1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
95 
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool>
115     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
116                 cl::desc("Hoist common instructions up to the parent block"));
117 
118 static cl::opt<bool>
119     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
120                cl::desc("Sink common instructions down to the end block"));
121 
122 static cl::opt<bool> HoistCondStores(
123     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
124     cl::desc("Hoist conditional stores if an unconditional store precedes"));
125 
126 static cl::opt<bool> MergeCondStores(
127     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores even if an unconditional store does not "
129              "precede - hoist multiple conditional stores into a single "
130              "predicated store"));
131 
132 static cl::opt<bool> MergeCondStoresAggressively(
133     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
134     cl::desc("When merging conditional stores, do so even if the resultant "
135              "basic blocks are unlikely to be if-converted as a result"));
136 
137 static cl::opt<bool> SpeculateOneExpensiveInst(
138     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
139     cl::desc("Allow exactly one expensive instruction to be speculatively "
140              "executed"));
141 
142 static cl::opt<unsigned> MaxSpeculationDepth(
143     "max-speculation-depth", cl::Hidden, cl::init(10),
144     cl::desc("Limit maximum recursion depth when calculating costs of "
145              "speculatively executed instructions"));
146 
147 static cl::opt<int>
148     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
149                       cl::init(10),
150                       cl::desc("Max size of a block which is still considered "
151                                "small enough to thread through"));
152 
153 // Two is chosen to allow one negation and a logical combine.
154 static cl::opt<unsigned>
155     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
156                         cl::init(2),
157                         cl::desc("Maximum cost of combining conditions when "
158                                  "folding branches"));
159 
160 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
161     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
162     cl::init(2),
163     cl::desc("Multiplier to apply to threshold when determining whether or not "
164              "to fold branch to common destination when vector operations are "
165              "present"));
166 
167 static cl::opt<bool> EnableMergeCompatibleInvokes(
168     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
169     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
170 
171 static cl::opt<unsigned> MaxSwitchCasesPerResult(
172     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
173     cl::desc("Limit cases to analyze when converting a switch to select"));
174 
175 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
176 STATISTIC(NumLinearMaps,
177           "Number of switch instructions turned into linear mapping");
178 STATISTIC(NumLookupTables,
179           "Number of switch instructions turned into lookup tables");
180 STATISTIC(
181     NumLookupTablesHoles,
182     "Number of switch instructions turned into lookup tables (holes checked)");
183 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
184 STATISTIC(NumFoldValueComparisonIntoPredecessors,
185           "Number of value comparisons folded into predecessor basic blocks");
186 STATISTIC(NumFoldBranchToCommonDest,
187           "Number of branches folded into predecessor basic block");
188 STATISTIC(
189     NumHoistCommonCode,
190     "Number of common instruction 'blocks' hoisted up to the begin block");
191 STATISTIC(NumHoistCommonInstrs,
192           "Number of common instructions hoisted up to the begin block");
193 STATISTIC(NumSinkCommonCode,
194           "Number of common instruction 'blocks' sunk down to the end block");
195 STATISTIC(NumSinkCommonInstrs,
196           "Number of common instructions sunk down to the end block");
197 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
198 STATISTIC(NumInvokes,
199           "Number of invokes with empty resume blocks simplified into calls");
200 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
201 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
202 
203 namespace {
204 
205 // The first field contains the value that the switch produces when a certain
206 // case group is selected, and the second field is a vector containing the
207 // cases composing the case group.
208 using SwitchCaseResultVectorTy =
209     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
210 
211 // The first field contains the phi node that generates a result of the switch
212 // and the second field contains the value generated for a certain case in the
213 // switch for that PHI.
214 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
215 
216 /// ValueEqualityComparisonCase - Represents a case of a switch.
217 struct ValueEqualityComparisonCase {
218   ConstantInt *Value;
219   BasicBlock *Dest;
220 
221   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
222       : Value(Value), Dest(Dest) {}
223 
224   bool operator<(ValueEqualityComparisonCase RHS) const {
225     // Comparing pointers is ok as we only rely on the order for uniquing.
226     return Value < RHS.Value;
227   }
228 
229   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
230 };
231 
232 class SimplifyCFGOpt {
233   const TargetTransformInfo &TTI;
234   DomTreeUpdater *DTU;
235   const DataLayout &DL;
236   ArrayRef<WeakVH> LoopHeaders;
237   const SimplifyCFGOptions &Options;
238   bool Resimplify;
239 
240   Value *isValueEqualityComparison(Instruction *TI);
241   BasicBlock *GetValueEqualityComparisonCases(
242       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
243   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
244                                                      BasicBlock *Pred,
245                                                      IRBuilder<> &Builder);
246   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
247                                                     Instruction *PTI,
248                                                     IRBuilder<> &Builder);
249   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
250                                            IRBuilder<> &Builder);
251 
252   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
253   bool simplifySingleResume(ResumeInst *RI);
254   bool simplifyCommonResume(ResumeInst *RI);
255   bool simplifyCleanupReturn(CleanupReturnInst *RI);
256   bool simplifyUnreachable(UnreachableInst *UI);
257   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
258   bool simplifyIndirectBr(IndirectBrInst *IBI);
259   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
260   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
261   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
262 
263   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
264                                              IRBuilder<> &Builder);
265 
266   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
267                              bool EqTermsOnly);
268   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
269                               const TargetTransformInfo &TTI);
270   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
271                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
272                                   uint32_t TrueWeight, uint32_t FalseWeight);
273   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
274                                  const DataLayout &DL);
275   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
276   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
277   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
278 
279 public:
280   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
281                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
282                  const SimplifyCFGOptions &Opts)
283       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
284     assert((!DTU || !DTU->hasPostDomTree()) &&
285            "SimplifyCFG is not yet capable of maintaining validity of a "
286            "PostDomTree, so don't ask for it.");
287   }
288 
289   bool simplifyOnce(BasicBlock *BB);
290   bool run(BasicBlock *BB);
291 
292   // Helper to set Resimplify and return change indication.
293   bool requestResimplify() {
294     Resimplify = true;
295     return true;
296   }
297 };
298 
299 } // end anonymous namespace
300 
301 /// Return true if all the PHI nodes in the basic block \p BB
302 /// receive compatible (identical) incoming values when coming from
303 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
304 ///
305 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
306 /// is provided, and *both* of the values are present in the set,
307 /// then they are considered equal.
308 static bool IncomingValuesAreCompatible(
309     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
310     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
311   assert(IncomingBlocks.size() == 2 &&
312          "Only for a pair of incoming blocks at the time!");
313 
314   // FIXME: it is okay if one of the incoming values is an `undef` value,
315   //        iff the other incoming value is guaranteed to be a non-poison value.
316   // FIXME: it is okay if one of the incoming values is a `poison` value.
317   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
318     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
319     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
320     if (IV0 == IV1)
321       return true;
322     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
323         EquivalenceSet->contains(IV1))
324       return true;
325     return false;
326   });
327 }
328 
329 /// Return true if it is safe to merge these two
330 /// terminator instructions together.
331 static bool
332 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
333                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
334   if (SI1 == SI2)
335     return false; // Can't merge with self!
336 
337   // It is not safe to merge these two switch instructions if they have a common
338   // successor, and if that successor has a PHI node, and if *that* PHI node has
339   // conflicting incoming values from the two switch blocks.
340   BasicBlock *SI1BB = SI1->getParent();
341   BasicBlock *SI2BB = SI2->getParent();
342 
343   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
344   bool Fail = false;
345   for (BasicBlock *Succ : successors(SI2BB)) {
346     if (!SI1Succs.count(Succ))
347       continue;
348     if (IncomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
349       continue;
350     Fail = true;
351     if (FailBlocks)
352       FailBlocks->insert(Succ);
353     else
354       break;
355   }
356 
357   return !Fail;
358 }
359 
360 /// Update PHI nodes in Succ to indicate that there will now be entries in it
361 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
362 /// will be the same as those coming in from ExistPred, an existing predecessor
363 /// of Succ.
364 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
365                                   BasicBlock *ExistPred,
366                                   MemorySSAUpdater *MSSAU = nullptr) {
367   for (PHINode &PN : Succ->phis())
368     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
369   if (MSSAU)
370     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
371       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
372 }
373 
374 /// Compute an abstract "cost" of speculating the given instruction,
375 /// which is assumed to be safe to speculate. TCC_Free means cheap,
376 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
377 /// expensive.
378 static InstructionCost computeSpeculationCost(const User *I,
379                                               const TargetTransformInfo &TTI) {
380   assert((!isa<Instruction>(I) ||
381           isSafeToSpeculativelyExecute(cast<Instruction>(I))) &&
382          "Instruction is not safe to speculatively execute!");
383   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
384 }
385 
386 /// If we have a merge point of an "if condition" as accepted above,
387 /// return true if the specified value dominates the block.  We
388 /// don't handle the true generality of domination here, just a special case
389 /// which works well enough for us.
390 ///
391 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
392 /// see if V (which must be an instruction) and its recursive operands
393 /// that do not dominate BB have a combined cost lower than Budget and
394 /// are non-trapping.  If both are true, the instruction is inserted into the
395 /// set and true is returned.
396 ///
397 /// The cost for most non-trapping instructions is defined as 1 except for
398 /// Select whose cost is 2.
399 ///
400 /// After this function returns, Cost is increased by the cost of
401 /// V plus its non-dominating operands.  If that cost is greater than
402 /// Budget, false is returned and Cost is undefined.
403 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
404                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
405                                 InstructionCost &Cost,
406                                 InstructionCost Budget,
407                                 const TargetTransformInfo &TTI,
408                                 unsigned Depth = 0) {
409   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
410   // so limit the recursion depth.
411   // TODO: While this recursion limit does prevent pathological behavior, it
412   // would be better to track visited instructions to avoid cycles.
413   if (Depth == MaxSpeculationDepth)
414     return false;
415 
416   Instruction *I = dyn_cast<Instruction>(V);
417   if (!I) {
418     // Non-instructions dominate all instructions and can be executed
419     // unconditionally.
420     return true;
421   }
422   BasicBlock *PBB = I->getParent();
423 
424   // We don't want to allow weird loops that might have the "if condition" in
425   // the bottom of this block.
426   if (PBB == BB)
427     return false;
428 
429   // If this instruction is defined in a block that contains an unconditional
430   // branch to BB, then it must be in the 'conditional' part of the "if
431   // statement".  If not, it definitely dominates the region.
432   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
433   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
434     return true;
435 
436   // If we have seen this instruction before, don't count it again.
437   if (AggressiveInsts.count(I))
438     return true;
439 
440   // Okay, it looks like the instruction IS in the "condition".  Check to
441   // see if it's a cheap instruction to unconditionally compute, and if it
442   // only uses stuff defined outside of the condition.  If so, hoist it out.
443   if (!isSafeToSpeculativelyExecute(I))
444     return false;
445 
446   Cost += computeSpeculationCost(I, TTI);
447 
448   // Allow exactly one instruction to be speculated regardless of its cost
449   // (as long as it is safe to do so).
450   // This is intended to flatten the CFG even if the instruction is a division
451   // or other expensive operation. The speculation of an expensive instruction
452   // is expected to be undone in CodeGenPrepare if the speculation has not
453   // enabled further IR optimizations.
454   if (Cost > Budget &&
455       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
456        !Cost.isValid()))
457     return false;
458 
459   // Okay, we can only really hoist these out if their operands do
460   // not take us over the cost threshold.
461   for (Use &Op : I->operands())
462     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
463                              Depth + 1))
464       return false;
465   // Okay, it's safe to do this!  Remember this instruction.
466   AggressiveInsts.insert(I);
467   return true;
468 }
469 
470 /// Extract ConstantInt from value, looking through IntToPtr
471 /// and PointerNullValue. Return NULL if value is not a constant int.
472 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
473   // Normal constant int.
474   ConstantInt *CI = dyn_cast<ConstantInt>(V);
475   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
476     return CI;
477 
478   // This is some kind of pointer constant. Turn it into a pointer-sized
479   // ConstantInt if possible.
480   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
481 
482   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
483   if (isa<ConstantPointerNull>(V))
484     return ConstantInt::get(PtrTy, 0);
485 
486   // IntToPtr const int.
487   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
488     if (CE->getOpcode() == Instruction::IntToPtr)
489       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
490         // The constant is very likely to have the right type already.
491         if (CI->getType() == PtrTy)
492           return CI;
493         else
494           return cast<ConstantInt>(
495               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
496       }
497   return nullptr;
498 }
499 
500 namespace {
501 
502 /// Given a chain of or (||) or and (&&) comparison of a value against a
503 /// constant, this will try to recover the information required for a switch
504 /// structure.
505 /// It will depth-first traverse the chain of comparison, seeking for patterns
506 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
507 /// representing the different cases for the switch.
508 /// Note that if the chain is composed of '||' it will build the set of elements
509 /// that matches the comparisons (i.e. any of this value validate the chain)
510 /// while for a chain of '&&' it will build the set elements that make the test
511 /// fail.
512 struct ConstantComparesGatherer {
513   const DataLayout &DL;
514 
515   /// Value found for the switch comparison
516   Value *CompValue = nullptr;
517 
518   /// Extra clause to be checked before the switch
519   Value *Extra = nullptr;
520 
521   /// Set of integers to match in switch
522   SmallVector<ConstantInt *, 8> Vals;
523 
524   /// Number of comparisons matched in the and/or chain
525   unsigned UsedICmps = 0;
526 
527   /// Construct and compute the result for the comparison instruction Cond
528   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
529     gather(Cond);
530   }
531 
532   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
533   ConstantComparesGatherer &
534   operator=(const ConstantComparesGatherer &) = delete;
535 
536 private:
537   /// Try to set the current value used for the comparison, it succeeds only if
538   /// it wasn't set before or if the new value is the same as the old one
539   bool setValueOnce(Value *NewVal) {
540     if (CompValue && CompValue != NewVal)
541       return false;
542     CompValue = NewVal;
543     return (CompValue != nullptr);
544   }
545 
546   /// Try to match Instruction "I" as a comparison against a constant and
547   /// populates the array Vals with the set of values that match (or do not
548   /// match depending on isEQ).
549   /// Return false on failure. On success, the Value the comparison matched
550   /// against is placed in CompValue.
551   /// If CompValue is already set, the function is expected to fail if a match
552   /// is found but the value compared to is different.
553   bool matchInstruction(Instruction *I, bool isEQ) {
554     // If this is an icmp against a constant, handle this as one of the cases.
555     ICmpInst *ICI;
556     ConstantInt *C;
557     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
558           (C = GetConstantInt(I->getOperand(1), DL)))) {
559       return false;
560     }
561 
562     Value *RHSVal;
563     const APInt *RHSC;
564 
565     // Pattern match a special case
566     // (x & ~2^z) == y --> x == y || x == y|2^z
567     // This undoes a transformation done by instcombine to fuse 2 compares.
568     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
569       // It's a little bit hard to see why the following transformations are
570       // correct. Here is a CVC3 program to verify them for 64-bit values:
571 
572       /*
573          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
574          x    : BITVECTOR(64);
575          y    : BITVECTOR(64);
576          z    : BITVECTOR(64);
577          mask : BITVECTOR(64) = BVSHL(ONE, z);
578          QUERY( (y & ~mask = y) =>
579                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
580          );
581          QUERY( (y |  mask = y) =>
582                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
583          );
584       */
585 
586       // Please note that each pattern must be a dual implication (<--> or
587       // iff). One directional implication can create spurious matches. If the
588       // implication is only one-way, an unsatisfiable condition on the left
589       // side can imply a satisfiable condition on the right side. Dual
590       // implication ensures that satisfiable conditions are transformed to
591       // other satisfiable conditions and unsatisfiable conditions are
592       // transformed to other unsatisfiable conditions.
593 
594       // Here is a concrete example of a unsatisfiable condition on the left
595       // implying a satisfiable condition on the right:
596       //
597       // mask = (1 << z)
598       // (x & ~mask) == y  --> (x == y || x == (y | mask))
599       //
600       // Substituting y = 3, z = 0 yields:
601       // (x & -2) == 3 --> (x == 3 || x == 2)
602 
603       // Pattern match a special case:
604       /*
605         QUERY( (y & ~mask = y) =>
606                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
607         );
608       */
609       if (match(ICI->getOperand(0),
610                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
611         APInt Mask = ~*RHSC;
612         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
613           // If we already have a value for the switch, it has to match!
614           if (!setValueOnce(RHSVal))
615             return false;
616 
617           Vals.push_back(C);
618           Vals.push_back(
619               ConstantInt::get(C->getContext(),
620                                C->getValue() | Mask));
621           UsedICmps++;
622           return true;
623         }
624       }
625 
626       // Pattern match a special case:
627       /*
628         QUERY( (y |  mask = y) =>
629                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
630         );
631       */
632       if (match(ICI->getOperand(0),
633                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
634         APInt Mask = *RHSC;
635         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
636           // If we already have a value for the switch, it has to match!
637           if (!setValueOnce(RHSVal))
638             return false;
639 
640           Vals.push_back(C);
641           Vals.push_back(ConstantInt::get(C->getContext(),
642                                           C->getValue() & ~Mask));
643           UsedICmps++;
644           return true;
645         }
646       }
647 
648       // If we already have a value for the switch, it has to match!
649       if (!setValueOnce(ICI->getOperand(0)))
650         return false;
651 
652       UsedICmps++;
653       Vals.push_back(C);
654       return ICI->getOperand(0);
655     }
656 
657     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
658     ConstantRange Span =
659         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
660 
661     // Shift the range if the compare is fed by an add. This is the range
662     // compare idiom as emitted by instcombine.
663     Value *CandidateVal = I->getOperand(0);
664     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
665       Span = Span.subtract(*RHSC);
666       CandidateVal = RHSVal;
667     }
668 
669     // If this is an and/!= check, then we are looking to build the set of
670     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
671     // x != 0 && x != 1.
672     if (!isEQ)
673       Span = Span.inverse();
674 
675     // If there are a ton of values, we don't want to make a ginormous switch.
676     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
677       return false;
678     }
679 
680     // If we already have a value for the switch, it has to match!
681     if (!setValueOnce(CandidateVal))
682       return false;
683 
684     // Add all values from the range to the set
685     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
686       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
687 
688     UsedICmps++;
689     return true;
690   }
691 
692   /// Given a potentially 'or'd or 'and'd together collection of icmp
693   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
694   /// the value being compared, and stick the list constants into the Vals
695   /// vector.
696   /// One "Extra" case is allowed to differ from the other.
697   void gather(Value *V) {
698     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
699 
700     // Keep a stack (SmallVector for efficiency) for depth-first traversal
701     SmallVector<Value *, 8> DFT;
702     SmallPtrSet<Value *, 8> Visited;
703 
704     // Initialize
705     Visited.insert(V);
706     DFT.push_back(V);
707 
708     while (!DFT.empty()) {
709       V = DFT.pop_back_val();
710 
711       if (Instruction *I = dyn_cast<Instruction>(V)) {
712         // If it is a || (or && depending on isEQ), process the operands.
713         Value *Op0, *Op1;
714         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
715                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
716           if (Visited.insert(Op1).second)
717             DFT.push_back(Op1);
718           if (Visited.insert(Op0).second)
719             DFT.push_back(Op0);
720 
721           continue;
722         }
723 
724         // Try to match the current instruction
725         if (matchInstruction(I, isEQ))
726           // Match succeed, continue the loop
727           continue;
728       }
729 
730       // One element of the sequence of || (or &&) could not be match as a
731       // comparison against the same value as the others.
732       // We allow only one "Extra" case to be checked before the switch
733       if (!Extra) {
734         Extra = V;
735         continue;
736       }
737       // Failed to parse a proper sequence, abort now
738       CompValue = nullptr;
739       break;
740     }
741   }
742 };
743 
744 } // end anonymous namespace
745 
746 static void EraseTerminatorAndDCECond(Instruction *TI,
747                                       MemorySSAUpdater *MSSAU = nullptr) {
748   Instruction *Cond = nullptr;
749   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
750     Cond = dyn_cast<Instruction>(SI->getCondition());
751   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
752     if (BI->isConditional())
753       Cond = dyn_cast<Instruction>(BI->getCondition());
754   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
755     Cond = dyn_cast<Instruction>(IBI->getAddress());
756   }
757 
758   TI->eraseFromParent();
759   if (Cond)
760     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
761 }
762 
763 /// Return true if the specified terminator checks
764 /// to see if a value is equal to constant integer value.
765 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
766   Value *CV = nullptr;
767   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
768     // Do not permit merging of large switch instructions into their
769     // predecessors unless there is only one predecessor.
770     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
771       CV = SI->getCondition();
772   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
773     if (BI->isConditional() && BI->getCondition()->hasOneUse())
774       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
775         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
776           CV = ICI->getOperand(0);
777       }
778 
779   // Unwrap any lossless ptrtoint cast.
780   if (CV) {
781     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
782       Value *Ptr = PTII->getPointerOperand();
783       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
784         CV = Ptr;
785     }
786   }
787   return CV;
788 }
789 
790 /// Given a value comparison instruction,
791 /// decode all of the 'cases' that it represents and return the 'default' block.
792 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
793     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
794   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
795     Cases.reserve(SI->getNumCases());
796     for (auto Case : SI->cases())
797       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
798                                                   Case.getCaseSuccessor()));
799     return SI->getDefaultDest();
800   }
801 
802   BranchInst *BI = cast<BranchInst>(TI);
803   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
804   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
805   Cases.push_back(ValueEqualityComparisonCase(
806       GetConstantInt(ICI->getOperand(1), DL), Succ));
807   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
808 }
809 
810 /// Given a vector of bb/value pairs, remove any entries
811 /// in the list that match the specified block.
812 static void
813 EliminateBlockCases(BasicBlock *BB,
814                     std::vector<ValueEqualityComparisonCase> &Cases) {
815   llvm::erase_value(Cases, BB);
816 }
817 
818 /// Return true if there are any keys in C1 that exist in C2 as well.
819 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
820                           std::vector<ValueEqualityComparisonCase> &C2) {
821   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
822 
823   // Make V1 be smaller than V2.
824   if (V1->size() > V2->size())
825     std::swap(V1, V2);
826 
827   if (V1->empty())
828     return false;
829   if (V1->size() == 1) {
830     // Just scan V2.
831     ConstantInt *TheVal = (*V1)[0].Value;
832     for (unsigned i = 0, e = V2->size(); i != e; ++i)
833       if (TheVal == (*V2)[i].Value)
834         return true;
835   }
836 
837   // Otherwise, just sort both lists and compare element by element.
838   array_pod_sort(V1->begin(), V1->end());
839   array_pod_sort(V2->begin(), V2->end());
840   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
841   while (i1 != e1 && i2 != e2) {
842     if ((*V1)[i1].Value == (*V2)[i2].Value)
843       return true;
844     if ((*V1)[i1].Value < (*V2)[i2].Value)
845       ++i1;
846     else
847       ++i2;
848   }
849   return false;
850 }
851 
852 // Set branch weights on SwitchInst. This sets the metadata if there is at
853 // least one non-zero weight.
854 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
855   // Check that there is at least one non-zero weight. Otherwise, pass
856   // nullptr to setMetadata which will erase the existing metadata.
857   MDNode *N = nullptr;
858   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
859     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
860   SI->setMetadata(LLVMContext::MD_prof, N);
861 }
862 
863 // Similar to the above, but for branch and select instructions that take
864 // exactly 2 weights.
865 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
866                              uint32_t FalseWeight) {
867   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
868   // Check that there is at least one non-zero weight. Otherwise, pass
869   // nullptr to setMetadata which will erase the existing metadata.
870   MDNode *N = nullptr;
871   if (TrueWeight || FalseWeight)
872     N = MDBuilder(I->getParent()->getContext())
873             .createBranchWeights(TrueWeight, FalseWeight);
874   I->setMetadata(LLVMContext::MD_prof, N);
875 }
876 
877 /// If TI is known to be a terminator instruction and its block is known to
878 /// only have a single predecessor block, check to see if that predecessor is
879 /// also a value comparison with the same value, and if that comparison
880 /// determines the outcome of this comparison. If so, simplify TI. This does a
881 /// very limited form of jump threading.
882 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
883     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
884   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
885   if (!PredVal)
886     return false; // Not a value comparison in predecessor.
887 
888   Value *ThisVal = isValueEqualityComparison(TI);
889   assert(ThisVal && "This isn't a value comparison!!");
890   if (ThisVal != PredVal)
891     return false; // Different predicates.
892 
893   // TODO: Preserve branch weight metadata, similarly to how
894   // FoldValueComparisonIntoPredecessors preserves it.
895 
896   // Find out information about when control will move from Pred to TI's block.
897   std::vector<ValueEqualityComparisonCase> PredCases;
898   BasicBlock *PredDef =
899       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
900   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
901 
902   // Find information about how control leaves this block.
903   std::vector<ValueEqualityComparisonCase> ThisCases;
904   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
905   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
906 
907   // If TI's block is the default block from Pred's comparison, potentially
908   // simplify TI based on this knowledge.
909   if (PredDef == TI->getParent()) {
910     // If we are here, we know that the value is none of those cases listed in
911     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
912     // can simplify TI.
913     if (!ValuesOverlap(PredCases, ThisCases))
914       return false;
915 
916     if (isa<BranchInst>(TI)) {
917       // Okay, one of the successors of this condbr is dead.  Convert it to a
918       // uncond br.
919       assert(ThisCases.size() == 1 && "Branch can only have one case!");
920       // Insert the new branch.
921       Instruction *NI = Builder.CreateBr(ThisDef);
922       (void)NI;
923 
924       // Remove PHI node entries for the dead edge.
925       ThisCases[0].Dest->removePredecessor(PredDef);
926 
927       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
928                         << "Through successor TI: " << *TI << "Leaving: " << *NI
929                         << "\n");
930 
931       EraseTerminatorAndDCECond(TI);
932 
933       if (DTU)
934         DTU->applyUpdates(
935             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
936 
937       return true;
938     }
939 
940     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
941     // Okay, TI has cases that are statically dead, prune them away.
942     SmallPtrSet<Constant *, 16> DeadCases;
943     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
944       DeadCases.insert(PredCases[i].Value);
945 
946     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
947                       << "Through successor TI: " << *TI);
948 
949     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
950     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
951       --i;
952       auto *Successor = i->getCaseSuccessor();
953       if (DTU)
954         ++NumPerSuccessorCases[Successor];
955       if (DeadCases.count(i->getCaseValue())) {
956         Successor->removePredecessor(PredDef);
957         SI.removeCase(i);
958         if (DTU)
959           --NumPerSuccessorCases[Successor];
960       }
961     }
962 
963     if (DTU) {
964       std::vector<DominatorTree::UpdateType> Updates;
965       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
966         if (I.second == 0)
967           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
968       DTU->applyUpdates(Updates);
969     }
970 
971     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
972     return true;
973   }
974 
975   // Otherwise, TI's block must correspond to some matched value.  Find out
976   // which value (or set of values) this is.
