINode>(II++); 2553 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2554 PN->replaceAllUsesWith(V); 2555 PN->eraseFromParent(); 2556 Changed = true; 2557 continue; 2558 } 2559 2560 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2561 BudgetRemaining, TTI) || 2562 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2563 BudgetRemaining, TTI)) 2564 return Changed; 2565 } 2566 2567 // If we folded the first phi, PN dangles at this point. Refresh it. If 2568 // we ran out of PHIs then we simplified them all. 2569 PN = dyn_cast<PHINode>(BB->begin()); 2570 if (!PN) 2571 return true; 2572 2573 // Return true if at least one of these is a 'not', and another is either 2574 // a 'not' too, or a constant. 2575 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2576 if (!match(V0, m_Not(m_Value()))) 2577 std::swap(V0, V1); 2578 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2579 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2580 }; 2581 2582 // Don't fold i1 branches on PHIs which contain binary operators, unless one 2583 // of the incoming values is an 'not' and another one is freely invertible. 2584 // These can often be turned into switches and other things. 2585 if (PN->getType()->isIntegerTy(1) && 2586 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2587 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2588 isa<BinaryOperator>(IfCond)) && 2589 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2590 PN->getIncomingValue(1))) 2591 return Changed; 2592 2593 // If all PHI nodes are promotable, check to make sure that all instructions 2594 // in the predecessor blocks can be promoted as well. If not, we won't be able 2595 // to get rid of the control flow, so it's not worth promoting to select 2596 // instructions. 2597 BasicBlock *DomBlock = nullptr; 2598 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2599 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2600 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2601 IfBlock1 = nullptr; 2602 } else { 2603 DomBlock = *pred_begin(IfBlock1); 2604 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2605 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2606 !isa<PseudoProbeInst>(I)) { 2607 // This is not an aggressive instruction that we can promote. 2608 // Because of this, we won't be able to get rid of the control flow, so 2609 // the xform is not worth it. 2610 return Changed; 2611 } 2612 } 2613 2614 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2615 IfBlock2 = nullptr; 2616 } else { 2617 DomBlock = *pred_begin(IfBlock2); 2618 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2619 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2620 !isa<PseudoProbeInst>(I)) { 2621 // This is not an aggressive instruction that we can promote. 2622 // Because of this, we won't be able to get rid of the control flow, so 2623 // the xform is not worth it. 2624 return Changed; 2625 } 2626 } 2627 assert(DomBlock && "Failed to find root DomBlock"); 2628 2629 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2630 << " T: " << IfTrue->getName() 2631 << " F: " << IfFalse->getName() << "\n"); 2632 2633 // If we can still promote the PHI nodes after this gauntlet of tests, 2634 // do all of the PHI's now. 2635 Instruction *InsertPt = DomBlock->getTerminator(); 2636 IRBuilder<NoFolder> Builder(InsertPt); 2637 2638 // Move all 'aggressive' instructions, which are defined in the 2639 // conditional parts of the if's up to the dominating block. 2640 if (IfBlock1) 2641 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2642 if (IfBlock2) 2643 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2644 2645 // Propagate fast-math-flags from phi nodes to replacement selects. 2646 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2647 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2648 if (isa<FPMathOperator>(PN)) 2649 Builder.setFastMathFlags(PN->getFastMathFlags()); 2650 2651 // Change the PHI node into a select instruction. 2652 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2653 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2654 2655 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2656 PN->replaceAllUsesWith(Sel); 2657 Sel->takeName(PN); 2658 PN->eraseFromParent(); 2659 } 2660 2661 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2662 // has been flattened. Change DomBlock to jump directly to our new block to 2663 // avoid other simplifycfg's kicking in on the diamond. 2664 Instruction *OldTI = DomBlock->getTerminator(); 2665 Builder.SetInsertPoint(OldTI); 2666 Builder.CreateBr(BB); 2667 2668 SmallVector<DominatorTree::UpdateType, 3> Updates; 2669 if (DTU) { 2670 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2671 for (auto *Successor : successors(DomBlock)) 2672 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2673 } 2674 2675 OldTI->eraseFromParent(); 2676 if (DTU) 2677 DTU->applyUpdates(Updates); 2678 2679 return true; 2680 } 2681 2682 /// If we found a conditional branch that goes to two returning blocks, 2683 /// try to merge them together into one return, 2684 /// introducing a select if the return values disagree. 2685 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2686 IRBuilder<> &Builder) { 2687 auto *BB = BI->getParent(); 2688 assert(BI->isConditional() && "Must be a conditional branch"); 2689 BasicBlock *TrueSucc = BI->getSuccessor(0); 2690 BasicBlock *FalseSucc = BI->getSuccessor(1); 2691 // NOTE: destinations may match, this could be degenerate uncond branch. 2692 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2693 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2694 2695 // Check to ensure both blocks are empty (just a return) or optionally empty 2696 // with PHI nodes. If there are other instructions, merging would cause extra 2697 // computation on one path or the other. 2698 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2699 return false; 2700 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2701 return false; 2702 2703 Builder.SetInsertPoint(BI); 2704 // Okay, we found a branch that is going to two return nodes. If 2705 // there is no return value for this function, just change the 2706 // branch into a return. 2707 if (FalseRet->getNumOperands() == 0) { 2708 TrueSucc->removePredecessor(BB); 2709 FalseSucc->removePredecessor(BB); 2710 Builder.CreateRetVoid(); 2711 EraseTerminatorAndDCECond(BI); 2712 if (DTU) { 2713 SmallVector<DominatorTree::UpdateType, 2> Updates; 2714 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2715 if (TrueSucc != FalseSucc) 2716 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2717 DTU->applyUpdates(Updates); 2718 } 2719 return true; 2720 } 2721 2722 // Otherwise, figure out what the true and false return values are 2723 // so we can insert a new select instruction. 2724 Value *TrueValue = TrueRet->getReturnValue(); 2725 Value *FalseValue = FalseRet->getReturnValue(); 2726 2727 // Unwrap any PHI nodes in the return blocks. 2728 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2729 if (TVPN->getParent() == TrueSucc) 2730 TrueValue = TVPN->getIncomingValueForBlock(BB); 2731 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2732 if (FVPN->getParent() == FalseSucc) 2733 FalseValue = FVPN->getIncomingValueForBlock(BB); 2734 2735 // In order for this transformation to be safe, we must be able to 2736 // unconditionally execute both operands to the return. This is 2737 // normally the case, but we could have a potentially-trapping 2738 // constant expression that prevents this transformation from being 2739 // safe. 2740 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2741 if (TCV->canTrap()) 2742 return false; 2743 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2744 if (FCV->canTrap()) 2745 return false; 2746 2747 // Okay, we collected all the mapped values and checked them for sanity, and 2748 // defined to really do this transformation. First, update the CFG. 2749 TrueSucc->removePredecessor(BB); 2750 FalseSucc->removePredecessor(BB); 2751 2752 // Insert select instructions where needed. 2753 Value *BrCond = BI->getCondition(); 2754 if (TrueValue) { 2755 // Insert a select if the results differ. 2756 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2757 } else if (isa<UndefValue>(TrueValue)) { 2758 TrueValue = FalseValue; 2759 } else { 2760 TrueValue = 2761 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2762 } 2763 } 2764 2765 Value *RI = 2766 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2767 2768 (void)RI; 2769 2770 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2771 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2772 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2773 2774 EraseTerminatorAndDCECond(BI); 2775 if (DTU) { 2776 SmallVector<DominatorTree::UpdateType, 2> Updates; 2777 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2778 if (TrueSucc != FalseSucc) 2779 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2780 DTU->applyUpdates(Updates); 2781 } 2782 2783 return true; 2784 } 2785 2786 /// Return true if the given instruction is available 2787 /// in its predecessor block. If yes, the instruction will be removed. 2788 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2789 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2790 return false; 2791 for (Instruction &I : *PB) { 2792 Instruction *PBI = &I; 2793 // Check whether Inst and PBI generate the same value. 2794 if (Inst->isIdenticalTo(PBI)) { 2795 Inst->replaceAllUsesWith(PBI); 2796 Inst->eraseFromParent(); 2797 return true; 2798 } 2799 } 2800 return false; 2801 } 2802 2803 /// Return true if either PBI or BI has branch weight available, and store 2804 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2805 /// not have branch weight, use 1:1 as its weight. 2806 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2807 uint64_t &PredTrueWeight, 2808 uint64_t &PredFalseWeight, 2809 uint64_t &SuccTrueWeight, 2810 uint64_t &SuccFalseWeight) { 2811 bool PredHasWeights = 2812 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2813 bool SuccHasWeights = 2814 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2815 if (PredHasWeights || SuccHasWeights) { 2816 if (!PredHasWeights) 2817 PredTrueWeight = PredFalseWeight = 1; 2818 if (!SuccHasWeights) 2819 SuccTrueWeight = SuccFalseWeight = 1; 2820 return true; 2821 } else { 2822 return false; 2823 } 2824 } 2825 2826 /// If this basic block is simple enough, and if a predecessor branches to us 2827 /// and one of our successors, fold the block into the predecessor and use 2828 /// logical operations to pick the right destination. 2829 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 2830 MemorySSAUpdater *MSSAU, 2831 const TargetTransformInfo *TTI, 2832 unsigned BonusInstThreshold) { 2833 BasicBlock *BB = BI->getParent(); 2834 2835 const unsigned PredCount = pred_size(BB); 2836 2837 bool Changed = false; 2838 2839 auto _ = make_scope_exit([&]() { 2840 if (Changed) 2841 ++NumFoldBranchToCommonDest; 2842 }); 2843 2844 TargetTransformInfo::TargetCostKind CostKind = 2845 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 2846 : TargetTransformInfo::TCK_SizeAndLatency; 2847 2848 Instruction *Cond = nullptr; 2849 if (BI->isConditional()) 2850 Cond = dyn_cast<Instruction>(BI->getCondition()); 2851 else { 2852 // For unconditional branch, check for a simple CFG pattern, where 2853 // BB has a single predecessor and BB's successor is also its predecessor's 2854 // successor. If such pattern exists, check for CSE between BB and its 2855 // predecessor. 2856 if (BasicBlock *PB = BB->getSinglePredecessor()) 2857 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2858 if (PBI->isConditional() && 2859 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2860 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2861 for (auto I = BB->instructionsWithoutDebug().begin(), 2862 E = BB->instructionsWithoutDebug().end(); 2863 I != E;) { 2864 Instruction *Curr = &*I++; 2865 if (isa<CmpInst>(Curr)) { 2866 Cond = Curr; 2867 break; 2868 } 2869 // Quit if we can't remove this instruction. 2870 if (!tryCSEWithPredecessor(Curr, PB)) 2871 return Changed; 2872 Changed = true; 2873 } 2874 } 2875 2876 if (!Cond) 2877 return Changed; 2878 } 2879 2880 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2881 Cond->getParent() != BB || !Cond->hasOneUse()) 2882 return Changed; 2883 2884 // Only allow this transformation if computing the condition doesn't involve 2885 // too many instructions and these involved instructions can be executed 2886 // unconditionally. We denote all involved instructions except the condition 2887 // as "bonus instructions", and only allow this transformation when the 2888 // number of the bonus instructions we'll need to create when cloning into 2889 // each predecessor does not exceed a certain threshold. 2890 unsigned NumBonusInsts = 0; 2891 for (Instruction &I : *BB) { 2892 // Don't check the branch condition comparison itself. 2893 if (&I == Cond) 2894 continue; 2895 // Ignore dbg intrinsics, and the terminator. 2896 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 2897 continue; 2898 // I must be safe to execute unconditionally. 2899 if (!isSafeToSpeculativelyExecute(&I)) 2900 return Changed; 2901 2902 // Account for the cost of duplicating this instruction into each 2903 // predecessor. 2904 NumBonusInsts += PredCount; 2905 // Early exits once we reach the limit. 2906 if (NumBonusInsts > BonusInstThreshold) 2907 return Changed; 2908 } 2909 2910 // Also, for now, all liveout uses of bonus instructions must be in PHI nodes 2911 // in successor blocks as incoming values from the bonus instructions's block, 2912 // otherwise we'll fail to update them. 2913 // FIXME: We could lift this restriction, but we need to form PHI nodes and 2914 // rewrite offending uses, but we can't do that without having a domtree. 2915 if (any_of(*BB, [BB](Instruction &I) { 2916 return any_of(I.uses(), [BB](Use &U) { 2917 auto *User = cast<Instruction>(U.getUser()); 2918 if (User->getParent() == BB) 2919 return false; // Not an external use. 2920 auto *PN = dyn_cast<PHINode>(User); 2921 return !PN || PN->getIncomingBlock(U) != BB; 2922 }); 2923 })) 2924 return Changed; 2925 2926 // Cond is known to be a compare or binary operator. Check to make sure that 2927 // neither operand is a potentially-trapping constant expression. 2928 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2929 if (CE->canTrap()) 2930 return Changed; 2931 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2932 if (CE->canTrap()) 2933 return Changed; 2934 2935 // Finally, don't infinitely unroll conditional loops. 2936 BasicBlock *TrueDest = BI->getSuccessor(0); 2937 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2938 if (TrueDest == BB || FalseDest == BB) 2939 return Changed; 2940 2941 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2942 BasicBlock *PredBlock = *PI; 2943 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2944 2945 // Check that we have two conditional branches. If there is a PHI node in 2946 // the common successor, verify that the same value flows in from both 2947 // blocks. 2948 SmallVector<PHINode *, 4> PHIs; 2949 if (!PBI || PBI->isUnconditional() || 2950 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2951 (!BI->isConditional() && 2952 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2953 continue; 2954 2955 // Determine if the two branches share a common destination. 2956 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2957 bool InvertPredCond = false; 2958 2959 if (BI->isConditional()) { 2960 if (PBI->getSuccessor(0) == TrueDest) { 2961 Opc = Instruction::Or; 2962 } else if (PBI->getSuccessor(1) == FalseDest) { 2963 Opc = Instruction::And; 2964 } else if (PBI->getSuccessor(0) == FalseDest) { 2965 Opc = Instruction::And; 2966 InvertPredCond = true; 2967 } else if (PBI->getSuccessor(1) == TrueDest) { 2968 Opc = Instruction::Or; 2969 InvertPredCond = true; 2970 } else { 2971 continue; 2972 } 2973 } else { 2974 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2975 continue; 2976 } 2977 2978 // Check the cost of inserting the necessary logic before performing the 2979 // transformation. 2980 if (TTI && Opc != Instruction::BinaryOpsEnd) { 2981 Type *Ty = BI->getCondition()->getType(); 2982 unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 2983 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 2984 !isa<CmpInst>(PBI->getCondition()))) 2985 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 2986 2987 if (Cost > BranchFoldThreshold) 2988 continue; 2989 } 2990 2991 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2992 Changed = true; 2993 2994 SmallVector<DominatorTree::UpdateType, 3> Updates; 2995 2996 IRBuilder<> Builder(PBI); 2997 // The builder is used to create instructions to eliminate the branch in BB. 2998 // If BB's terminator has !annotation metadata, add it to the new 2999 // instructions. 3000 Builder.CollectMetadataToCopy(BB->getTerminator(), 3001 {LLVMContext::MD_annotation}); 3002 3003 // If we need to invert the condition in the pred block to match, do so now. 3004 if (InvertPredCond) { 3005 Value *NewCond = PBI->getCondition(); 3006 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3007 CmpInst *CI = cast<CmpInst>(NewCond); 3008 CI->setPredicate(CI->getInversePredicate()); 3009 } else { 3010 NewCond = 3011 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3012 } 3013 3014 PBI->setCondition(NewCond); 3015 PBI->swapSuccessors(); 3016 } 3017 3018 BasicBlock *UniqueSucc = 3019 BI->isConditional() 3020 ? (PBI->getSuccessor(0) == BB ? TrueDest : FalseDest) 3021 : TrueDest; 3022 3023 // Before cloning instructions, notify the successor basic block that it 3024 // is about to have a new predecessor. This will update PHI nodes, 3025 // which will allow us to update live-out uses of bonus instructions. 3026 if (BI->isConditional()) 3027 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3028 3029 // If we have bonus instructions, clone them into the predecessor block. 3030 // Note that there may be multiple predecessor blocks, so we cannot move 3031 // bonus instructions to a predecessor block. 3032 ValueToValueMapTy VMap; // maps original values to cloned values 3033 Instruction *CondInPred; 3034 for (Instruction &BonusInst : *BB) { 3035 if (isa<DbgInfoIntrinsic>(BonusInst) || isa<BranchInst>(BonusInst)) 3036 continue; 3037 3038 Instruction *NewBonusInst = BonusInst.clone(); 3039 3040 if (&BonusInst == Cond) 3041 CondInPred = NewBonusInst; 3042 3043 if (PBI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 3044 // Unless the instruction has the same !dbg location as the original 3045 // branch, drop it. When we fold the bonus instructions we want to make 3046 // sure we reset their debug locations in order to avoid stepping on 3047 // dead code caused by folding dead branches. 3048 NewBonusInst->setDebugLoc(DebugLoc()); 3049 } 3050 3051 RemapInstruction(NewBonusInst, VMap, 3052 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3053 VMap[&BonusInst] = NewBonusInst; 3054 3055 // If we moved a load, we cannot any longer claim any knowledge about 3056 // its potential value. The previous information might have been valid 3057 // only given the branch precondition. 3058 // For an analogous reason, we must also drop all the metadata whose 3059 // semantics we don't understand. We *can* preserve !annotation, because 3060 // it is tied to the instruction itself, not the value or position. 3061 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 3062 3063 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 3064 NewBonusInst->takeName(&BonusInst); 3065 BonusInst.setName(BonusInst.getName() + ".old"); 3066 BonusInst.replaceUsesWithIf( 3067 NewBonusInst, [BB, BI, UniqueSucc, PredBlock](Use &U) { 3068 auto *User = cast<Instruction>(U.getUser()); 3069 // Ignore non-external uses of bonus instructions. 