977   ConstantInt *TIV = nullptr;
978   BasicBlock *TIBB = TI->getParent();
979   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
980     if (PredCases[i].Dest == TIBB) {
981       if (TIV)
982         return false; // Cannot handle multiple values coming to this block.
983       TIV = PredCases[i].Value;
984     }
985   assert(TIV && "No edge from pred to succ?");
986 
987   // Okay, we found the one constant that our value can be if we get into TI's
988   // BB.  Find out which successor will unconditionally be branched to.
989   BasicBlock *TheRealDest = nullptr;
990   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
991     if (ThisCases[i].Value == TIV) {
992       TheRealDest = ThisCases[i].Dest;
993       break;
994     }
995 
996   // If not handled by any explicit cases, it is handled by the default case.
997   if (!TheRealDest)
998     TheRealDest = ThisDef;
999 
1000   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1001 
1002   // Remove PHI node entries for dead edges.
1003   BasicBlock *CheckEdge = TheRealDest;
1004   for (BasicBlock *Succ : successors(TIBB))
1005     if (Succ != CheckEdge) {
1006       if (Succ != TheRealDest)
1007         RemovedSuccs.insert(Succ);
1008       Succ->removePredecessor(TIBB);
1009     } else
1010       CheckEdge = nullptr;
1011 
1012   // Insert the new branch.
1013   Instruction *NI = Builder.CreateBr(TheRealDest);
1014   (void)NI;
1015 
1016   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1017                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1018                     << "\n");
1019 
1020   EraseTerminatorAndDCECond(TI);
1021   if (DTU) {
1022     SmallVector<DominatorTree::UpdateType, 2> Updates;
1023     Updates.reserve(RemovedSuccs.size());
1024     for (auto *RemovedSucc : RemovedSuccs)
1025       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1026     DTU->applyUpdates(Updates);
1027   }
1028   return true;
1029 }
1030 
1031 namespace {
1032 
1033 /// This class implements a stable ordering of constant
1034 /// integers that does not depend on their address.  This is important for
1035 /// applications that sort ConstantInt's to ensure uniqueness.
1036 struct ConstantIntOrdering {
1037   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1038     return LHS->getValue().ult(RHS->getValue());
1039   }
1040 };
1041 
1042 } // end anonymous namespace
1043 
1044 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1045                                     ConstantInt *const *P2) {
1046   const ConstantInt *LHS = *P1;
1047   const ConstantInt *RHS = *P2;
1048   if (LHS == RHS)
1049     return 0;
1050   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1051 }
1052 
1053 static inline bool HasBranchWeights(const Instruction *I) {
1054   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1055   if (ProfMD && ProfMD->getOperand(0))
1056     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1057       return MDS->getString().equals("branch_weights");
1058 
1059   return false;
1060 }
1061 
1062 /// Get Weights of a given terminator, the default weight is at the front
1063 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1064 /// metadata.
1065 static void GetBranchWeights(Instruction *TI,
1066                              SmallVectorImpl<uint64_t> &Weights) {
1067   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1068   assert(MD);
1069   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1070     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1071     Weights.push_back(CI->getValue().getZExtValue());
1072   }
1073 
1074   // If TI is a conditional eq, the default case is the false case,
1075   // and the corresponding branch-weight data is at index 2. We swap the
1076   // default weight to be the first entry.
1077   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1078     assert(Weights.size() == 2);
1079     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1080     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1081       std::swap(Weights.front(), Weights.back());
1082   }
1083 }
1084 
1085 /// Keep halving the weights until all can fit in uint32_t.
1086 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1087   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1088   if (Max > UINT_MAX) {
1089     unsigned Offset = 32 - countLeadingZeros(Max);
1090     for (uint64_t &I : Weights)
1091       I >>= Offset;
1092   }
1093 }
1094 
1095 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1096     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1097   Instruction *PTI = PredBlock->getTerminator();
1098 
1099   // If we have bonus instructions, clone them into the predecessor block.
1100   // Note that there may be multiple predecessor blocks, so we cannot move
1101   // bonus instructions to a predecessor block.
1102   for (Instruction &BonusInst : *BB) {
1103     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1104       continue;
1105 
1106     Instruction *NewBonusInst = BonusInst.clone();
1107 
1108     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1109       // Unless the instruction has the same !dbg location as the original
1110       // branch, drop it. When we fold the bonus instructions we want to make
1111       // sure we reset their debug locations in order to avoid stepping on
1112       // dead code caused by folding dead branches.
1113       NewBonusInst->setDebugLoc(DebugLoc());
1114     }
1115 
1116     RemapInstruction(NewBonusInst, VMap,
1117                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1118     VMap[&BonusInst] = NewBonusInst;
1119 
1120     // If we moved a load, we cannot any longer claim any knowledge about
1121     // its potential value. The previous information might have been valid
1122     // only given the branch precondition.
1123     // For an analogous reason, we must also drop all the metadata whose
1124     // semantics we don't understand. We *can* preserve !annotation, because
1125     // it is tied to the instruction itself, not the value or position.
1126     // Similarly strip attributes on call parameters that may cause UB in
1127     // location the call is moved to.
1128     NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
1129         LLVMContext::MD_annotation);
1130 
1131     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1132     NewBonusInst->takeName(&BonusInst);
1133     BonusInst.setName(NewBonusInst->getName() + ".old");
1134 
1135     // Update (liveout) uses of bonus instructions,
1136     // now that the bonus instruction has been cloned into predecessor.
1137     // Note that we expect to be in a block-closed SSA form for this to work!
1138     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1139       auto *UI = cast<Instruction>(U.getUser());
1140       auto *PN = dyn_cast<PHINode>(UI);
1141       if (!PN) {
1142         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1143                "If the user is not a PHI node, then it should be in the same "
1144                "block as, and come after, the original bonus instruction.");
1145         continue; // Keep using the original bonus instruction.
1146       }
1147       // Is this the block-closed SSA form PHI node?
1148       if (PN->getIncomingBlock(U) == BB)
1149         continue; // Great, keep using the original bonus instruction.
1150       // The only other alternative is an "use" when coming from
1151       // the predecessor block - here we should refer to the cloned bonus instr.
1152       assert(PN->getIncomingBlock(U) == PredBlock &&
1153              "Not in block-closed SSA form?");
1154       U.set(NewBonusInst);
1155     }
1156   }
1157 }
1158 
1159 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1160     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1161   BasicBlock *BB = TI->getParent();
1162   BasicBlock *Pred = PTI->getParent();
1163 
1164   SmallVector<DominatorTree::UpdateType, 32> Updates;
1165 
1166   // Figure out which 'cases' to copy from SI to PSI.
1167   std::vector<ValueEqualityComparisonCase> BBCases;
1168   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1169 
1170   std::vector<ValueEqualityComparisonCase> PredCases;
1171   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1172 
1173   // Based on whether the default edge from PTI goes to BB or not, fill in
1174   // PredCases and PredDefault with the new switch cases we would like to
1175   // build.
1176   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1177 
1178   // Update the branch weight metadata along the way
1179   SmallVector<uint64_t, 8> Weights;
1180   bool PredHasWeights = HasBranchWeights(PTI);
1181   bool SuccHasWeights = HasBranchWeights(TI);
1182 
1183   if (PredHasWeights) {
1184     GetBranchWeights(PTI, Weights);
1185     // branch-weight metadata is inconsistent here.
1186     if (Weights.size() != 1 + PredCases.size())
1187       PredHasWeights = SuccHasWeights = false;
1188   } else if (SuccHasWeights)
1189     // If there are no predecessor weights but there are successor weights,
1190     // populate Weights with 1, which will later be scaled to the sum of
1191     // successor's weights
1192     Weights.assign(1 + PredCases.size(), 1);
1193 
1194   SmallVector<uint64_t, 8> SuccWeights;
1195   if (SuccHasWeights) {
1196     GetBranchWeights(TI, SuccWeights);
1197     // branch-weight metadata is inconsistent here.
1198     if (SuccWeights.size() != 1 + BBCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (PredHasWeights)
1201     SuccWeights.assign(1 + BBCases.size(), 1);
1202 
1203   if (PredDefault == BB) {
1204     // If this is the default destination from PTI, only the edges in TI
1205     // that don't occur in PTI, or that branch to BB will be activated.
1206     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1207     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1208       if (PredCases[i].Dest != BB)
1209         PTIHandled.insert(PredCases[i].Value);
1210       else {
1211         // The default destination is BB, we don't need explicit targets.
1212         std::swap(PredCases[i], PredCases.back());
1213 
1214         if (PredHasWeights || SuccHasWeights) {
1215           // Increase weight for the default case.
1216           Weights[0] += Weights[i + 1];
1217           std::swap(Weights[i + 1], Weights.back());
1218           Weights.pop_back();
1219         }
1220 
1221         PredCases.pop_back();
1222         --i;
1223         --e;
1224       }
1225 
1226     // Reconstruct the new switch statement we will be building.
1227     if (PredDefault != BBDefault) {
1228       PredDefault->removePredecessor(Pred);
1229       if (DTU && PredDefault != BB)
1230         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1231       PredDefault = BBDefault;
1232       ++NewSuccessors[BBDefault];
1233     }
1234 
1235     unsigned CasesFromPred = Weights.size();
1236     uint64_t ValidTotalSuccWeight = 0;
1237     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1238       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1239         PredCases.push_back(BBCases[i]);
1240         ++NewSuccessors[BBCases[i].Dest];
1241         if (SuccHasWeights || PredHasWeights) {
1242           // The default weight is at index 0, so weight for the ith case
1243           // should be at index i+1. Scale the cases from successor by
1244           // PredDefaultWeight (Weights[0]).
1245           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1246           ValidTotalSuccWeight += SuccWeights[i + 1];
1247         }
1248       }
1249 
1250     if (SuccHasWeights || PredHasWeights) {
1251       ValidTotalSuccWeight += SuccWeights[0];
1252       // Scale the cases from predecessor by ValidTotalSuccWeight.
1253       for (unsigned i = 1; i < CasesFromPred; ++i)
1254         Weights[i] *= ValidTotalSuccWeight;
1255       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1256       Weights[0] *= SuccWeights[0];
1257     }
1258   } else {
1259     // If this is not the default destination from PSI, only the edges
1260     // in SI that occur in PSI with a destination of BB will be
1261     // activated.
1262     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1263     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1264     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1265       if (PredCases[i].Dest == BB) {
1266         PTIHandled.insert(PredCases[i].Value);
1267 
1268         if (PredHasWeights || SuccHasWeights) {
1269           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1270           std::swap(Weights[i + 1], Weights.back());
1271           Weights.pop_back();
1272         }
1273 
1274         std::swap(PredCases[i], PredCases.back());
1275         PredCases.pop_back();
1276         --i;
1277         --e;
1278       }
1279 
1280     // Okay, now we know which constants were sent to BB from the
1281     // predecessor.  Figure out where they will all go now.
1282     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1283       if (PTIHandled.count(BBCases[i].Value)) {
1284         // If this is one we are capable of getting...
1285         if (PredHasWeights || SuccHasWeights)
1286           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1287         PredCases.push_back(BBCases[i]);
1288         ++NewSuccessors[BBCases[i].Dest];
1289         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1290       }
1291 
1292     // If there are any constants vectored to BB that TI doesn't handle,
1293     // they must go to the default destination of TI.
1294     for (ConstantInt *I : PTIHandled) {
1295       if (PredHasWeights || SuccHasWeights)
1296         Weights.push_back(WeightsForHandled[I]);
1297       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1298       ++NewSuccessors[BBDefault];
1299     }
1300   }
1301 
1302   // Okay, at this point, we know which new successor Pred will get.  Make
1303   // sure we update the number of entries in the PHI nodes for these
1304   // successors.
1305   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1306   if (DTU) {
1307     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1308     Updates.reserve(Updates.size() + NewSuccessors.size());
1309   }
1310   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1311        NewSuccessors) {
1312     for (auto I : seq(0, NewSuccessor.second)) {
1313       (void)I;
1314       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1315     }
1316     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1317       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1318   }
1319 
1320   Builder.SetInsertPoint(PTI);
1321   // Convert pointer to int before we switch.
1322   if (CV->getType()->isPointerTy()) {
1323     CV =
1324         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1325   }
1326 
1327   // Now that the successors are updated, create the new Switch instruction.
1328   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1329   NewSI->setDebugLoc(PTI->getDebugLoc());
1330   for (ValueEqualityComparisonCase &V : PredCases)
1331     NewSI->addCase(V.Value, V.Dest);
1332 
1333   if (PredHasWeights || SuccHasWeights) {
1334     // Halve the weights if any of them cannot fit in an uint32_t
1335     FitWeights(Weights);
1336 
1337     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1338 
1339     setBranchWeights(NewSI, MDWeights);
1340   }
1341 
1342   EraseTerminatorAndDCECond(PTI);
1343 
1344   // Okay, last check.  If BB is still a successor of PSI, then we must
1345   // have an infinite loop case.  If so, add an infinitely looping block
1346   // to handle the case to preserve the behavior of the code.
1347   BasicBlock *InfLoopBlock = nullptr;
1348   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1349     if (NewSI->getSuccessor(i) == BB) {
1350       if (!InfLoopBlock) {
1351         // Insert it at the end of the function, because it's either code,
1352         // or it won't matter if it's hot. :)
1353         InfLoopBlock =
1354             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1355         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1356         if (DTU)
1357           Updates.push_back(
1358               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1359       }
1360       NewSI->setSuccessor(i, InfLoopBlock);
1361     }
1362 
1363   if (DTU) {
1364     if (InfLoopBlock)
1365       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1366 
1367     Updates.push_back({DominatorTree::Delete, Pred, BB});
1368 
1369     DTU->applyUpdates(Updates);
1370   }
1371 
1372   ++NumFoldValueComparisonIntoPredecessors;
1373   return true;
1374 }
1375 
1376 /// The specified terminator is a value equality comparison instruction
1377 /// (either a switch or a branch on "X == c").
1378 /// See if any of the predecessors of the terminator block are value comparisons
1379 /// on the same value.  If so, and if safe to do so, fold them together.
1380 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1381                                                          IRBuilder<> &Builder) {
1382   BasicBlock *BB = TI->getParent();
1383   Value *CV = isValueEqualityComparison(TI); // CondVal
1384   assert(CV && "Not a comparison?");
1385 
1386   bool Changed = false;
1387 
1388   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1389   while (!Preds.empty()) {
1390     BasicBlock *Pred = Preds.pop_back_val();
1391     Instruction *PTI = Pred->getTerminator();
1392 
1393     // Don't try to fold into itself.
1394     if (Pred == BB)
1395       continue;
1396 
1397     // See if the predecessor is a comparison with the same value.
1398     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1399     if (PCV != CV)
1400       continue;
1401 
1402     SmallSetVector<BasicBlock *, 4> FailBlocks;
1403     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1404       for (auto *Succ : FailBlocks) {
1405         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1406           return false;
1407       }
1408     }
1409 
1410     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1411     Changed = true;
1412   }
1413   return Changed;
1414 }
1415 
1416 // If we would need to insert a select that uses the value of this invoke
1417 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1418 // can't hoist the invoke, as there is nowhere to put the select in this case.
1419 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1420                                 Instruction *I1, Instruction *I2) {
1421   for (BasicBlock *Succ : successors(BB1)) {
1422     for (const PHINode &PN : Succ->phis()) {
1423       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1424       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1425       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1426         return false;
1427       }
1428     }
1429   }
1430   return true;
1431 }
1432 
1433 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1434 
1435 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1436 /// in the two blocks up into the branch block. The caller of this function
1437 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1438 /// only perform hoisting in case both blocks only contain a terminator. In that
1439 /// case, only the original BI will be replaced and selects for PHIs are added.
1440 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1441                                            const TargetTransformInfo &TTI,
1442                                            bool EqTermsOnly) {
1443   // This does very trivial matching, with limited scanning, to find identical
1444   // instructions in the two blocks.  In particular, we don't want to get into
1445   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1446   // such, we currently just scan for obviously identical instructions in an
1447   // identical order.
1448   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1449   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1450 
1451   // If either of the blocks has it's address taken, then we can't do this fold,
1452   // because the code we'd hoist would no longer run when we jump into the block
1453   // by it's address.
1454   if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
1455     return false;
1456 
1457   BasicBlock::iterator BB1_Itr = BB1->begin();
1458   BasicBlock::iterator BB2_Itr = BB2->begin();
1459 
1460   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1461   // Skip debug info if it is not identical.
1462   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1463   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1464   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1465     while (isa<DbgInfoIntrinsic>(I1))
1466       I1 = &*BB1_Itr++;
1467     while (isa<DbgInfoIntrinsic>(I2))
1468       I2 = &*BB2_Itr++;
1469   }
1470   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2))
1471     return false;
1472 
1473   BasicBlock *BIParent = BI->getParent();
1474 
1475   bool Changed = false;
1476 
1477   auto _ = make_scope_exit([&]() {
1478     if (Changed)
1479       ++NumHoistCommonCode;
1480   });
1481 
1482   // Check if only hoisting terminators is allowed. This does not add new
1483   // instructions to the hoist location.
1484   if (EqTermsOnly) {
1485     // Skip any debug intrinsics, as they are free to hoist.
1486     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1487     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1488     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1489       return false;
1490     if (!I1NonDbg->isTerminator())
1491       return false;
1492     // Now we know that we only need to hoist debug intrinsics and the
1493     // terminator. Let the loop below handle those 2 cases.
1494   }
1495 
1496   do {
1497     // If we are hoisting the terminator instruction, don't move one (making a
1498     // broken BB), instead clone it, and remove BI.
1499     if (I1->isTerminator())
1500       goto HoistTerminator;
1501 
1502     // Hoisting token-returning instructions would obscure the origin.
1503     if (I1->getType()->isTokenTy())
1504       return Changed;
1505 
1506     // If we're going to hoist a call, make sure that the two instructions we're
1507     // commoning/hoisting are both marked with musttail, or neither of them is
1508     // marked as such. Otherwise, we might end up in a situation where we hoist
1509     // from a block where the terminator is a `ret` to a block where the terminator
1510     // is a `br`, and `musttail` calls expect to be followed by a return.
1511     auto *C1 = dyn_cast<CallInst>(I1);
1512     auto *C2 = dyn_cast<CallInst>(I2);
1513     if (C1 && C2)
1514       if (C1->isMustTailCall() != C2->isMustTailCall())
1515         return Changed;
1516 
1517     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1518       return Changed;
1519 
1520     // If any of the two call sites has nomerge attribute, stop hoisting.
1521     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1522       if (CB1->cannotMerge())
1523         return Changed;
1524     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1525       if (CB2->cannotMerge())
1526         return Changed;
1527 
1528     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1529       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1530       // The debug location is an integral part of a debug info intrinsic
1531       // and can't be separated from it or replaced.  Instead of attempting
1532       // to merge locations, simply hoist both copies of the intrinsic.
1533       BIParent->getInstList().splice(BI->getIterator(),
1534                                      BB1->getInstList(), I1);
1535       BIParent->getInstList().splice(BI->getIterator(),
1536                                      BB2->getInstList(), I2);
1537       Changed = true;
1538     } else {
1539       // For a normal instruction, we just move one to right before the branch,
1540       // then replace all uses of the other with the first.  Finally, we remove
1541       // the now redundant second instruction.
1542       BIParent->getInstList().splice(BI->getIterator(),
1543                                      BB1->getInstList(), I1);
1544       if (!I2->use_empty())
1545         I2->replaceAllUsesWith(I1);
1546       I1->andIRFlags(I2);
1547       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1548                              LLVMContext::MD_range,
1549                              LLVMContext::MD_fpmath,
1550                              LLVMContext::MD_invariant_load,
1551                              LLVMContext::MD_nonnull,
1552                              LLVMContext::MD_invariant_group,
1553                              LLVMContext::MD_align,
1554                              LLVMContext::MD_dereferenceable,
1555                              LLVMContext::MD_dereferenceable_or_null,
1556                              LLVMContext::MD_mem_parallel_loop_access,
1557                              LLVMContext::MD_access_group,
1558                              LLVMContext::MD_preserve_access_index};
1559       combineMetadata(I1, I2, KnownIDs, true);
1560 
1561       // I1 and I2 are being combined into a single instruction.  Its debug
1562       // location is the merged locations of the original instructions.
1563       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1564 
1565       I2->eraseFromParent();
1566       Changed = true;
1567     }
1568     ++NumHoistCommonInstrs;
1569 
1570     I1 = &*BB1_Itr++;
1571     I2 = &*BB2_Itr++;
1572     // Skip debug info if it is not identical.
1573     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1574     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1575     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1576       while (isa<DbgInfoIntrinsic>(I1))
1577         I1 = &*BB1_Itr++;
1578       while (isa<DbgInfoIntrinsic>(I2))
1579         I2 = &*BB2_Itr++;
1580     }
1581   } while (I1->isIdenticalToWhenDefined(I2));
1582 
1583   return true;
1584 
1585 HoistTerminator:
1586   // It may not be possible to hoist an invoke.
1587   // FIXME: Can we define a safety predicate for CallBr?
1588   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1589     return Changed;
1590 
1591   // TODO: callbr hoisting currently disabled pending further study.
1592   if (isa<CallBrInst>(I1))
1593     return Changed;
1594 
1595   for (BasicBlock *Succ : successors(BB1)) {
1596     for (PHINode &PN : Succ->phis()) {
1597       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1598       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1599       if (BB1V == BB2V)
1600         continue;
1601 
1602       // Check for passingValueIsAlwaysUndefined here because we would rather
1603       // eliminate undefined control flow then converting it to a select.
1604       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1605           passingValueIsAlwaysUndefined(BB2V, &PN))
1606         return Changed;
1607     }
1608   }
1609 
1610   // Okay, it is safe to hoist the terminator.
1611   Instruction *NT = I1->clone();
1612   BIParent->getInstList().insert(BI->getIterator(), NT);
1613   if (!NT->getType()->isVoidTy()) {
1614     I1->replaceAllUsesWith(NT);
1615     I2->replaceAllUsesWith(NT);
1616     NT->takeName(I1);
1617   }
1618   Changed = true;
1619   ++NumHoistCommonInstrs;
1620 
1621   // Ensure terminator gets a debug location, even an unknown one, in case
1622   // it involves inlinable calls.
1623   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1624 
1625   // PHIs created below will adopt NT's merged DebugLoc.
1626   IRBuilder<NoFolder> Builder(NT);
1627 
1628   // Hoisting one of the terminators from our successor is a great thing.
1629   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1630   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1631   // nodes, so we insert select instruction to compute the final result.
1632   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1633   for (BasicBlock *Succ : successors(BB1)) {
1634     for (PHINode &PN : Succ->phis()) {
1635       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1636       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1637       if (BB1V == BB2V)
1638         continue;
1639 
1640       // These values do not agree.  Insert a select instruction before NT
1641       // that determines the right value.
1642       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1643       if (!SI) {
1644         // Propagate fast-math-flags from phi node to its replacement select.
1645         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1646         if (isa<FPMathOperator>(PN))
1647           Builder.setFastMathFlags(PN.getFastMathFlags());
1648 
1649         SI = cast<SelectInst>(
1650             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1651                                  BB1V->getName() + "." + BB2V->getName(), BI));
1652       }
1653 
1654       // Make the PHI node use the select for all incoming values for BB1/BB2
1655       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1656         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1657           PN.setIncomingValue(i, SI);
1658     }
1659   }
1660 
1661   SmallVector<DominatorTree::UpdateType, 4> Updates;
1662 
1663   // Update any PHI nodes in our new successors.
1664   for (BasicBlock *Succ : successors(BB1)) {
1665     AddPredecessorToBlock(Succ, BIParent, BB1);
1666     if (DTU)
1667       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1668   }
1669 
1670   if (DTU)
1671     for (BasicBlock *Succ : successors(BI))
1672       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1673 
1674   EraseTerminatorAndDCECond(BI);
1675   if (DTU)
1676     DTU->applyUpdates(Updates);
1677   return Changed;
1678 }
1679 
1680 // Check lifetime markers.
1681 static bool isLifeTimeMarker(const Instruction *I) {
1682   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1683     switch (II->getIntrinsicID()) {
1684     default:
1685       break;
1686     case Intrinsic::lifetime_start:
1687     case Intrinsic::lifetime_end:
1688       return true;
1689     }
1690   }
1691   return false;
1692 }
1693 
1694 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1695 // into variables.
1696 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1697                                                 int OpIdx) {
1698   return !isa<IntrinsicInst>(I);
1699 }
1700 
1701 // All instructions in Insts belong to different blocks that all unconditionally
1702 // branch to a common successor. Analyze each instruction and return true if it
1703 // would be possible to sink them into their successor, creating one common
1704 // instruction instead. For every value that would be required to be provided by
1705 // PHI node (because an operand varies in each input block), add to PHIOperands.
1706 static bool canSinkInstructions(
1707     ArrayRef<Instruction *> Insts,
1708     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1709   // Prune out obviously bad instructions to move. Each instruction must have
1710   // exactly zero or one use, and we check later that use is by a single, common
1711   // PHI instruction in the successor.
1712   bool HasUse = !Insts.front()->user_empty();
1713   for (auto *I : Insts) {
1714     // These instructions may change or break semantics if moved.
1715     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1716         I->getType()->isTokenTy())
1717       return false;
1718 
1719     // Do not try to sink an instruction in an infinite loop - it can cause
1720     // this algorithm to infinite loop.
1721     if (I->getParent()->getSingleSuccessor() == I->getParent())
1722       return false;
1723 
1724     // Conservatively return false if I is an inline-asm instruction. Sinking
1725     // and merging inline-asm instructions can potentially create arguments
1726     // that cannot satisfy the inline-asm constraints.
1727     // If the instruction has nomerge attribute, return false.
1728     if (const auto *C = dyn_cast<CallBase>(I))
1729       if (C->isInlineAsm() || C->cannotMerge())
1730         return false;
1731 
1732     // Each instruction must have zero or one use.
1733     if (HasUse && !I->hasOneUse())
1734       return false;
1735     if (!HasUse && !I->user_empty())
1736       return false;
1737   }
1738 
1739   const Instruction *I0 = Insts.front();
1740   for (auto *I : Insts)
1741     if (!I->isSameOperationAs(I0))
1742       return false;
1743 
1744   // All instructions in Insts are known to be the same opcode. If they have a
1745   // use, check that the only user is a PHI or in the same block as the
1746   // instruction, because if a user is in the same block as an instruction we're
1747   // contemplating sinking, it must already be determined to be sinkable.
1748   if (HasUse) {
1749     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1750     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1751     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1752           auto *U = cast<Instruction>(*I->user_begin());
1753           return (PNUse &&
1754                   PNUse->getParent() == Succ &&
1755                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1756                  U->getParent() == I->getParent();
1757         }))
1758       return false;
1759   }
1760 
1761   // Because SROA can't handle speculating stores of selects, try not to sink
1762   // loads, stores or lifetime markers of allocas when we'd have to create a
1763   // PHI for the address operand. Also, because it is likely that loads or
1764   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1765   // them.
1766   // This can cause code churn which can have unintended consequences down
1767   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1768   // FIXME: This is a workaround for a deficiency in SROA - see
1769   // https://llvm.org/bugs/show_bug.cgi?id=30188
1770   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1771         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1772       }))
1773     return false;
1774   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1775         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1776       }))
1777     return false;
1778   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1779         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1780       }))
1781     return false;
1782 
1783   // For calls to be sinkable, they must all be indirect, or have same callee.
1784   // I.e. if we have two direct calls to different callees, we don't want to
1785   // turn that into an indirect call. Likewise, if we have an indirect call,
1786   // and a direct call, we don't actually want to have a single indirect call.
1787   if (isa<CallBase>(I0)) {
1788     auto IsIndirectCall = [](const Instruction *I) {
1789       return cast<CallBase>(I)->isIndirectCall();
1790     };
1791     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1792     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1793     if (HaveIndirectCalls) {
1794       if (!AllCallsAreIndirect)
1795         return false;
1796     } else {
1797       // All callees must be identical.
1798       Value *Callee = nullptr;
1799       for (const Instruction *I : Insts) {
1800         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1801         if (!Callee)
1802           Callee = CurrCallee;
1803         else if (Callee != CurrCallee)
1804           return false;
1805       }
1806     }
1807   }
1808 
1809   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1810     Value *Op = I0->getOperand(OI);
1811     if (Op->getType()->isTokenTy())
1812       // Don't touch any operand of token type.
1813       return false;
1814 
1815     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1816       assert(I->getNumOperands() == I0->getNumOperands());
1817       return I->getOperand(OI) == I0->getOperand(OI);
1818     };
1819     if (!all_of(Insts, SameAsI0)) {
1820       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1821           !canReplaceOperandWithVariable(I0, OI))
1822         // We can't create a PHI from this GEP.
1823         return false;
1824       for (auto *I : Insts)
1825         PHIOperands[I].push_back(I->getOperand(OI));
1826     }
1827   }
1828   return true;
1829 }
1830 
1831 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1832 // instruction of every block in Blocks to their common successor, commoning
1833 // into one instruction.
1834 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1835   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1836 
1837   // canSinkInstructions returning true guarantees that every block has at
1838   // least one non-terminator instruction.
1839   SmallVector<Instruction*,4> Insts;
1840   for (auto *BB : Blocks) {
1841     Instruction *I = BB->getTerminator();
1842     do {
1843       I = I->getPrevNode();
1844     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1845     if (!isa<DbgInfoIntrinsic>(I))
1846       Insts.push_back(I);
1847   }
1848 
1849   // The only checking we need to do now is that all users of all instructions
1850   // are the same PHI node. canSinkInstructions should have checked this but
1851   // it is slightly over-aggressive - it gets confused by commutative
1852   // instructions so double-check it here.
1853   Instruction *I0 = Insts.front();
1854   if (!I0->user_empty()) {
1855     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1856     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1857           auto *U = cast<Instruction>(*I->user_begin());
1858           return U == PNUse;
1859         }))
1860       return false;
1861   }
1862 
1863   // We don't need to do any more checking here; canSinkInstructions should
1864   // have done it all for us.
1865   SmallVector<Value*, 4> NewOperands;
1866   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1867     // This check is different to that in canSinkInstructions. There, we
1868     // cared about the global view once simplifycfg (and instcombine) have
1869     // completed - it takes into account PHIs that become trivially
1870     // simplifiable.  However here we need a more local view; if an operand
1871     // differs we create a PHI and rely on instcombine to clean up the very
1872     // small mess we may make.
1873     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1874       return I->getOperand(O) != I0->getOperand(O);
1875     });
1876     if (!NeedPHI) {
1877       NewOperands.push_back(I0->getOperand(O));
1878       continue;
1879     }
1880 
1881     // Create a new PHI in the successor block and populate it.
1882     auto *Op = I0->getOperand(O);
1883     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1884     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1885                                Op->getName() + ".sink", &BBEnd->front());
1886     for (auto *I : Insts)
1887       PN->addIncoming(I->getOperand(O), I->getParent());
1888     NewOperands.push_back(PN);
1889   }
1890 
1891   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1892   // and move it to the start of the successor block.
1893   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1894     I0->getOperandUse(O).set(NewOperands[O]);
1895   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1896 
1897   // Update metadata and IR flags, and merge debug locations.
1898   for (auto *I : Insts)
1899     if (I != I0) {
1900       // The debug location for the "common" instruction is the merged locations
1901       // of all the commoned instructions.  We start with the original location
1902       // of the "common" instruction and iteratively merge each location in the
1903       // loop below.
1904       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1905       // However, as N-way merge for CallInst is rare, so we use simplified API
1906       // instead of using complex API for N-way merge.
1907       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1908       combineMetadataForCSE(I0, I, true);
1909       I0->andIRFlags(I);
1910     }
1911 
1912   if (!I0->user_empty()) {
1913     // canSinkLastInstruction checked that all instructions were used by
1914     // one and only one PHI node. Find that now, RAUW it to our common
1915     // instruction and nuke it.
1916     auto *PN = cast<PHINode>(*I0->user_begin());
1917     PN->replaceAllUsesWith(I0);
1918     PN->eraseFromParent();
1919   }
1920 
1921   // Finally nuke all instructions apart from the common instruction.
1922   for (auto *I : Insts)
1923     if (I != I0)
1924       I->eraseFromParent();
1925 
1926   return true;
1927 }
1928 
1929 namespace {
1930 
1931   // LockstepReverseIterator - Iterates through instructions
1932   // in a set of blocks in reverse order from the first non-terminator.
1933   // For example (assume all blocks have size n):
1934   //   LockstepReverseIterator I([B1, B2, B3]);
1935   //   *I-- = [B1[n], B2[n], B3[n]];
1936   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1937   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1938   //   ...
1939   class LockstepReverseIterator {
1940     ArrayRef<BasicBlock*> Blocks;
1941     SmallVector<Instruction*,4> Insts;
1942     bool Fail;
1943 
1944   public:
1945     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1946       reset();
1947     }
1948 
1949     void reset() {
1950       Fail = false;
1951       Insts.clear();
1952       for (auto *BB : Blocks) {
1953         Instruction *Inst = BB->getTerminator();
1954         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1955           Inst = Inst->getPrevNode();
1956         if (!Inst) {
1957           // Block wasn't big enough.
1958           Fail = true;
1959           return;
1960         }
1961         Insts.push_back(Inst);
1962       }
1963     }
1964 
1965     bool isValid() const {
1966       return !Fail;
1967     }
1968 
1969     void operator--() {
1970       if (Fail)
1971         return;
1972       for (auto *&Inst : Insts) {
1973         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1974           Inst = Inst->getPrevNode();
1975         // Already at beginning of block.
1976         if (!Inst) {
1977           Fail = true;
1978           return;
1979         }
1980       }
1981     }
1982 
1983     void operator++() {
1984       if (Fail)
1985         return;
1986       for (auto *&Inst : Insts) {
1987         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1988           Inst = Inst->getNextNode();
1989         // Already at end of block.
1990         if (!Inst) {
1991           Fail = true;
1992           return;
1993         }
1994       }
1995     }
1996 
1997     ArrayRef<Instruction*> operator * () const {
1998       return Insts;
1999     }
2000   };
2001 
2002 } // end anonymous namespace
2003 
2004 /// Check whether BB's predecessors end with unconditional branches. If it is
2005 /// true, sink any common code from the predecessors to BB.
2006 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
2007                                            DomTreeUpdater *DTU) {
2008   // We support two situations:
2009   //   (1) all incoming arcs are unconditional
2010   //   (2) there are non-unconditional incoming arcs
2011   //
2012   // (2) is very common in switch defaults and
2013   // else-if patterns;
2014   //
2015   //   if (a) f(1);
2016   //   else if (b) f(2);
2017   //
2018   // produces:
2019   //
2020   //       [if]
2021   //      /    \
2022   //    [f(1)] [if]
2023   //      |     | \
2024   //      |     |  |
2025   //      |  [f(2)]|
2026   //       \    | /
2027   //        [ end ]
2028   //
2029   // [end] has two unconditional predecessor arcs and one conditional. The
2030   // conditional refers to the implicit empty 'else' arc. This conditional
2031   // arc can also be caused by an empty default block in a switch.
2032   //
2033   // In this case, we attempt to sink code from all *unconditional* arcs.
2034   // If we can sink instructions from these arcs (determined during the scan
2035   // phase below) we insert a common successor for all unconditional arcs and
2036   // connect that to [end], to enable sinking:
2037   //
2038   //       [if]
2039   //      /    \
2040   //    [x(1)] [if]
2041   //      |     | \
2042   //      |     |  \
2043   //      |  [x(2)] |
2044   //       \   /    |
2045   //   [sink.split] |
2046   //         \     /
2047   //         [ end ]
2048   //
2049   SmallVector<BasicBlock*,4> UnconditionalPreds;
2050   bool HaveNonUnconditionalPredecessors = false;
2051   for (auto *PredBB : predecessors(BB)) {
2052     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2053     if (PredBr && PredBr->isUnconditional())
2054       UnconditionalPreds.push_back(PredBB);
2055     else
2056       HaveNonUnconditionalPredecessors = true;
2057   }
2058   if (UnconditionalPreds.size() < 2)
2059     return false;
2060 
2061   // We take a two-step approach to tail sinking. First we scan from the end of
2062   // each block upwards in lockstep. If the n'th instruction from the end of each
2063   // block can be sunk, those instructions are added to ValuesToSink and we
2064   // carry on. If we can sink an instruction but need to PHI-merge some operands
2065   // (because they're not identical in each instruction) we add these to
2066   // PHIOperands.
2067   int ScanIdx = 0;
2068   SmallPtrSet<Value*,4> InstructionsToSink;
2069   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2070   LockstepReverseIterator LRI(UnconditionalPreds);
2071   while (LRI.isValid() &&
2072          canSinkInstructions(*LRI, PHIOperands)) {
2073     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2074                       << "\n");
2075     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2076     ++ScanIdx;
2077     --LRI;
2078   }
2079 
2080   // If no instructions can be sunk, early-return.
2081   if (ScanIdx == 0)
2082     return false;
2083 
2084   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2085 
2086   if (!followedByDeoptOrUnreachable) {
2087     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2088     // actually sink before encountering instruction that is unprofitable to
2089     // sink?
2090     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2091       unsigned NumPHIdValues = 0;
2092       for (auto *I : *LRI)
2093         for (auto *V : PHIOperands[I]) {
2094           if (!InstructionsToSink.contains(V))
2095             ++NumPHIdValues;
2096           // FIXME: this check is overly optimistic. We may end up not sinking
2097           // said instruction, due to the very same profitability check.
2098           // See @creating_too_many_phis in sink-common-code.ll.
2099         }
2100       LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2101       unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2102       if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2103         NumPHIInsts++;
2104 
2105       return NumPHIInsts <= 1;
2106     };
2107 
2108     // We've determined that we are going to sink last ScanIdx instructions,
2109     // and recorded them in InstructionsToSink. Now, some instructions may be
2110     // unprofitable to sink. But that determination depends on the instructions
2111     // that we are going to sink.
2112 
2113     // First, forward scan: find the first instruction unprofitable to sink,
2114     // recording all the ones that are profitable to sink.
2115     // FIXME: would it be better, after we detect that not all are profitable.
2116     // to either record the profitable ones, or erase the unprofitable ones?
2117     // Maybe we need to choose (at runtime) the one that will touch least
2118     // instrs?
2119     LRI.reset();
2120     int Idx = 0;
2121     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2122     while (Idx < ScanIdx) {
2123       if (!ProfitableToSinkInstruction(LRI)) {
2124         // Too many PHIs would be created.
2125         LLVM_DEBUG(
2126             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2127         break;
2128       }
2129       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2130       --LRI;
2131       ++Idx;
2132     }
2133 
2134     // If no instructions can be sunk, early-return.
2135     if (Idx == 0)
2136       return false;
2137 
2138     // Did we determine that (only) some instructions are unprofitable to sink?
2139     if (Idx < ScanIdx) {
2140       // Okay, some instructions are unprofitable.
2141       ScanIdx = Idx;
2142       InstructionsToSink = InstructionsProfitableToSink;
2143 
2144       // But, that may make other instructions unprofitable, too.
2145       // So, do a backward scan, do any earlier instructions become
2146       // unprofitable?
2147       assert(
2148           !ProfitableToSinkInstruction(LRI) &&
2149           "We already know that the last instruction is unprofitable to sink");
2150       ++LRI;
2151       --Idx;
2152       while (Idx >= 0) {
2153         // If we detect that an instruction becomes unprofitable to sink,
2154         // all earlier instructions won't be sunk either,
2155         // so preemptively keep InstructionsProfitableToSink in sync.
2156         // FIXME: is this the most performant approach?
2157         for (auto *I : *LRI)
2158           InstructionsProfitableToSink.erase(I);
2159         if (!ProfitableToSinkInstruction(LRI)) {
2160           // Everything starting with this instruction won't be sunk.
2161           ScanIdx = Idx;
2162           InstructionsToSink = InstructionsProfitableToSink;
2163         }
2164         ++LRI;
2165         --Idx;
2166       }
2167     }
2168 
2169     // If no instructions can be sunk, early-return.
2170     if (ScanIdx == 0)
2171       return false;
2172   }
2173 
2174   bool Changed = false;
2175 
2176   if (HaveNonUnconditionalPredecessors) {
2177     if (!followedByDeoptOrUnreachable) {
2178       // It is always legal to sink common instructions from unconditional
2179       // predecessors. However, if not all predecessors are unconditional,
2180       // this transformation might be pessimizing. So as a rule of thumb,
2181       // don't do it unless we'd sink at least one non-speculatable instruction.
2182       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2183       LRI.reset();
2184       int Idx = 0;
2185       bool Profitable = false;
2186       while (Idx < ScanIdx) {
2187         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2188           Profitable = true;
2189           break;
2190         }
2191         --LRI;
2192         ++Idx;
2193       }
2194       if (!Profitable)
2195         return false;
2196     }
2197 
2198     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2199     // We have a conditional edge and we're going to sink some instructions.
2200     // Insert a new block postdominating all blocks we're going to sink from.
2201     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2202       // Edges couldn't be split.
2203       return false;
2204     Changed = true;
2205   }
2206 
2207   // Now that we've analyzed all potential sinking candidates, perform the
2208   // actual sink. We iteratively sink the last non-terminator of the source
2209   // blocks into their common successor unless doing so would require too
2210   // many PHI instructions to be generated (currently only one PHI is allowed
2211   // per sunk instruction).
2212   //
2213   // We can use InstructionsToSink to discount values needing PHI-merging that will
2214   // actually be sunk in a later iteration. This allows us to be more
2215   // aggressive in what we sink. This does allow a false positive where we
2216   // sink presuming a later value will also be sunk, but stop half way through
2217   // and never actually sink it which means we produce more PHIs than intended.
2218   // This is unlikely in practice though.
2219   int SinkIdx = 0;
2220   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2221     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2222                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2223                       << "\n");
2224 
2225     // Because we've sunk every instruction in turn, the current instruction to
2226     // sink is always at index 0.
2227     LRI.reset();
2228 
2229     if (!sinkLastInstruction(UnconditionalPreds)) {
2230       LLVM_DEBUG(
2231           dbgs()
2232           << "SINK: stopping here, failed to actually sink instruction!\n");
2233       break;
2234     }
2235 
2236     NumSinkCommonInstrs++;
2237     Changed = true;
2238   }
2239   if (SinkIdx != 0)
2240     ++NumSinkCommonCode;
2241   return Changed;
2242 }
2243 
2244 namespace {
2245 
2246 struct CompatibleSets {
2247   using SetTy = SmallVector<InvokeInst *, 2>;
2248 
2249   SmallVector<SetTy, 1> Sets;
2250 
2251   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2252 
2253   SetTy &getCompatibleSet(InvokeInst *II);
2254 
2255   void insert(InvokeInst *II);
2256 };
2257 
2258 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2259   // Perform a linear scan over all the existing sets, see if the new `invoke`
2260   // is compatible with any particular set. Since we know that all the `invokes`
2261   // within a set are compatible, only check the first `invoke` in each set.
2262   // WARNING: at worst, this has quadratic complexity.
2263   for (CompatibleSets::SetTy &Set : Sets) {
2264     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2265       return Set;
2266   }
2267 
2268   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2269   return Sets.emplace_back();
2270 }
2271 
2272 void CompatibleSets::insert(InvokeInst *II) {
2273   getCompatibleSet(II).emplace_back(II);
2274 }
2275 
2276 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2277   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2278 
2279   // Can we theoretically merge these `invoke`s?
2280   auto IsIllegalToMerge = [](InvokeInst *II) {
2281     return II->cannotMerge() || II->isInlineAsm();
2282   };
2283   if (any_of(Invokes, IsIllegalToMerge))
2284     return false;
2285 
2286   // Either both `invoke`s must be   direct,
2287   // or     both `invoke`s must be indirect.
2288   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2289   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2290   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2291   if (HaveIndirectCalls) {
2292     if (!AllCallsAreIndirect)
2293       return false;
2294   } else {
2295     // All callees must be identical.
2296     Value *Callee = nullptr;
2297     for (InvokeInst *II : Invokes) {
2298       Value *CurrCallee = II->getCalledOperand();
2299       assert(CurrCallee && "There is always a called operand.");
2300       if (!Callee)
2301         Callee = CurrCallee;
2302       else if (Callee != CurrCallee)
2303         return false;
2304     }
2305   }
2306 
2307   // Either both `invoke`s must not have a normal destination,
2308   // or     both `invoke`s must     have a normal destination,
2309   auto HasNormalDest = [](InvokeInst *II) {
2310     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2311   };
2312   if (any_of(Invokes, HasNormalDest)) {
2313     // Do not merge `invoke` that does not have a normal destination with one
2314     // that does have a normal destination, even though doing so would be legal.
2315     if (!all_of(Invokes, HasNormalDest))
2316       return false;
2317 
2318     // All normal destinations must be identical.
2319     BasicBlock *NormalBB = nullptr;
2320     for (InvokeInst *II : Invokes) {
2321       BasicBlock *CurrNormalBB = II->getNormalDest();
2322       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2323       if (!NormalBB)
2324         NormalBB = CurrNormalBB;
2325       else if (NormalBB != CurrNormalBB)
2326         return false;
2327     }
2328 
2329     // In the normal destination, the incoming values for these two `invoke`s
2330     // must be compatible.
2331     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2332     if (!IncomingValuesAreCompatible(
2333             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2334             &EquivalenceSet))
2335       return false;
2336   }
2337 
2338 #ifndef NDEBUG
2339   // All unwind destinations must be identical.
2340   // We know that because we have started from said unwind destination.
2341   BasicBlock *UnwindBB = nullptr;
2342   for (InvokeInst *II : Invokes) {
2343     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2344     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2345     if (!UnwindBB)
2346       UnwindBB = CurrUnwindBB;
2347     else
2348       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2349   }
2350 #endif
2351 
2352   // In the unwind destination, the incoming values for these two `invoke`s
2353   // must be compatible.
2354   if (!IncomingValuesAreCompatible(
2355           Invokes.front()->getUnwindDest(),
2356           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2357     return false;
2358 
2359   // Ignoring arguments, these `invoke`s must be identical,
2360   // including operand bundles.
2361   const InvokeInst *II0 = Invokes.front();
2362   for (auto *II : Invokes.drop_front())
2363     if (!II->isSameOperationAs(II0))
2364       return false;
2365 
2366   // Can we theoretically form the data operands for the merged `invoke`?
2367   auto IsIllegalToMergeArguments = [](auto Ops) {
2368     Type *Ty = std::get<0>(Ops)->getType();
2369     assert(Ty == std::get<1>(Ops)->getType() && "Incompatible types?");
2370     return Ty->isTokenTy() && std::get<0>(Ops) != std::get<1>(Ops);
2371   };
2372   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2373   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2374              IsIllegalToMergeArguments))
2375     return false;
2376 
2377   return true;
2378 }
2379 
2380 } // namespace
2381 
2382 // Merge all invokes in the provided set, all of which are compatible
2383 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2384 static void MergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2385                                        DomTreeUpdater *DTU) {
2386   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2387 
2388   SmallVector<DominatorTree::UpdateType, 8> Updates;
2389   if (DTU)
2390     Updates.reserve(2 + 3 * Invokes.size());
2391 
2392   bool HasNormalDest =
2393       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2394 
2395   // Clone one of the invokes into a new basic block.
2396   // Since they are all compatible, it doesn't matter which invoke is cloned.
2397   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2398     InvokeInst *II0 = Invokes.front();
2399     BasicBlock *II0BB = II0->getParent();
2400     BasicBlock *InsertBeforeBlock =
2401         II0->getParent()->getIterator()->getNextNode();
2402     Function *Func = II0BB->getParent();
2403     LLVMContext &Ctx = II0->getContext();
2404 
2405     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2406         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2407 
2408     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2409     // NOTE: all invokes have the same attributes, so no handling needed.
2410     MergedInvokeBB->getInstList().push_back(MergedInvoke);
2411 
2412     if (!HasNormalDest) {
2413       // This set does not have a normal destination,
2414       // so just form a new block with unreachable terminator.
2415       BasicBlock *MergedNormalDest = BasicBlock::Create(
2416           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2417       new UnreachableInst(Ctx, MergedNormalDest);
2418       MergedInvoke->setNormalDest(MergedNormalDest);
2419     }
2420 
2421     // The unwind destination, however, remainds identical for all invokes here.
2422 
2423     return MergedInvoke;
2424   }();
2425 
2426   if (DTU) {
2427     // Predecessor blocks that contained these invokes will now branch to
2428     // the new block that contains the merged invoke, ...
2429     for (InvokeInst *II : Invokes)
2430       Updates.push_back(
2431           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2432 
2433     // ... which has the new `unreachable` block as normal destination,
2434     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2435     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2436       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2437                          SuccBBOfMergedInvoke});
2438 
2439     // Since predecessor blocks now unconditionally branch to a new block,
2440     // they no longer branch to their original successors.
2441     for (InvokeInst *II : Invokes)
2442       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2443         Updates.push_back(
2444             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2445   }
2446 
2447   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2448 
2449   // Form the merged operands for the merged invoke.
2450   for (Use &U : MergedInvoke->operands()) {
2451     // Only PHI together the indirect callees and data operands.
2452     if (MergedInvoke->isCallee(&U)) {
2453       if (!IsIndirectCall)
2454         continue;
2455     } else if (!MergedInvoke->isDataOperand(&U))
2456       continue;
2457 
2458     // Don't create trivial PHI's with all-identical incoming values.
2459     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2460       return II->getOperand(U.getOperandNo()) != U.get();
2461     });
2462     if (!NeedPHI)
2463       continue;
2464 
2465     // Form a PHI out of all the data ops under this index.
2466     PHINode *PN = PHINode::Create(
2467         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke);
2468     for (InvokeInst *II : Invokes)
2469       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2470 
2471     U.set(PN);
2472   }
2473 
2474   // We've ensured that each PHI node has compatible (identical) incoming values
2475   // when coming from each of the `invoke`s in the current merge set,
2476   // so update the PHI nodes accordingly.
2477   for (BasicBlock *Succ : successors(MergedInvoke))
2478     AddPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2479                           /*ExistPred=*/Invokes.front()->getParent());
2480 
2481   // And finally, replace the original `invoke`s with an unconditional branch
2482   // to the block with the merged `invoke`. Also, give that merged `invoke`
2483   // the merged debugloc of all the original `invoke`s.
2484   const DILocation *MergedDebugLoc = nullptr;
2485   for (InvokeInst *II : Invokes) {
2486     // Compute the debug location common to all the original `invoke`s.
2487     if (!MergedDebugLoc)
2488       MergedDebugLoc = II->getDebugLoc();
2489     else
2490       MergedDebugLoc =
2491           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2492 
2493     // And replace the old `invoke` with an unconditionally branch
2494     // to the block with the merged `invoke`.
2495     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2496       OrigSuccBB->removePredecessor(II->getParent());
2497     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2498     II->replaceAllUsesWith(MergedInvoke);
2499     II->eraseFromParent();
2500     ++NumInvokesMerged;
2501   }
2502   MergedInvoke->setDebugLoc(MergedDebugLoc);
2503   ++NumInvokeSetsFormed;
2504 
2505   if (DTU)
2506     DTU->applyUpdates(Updates);
2507 }
2508 
2509 /// If this block is a `landingpad` exception handling block, categorize all
2510 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2511 /// being "mergeable" together, and then merge invokes in each set together.
2512 ///
2513 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2514 ///          [...]        [...]
2515 ///            |            |
2516 ///        [invoke0]    [invoke1]
2517 ///           / \          / \
2518 ///     [cont0] [landingpad] [cont1]
2519 /// to:
2520 ///      [...] [...]
2521 ///          \ /
2522 ///       [invoke]
2523 ///          / \
2524 ///     [cont] [landingpad]
2525 ///
2526 /// But of course we can only do that if the invokes share the `landingpad`,
2527 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2528 /// and the invoked functions are "compatible".
2529 static bool MergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2530   if (!EnableMergeCompatibleInvokes)
2531     return false;
2532 
2533   bool Changed = false;
2534 
2535   // FIXME: generalize to all exception handling blocks?
2536   if (!BB->isLandingPad())
2537     return Changed;
2538 
2539   CompatibleSets Grouper;
2540 
2541   // Record all the predecessors of this `landingpad`. As per verifier,
2542   // the only allowed predecessor is the unwind edge of an `invoke`.
2543   // We want to group "compatible" `invokes` into the same set to be merged.
2544   for (BasicBlock *PredBB : predecessors(BB))
2545     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2546 
2547   // And now, merge `invoke`s that were grouped togeter.
2548   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2549     if (Invokes.size() < 2)
2550       continue;
2551     Changed = true;
2552     MergeCompatibleInvokesImpl(Invokes, DTU);
2553   }
2554 
2555   return Changed;
2556 }
2557 
2558 /// Determine if we can hoist sink a sole store instruction out of a
2559 /// conditional block.
2560 ///
2561 /// We are looking for code like the following:
2562 ///   BrBB:
2563 ///     store i32 %add, i32* %arrayidx2
2564 ///     ... // No other stores or function calls (we could be calling a memory
2565 ///     ... // function).
2566 ///     %cmp = icmp ult %x, %y
2567 ///     br i1 %cmp, label %EndBB, label %ThenBB
2568 ///   ThenBB:
2569 ///     store i32 %add5, i32* %arrayidx2
2570 ///     br label EndBB
2571 ///   EndBB:
2572 ///     ...
2573 ///   We are going to transform this into:
2574 ///   BrBB:
2575 ///     store i32 %add, i32* %arrayidx2
2576 ///     ... //
2577 ///     %cmp = icmp ult %x, %y
2578 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2579 ///     store i32 %add.add5, i32* %arrayidx2
2580 ///     ...