3070 if (User->getParent() == BB) { 3071 assert(!isa<PHINode>(User) && 3072 "Non-external users are never PHI instructions."); 3073 return false; 3074 } 3075 if (User->getParent() == PredBlock) { 3076 // The "exteral" use is in the block into which we just cloned the 3077 // bonus instruction. This means two things: 1. we are in an 3078 // unreachable block 2. the instruction is self-referencing. 3079 // So let's just rewrite it... 3080 return true; 3081 } 3082 (void)BI; 3083 assert(isa<PHINode>(User) && "All external users must be PHI's."); 3084 auto *PN = cast<PHINode>(User); 3085 assert(is_contained(successors(BB), User->getParent()) && 3086 "All external users must be in successors of BB."); 3087 assert((PN->getIncomingBlock(U) == BB || 3088 PN->getIncomingBlock(U) == PredBlock) && 3089 "The incoming block for that incoming value external use " 3090 "must be either the original block with bonus instructions, " 3091 "or the new predecessor block."); 3092 // UniqueSucc is the block for which we change it's predecessors, 3093 // so it is the only block in which we'll need to update PHI nodes. 3094 if (User->getParent() != UniqueSucc) 3095 return false; 3096 // Update the incoming value for the new predecessor. 3097 return PN->getIncomingBlock(U) == 3098 (BI->isConditional() ? PredBlock : BB); 3099 }); 3100 } 3101 3102 // Now that the Cond was cloned into the predecessor basic block, 3103 // or/and the two conditions together. 3104 if (BI->isConditional()) { 3105 Instruction *NewCond = cast<Instruction>( 3106 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 3107 PBI->setCondition(NewCond); 3108 3109 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3110 bool HasWeights = 3111 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3112 SuccTrueWeight, SuccFalseWeight); 3113 SmallVector<uint64_t, 8> NewWeights; 3114 3115 if (PBI->getSuccessor(0) == BB) { 3116 if (HasWeights) { 3117 // PBI: br i1 %x, BB, FalseDest 3118 // BI: br i1 %y, UniqueSucc, FalseDest 3119 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3120 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3121 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3122 // TrueWeight for PBI * FalseWeight for BI. 3123 // We assume that total weights of a BranchInst can fit into 32 bits. 3124 // Therefore, we will not have overflow using 64-bit arithmetic. 3125 NewWeights.push_back(PredFalseWeight * 3126 (SuccFalseWeight + SuccTrueWeight) + 3127 PredTrueWeight * SuccFalseWeight); 3128 } 3129 PBI->setSuccessor(0, UniqueSucc); 3130 } 3131 if (PBI->getSuccessor(1) == BB) { 3132 if (HasWeights) { 3133 // PBI: br i1 %x, TrueDest, BB 3134 // BI: br i1 %y, TrueDest, UniqueSucc 3135 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3136 // FalseWeight for PBI * TrueWeight for BI. 3137 NewWeights.push_back(PredTrueWeight * 3138 (SuccFalseWeight + SuccTrueWeight) + 3139 PredFalseWeight * SuccTrueWeight); 3140 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3141 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3142 } 3143 PBI->setSuccessor(1, UniqueSucc); 3144 } 3145 if (NewWeights.size() == 2) { 3146 // Halve the weights if any of them cannot fit in an uint32_t 3147 FitWeights(NewWeights); 3148 3149 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 3150 NewWeights.end()); 3151 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3152 } else 3153 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3154 3155 Updates.push_back({DominatorTree::Insert, PredBlock, UniqueSucc}); 3156 Updates.push_back({DominatorTree::Delete, PredBlock, BB}); 3157 } else { 3158 // Update PHI nodes in the common successors. 3159 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 3160 ConstantInt *PBI_C = cast<ConstantInt>( 3161 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 3162 assert(PBI_C->getType()->isIntegerTy(1)); 3163 Instruction *MergedCond = nullptr; 3164 if (PBI->getSuccessor(0) == UniqueSucc) { 3165 Updates.push_back( 3166 {DominatorTree::Delete, PredBlock, PBI->getSuccessor(1)}); 3167 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 3168 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 3169 // is false: !PBI_Cond and BI_Value 3170 Instruction *NotCond = cast<Instruction>( 3171 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3172 MergedCond = cast<Instruction>( 3173 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 3174 "and.cond")); 3175 if (PBI_C->isOne()) 3176 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3177 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 3178 } else { 3179 assert(PBI->getSuccessor(1) == UniqueSucc && "Unexpected branch"); 3180 Updates.push_back( 3181 {DominatorTree::Delete, PredBlock, PBI->getSuccessor(0)}); 3182 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 3183 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 3184 // is false: PBI_Cond and BI_Value 3185 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3186 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 3187 if (PBI_C->isOne()) { 3188 Instruction *NotCond = cast<Instruction>( 3189 Builder.CreateNot(PBI->getCondition(), "not.cond")); 3190 MergedCond = cast<Instruction>(Builder.CreateBinOp( 3191 Instruction::Or, NotCond, MergedCond, "or.cond")); 3192 } 3193 } 3194 // Update PHI Node. 3195 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); 3196 } 3197 3198 // PBI is changed to branch to UniqueSucc below. Remove itself from 3199 // potential phis from all other successors. 3200 if (MSSAU) 3201 MSSAU->changeCondBranchToUnconditionalTo(PBI, UniqueSucc); 3202 3203 // Change PBI from Conditional to Unconditional. 3204 BranchInst *New_PBI = BranchInst::Create(UniqueSucc, PBI); 3205 EraseTerminatorAndDCECond(PBI, MSSAU); 3206 PBI = New_PBI; 3207 } 3208 3209 if (DTU) 3210 DTU->applyUpdates(Updates); 3211 3212 // If BI was a loop latch, it may have had associated loop metadata. 3213 // We need to copy it to the new latch, that is, PBI. 3214 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3215 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3216 3217 // TODO: If BB is reachable from all paths through PredBlock, then we 3218 // could replace PBI's branch probabilities with BI's. 3219 3220 // Copy any debug value intrinsics into the end of PredBlock. 3221 for (Instruction &I : *BB) { 3222 if (isa<DbgInfoIntrinsic>(I)) { 3223 Instruction *NewI = I.clone(); 3224 RemapInstruction(NewI, VMap, 3225 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3226 NewI->insertBefore(PBI); 3227 } 3228 } 3229 3230 return Changed; 3231 } 3232 return Changed; 3233 } 3234 3235 // If there is only one store in BB1 and BB2, return it, otherwise return 3236 // nullptr. 3237 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3238 StoreInst *S = nullptr; 3239 for (auto *BB : {BB1, BB2}) { 3240 if (!BB) 3241 continue; 3242 for (auto &I : *BB) 3243 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3244 if (S) 3245 // Multiple stores seen. 3246 return nullptr; 3247 else 3248 S = SI; 3249 } 3250 } 3251 return S; 3252 } 3253 3254 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3255 Value *AlternativeV = nullptr) { 3256 // PHI is going to be a PHI node that allows the value V that is defined in 3257 // BB to be referenced in BB's only successor. 3258 // 3259 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3260 // doesn't matter to us what the other operand is (it'll never get used). We 3261 // could just create a new PHI with an undef incoming value, but that could 3262 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3263 // other PHI. So here we directly look for some PHI in BB's successor with V 3264 // as an incoming operand. If we find one, we use it, else we create a new 3265 // one. 3266 // 3267 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3268 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3269 // where OtherBB is the single other predecessor of BB's only successor. 3270 PHINode *PHI = nullptr; 3271 BasicBlock *Succ = BB->getSingleSuccessor(); 3272 3273 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3274 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3275 PHI = cast<PHINode>(I); 3276 if (!AlternativeV) 3277 break; 3278 3279 assert(Succ->hasNPredecessors(2)); 3280 auto PredI = pred_begin(Succ); 3281 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3282 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3283 break; 3284 PHI = nullptr; 3285 } 3286 if (PHI) 3287 return PHI; 3288 3289 // If V is not an instruction defined in BB, just return it. 3290 if (!AlternativeV && 3291 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3292 return V; 3293 3294 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3295 PHI->addIncoming(V, BB); 3296 for (BasicBlock *PredBB : predecessors(Succ)) 3297 if (PredBB != BB) 3298 PHI->addIncoming( 3299 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3300 return PHI; 3301 } 3302 3303 static bool mergeConditionalStoreToAddress( 3304 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3305 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3306 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3307 // For every pointer, there must be exactly two stores, one coming from 3308 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3309 // store (to any address) in PTB,PFB or QTB,QFB. 3310 // FIXME: We could relax this restriction with a bit more work and performance 3311 // testing. 3312 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3313 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3314 if (!PStore || !QStore) 3315 return false; 3316 3317 // Now check the stores are compatible. 3318 if (!QStore->isUnordered() || !PStore->isUnordered()) 3319 return false; 3320 3321 // Check that sinking the store won't cause program behavior changes. Sinking 3322 // the store out of the Q blocks won't change any behavior as we're sinking 3323 // from a block to its unconditional successor. But we're moving a store from 3324 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3325 // So we need to check that there are no aliasing loads or stores in 3326 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3327 // operations between PStore and the end of its parent block. 3328 // 3329 // The ideal way to do this is to query AliasAnalysis, but we don't 3330 // preserve AA currently so that is dangerous. Be super safe and just 3331 // check there are no other memory operations at all. 3332 for (auto &I : *QFB->getSinglePredecessor()) 3333 if (I.mayReadOrWriteMemory()) 3334 return false; 3335 for (auto &I : *QFB) 3336 if (&I != QStore && I.mayReadOrWriteMemory()) 3337 return false; 3338 if (QTB) 3339 for (auto &I : *QTB) 3340 if (&I != QStore && I.mayReadOrWriteMemory()) 3341 return false; 3342 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3343 I != E; ++I) 3344 if (&*I != PStore && I->mayReadOrWriteMemory()) 3345 return false; 3346 3347 // If we're not in aggressive mode, we only optimize if we have some 3348 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3349 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3350 if (!BB) 3351 return true; 3352 // Heuristic: if the block can be if-converted/phi-folded and the 3353 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3354 // thread this store. 3355 int BudgetRemaining = 3356 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3357 for (auto &I : BB->instructionsWithoutDebug()) { 3358 // Consider terminator instruction to be free. 3359 if (I.isTerminator()) 3360 continue; 3361 // If this is one the stores that we want to speculate out of this BB, 3362 // then don't count it's cost, consider it to be free. 3363 if (auto *S = dyn_cast<StoreInst>(&I)) 3364 if (llvm::find(FreeStores, S)) 3365 continue; 3366 // Else, we have a white-list of instructions that we are ak speculating. 3367 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3368 return false; // Not in white-list - not worthwhile folding. 3369 // And finally, if this is a non-free instruction that we are okay 3370 // speculating, ensure that we consider the speculation budget. 3371 BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3372 if (BudgetRemaining < 0) 3373 return false; // Eagerly refuse to fold as soon as we're out of budget. 3374 } 3375 assert(BudgetRemaining >= 0 && 3376 "When we run out of budget we will eagerly return from within the " 3377 "per-instruction loop."); 3378 return true; 3379 }; 3380 3381 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3382 if (!MergeCondStoresAggressively && 3383 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3384 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3385 return false; 3386 3387 // If PostBB has more than two predecessors, we need to split it so we can 3388 // sink the store. 3389 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3390 // We know that QFB's only successor is PostBB. And QFB has a single 3391 // predecessor. If QTB exists, then its only successor is also PostBB. 3392 // If QTB does not exist, then QFB's only predecessor has a conditional 3393 // branch to QFB and PostBB. 3394 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3395 BasicBlock *NewBB = 3396 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3397 if (!NewBB) 3398 return false; 3399 PostBB = NewBB; 3400 } 3401 3402 // OK, we're going to sink the stores to PostBB. The store has to be 3403 // conditional though, so first create the predicate. 3404 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3405 ->getCondition(); 3406 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3407 ->getCondition(); 3408 3409 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3410 PStore->getParent()); 3411 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3412 QStore->getParent(), PPHI); 3413 3414 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3415 3416 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3417 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3418 3419 if (InvertPCond) 3420 PPred = QB.CreateNot(PPred); 3421 if (InvertQCond) 3422 QPred = QB.CreateNot(QPred); 3423 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3424 3425 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3426 /*Unreachable=*/false, 3427 /*BranchWeights=*/nullptr, DTU); 3428 QB.SetInsertPoint(T); 3429 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3430 AAMDNodes AAMD; 3431 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3432 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3433 SI->setAAMetadata(AAMD); 3434 // Choose the minimum alignment. If we could prove both stores execute, we 3435 // could use biggest one. In this case, though, we only know that one of the 3436 // stores executes. And we don't know it's safe to take the alignment from a 3437 // store that doesn't execute. 3438 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3439 3440 QStore->eraseFromParent(); 3441 PStore->eraseFromParent(); 3442 3443 return true; 3444 } 3445 3446 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3447 DomTreeUpdater *DTU, const DataLayout &DL, 3448 const TargetTransformInfo &TTI) { 3449 // The intention here is to find diamonds or triangles (see below) where each 3450 // conditional block contains a store to the same address. Both of these 3451 // stores are conditional, so they can't be unconditionally sunk. But it may 3452 // be profitable to speculatively sink the stores into one merged store at the 3453 // end, and predicate the merged store on the union of the two conditions of 3454 // PBI and QBI. 3455 // 3456 // This can reduce the number of stores executed if both of the conditions are 3457 // true, and can allow the blocks to become small enough to be if-converted. 3458 // This optimization will also chain, so that ladders of test-and-set 3459 // sequences can be if-converted away. 3460 // 3461 // We only deal with simple diamonds or triangles: 3462 // 3463 // PBI or PBI or a combination of the two 3464 // / \ | \ 3465 // PTB PFB | PFB 3466 // \ / | / 3467 // QBI QBI 3468 // / \ | \ 3469 // QTB QFB | QFB 3470 // \ / | / 3471 // PostBB PostBB 3472 // 3473 // We model triangles as a type of diamond with a nullptr "true" block. 3474 // Triangles are canonicalized so that the fallthrough edge is represented by 3475 // a true condition, as in the diagram above. 3476 BasicBlock *PTB = PBI->getSuccessor(0); 3477 BasicBlock *PFB = PBI->getSuccessor(1); 3478 BasicBlock *QTB = QBI->getSuccessor(0); 3479 BasicBlock *QFB = QBI->getSuccessor(1); 3480 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3481 3482 // Make sure we have a good guess for PostBB. If QTB's only successor is 3483 // QFB, then QFB is a better PostBB. 3484 if (QTB->getSingleSuccessor() == QFB) 3485 PostBB = QFB; 3486 3487 // If we couldn't find a good PostBB, stop. 3488 if (!PostBB) 3489 return false; 3490 3491 bool InvertPCond = false, InvertQCond = false; 3492 // Canonicalize fallthroughs to the true branches. 3493 if (PFB == QBI->getParent()) { 3494 std::swap(PFB, PTB); 3495 InvertPCond = true; 3496 } 3497 if (QFB == PostBB) { 3498 std::swap(QFB, QTB); 3499 InvertQCond = true; 3500 } 3501 3502 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3503 // and QFB may not. Model fallthroughs as a nullptr block. 3504 if (PTB == QBI->getParent()) 3505 PTB = nullptr; 3506 if (QTB == PostBB) 3507 QTB = nullptr; 3508 3509 // Legality bailouts. We must have at least the non-fallthrough blocks and 3510 // the post-dominating block, and the non-fallthroughs must only have one 3511 // predecessor. 3512 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3513 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3514 }; 3515 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3516 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3517 return false; 3518 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3519 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3520 return false; 3521 if (!QBI->getParent()->hasNUses(2)) 3522 return false; 3523 3524 // OK, this is a sequence of two diamonds or triangles. 3525 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3526 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3527 for (auto *BB : {PTB, PFB}) { 3528 if (!BB) 3529 continue; 3530 for (auto &I : *BB) 3531 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3532 PStoreAddresses.insert(SI->getPointerOperand()); 3533 } 3534 for (auto *BB : {QTB, QFB}) { 3535 if (!BB) 3536 continue; 3537 for (auto &I : *BB) 3538 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3539 QStoreAddresses.insert(SI->getPointerOperand()); 3540 } 3541 3542 set_intersect(PStoreAddresses, QStoreAddresses); 3543 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3544 // clear what it contains. 3545 auto &CommonAddresses = PStoreAddresses; 3546 3547 bool Changed = false; 3548 for (auto *Address : CommonAddresses) 3549 Changed |= 3550 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3551 InvertPCond, InvertQCond, DTU, DL, TTI); 3552 return Changed; 3553 } 3554 3555 /// If the previous block ended with a widenable branch, determine if reusing 3556 /// the target block is profitable and legal. This will have the effect of 3557 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3558 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3559 DomTreeUpdater *DTU) { 3560 // TODO: This can be generalized in two important ways: 3561 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3562 // values from the PBI edge. 3563 // 2) We can sink side effecting instructions into BI's fallthrough 3564 // successor provided they doesn't contribute to computation of 3565 // BI's condition. 