2581 ///
2582 /// \return The pointer to the value of the previous store if the store can be
2583 ///         hoisted into the predecessor block. 0 otherwise.
2584 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2585                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2586   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2587   if (!StoreToHoist)
2588     return nullptr;
2589 
2590   // Volatile or atomic.
2591   if (!StoreToHoist->isSimple())
2592     return nullptr;
2593 
2594   Value *StorePtr = StoreToHoist->getPointerOperand();
2595   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2596 
2597   // Look for a store to the same pointer in BrBB.
2598   unsigned MaxNumInstToLookAt = 9;
2599   // Skip pseudo probe intrinsic calls which are not really killing any memory
2600   // accesses.
2601   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2602     if (!MaxNumInstToLookAt)
2603       break;
2604     --MaxNumInstToLookAt;
2605 
2606     // Could be calling an instruction that affects memory like free().
2607     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2608       return nullptr;
2609 
2610     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2611       // Found the previous store to same location and type. Make sure it is
2612       // simple, to avoid introducing a spurious non-atomic write after an
2613       // atomic write.
2614       if (SI->getPointerOperand() == StorePtr &&
2615           SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
2616         // Found the previous store, return its value operand.
2617         return SI->getValueOperand();
2618       return nullptr; // Unknown store.
2619     }
2620 
2621     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2622       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2623           LI->isSimple()) {
2624         // Local objects (created by an `alloca` instruction) are always
2625         // writable, so once we are past a read from a location it is valid to
2626         // also write to that same location.
2627         // If the address of the local object never escapes the function, that
2628         // means it's never concurrently read or written, hence moving the store
2629         // from under the condition will not introduce a data race.
2630         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2631         if (AI && !PointerMayBeCaptured(AI, false, true))
2632           // Found a previous load, return it.
2633           return LI;
2634       }
2635       // The load didn't work out, but we may still find a store.
2636     }
2637   }
2638 
2639   return nullptr;
2640 }
2641 
2642 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2643 /// converted to selects.
2644 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2645                                            BasicBlock *EndBB,
2646                                            unsigned &SpeculatedInstructions,
2647                                            InstructionCost &Cost,
2648                                            const TargetTransformInfo &TTI) {
2649   TargetTransformInfo::TargetCostKind CostKind =
2650     BB->getParent()->hasMinSize()
2651     ? TargetTransformInfo::TCK_CodeSize
2652     : TargetTransformInfo::TCK_SizeAndLatency;
2653 
2654   bool HaveRewritablePHIs = false;
2655   for (PHINode &PN : EndBB->phis()) {
2656     Value *OrigV = PN.getIncomingValueForBlock(BB);
2657     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2658 
2659     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2660     // Skip PHIs which are trivial.
2661     if (ThenV == OrigV)
2662       continue;
2663 
2664     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2665                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2666 
2667     // Don't convert to selects if we could remove undefined behavior instead.
2668     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2669         passingValueIsAlwaysUndefined(ThenV, &PN))
2670       return false;
2671 
2672     HaveRewritablePHIs = true;
2673     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2674     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2675     if (!OrigCE && !ThenCE)
2676       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2677 
2678     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2679     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2680     InstructionCost MaxCost =
2681         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2682     if (OrigCost + ThenCost > MaxCost)
2683       return false;
2684 
2685     // Account for the cost of an unfolded ConstantExpr which could end up
2686     // getting expanded into Instructions.
2687     // FIXME: This doesn't account for how many operations are combined in the
2688     // constant expression.
2689     ++SpeculatedInstructions;
2690     if (SpeculatedInstructions > 1)
2691       return false;
2692   }
2693 
2694   return HaveRewritablePHIs;
2695 }
2696 
2697 /// Speculate a conditional basic block flattening the CFG.
2698 ///
2699 /// Note that this is a very risky transform currently. Speculating
2700 /// instructions like this is most often not desirable. Instead, there is an MI
2701 /// pass which can do it with full awareness of the resource constraints.
2702 /// However, some cases are "obvious" and we should do directly. An example of
2703 /// this is speculating a single, reasonably cheap instruction.
2704 ///
2705 /// There is only one distinct advantage to flattening the CFG at the IR level:
2706 /// it makes very common but simplistic optimizations such as are common in
2707 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2708 /// modeling their effects with easier to reason about SSA value graphs.
2709 ///
2710 ///
2711 /// An illustration of this transform is turning this IR:
2712 /// \code
2713 ///   BB:
2714 ///     %cmp = icmp ult %x, %y
2715 ///     br i1 %cmp, label %EndBB, label %ThenBB
2716 ///   ThenBB:
2717 ///     %sub = sub %x, %y
2718 ///     br label BB2
2719 ///   EndBB:
2720 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2721 ///     ...
2722 /// \endcode
2723 ///
2724 /// Into this IR:
2725 /// \code
2726 ///   BB:
2727 ///     %cmp = icmp ult %x, %y
2728 ///     %sub = sub %x, %y
2729 ///     %cond = select i1 %cmp, 0, %sub
2730 ///     ...
2731 /// \endcode
2732 ///
2733 /// \returns true if the conditional block is removed.
2734 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2735                                             const TargetTransformInfo &TTI) {
2736   // Be conservative for now. FP select instruction can often be expensive.
2737   Value *BrCond = BI->getCondition();
2738   if (isa<FCmpInst>(BrCond))
2739     return false;
2740 
2741   BasicBlock *BB = BI->getParent();
2742   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2743   InstructionCost Budget =
2744       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2745 
2746   // If ThenBB is actually on the false edge of the conditional branch, remember
2747   // to swap the select operands later.
2748   bool Invert = false;
2749   if (ThenBB != BI->getSuccessor(0)) {
2750     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2751     Invert = true;
2752   }
2753   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2754 
2755   // If the branch is non-unpredictable, and is predicted to *not* branch to
2756   // the `then` block, then avoid speculating it.
2757   if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
2758     uint64_t TWeight, FWeight;
2759     if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
2760       uint64_t EndWeight = Invert ? TWeight : FWeight;
2761       BranchProbability BIEndProb =
2762           BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2763       BranchProbability Likely = TTI.getPredictableBranchThreshold();
2764       if (BIEndProb >= Likely)
2765         return false;
2766     }
2767   }
2768 
2769   // Keep a count of how many times instructions are used within ThenBB when
2770   // they are candidates for sinking into ThenBB. Specifically:
2771   // - They are defined in BB, and
2772   // - They have no side effects, and
2773   // - All of their uses are in ThenBB.
2774   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2775 
2776   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2777 
2778   unsigned SpeculatedInstructions = 0;
2779   Value *SpeculatedStoreValue = nullptr;
2780   StoreInst *SpeculatedStore = nullptr;
2781   for (BasicBlock::iterator BBI = ThenBB->begin(),
2782                             BBE = std::prev(ThenBB->end());
2783        BBI != BBE; ++BBI) {
2784     Instruction *I = &*BBI;
2785     // Skip debug info.
2786     if (isa<DbgInfoIntrinsic>(I)) {
2787       SpeculatedDbgIntrinsics.push_back(I);
2788       continue;
2789     }
2790 
2791     // Skip pseudo probes. The consequence is we lose track of the branch
2792     // probability for ThenBB, which is fine since the optimization here takes
2793     // place regardless of the branch probability.
2794     if (isa<PseudoProbeInst>(I)) {
2795       // The probe should be deleted so that it will not be over-counted when
2796       // the samples collected on the non-conditional path are counted towards
2797       // the conditional path. We leave it for the counts inference algorithm to
2798       // figure out a proper count for an unknown probe.
2799       SpeculatedDbgIntrinsics.push_back(I);
2800       continue;
2801     }
2802 
2803     // Only speculatively execute a single instruction (not counting the
2804     // terminator) for now.
2805     ++SpeculatedInstructions;
2806     if (SpeculatedInstructions > 1)
2807       return false;
2808 
2809     // Don't hoist the instruction if it's unsafe or expensive.
2810     if (!isSafeToSpeculativelyExecute(I) &&
2811         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2812                                   I, BB, ThenBB, EndBB))))
2813       return false;
2814     if (!SpeculatedStoreValue &&
2815         computeSpeculationCost(I, TTI) >
2816             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2817       return false;
2818 
2819     // Store the store speculation candidate.
2820     if (SpeculatedStoreValue)
2821       SpeculatedStore = cast<StoreInst>(I);
2822 
2823     // Do not hoist the instruction if any of its operands are defined but not
2824     // used in BB. The transformation will prevent the operand from
2825     // being sunk into the use block.
2826     for (Use &Op : I->operands()) {
2827       Instruction *OpI = dyn_cast<Instruction>(Op);
2828       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2829         continue; // Not a candidate for sinking.
2830 
2831       ++SinkCandidateUseCounts[OpI];
2832     }
2833   }
2834 
2835   // Consider any sink candidates which are only used in ThenBB as costs for
2836   // speculation. Note, while we iterate over a DenseMap here, we are summing
2837   // and so iteration order isn't significant.
2838   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2839            I = SinkCandidateUseCounts.begin(),
2840            E = SinkCandidateUseCounts.end();
2841        I != E; ++I)
2842     if (I->first->hasNUses(I->second)) {
2843       ++SpeculatedInstructions;
2844       if (SpeculatedInstructions > 1)
2845         return false;
2846     }
2847 
2848   // Check that we can insert the selects and that it's not too expensive to do
2849   // so.
2850   bool Convert = SpeculatedStore != nullptr;
2851   InstructionCost Cost = 0;
2852   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2853                                             SpeculatedInstructions,
2854                                             Cost, TTI);
2855   if (!Convert || Cost > Budget)
2856     return false;
2857 
2858   // If we get here, we can hoist the instruction and if-convert.
2859   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2860 
2861   // Insert a select of the value of the speculated store.
2862   if (SpeculatedStoreValue) {
2863     IRBuilder<NoFolder> Builder(BI);
2864     Value *TrueV = SpeculatedStore->getValueOperand();
2865     Value *FalseV = SpeculatedStoreValue;
2866     if (Invert)
2867       std::swap(TrueV, FalseV);
2868     Value *S = Builder.CreateSelect(
2869         BrCond, TrueV, FalseV, "spec.store.select", BI);
2870     SpeculatedStore->setOperand(0, S);
2871     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2872                                          SpeculatedStore->getDebugLoc());
2873   }
2874 
2875   // Metadata can be dependent on the condition we are hoisting above.
2876   // Conservatively strip all metadata on the instruction. Drop the debug loc
2877   // to avoid making it appear as if the condition is a constant, which would
2878   // be misleading while debugging.
2879   // Similarly strip attributes that maybe dependent on condition we are
2880   // hoisting above.
2881   for (auto &I : *ThenBB) {
2882     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2883       I.setDebugLoc(DebugLoc());
2884     I.dropUndefImplyingAttrsAndUnknownMetadata();
2885   }
2886 
2887   // Hoist the instructions.
2888   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2889                            ThenBB->begin(), std::prev(ThenBB->end()));
2890 
2891   // Insert selects and rewrite the PHI operands.
2892   IRBuilder<NoFolder> Builder(BI);
2893   for (PHINode &PN : EndBB->phis()) {
2894     unsigned OrigI = PN.getBasicBlockIndex(BB);
2895     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2896     Value *OrigV = PN.getIncomingValue(OrigI);
2897     Value *ThenV = PN.getIncomingValue(ThenI);
2898 
2899     // Skip PHIs which are trivial.
2900     if (OrigV == ThenV)
2901       continue;
2902 
2903     // Create a select whose true value is the speculatively executed value and
2904     // false value is the pre-existing value. Swap them if the branch
2905     // destinations were inverted.
2906     Value *TrueV = ThenV, *FalseV = OrigV;
2907     if (Invert)
2908       std::swap(TrueV, FalseV);
2909     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2910     PN.setIncomingValue(OrigI, V);
2911     PN.setIncomingValue(ThenI, V);
2912   }
2913 
2914   // Remove speculated dbg intrinsics.
2915   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2916   // dbg value for the different flows and inserting it after the select.
2917   for (Instruction *I : SpeculatedDbgIntrinsics)
2918     I->eraseFromParent();
2919 
2920   ++NumSpeculations;
2921   return true;
2922 }
2923 
2924 /// Return true if we can thread a branch across this block.
2925 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2926   int Size = 0;
2927 
2928   SmallPtrSet<const Value *, 32> EphValues;
2929   auto IsEphemeral = [&](const Instruction *I) {
2930     if (isa<AssumeInst>(I))
2931       return true;
2932     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2933            all_of(I->users(),
2934                   [&](const User *U) { return EphValues.count(U); });
2935   };
2936 
2937   // Walk the loop in reverse so that we can identify ephemeral values properly
2938   // (values only feeding assumes).
2939   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
2940     // Can't fold blocks that contain noduplicate or convergent calls.
2941     if (CallInst *CI = dyn_cast<CallInst>(&I))
2942       if (CI->cannotDuplicate() || CI->isConvergent())
2943         return false;
2944 
2945     // Ignore ephemeral values which are deleted during codegen.
2946     if (IsEphemeral(&I))
2947       EphValues.insert(&I);
2948     // We will delete Phis while threading, so Phis should not be accounted in
2949     // block's size.
2950     else if (!isa<PHINode>(I)) {
2951       if (Size++ > MaxSmallBlockSize)
2952         return false; // Don't clone large BB's.
2953     }
2954 
2955     // We can only support instructions that do not define values that are
2956     // live outside of the current basic block.
2957     for (User *U : I.users()) {
2958       Instruction *UI = cast<Instruction>(U);
2959       if (UI->getParent() != BB || isa<PHINode>(UI))
2960         return false;
2961     }
2962 
2963     // Looks ok, continue checking.
2964   }
2965 
2966   return true;
2967 }
2968 
2969 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
2970                                         BasicBlock *To) {
2971   // Don't look past the block defining the value, we might get the value from
2972   // a previous loop iteration.
2973   auto *I = dyn_cast<Instruction>(V);
2974   if (I && I->getParent() == To)
2975     return nullptr;
2976 
2977   // We know the value if the From block branches on it.
2978   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
2979   if (BI && BI->isConditional() && BI->getCondition() == V &&
2980       BI->getSuccessor(0) != BI->getSuccessor(1))
2981     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
2982                                      : ConstantInt::getFalse(BI->getContext());
2983 
2984   return nullptr;
2985 }
2986 
2987 /// If we have a conditional branch on something for which we know the constant
2988 /// value in predecessors (e.g. a phi node in the current block), thread edges
2989 /// from the predecessor to their ultimate destination.
2990 static Optional<bool>
2991 FoldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
2992                                             const DataLayout &DL,
2993                                             AssumptionCache *AC) {
2994   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
2995   BasicBlock *BB = BI->getParent();
2996   Value *Cond = BI->getCondition();
2997   PHINode *PN = dyn_cast<PHINode>(Cond);
2998   if (PN && PN->getParent() == BB) {
2999     // Degenerate case of a single entry PHI.
3000     if (PN->getNumIncomingValues() == 1) {
3001       FoldSingleEntryPHINodes(PN->getParent());
3002       return true;
3003     }
3004 
3005     for (Use &U : PN->incoming_values())
3006       if (auto *CB = dyn_cast<ConstantInt>(U))
3007         KnownValues[CB].insert(PN->getIncomingBlock(U));
3008   } else {
3009     for (BasicBlock *Pred : predecessors(BB)) {
3010       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3011         KnownValues[CB].insert(Pred);
3012     }
3013   }
3014 
3015   if (KnownValues.empty())
3016     return false;
3017 
3018   // Now we know that this block has multiple preds and two succs.
3019   // Check that the block is small enough and values defined in the block are
3020   // not used outside of it.
3021   if (!BlockIsSimpleEnoughToThreadThrough(BB))
3022     return false;
3023 
3024   for (const auto &Pair : KnownValues) {
3025     // Okay, we now know that all edges from PredBB should be revectored to
3026     // branch to RealDest.
3027     ConstantInt *CB = Pair.first;
3028     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3029     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3030 
3031     if (RealDest == BB)
3032       continue; // Skip self loops.
3033 
3034     // Skip if the predecessor's terminator is an indirect branch.
3035     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3036           return isa<IndirectBrInst>(PredBB->getTerminator());
3037         }))
3038       continue;
3039 
3040     LLVM_DEBUG({
3041       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3042              << " has value " << *Pair.first << " in predecessors:\n";
3043       for (const BasicBlock *PredBB : Pair.second)
3044         dbgs() << "  " << PredBB->getName() << "\n";
3045       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3046     });
3047 
3048     // Split the predecessors we are threading into a new edge block. We'll
3049     // clone the instructions into this block, and then redirect it to RealDest.
3050     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3051 
3052     // TODO: These just exist to reduce test diff, we can drop them if we like.
3053     EdgeBB->setName(RealDest->getName() + ".critedge");
3054     EdgeBB->moveBefore(RealDest);
3055 
3056     // Update PHI nodes.
3057     AddPredecessorToBlock(RealDest, EdgeBB, BB);
3058 
3059     // BB may have instructions that are being threaded over.  Clone these
3060     // instructions into EdgeBB.  We know that there will be no uses of the
3061     // cloned instructions outside of EdgeBB.
3062     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3063     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3064     TranslateMap[Cond] = CB;
3065     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3066       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3067         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3068         continue;
3069       }
3070       // Clone the instruction.
3071       Instruction *N = BBI->clone();
3072       if (BBI->hasName())
3073         N->setName(BBI->getName() + ".c");
3074 
3075       // Update operands due to translation.
3076       for (Use &Op : N->operands()) {
3077         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3078         if (PI != TranslateMap.end())
3079           Op = PI->second;
3080       }
3081 
3082       // Check for trivial simplification.
3083       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3084         if (!BBI->use_empty())
3085           TranslateMap[&*BBI] = V;
3086         if (!N->mayHaveSideEffects()) {
3087           N->deleteValue(); // Instruction folded away, don't need actual inst
3088           N = nullptr;
3089         }
3090       } else {
3091         if (!BBI->use_empty())
3092           TranslateMap[&*BBI] = N;
3093       }
3094       if (N) {
3095         // Insert the new instruction into its new home.
3096         EdgeBB->getInstList().insert(InsertPt, N);
3097 
3098         // Register the new instruction with the assumption cache if necessary.
3099         if (auto *Assume = dyn_cast<AssumeInst>(N))
3100           if (AC)
3101             AC->registerAssumption(Assume);
3102       }
3103     }
3104 
3105     BB->removePredecessor(EdgeBB);
3106     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3107     EdgeBI->setSuccessor(0, RealDest);
3108     EdgeBI->setDebugLoc(BI->getDebugLoc());
3109 
3110     if (DTU) {
3111       SmallVector<DominatorTree::UpdateType, 2> Updates;
3112       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3113       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3114       DTU->applyUpdates(Updates);
3115     }
3116 
3117     // For simplicity, we created a separate basic block for the edge. Merge
3118     // it back into the predecessor if possible. This not only avoids
3119     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3120     // bypass the check for trivial cycles above.
3121     MergeBlockIntoPredecessor(EdgeBB, DTU);
3122 
3123     // Signal repeat, simplifying any other constants.
3124     return None;
3125   }
3126 
3127   return false;
3128 }
3129 
3130 static bool FoldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3131                                                     DomTreeUpdater *DTU,
3132                                                     const DataLayout &DL,
3133                                                     AssumptionCache *AC) {
3134   Optional<bool> Result;
3135   bool EverChanged = false;
3136   do {
3137     // Note that None means "we changed things, but recurse further."
3138     Result = FoldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3139     EverChanged |= Result == None || *Result;
3140   } while (Result == None);
3141   return EverChanged;
3142 }
3143 
3144 /// Given a BB that starts with the specified two-entry PHI node,
3145 /// see if we can eliminate it.
3146 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3147                                 DomTreeUpdater *DTU, const DataLayout &DL) {
3148   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3149   // statement", which has a very simple dominance structure.  Basically, we
3150   // are trying to find the condition that is being branched on, which
3151   // subsequently causes this merge to happen.  We really want control
3152   // dependence information for this check, but simplifycfg can't keep it up
3153   // to date, and this catches most of the cases we care about anyway.
3154   BasicBlock *BB = PN->getParent();
3155 
3156   BasicBlock *IfTrue, *IfFalse;
3157   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3158   if (!DomBI)
3159     return false;
3160   Value *IfCond = DomBI->getCondition();
3161   // Don't bother if the branch will be constant folded trivially.
3162   if (isa<ConstantInt>(IfCond))
3163     return false;
3164 
3165   BasicBlock *DomBlock = DomBI->getParent();
3166   SmallVector<BasicBlock *, 2> IfBlocks;
3167   llvm::copy_if(
3168       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3169         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3170       });
3171   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3172          "Will have either one or two blocks to speculate.");
3173 
3174   // If the branch is non-unpredictable, see if we either predictably jump to
3175   // the merge bb (if we have only a single 'then' block), or if we predictably
3176   // jump to one specific 'then' block (if we have two of them).
3177   // It isn't beneficial to speculatively execute the code
3178   // from the block that we know is predictably not entered.
3179   if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
3180     uint64_t TWeight, FWeight;
3181     if (DomBI->extractProfMetadata(TWeight, FWeight) &&
3182         (TWeight + FWeight) != 0) {
3183       BranchProbability BITrueProb =
3184           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3185       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3186       BranchProbability BIFalseProb = BITrueProb.getCompl();
3187       if (IfBlocks.size() == 1) {
3188         BranchProbability BIBBProb =
3189             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3190         if (BIBBProb >= Likely)
3191           return false;
3192       } else {
3193         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3194           return false;
3195       }
3196     }
3197   }
3198 
3199   // Don't try to fold an unreachable block. For example, the phi node itself
3200   // can't be the candidate if-condition for a select that we want to form.
3201   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3202     if (IfCondPhiInst->getParent() == BB)
3203       return false;
3204 
3205   // Okay, we found that we can merge this two-entry phi node into a select.
3206   // Doing so would require us to fold *all* two entry phi nodes in this block.
3207   // At some point this becomes non-profitable (particularly if the target
3208   // doesn't support cmov's).  Only do this transformation if there are two or
3209   // fewer PHI nodes in this block.
3210   unsigned NumPhis = 0;
3211   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3212     if (NumPhis > 2)
3213       return false;
3214 
3215   // Loop over the PHI's seeing if we can promote them all to select
3216   // instructions.  While we are at it, keep track of the instructions
3217   // that need to be moved to the dominating block.
3218   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3219   InstructionCost Cost = 0;
3220   InstructionCost Budget =
3221       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3222 
3223   bool Changed = false;
3224   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3225     PHINode *PN = cast<PHINode>(II++);
3226     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3227       PN->replaceAllUsesWith(V);
3228       PN->eraseFromParent();
3229       Changed = true;
3230       continue;
3231     }
3232 
3233     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
3234                              Cost, Budget, TTI) ||
3235         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
3236                              Cost, Budget, TTI))
3237       return Changed;
3238   }
3239 
3240   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3241   // we ran out of PHIs then we simplified them all.
3242   PN = dyn_cast<PHINode>(BB->begin());
3243   if (!PN)
3244     return true;
3245 
3246   // Return true if at least one of these is a 'not', and another is either
3247   // a 'not' too, or a constant.
3248   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3249     if (!match(V0, m_Not(m_Value())))
3250       std::swap(V0, V1);
3251     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3252     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3253   };
3254 
3255   // Don't fold i1 branches on PHIs which contain binary operators or
3256   // (possibly inverted) select form of or/ands,  unless one of
3257   // the incoming values is an 'not' and another one is freely invertible.
3258   // These can often be turned into switches and other things.
3259   auto IsBinOpOrAnd = [](Value *V) {
3260     return match(
3261         V, m_CombineOr(
3262                m_BinOp(),
3263                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3264                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3265   };
3266   if (PN->getType()->isIntegerTy(1) &&
3267       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3268        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3269       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3270                                  PN->getIncomingValue(1)))
3271     return Changed;
3272 
3273   // If all PHI nodes are promotable, check to make sure that all instructions
3274   // in the predecessor blocks can be promoted as well. If not, we won't be able
3275   // to get rid of the control flow, so it's not worth promoting to select
3276   // instructions.
3277   for (BasicBlock *IfBlock : IfBlocks)
3278     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3279       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3280         // This is not an aggressive instruction that we can promote.
3281         // Because of this, we won't be able to get rid of the control flow, so
3282         // the xform is not worth it.
3283         return Changed;
3284       }
3285 
3286   // If either of the blocks has it's address taken, we can't do this fold.
3287   if (any_of(IfBlocks,
3288              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3289     return Changed;
3290 
3291   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
3292                     << "  T: " << IfTrue->getName()
3293                     << "  F: " << IfFalse->getName() << "\n");
3294 
3295   // If we can still promote the PHI nodes after this gauntlet of tests,
3296   // do all of the PHI's now.
3297 
3298   // Move all 'aggressive' instructions, which are defined in the
3299   // conditional parts of the if's up to the dominating block.
3300   for (BasicBlock *IfBlock : IfBlocks)
3301       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3302 
3303   IRBuilder<NoFolder> Builder(DomBI);
3304   // Propagate fast-math-flags from phi nodes to replacement selects.
3305   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3306   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3307     if (isa<FPMathOperator>(PN))
3308       Builder.setFastMathFlags(PN->getFastMathFlags());
3309 
3310     // Change the PHI node into a select instruction.
3311     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3312     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3313 
3314     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3315     PN->replaceAllUsesWith(Sel);
3316     Sel->takeName(PN);
3317     PN->eraseFromParent();
3318   }
3319 
3320   // At this point, all IfBlocks are empty, so our if statement
3321   // has been flattened.  Change DomBlock to jump directly to our new block to
3322   // avoid other simplifycfg's kicking in on the diamond.
3323   Builder.CreateBr(BB);
3324 
3325   SmallVector<DominatorTree::UpdateType, 3> Updates;
3326   if (DTU) {
3327     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3328     for (auto *Successor : successors(DomBlock))
3329       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3330   }
3331 
3332   DomBI->eraseFromParent();
3333   if (DTU)
3334     DTU->applyUpdates(Updates);
3335 
3336   return true;
3337 }
3338 
3339 static Value *createLogicalOp(IRBuilderBase &Builder,
3340                               Instruction::BinaryOps Opc, Value *LHS,
3341                               Value *RHS, const Twine &Name = "") {
3342   // Try to relax logical op to binary op.
3343   if (impliesPoison(RHS, LHS))
3344     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3345   if (Opc == Instruction::And)
3346     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3347   if (Opc == Instruction::Or)
3348     return Builder.CreateLogicalOr(LHS, RHS, Name);
3349   llvm_unreachable("Invalid logical opcode");
3350 }
3351 
3352 /// Return true if either PBI or BI has branch weight available, and store
3353 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3354 /// not have branch weight, use 1:1 as its weight.