3566 Value *CondWB, *WC; 3567 BasicBlock *IfTrueBB, *IfFalseBB; 3568 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3569 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3570 return false; 3571 if (!IfFalseBB->phis().empty()) 3572 return false; // TODO 3573 // Use lambda to lazily compute expensive condition after cheap ones. 3574 auto NoSideEffects = [](BasicBlock &BB) { 3575 return !llvm::any_of(BB, [](const Instruction &I) { 3576 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3577 }); 3578 }; 3579 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3580 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3581 NoSideEffects(*BI->getParent())) { 3582 auto *OldSuccessor = BI->getSuccessor(1); 3583 OldSuccessor->removePredecessor(BI->getParent()); 3584 BI->setSuccessor(1, IfFalseBB); 3585 if (DTU) 3586 DTU->applyUpdates( 3587 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3588 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3589 return true; 3590 } 3591 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3592 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3593 NoSideEffects(*BI->getParent())) { 3594 auto *OldSuccessor = BI->getSuccessor(0); 3595 OldSuccessor->removePredecessor(BI->getParent()); 3596 BI->setSuccessor(0, IfFalseBB); 3597 if (DTU) 3598 DTU->applyUpdates( 3599 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3600 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3601 return true; 3602 } 3603 return false; 3604 } 3605 3606 /// If we have a conditional branch as a predecessor of another block, 3607 /// this function tries to simplify it. We know 3608 /// that PBI and BI are both conditional branches, and BI is in one of the 3609 /// successor blocks of PBI - PBI branches to BI. 3610 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3611 DomTreeUpdater *DTU, 3612 const DataLayout &DL, 3613 const TargetTransformInfo &TTI) { 3614 assert(PBI->isConditional() && BI->isConditional()); 3615 BasicBlock *BB = BI->getParent(); 3616 3617 // If this block ends with a branch instruction, and if there is a 3618 // predecessor that ends on a branch of the same condition, make 3619 // this conditional branch redundant. 3620 if (PBI->getCondition() == BI->getCondition() && 3621 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3622 // Okay, the outcome of this conditional branch is statically 3623 // knowable. If this block had a single pred, handle specially. 3624 if (BB->getSinglePredecessor()) { 3625 // Turn this into a branch on constant. 3626 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3627 BI->setCondition( 3628 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3629 return true; // Nuke the branch on constant. 3630 } 3631 3632 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3633 // in the constant and simplify the block result. Subsequent passes of 3634 // simplifycfg will thread the block. 3635 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3636 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3637 PHINode *NewPN = PHINode::Create( 3638 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3639 BI->getCondition()->getName() + ".pr", &BB->front()); 3640 // Okay, we're going to insert the PHI node. Since PBI is not the only 3641 // predecessor, compute the PHI'd conditional value for all of the preds. 3642 // Any predecessor where the condition is not computable we keep symbolic. 3643 for (pred_iterator PI = PB; PI != PE; ++PI) { 3644 BasicBlock *P = *PI; 3645 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3646 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3647 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3648 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3649 NewPN->addIncoming( 3650 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3651 P); 3652 } else { 3653 NewPN->addIncoming(BI->getCondition(), P); 3654 } 3655 } 3656 3657 BI->setCondition(NewPN); 3658 return true; 3659 } 3660 } 3661 3662 // If the previous block ended with a widenable branch, determine if reusing 3663 // the target block is profitable and legal. This will have the effect of 3664 // "widening" PBI, but doesn't require us to reason about hosting safety. 3665 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3666 return true; 3667 3668 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3669 if (CE->canTrap()) 3670 return false; 3671 3672 // If both branches are conditional and both contain stores to the same 3673 // address, remove the stores from the conditionals and create a conditional 3674 // merged store at the end. 3675 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3676 return true; 3677 3678 // If this is a conditional branch in an empty block, and if any 3679 // predecessors are a conditional branch to one of our destinations, 3680 // fold the conditions into logical ops and one cond br. 3681 3682 // Ignore dbg intrinsics. 3683 if (&*BB->instructionsWithoutDebug().begin() != BI) 3684 return false; 3685 3686 int PBIOp, BIOp; 3687 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3688 PBIOp = 0; 3689 BIOp = 0; 3690 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3691 PBIOp = 0; 3692 BIOp = 1; 3693 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3694 PBIOp = 1; 3695 BIOp = 0; 3696 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3697 PBIOp = 1; 3698 BIOp = 1; 3699 } else { 3700 return false; 3701 } 3702 3703 // Check to make sure that the other destination of this branch 3704 // isn't BB itself. If so, this is an infinite loop that will 3705 // keep getting unwound. 3706 if (PBI->getSuccessor(PBIOp) == BB) 3707 return false; 3708 3709 // Do not perform this transformation if it would require 3710 // insertion of a large number of select instructions. For targets 3711 // without predication/cmovs, this is a big pessimization. 3712 3713 // Also do not perform this transformation if any phi node in the common 3714 // destination block can trap when reached by BB or PBB (PR17073). In that 3715 // case, it would be unsafe to hoist the operation into a select instruction. 3716 3717 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3718 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3719 unsigned NumPhis = 0; 3720 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3721 ++II, ++NumPhis) { 3722 if (NumPhis > 2) // Disable this xform. 3723 return false; 3724 3725 PHINode *PN = cast<PHINode>(II); 3726 Value *BIV = PN->getIncomingValueForBlock(BB); 3727 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3728 if (CE->canTrap()) 3729 return false; 3730 3731 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3732 Value *PBIV = PN->getIncomingValue(PBBIdx); 3733 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3734 if (CE->canTrap()) 3735 return false; 3736 } 3737 3738 // Finally, if everything is ok, fold the branches to logical ops. 3739 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3740 3741 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3742 << "AND: " << *BI->getParent()); 3743 3744 SmallVector<DominatorTree::UpdateType, 5> Updates; 3745 3746 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3747 // branch in it, where one edge (OtherDest) goes back to itself but the other 3748 // exits. We don't *know* that the program avoids the infinite loop 3749 // (even though that seems likely). If we do this xform naively, we'll end up 3750 // recursively unpeeling the loop. Since we know that (after the xform is 3751 // done) that the block *is* infinite if reached, we just make it an obviously 3752 // infinite loop with no cond branch. 3753 if (OtherDest == BB) { 3754 // Insert it at the end of the function, because it's either code, 3755 // or it won't matter if it's hot. :) 3756 BasicBlock *InfLoopBlock = 3757 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3758 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3759 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3760 OtherDest = InfLoopBlock; 3761 } 3762 3763 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3764 3765 // BI may have other predecessors. Because of this, we leave 3766 // it alone, but modify PBI. 3767 3768 // Make sure we get to CommonDest on True&True directions. 3769 Value *PBICond = PBI->getCondition(); 3770 IRBuilder<NoFolder> Builder(PBI); 3771 if (PBIOp) 3772 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3773 3774 Value *BICond = BI->getCondition(); 3775 if (BIOp) 3776 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3777 3778 // Merge the conditions. 3779 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3780 3781 // Modify PBI to branch on the new condition to the new dests. 3782 PBI->setCondition(Cond); 3783 PBI->setSuccessor(0, CommonDest); 3784 PBI->setSuccessor(1, OtherDest); 3785 3786 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3787 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3788 3789 if (DTU) 3790 DTU->applyUpdates(Updates); 3791 3792 // Update branch weight for PBI. 3793 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3794 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3795 bool HasWeights = 3796 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3797 SuccTrueWeight, SuccFalseWeight); 3798 if (HasWeights) { 3799 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3800 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3801 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3802 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3803 // The weight to CommonDest should be PredCommon * SuccTotal + 3804 // PredOther * SuccCommon. 3805 // The weight to OtherDest should be PredOther * SuccOther. 3806 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3807 PredOther * SuccCommon, 3808 PredOther * SuccOther}; 3809 // Halve the weights if any of them cannot fit in an uint32_t 3810 FitWeights(NewWeights); 3811 3812 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3813 } 3814 3815 // OtherDest may have phi nodes. If so, add an entry from PBI's 3816 // block that are identical to the entries for BI's block. 3817 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3818 3819 // We know that the CommonDest already had an edge from PBI to 3820 // it. If it has PHIs though, the PHIs may have different 3821 // entries for BB and PBI's BB. If so, insert a select to make 3822 // them agree. 3823 for (PHINode &PN : CommonDest->phis()) { 3824 Value *BIV = PN.getIncomingValueForBlock(BB); 3825 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3826 Value *PBIV = PN.getIncomingValue(PBBIdx); 3827 if (BIV != PBIV) { 3828 // Insert a select in PBI to pick the right value. 3829 SelectInst *NV = cast<SelectInst>( 3830 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3831 PN.setIncomingValue(PBBIdx, NV); 3832 // Although the select has the same condition as PBI, the original branch 3833 // weights for PBI do not apply to the new select because the select's 3834 // 'logical' edges are incoming edges of the phi that is eliminated, not 3835 // the outgoing edges of PBI. 3836 if (HasWeights) { 3837 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3838 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3839 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3840 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3841 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3842 // The weight to PredOtherDest should be PredOther * SuccCommon. 3843 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3844 PredOther * SuccCommon}; 3845 3846 FitWeights(NewWeights); 3847 3848 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3849 } 3850 } 3851 } 3852 3853 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3854 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3855 3856 // This basic block is probably dead. We know it has at least 3857 // one fewer predecessor. 3858 return true; 3859 } 3860 3861 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3862 // true or to FalseBB if Cond is false. 3863 // Takes care of updating the successors and removing the old terminator. 3864 // Also makes sure not to introduce new successors by assuming that edges to 3865 // non-successor TrueBBs and FalseBBs aren't reachable. 3866 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3867 Value *Cond, BasicBlock *TrueBB, 3868 BasicBlock *FalseBB, 3869 uint32_t TrueWeight, 3870 uint32_t FalseWeight) { 3871 auto *BB = OldTerm->getParent(); 3872 // Remove any superfluous successor edges from the CFG. 3873 // First, figure out which successors to preserve. 3874 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3875 // successor. 3876 BasicBlock *KeepEdge1 = TrueBB; 3877 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3878 3879 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3880 3881 // Then remove the rest. 3882 for (BasicBlock *Succ : successors(OldTerm)) { 3883 // Make sure only to keep exactly one copy of each edge. 3884 if (Succ == KeepEdge1) 3885 KeepEdge1 = nullptr; 3886 else if (Succ == KeepEdge2) 3887 KeepEdge2 = nullptr; 3888 else { 3889 Succ->removePredecessor(BB, 3890 /*KeepOneInputPHIs=*/true); 3891 3892 if (Succ != TrueBB && Succ != FalseBB) 3893 RemovedSuccessors.insert(Succ); 3894 } 3895 } 3896 3897 IRBuilder<> Builder(OldTerm); 3898 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3899 3900 // Insert an appropriate new terminator. 3901 if (!KeepEdge1 && !KeepEdge2) { 3902 if (TrueBB == FalseBB) { 3903 // We were only looking for one successor, and it was present. 3904 // Create an unconditional branch to it. 3905 Builder.CreateBr(TrueBB); 3906 } else { 3907 // We found both of the successors we were looking for. 3908 // Create a conditional branch sharing the condition of the select. 3909 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3910 if (TrueWeight != FalseWeight) 3911 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3912 } 3913 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3914 // Neither of the selected blocks were successors, so this 3915 // terminator must be unreachable. 3916 new UnreachableInst(OldTerm->getContext(), OldTerm); 3917 } else { 3918 // One of the selected values was a successor, but the other wasn't. 3919 // Insert an unconditional branch to the one that was found; 3920 // the edge to the one that wasn't must be unreachable. 3921 if (!KeepEdge1) { 3922 // Only TrueBB was found. 3923 Builder.CreateBr(TrueBB); 3924 } else { 3925 // Only FalseBB was found. 3926 Builder.CreateBr(FalseBB); 3927 } 3928 } 3929 3930 EraseTerminatorAndDCECond(OldTerm); 3931 3932 if (DTU) { 3933 SmallVector<DominatorTree::UpdateType, 2> Updates; 3934 Updates.reserve(RemovedSuccessors.size()); 3935 for (auto *RemovedSuccessor : RemovedSuccessors) 3936 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3937 DTU->applyUpdates(Updates); 3938 } 3939 3940 return true; 3941 } 3942 3943 // Replaces 3944 // (switch (select cond, X, Y)) on constant X, Y 3945 // with a branch - conditional if X and Y lead to distinct BBs, 3946 // unconditional otherwise. 3947 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3948 SelectInst *Select) { 3949 // Check for constant integer values in the select. 3950 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3951 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3952 if (!TrueVal || !FalseVal) 3953 return false; 3954 3955 // Find the relevant condition and destinations. 3956 Value *Condition = Select->getCondition(); 3957 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3958 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3959 3960 // Get weight for TrueBB and FalseBB. 3961 uint32_t TrueWeight = 0, FalseWeight = 0; 3962 SmallVector<uint64_t, 8> Weights; 3963 bool HasWeights = HasBranchWeights(SI); 3964 if (HasWeights) { 3965 GetBranchWeights(SI, Weights); 3966 if (Weights.size() == 1 + SI->getNumCases()) { 3967 TrueWeight = 3968 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3969 FalseWeight = 3970 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3971 } 3972 } 3973 3974 // Perform the actual simplification. 3975 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3976 FalseWeight); 3977 } 3978 3979 // Replaces 3980 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3981 // blockaddress(@fn, BlockB))) 3982 // with 3983 // (br cond, BlockA, BlockB). 3984 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3985 SelectInst *SI) { 3986 // Check that both operands of the select are block addresses. 3987 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3988 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3989 if (!TBA || !FBA) 3990 return false; 3991 3992 // Extract the actual blocks. 3993 BasicBlock *TrueBB = TBA->getBasicBlock(); 3994 BasicBlock *FalseBB = FBA->getBasicBlock(); 3995 3996 // Perform the actual simplification. 3997 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3998 0); 3999 } 4000 4001 /// This is called when we find an icmp instruction 4002 /// (a seteq/setne with a constant) as the only instruction in a 4003 /// block that ends with an uncond branch. We are looking for a very specific 4004 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4005 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4006 /// default value goes to an uncond block with a seteq in it, we get something 4007 /// like: 4008 /// 4009 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4010 /// DEFAULT: 4011 /// %tmp = icmp eq i8 %A, 92 4012 /// br label %end 4013 /// end: 4014 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4015 /// 4016 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4017 /// the PHI, merging the third icmp into the switch. 4018 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4019 ICmpInst *ICI, IRBuilder<> &Builder) { 4020 BasicBlock *BB = ICI->getParent(); 4021 4022 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4023 // complex. 4024 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4025 return false; 4026 4027 Value *V = ICI->getOperand(0); 4028 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4029 4030 // The pattern we're looking for is where our only predecessor is a switch on 4031 // 'V' and this block is the default case for the switch. In this case we can 4032 // fold the compared value into the switch to simplify things. 4033 BasicBlock *Pred = BB->getSinglePredecessor(); 4034 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4035 return false; 4036 4037 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4038 if (SI->getCondition() != V) 4039 return false; 4040 4041 // If BB is reachable on a non-default case, then we simply know the value of 4042 // V in this block. Substitute it and constant fold the icmp instruction 4043 // away. 4044 if (SI->getDefaultDest() != BB) { 4045 ConstantInt *VVal = SI->findCaseDest(BB); 4046 assert(VVal && "Should have a unique destination value"); 4047 ICI->setOperand(0, VVal); 4048 4049 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4050 ICI->replaceAllUsesWith(V); 4051 ICI->eraseFromParent(); 4052 } 4053 // BB is now empty, so it is likely to simplify away. 4054 return requestResimplify(); 4055 } 4056 4057 // Ok, the block is reachable from the default dest. If the constant we're 4058 // comparing exists in one of the other edges, then we can constant fold ICI 4059 // and zap it. 4060 if (SI->findCaseValue(Cst) != SI->case_default()) { 4061 Value *V; 4062 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4063 V = ConstantInt::getFalse(BB->getContext()); 4064 else 4065 V = ConstantInt::getTrue(BB->getContext()); 4066 4067 ICI->replaceAllUsesWith(V); 4068 ICI->eraseFromParent(); 4069 // BB is now empty, so it is likely to simplify away. 4070 return requestResimplify(); 4071 } 4072 4073 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4074 // the block. 4075 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4076 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4077 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4078 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4079 return false; 4080 4081 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4082 // true in the PHI. 4083 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4084 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4085 4086 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4087 std::swap(DefaultCst, NewCst); 4088 4089 // Replace ICI (which is used by the PHI for the default value) with true or 4090 // false depending on if it is EQ or NE. 4091 ICI->replaceAllUsesWith(DefaultCst); 4092 ICI->eraseFromParent(); 4093 4094 SmallVector<DominatorTree::UpdateType, 2> Updates; 4095 4096 // Okay, the switch goes to this block on a default value. Add an edge from 4097 // the switch to the merge point on the compared value. 4098 BasicBlock *NewBB = 4099 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4100 { 4101 SwitchInstProfUpdateWrapper SIW(*SI); 4102 auto W0 = SIW.getSuccessorWeight(0); 4103 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4104 if (W0) { 4105 NewW = ((uint64_t(*W0) + 1) >> 1); 4106 SIW.setSuccessorWeight(0, *NewW); 4107 } 4108 SIW.addCase(Cst, NewBB, NewW); 4109 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4110 } 4111 4112 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4113 Builder.SetInsertPoint(NewBB); 4114 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4115 Builder.CreateBr(SuccBlock); 4116 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4117 PHIUse->addIncoming(NewCst, NewBB); 4118 if (DTU) 4119 DTU->applyUpdates(Updates); 4120 return true; 4121 } 4122 4123 /// The specified branch is a conditional branch. 4124 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4125 /// fold it into a switch instruction if so. 4126 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4127 IRBuilder<> &Builder, 4128 const DataLayout &DL) { 4129 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4130 if (!Cond) 4131 return false; 4132 4133 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4134 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4135 // 'setne's and'ed together, collect them. 4136 4137 // Try to gather values from a chain of and/or to be turned into a switch 4138 ConstantComparesGatherer ConstantCompare(Cond, DL); 4139 // Unpack the result 4140 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4141 Value *CompVal = ConstantCompare.CompValue; 4142 unsigned UsedICmps = ConstantCompare.UsedICmps; 4143 Value *ExtraCase = ConstantCompare.Extra; 4144 4145 // If we didn't have a multiply compared value, fail. 4146 if (!CompVal) 4147 return false; 4148 4149 // Avoid turning single icmps into a switch. 4150 if (UsedICmps <= 1) 4151 return false; 4152 4153 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4154 4155 // There might be duplicate constants in the list, which the switch 4156 // instruction can't handle, remove them now. 4157 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4158 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4159 4160 // If Extra was used, we require at least two switch values to do the 4161 // transformation. A switch with one value is just a conditional branch. 4162 if (ExtraCase && Values.size() < 2) 4163 return false; 4164 4165 // TODO: Preserve branch weight metadata, similarly to how 4166 // FoldValueComparisonIntoPredecessors preserves it. 4167 4168 // Figure out which block is which destination. 4169 BasicBlock *DefaultBB = BI->getSuccessor(1); 4170 BasicBlock *EdgeBB = BI->getSuccessor(0); 4171 if (!TrueWhenEqual) 4172 std::swap(DefaultBB, EdgeBB); 4173 4174 BasicBlock *BB = BI->getParent(); 4175 4176 // MSAN does not like undefs as branch condition which can be introduced 4177 // with "explicit branch". 4178 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4179 return false; 4180 4181 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4182 << " cases into SWITCH. BB is:\n" 4183 << *BB); 4184 4185 SmallVector<DominatorTree::UpdateType, 2> Updates; 4186 4187 // If there are any extra values that couldn't be folded into the switch 4188 // then we evaluate them with an explicit branch first. Split the block 4189 // right before the condbr to handle it. 4190 if (ExtraCase) { 4191 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4192 /*MSSAU=*/nullptr, "switch.early.test"); 4193 4194 // Remove the uncond branch added to the old block. 4195 Instruction *OldTI = BB->getTerminator(); 4196 Builder.SetInsertPoint(OldTI); 4197 4198 if (TrueWhenEqual) 4199 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4200 else 4201 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4202 4203 OldTI->eraseFromParent(); 4204 4205 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4206 4207 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4208 // for the edge we just added. 4209 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4210 4211 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4212 << "\nEXTRABB = " << *BB); 4213 BB = NewBB; 4214 } 4215 4216 Builder.SetInsertPoint(BI); 4217 // Convert pointer to int before we switch. 4218 if (CompVal->getType()->isPointerTy()) { 4219 CompVal = Builder.CreatePtrToInt( 4220 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4221 } 4222 4223 // Create the new switch instruction now. 4224 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4225 4226 // Add all of the 'cases' to the switch instruction. 4227 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4228 New->addCase(Values[i], EdgeBB); 4229 4230 // We added edges from PI to the EdgeBB. As such, if there were any 4231 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4232 // the number of edges added. 4233 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4234 PHINode *PN = cast<PHINode>(BBI); 4235 Value *InVal = PN->getIncomingValueForBlock(BB); 4236 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4237 PN->addIncoming(InVal, BB); 4238 } 4239 4240 // Erase the old branch instruction. 4241 EraseTerminatorAndDCECond(BI); 4242 if (DTU) 4243 DTU->applyUpdates(Updates); 4244 4245 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4246 return true; 4247 } 4248 4249 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4250 if (isa<PHINode>(RI->getValue())) 4251 return simplifyCommonResume(RI); 4252 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4253 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4254 // The resume must unwind the exception that caused control to branch here. 4255 return simplifySingleResume(RI); 4256 4257 return false; 4258 } 4259 4260 // Check if cleanup block is empty 4261 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4262 for (Instruction &I : R) { 4263 auto *II = dyn_cast<IntrinsicInst>(&I); 4264 if (!II) 4265 return false; 4266 4267 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4268 switch (IntrinsicID) { 4269 case Intrinsic::dbg_declare: 4270 case Intrinsic::dbg_value: 4271 case Intrinsic::dbg_label: 4272 case Intrinsic::lifetime_end: 4273 break; 4274 default: 4275 return false; 4276 } 4277 } 4278 return true; 4279 } 4280 4281 // Simplify resume that is shared by several landing pads (phi of landing pad). 4282 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4283 BasicBlock *BB = RI->getParent(); 4284 4285 // Check that there are no other instructions except for debug and lifetime 4286 // intrinsics between the phi's and resume instruction. 4287 if (!isCleanupBlockEmpty( 4288 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4289 return false; 4290 4291 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4292 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4293 4294 // Check incoming blocks to see if any of them are trivial. 4295 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4296 Idx++) { 4297 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4298 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4299 4300 // If the block has other successors, we can not delete it because 4301 // it has other dependents. 4302 if (IncomingBB->getUniqueSuccessor() != BB) 4303 continue; 4304 4305 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4306 // Not the landing pad that caused the control to branch here. 4307 if (IncomingValue != LandingPad) 4308 continue; 4309 4310 if (isCleanupBlockEmpty( 4311 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4312 TrivialUnwindBlocks.insert(IncomingBB); 4313 } 4314 4315 // If no trivial unwind blocks, don't do any simplifications. 4316 if (TrivialUnwindBlocks.empty()) 4317 return false; 4318 4319 // Turn all invokes that unwind here into calls. 4320 for (auto *TrivialBB : TrivialUnwindBlocks) { 4321 // Blocks that will be simplified should be removed from the phi node. 4322 // Note there could be multiple edges to the resume block, and we need 4323 // to remove them all. 4324 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4325 BB->removePredecessor(TrivialBB, true); 4326 4327 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 4328 PI != PE;) { 4329 BasicBlock *Pred = *PI++; 4330 removeUnwindEdge(Pred, DTU); 4331 ++NumInvokes; 4332 } 4333 4334 // In each SimplifyCFG run, only the current processed block can be erased. 4335 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4336 // of erasing TrivialBB, we only remove the branch to the common resume 4337 // block so that we can later erase the resume block since it has no 4338 // predecessors. 4339 TrivialBB->getTerminator()->eraseFromParent(); 4340 new UnreachableInst(RI->getContext(), TrivialBB); 4341 if (DTU) 4342 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4343 } 4344 4345 // Delete the resume block if all its predecessors have been removed. 4346 if (pred_empty(BB)) { 4347 if (DTU) 4348 DTU->deleteBB(BB); 4349 else 4350 BB->eraseFromParent(); 4351 } 4352 4353 return !TrivialUnwindBlocks.empty(); 4354 } 4355 4356 // Simplify resume that is only used by a single (non-phi) landing pad. 4357 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4358 BasicBlock *BB = RI->getParent(); 4359 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4360 assert(RI->getValue() == LPInst && 4361 "Resume must unwind the exception that caused control to here"); 4362 4363 // Check that there are no other instructions except for debug intrinsics. 4364 if (!isCleanupBlockEmpty( 4365 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4366 return false; 4367 4368 // Turn all invokes that unwind here into calls and delete the basic block. 4369 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4370 BasicBlock *Pred = *PI++; 4371 removeUnwindEdge(Pred, DTU); 4372 ++NumInvokes; 4373 } 4374 4375 // The landingpad is now unreachable. Zap it. 4376 if (LoopHeaders) 4377 LoopHeaders->erase(BB); 4378 if (DTU) 4379 DTU->deleteBB(BB); 4380 else 4381 BB->eraseFromParent(); 4382 return true; 4383 } 4384 4385 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4386 // If this is a trivial cleanup pad that executes no instructions, it can be 4387 // eliminated. If the cleanup pad continues to the caller, any predecessor 4388 // that is an EH pad will be updated to continue to the caller and any 4389 // predecessor that terminates with an invoke instruction will have its invoke 4390 // instruction converted to a call instruction. If the cleanup pad being 4391 // simplified does not continue to the caller, each predecessor will be 4392 // updated to continue to the unwind destination of the cleanup pad being 4393 // simplified. 4394 BasicBlock *BB = RI->getParent(); 4395 CleanupPadInst *CPInst = RI->getCleanupPad(); 4396 if (CPInst->getParent() != BB) 4397 // This isn't an empty cleanup. 4398 return false; 4399 4400 // We cannot kill the pad if it has multiple uses. This typically arises 4401 // from unreachable basic blocks. 4402 if (!CPInst->hasOneUse()) 4403 return false; 4404 4405 // Check that there are no other instructions except for benign intrinsics. 4406 if (!isCleanupBlockEmpty( 4407 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4408 return false; 4409 4410 // If the cleanup return we are simplifying unwinds to the caller, this will 4411 // set UnwindDest to nullptr. 4412 BasicBlock *UnwindDest = RI->getUnwindDest(); 4413 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4414 4415 // We're about to remove BB from the control flow. Before we do, sink any 4416 // PHINodes into the unwind destination. Doing this before changing the 4417 // control flow avoids some potentially slow checks, since we can currently 4418 // be certain that UnwindDest and BB have no common predecessors (since they 4419 // are both EH pads). 4420 if (UnwindDest) { 4421 // First, go through the PHI nodes in UnwindDest and update any nodes that 4422 // reference the block we are removing 4423 for (BasicBlock::iterator I = UnwindDest->begin(), 4424 IE = DestEHPad->getIterator(); 4425 I != IE; ++I) { 4426 PHINode *DestPN = cast<PHINode>(I); 4427 4428 int Idx = DestPN->getBasicBlockIndex(BB); 4429 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4430 assert(Idx != -1); 4431 // This PHI node has an incoming value that corresponds to a control 4432 // path through the cleanup pad we are removing. If the incoming 4433 // value is in the cleanup pad, it must be a PHINode (because we 4434 // verified above that the block is otherwise empty). Otherwise, the 4435 // value is either a constant or a value that dominates the cleanup 4436 // pad being removed. 4437 // 4438 // Because BB and UnwindDest are both EH pads, all of their 4439 // predecessors must unwind to these blocks, and since no instruction 4440 // can have multiple unwind destinations, there will be no overlap in 4441 // incoming blocks between SrcPN and DestPN. 4442 Value *SrcVal = DestPN->getIncomingValue(Idx); 4443 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4444 4445 // Remove the entry for the block we are deleting. 4446 DestPN->removeIncomingValue(Idx, false); 4447 4448 if (SrcPN && SrcPN->getParent() == BB) { 4449 // If the incoming value was a PHI node in the cleanup pad we are 4450 // removing, we need to merge that PHI node's incoming values into 4451 // DestPN. 4452 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4453 SrcIdx != SrcE; ++SrcIdx) { 4454 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4455 SrcPN->getIncomingBlock(SrcIdx)); 4456 } 4457 } else { 4458 // Otherwise, the incoming value came from above BB and 4459 // so we can just reuse it. We must associate all of BB's 4460 // predecessors with this value. 4461 for (auto *pred : predecessors(BB)) { 4462 DestPN->addIncoming(SrcVal, pred); 4463 } 4464 } 4465 } 4466 4467 // Sink any remaining PHI nodes directly into UnwindDest. 4468 Instruction *InsertPt = DestEHPad; 4469 for (BasicBlock::iterator I = BB->begin(), 4470 IE = BB->getFirstNonPHI()->getIterator(); 4471 I != IE;) { 4472 // The iterator must be incremented here because the instructions are 4473 // being moved to another block. 4474 PHINode *PN = cast<PHINode>(I++); 4475 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4476 // If the PHI node has no uses or all of its uses are in this basic 4477 // block (meaning they are debug or lifetime intrinsics), just leave 4478 // it. It will be erased when we erase BB below. 4479 continue; 4480 4481 // Otherwise, sink this PHI node into UnwindDest. 4482 // Any predecessors to UnwindDest which are not already represented 4483 // must be back edges which inherit the value from the path through 4484 // BB. In this case, the PHI value must reference itself. 4485 for (auto *pred : predecessors(UnwindDest)) 4486 if (pred != BB) 4487 PN->addIncoming(PN, pred); 4488 PN->moveBefore(InsertPt); 4489 } 4490 } 4491 4492 std::vector<DominatorTree::UpdateType> Updates; 4493 4494 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 4495 // The iterator must be updated here because we are removing this pred. 4496 BasicBlock *PredBB = *PI++; 4497 if (UnwindDest == nullptr) { 4498 if (DTU) 4499 DTU->applyUpdates(Updates); 4500 Updates.clear(); 4501 removeUnwindEdge(PredBB, DTU); 4502 ++NumInvokes; 4503 } else { 4504 Instruction *TI = PredBB->getTerminator(); 4505 TI->replaceUsesOfWith(BB, UnwindDest); 4506 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4507 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4508 } 4509 } 4510 4511 if (DTU) { 4512 DTU->applyUpdates(Updates); 4513 DTU->deleteBB(BB); 4514 } else 4515 // The cleanup pad is now unreachable. Zap it. 4516 BB->eraseFromParent(); 4517 4518 return true; 4519 } 4520 4521 // Try to merge two cleanuppads together. 4522 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4523 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4524 // with. 4525 BasicBlock *UnwindDest = RI->getUnwindDest(); 4526 if (!UnwindDest) 4527 return false; 4528 4529 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4530 // be safe to merge without code duplication. 4531 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4532 return false; 4533 4534 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4535 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4536 if (!SuccessorCleanupPad) 4537 return false; 4538 4539 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4540 // Replace any uses of the successor cleanupad with the predecessor pad 4541 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4542 // funclet bundle operands. 4543 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4544 // Remove the old cleanuppad. 4545 SuccessorCleanupPad->eraseFromParent(); 4546 // Now, we simply replace the cleanupret with a branch to the unwind 4547 // destination. 4548 BranchInst::Create(UnwindDest, RI->getParent()); 4549 RI->eraseFromParent(); 4550 4551 return true; 4552 } 4553 4554 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4555 // It is possible to transiantly have an undef cleanuppad operand because we 4556 // have deleted some, but not all, dead blocks. 4557 // Eventually, this block will be deleted. 4558 if (isa<UndefValue>(RI->getOperand(0))) 4559 return false; 4560 4561 if (mergeCleanupPad(RI)) 4562 return true; 4563 4564 if (removeEmptyCleanup(RI, DTU)) 4565 return true; 4566 4567 return false; 4568 } 4569 4570 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4571 BasicBlock *BB = RI->getParent(); 4572 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4573 return false; 4574 4575 // Find predecessors that end with branches. 4576 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4577 SmallVector<BranchInst *, 8> CondBranchPreds; 4578 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4579 BasicBlock *P = *PI; 4580 Instruction *PTI = P->getTerminator(); 4581 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4582 if (BI->isUnconditional()) 4583 UncondBranchPreds.push_back(P); 4584 else 4585 CondBranchPreds.push_back(BI); 4586 } 4587 } 4588 4589 // If we found some, do the transformation! 4590 if (!UncondBranchPreds.empty() && DupRet) { 4591 while (!UncondBranchPreds.empty()) { 4592 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4593 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4594 << "INTO UNCOND BRANCH PRED: " << *Pred); 4595 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4596 } 4597 4598 // If we eliminated all predecessors of the block, delete the block now. 4599 if (pred_empty(BB)) { 4600 // We know there are no successors, so just nuke the block. 4601 if (LoopHeaders) 4602 LoopHeaders->erase(BB); 4603 if (DTU) 4604 DTU->deleteBB(BB); 4605 else 4606 BB->eraseFromParent(); 4607 } 4608 4609 return true; 4610 } 4611 4612 // Check out all of the conditional branches going to this return 4613 // instruction. If any of them just select between returns, change the 4614 // branch itself into a select/return pair. 4615 while (!CondBranchPreds.empty()) { 4616 BranchInst *BI = CondBranchPreds.pop_back_val(); 4617 4618 // Check to see if the non-BB successor is also a return block. 