3355 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3356                                    uint64_t &PredTrueWeight,
3357                                    uint64_t &PredFalseWeight,
3358                                    uint64_t &SuccTrueWeight,
3359                                    uint64_t &SuccFalseWeight) {
3360   bool PredHasWeights =
3361       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
3362   bool SuccHasWeights =
3363       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
3364   if (PredHasWeights || SuccHasWeights) {
3365     if (!PredHasWeights)
3366       PredTrueWeight = PredFalseWeight = 1;
3367     if (!SuccHasWeights)
3368       SuccTrueWeight = SuccFalseWeight = 1;
3369     return true;
3370   } else {
3371     return false;
3372   }
3373 }
3374 
3375 /// Determine if the two branches share a common destination and deduce a glue
3376 /// that joins the branches' conditions to arrive at the common destination if
3377 /// that would be profitable.
3378 static Optional<std::pair<Instruction::BinaryOps, bool>>
3379 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3380                                           const TargetTransformInfo *TTI) {
3381   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3382          "Both blocks must end with a conditional branches.");
3383   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3384          "PredBB must be a predecessor of BB.");
3385 
3386   // We have the potential to fold the conditions together, but if the
3387   // predecessor branch is predictable, we may not want to merge them.
3388   uint64_t PTWeight, PFWeight;
3389   BranchProbability PBITrueProb, Likely;
3390   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3391       PBI->extractProfMetadata(PTWeight, PFWeight) &&
3392       (PTWeight + PFWeight) != 0) {
3393     PBITrueProb =
3394         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3395     Likely = TTI->getPredictableBranchThreshold();
3396   }
3397 
3398   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3399     // Speculate the 2nd condition unless the 1st is probably true.
3400     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3401       return {{Instruction::Or, false}};
3402   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3403     // Speculate the 2nd condition unless the 1st is probably false.
3404     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3405       return {{Instruction::And, false}};
3406   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3407     // Speculate the 2nd condition unless the 1st is probably true.
3408     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3409       return {{Instruction::And, true}};
3410   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3411     // Speculate the 2nd condition unless the 1st is probably false.
3412     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3413       return {{Instruction::Or, true}};
3414   }
3415   return None;
3416 }
3417 
3418 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3419                                              DomTreeUpdater *DTU,
3420                                              MemorySSAUpdater *MSSAU,
3421                                              const TargetTransformInfo *TTI) {
3422   BasicBlock *BB = BI->getParent();
3423   BasicBlock *PredBlock = PBI->getParent();
3424 
3425   // Determine if the two branches share a common destination.
3426   Instruction::BinaryOps Opc;
3427   bool InvertPredCond;
3428   std::tie(Opc, InvertPredCond) =
3429       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3430 
3431   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3432 
3433   IRBuilder<> Builder(PBI);
3434   // The builder is used to create instructions to eliminate the branch in BB.
3435   // If BB's terminator has !annotation metadata, add it to the new
3436   // instructions.
3437   Builder.CollectMetadataToCopy(BB->getTerminator(),
3438                                 {LLVMContext::MD_annotation});
3439 
3440   // If we need to invert the condition in the pred block to match, do so now.
3441   if (InvertPredCond) {
3442     Value *NewCond = PBI->getCondition();
3443     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3444       CmpInst *CI = cast<CmpInst>(NewCond);
3445       CI->setPredicate(CI->getInversePredicate());
3446     } else {
3447       NewCond =
3448           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3449     }
3450 
3451     PBI->setCondition(NewCond);
3452     PBI->swapSuccessors();
3453   }
3454 
3455   BasicBlock *UniqueSucc =
3456       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3457 
3458   // Before cloning instructions, notify the successor basic block that it
3459   // is about to have a new predecessor. This will update PHI nodes,
3460   // which will allow us to update live-out uses of bonus instructions.
3461   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3462 
3463   // Try to update branch weights.
3464   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3465   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3466                              SuccTrueWeight, SuccFalseWeight)) {
3467     SmallVector<uint64_t, 8> NewWeights;
3468 
3469     if (PBI->getSuccessor(0) == BB) {
3470       // PBI: br i1 %x, BB, FalseDest
3471       // BI:  br i1 %y, UniqueSucc, FalseDest
3472       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3473       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3474       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3475       //               TrueWeight for PBI * FalseWeight for BI.
3476       // We assume that total weights of a BranchInst can fit into 32 bits.
3477       // Therefore, we will not have overflow using 64-bit arithmetic.
3478       NewWeights.push_back(PredFalseWeight *
3479                                (SuccFalseWeight + SuccTrueWeight) +
3480                            PredTrueWeight * SuccFalseWeight);
3481     } else {
3482       // PBI: br i1 %x, TrueDest, BB
3483       // BI:  br i1 %y, TrueDest, UniqueSucc
3484       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3485       //              FalseWeight for PBI * TrueWeight for BI.
3486       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3487                            PredFalseWeight * SuccTrueWeight);
3488       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3489       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3490     }
3491 
3492     // Halve the weights if any of them cannot fit in an uint32_t
3493     FitWeights(NewWeights);
3494 
3495     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3496     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3497 
3498     // TODO: If BB is reachable from all paths through PredBlock, then we
3499     // could replace PBI's branch probabilities with BI's.
3500   } else
3501     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3502 
3503   // Now, update the CFG.
3504   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3505 
3506   if (DTU)
3507     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3508                        {DominatorTree::Delete, PredBlock, BB}});
3509 
3510   // If BI was a loop latch, it may have had associated loop metadata.
3511   // We need to copy it to the new latch, that is, PBI.
3512   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3513     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3514 
3515   ValueToValueMapTy VMap; // maps original values to cloned values
3516   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3517 
3518   // Now that the Cond was cloned into the predecessor basic block,
3519   // or/and the two conditions together.
3520   Value *BICond = VMap[BI->getCondition()];
3521   PBI->setCondition(
3522       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3523 
3524   // Copy any debug value intrinsics into the end of PredBlock.
3525   for (Instruction &I : *BB) {
3526     if (isa<DbgInfoIntrinsic>(I)) {
3527       Instruction *NewI = I.clone();
3528       RemapInstruction(NewI, VMap,
3529                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3530       NewI->insertBefore(PBI);
3531     }
3532   }
3533 
3534   ++NumFoldBranchToCommonDest;
3535   return true;
3536 }
3537 
3538 /// Return if an instruction's type or any of its operands' types are a vector
3539 /// type.
3540 static bool isVectorOp(Instruction &I) {
3541   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
3542            return U->getType()->isVectorTy();
3543          });
3544 }
3545 
3546 /// If this basic block is simple enough, and if a predecessor branches to us
3547 /// and one of our successors, fold the block into the predecessor and use
3548 /// logical operations to pick the right destination.
3549 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3550                                   MemorySSAUpdater *MSSAU,
3551                                   const TargetTransformInfo *TTI,
3552                                   unsigned BonusInstThreshold) {
3553   // If this block ends with an unconditional branch,
3554   // let SpeculativelyExecuteBB() deal with it.
3555   if (!BI->isConditional())
3556     return false;
3557 
3558   BasicBlock *BB = BI->getParent();
3559   TargetTransformInfo::TargetCostKind CostKind =
3560     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3561                                   : TargetTransformInfo::TCK_SizeAndLatency;
3562 
3563   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3564 
3565   if (!Cond ||
3566       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
3567        !isa<SelectInst>(Cond)) ||
3568       Cond->getParent() != BB || !Cond->hasOneUse())
3569     return false;
3570 
3571   // Finally, don't infinitely unroll conditional loops.
3572   if (is_contained(successors(BB), BB))
3573     return false;
3574 
3575   // With which predecessors will we want to deal with?
3576   SmallVector<BasicBlock *, 8> Preds;
3577   for (BasicBlock *PredBlock : predecessors(BB)) {
3578     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3579 
3580     // Check that we have two conditional branches.  If there is a PHI node in
3581     // the common successor, verify that the same value flows in from both
3582     // blocks.
3583     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3584       continue;
3585 
3586     // Determine if the two branches share a common destination.
3587     Instruction::BinaryOps Opc;
3588     bool InvertPredCond;
3589     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3590       std::tie(Opc, InvertPredCond) = *Recipe;
3591     else
3592       continue;
3593 
3594     // Check the cost of inserting the necessary logic before performing the
3595     // transformation.
3596     if (TTI) {
3597       Type *Ty = BI->getCondition()->getType();
3598       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3599       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3600           !isa<CmpInst>(PBI->getCondition())))
3601         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3602 
3603       if (Cost > BranchFoldThreshold)
3604         continue;
3605     }
3606 
3607     // Ok, we do want to deal with this predecessor. Record it.
3608     Preds.emplace_back(PredBlock);
3609   }
3610 
3611   // If there aren't any predecessors into which we can fold,
3612   // don't bother checking the cost.
3613   if (Preds.empty())
3614     return false;
3615 
3616   // Only allow this transformation if computing the condition doesn't involve
3617   // too many instructions and these involved instructions can be executed
3618   // unconditionally. We denote all involved instructions except the condition
3619   // as "bonus instructions", and only allow this transformation when the
3620   // number of the bonus instructions we'll need to create when cloning into
3621   // each predecessor does not exceed a certain threshold.
3622   unsigned NumBonusInsts = 0;
3623   bool SawVectorOp = false;
3624   const unsigned PredCount = Preds.size();
3625   for (Instruction &I : *BB) {
3626     // Don't check the branch condition comparison itself.
3627     if (&I == Cond)
3628       continue;
3629     // Ignore dbg intrinsics, and the terminator.
3630     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3631       continue;
3632     // I must be safe to execute unconditionally.
3633     if (!isSafeToSpeculativelyExecute(&I))
3634       return false;
3635     SawVectorOp |= isVectorOp(I);
3636 
3637     // Account for the cost of duplicating this instruction into each
3638     // predecessor. Ignore free instructions.
3639     if (!TTI ||
3640         TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
3641       NumBonusInsts += PredCount;
3642 
3643       // Early exits once we reach the limit.
3644       if (NumBonusInsts >
3645           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
3646         return false;
3647     }
3648 
3649     auto IsBCSSAUse = [BB, &I](Use &U) {
3650       auto *UI = cast<Instruction>(U.getUser());
3651       if (auto *PN = dyn_cast<PHINode>(UI))
3652         return PN->getIncomingBlock(U) == BB;
3653       return UI->getParent() == BB && I.comesBefore(UI);
3654     };
3655 
3656     // Does this instruction require rewriting of uses?
3657     if (!all_of(I.uses(), IsBCSSAUse))
3658       return false;
3659   }
3660   if (NumBonusInsts >
3661       BonusInstThreshold *
3662           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
3663     return false;
3664 
3665   // Ok, we have the budget. Perform the transformation.
3666   for (BasicBlock *PredBlock : Preds) {
3667     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3668     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3669   }
3670   return false;
3671 }
3672 
3673 // If there is only one store in BB1 and BB2, return it, otherwise return
3674 // nullptr.
3675 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3676   StoreInst *S = nullptr;
3677   for (auto *BB : {BB1, BB2}) {
3678     if (!BB)
3679       continue;
3680     for (auto &I : *BB)
3681       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3682         if (S)
3683           // Multiple stores seen.
3684           return nullptr;
3685         else
3686           S = SI;
3687       }
3688   }
3689   return S;
3690 }
3691 
3692 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3693                                               Value *AlternativeV = nullptr) {
3694   // PHI is going to be a PHI node that allows the value V that is defined in
3695   // BB to be referenced in BB's only successor.
3696   //
3697   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3698   // doesn't matter to us what the other operand is (it'll never get used). We
3699   // could just create a new PHI with an undef incoming value, but that could
3700   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3701   // other PHI. So here we directly look for some PHI in BB's successor with V
3702   // as an incoming operand. If we find one, we use it, else we create a new
3703   // one.
3704   //
3705   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3706   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3707   // where OtherBB is the single other predecessor of BB's only successor.
3708   PHINode *PHI = nullptr;
3709   BasicBlock *Succ = BB->getSingleSuccessor();
3710 
3711   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3712     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3713       PHI = cast<PHINode>(I);
3714       if (!AlternativeV)
3715         break;
3716 
3717       assert(Succ->hasNPredecessors(2));
3718       auto PredI = pred_begin(Succ);
3719       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3720       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3721         break;
3722       PHI = nullptr;
3723     }
3724   if (PHI)
3725     return PHI;
3726 
3727   // If V is not an instruction defined in BB, just return it.
3728   if (!AlternativeV &&
3729       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3730     return V;
3731 
3732   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3733   PHI->addIncoming(V, BB);
3734   for (BasicBlock *PredBB : predecessors(Succ))
3735     if (PredBB != BB)
3736       PHI->addIncoming(
3737           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3738   return PHI;
3739 }
3740 
3741 static bool mergeConditionalStoreToAddress(
3742     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3743     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3744     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3745   // For every pointer, there must be exactly two stores, one coming from
3746   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3747   // store (to any address) in PTB,PFB or QTB,QFB.
3748   // FIXME: We could relax this restriction with a bit more work and performance
3749   // testing.
3750   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3751   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3752   if (!PStore || !QStore)
3753     return false;
3754 
3755   // Now check the stores are compatible.
3756   if (!QStore->isUnordered() || !PStore->isUnordered() ||
3757       PStore->getValueOperand()->getType() !=
3758           QStore->getValueOperand()->getType())
3759     return false;
3760 
3761   // Check that sinking the store won't cause program behavior changes. Sinking
3762   // the store out of the Q blocks won't change any behavior as we're sinking
3763   // from a block to its unconditional successor. But we're moving a store from
3764   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3765   // So we need to check that there are no aliasing loads or stores in
3766   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3767   // operations between PStore and the end of its parent block.
3768   //
3769   // The ideal way to do this is to query AliasAnalysis, but we don't
3770   // preserve AA currently so that is dangerous. Be super safe and just
3771   // check there are no other memory operations at all.
3772   for (auto &I : *QFB->getSinglePredecessor())
3773     if (I.mayReadOrWriteMemory())
3774       return false;
3775   for (auto &I : *QFB)
3776     if (&I != QStore && I.mayReadOrWriteMemory())
3777       return false;
3778   if (QTB)
3779     for (auto &I : *QTB)
3780       if (&I != QStore && I.mayReadOrWriteMemory())
3781         return false;
3782   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3783        I != E; ++I)
3784     if (&*I != PStore && I->mayReadOrWriteMemory())
3785       return false;
3786 
3787   // If we're not in aggressive mode, we only optimize if we have some
3788   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3789   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3790     if (!BB)
3791       return true;
3792     // Heuristic: if the block can be if-converted/phi-folded and the
3793     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3794     // thread this store.
3795     InstructionCost Cost = 0;
3796     InstructionCost Budget =
3797         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3798     for (auto &I : BB->instructionsWithoutDebug(false)) {
3799       // Consider terminator instruction to be free.
3800       if (I.isTerminator())
3801         continue;
3802       // If this is one the stores that we want to speculate out of this BB,
3803       // then don't count it's cost, consider it to be free.
3804       if (auto *S = dyn_cast<StoreInst>(&I))
3805         if (llvm::find(FreeStores, S))
3806           continue;
3807       // Else, we have a white-list of instructions that we are ak speculating.
3808       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3809         return false; // Not in white-list - not worthwhile folding.
3810       // And finally, if this is a non-free instruction that we are okay
3811       // speculating, ensure that we consider the speculation budget.
3812       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3813       if (Cost > Budget)
3814         return false; // Eagerly refuse to fold as soon as we're out of budget.
3815     }
3816     assert(Cost <= Budget &&
3817            "When we run out of budget we will eagerly return from within the "
3818            "per-instruction loop.");
3819     return true;
3820   };
3821 
3822   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3823   if (!MergeCondStoresAggressively &&
3824       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3825        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3826     return false;
3827 
3828   // If PostBB has more than two predecessors, we need to split it so we can
3829   // sink the store.
3830   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3831     // We know that QFB's only successor is PostBB. And QFB has a single
3832     // predecessor. If QTB exists, then its only successor is also PostBB.
3833     // If QTB does not exist, then QFB's only predecessor has a conditional
3834     // branch to QFB and PostBB.
3835     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3836     BasicBlock *NewBB =
3837         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3838     if (!NewBB)
3839       return false;
3840     PostBB = NewBB;
3841   }
3842 
3843   // OK, we're going to sink the stores to PostBB. The store has to be
3844   // conditional though, so first create the predicate.
3845   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3846                      ->getCondition();
3847   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3848                      ->getCondition();
3849 
3850   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3851                                                 PStore->getParent());
3852   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3853                                                 QStore->getParent(), PPHI);
3854 
3855   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3856 
3857   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3858   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3859 
3860   if (InvertPCond)
3861     PPred = QB.CreateNot(PPred);
3862   if (InvertQCond)
3863     QPred = QB.CreateNot(QPred);
3864   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3865 
3866   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3867                                       /*Unreachable=*/false,
3868                                       /*BranchWeights=*/nullptr, DTU);
3869   QB.SetInsertPoint(T);
3870   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3871   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
3872   // Choose the minimum alignment. If we could prove both stores execute, we
3873   // could use biggest one.  In this case, though, we only know that one of the
3874   // stores executes.  And we don't know it's safe to take the alignment from a
3875   // store that doesn't execute.
3876   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3877 
3878   QStore->eraseFromParent();
3879   PStore->eraseFromParent();
3880 
3881   return true;
3882 }
3883 
3884 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3885                                    DomTreeUpdater *DTU, const DataLayout &DL,
3886                                    const TargetTransformInfo &TTI) {
3887   // The intention here is to find diamonds or triangles (see below) where each
3888   // conditional block contains a store to the same address. Both of these
3889   // stores are conditional, so they can't be unconditionally sunk. But it may
3890   // be profitable to speculatively sink the stores into one merged store at the
3891   // end, and predicate the merged store on the union of the two conditions of
3892   // PBI and QBI.
3893   //
3894   // This can reduce the number of stores executed if both of the conditions are
3895   // true, and can allow the blocks to become small enough to be if-converted.
3896   // This optimization will also chain, so that ladders of test-and-set
3897   // sequences can be if-converted away.
3898   //
3899   // We only deal with simple diamonds or triangles:
3900   //
3901   //     PBI       or      PBI        or a combination of the two
3902   //    /   \               | \
3903   //   PTB  PFB             |  PFB
3904   //    \   /               | /
3905   //     QBI                QBI
3906   //    /  \                | \
3907   //   QTB  QFB             |  QFB
3908   //    \  /                | /
3909   //    PostBB            PostBB
3910   //
3911   // We model triangles as a type of diamond with a nullptr "true" block.
3912   // Triangles are canonicalized so that the fallthrough edge is represented by
3913   // a true condition, as in the diagram above.
3914   BasicBlock *PTB = PBI->getSuccessor(0);
3915   BasicBlock *PFB = PBI->getSuccessor(1);
3916   BasicBlock *QTB = QBI->getSuccessor(0);
3917   BasicBlock *QFB = QBI->getSuccessor(1);
3918   BasicBlock *PostBB = QFB->getSingleSuccessor();
3919 
3920   // Make sure we have a good guess for PostBB. If QTB's only successor is
3921   // QFB, then QFB is a better PostBB.
3922   if (QTB->getSingleSuccessor() == QFB)
3923     PostBB = QFB;
3924 
3925   // If we couldn't find a good PostBB, stop.
3926   if (!PostBB)
3927     return false;
3928 
3929   bool InvertPCond = false, InvertQCond = false;
3930   // Canonicalize fallthroughs to the true branches.
3931   if (PFB == QBI->getParent()) {
3932     std::swap(PFB, PTB);
3933     InvertPCond = true;
3934   }
3935   if (QFB == PostBB) {
3936     std::swap(QFB, QTB);
3937     InvertQCond = true;
3938   }
3939 
3940   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3941   // and QFB may not. Model fallthroughs as a nullptr block.
3942   if (PTB == QBI->getParent())
3943     PTB = nullptr;
3944   if (QTB == PostBB)
3945     QTB = nullptr;
3946 
3947   // Legality bailouts. We must have at least the non-fallthrough blocks and
3948   // the post-dominating block, and the non-fallthroughs must only have one
3949   // predecessor.
3950   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3951     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3952   };
3953   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3954       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3955     return false;
3956   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3957       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3958     return false;
3959   if (!QBI->getParent()->hasNUses(2))
3960     return false;
3961 
3962   // OK, this is a sequence of two diamonds or triangles.
3963   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3964   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3965   for (auto *BB : {PTB, PFB}) {
3966     if (!BB)
3967       continue;
3968     for (auto &I : *BB)
3969       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3970         PStoreAddresses.insert(SI->getPointerOperand());
3971   }
3972   for (auto *BB : {QTB, QFB}) {
3973     if (!BB)
3974       continue;
3975     for (auto &I : *BB)
3976       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3977         QStoreAddresses.insert(SI->getPointerOperand());
3978   }
3979 
3980   set_intersect(PStoreAddresses, QStoreAddresses);
3981   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3982   // clear what it contains.
3983   auto &CommonAddresses = PStoreAddresses;
3984 
3985   bool Changed = false;
3986   for (auto *Address : CommonAddresses)
3987     Changed |=
3988         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3989                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3990   return Changed;
3991 }
3992 
3993 /// If the previous block ended with a widenable branch, determine if reusing
3994 /// the target block is profitable and legal.  This will have the effect of
3995 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3996 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3997                                            DomTreeUpdater *DTU) {
3998   // TODO: This can be generalized in two important ways:
3999   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4000   //    values from the PBI edge.
4001   // 2) We can sink side effecting instructions into BI's fallthrough
4002   //    successor provided they doesn't contribute to computation of
4003   //    BI's condition.
4004   Value *CondWB, *WC;
4005   BasicBlock *IfTrueBB, *IfFalseBB;
4006   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
4007       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
4008     return false;
4009   if (!IfFalseBB->phis().empty())
4010     return false; // TODO
4011   // Use lambda to lazily compute expensive condition after cheap ones.
4012   auto NoSideEffects = [](BasicBlock &BB) {
4013     return llvm::none_of(BB, [](const Instruction &I) {
4014         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4015       });
4016   };
4017   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4018       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4019       NoSideEffects(*BI->getParent())) {
4020     auto *OldSuccessor = BI->getSuccessor(1);
4021     OldSuccessor->removePredecessor(BI->getParent());
4022     BI->setSuccessor(1, IfFalseBB);
4023     if (DTU)
4024       DTU->applyUpdates(
4025           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4026            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4027     return true;
4028   }
4029   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4030       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4031       NoSideEffects(*BI->getParent())) {
4032     auto *OldSuccessor = BI->getSuccessor(0);
4033     OldSuccessor->removePredecessor(BI->getParent());
4034     BI->setSuccessor(0, IfFalseBB);
4035     if (DTU)
4036       DTU->applyUpdates(
4037           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4038            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4039     return true;
4040   }
4041   return false;
4042 }
4043 
4044 /// If we have a conditional branch as a predecessor of another block,
4045 /// this function tries to simplify it.  We know
4046 /// that PBI and BI are both conditional branches, and BI is in one of the
4047 /// successor blocks of PBI - PBI branches to BI.
4048 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4049                                            DomTreeUpdater *DTU,
4050                                            const DataLayout &DL,
4051                                            const TargetTransformInfo &TTI) {
4052   assert(PBI->isConditional() && BI->isConditional());
4053   BasicBlock *BB = BI->getParent();
4054 
4055   // If this block ends with a branch instruction, and if there is a
4056   // predecessor that ends on a branch of the same condition, make
4057   // this conditional branch redundant.
4058   if (PBI->getCondition() == BI->getCondition() &&
4059       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4060     // Okay, the outcome of this conditional branch is statically
4061     // knowable.  If this block had a single pred, handle specially, otherwise
4062     // FoldCondBranchOnValueKnownInPredecessor() will handle it.
4063     if (BB->getSinglePredecessor()) {
4064       // Turn this into a branch on constant.
4065       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4066       BI->setCondition(
4067           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4068       return true; // Nuke the branch on constant.
4069     }
4070   }
4071 
4072   // If the previous block ended with a widenable branch, determine if reusing
4073   // the target block is profitable and legal.  This will have the effect of
4074   // "widening" PBI, but doesn't require us to reason about hosting safety.
4075   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4076     return true;
4077 
4078   // If both branches are conditional and both contain stores to the same
4079   // address, remove the stores from the conditionals and create a conditional
4080   // merged store at the end.
4081   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4082     return true;
4083 
4084   // If this is a conditional branch in an empty block, and if any
4085   // predecessors are a conditional branch to one of our destinations,
4086   // fold the conditions into logical ops and one cond br.
4087 
4088   // Ignore dbg intrinsics.
4089   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4090     return false;
4091 
4092   int PBIOp, BIOp;
4093   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4094     PBIOp = 0;
4095     BIOp = 0;
4096   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4097     PBIOp = 0;
4098     BIOp = 1;
4099   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4100     PBIOp = 1;
4101     BIOp = 0;
4102   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4103     PBIOp = 1;
4104     BIOp = 1;
4105   } else {
4106     return false;
4107   }
4108 
4109   // Check to make sure that the other destination of this branch
4110   // isn't BB itself.  If so, this is an infinite loop that will
4111   // keep getting unwound.
4112   if (PBI->getSuccessor(PBIOp) == BB)
4113     return false;
4114 
4115   // Do not perform this transformation if it would require
4116   // insertion of a large number of select instructions. For targets
4117   // without predication/cmovs, this is a big pessimization.
4118 
4119   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4120   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4121   unsigned NumPhis = 0;
4122   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4123        ++II, ++NumPhis) {
4124     if (NumPhis > 2) // Disable this xform.
4125       return false;
4126   }
4127 
4128   // Finally, if everything is ok, fold the branches to logical ops.
4129   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4130 
4131   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4132                     << "AND: " << *BI->getParent());
4133 
4134   SmallVector<DominatorTree::UpdateType, 5> Updates;
4135 
4136   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4137   // branch in it, where one edge (OtherDest) goes back to itself but the other
4138   // exits.  We don't *know* that the program avoids the infinite loop
4139   // (even though that seems likely).  If we do this xform naively, we'll end up
4140   // recursively unpeeling the loop.  Since we know that (after the xform is
4141   // done) that the block *is* infinite if reached, we just make it an obviously
4142   // infinite loop with no cond branch.
4143   if (OtherDest == BB) {
4144     // Insert it at the end of the function, because it's either code,
4145     // or it won't matter if it's hot. :)
4146     BasicBlock *InfLoopBlock =
4147         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4148     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4149     if (DTU)
4150       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4151     OtherDest = InfLoopBlock;
4152   }
4153 
4154   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4155 
4156   // BI may have other predecessors.  Because of this, we leave
4157   // it alone, but modify PBI.
4158 
4159   // Make sure we get to CommonDest on True&True directions.
4160   Value *PBICond = PBI->getCondition();
4161   IRBuilder<NoFolder> Builder(PBI);
4162   if (PBIOp)
4163     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4164 
4165   Value *BICond = BI->getCondition();
4166   if (BIOp)
4167     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4168 
4169   // Merge the conditions.
4170   Value *Cond =
4171       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4172 
4173   // Modify PBI to branch on the new condition to the new dests.