4619 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4620 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4621 SimplifyCondBranchToTwoReturns(BI, Builder)) 4622 return true; 4623 } 4624 return false; 4625 } 4626 4627 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4628 BasicBlock *BB = UI->getParent(); 4629 4630 bool Changed = false; 4631 4632 // If there are any instructions immediately before the unreachable that can 4633 // be removed, do so. 4634 while (UI->getIterator() != BB->begin()) { 4635 BasicBlock::iterator BBI = UI->getIterator(); 4636 --BBI; 4637 // Do not delete instructions that can have side effects which might cause 4638 // the unreachable to not be reachable; specifically, calls and volatile 4639 // operations may have this effect. 4640 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4641 break; 4642 4643 if (BBI->mayHaveSideEffects()) { 4644 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4645 if (SI->isVolatile()) 4646 break; 4647 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4648 if (LI->isVolatile()) 4649 break; 4650 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4651 if (RMWI->isVolatile()) 4652 break; 4653 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4654 if (CXI->isVolatile()) 4655 break; 4656 } else if (isa<CatchPadInst>(BBI)) { 4657 // A catchpad may invoke exception object constructors and such, which 4658 // in some languages can be arbitrary code, so be conservative by 4659 // default. 4660 // For CoreCLR, it just involves a type test, so can be removed. 4661 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4662 EHPersonality::CoreCLR) 4663 break; 4664 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4665 !isa<LandingPadInst>(BBI)) { 4666 break; 4667 } 4668 // Note that deleting LandingPad's here is in fact okay, although it 4669 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4670 // all the predecessors of this block will be the unwind edges of Invokes, 4671 // and we can therefore guarantee this block will be erased. 4672 } 4673 4674 // Delete this instruction (any uses are guaranteed to be dead) 4675 if (!BBI->use_empty()) 4676 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4677 BBI->eraseFromParent(); 4678 Changed = true; 4679 } 4680 4681 // If the unreachable instruction is the first in the block, take a gander 4682 // at all of the predecessors of this instruction, and simplify them. 4683 if (&BB->front() != UI) 4684 return Changed; 4685 4686 std::vector<DominatorTree::UpdateType> Updates; 4687 4688 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4689 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4690 auto *Predecessor = Preds[i]; 4691 Instruction *TI = Predecessor->getTerminator(); 4692 IRBuilder<> Builder(TI); 4693 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4694 // We could either have a proper unconditional branch, 4695 // or a degenerate conditional branch with matching destinations. 4696 if (all_of(BI->successors(), 4697 [BB](auto *Successor) { return Successor == BB; })) { 4698 new UnreachableInst(TI->getContext(), TI); 4699 TI->eraseFromParent(); 4700 Changed = true; 4701 } else { 4702 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4703 Value* Cond = BI->getCondition(); 4704 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4705 "The destinations are guaranteed to be different here."); 4706 if (BI->getSuccessor(0) == BB) { 4707 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4708 Builder.CreateBr(BI->getSuccessor(1)); 4709 } else { 4710 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4711 Builder.CreateAssumption(Cond); 4712 Builder.CreateBr(BI->getSuccessor(0)); 4713 } 4714 EraseTerminatorAndDCECond(BI); 4715 Changed = true; 4716 } 4717 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4718 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4719 SwitchInstProfUpdateWrapper SU(*SI); 4720 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4721 if (i->getCaseSuccessor() != BB) { 4722 ++i; 4723 continue; 4724 } 4725 BB->removePredecessor(SU->getParent()); 4726 i = SU.removeCase(i); 4727 e = SU->case_end(); 4728 Changed = true; 4729 } 4730 // Note that the default destination can't be removed! 4731 if (SI->getDefaultDest() != BB) 4732 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4733 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4734 if (II->getUnwindDest() == BB) { 4735 if (DTU) 4736 DTU->applyUpdates(Updates); 4737 Updates.clear(); 4738 removeUnwindEdge(TI->getParent(), DTU); 4739 Changed = true; 4740 } 4741 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4742 if (CSI->getUnwindDest() == BB) { 4743 if (DTU) 4744 DTU->applyUpdates(Updates); 4745 Updates.clear(); 4746 removeUnwindEdge(TI->getParent(), DTU); 4747 Changed = true; 4748 continue; 4749 } 4750 4751 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4752 E = CSI->handler_end(); 4753 I != E; ++I) { 4754 if (*I == BB) { 4755 CSI->removeHandler(I); 4756 --I; 4757 --E; 4758 Changed = true; 4759 } 4760 } 4761 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4762 if (CSI->getNumHandlers() == 0) { 4763 if (CSI->hasUnwindDest()) { 4764 // Redirect all predecessors of the block containing CatchSwitchInst 4765 // to instead branch to the CatchSwitchInst's unwind destination. 4766 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4767 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4768 CSI->getUnwindDest()}); 4769 Updates.push_back( 4770 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4771 } 4772 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4773 } else { 4774 // Rewrite all preds to unwind to caller (or from invoke to call). 4775 if (DTU) 4776 DTU->applyUpdates(Updates); 4777 Updates.clear(); 4778 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4779 for (BasicBlock *EHPred : EHPreds) 4780 removeUnwindEdge(EHPred, DTU); 4781 } 4782 // The catchswitch is no longer reachable. 4783 new UnreachableInst(CSI->getContext(), CSI); 4784 CSI->eraseFromParent(); 4785 Changed = true; 4786 } 4787 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4788 (void)CRI; 4789 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4790 "Expected to always have an unwind to BB."); 4791 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4792 new UnreachableInst(TI->getContext(), TI); 4793 TI->eraseFromParent(); 4794 Changed = true; 4795 } 4796 } 4797 4798 if (DTU) 4799 DTU->applyUpdates(Updates); 4800 4801 // If this block is now dead, remove it. 4802 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4803 // We know there are no successors, so just nuke the block. 4804 if (LoopHeaders) 4805 LoopHeaders->erase(BB); 4806 if (DTU) 4807 DTU->deleteBB(BB); 4808 else 4809 BB->eraseFromParent(); 4810 return true; 4811 } 4812 4813 return Changed; 4814 } 4815 4816 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4817 assert(Cases.size() >= 1); 4818 4819 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4820 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4821 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4822 return false; 4823 } 4824 return true; 4825 } 4826 4827 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4828 DomTreeUpdater *DTU) { 4829 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4830 auto *BB = Switch->getParent(); 4831 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4832 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4833 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4834 Switch->setDefaultDest(&*NewDefaultBlock); 4835 if (DTU) 4836 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4837 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4838 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4839 SmallVector<DominatorTree::UpdateType, 2> Updates; 4840 for (auto *Successor : successors(NewDefaultBlock)) 4841 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4842 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4843 new UnreachableInst(Switch->getContext(), NewTerminator); 4844 EraseTerminatorAndDCECond(NewTerminator); 4845 if (DTU) 4846 DTU->applyUpdates(Updates); 4847 } 4848 4849 /// Turn a switch with two reachable destinations into an integer range 4850 /// comparison and branch. 4851 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4852 IRBuilder<> &Builder) { 4853 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4854 4855 bool HasDefault = 4856 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4857 4858 auto *BB = SI->getParent(); 4859 4860 // Partition the cases into two sets with different destinations. 4861 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4862 BasicBlock *DestB = nullptr; 4863 SmallVector<ConstantInt *, 16> CasesA; 4864 SmallVector<ConstantInt *, 16> CasesB; 4865 4866 for (auto Case : SI->cases()) { 4867 BasicBlock *Dest = Case.getCaseSuccessor(); 4868 if (!DestA) 4869 DestA = Dest; 4870 if (Dest == DestA) { 4871 CasesA.push_back(Case.getCaseValue()); 4872 continue; 4873 } 4874 if (!DestB) 4875 DestB = Dest; 4876 if (Dest == DestB) { 4877 CasesB.push_back(Case.getCaseValue()); 4878 continue; 4879 } 4880 return false; // More than two destinations. 4881 } 4882 4883 assert(DestA && DestB && 4884 "Single-destination switch should have been folded."); 4885 assert(DestA != DestB); 4886 assert(DestB != SI->getDefaultDest()); 4887 assert(!CasesB.empty() && "There must be non-default cases."); 4888 assert(!CasesA.empty() || HasDefault); 4889 4890 // Figure out if one of the sets of cases form a contiguous range. 4891 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4892 BasicBlock *ContiguousDest = nullptr; 4893 BasicBlock *OtherDest = nullptr; 4894 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4895 ContiguousCases = &CasesA; 4896 ContiguousDest = DestA; 4897 OtherDest = DestB; 4898 } else if (CasesAreContiguous(CasesB)) { 4899 ContiguousCases = &CasesB; 4900 ContiguousDest = DestB; 4901 OtherDest = DestA; 4902 } else 4903 return false; 4904 4905 // Start building the compare and branch. 4906 4907 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4908 Constant *NumCases = 4909 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4910 4911 Value *Sub = SI->getCondition(); 4912 if (!Offset->isNullValue()) 4913 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4914 4915 Value *Cmp; 4916 // If NumCases overflowed, then all possible values jump to the successor. 4917 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4918 Cmp = ConstantInt::getTrue(SI->getContext()); 4919 else 4920 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4921 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4922 4923 // Update weight for the newly-created conditional branch. 4924 if (HasBranchWeights(SI)) { 4925 SmallVector<uint64_t, 8> Weights; 4926 GetBranchWeights(SI, Weights); 4927 if (Weights.size() == 1 + SI->getNumCases()) { 4928 uint64_t TrueWeight = 0; 4929 uint64_t FalseWeight = 0; 4930 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4931 if (SI->getSuccessor(I) == ContiguousDest) 4932 TrueWeight += Weights[I]; 4933 else 4934 FalseWeight += Weights[I]; 4935 } 4936 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4937 TrueWeight /= 2; 4938 FalseWeight /= 2; 4939 } 4940 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4941 } 4942 } 4943 4944 // Prune obsolete incoming values off the successors' PHI nodes. 4945 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4946 unsigned PreviousEdges = ContiguousCases->size(); 4947 if (ContiguousDest == SI->getDefaultDest()) 4948 ++PreviousEdges; 4949 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4950 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4951 } 4952 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4953 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4954 if (OtherDest == SI->getDefaultDest()) 4955 ++PreviousEdges; 4956 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4957 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4958 } 4959 4960 // Clean up the default block - it may have phis or other instructions before 4961 // the unreachable terminator. 4962 if (!HasDefault) 4963 createUnreachableSwitchDefault(SI, DTU); 4964 4965 auto *UnreachableDefault = SI->getDefaultDest(); 4966 4967 // Drop the switch. 4968 SI->eraseFromParent(); 4969 4970 if (!HasDefault && DTU) 4971 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4972 4973 return true; 4974 } 4975 4976 /// Compute masked bits for the condition of a switch 4977 /// and use it to remove dead cases. 4978 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4979 AssumptionCache *AC, 4980 const DataLayout &DL) { 4981 Value *Cond = SI->getCondition(); 4982 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4983 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4984 4985 // We can also eliminate cases by determining that their values are outside of 4986 // the limited range of the condition based on how many significant (non-sign) 4987 // bits are in the condition value. 4988 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4989 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4990 4991 // Gather dead cases. 4992 SmallVector<ConstantInt *, 8> DeadCases; 4993 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4994 for (auto &Case : SI->cases()) { 4995 auto *Successor = Case.getCaseSuccessor(); 4996 ++NumPerSuccessorCases[Successor]; 4997 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4998 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4999 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5000 DeadCases.push_back(Case.getCaseValue()); 5001 --NumPerSuccessorCases[Successor]; 5002 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5003 << " is dead.\n"); 5004 } 5005 } 5006 5007 // If we can prove that the cases must cover all possible values, the 5008 // default destination becomes dead and we can remove it. If we know some 5009 // of the bits in the value, we can use that to more precisely compute the 5010 // number of possible unique case values. 5011 bool HasDefault = 5012 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5013 const unsigned NumUnknownBits = 5014 Bits - (Known.Zero | Known.One).countPopulation(); 5015 assert(NumUnknownBits <= Bits); 5016 if (HasDefault && DeadCases.empty() && 5017 NumUnknownBits < 64 /* avoid overflow */ && 5018 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5019 createUnreachableSwitchDefault(SI, DTU); 5020 return true; 5021 } 5022 5023 if (DeadCases.empty()) 5024 return false; 5025 5026 SwitchInstProfUpdateWrapper SIW(*SI); 5027 for (ConstantInt *DeadCase : DeadCases) { 5028 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5029 assert(CaseI != SI->case_default() && 5030 "Case was not found. Probably mistake in DeadCases forming."); 5031 // Prune unused values from PHI nodes. 5032 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5033 SIW.removeCase(CaseI); 5034 } 5035 5036 std::vector<DominatorTree::UpdateType> Updates; 5037 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5038 if (I.second == 0) 5039 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5040 if (DTU) 5041 DTU->applyUpdates(Updates); 5042 5043 return true; 5044 } 5045 5046 /// If BB would be eligible for simplification by 5047 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5048 /// by an unconditional branch), look at the phi node for BB in the successor 5049 /// block and see if the incoming value is equal to CaseValue. If so, return 5050 /// the phi node, and set PhiIndex to BB's index in the phi node. 5051 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5052 BasicBlock *BB, int *PhiIndex) { 5053 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5054 return nullptr; // BB must be empty to be a candidate for simplification. 5055 if (!BB->getSinglePredecessor()) 5056 return nullptr; // BB must be dominated by the switch. 5057 5058 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5059 if (!Branch || !Branch->isUnconditional()) 5060 return nullptr; // Terminator must be unconditional branch. 5061 5062 BasicBlock *Succ = Branch->getSuccessor(0); 5063 5064 for (PHINode &PHI : Succ->phis()) { 5065 int Idx = PHI.getBasicBlockIndex(BB); 5066 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5067 5068 Value *InValue = PHI.getIncomingValue(Idx); 5069 if (InValue != CaseValue) 5070 continue; 5071 5072 *PhiIndex = Idx; 5073 return &PHI; 5074 } 5075 5076 return nullptr; 5077 } 5078 5079 /// Try to forward the condition of a switch instruction to a phi node 5080 /// dominated by the switch, if that would mean that some of the destination 5081 /// blocks of the switch can be folded away. Return true if a change is made. 5082 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5083 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5084 5085 ForwardingNodesMap ForwardingNodes; 5086 BasicBlock *SwitchBlock = SI->getParent(); 5087 bool Changed = false; 5088 for (auto &Case : SI->cases()) { 5089 ConstantInt *CaseValue = Case.getCaseValue(); 5090 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5091 5092 // Replace phi operands in successor blocks that are using the constant case 5093 // value rather than the switch condition variable: 5094 // switchbb: 5095 // switch i32 %x, label %default [ 5096 // i32 17, label %succ 5097 // ... 5098 // succ: 5099 // %r = phi i32 ... [ 17, %switchbb ] ... 5100 // --> 5101 // %r = phi i32 ... [ %x, %switchbb ] ... 5102 5103 for (PHINode &Phi : CaseDest->phis()) { 5104 // This only works if there is exactly 1 incoming edge from the switch to 5105 // a phi. If there is >1, that means multiple cases of the switch map to 1 5106 // value in the phi, and that phi value is not the switch condition. Thus, 5107 // this transform would not make sense (the phi would be invalid because 5108 // a phi can't have different incoming values from the same block). 5109 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5110 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5111 count(Phi.blocks(), SwitchBlock) == 1) { 5112 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5113 Changed = true; 5114 } 5115 } 5116 5117 // Collect phi nodes that are indirectly using this switch's case constants. 5118 int PhiIdx; 5119 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5120 ForwardingNodes[Phi].push_back(PhiIdx); 5121 } 5122 5123 for (auto &ForwardingNode : ForwardingNodes) { 5124 PHINode *Phi = ForwardingNode.first; 5125 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5126 if (Indexes.size() < 2) 5127 continue; 5128 5129 for (int Index : Indexes) 5130 Phi->setIncomingValue(Index, SI->getCondition()); 5131 Changed = true; 5132 } 5133 5134 return Changed; 5135 } 5136 5137 /// Return true if the backend will be able to handle 5138 /// initializing an array of constants like C. 5139 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5140 if (C->isThreadDependent()) 5141 return false; 5142 if (C->isDLLImportDependent()) 5143 return false; 5144 5145 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5146 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5147 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5148 return false; 5149 5150 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5151 if (!CE->isGEPWithNoNotionalOverIndexing()) 5152 return false; 5153 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5154 return false; 5155 } 5156 5157 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5158 return false; 5159 5160 return true; 5161 } 5162 5163 /// If V is a Constant, return it. Otherwise, try to look up 5164 /// its constant value in ConstantPool, returning 0 if it's not there. 5165 static Constant * 5166 LookupConstant(Value *V, 5167 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5168 if (Constant *C = dyn_cast<Constant>(V)) 5169 return C; 5170 return ConstantPool.lookup(V); 5171 } 5172 5173 /// Try to fold instruction I into a constant. This works for 5174 /// simple instructions such as binary operations where both operands are 5175 /// constant or can be replaced by constants from the ConstantPool. Returns the 5176 /// resulting constant on success, 0 otherwise. 5177 static Constant * 5178 ConstantFold(Instruction *I, const DataLayout &DL, 5179 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5180 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5181 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5182 if (!A) 5183 return nullptr; 5184 if (A->isAllOnesValue()) 5185 return LookupConstant(Select->getTrueValue(), ConstantPool); 5186 if (A->isNullValue()) 5187 return LookupConstant(Select->getFalseValue(), ConstantPool); 5188 return nullptr; 5189 } 5190 5191 SmallVector<Constant *, 4> COps; 5192 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5193 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5194 COps.push_back(A); 5195 else 5196 return nullptr; 5197 } 5198 5199 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5200 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5201 COps[1], DL); 5202 } 5203 5204 return ConstantFoldInstOperands(I, COps, DL); 5205 } 5206 5207 /// Try to determine the resulting constant values in phi nodes 5208 /// at the common destination basic block, *CommonDest, for one of the case 5209 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5210 /// case), of a switch instruction SI. 5211 static bool 5212 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5213 BasicBlock **CommonDest, 5214 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5215 const DataLayout &DL, const TargetTransformInfo &TTI) { 5216 // The block from which we enter the common destination. 5217 BasicBlock *Pred = SI->getParent(); 5218 5219 // If CaseDest is empty except for some side-effect free instructions through 5220 // which we can constant-propagate the CaseVal, continue to its successor. 5221 SmallDenseMap<Value *, Constant *> ConstantPool; 5222 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5223 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5224 if (I.isTerminator()) { 5225 // If the terminator is a simple branch, continue to the next block. 5226 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5227 return false; 5228 Pred = CaseDest; 5229 CaseDest = I.getSuccessor(0); 5230 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5231 // Instruction is side-effect free and constant. 5232 5233 // If the instruction has uses outside this block or a phi node slot for 5234 // the block, it is not safe to bypass the instruction since it would then 5235 // no longer dominate all its uses. 5236 for (auto &Use : I.uses()) { 5237 User *User = Use.getUser(); 5238 if (Instruction *I = dyn_cast<Instruction>(User)) 5239 if (I->getParent() == CaseDest) 5240 continue; 5241 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5242 if (Phi->getIncomingBlock(Use) == CaseDest) 5243 continue; 5244 return false; 5245 } 5246 5247 ConstantPool.insert(std::make_pair(&I, C)); 5248 } else { 5249 break; 5250 } 5251 } 5252 5253 // If we did not have a CommonDest before, use the current one. 5254 if (!*CommonDest) 5255 *CommonDest = CaseDest; 5256 // If the destination isn't the common one, abort. 5257 if (CaseDest != *CommonDest) 5258 return false; 5259 5260 // Get the values for this case from phi nodes in the destination block. 5261 for (PHINode &PHI : (*CommonDest)->phis()) { 5262 int Idx = PHI.getBasicBlockIndex(Pred); 5263 if (Idx == -1) 5264 continue; 5265 5266 Constant *ConstVal = 5267 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5268 if (!ConstVal) 5269 return false; 5270 5271 // Be conservative about which kinds of constants we support. 5272 if (!ValidLookupTableConstant(ConstVal, TTI)) 5273 return false; 5274 5275 Res.push_back(std::make_pair(&PHI, ConstVal)); 5276 } 5277 5278 return Res.size() > 0; 5279 } 5280 5281 // Helper function used to add CaseVal to the list of cases that generate 5282 // Result. Returns the updated number of cases that generate this result. 5283 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5284 SwitchCaseResultVectorTy &UniqueResults, 5285 Constant *Result) { 5286 for (auto &I : UniqueResults) { 5287 if (I.first == Result) { 5288 I.second.push_back(CaseVal); 5289 return I.second.size(); 5290 } 5291 } 5292 UniqueResults.push_back( 5293 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5294 return 1; 5295 } 5296 5297 // Helper function that initializes a map containing 5298 // results for the PHI node of the common destination block for a switch 5299 // instruction. Returns false if multiple PHI nodes have been found or if 5300 // there is not a common destination block for the switch. 5301 static bool 5302 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5303 SwitchCaseResultVectorTy &UniqueResults, 5304 Constant *&DefaultResult, const DataLayout &DL, 5305 const TargetTransformInfo &TTI, 5306 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5307 for (auto &I : SI->cases()) { 5308 ConstantInt *CaseVal = I.getCaseValue(); 5309 5310 // Resulting value at phi nodes for this case value. 5311 SwitchCaseResultsTy Results; 5312 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5313 DL, TTI)) 5314 return false; 5315 5316 // Only one value per case is permitted. 5317 if (Results.size() > 1) 5318 return false; 5319 5320 // Add the case->result mapping to UniqueResults. 5321 const uintptr_t NumCasesForResult = 5322 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5323 5324 // Early out if there are too many cases for this result. 5325 if (NumCasesForResult > MaxCasesPerResult) 5326 return false; 5327 5328 // Early out if there are too many unique results. 5329 if (UniqueResults.size() > MaxUniqueResults) 5330 return false; 5331 5332 // Check the PHI consistency. 5333 if (!PHI) 5334 PHI = Results[0].first; 5335 else if (PHI != Results[0].first) 5336 return false; 5337 } 5338 // Find the default result value. 5339 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5340 BasicBlock *DefaultDest = SI->getDefaultDest(); 5341 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5342 DL, TTI); 5343 // If the default value is not found abort unless the default destination 5344 // is unreachable. 5345 DefaultResult = 5346 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5347 if ((!DefaultResult && 5348 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5349 return false; 5350 5351 return true; 5352 } 5353 5354 // Helper function that checks if it is possible to transform a switch with only 5355 // two cases (or two cases + default) that produces a result into a select. 5356 // Example: 5357 // switch (a) { 5358 // case 10: %0 = icmp eq i32 %a, 10 5359 // return 10; %1 = select i1 %0, i32 10, i32 4 5360 // case 20: ----> %2 = icmp eq i32 %a, 20 5361 // return 2; %3 = select i1 %2, i32 2, i32 %1 5362 // default: 5363 // return 4; 5364 // } 5365 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5366 Constant *DefaultResult, Value *Condition, 5367 IRBuilder<> &Builder) { 5368 assert(ResultVector.size() == 2 && 5369 "We should have exactly two unique results at this point"); 5370 // If we are selecting between only two cases transform into a simple 5371 // select or a two-way select if default is possible. 5372 if (ResultVector[0].second.size() == 1 && 5373 ResultVector[1].second.size() == 1) { 5374 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5375 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5376 5377 bool DefaultCanTrigger = DefaultResult; 5378 Value *SelectValue = ResultVector[1].first; 5379 if (DefaultCanTrigger) { 5380 Value *const ValueCompare = 5381 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5382 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5383 DefaultResult, "switch.select"); 5384 } 5385 Value *const ValueCompare = 5386 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5387 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5388 SelectValue, "switch.select"); 5389 } 5390 5391 return nullptr; 5392 } 5393 5394 // Helper function to cleanup a switch instruction that has been converted into 5395 // a select, fixing up PHI nodes and basic blocks. 5396 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5397 Value *SelectValue, 5398 IRBuilder<> &Builder, 5399 DomTreeUpdater *DTU) { 5400 std::vector<DominatorTree::UpdateType> Updates; 5401 5402 BasicBlock *SelectBB = SI->getParent(); 5403 BasicBlock *DestBB = PHI->getParent(); 5404 5405 if (!is_contained(predecessors(DestBB), SelectBB)) 5406 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5407 Builder.CreateBr(DestBB); 5408 5409 // Remove the switch. 5410 5411 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5412 PHI->removeIncomingValue(SelectBB); 5413 PHI->addIncoming(SelectValue, SelectBB); 5414 5415 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5416 BasicBlock *Succ = SI->getSuccessor(i); 5417 5418 if (Succ == DestBB) 5419 continue; 5420 Succ->removePredecessor(SelectBB); 5421 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5422 } 5423 SI->eraseFromParent(); 5424 if (DTU) 5425 DTU->applyUpdates(Updates); 5426 } 5427 5428 /// If the switch is only used to initialize one or more 5429 /// phi nodes in a common successor block with only two different 5430 /// constant values, replace the switch with select. 5431 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5432 DomTreeUpdater *DTU, const DataLayout &DL, 5433 const TargetTransformInfo &TTI) { 5434 Value *const Cond = SI->getCondition(); 5435 PHINode *PHI = nullptr; 5436 BasicBlock *CommonDest = nullptr; 5437 Constant *DefaultResult; 5438 SwitchCaseResultVectorTy UniqueResults; 5439 // Collect all the cases that will deliver the same value from the switch. 5440 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5441 DL, TTI, 2, 1)) 5442 return false; 5443 // Selects choose between maximum two values. 5444 if (UniqueResults.size() != 2) 5445 return false; 5446 assert(PHI != nullptr && "PHI for value select not found"); 5447 5448 Builder.SetInsertPoint(SI); 5449 Value *SelectValue = 5450 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5451 if (SelectValue) { 5452 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5453 return true; 5454 } 5455 // The switch couldn't be converted into a select. 5456 return false; 5457 } 5458 5459 namespace { 5460 5461 /// This class represents a lookup table that can be used to replace a switch. 5462 class SwitchLookupTable { 5463 public: 5464 /// Create a lookup table to use as a switch replacement with the contents 5465 /// of Values, using DefaultValue to fill any holes in the table. 5466 SwitchLookupTable( 5467 Module &M, uint64_t TableSize, ConstantInt *Offset, 5468 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5469 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5470 5471 /// Build instructions with Builder to retrieve the value at 5472 /// the position given by Index in the lookup table. 5473 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5474 5475 /// Return true if a table with TableSize elements of 5476 /// type ElementType would fit in a target-legal register. 5477 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5478 Type *ElementType); 5479 5480 private: 5481 // Depending on the contents of the table, it can be represented in 5482 // different ways. 5483 enum { 5484 // For tables where each element contains the same value, we just have to 5485 // store that single value and return it for each lookup. 5486 SingleValueKind, 5487 5488 // For tables where there is a linear relationship between table index 5489 // and values. We calculate the result with a simple multiplication 5490 // and addition instead of a table lookup. 5491 LinearMapKind, 5492 5493 // For small tables with integer elements, we can pack them into a bitmap 5494 // that fits into a target-legal register. Values are retrieved by 5495 // shift and mask operations. 5496 BitMapKind, 5497 5498 // The table is stored as an array of values. Values are retrieved by load 5499 // instructions from the table. 5500 ArrayKind 5501 } Kind; 5502 5503 // For SingleValueKind, this is the single value. 5504 Constant *SingleValue = nullptr; 5505 5506 // For BitMapKind, this is the bitmap. 5507 ConstantInt *BitMap = nullptr; 5508 IntegerType *BitMapElementTy = nullptr; 5509 5510 // For LinearMapKind, these are the constants used to derive the value. 5511 ConstantInt *LinearOffset = nullptr; 5512 ConstantInt *LinearMultiplier = nullptr; 5513 5514 // For ArrayKind, this is the array. 5515 GlobalVariable *Array = nullptr; 5516 }; 5517 5518 } // end anonymous namespace 5519 5520 SwitchLookupTable::SwitchLookupTable( 5521 Module &M, uint64_t TableSize, ConstantInt *Offset, 5522 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5523 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5524 assert(Values.size() && "Can't build lookup table without values!"); 5525 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5526 5527 // If all values in the table are equal, this is that value. 5528 SingleValue = Values.begin()->second; 5529 5530 Type *ValueType = Values.begin()->second->getType(); 5531 5532 // Build up the table contents. 5533 SmallVector<Constant *, 64> TableContents(TableSize); 5534 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5535 ConstantInt *CaseVal = Values[I].first; 5536 Constant *CaseRes = Values[I].second; 5537 assert(CaseRes->getType() == ValueType); 5538 5539 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5540 TableContents[Idx] = CaseRes; 5541 5542 if (CaseRes != SingleValue) 5543 SingleValue = nullptr; 5544 } 5545 5546 // Fill in any holes in the table with the default result. 5547 if (Values.size() < TableSize) { 5548 assert(DefaultValue && 5549 "Need a default value to fill the lookup table holes."); 5550 assert(DefaultValue->getType() == ValueType); 5551 for (uint64_t I = 0; I < TableSize; ++I) { 5552 if (!TableContents[I]) 5553 TableContents[I] = DefaultValue; 5554 } 5555 5556 if (DefaultValue != SingleValue) 5557 SingleValue = nullptr; 5558 } 5559 5560 // If each element in the table contains the same value, we only need to store 5561 // that single value. 5562 if (SingleValue) { 5563 Kind = SingleValueKind; 5564 return; 5565 } 5566 5567 // Check if we can derive the value with a linear transformation from the 5568 // table index. 5569 if (isa<IntegerType>(ValueType)) { 5570 bool LinearMappingPossible = true; 5571 APInt PrevVal; 5572 APInt DistToPrev; 5573 assert(TableSize >= 2 && "Should be a SingleValue table."); 5574 // Check if there is the same distance between two consecutive values. 5575 for (uint64_t I = 0; I < TableSize; ++I) { 5576 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5577 if (!ConstVal) { 5578 // This is an undef. We could deal with it, but undefs in lookup tables 5579 // are very seldom. It's probably not worth the additional complexity. 5580 LinearMappingPossible = false; 5581 break; 5582 } 5583 const APInt &Val = ConstVal->getValue(); 5584 if (I != 0) { 5585 APInt Dist = Val - PrevVal; 5586 if (I == 1) { 5587 DistToPrev = Dist; 5588 } else if (Dist != DistToPrev) { 5589 LinearMappingPossible = false; 5590 break; 5591 } 5592 } 5593 PrevVal = Val; 5594 } 5595 if (LinearMappingPossible) { 5596 LinearOffset = cast<ConstantInt>(TableContents[0]); 5597 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5598 Kind = LinearMapKind; 5599 ++NumLinearMaps; 5600 return; 5601 } 5602 } 5603 5604 // If the type is integer and the table fits in a register, build a bitmap. 5605 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5606 IntegerType *IT = cast<IntegerType>(ValueType); 5607 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5608 for (uint64_t I = TableSize; I > 0; --I) { 5609 TableInt <<= IT->getBitWidth(); 5610 // Insert values into the bitmap. Undef values are set to zero. 5611 if (!isa<UndefValue>(TableContents[I - 1])) { 5612 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5613 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5614 } 5615 } 5616 BitMap = ConstantInt::get(M.getContext(), TableInt); 5617 BitMapElementTy = IT; 5618 Kind = BitMapKind; 5619 ++NumBitMaps; 5620 return; 5621 } 5622 5623 // Store the table in an array. 5624 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5625 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5626 5627 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5628 GlobalVariable::PrivateLinkage, Initializer, 5629 "switch.table." + FuncName); 5630 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5631 // Set the alignment to that of an array items. We will be only loading one 5632 // value out of it. 5633 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5634 Kind = ArrayKind; 5635 } 5636 5637 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5638 switch (Kind) { 5639 case SingleValueKind: 5640 return SingleValue; 5641 case LinearMapKind: { 5642 // Derive the result value from the input value. 5643 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5644 false, "switch.idx.cast"); 5645 if (!LinearMultiplier->isOne()) 5646 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5647 if (!LinearOffset->isZero()) 5648 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5649 return Result; 5650 } 5651 case BitMapKind: { 5652 // Type of the bitmap (e.g. i59). 5653 IntegerType *MapTy = BitMap->getType(); 5654 5655 // Cast Index to the same type as the bitmap. 5656 // Note: The Index is <= the number of elements in the table, so 5657 // truncating it to the width of the bitmask is safe. 5658 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5659 5660 // Multiply the shift amount by the element width. 5661 ShiftAmt = Builder.CreateMul( 5662 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5663 "switch.shiftamt"); 5664 5665 // Shift down. 5666 Value *DownShifted = 5667 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5668 // Mask off. 5669 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5670 } 5671 case ArrayKind: { 5672 // Make sure the table index will not overflow when treated as signed. 5673 IntegerType *IT = cast<IntegerType>(Index->getType()); 5674 uint64_t TableSize = 5675 Array->getInitializer()->getType()->getArrayNumElements(); 5676 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5677 Index = Builder.CreateZExt( 5678 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5679 "switch.tableidx.zext"); 5680 5681 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5682 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5683 GEPIndices, "switch.gep"); 5684 return Builder.CreateLoad( 5685 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5686 "switch.load"); 5687 } 5688 } 5689 llvm_unreachable("Unknown lookup table kind!"); 5690 } 5691 5692 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5693 uint64_t TableSize, 5694 Type *ElementType) { 5695 auto *IT = dyn_cast<IntegerType>(ElementType); 5696 if (!IT) 5697 return false; 5698 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5699 // are <= 15, we could try to narrow the type. 5700 5701 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5702 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5703 return false; 5704 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5705 } 5706 5707 /// Determine whether a lookup table should be built for this switch, based on 5708 /// the number of cases, size of the table, and the types of the results. 5709 static bool 5710 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5711 const TargetTransformInfo &TTI, const DataLayout &DL, 5712 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5713 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5714 return false; // TableSize overflowed, or mul below might overflow. 5715 5716 bool AllTablesFitInRegister = true; 5717 bool HasIllegalType = false; 5718 for (const auto &I : ResultTypes) { 5719 Type *Ty = I.second; 5720 5721 // Saturate this flag to true. 5722 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5723 5724 // Saturate this flag to false. 