4174   PBI->setCondition(Cond);
4175   PBI->setSuccessor(0, CommonDest);
4176   PBI->setSuccessor(1, OtherDest);
4177 
4178   if (DTU) {
4179     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4180     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4181 
4182     DTU->applyUpdates(Updates);
4183   }
4184 
4185   // Update branch weight for PBI.
4186   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4187   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4188   bool HasWeights =
4189       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4190                              SuccTrueWeight, SuccFalseWeight);
4191   if (HasWeights) {
4192     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4193     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4194     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4195     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4196     // The weight to CommonDest should be PredCommon * SuccTotal +
4197     //                                    PredOther * SuccCommon.
4198     // The weight to OtherDest should be PredOther * SuccOther.
4199     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4200                                   PredOther * SuccCommon,
4201                               PredOther * SuccOther};
4202     // Halve the weights if any of them cannot fit in an uint32_t
4203     FitWeights(NewWeights);
4204 
4205     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
4206   }
4207 
4208   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4209   // block that are identical to the entries for BI's block.
4210   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4211 
4212   // We know that the CommonDest already had an edge from PBI to
4213   // it.  If it has PHIs though, the PHIs may have different
4214   // entries for BB and PBI's BB.  If so, insert a select to make
4215   // them agree.
4216   for (PHINode &PN : CommonDest->phis()) {
4217     Value *BIV = PN.getIncomingValueForBlock(BB);
4218     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4219     Value *PBIV = PN.getIncomingValue(PBBIdx);
4220     if (BIV != PBIV) {
4221       // Insert a select in PBI to pick the right value.
4222       SelectInst *NV = cast<SelectInst>(
4223           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4224       PN.setIncomingValue(PBBIdx, NV);
4225       // Although the select has the same condition as PBI, the original branch
4226       // weights for PBI do not apply to the new select because the select's
4227       // 'logical' edges are incoming edges of the phi that is eliminated, not
4228       // the outgoing edges of PBI.
4229       if (HasWeights) {
4230         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4231         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4232         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4233         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4234         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4235         // The weight to PredOtherDest should be PredOther * SuccCommon.
4236         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4237                                   PredOther * SuccCommon};
4238 
4239         FitWeights(NewWeights);
4240 
4241         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
4242       }
4243     }
4244   }
4245 
4246   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4247   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4248 
4249   // This basic block is probably dead.  We know it has at least
4250   // one fewer predecessor.
4251   return true;
4252 }
4253 
4254 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4255 // true or to FalseBB if Cond is false.
4256 // Takes care of updating the successors and removing the old terminator.
4257 // Also makes sure not to introduce new successors by assuming that edges to
4258 // non-successor TrueBBs and FalseBBs aren't reachable.
4259 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
4260                                                 Value *Cond, BasicBlock *TrueBB,
4261                                                 BasicBlock *FalseBB,
4262                                                 uint32_t TrueWeight,
4263                                                 uint32_t FalseWeight) {
4264   auto *BB = OldTerm->getParent();
4265   // Remove any superfluous successor edges from the CFG.
4266   // First, figure out which successors to preserve.
4267   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4268   // successor.
4269   BasicBlock *KeepEdge1 = TrueBB;
4270   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4271 
4272   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4273 
4274   // Then remove the rest.
4275   for (BasicBlock *Succ : successors(OldTerm)) {
4276     // Make sure only to keep exactly one copy of each edge.
4277     if (Succ == KeepEdge1)
4278       KeepEdge1 = nullptr;
4279     else if (Succ == KeepEdge2)
4280       KeepEdge2 = nullptr;
4281     else {
4282       Succ->removePredecessor(BB,
4283                               /*KeepOneInputPHIs=*/true);
4284 
4285       if (Succ != TrueBB && Succ != FalseBB)
4286         RemovedSuccessors.insert(Succ);
4287     }
4288   }
4289 
4290   IRBuilder<> Builder(OldTerm);
4291   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4292 
4293   // Insert an appropriate new terminator.
4294   if (!KeepEdge1 && !KeepEdge2) {
4295     if (TrueBB == FalseBB) {
4296       // We were only looking for one successor, and it was present.
4297       // Create an unconditional branch to it.
4298       Builder.CreateBr(TrueBB);
4299     } else {
4300       // We found both of the successors we were looking for.
4301       // Create a conditional branch sharing the condition of the select.
4302       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4303       if (TrueWeight != FalseWeight)
4304         setBranchWeights(NewBI, TrueWeight, FalseWeight);
4305     }
4306   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4307     // Neither of the selected blocks were successors, so this
4308     // terminator must be unreachable.
4309     new UnreachableInst(OldTerm->getContext(), OldTerm);
4310   } else {
4311     // One of the selected values was a successor, but the other wasn't.
4312     // Insert an unconditional branch to the one that was found;
4313     // the edge to the one that wasn't must be unreachable.
4314     if (!KeepEdge1) {
4315       // Only TrueBB was found.
4316       Builder.CreateBr(TrueBB);
4317     } else {
4318       // Only FalseBB was found.
4319       Builder.CreateBr(FalseBB);
4320     }
4321   }
4322 
4323   EraseTerminatorAndDCECond(OldTerm);
4324 
4325   if (DTU) {
4326     SmallVector<DominatorTree::UpdateType, 2> Updates;
4327     Updates.reserve(RemovedSuccessors.size());
4328     for (auto *RemovedSuccessor : RemovedSuccessors)
4329       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4330     DTU->applyUpdates(Updates);
4331   }
4332 
4333   return true;
4334 }
4335 
4336 // Replaces
4337 //   (switch (select cond, X, Y)) on constant X, Y
4338 // with a branch - conditional if X and Y lead to distinct BBs,
4339 // unconditional otherwise.
4340 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4341                                             SelectInst *Select) {
4342   // Check for constant integer values in the select.
4343   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4344   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4345   if (!TrueVal || !FalseVal)
4346     return false;
4347 
4348   // Find the relevant condition and destinations.
4349   Value *Condition = Select->getCondition();
4350   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4351   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4352 
4353   // Get weight for TrueBB and FalseBB.
4354   uint32_t TrueWeight = 0, FalseWeight = 0;
4355   SmallVector<uint64_t, 8> Weights;
4356   bool HasWeights = HasBranchWeights(SI);
4357   if (HasWeights) {
4358     GetBranchWeights(SI, Weights);
4359     if (Weights.size() == 1 + SI->getNumCases()) {
4360       TrueWeight =
4361           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4362       FalseWeight =
4363           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4364     }
4365   }
4366 
4367   // Perform the actual simplification.
4368   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4369                                     FalseWeight);
4370 }
4371 
4372 // Replaces
4373 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4374 //                             blockaddress(@fn, BlockB)))
4375 // with
4376 //   (br cond, BlockA, BlockB).
4377 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4378                                                 SelectInst *SI) {
4379   // Check that both operands of the select are block addresses.
4380   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4381   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4382   if (!TBA || !FBA)
4383     return false;
4384 
4385   // Extract the actual blocks.
4386   BasicBlock *TrueBB = TBA->getBasicBlock();
4387   BasicBlock *FalseBB = FBA->getBasicBlock();
4388 
4389   // Perform the actual simplification.
4390   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4391                                     0);
4392 }
4393 
4394 /// This is called when we find an icmp instruction
4395 /// (a seteq/setne with a constant) as the only instruction in a
4396 /// block that ends with an uncond branch.  We are looking for a very specific
4397 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4398 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4399 /// default value goes to an uncond block with a seteq in it, we get something
4400 /// like:
4401 ///
4402 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4403 /// DEFAULT:
4404 ///   %tmp = icmp eq i8 %A, 92
4405 ///   br label %end
4406 /// end:
4407 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4408 ///
4409 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4410 /// the PHI, merging the third icmp into the switch.
4411 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4412     ICmpInst *ICI, IRBuilder<> &Builder) {
4413   BasicBlock *BB = ICI->getParent();
4414 
4415   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4416   // complex.
4417   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4418     return false;
4419 
4420   Value *V = ICI->getOperand(0);
4421   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4422 
4423   // The pattern we're looking for is where our only predecessor is a switch on
4424   // 'V' and this block is the default case for the switch.  In this case we can
4425   // fold the compared value into the switch to simplify things.
4426   BasicBlock *Pred = BB->getSinglePredecessor();
4427   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4428     return false;
4429 
4430   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4431   if (SI->getCondition() != V)
4432     return false;
4433 
4434   // If BB is reachable on a non-default case, then we simply know the value of
4435   // V in this block.  Substitute it and constant fold the icmp instruction
4436   // away.
4437   if (SI->getDefaultDest() != BB) {
4438     ConstantInt *VVal = SI->findCaseDest(BB);
4439     assert(VVal && "Should have a unique destination value");
4440     ICI->setOperand(0, VVal);
4441 
4442     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4443       ICI->replaceAllUsesWith(V);
4444       ICI->eraseFromParent();
4445     }
4446     // BB is now empty, so it is likely to simplify away.
4447     return requestResimplify();
4448   }
4449 
4450   // Ok, the block is reachable from the default dest.  If the constant we're
4451   // comparing exists in one of the other edges, then we can constant fold ICI
4452   // and zap it.
4453   if (SI->findCaseValue(Cst) != SI->case_default()) {
4454     Value *V;
4455     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4456       V = ConstantInt::getFalse(BB->getContext());
4457     else
4458       V = ConstantInt::getTrue(BB->getContext());
4459 
4460     ICI->replaceAllUsesWith(V);
4461     ICI->eraseFromParent();
4462     // BB is now empty, so it is likely to simplify away.
4463     return requestResimplify();
4464   }
4465 
4466   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4467   // the block.
4468   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4469   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4470   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4471       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4472     return false;
4473 
4474   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4475   // true in the PHI.
4476   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4477   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4478 
4479   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4480     std::swap(DefaultCst, NewCst);
4481 
4482   // Replace ICI (which is used by the PHI for the default value) with true or
4483   // false depending on if it is EQ or NE.
4484   ICI->replaceAllUsesWith(DefaultCst);
4485   ICI->eraseFromParent();
4486 
4487   SmallVector<DominatorTree::UpdateType, 2> Updates;
4488 
4489   // Okay, the switch goes to this block on a default value.  Add an edge from
4490   // the switch to the merge point on the compared value.
4491   BasicBlock *NewBB =
4492       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4493   {
4494     SwitchInstProfUpdateWrapper SIW(*SI);
4495     auto W0 = SIW.getSuccessorWeight(0);
4496     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4497     if (W0) {
4498       NewW = ((uint64_t(*W0) + 1) >> 1);
4499       SIW.setSuccessorWeight(0, *NewW);
4500     }
4501     SIW.addCase(Cst, NewBB, NewW);
4502     if (DTU)
4503       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4504   }
4505 
4506   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4507   Builder.SetInsertPoint(NewBB);
4508   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4509   Builder.CreateBr(SuccBlock);
4510   PHIUse->addIncoming(NewCst, NewBB);
4511   if (DTU) {
4512     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4513     DTU->applyUpdates(Updates);
4514   }
4515   return true;
4516 }
4517 
4518 /// The specified branch is a conditional branch.
4519 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4520 /// fold it into a switch instruction if so.
4521 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4522                                                IRBuilder<> &Builder,
4523                                                const DataLayout &DL) {
4524   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4525   if (!Cond)
4526     return false;
4527 
4528   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4529   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4530   // 'setne's and'ed together, collect them.
4531 
4532   // Try to gather values from a chain of and/or to be turned into a switch
4533   ConstantComparesGatherer ConstantCompare(Cond, DL);
4534   // Unpack the result
4535   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4536   Value *CompVal = ConstantCompare.CompValue;
4537   unsigned UsedICmps = ConstantCompare.UsedICmps;
4538   Value *ExtraCase = ConstantCompare.Extra;
4539 
4540   // If we didn't have a multiply compared value, fail.
4541   if (!CompVal)
4542     return false;
4543 
4544   // Avoid turning single icmps into a switch.
4545   if (UsedICmps <= 1)
4546     return false;
4547 
4548   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4549 
4550   // There might be duplicate constants in the list, which the switch
4551   // instruction can't handle, remove them now.
4552   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4553   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4554 
4555   // If Extra was used, we require at least two switch values to do the
4556   // transformation.  A switch with one value is just a conditional branch.
4557   if (ExtraCase && Values.size() < 2)
4558     return false;
4559 
4560   // TODO: Preserve branch weight metadata, similarly to how
4561   // FoldValueComparisonIntoPredecessors preserves it.
4562 
4563   // Figure out which block is which destination.
4564   BasicBlock *DefaultBB = BI->getSuccessor(1);
4565   BasicBlock *EdgeBB = BI->getSuccessor(0);
4566   if (!TrueWhenEqual)
4567     std::swap(DefaultBB, EdgeBB);
4568 
4569   BasicBlock *BB = BI->getParent();
4570 
4571   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4572                     << " cases into SWITCH.  BB is:\n"
4573                     << *BB);
4574 
4575   SmallVector<DominatorTree::UpdateType, 2> Updates;
4576 
4577   // If there are any extra values that couldn't be folded into the switch
4578   // then we evaluate them with an explicit branch first. Split the block
4579   // right before the condbr to handle it.
4580   if (ExtraCase) {
4581     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4582                                    /*MSSAU=*/nullptr, "switch.early.test");
4583 
4584     // Remove the uncond branch added to the old block.
4585     Instruction *OldTI = BB->getTerminator();
4586     Builder.SetInsertPoint(OldTI);
4587 
4588     // There can be an unintended UB if extra values are Poison. Before the
4589     // transformation, extra values may not be evaluated according to the
4590     // condition, and it will not raise UB. But after transformation, we are
4591     // evaluating extra values before checking the condition, and it will raise
4592     // UB. It can be solved by adding freeze instruction to extra values.
4593     AssumptionCache *AC = Options.AC;
4594 
4595     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
4596       ExtraCase = Builder.CreateFreeze(ExtraCase);
4597 
4598     if (TrueWhenEqual)
4599       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4600     else
4601       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4602 
4603     OldTI->eraseFromParent();
4604 
4605     if (DTU)
4606       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4607 
4608     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4609     // for the edge we just added.
4610     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4611 
4612     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4613                       << "\nEXTRABB = " << *BB);
4614     BB = NewBB;
4615   }
4616 
4617   Builder.SetInsertPoint(BI);
4618   // Convert pointer to int before we switch.
4619   if (CompVal->getType()->isPointerTy()) {
4620     CompVal = Builder.CreatePtrToInt(
4621         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4622   }
4623 
4624   // Create the new switch instruction now.
4625   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4626 
4627   // Add all of the 'cases' to the switch instruction.
4628   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4629     New->addCase(Values[i], EdgeBB);
4630 
4631   // We added edges from PI to the EdgeBB.  As such, if there were any
4632   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4633   // the number of edges added.
4634   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4635     PHINode *PN = cast<PHINode>(BBI);
4636     Value *InVal = PN->getIncomingValueForBlock(BB);
4637     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4638       PN->addIncoming(InVal, BB);
4639   }
4640 
4641   // Erase the old branch instruction.
4642   EraseTerminatorAndDCECond(BI);
4643   if (DTU)
4644     DTU->applyUpdates(Updates);
4645 
4646   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4647   return true;
4648 }
4649 
4650 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4651   if (isa<PHINode>(RI->getValue()))
4652     return simplifyCommonResume(RI);
4653   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4654            RI->getValue() == RI->getParent()->getFirstNonPHI())
4655     // The resume must unwind the exception that caused control to branch here.
4656     return simplifySingleResume(RI);
4657 
4658   return false;
4659 }
4660 
4661 // Check if cleanup block is empty
4662 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4663   for (Instruction &I : R) {
4664     auto *II = dyn_cast<IntrinsicInst>(&I);
4665     if (!II)
4666       return false;
4667 
4668     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4669     switch (IntrinsicID) {
4670     case Intrinsic::dbg_declare:
4671     case Intrinsic::dbg_value:
4672     case Intrinsic::dbg_label:
4673     case Intrinsic::lifetime_end:
4674       break;
4675     default:
4676       return false;
4677     }
4678   }
4679   return true;
4680 }
4681 
4682 // Simplify resume that is shared by several landing pads (phi of landing pad).
4683 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4684   BasicBlock *BB = RI->getParent();
4685 
4686   // Check that there are no other instructions except for debug and lifetime
4687   // intrinsics between the phi's and resume instruction.
4688   if (!isCleanupBlockEmpty(
4689           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4690     return false;
4691 
4692   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4693   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4694 
4695   // Check incoming blocks to see if any of them are trivial.
4696   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4697        Idx++) {
4698     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4699     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4700 
4701     // If the block has other successors, we can not delete it because
4702     // it has other dependents.
4703     if (IncomingBB->getUniqueSuccessor() != BB)
4704       continue;
4705 
4706     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4707     // Not the landing pad that caused the control to branch here.
4708     if (IncomingValue != LandingPad)
4709       continue;
4710 
4711     if (isCleanupBlockEmpty(
4712             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4713       TrivialUnwindBlocks.insert(IncomingBB);
4714   }
4715 
4716   // If no trivial unwind blocks, don't do any simplifications.
4717   if (TrivialUnwindBlocks.empty())
4718     return false;
4719 
4720   // Turn all invokes that unwind here into calls.
4721   for (auto *TrivialBB : TrivialUnwindBlocks) {
4722     // Blocks that will be simplified should be removed from the phi node.
4723     // Note there could be multiple edges to the resume block, and we need
4724     // to remove them all.
4725     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4726       BB->removePredecessor(TrivialBB, true);
4727 
4728     for (BasicBlock *Pred :
4729          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4730       removeUnwindEdge(Pred, DTU);
4731       ++NumInvokes;
4732     }
4733 
4734     // In each SimplifyCFG run, only the current processed block can be erased.
4735     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4736     // of erasing TrivialBB, we only remove the branch to the common resume
4737     // block so that we can later erase the resume block since it has no
4738     // predecessors.
4739     TrivialBB->getTerminator()->eraseFromParent();
4740     new UnreachableInst(RI->getContext(), TrivialBB);
4741     if (DTU)
4742       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4743   }
4744 
4745   // Delete the resume block if all its predecessors have been removed.
4746   if (pred_empty(BB))
4747     DeleteDeadBlock(BB, DTU);
4748 
4749   return !TrivialUnwindBlocks.empty();
4750 }
4751 
4752 // Simplify resume that is only used by a single (non-phi) landing pad.
4753 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4754   BasicBlock *BB = RI->getParent();
4755   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4756   assert(RI->getValue() == LPInst &&
4757          "Resume must unwind the exception that caused control to here");
4758 
4759   // Check that there are no other instructions except for debug intrinsics.
4760   if (!isCleanupBlockEmpty(
4761           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4762     return false;
4763 
4764   // Turn all invokes that unwind here into calls and delete the basic block.
4765   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4766     removeUnwindEdge(Pred, DTU);
4767     ++NumInvokes;
4768   }
4769 
4770   // The landingpad is now unreachable.  Zap it.
4771   DeleteDeadBlock(BB, DTU);
4772   return true;
4773 }
4774 
4775 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4776   // If this is a trivial cleanup pad that executes no instructions, it can be
4777   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4778   // that is an EH pad will be updated to continue to the caller and any
4779   // predecessor that terminates with an invoke instruction will have its invoke
4780   // instruction converted to a call instruction.  If the cleanup pad being
4781   // simplified does not continue to the caller, each predecessor will be
4782   // updated to continue to the unwind destination of the cleanup pad being
4783   // simplified.
4784   BasicBlock *BB = RI->getParent();
4785   CleanupPadInst *CPInst = RI->getCleanupPad();
4786   if (CPInst->getParent() != BB)
4787     // This isn't an empty cleanup.
4788     return false;
4789 
4790   // We cannot kill the pad if it has multiple uses.  This typically arises
4791   // from unreachable basic blocks.
4792   if (!CPInst->hasOneUse())
4793     return false;
4794 
4795   // Check that there are no other instructions except for benign intrinsics.
4796   if (!isCleanupBlockEmpty(
4797           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4798     return false;
4799 
4800   // If the cleanup return we are simplifying unwinds to the caller, this will
4801   // set UnwindDest to nullptr.
4802   BasicBlock *UnwindDest = RI->getUnwindDest();
4803   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4804 
4805   // We're about to remove BB from the control flow.  Before we do, sink any
4806   // PHINodes into the unwind destination.  Doing this before changing the
4807   // control flow avoids some potentially slow checks, since we can currently
4808   // be certain that UnwindDest and BB have no common predecessors (since they
4809   // are both EH pads).
4810   if (UnwindDest) {
4811     // First, go through the PHI nodes in UnwindDest and update any nodes that
4812     // reference the block we are removing
4813     for (PHINode &DestPN : UnwindDest->phis()) {
4814       int Idx = DestPN.getBasicBlockIndex(BB);
4815       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4816       assert(Idx != -1);
4817       // This PHI node has an incoming value that corresponds to a control
4818       // path through the cleanup pad we are removing.  If the incoming
4819       // value is in the cleanup pad, it must be a PHINode (because we
4820       // verified above that the block is otherwise empty).  Otherwise, the
4821       // value is either a constant or a value that dominates the cleanup
4822       // pad being removed.
4823       //
4824       // Because BB and UnwindDest are both EH pads, all of their
4825       // predecessors must unwind to these blocks, and since no instruction
4826       // can have multiple unwind destinations, there will be no overlap in
4827       // incoming blocks between SrcPN and DestPN.
4828       Value *SrcVal = DestPN.getIncomingValue(Idx);
4829       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4830 
4831       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
4832       for (auto *Pred : predecessors(BB)) {
4833         Value *Incoming =
4834             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
4835         DestPN.addIncoming(Incoming, Pred);
4836       }
4837     }
4838 
4839     // Sink any remaining PHI nodes directly into UnwindDest.
4840     Instruction *InsertPt = DestEHPad;
4841     for (PHINode &PN : make_early_inc_range(BB->phis())) {
4842       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
4843         // If the PHI node has no uses or all of its uses are in this basic
4844         // block (meaning they are debug or lifetime intrinsics), just leave
4845         // it.  It will be erased when we erase BB below.
4846         continue;
4847 
4848       // Otherwise, sink this PHI node into UnwindDest.
4849       // Any predecessors to UnwindDest which are not already represented
4850       // must be back edges which inherit the value from the path through
4851       // BB.  In this case, the PHI value must reference itself.
4852       for (auto *pred : predecessors(UnwindDest))
4853         if (pred != BB)
4854           PN.addIncoming(&PN, pred);
4855       PN.moveBefore(InsertPt);
4856       // Also, add a dummy incoming value for the original BB itself,
4857       // so that the PHI is well-formed until we drop said predecessor.
4858       PN.addIncoming(UndefValue::get(PN.getType()), BB);
4859     }
4860   }
4861 
4862   std::vector<DominatorTree::UpdateType> Updates;
4863 
4864   // We use make_early_inc_range here because we will remove all predecessors.
4865   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4866     if (UnwindDest == nullptr) {
4867       if (DTU) {
4868         DTU->applyUpdates(Updates);
4869         Updates.clear();
4870       }
4871       removeUnwindEdge(PredBB, DTU);
4872       ++NumInvokes;
4873     } else {
4874       BB->removePredecessor(PredBB);
4875       Instruction *TI = PredBB->getTerminator();
4876       TI->replaceUsesOfWith(BB, UnwindDest);
4877       if (DTU) {
4878         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4879         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4880       }
4881     }
4882   }
4883 
4884   if (DTU)
4885     DTU->applyUpdates(Updates);
4886 
4887   DeleteDeadBlock(BB, DTU);
4888 
4889   return true;
4890 }
4891 
4892 // Try to merge two cleanuppads together.
4893 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4894   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4895   // with.
4896   BasicBlock *UnwindDest = RI->getUnwindDest();
4897   if (!UnwindDest)
4898     return false;
4899 
4900   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4901   // be safe to merge without code duplication.
4902   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4903     return false;
4904 
4905   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4906   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4907   if (!SuccessorCleanupPad)
4908     return false;
4909 
4910   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4911   // Replace any uses of the successor cleanupad with the predecessor pad
4912   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4913   // funclet bundle operands.
4914   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4915   // Remove the old cleanuppad.
4916   SuccessorCleanupPad->eraseFromParent();
4917   // Now, we simply replace the cleanupret with a branch to the unwind
4918   // destination.
4919   BranchInst::Create(UnwindDest, RI->getParent());
4920   RI->eraseFromParent();
4921 
4922   return true;
4923 }
4924 
4925 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4926   // It is possible to transiantly have an undef cleanuppad operand because we
4927   // have deleted some, but not all, dead blocks.
4928   // Eventually, this block will be deleted.
4929   if (isa<UndefValue>(RI->getOperand(0)))
4930     return false;
4931 
4932   if (mergeCleanupPad(RI))
4933     return true;
4934 
4935   if (removeEmptyCleanup(RI, DTU))
4936     return true;
4937 
4938   return false;
4939 }
4940 
4941 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
4942 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4943   BasicBlock *BB = UI->getParent();
4944 
4945   bool Changed = false;
4946 
4947   // If there are any instructions immediately before the unreachable that can
4948   // be removed, do so.
4949   while (UI->getIterator() != BB->begin()) {
4950     BasicBlock::iterator BBI = UI->getIterator();
4951     --BBI;
4952 
4953     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
4954       break; // Can not drop any more instructions. We're done here.
4955     // Otherwise, this instruction can be freely erased,
4956     // even if it is not side-effect free.
4957 
4958     // Note that deleting EH's here is in fact okay, although it involves a bit
4959     // of subtle reasoning. If this inst is an EH, all the predecessors of this
4960     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
4961     // and we can therefore guarantee this block will be erased.
4962 
4963     // Delete this instruction (any uses are guaranteed to be dead)
4964     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
4965     BBI->eraseFromParent();
4966     Changed = true;
4967   }
4968 
4969   // If the unreachable instruction is the first in the block, take a gander
4970   // at all of the predecessors of this instruction, and simplify them.
4971   if (&BB->front() != UI)
4972     return Changed;
4973 
4974   std::vector<DominatorTree::UpdateType> Updates;
4975 
4976   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4977   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4978     auto *Predecessor = Preds[i];
4979     Instruction *TI = Predecessor->getTerminator();
4980     IRBuilder<> Builder(TI);
4981     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4982       // We could either have a proper unconditional branch,
4983       // or a degenerate conditional branch with matching destinations.
4984       if (all_of(BI->successors(),
4985                  [BB](auto *Successor) { return Successor == BB; })) {
4986         new UnreachableInst(TI->getContext(), TI);
4987         TI->eraseFromParent();
4988         Changed = true;
4989       } else {
4990         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4991         Value* Cond = BI->getCondition();
4992         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4993                "The destinations are guaranteed to be different here.");
4994         if (BI->getSuccessor(0) == BB) {
4995           Builder.CreateAssumption(Builder.CreateNot(Cond));
4996           Builder.CreateBr(BI->getSuccessor(1));
4997         } else {
4998           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4999           Builder.CreateAssumption(Cond);
5000           Builder.CreateBr(BI->getSuccessor(0));
5001         }
5002         EraseTerminatorAndDCECond(BI);
5003         Changed = true;
5004       }
5005       if (DTU)
5006         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5007     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5008       SwitchInstProfUpdateWrapper SU(*SI);
5009       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5010         if (i->getCaseSuccessor() != BB) {
5011           ++i;
5012           continue;
5013         }
5014         BB->removePredecessor(SU->getParent());
5015         i = SU.removeCase(i);
5016         e = SU->case_end();
5017         Changed = true;
5018       }
5019       // Note that the default destination can't be removed!
5020       if (DTU && SI->getDefaultDest() != BB)
5021         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5022     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5023       if (II->getUnwindDest() == BB) {
5024         if (DTU) {
5025           DTU->applyUpdates(Updates);
5026           Updates.clear();
5027         }
5028         removeUnwindEdge(TI->getParent(), DTU);
5029         Changed = true;
5030       }
5031     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5032       if (CSI->getUnwindDest() == BB) {
5033         if (DTU) {
5034           DTU->applyUpdates(Updates);
5035           Updates.clear();
5036         }
5037         removeUnwindEdge(TI->getParent(), DTU);
5038         Changed = true;
5039         continue;
5040       }
5041 
5042       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5043                                              E = CSI->handler_end();
5044            I != E; ++I) {
5045         if (*I == BB) {
5046           CSI->removeHandler(I);
5047           --I;
5048           --E;
5049           Changed = true;
5050         }
5051       }
5052       if (DTU)
5053         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5054       if (CSI->getNumHandlers() == 0) {
5055         if (CSI->hasUnwindDest()) {
5056           // Redirect all predecessors of the block containing CatchSwitchInst
5057           // to instead branch to the CatchSwitchInst's unwind destination.
5058           if (DTU) {
5059             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5060               Updates.push_back({DominatorTree::Insert,
5061                                  PredecessorOfPredecessor,
5062                                  CSI->getUnwindDest()});
5063               Updates.push_back({DominatorTree::Delete,
5064                                  PredecessorOfPredecessor, Predecessor});
5065             }
5066           }
5067           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5068         } else {
5069           // Rewrite all preds to unwind to caller (or from invoke to call).
5070           if (DTU) {
5071             DTU->applyUpdates(Updates);
5072             Updates.clear();
5073           }
5074           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5075           for (BasicBlock *EHPred : EHPreds)
5076             removeUnwindEdge(EHPred, DTU);
5077         }
5078         // The catchswitch is no longer reachable.
5079         new UnreachableInst(CSI->getContext(), CSI);
5080         CSI->eraseFromParent();
5081         Changed = true;
5082       }
5083     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5084       (void)CRI;
5085       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5086              "Expected to always have an unwind to BB.");
5087       if (DTU)
5088         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5089       new UnreachableInst(TI->getContext(), TI);
5090       TI->eraseFromParent();
5091       Changed = true;
5092     }
5093   }
5094 
5095   if (DTU)
5096     DTU->applyUpdates(Updates);
5097 
5098   // If this block is now dead, remove it.
5099   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5100     DeleteDeadBlock(BB, DTU);
5101     return true;
5102   }
5103 
5104   return Changed;
5105 }
5106 
5107 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5108   assert(Cases.size() >= 1);
5109 
5110   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
5111   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5112     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5113       return false;
5114   }
5115   return true;
5116 }
5117 
5118 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5119                                            DomTreeUpdater *DTU) {
5120   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5121   auto *BB = Switch->getParent();
5122   auto *OrigDefaultBlock = Switch->getDefaultDest();
5123   OrigDefaultBlock->removePredecessor(BB);
5124   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5125       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5126       OrigDefaultBlock);
5127   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5128   Switch->setDefaultDest(&*NewDefaultBlock);
5129   if (DTU) {
5130     SmallVector<DominatorTree::UpdateType, 2> Updates;
5131     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5132     if (!is_contained(successors(BB), OrigDefaultBlock))
5133       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5134     DTU->applyUpdates(Updates);
5135   }
5136 }
5137 
5138 /// Turn a switch into an integer range comparison and branch.
5139 /// Switches with more than 2 destinations are ignored.
5140 /// Switches with 1 destination are also ignored.
5141 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
5142                                              IRBuilder<> &Builder) {
5143   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5144 
5145   bool HasDefault =
5146       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5147 
5148   auto *BB = SI->getParent();
5149 
5150   // Partition the cases into two sets with different destinations.
5151   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5152   BasicBlock *DestB = nullptr;
5153   SmallVector<ConstantInt *, 16> CasesA;
5154   SmallVector<ConstantInt *, 16> CasesB;
5155 
5156   for (auto Case : SI->cases()) {
5157     BasicBlock *Dest = Case.getCaseSuccessor();
5158     if (!DestA)
5159       DestA = Dest;
5160     if (Dest == DestA) {
5161       CasesA.push_back(Case.getCaseValue());
5162       continue;
5163     }
5164     if (!DestB)
5165       DestB = Dest;
5166     if (Dest == DestB) {
5167       CasesB.push_back(Case.getCaseValue());
5168       continue;
5169     }
5170     return false; // More than two destinations.
5171   }
5172   if (!DestB)
5173     return false; // All destinations are the same and the default is unreachable
5174 
5175   assert(DestA && DestB &&
5176          "Single-destination switch should have been folded.");
5177   assert(DestA != DestB);
5178   assert(DestB != SI->getDefaultDest());
5179   assert(!CasesB.empty() && "There must be non-default cases.");
5180   assert(!CasesA.empty() || HasDefault);
5181 
5182   // Figure out if one of the sets of cases form a contiguous range.
5183   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5184   BasicBlock *ContiguousDest = nullptr;
5185   BasicBlock *OtherDest = nullptr;
5186   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
5187     ContiguousCases = &CasesA;
5188     ContiguousDest = DestA;
5189     OtherDest = DestB;
5190   } else if (CasesAreContiguous(CasesB)) {
5191     ContiguousCases = &CasesB;
5192     ContiguousDest = DestB;
5193     OtherDest = DestA;
5194   } else
5195     return false;
5196 
5197   // Start building the compare and branch.
5198 
5199   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5200   Constant *NumCases =
5201       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5202 
5203   Value *Sub = SI->getCondition();
5204   if (!Offset->isNullValue())
5205     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5206 
5207   Value *Cmp;
5208   // If NumCases overflowed, then all possible values jump to the successor.
5209   if (NumCases->isNullValue() && !ContiguousCases->empty())
5210     Cmp = ConstantInt::getTrue(SI->getContext());
5211   else
5212     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5213   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5214 
5215   // Update weight for the newly-created conditional branch.
5216   if (HasBranchWeights(SI)) {
5217     SmallVector<uint64_t, 8> Weights;
5218     GetBranchWeights(SI, Weights);
5219     if (Weights.size() == 1 + SI->getNumCases()) {
5220       uint64_t TrueWeight = 0;
5221       uint64_t FalseWeight = 0;
5222       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5223         if (SI->getSuccessor(I) == ContiguousDest)
5224           TrueWeight += Weights[I];
5225         else
5226           FalseWeight += Weights[I];
5227       }
5228       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5229         TrueWeight /= 2;
5230         FalseWeight /= 2;
5231       }
5232       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5233     }
5234   }
5235 
5236   // Prune obsolete incoming values off the successors' PHI nodes.
5237   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5238     unsigned PreviousEdges = ContiguousCases->size();
5239     if (ContiguousDest == SI->getDefaultDest())
5240       ++PreviousEdges;
5241     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5242       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5243   }
5244   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5245     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5246     if (OtherDest == SI->getDefaultDest())
5247       ++PreviousEdges;
5248     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5249       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5250   }
5251 
5252   // Clean up the default block - it may have phis or other instructions before
5253   // the unreachable terminator.
5254   if (!HasDefault)
5255     createUnreachableSwitchDefault(SI, DTU);
5256 
5257   auto *UnreachableDefault = SI->getDefaultDest();
5258 
5259   // Drop the switch.
5260   SI->eraseFromParent();
5261 
5262   if (!HasDefault && DTU)
5263     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5264 
5265   return true;
5266 }
5267 
5268 /// Compute masked bits for the condition of a switch
5269 /// and use it to remove dead cases.
5270 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5271                                      AssumptionCache *AC,
5272                                      const DataLayout &DL) {
5273   Value *Cond = SI->getCondition();
5274   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5275 
5276   // We can also eliminate cases by determining that their values are outside of
5277   // the limited range of the condition based on how many significant (non-sign)
5278   // bits are in the condition value.
5279   unsigned MaxSignificantBitsInCond =
5280       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5281 
5282   // Gather dead cases.
5283   SmallVector<ConstantInt *, 8> DeadCases;
5284   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5285   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5286   for (auto &Case : SI->cases()) {
5287     auto *Successor = Case.getCaseSuccessor();
5288     if (DTU) {
5289       if (!NumPerSuccessorCases.count(Successor))
5290         UniqueSuccessors.push_back(Successor);
5291       ++NumPerSuccessorCases[Successor];
5292     }
5293     const APInt &CaseVal = Case.getCaseValue()->getValue();
5294     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5295         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5296       DeadCases.push_back(Case.getCaseValue());
5297       if (DTU)
5298         --NumPerSuccessorCases[Successor];
5299       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5300                         << " is dead.\n");
5301     }
5302   }
5303 
5304   // If we can prove that the cases must cover all possible values, the
5305   // default destination becomes dead and we can remove it.  If we know some
5306   // of the bits in the value, we can use that to more precisely compute the
5307   // number of possible unique case values.
5308   bool HasDefault =
5309       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5310   const unsigned NumUnknownBits =
5311       Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
5312   assert(NumUnknownBits <= Known.getBitWidth());
5313   if (HasDefault && DeadCases.empty() &&
5314       NumUnknownBits < 64 /* avoid overflow */ &&
5315       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5316     createUnreachableSwitchDefault(SI, DTU);
5317     return true;
5318   }
5319 
5320   if (DeadCases.empty())
5321     return false;
5322 
5323   SwitchInstProfUpdateWrapper SIW(*SI);
5324   for (ConstantInt *DeadCase : DeadCases) {
5325     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5326     assert(CaseI != SI->case_default() &&
5327            "Case was not found. Probably mistake in DeadCases forming.");
5328     // Prune unused values from PHI nodes.
5329     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5330     SIW.removeCase(CaseI);
5331   }
5332 
5333   if (DTU) {
5334     std::vector<DominatorTree::UpdateType> Updates;
5335     for (auto *Successor : UniqueSuccessors)
5336       if (NumPerSuccessorCases[Successor] == 0)
5337         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5338     DTU->applyUpdates(Updates);
5339   }
5340 
5341   return true;
5342 }
5343 
5344 /// If BB would be eligible for simplification by
5345 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5346 /// by an unconditional branch), look at the phi node for BB in the successor
5347 /// block and see if the incoming value is equal to CaseValue. If so, return
5348 /// the phi node, and set PhiIndex to BB's index in the phi node.
5349 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5350                                               BasicBlock *BB, int *PhiIndex) {
5351   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5352     return nullptr; // BB must be empty to be a candidate for simplification.
5353   if (!BB->getSinglePredecessor())
5354     return nullptr; // BB must be dominated by the switch.
5355 
5356   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5357   if (!Branch || !Branch->isUnconditional())
5358     return nullptr; // Terminator must be unconditional branch.
5359 
5360   BasicBlock *Succ = Branch->getSuccessor(0);
5361 
5362   for (PHINode &PHI : Succ->phis()) {
5363     int Idx = PHI.getBasicBlockIndex(BB);
5364     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5365 
5366     Value *InValue = PHI.getIncomingValue(Idx);
5367     if (InValue != CaseValue)
5368       continue;
5369 
5370     *PhiIndex = Idx;
5371     return &PHI;
5372   }
5373 
5374   return nullptr;
5375 }
5376 
5377 /// Try to forward the condition of a switch instruction to a phi node
5378 /// dominated by the switch, if that would mean that some of the destination
5379 /// blocks of the switch can be folded away. Return true if a change is made.
5380 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5381   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5382 
5383   ForwardingNodesMap ForwardingNodes;
5384   BasicBlock *SwitchBlock = SI->getParent();
5385   bool Changed = false;
5386   for (auto &Case : SI->cases()) {
5387     ConstantInt *CaseValue = Case.getCaseValue();
5388     BasicBlock *CaseDest = Case.getCaseSuccessor();
5389 
5390     // Replace phi operands in successor blocks that are using the constant case
5391     // value rather than the switch condition variable:
5392     //   switchbb:
5393     //   switch i32 %x, label %default [
5394     //     i32 17, label %succ
5395     //   ...
5396     //   succ:
5397     //     %r = phi i32 ... [ 17, %switchbb ] ...
5398     // -->
5399     //     %r = phi i32 ... [ %x, %switchbb ] ...
5400 
5401     for (PHINode &Phi : CaseDest->phis()) {
5402       // This only works if there is exactly 1 incoming edge from the switch to
5403       // a phi. If there is >1, that means multiple cases of the switch map to 1
5404       // value in the phi, and that phi value is not the switch condition. Thus,
5405       // this transform would not make sense (the phi would be invalid because
5406       // a phi can't have different incoming values from the same block).
5407       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5408       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5409           count(Phi.blocks(), SwitchBlock) == 1) {
5410         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5411         Changed = true;
5412       }
5413     }
5414 
5415     // Collect phi nodes that are indirectly using this switch's case constants.
5416     int PhiIdx;
5417     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5418       ForwardingNodes[Phi].push_back(PhiIdx);
5419   }
5420 
5421   for (auto &ForwardingNode : ForwardingNodes) {
5422     PHINode *Phi = ForwardingNode.first;
5423     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5424     if (Indexes.size() < 2)
5425       continue;
5426 
5427     for (int Index : Indexes)
5428       Phi->setIncomingValue(Index, SI->getCondition());
5429     Changed = true;
5430   }
5431 
5432   return Changed;
5433 }
5434 
5435 /// Return true if the backend will be able to handle
5436 /// initializing an array of constants like C.
5437 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5438   if (C->isThreadDependent())
5439     return false;
5440   if (C->isDLLImportDependent())
5441     return false;
5442 
5443   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5444       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5445       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5446     return false;
5447 
5448   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5449     // Pointer casts and in-bounds GEPs will not prohibit the backend from
5450     // materializing the array of constants.
5451     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
5452     if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
5453       return false;
5454   }
5455 
5456   if (!TTI.shouldBuildLookupTablesForConstant(C))
5457     return false;
5458 
5459   return true;
5460 }
5461 
5462 /// If V is a Constant, return it. Otherwise, try to look up
5463 /// its constant value in ConstantPool, returning 0 if it's not there.
5464 static Constant *
5465 LookupConstant(Value *V,
5466                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5467   if (Constant *C = dyn_cast<Constant>(V))
5468     return C;
5469   return ConstantPool.lookup(V);
5470 }
5471 
5472 /// Try to fold instruction I into a constant. This works for
5473 /// simple instructions such as binary operations where both operands are
5474 /// constant or can be replaced by constants from the ConstantPool. Returns the
5475 /// resulting constant on success, 0 otherwise.
5476 static Constant *
5477 ConstantFold(Instruction *I, const DataLayout &DL,
5478              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5479   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5480     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5481     if (!A)
5482       return nullptr;
5483     if (A->isAllOnesValue())
5484       return LookupConstant(Select->getTrueValue(), ConstantPool);
5485     if (A->isNullValue())
5486       return LookupConstant(Select->getFalseValue(), ConstantPool);
5487     return nullptr;
5488   }
5489 
5490   SmallVector<Constant *, 4> COps;
5491   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5492     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5493       COps.push_back(A);
5494     else
5495       return nullptr;
5496   }
5497 
5498   return ConstantFoldInstOperands(I, COps, DL);
5499 }
5500 
5501 /// Try to determine the resulting constant values in phi nodes
5502 /// at the common destination basic block, *CommonDest, for one of the case
5503 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5504 /// case), of a switch instruction SI.
5505 static bool
5506 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5507                BasicBlock **CommonDest,
5508                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5509                const DataLayout &DL, const TargetTransformInfo &TTI) {
5510   // The block from which we enter the common destination.
5511   BasicBlock *Pred = SI->getParent();
5512 
5513   // If CaseDest is empty except for some side-effect free instructions through
5514   // which we can constant-propagate the CaseVal, continue to its successor.
5515   SmallDenseMap<Value *, Constant *> ConstantPool;
5516   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5517   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
5518     if (I.isTerminator()) {
5519       // If the terminator is a simple branch, continue to the next block.
5520       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5521         return false;
5522       Pred = CaseDest;
5523       CaseDest = I.getSuccessor(0);
5524     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5525       // Instruction is side-effect free and constant.
5526 
5527       // If the instruction has uses outside this block or a phi node slot for
5528       // the block, it is not safe to bypass the instruction since it would then
5529       // no longer dominate all its uses.
5530       for (auto &Use : I.uses()) {
5531         User *User = Use.getUser();
5532         if (Instruction *I = dyn_cast<Instruction>(User))
5533           if (I->getParent() == CaseDest)
5534             continue;
5535         if (PHINode *Phi = dyn_cast<PHINode>(User))
5536           if (Phi->getIncomingBlock(Use) == CaseDest)
5537             continue;
5538         return false;
5539       }
5540 
5541       ConstantPool.insert(std::make_pair(&I, C));
5542     } else {
5543       break;
5544     }
5545   }
5546 
5547   // If we did not have a CommonDest before, use the current one.
5548   if (!*CommonDest)
5549     *CommonDest = CaseDest;
5550   // If the destination isn't the common one, abort.
5551   if (CaseDest != *CommonDest)
5552     return false;
5553 
5554   // Get the values for this case from phi nodes in the destination block.
5555   for (PHINode &PHI : (*CommonDest)->phis()) {
5556     int Idx = PHI.getBasicBlockIndex(Pred);
5557     if (Idx == -1)
5558       continue;
5559 
5560     Constant *ConstVal =
5561         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5562     if (!ConstVal)
5563       return false;
5564 
5565     // Be conservative about which kinds of constants we support.
5566     if (!ValidLookupTableConstant(ConstVal, TTI))
5567       return false;
5568 
5569     Res.push_back(std::make_pair(&PHI, ConstVal));
5570   }
5571 
5572   return Res.size() > 0;
5573 }
5574 
5575 // Helper function used to add CaseVal to the list of cases that generate
5576 // Result. Returns the updated number of cases that generate this result.
5577 static size_t mapCaseToResult(ConstantInt *CaseVal,
5578                               SwitchCaseResultVectorTy &UniqueResults,
5579                               Constant *Result) {
5580   for (auto &I : UniqueResults) {
5581     if (I.first == Result) {
5582       I.second.push_back(CaseVal);
5583       return I.second.size();
5584     }
5585   }
5586   UniqueResults.push_back(
5587       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5588   return 1;
5589 }
5590 
5591 // Helper function that initializes a map containing
5592 // results for the PHI node of the common destination block for a switch
5593 // instruction. Returns false if multiple PHI nodes have been found or if
5594 // there is not a common destination block for the switch.
5595 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
5596                                   BasicBlock *&CommonDest,
5597                                   SwitchCaseResultVectorTy &UniqueResults,
5598                                   Constant *&DefaultResult,
5599                                   const DataLayout &DL,
5600                                   const TargetTransformInfo &TTI,
5601                                   uintptr_t MaxUniqueResults) {
5602   for (auto &I : SI->cases()) {
5603     ConstantInt *CaseVal = I.getCaseValue();
5604 
5605     // Resulting value at phi nodes for this case value.
5606     SwitchCaseResultsTy Results;
5607     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5608                         DL, TTI))
5609       return false;
5610 
5611     // Only one value per case is permitted.
5612     if (Results.size() > 1)
5613       return false;
5614 
5615     // Add the case->result mapping to UniqueResults.
5616     const size_t NumCasesForResult =
5617         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5618 
5619     // Early out if there are too many cases for this result.
5620     if (NumCasesForResult > MaxSwitchCasesPerResult)
5621       return false;
5622 
5623     // Early out if there are too many unique results.
5624     if (UniqueResults.size() > MaxUniqueResults)
5625       return false;
5626 
5627     // Check the PHI consistency.
5628     if (!PHI)
5629       PHI = Results[0].first;
5630     else if (PHI != Results[0].first)
5631       return false;
5632   }
5633   // Find the default result value.
5634   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5635   BasicBlock *DefaultDest = SI->getDefaultDest();
5636   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5637                  DL, TTI);
5638   // If the default value is not found abort unless the default destination
5639   // is unreachable.
5640   DefaultResult =
5641       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5642   if ((!DefaultResult &&
5643        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5644     return false;
5645 
5646   return true;
5647 }
5648 
5649 // Helper function that checks if it is possible to transform a switch with only
5650 // two cases (or two cases + default) that produces a result into a select.
5651 // TODO: Handle switches with more than 2 cases that map to the same result.
5652 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
5653                                  Constant *DefaultResult, Value *Condition,
5654                                  IRBuilder<> &Builder) {
5655   // If we are selecting between only two cases transform into a simple
5656   // select or a two-way select if default is possible.
5657   // Example:
5658   // switch (a) {                  %0 = icmp eq i32 %a, 10
5659   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
5660   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
5661   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
5662   // }
5663   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5664       ResultVector[1].second.size() == 1) {
5665     ConstantInt *FirstCase = ResultVector[0].second[0];
5666     ConstantInt *SecondCase = ResultVector[1].second[0];
5667     Value *SelectValue = ResultVector[1].first;
5668     if (DefaultResult) {
5669       Value *ValueCompare =
5670           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5671       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5672                                          DefaultResult, "switch.select");
5673     }
5674     Value *ValueCompare =
5675         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5676     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5677                                 SelectValue, "switch.select");
5678   }
5679 
5680   // Handle the degenerate case where two cases have the same result value.
5681   if (ResultVector.size() == 1 && DefaultResult) {
5682     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
5683     unsigned CaseCount = CaseValues.size();
5684     // n bits group cases map to the same result:
5685     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
5686     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
5687     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
5688     if (isPowerOf2_32(CaseCount)) {
5689       ConstantInt *MinCaseVal = CaseValues[0];
5690       // Find mininal value.
5691       for (auto Case : CaseValues)
5692         if (Case->getValue().slt(MinCaseVal->getValue()))
5693           MinCaseVal = Case;
5694 
5695       // Mark the bits case number touched.
5696       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
5697       for (auto Case : CaseValues)
5698         BitMask |= (Case->getValue() - MinCaseVal->getValue());
5699 
5700       // Check if cases with the same result can cover all number
5701       // in touched bits.
5702       if (BitMask.countPopulation() == Log2_32(CaseCount)) {
5703         if (!MinCaseVal->isNullValue())
5704           Condition = Builder.CreateSub(Condition, MinCaseVal);
5705         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
5706         Value *Cmp = Builder.CreateICmpEQ(
5707             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
5708         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5709       }
5710     }
5711 
5712     // Handle the degenerate case where two cases have the same value.
5713     if (CaseValues.size() == 2) {
5714       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
5715                                          "switch.selectcmp.case1");
5716       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
5717                                          "switch.selectcmp.case2");
5718       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5719       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5720     }
5721   }
5722 
5723   return nullptr;
5724 }
5725 
5726 // Helper function to cleanup a switch instruction that has been converted into
5727 // a select, fixing up PHI nodes and basic blocks.
5728 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
5729                                         Value *SelectValue,
5730                                         IRBuilder<> &Builder,
5731                                         DomTreeUpdater *DTU) {
5732   std::vector<DominatorTree::UpdateType> Updates;
5733 
5734   BasicBlock *SelectBB = SI->getParent();
5735   BasicBlock *DestBB = PHI->getParent();
5736 
5737   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5738     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5739   Builder.CreateBr(DestBB);
5740 
5741   // Remove the switch.
5742 
5743   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5744     PHI->removeIncomingValue(SelectBB);
5745   PHI->addIncoming(SelectValue, SelectBB);
5746 
5747   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5748   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5749     BasicBlock *Succ = SI->getSuccessor(i);
5750 
5751     if (Succ == DestBB)
5752       continue;
5753     Succ->removePredecessor(SelectBB);
5754     if (DTU && RemovedSuccessors.insert(Succ).second)
5755       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5756   }
5757   SI->eraseFromParent();
5758   if (DTU)
5759     DTU->applyUpdates(Updates);
5760 }
5761 
5762 /// If a switch is only used to initialize one or more phi nodes in a common
5763 /// successor block with only two different constant values, try to replace the
5764 /// switch with a select. Returns true if the fold was made.
5765 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5766                               DomTreeUpdater *DTU, const DataLayout &DL,
5767                               const TargetTransformInfo &TTI) {
5768   Value *const Cond = SI->getCondition();
5769   PHINode *PHI = nullptr;
5770   BasicBlock *CommonDest = nullptr;
5771   Constant *DefaultResult;
5772   SwitchCaseResultVectorTy UniqueResults;
5773   // Collect all the cases that will deliver the same value from the switch.
5774   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5775                              DL, TTI, /*MaxUniqueResults*/ 2))
5776     return false;
5777 
5778   assert(PHI != nullptr && "PHI for value select not found");
5779   Builder.SetInsertPoint(SI);
5780   Value *SelectValue =
5781       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
5782   if (!SelectValue)
5783     return false;
5784 
5785   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
5786   return true;
5787 }
5788 
5789 namespace {
5790 
5791 /// This class represents a lookup table that can be used to replace a switch.
5792 class SwitchLookupTable {
5793 public:
5794   /// Create a lookup table to use as a switch replacement with the contents
5795   /// of Values, using DefaultValue to fill any holes in the table.
5796   SwitchLookupTable(
5797       Module &M, uint64_t TableSize, ConstantInt *Offset,
5798       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5799       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5800 
5801   /// Build instructions with Builder to retrieve the value at
5802   /// the position given by Index in the lookup table.
5803   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5804 
5805   /// Return true if a table with TableSize elements of
5806   /// type ElementType would fit in a target-legal register.
5807   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5808                                  Type *ElementType);
5809 
5810 private:
5811   // Depending on the contents of the table, it can be represented in
5812   // different ways.
5813   enum {
5814     // For tables where each element contains the same value, we just have to
5815     // store that single value and return it for each lookup.
5816     SingleValueKind,
5817 
5818     // For tables where there is a linear relationship between table index
5819     // and values. We calculate the result with a simple multiplication
5820     // and addition instead of a table lookup.
5821     LinearMapKind,
5822 
5823     // For small tables with integer elements, we can pack them into a bitmap
5824     // that fits into a target-legal register. Values are retrieved by
5825     // shift and mask operations.
5826     BitMapKind,
5827 
5828     // The table is stored as an array of values. Values are retrieved by load
5829     // instructions from the table.
5830     ArrayKind
5831   } Kind;
5832 
5833   // For SingleValueKind, this is the single value.
5834   Constant *SingleValue = nullptr;
5835 
5836   // For BitMapKind, this is the bitmap.