5725 AllTablesFitInRegister = 5726 AllTablesFitInRegister && 5727 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5728 5729 // If both flags saturate, we're done. NOTE: This *only* works with 5730 // saturating flags, and all flags have to saturate first due to the 5731 // non-deterministic behavior of iterating over a dense map. 5732 if (HasIllegalType && !AllTablesFitInRegister) 5733 break; 5734 } 5735 5736 // If each table would fit in a register, we should build it anyway. 5737 if (AllTablesFitInRegister) 5738 return true; 5739 5740 // Don't build a table that doesn't fit in-register if it has illegal types. 5741 if (HasIllegalType) 5742 return false; 5743 5744 // The table density should be at least 40%. This is the same criterion as for 5745 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5746 // FIXME: Find the best cut-off. 5747 return SI->getNumCases() * 10 >= TableSize * 4; 5748 } 5749 5750 /// Try to reuse the switch table index compare. Following pattern: 5751 /// \code 5752 /// if (idx < tablesize) 5753 /// r = table[idx]; // table does not contain default_value 5754 /// else 5755 /// r = default_value; 5756 /// if (r != default_value) 5757 /// ... 5758 /// \endcode 5759 /// Is optimized to: 5760 /// \code 5761 /// cond = idx < tablesize; 5762 /// if (cond) 5763 /// r = table[idx]; 5764 /// else 5765 /// r = default_value; 5766 /// if (cond) 5767 /// ... 5768 /// \endcode 5769 /// Jump threading will then eliminate the second if(cond). 5770 static void reuseTableCompare( 5771 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5772 Constant *DefaultValue, 5773 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5774 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5775 if (!CmpInst) 5776 return; 5777 5778 // We require that the compare is in the same block as the phi so that jump 5779 // threading can do its work afterwards. 5780 if (CmpInst->getParent() != PhiBlock) 5781 return; 5782 5783 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5784 if (!CmpOp1) 5785 return; 5786 5787 Value *RangeCmp = RangeCheckBranch->getCondition(); 5788 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5789 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5790 5791 // Check if the compare with the default value is constant true or false. 5792 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5793 DefaultValue, CmpOp1, true); 5794 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5795 return; 5796 5797 // Check if the compare with the case values is distinct from the default 5798 // compare result. 5799 for (auto ValuePair : Values) { 5800 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5801 ValuePair.second, CmpOp1, true); 5802 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5803 return; 5804 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5805 "Expect true or false as compare result."); 5806 } 5807 5808 // Check if the branch instruction dominates the phi node. It's a simple 5809 // dominance check, but sufficient for our needs. 5810 // Although this check is invariant in the calling loops, it's better to do it 5811 // at this late stage. Practically we do it at most once for a switch. 5812 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5813 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5814 BasicBlock *Pred = *PI; 5815 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5816 return; 5817 } 5818 5819 if (DefaultConst == FalseConst) { 5820 // The compare yields the same result. We can replace it. 5821 CmpInst->replaceAllUsesWith(RangeCmp); 5822 ++NumTableCmpReuses; 5823 } else { 5824 // The compare yields the same result, just inverted. We can replace it. 5825 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5826 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5827 RangeCheckBranch); 5828 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5829 ++NumTableCmpReuses; 5830 } 5831 } 5832 5833 /// If the switch is only used to initialize one or more phi nodes in a common 5834 /// successor block with different constant values, replace the switch with 5835 /// lookup tables. 5836 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5837 DomTreeUpdater *DTU, const DataLayout &DL, 5838 const TargetTransformInfo &TTI) { 5839 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5840 5841 BasicBlock *BB = SI->getParent(); 5842 Function *Fn = BB->getParent(); 5843 // Only build lookup table when we have a target that supports it or the 5844 // attribute is not set. 5845 if (!TTI.shouldBuildLookupTables() || 5846 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5847 return false; 5848 5849 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5850 // split off a dense part and build a lookup table for that. 5851 5852 // FIXME: This creates arrays of GEPs to constant strings, which means each 5853 // GEP needs a runtime relocation in PIC code. We should just build one big 5854 // string and lookup indices into that. 5855 5856 // Ignore switches with less than three cases. Lookup tables will not make 5857 // them faster, so we don't analyze them. 5858 if (SI->getNumCases() < 3) 5859 return false; 5860 5861 // Figure out the corresponding result for each case value and phi node in the 5862 // common destination, as well as the min and max case values. 5863 assert(!SI->cases().empty()); 5864 SwitchInst::CaseIt CI = SI->case_begin(); 5865 ConstantInt *MinCaseVal = CI->getCaseValue(); 5866 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5867 5868 BasicBlock *CommonDest = nullptr; 5869 5870 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5871 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5872 5873 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5874 SmallDenseMap<PHINode *, Type *> ResultTypes; 5875 SmallVector<PHINode *, 4> PHIs; 5876 5877 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5878 ConstantInt *CaseVal = CI->getCaseValue(); 5879 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5880 MinCaseVal = CaseVal; 5881 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5882 MaxCaseVal = CaseVal; 5883 5884 // Resulting value at phi nodes for this case value. 5885 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5886 ResultsTy Results; 5887 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5888 Results, DL, TTI)) 5889 return false; 5890 5891 // Append the result from this case to the list for each phi. 5892 for (const auto &I : Results) { 5893 PHINode *PHI = I.first; 5894 Constant *Value = I.second; 5895 if (!ResultLists.count(PHI)) 5896 PHIs.push_back(PHI); 5897 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5898 } 5899 } 5900 5901 // Keep track of the result types. 5902 for (PHINode *PHI : PHIs) { 5903 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5904 } 5905 5906 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5907 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5908 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5909 bool TableHasHoles = (NumResults < TableSize); 5910 5911 // If the table has holes, we need a constant result for the default case 5912 // or a bitmask that fits in a register. 5913 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5914 bool HasDefaultResults = 5915 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5916 DefaultResultsList, DL, TTI); 5917 5918 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5919 if (NeedMask) { 5920 // As an extra penalty for the validity test we require more cases. 5921 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5922 return false; 5923 if (!DL.fitsInLegalInteger(TableSize)) 5924 return false; 5925 } 5926 5927 for (const auto &I : DefaultResultsList) { 5928 PHINode *PHI = I.first; 5929 Constant *Result = I.second; 5930 DefaultResults[PHI] = Result; 5931 } 5932 5933 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5934 return false; 5935 5936 std::vector<DominatorTree::UpdateType> Updates; 5937 5938 // Create the BB that does the lookups. 5939 Module &Mod = *CommonDest->getParent()->getParent(); 5940 BasicBlock *LookupBB = BasicBlock::Create( 5941 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5942 5943 // Compute the table index value. 5944 Builder.SetInsertPoint(SI); 5945 Value *TableIndex; 5946 if (MinCaseVal->isNullValue()) 5947 TableIndex = SI->getCondition(); 5948 else 5949 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5950 "switch.tableidx"); 5951 5952 // Compute the maximum table size representable by the integer type we are 5953 // switching upon. 5954 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5955 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5956 assert(MaxTableSize >= TableSize && 5957 "It is impossible for a switch to have more entries than the max " 5958 "representable value of its input integer type's size."); 5959 5960 // If the default destination is unreachable, or if the lookup table covers 5961 // all values of the conditional variable, branch directly to the lookup table 5962 // BB. Otherwise, check that the condition is within the case range. 5963 const bool DefaultIsReachable = 5964 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5965 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5966 BranchInst *RangeCheckBranch = nullptr; 5967 5968 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5969 Builder.CreateBr(LookupBB); 5970 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5971 // Note: We call removeProdecessor later since we need to be able to get the 5972 // PHI value for the default case in case we're using a bit mask. 5973 } else { 5974 Value *Cmp = Builder.CreateICmpULT( 5975 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5976 RangeCheckBranch = 5977 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5978 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5979 } 5980 5981 // Populate the BB that does the lookups. 5982 Builder.SetInsertPoint(LookupBB); 5983 5984 if (NeedMask) { 5985 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5986 // re-purposed to do the hole check, and we create a new LookupBB. 5987 BasicBlock *MaskBB = LookupBB; 5988 MaskBB->setName("switch.hole_check"); 5989 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5990 CommonDest->getParent(), CommonDest); 5991 5992 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5993 // unnecessary illegal types. 5994 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5995 APInt MaskInt(TableSizePowOf2, 0); 5996 APInt One(TableSizePowOf2, 1); 5997 // Build bitmask; fill in a 1 bit for every case. 5998 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5999 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6000 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6001 .getLimitedValue(); 6002 MaskInt |= One << Idx; 6003 } 6004 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6005 6006 // Get the TableIndex'th bit of the bitmask. 6007 // If this bit is 0 (meaning hole) jump to the default destination, 6008 // else continue with table lookup. 6009 IntegerType *MapTy = TableMask->getType(); 6010 Value *MaskIndex = 6011 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6012 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6013 Value *LoBit = Builder.CreateTrunc( 6014 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6015 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6016 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6017 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6018 Builder.SetInsertPoint(LookupBB); 6019 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6020 } 6021 6022 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6023 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6024 // do not delete PHINodes here. 6025 SI->getDefaultDest()->removePredecessor(BB, 6026 /*KeepOneInputPHIs=*/true); 6027 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6028 } 6029 6030 bool ReturnedEarly = false; 6031 for (PHINode *PHI : PHIs) { 6032 const ResultListTy &ResultList = ResultLists[PHI]; 6033 6034 // If using a bitmask, use any value to fill the lookup table holes. 6035 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6036 StringRef FuncName = Fn->getName(); 6037 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6038 FuncName); 6039 6040 Value *Result = Table.BuildLookup(TableIndex, Builder); 6041 6042 // If the result is used to return immediately from the function, we want to 6043 // do that right here. 6044 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6045 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6046 Builder.CreateRet(Result); 6047 ReturnedEarly = true; 6048 break; 6049 } 6050 6051 // Do a small peephole optimization: re-use the switch table compare if 6052 // possible. 6053 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6054 BasicBlock *PhiBlock = PHI->getParent(); 6055 // Search for compare instructions which use the phi. 6056 for (auto *User : PHI->users()) { 6057 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6058 } 6059 } 6060 6061 PHI->addIncoming(Result, LookupBB); 6062 } 6063 6064 if (!ReturnedEarly) { 6065 Builder.CreateBr(CommonDest); 6066 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6067 } 6068 6069 // Remove the switch. 6070 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 6071 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6072 BasicBlock *Succ = SI->getSuccessor(i); 6073 6074 if (Succ == SI->getDefaultDest()) 6075 continue; 6076 Succ->removePredecessor(BB); 6077 RemovedSuccessors.insert(Succ); 6078 } 6079 SI->eraseFromParent(); 6080 6081 if (DTU) { 6082 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6083 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6084 DTU->applyUpdates(Updates); 6085 } 6086 6087 ++NumLookupTables; 6088 if (NeedMask) 6089 ++NumLookupTablesHoles; 6090 return true; 6091 } 6092 6093 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6094 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6095 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6096 uint64_t Range = Diff + 1; 6097 uint64_t NumCases = Values.size(); 6098 // 40% is the default density for building a jump table in optsize/minsize mode. 6099 uint64_t MinDensity = 40; 6100 6101 return NumCases * 100 >= Range * MinDensity; 6102 } 6103 6104 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6105 /// of cases. 6106 /// 6107 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6108 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6109 /// 6110 /// This converts a sparse switch into a dense switch which allows better 6111 /// lowering and could also allow transforming into a lookup table. 6112 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6113 const DataLayout &DL, 6114 const TargetTransformInfo &TTI) { 6115 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6116 if (CondTy->getIntegerBitWidth() > 64 || 6117 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6118 return false; 6119 // Only bother with this optimization if there are more than 3 switch cases; 6120 // SDAG will only bother creating jump tables for 4 or more cases. 6121 if (SI->getNumCases() < 4) 6122 return false; 6123 6124 // This transform is agnostic to the signedness of the input or case values. We 6125 // can treat the case values as signed or unsigned. We can optimize more common 6126 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6127 // as signed. 6128 SmallVector<int64_t,4> Values; 6129 for (auto &C : SI->cases()) 6130 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6131 llvm::sort(Values); 6132 6133 // If the switch is already dense, there's nothing useful to do here. 6134 if (isSwitchDense(Values)) 6135 return false; 6136 6137 // First, transform the values such that they start at zero and ascend. 6138 int64_t Base = Values[0]; 6139 for (auto &V : Values) 6140 V -= (uint64_t)(Base); 6141 6142 // Now we have signed numbers that have been shifted so that, given enough 6143 // precision, there are no negative values. Since the rest of the transform 6144 // is bitwise only, we switch now to an unsigned representation. 6145 6146 // This transform can be done speculatively because it is so cheap - it 6147 // results in a single rotate operation being inserted. 6148 // FIXME: It's possible that optimizing a switch on powers of two might also 6149 // be beneficial - flag values are often powers of two and we could use a CLZ 6150 // as the key function. 6151 6152 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6153 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6154 // less than 64. 6155 unsigned Shift = 64; 6156 for (auto &V : Values) 6157 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6158 assert(Shift < 64); 6159 if (Shift > 0) 6160 for (auto &V : Values) 6161 V = (int64_t)((uint64_t)V >> Shift); 6162 6163 if (!isSwitchDense(Values)) 6164 // Transform didn't create a dense switch. 6165 return false; 6166 6167 // The obvious transform is to shift the switch condition right and emit a 6168 // check that the condition actually cleanly divided by GCD, i.e. 6169 // C & (1 << Shift - 1) == 0 6170 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6171 // 6172 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6173 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6174 // are nonzero then the switch condition will be very large and will hit the 6175 // default case. 6176 6177 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6178 Builder.SetInsertPoint(SI); 6179 auto *ShiftC = ConstantInt::get(Ty, Shift); 6180 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6181 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6182 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6183 auto *Rot = Builder.CreateOr(LShr, Shl); 6184 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6185 6186 for (auto Case : SI->cases()) { 6187 auto *Orig = Case.getCaseValue(); 6188 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6189 Case.setValue( 6190 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6191 } 6192 return true; 6193 } 6194 6195 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6196 BasicBlock *BB = SI->getParent(); 6197 6198 if (isValueEqualityComparison(SI)) { 6199 // If we only have one predecessor, and if it is a branch on this value, 6200 // see if that predecessor totally determines the outcome of this switch. 6201 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6202 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6203 return requestResimplify(); 6204 6205 Value *Cond = SI->getCondition(); 6206 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6207 if (SimplifySwitchOnSelect(SI, Select)) 6208 return requestResimplify(); 6209 6210 // If the block only contains the switch, see if we can fold the block 6211 // away into any preds. 6212 if (SI == &*BB->instructionsWithoutDebug().begin()) 6213 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6214 return requestResimplify(); 6215 } 6216 6217 // Try to transform the switch into an icmp and a branch. 6218 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6219 return requestResimplify(); 6220 6221 // Remove unreachable cases. 6222 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6223 return requestResimplify(); 6224 6225 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6226 return requestResimplify(); 6227 6228 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6229 return requestResimplify(); 6230 6231 // The conversion from switch to lookup tables results in difficult-to-analyze 6232 // code and makes pruning branches much harder. This is a problem if the 6233 // switch expression itself can still be restricted as a result of inlining or 6234 // CVP. Therefore, only apply this transformation during late stages of the 6235 // optimisation pipeline. 6236 if (Options.ConvertSwitchToLookupTable && 6237 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6238 return requestResimplify(); 6239 6240 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6241 return requestResimplify(); 6242 6243 return false; 6244 } 6245 6246 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6247 BasicBlock *BB = IBI->getParent(); 6248 bool Changed = false; 6249 6250 // Eliminate redundant destinations. 6251 SmallPtrSet<Value *, 8> Succs; 6252 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6253 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6254 BasicBlock *Dest = IBI->getDestination(i); 6255 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6256 if (!Dest->hasAddressTaken()) 6257 RemovedSuccs.insert(Dest); 6258 Dest->removePredecessor(BB); 6259 IBI->removeDestination(i); 6260 --i; 6261 --e; 6262 Changed = true; 6263 } 6264 } 6265 6266 if (DTU) { 6267 std::vector<DominatorTree::UpdateType> Updates; 6268 Updates.reserve(RemovedSuccs.size()); 6269 for (auto *RemovedSucc : RemovedSuccs) 6270 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6271 DTU->applyUpdates(Updates); 6272 } 6273 6274 if (IBI->getNumDestinations() == 0) { 6275 // If the indirectbr has no successors, change it to unreachable. 6276 new UnreachableInst(IBI->getContext(), IBI); 6277 EraseTerminatorAndDCECond(IBI); 6278 return true; 6279 } 6280 6281 if (IBI->getNumDestinations() == 1) { 6282 // If the indirectbr has one successor, change it to a direct branch. 6283 BranchInst::Create(IBI->getDestination(0), IBI); 6284 EraseTerminatorAndDCECond(IBI); 6285 return true; 6286 } 6287 6288 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6289 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6290 return requestResimplify(); 6291 } 6292 return Changed; 6293 } 6294 6295 /// Given an block with only a single landing pad and a unconditional branch 6296 /// try to find another basic block which this one can be merged with. This 6297 /// handles cases where we have multiple invokes with unique landing pads, but 6298 /// a shared handler. 6299 /// 6300 /// We specifically choose to not worry about merging non-empty blocks 6301 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6302 /// practice, the optimizer produces empty landing pad blocks quite frequently 6303 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6304 /// sinking in this file) 6305 /// 6306 /// This is primarily a code size optimization. We need to avoid performing 6307 /// any transform which might inhibit optimization (such as our ability to 6308 /// specialize a particular handler via tail commoning). We do this by not 6309 /// merging any blocks which require us to introduce a phi. Since the same 6310 /// values are flowing through both blocks, we don't lose any ability to 6311 /// specialize. If anything, we make such specialization more likely. 6312 /// 6313 /// TODO - This transformation could remove entries from a phi in the target 6314 /// block when the inputs in the phi are the same for the two blocks being 6315 /// merged. In some cases, this could result in removal of the PHI entirely. 6316 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6317 BasicBlock *BB, DomTreeUpdater *DTU) { 6318 auto Succ = BB->getUniqueSuccessor(); 6319 assert(Succ); 6320 // If there's a phi in the successor block, we'd likely have to introduce 6321 // a phi into the merged landing pad block. 6322 if (isa<PHINode>(*Succ->begin())) 6323 return false; 6324 6325 for (BasicBlock *OtherPred : predecessors(Succ)) { 6326 if (BB == OtherPred) 6327 continue; 6328 BasicBlock::iterator I = OtherPred->begin(); 6329 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6330 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6331 continue; 6332 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6333 ; 6334 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6335 if (!BI2 || !BI2->isIdenticalTo(BI)) 6336 continue; 6337 6338 std::vector<DominatorTree::UpdateType> Updates; 6339 6340 // We've found an identical block. Update our predecessors to take that 6341 // path instead and make ourselves dead. 6342 SmallPtrSet<BasicBlock *, 16> Preds; 6343 Preds.insert(pred_begin(BB), pred_end(BB)); 6344 for (BasicBlock *Pred : Preds) { 6345 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6346 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6347 "unexpected successor"); 6348 II->setUnwindDest(OtherPred); 6349 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6350 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6351 } 6352 6353 // The debug info in OtherPred doesn't cover the merged control flow that 6354 // used to go through BB. We need to delete it or update it. 6355 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6356 Instruction &Inst = *I; 6357 I++; 6358 if (isa<DbgInfoIntrinsic>(Inst)) 6359 Inst.eraseFromParent(); 6360 } 6361 6362 SmallPtrSet<BasicBlock *, 16> Succs; 6363 Succs.insert(succ_begin(BB), succ_end(BB)); 6364 for (BasicBlock *Succ : Succs) { 6365 Succ->removePredecessor(BB); 6366 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6367 } 6368 6369 IRBuilder<> Builder(BI); 6370 Builder.CreateUnreachable(); 6371 BI->eraseFromParent(); 6372 if (DTU) 6373 DTU->applyUpdates(Updates); 6374 return true; 6375 } 6376 return false; 6377 } 6378 6379 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6380 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6381 : simplifyCondBranch(Branch, Builder); 6382 } 6383 6384 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6385 IRBuilder<> &Builder) { 6386 BasicBlock *BB = BI->getParent(); 6387 BasicBlock *Succ = BI->getSuccessor(0); 6388 6389 // If the Terminator is the only non-phi instruction, simplify the block. 6390 // If LoopHeader is provided, check if the block or its successor is a loop 6391 // header. (This is for early invocations before loop simplify and 6392 // vectorization to keep canonical loop forms for nested loops. These blocks 6393 // can be eliminated when the pass is invoked later in the back-end.) 6394 // Note that if BB has only one predecessor then we do not introduce new 6395 // backedge, so we can eliminate BB. 6396 bool NeedCanonicalLoop = 6397 Options.NeedCanonicalLoop && 6398 (LoopHeaders && BB->hasNPredecessorsOrMore(2) && 6399 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 6400 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 6401 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6402 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6403 return true; 6404 6405 // If the only instruction in the block is a seteq/setne comparison against a 6406 // constant, try to simplify the block. 6407 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6408 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6409 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6410 ; 6411 if (I->isTerminator() && 6412 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6413 return true; 6414 } 6415 6416 // See if we can merge an empty landing pad block with another which is 6417 // equivalent. 6418 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6419 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6420 ; 6421 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6422 return true; 6423 } 6424 6425 // If this basic block is ONLY a compare and a branch, and if a predecessor 6426 // branches to us and our successor, fold the comparison into the 6427 // predecessor and use logical operations to update the incoming value 6428 // for PHI nodes in common successor. 6429 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6430 Options.BonusInstThreshold)) 6431 return requestResimplify(); 6432 return false; 6433 } 6434 6435 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6436 BasicBlock *PredPred = nullptr; 6437 for (auto *P : predecessors(BB)) { 6438 BasicBlock *PPred = P->getSinglePredecessor(); 6439 if (!PPred || (PredPred && PredPred != PPred)) 6440 return nullptr; 6441 PredPred = PPred; 6442 } 6443 return PredPred; 6444 } 6445 6446 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6447 BasicBlock *BB = BI->getParent(); 6448 if (!Options.SimplifyCondBranch) 6449 return false; 6450 6451 // Conditional branch 6452 if (isValueEqualityComparison(BI)) { 6453 // If we only have one predecessor, and if it is a branch on this value, 6454 // see if that predecessor totally determines the outcome of this 6455 // switch. 6456 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6457 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6458 return requestResimplify(); 6459 6460 // This block must be empty, except for the setcond inst, if it exists. 6461 // Ignore dbg intrinsics. 6462 auto I = BB->instructionsWithoutDebug().begin(); 6463 if (&*I == BI) { 6464 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6465 return requestResimplify(); 6466 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6467 ++I; 6468 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6469 return requestResimplify(); 6470 } 6471 } 6472 6473 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6474 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6475 return true; 6476 6477 // If this basic block has dominating predecessor blocks and the dominating 6478 // blocks' conditions imply BI's condition, we know the direction of BI. 6479 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6480 if (Imp) { 6481 // Turn this into a branch on constant. 6482 auto *OldCond = BI->getCondition(); 6483 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6484 : ConstantInt::getFalse(BB->getContext()); 6485 BI->setCondition(TorF); 6486 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6487 return requestResimplify(); 6488 } 6489 6490 // If this basic block is ONLY a compare and a branch, and if a predecessor 6491 // branches to us and one of our successors, fold the comparison into the 6492 // predecessor and use logical operations to pick the right destination. 6493 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6494 Options.BonusInstThreshold)) 6495 return requestResimplify(); 6496 6497 // We have a conditional branch to two blocks that are only reachable 6498 // from BI. We know that the condbr dominates the two blocks, so see if 6499 // there is any identical code in the "then" and "else" blocks. If so, we 6500 // can hoist it up to the branching block. 6501 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6502 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6503 if (HoistCommon && Options.HoistCommonInsts) 6504 if (HoistThenElseCodeToIf(BI, TTI)) 6505 return requestResimplify(); 6506 } else { 6507 // If Successor #1 has multiple preds, we may be able to conditionally 6508 // execute Successor #0 if it branches to Successor #1. 6509 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6510 if (Succ0TI->getNumSuccessors() == 1 && 6511 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6512 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6513 return requestResimplify(); 6514 } 6515 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6516 // If Successor #0 has multiple preds, we may be able to conditionally 6517 // execute Successor #1 if it branches to Successor #0. 6518 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6519 if (Succ1TI->getNumSuccessors() == 1 && 6520 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6521 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6522 return requestResimplify(); 6523 } 6524 6525 // If this is a branch on a phi node in the current block, thread control 6526 // through this block if any PHI node entries are constants. 6527 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6528 if (PN->getParent() == BI->getParent()) 6529 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6530 return requestResimplify(); 6531 6532 // Scan predecessor blocks for conditional branches. 6533 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 6534 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 6535 if (PBI != BI && PBI->isConditional()) 6536 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6537 return requestResimplify(); 6538 6539 // Look for diamond patterns. 6540 if (MergeCondStores) 6541 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6542 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6543 if (PBI != BI && PBI->isConditional()) 6544 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6545 return requestResimplify(); 6546 6547 return false; 6548 } 6549 6550 /// Check if passing a value to an instruction will cause undefined behavior. 6551 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6552 Constant *C = dyn_cast<Constant>(V); 6553 if (!C) 6554 return false; 6555 6556 if (I->use_empty()) 6557 return false; 6558 6559 if (C->isNullValue() || isa<UndefValue>(C)) { 6560 // Only look at the first use, avoid hurting compile time with long uselists 6561 User *Use = *I->user_begin(); 6562 6563 // Now make sure that there are no instructions in between that can alter 6564 // control flow (eg. calls) 6565 for (BasicBlock::iterator 6566 i = ++BasicBlock::iterator(I), 6567 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6568 i != UI; ++i) 6569 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6570 return false; 6571 6572 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6573 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6574 if (GEP->getPointerOperand() == I) { 6575 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6576 PtrValueMayBeModified = true; 6577 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6578 } 6579 6580 // Look through bitcasts. 6581 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6582 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6583 6584 // Load from null is undefined. 6585 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6586 if (!LI->isVolatile()) 6587 return !NullPointerIsDefined(LI->getFunction(), 6588 LI->getPointerAddressSpace()); 6589 6590 // Store to null is undefined. 6591 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6592 if (!SI->isVolatile()) 6593 return (!NullPointerIsDefined(SI->getFunction(), 6594 SI->getPointerAddressSpace())) && 6595 SI->getPointerOperand() == I; 6596 6597 if (auto *CB = dyn_cast<CallBase>(Use)) { 6598 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6599 return false; 6600 // A call to null is undefined. 6601 if (CB->getCalledOperand() == I) 6602 return true; 6603 6604 if (C->isNullValue()) { 6605 for (const llvm::Use &Arg : CB->args()) 6606 if (Arg == I) { 6607 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6608 if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) && 6609 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6610 // Passing null to a nonnnull+noundef argument is undefined. 6611 return !PtrValueMayBeModified; 6612 } 6613 } 6614 } else if (isa<UndefValue>(C)) { 6615 // Passing undef to a noundef argument is undefined. 6616 for (const llvm::Use &Arg : CB->args()) 6617 if (Arg == I) { 6618 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6619 if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) { 6620 // Passing undef to a noundef argument is undefined. 6621 return true; 6622 } 6623 } 6624 } 6625 } 6626 } 6627 return false; 6628 } 6629 6630 /// If BB has an incoming value that will always trigger undefined behavior 6631 /// (eg. null pointer dereference), remove the branch leading here. 6632 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6633 DomTreeUpdater *DTU) { 6634 for (PHINode &PHI : BB->phis()) 6635 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6636 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6637 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6638 Instruction *T = Predecessor->getTerminator(); 6639 IRBuilder<> Builder(T); 6640 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6641 BB->removePredecessor(Predecessor); 6642 // Turn uncoditional branches into unreachables and remove the dead 6643 // destination from conditional branches. 6644 if (BI->isUnconditional()) 6645 Builder.CreateUnreachable(); 6646 else 6647 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6648 : BI->getSuccessor(0)); 6649 BI->eraseFromParent(); 6650 if (DTU) 6651 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6652 return true; 6653 } 6654 // TODO: SwitchInst. 6655 } 6656 6657 return false; 6658 } 6659 6660 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6661 bool Changed = false; 6662 6663 assert(BB && BB->getParent() && "Block not embedded in function!"); 6664 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6665 6666 // Remove basic blocks that have no predecessors (except the entry block)... 6667 // or that just have themself as a predecessor. These are unreachable. 6668 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6669 BB->getSinglePredecessor() == BB) { 6670 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6671 DeleteDeadBlock(BB, DTU); 6672 return true; 6673 } 6674 6675 // Check to see if we can constant propagate this terminator instruction 6676 // away... 6677 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6678 /*TLI=*/nullptr, DTU); 6679 6680 // Check for and eliminate duplicate PHI nodes in this block. 6681 Changed |= EliminateDuplicatePHINodes(BB); 6682 6683 // Check for and remove branches that will always cause undefined behavior. 6684 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6685 6686 // Merge basic blocks into their predecessor if there is only one distinct 6687 // pred, and if there is only one distinct successor of the predecessor, and 6688 // if there are no PHI nodes. 6689 if (MergeBlockIntoPredecessor(BB, DTU)) 6690 return true; 6691 6692 if (SinkCommon && Options.SinkCommonInsts) 6693 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6694 6695 IRBuilder<> Builder(BB); 6696 6697 if (Options.FoldTwoEntryPHINode) { 6698 // If there is a trivial two-entry PHI node in this basic block, and we can 6699 // eliminate it, do so now. 6700 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6701 if (PN->getNumIncomingValues() == 2) 6702 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6703 } 6704 6705 Instruction *Terminator = BB->getTerminator(); 6706 Builder.SetInsertPoint(Terminator); 6707 switch (Terminator->getOpcode()) { 6708 case Instruction::Br: 6709 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6710 break; 6711 case Instruction::Ret: 6712 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6713 break; 6714 case Instruction::Resume: 6715 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6716 break; 6717 case Instruction::CleanupRet: 6718 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6719 break; 6720 case Instruction::Switch: 6721 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6722 break; 6723 case Instruction::Unreachable: 6724 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6725 break; 6726 case Instruction::IndirectBr: 6727 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6728 break; 6729 } 6730 6731 return Changed; 6732 } 6733 6734 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6735 bool Changed = simplifyOnceImpl(BB); 6736 6737 assert((!RequireAndPreserveDomTree || 6738 (DTU && 6739 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6740 "Failed to maintain validity of domtree!"); 6741 6742 return Changed; 6743 } 6744 6745 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6746 assert((!RequireAndPreserveDomTree || 6747 (DTU && 6748 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) && 6749 "Original domtree is invalid?"); 6750 6751 bool Changed = false; 6752 6753 // Repeated simplify BB as long as resimplification is requested. 6754 do { 6755 Resimplify = false; 6756 6757 // Perform one round of simplifcation. Resimplify flag will be set if 6758 // another iteration is requested. 6759 Changed |= simplifyOnce(BB); 6760 } while (Resimplify); 6761 6762 return Changed; 6763 } 6764 6765 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6766 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6767 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6768 return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr, 6769 BB->getModule()->getDataLayout(), LoopHeaders, Options) 6770 .run(BB); 6771 } 6772