5837   ConstantInt *BitMap = nullptr;
5838   IntegerType *BitMapElementTy = nullptr;
5839 
5840   // For LinearMapKind, these are the constants used to derive the value.
5841   ConstantInt *LinearOffset = nullptr;
5842   ConstantInt *LinearMultiplier = nullptr;
5843 
5844   // For ArrayKind, this is the array.
5845   GlobalVariable *Array = nullptr;
5846 };
5847 
5848 } // end anonymous namespace
5849 
5850 SwitchLookupTable::SwitchLookupTable(
5851     Module &M, uint64_t TableSize, ConstantInt *Offset,
5852     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5853     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5854   assert(Values.size() && "Can't build lookup table without values!");
5855   assert(TableSize >= Values.size() && "Can't fit values in table!");
5856 
5857   // If all values in the table are equal, this is that value.
5858   SingleValue = Values.begin()->second;
5859 
5860   Type *ValueType = Values.begin()->second->getType();
5861 
5862   // Build up the table contents.
5863   SmallVector<Constant *, 64> TableContents(TableSize);
5864   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5865     ConstantInt *CaseVal = Values[I].first;
5866     Constant *CaseRes = Values[I].second;
5867     assert(CaseRes->getType() == ValueType);
5868 
5869     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5870     TableContents[Idx] = CaseRes;
5871 
5872     if (CaseRes != SingleValue)
5873       SingleValue = nullptr;
5874   }
5875 
5876   // Fill in any holes in the table with the default result.
5877   if (Values.size() < TableSize) {
5878     assert(DefaultValue &&
5879            "Need a default value to fill the lookup table holes.");
5880     assert(DefaultValue->getType() == ValueType);
5881     for (uint64_t I = 0; I < TableSize; ++I) {
5882       if (!TableContents[I])
5883         TableContents[I] = DefaultValue;
5884     }
5885 
5886     if (DefaultValue != SingleValue)
5887       SingleValue = nullptr;
5888   }
5889 
5890   // If each element in the table contains the same value, we only need to store
5891   // that single value.
5892   if (SingleValue) {
5893     Kind = SingleValueKind;
5894     return;
5895   }
5896 
5897   // Check if we can derive the value with a linear transformation from the
5898   // table index.
5899   if (isa<IntegerType>(ValueType)) {
5900     bool LinearMappingPossible = true;
5901     APInt PrevVal;
5902     APInt DistToPrev;
5903     assert(TableSize >= 2 && "Should be a SingleValue table.");
5904     // Check if there is the same distance between two consecutive values.
5905     for (uint64_t I = 0; I < TableSize; ++I) {
5906       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5907       if (!ConstVal) {
5908         // This is an undef. We could deal with it, but undefs in lookup tables
5909         // are very seldom. It's probably not worth the additional complexity.
5910         LinearMappingPossible = false;
5911         break;
5912       }
5913       const APInt &Val = ConstVal->getValue();
5914       if (I != 0) {
5915         APInt Dist = Val - PrevVal;
5916         if (I == 1) {
5917           DistToPrev = Dist;
5918         } else if (Dist != DistToPrev) {
5919           LinearMappingPossible = false;
5920           break;
5921         }
5922       }
5923       PrevVal = Val;
5924     }
5925     if (LinearMappingPossible) {
5926       LinearOffset = cast<ConstantInt>(TableContents[0]);
5927       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5928       Kind = LinearMapKind;
5929       ++NumLinearMaps;
5930       return;
5931     }
5932   }
5933 
5934   // If the type is integer and the table fits in a register, build a bitmap.
5935   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5936     IntegerType *IT = cast<IntegerType>(ValueType);
5937     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5938     for (uint64_t I = TableSize; I > 0; --I) {
5939       TableInt <<= IT->getBitWidth();
5940       // Insert values into the bitmap. Undef values are set to zero.
5941       if (!isa<UndefValue>(TableContents[I - 1])) {
5942         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5943         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5944       }
5945     }
5946     BitMap = ConstantInt::get(M.getContext(), TableInt);
5947     BitMapElementTy = IT;
5948     Kind = BitMapKind;
5949     ++NumBitMaps;
5950     return;
5951   }
5952 
5953   // Store the table in an array.
5954   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5955   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5956 
5957   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5958                              GlobalVariable::PrivateLinkage, Initializer,
5959                              "switch.table." + FuncName);
5960   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5961   // Set the alignment to that of an array items. We will be only loading one
5962   // value out of it.
5963   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5964   Kind = ArrayKind;
5965 }
5966 
5967 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5968   switch (Kind) {
5969   case SingleValueKind:
5970     return SingleValue;
5971   case LinearMapKind: {
5972     // Derive the result value from the input value.
5973     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5974                                           false, "switch.idx.cast");
5975     if (!LinearMultiplier->isOne())
5976       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5977     if (!LinearOffset->isZero())
5978       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5979     return Result;
5980   }
5981   case BitMapKind: {
5982     // Type of the bitmap (e.g. i59).
5983     IntegerType *MapTy = BitMap->getType();
5984 
5985     // Cast Index to the same type as the bitmap.
5986     // Note: The Index is <= the number of elements in the table, so
5987     // truncating it to the width of the bitmask is safe.
5988     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5989 
5990     // Multiply the shift amount by the element width.
5991     ShiftAmt = Builder.CreateMul(
5992         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5993         "switch.shiftamt");
5994 
5995     // Shift down.
5996     Value *DownShifted =
5997         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5998     // Mask off.
5999     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6000   }
6001   case ArrayKind: {
6002     // Make sure the table index will not overflow when treated as signed.
6003     IntegerType *IT = cast<IntegerType>(Index->getType());
6004     uint64_t TableSize =
6005         Array->getInitializer()->getType()->getArrayNumElements();
6006     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6007       Index = Builder.CreateZExt(
6008           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6009           "switch.tableidx.zext");
6010 
6011     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6012     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6013                                            GEPIndices, "switch.gep");
6014     return Builder.CreateLoad(
6015         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6016         "switch.load");
6017   }
6018   }
6019   llvm_unreachable("Unknown lookup table kind!");
6020 }
6021 
6022 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
6023                                            uint64_t TableSize,
6024                                            Type *ElementType) {
6025   auto *IT = dyn_cast<IntegerType>(ElementType);
6026   if (!IT)
6027     return false;
6028   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6029   // are <= 15, we could try to narrow the type.
6030 
6031   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6032   if (TableSize >= UINT_MAX / IT->getBitWidth())
6033     return false;
6034   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6035 }
6036 
6037 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6038                                       const DataLayout &DL) {
6039   // Allow any legal type.
6040   if (TTI.isTypeLegal(Ty))
6041     return true;
6042 
6043   auto *IT = dyn_cast<IntegerType>(Ty);
6044   if (!IT)
6045     return false;
6046 
6047   // Also allow power of 2 integer types that have at least 8 bits and fit in
6048   // a register. These types are common in frontend languages and targets
6049   // usually support loads of these types.
6050   // TODO: We could relax this to any integer that fits in a register and rely
6051   // on ABI alignment and padding in the table to allow the load to be widened.
6052   // Or we could widen the constants and truncate the load.
6053   unsigned BitWidth = IT->getBitWidth();
6054   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6055          DL.fitsInLegalInteger(IT->getBitWidth());
6056 }
6057 
6058 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6059   // 40% is the default density for building a jump table in optsize/minsize
6060   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6061   // function was based on.
6062   const uint64_t MinDensity = 40;
6063 
6064   if (CaseRange >= UINT64_MAX / 100)
6065     return false; // Avoid multiplication overflows below.
6066 
6067   return NumCases * 100 >= CaseRange * MinDensity;
6068 }
6069 
6070 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6071   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6072   uint64_t Range = Diff + 1;
6073   if (Range < Diff)
6074     return false; // Overflow.
6075 
6076   return isSwitchDense(Values.size(), Range);
6077 }
6078 
6079 /// Determine whether a lookup table should be built for this switch, based on
6080 /// the number of cases, size of the table, and the types of the results.
6081 // TODO: We could support larger than legal types by limiting based on the
6082 // number of loads required and/or table size. If the constants are small we
6083 // could use smaller table entries and extend after the load.
6084 static bool
6085 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6086                        const TargetTransformInfo &TTI, const DataLayout &DL,
6087                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6088   if (SI->getNumCases() > TableSize)
6089     return false; // TableSize overflowed.
6090 
6091   bool AllTablesFitInRegister = true;
6092   bool HasIllegalType = false;
6093   for (const auto &I : ResultTypes) {
6094     Type *Ty = I.second;
6095 
6096     // Saturate this flag to true.
6097     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6098 
6099     // Saturate this flag to false.
6100     AllTablesFitInRegister =
6101         AllTablesFitInRegister &&
6102         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
6103 
6104     // If both flags saturate, we're done. NOTE: This *only* works with
6105     // saturating flags, and all flags have to saturate first due to the
6106     // non-deterministic behavior of iterating over a dense map.
6107     if (HasIllegalType && !AllTablesFitInRegister)
6108       break;
6109   }
6110 
6111   // If each table would fit in a register, we should build it anyway.
6112   if (AllTablesFitInRegister)
6113     return true;
6114 
6115   // Don't build a table that doesn't fit in-register if it has illegal types.
6116   if (HasIllegalType)
6117     return false;
6118 
6119   return isSwitchDense(SI->getNumCases(), TableSize);
6120 }
6121 
6122 /// Try to reuse the switch table index compare. Following pattern:
6123 /// \code
6124 ///     if (idx < tablesize)
6125 ///        r = table[idx]; // table does not contain default_value
6126 ///     else
6127 ///        r = default_value;
6128 ///     if (r != default_value)
6129 ///        ...
6130 /// \endcode
6131 /// Is optimized to:
6132 /// \code
6133 ///     cond = idx < tablesize;
6134 ///     if (cond)
6135 ///        r = table[idx];
6136 ///     else
6137 ///        r = default_value;
6138 ///     if (cond)
6139 ///        ...
6140 /// \endcode
6141 /// Jump threading will then eliminate the second if(cond).
6142 static void reuseTableCompare(
6143     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6144     Constant *DefaultValue,
6145     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6146   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6147   if (!CmpInst)
6148     return;
6149 
6150   // We require that the compare is in the same block as the phi so that jump
6151   // threading can do its work afterwards.
6152   if (CmpInst->getParent() != PhiBlock)
6153     return;
6154 
6155   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6156   if (!CmpOp1)
6157     return;
6158 
6159   Value *RangeCmp = RangeCheckBranch->getCondition();
6160   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6161   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6162 
6163   // Check if the compare with the default value is constant true or false.
6164   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6165                                                  DefaultValue, CmpOp1, true);
6166   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6167     return;
6168 
6169   // Check if the compare with the case values is distinct from the default
6170   // compare result.
6171   for (auto ValuePair : Values) {
6172     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
6173                                                 ValuePair.second, CmpOp1, true);
6174     if (!CaseConst || CaseConst == DefaultConst ||
6175         (CaseConst != TrueConst && CaseConst != FalseConst))
6176       return;
6177   }
6178 
6179   // Check if the branch instruction dominates the phi node. It's a simple
6180   // dominance check, but sufficient for our needs.
6181   // Although this check is invariant in the calling loops, it's better to do it
6182   // at this late stage. Practically we do it at most once for a switch.
6183   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6184   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6185     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6186       return;
6187   }
6188 
6189   if (DefaultConst == FalseConst) {
6190     // The compare yields the same result. We can replace it.
6191     CmpInst->replaceAllUsesWith(RangeCmp);
6192     ++NumTableCmpReuses;
6193   } else {
6194     // The compare yields the same result, just inverted. We can replace it.
6195     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6196         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6197         RangeCheckBranch);
6198     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6199     ++NumTableCmpReuses;
6200   }
6201 }
6202 
6203 /// If the switch is only used to initialize one or more phi nodes in a common
6204 /// successor block with different constant values, replace the switch with
6205 /// lookup tables.
6206 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6207                                 DomTreeUpdater *DTU, const DataLayout &DL,
6208                                 const TargetTransformInfo &TTI) {
6209   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6210 
6211   BasicBlock *BB = SI->getParent();
6212   Function *Fn = BB->getParent();
6213   // Only build lookup table when we have a target that supports it or the
6214   // attribute is not set.
6215   if (!TTI.shouldBuildLookupTables() ||
6216       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6217     return false;
6218 
6219   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6220   // split off a dense part and build a lookup table for that.
6221 
6222   // FIXME: This creates arrays of GEPs to constant strings, which means each
6223   // GEP needs a runtime relocation in PIC code. We should just build one big
6224   // string and lookup indices into that.
6225 
6226   // Ignore switches with less than three cases. Lookup tables will not make
6227   // them faster, so we don't analyze them.
6228   if (SI->getNumCases() < 3)
6229     return false;
6230 
6231   // Figure out the corresponding result for each case value and phi node in the
6232   // common destination, as well as the min and max case values.
6233   assert(!SI->cases().empty());
6234   SwitchInst::CaseIt CI = SI->case_begin();
6235   ConstantInt *MinCaseVal = CI->getCaseValue();
6236   ConstantInt *MaxCaseVal = CI->getCaseValue();
6237 
6238   BasicBlock *CommonDest = nullptr;
6239 
6240   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6241   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6242 
6243   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6244   SmallDenseMap<PHINode *, Type *> ResultTypes;
6245   SmallVector<PHINode *, 4> PHIs;
6246 
6247   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6248     ConstantInt *CaseVal = CI->getCaseValue();
6249     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6250       MinCaseVal = CaseVal;
6251     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6252       MaxCaseVal = CaseVal;
6253 
6254     // Resulting value at phi nodes for this case value.
6255     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6256     ResultsTy Results;
6257     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6258                         Results, DL, TTI))
6259       return false;
6260 
6261     // Append the result from this case to the list for each phi.
6262     for (const auto &I : Results) {
6263       PHINode *PHI = I.first;
6264       Constant *Value = I.second;
6265       if (!ResultLists.count(PHI))
6266         PHIs.push_back(PHI);
6267       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6268     }
6269   }
6270 
6271   // Keep track of the result types.
6272   for (PHINode *PHI : PHIs) {
6273     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6274   }
6275 
6276   uint64_t NumResults = ResultLists[PHIs[0]].size();
6277   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
6278   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
6279   bool TableHasHoles = (NumResults < TableSize);
6280 
6281   // If the table has holes, we need a constant result for the default case
6282   // or a bitmask that fits in a register.
6283   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6284   bool HasDefaultResults =
6285       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6286                      DefaultResultsList, DL, TTI);
6287 
6288   bool NeedMask = (TableHasHoles && !HasDefaultResults);
6289   if (NeedMask) {
6290     // As an extra penalty for the validity test we require more cases.
6291     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6292       return false;
6293     if (!DL.fitsInLegalInteger(TableSize))
6294       return false;
6295   }
6296 
6297   for (const auto &I : DefaultResultsList) {
6298     PHINode *PHI = I.first;
6299     Constant *Result = I.second;
6300     DefaultResults[PHI] = Result;
6301   }
6302 
6303   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6304     return false;
6305 
6306   std::vector<DominatorTree::UpdateType> Updates;
6307 
6308   // Create the BB that does the lookups.
6309   Module &Mod = *CommonDest->getParent()->getParent();
6310   BasicBlock *LookupBB = BasicBlock::Create(
6311       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6312 
6313   // Compute the table index value.
6314   Builder.SetInsertPoint(SI);
6315   Value *TableIndex;
6316   if (MinCaseVal->isNullValue())
6317     TableIndex = SI->getCondition();
6318   else
6319     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6320                                    "switch.tableidx");
6321 
6322   // Compute the maximum table size representable by the integer type we are
6323   // switching upon.
6324   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6325   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6326   assert(MaxTableSize >= TableSize &&
6327          "It is impossible for a switch to have more entries than the max "
6328          "representable value of its input integer type's size.");
6329 
6330   // If the default destination is unreachable, or if the lookup table covers
6331   // all values of the conditional variable, branch directly to the lookup table
6332   // BB. Otherwise, check that the condition is within the case range.
6333   const bool DefaultIsReachable =
6334       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6335   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6336   BranchInst *RangeCheckBranch = nullptr;
6337 
6338   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6339     Builder.CreateBr(LookupBB);
6340     if (DTU)
6341       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6342     // Note: We call removeProdecessor later since we need to be able to get the
6343     // PHI value for the default case in case we're using a bit mask.
6344   } else {
6345     Value *Cmp = Builder.CreateICmpULT(
6346         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6347     RangeCheckBranch =
6348         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6349     if (DTU)
6350       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6351   }
6352 
6353   // Populate the BB that does the lookups.
6354   Builder.SetInsertPoint(LookupBB);
6355 
6356   if (NeedMask) {
6357     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6358     // re-purposed to do the hole check, and we create a new LookupBB.
6359     BasicBlock *MaskBB = LookupBB;
6360     MaskBB->setName("switch.hole_check");
6361     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6362                                   CommonDest->getParent(), CommonDest);
6363 
6364     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6365     // unnecessary illegal types.
6366     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6367     APInt MaskInt(TableSizePowOf2, 0);
6368     APInt One(TableSizePowOf2, 1);
6369     // Build bitmask; fill in a 1 bit for every case.
6370     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6371     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6372       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6373                          .getLimitedValue();
6374       MaskInt |= One << Idx;
6375     }
6376     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6377 
6378     // Get the TableIndex'th bit of the bitmask.
6379     // If this bit is 0 (meaning hole) jump to the default destination,
6380     // else continue with table lookup.
6381     IntegerType *MapTy = TableMask->getType();
6382     Value *MaskIndex =
6383         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6384     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6385     Value *LoBit = Builder.CreateTrunc(
6386         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6387     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6388     if (DTU) {
6389       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6390       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6391     }
6392     Builder.SetInsertPoint(LookupBB);
6393     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6394   }
6395 
6396   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6397     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6398     // do not delete PHINodes here.
6399     SI->getDefaultDest()->removePredecessor(BB,
6400                                             /*KeepOneInputPHIs=*/true);
6401     if (DTU)
6402       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6403   }
6404 
6405   for (PHINode *PHI : PHIs) {
6406     const ResultListTy &ResultList = ResultLists[PHI];
6407 
6408     // If using a bitmask, use any value to fill the lookup table holes.
6409     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6410     StringRef FuncName = Fn->getName();
6411     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6412                             FuncName);
6413 
6414     Value *Result = Table.BuildLookup(TableIndex, Builder);
6415 
6416     // Do a small peephole optimization: re-use the switch table compare if
6417     // possible.
6418     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6419       BasicBlock *PhiBlock = PHI->getParent();
6420       // Search for compare instructions which use the phi.
6421       for (auto *User : PHI->users()) {
6422         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6423       }
6424     }
6425 
6426     PHI->addIncoming(Result, LookupBB);
6427   }
6428 
6429   Builder.CreateBr(CommonDest);
6430   if (DTU)
6431     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6432 
6433   // Remove the switch.
6434   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6435   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6436     BasicBlock *Succ = SI->getSuccessor(i);
6437 
6438     if (Succ == SI->getDefaultDest())
6439       continue;
6440     Succ->removePredecessor(BB);
6441     if (DTU && RemovedSuccessors.insert(Succ).second)
6442       Updates.push_back({DominatorTree::Delete, BB, Succ});
6443   }
6444   SI->eraseFromParent();
6445 
6446   if (DTU)
6447     DTU->applyUpdates(Updates);
6448 
6449   ++NumLookupTables;
6450   if (NeedMask)
6451     ++NumLookupTablesHoles;
6452   return true;
6453 }
6454 
6455 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6456 /// of cases.
6457 ///
6458 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6459 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6460 ///
6461 /// This converts a sparse switch into a dense switch which allows better
6462 /// lowering and could also allow transforming into a lookup table.
6463 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6464                               const DataLayout &DL,
6465                               const TargetTransformInfo &TTI) {
6466   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6467   if (CondTy->getIntegerBitWidth() > 64 ||
6468       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6469     return false;
6470   // Only bother with this optimization if there are more than 3 switch cases;
6471   // SDAG will only bother creating jump tables for 4 or more cases.
6472   if (SI->getNumCases() < 4)
6473     return false;
6474 
6475   // This transform is agnostic to the signedness of the input or case values. We
6476   // can treat the case values as signed or unsigned. We can optimize more common
6477   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6478   // as signed.
6479   SmallVector<int64_t,4> Values;
6480   for (auto &C : SI->cases())
6481     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6482   llvm::sort(Values);
6483 
6484   // If the switch is already dense, there's nothing useful to do here.
6485   if (isSwitchDense(Values))
6486     return false;
6487 
6488   // First, transform the values such that they start at zero and ascend.
6489   int64_t Base = Values[0];
6490   for (auto &V : Values)
6491     V -= (uint64_t)(Base);
6492 
6493   // Now we have signed numbers that have been shifted so that, given enough
6494   // precision, there are no negative values. Since the rest of the transform
6495   // is bitwise only, we switch now to an unsigned representation.
6496 
6497   // This transform can be done speculatively because it is so cheap - it
6498   // results in a single rotate operation being inserted.
6499   // FIXME: It's possible that optimizing a switch on powers of two might also
6500   // be beneficial - flag values are often powers of two and we could use a CLZ
6501   // as the key function.
6502 
6503   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6504   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6505   // less than 64.
6506   unsigned Shift = 64;
6507   for (auto &V : Values)
6508     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6509   assert(Shift < 64);
6510   if (Shift > 0)
6511     for (auto &V : Values)
6512       V = (int64_t)((uint64_t)V >> Shift);
6513 
6514   if (!isSwitchDense(Values))
6515     // Transform didn't create a dense switch.
6516     return false;
6517 
6518   // The obvious transform is to shift the switch condition right and emit a
6519   // check that the condition actually cleanly divided by GCD, i.e.
6520   //   C & (1 << Shift - 1) == 0
6521   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6522   //
6523   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6524   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6525   // are nonzero then the switch condition will be very large and will hit the
6526   // default case.
6527 
6528   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6529   Builder.SetInsertPoint(SI);
6530   auto *ShiftC = ConstantInt::get(Ty, Shift);
6531   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6532   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6533   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6534   auto *Rot = Builder.CreateOr(LShr, Shl);
6535   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6536 
6537   for (auto Case : SI->cases()) {
6538     auto *Orig = Case.getCaseValue();
6539     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6540     Case.setValue(
6541         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6542   }
6543   return true;
6544 }
6545 
6546 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6547   BasicBlock *BB = SI->getParent();
6548 
6549   if (isValueEqualityComparison(SI)) {
6550     // If we only have one predecessor, and if it is a branch on this value,
6551     // see if that predecessor totally determines the outcome of this switch.
6552     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6553       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6554         return requestResimplify();
6555 
6556     Value *Cond = SI->getCondition();
6557     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6558       if (SimplifySwitchOnSelect(SI, Select))
6559         return requestResimplify();
6560 
6561     // If the block only contains the switch, see if we can fold the block
6562     // away into any preds.
6563     if (SI == &*BB->instructionsWithoutDebug(false).begin())
6564       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6565         return requestResimplify();
6566   }
6567 
6568   // Try to transform the switch into an icmp and a branch.
6569   // The conversion from switch to comparison may lose information on
6570   // impossible switch values, so disable it early in the pipeline.
6571   if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
6572     return requestResimplify();
6573 
6574   // Remove unreachable cases.
6575   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6576     return requestResimplify();
6577 
6578   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
6579     return requestResimplify();
6580 
6581   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6582     return requestResimplify();
6583 
6584   // The conversion from switch to lookup tables results in difficult-to-analyze
6585   // code and makes pruning branches much harder. This is a problem if the
6586   // switch expression itself can still be restricted as a result of inlining or
6587   // CVP. Therefore, only apply this transformation during late stages of the
6588   // optimisation pipeline.
6589   if (Options.ConvertSwitchToLookupTable &&
6590       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6591     return requestResimplify();
6592 
6593   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6594     return requestResimplify();
6595 
6596   return false;
6597 }
6598 
6599 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6600   BasicBlock *BB = IBI->getParent();
6601   bool Changed = false;
6602 
6603   // Eliminate redundant destinations.
6604   SmallPtrSet<Value *, 8> Succs;
6605   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6606   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6607     BasicBlock *Dest = IBI->getDestination(i);
6608     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6609       if (!Dest->hasAddressTaken())
6610         RemovedSuccs.insert(Dest);
6611       Dest->removePredecessor(BB);
6612       IBI->removeDestination(i);
6613       --i;
6614       --e;
6615       Changed = true;
6616     }
6617   }
6618 
6619   if (DTU) {
6620     std::vector<DominatorTree::UpdateType> Updates;
6621     Updates.reserve(RemovedSuccs.size());
6622     for (auto *RemovedSucc : RemovedSuccs)
6623       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6624     DTU->applyUpdates(Updates);
6625   }
6626 
6627   if (IBI->getNumDestinations() == 0) {
6628     // If the indirectbr has no successors, change it to unreachable.
6629     new UnreachableInst(IBI->getContext(), IBI);
6630     EraseTerminatorAndDCECond(IBI);
6631     return true;
6632   }
6633 
6634   if (IBI->getNumDestinations() == 1) {
6635     // If the indirectbr has one successor, change it to a direct branch.
6636     BranchInst::Create(IBI->getDestination(0), IBI);
6637     EraseTerminatorAndDCECond(IBI);
6638     return true;
6639   }
6640 
6641   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6642     if (SimplifyIndirectBrOnSelect(IBI, SI))
6643       return requestResimplify();
6644   }
6645   return Changed;
6646 }
6647 
6648 /// Given an block with only a single landing pad and a unconditional branch
6649 /// try to find another basic block which this one can be merged with.  This
6650 /// handles cases where we have multiple invokes with unique landing pads, but
6651 /// a shared handler.
6652 ///
6653 /// We specifically choose to not worry about merging non-empty blocks
6654 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6655 /// practice, the optimizer produces empty landing pad blocks quite frequently
6656 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6657 /// sinking in this file)
6658 ///
6659 /// This is primarily a code size optimization.  We need to avoid performing
6660 /// any transform which might inhibit optimization (such as our ability to
6661 /// specialize a particular handler via tail commoning).  We do this by not
6662 /// merging any blocks which require us to introduce a phi.  Since the same
6663 /// values are flowing through both blocks, we don't lose any ability to
6664 /// specialize.  If anything, we make such specialization more likely.
6665 ///
6666 /// TODO - This transformation could remove entries from a phi in the target
6667 /// block when the inputs in the phi are the same for the two blocks being
6668 /// merged.  In some cases, this could result in removal of the PHI entirely.
6669 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6670                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6671   auto Succ = BB->getUniqueSuccessor();
6672   assert(Succ);
6673   // If there's a phi in the successor block, we'd likely have to introduce
6674   // a phi into the merged landing pad block.
6675   if (isa<PHINode>(*Succ->begin()))
6676     return false;
6677 
6678   for (BasicBlock *OtherPred : predecessors(Succ)) {
6679     if (BB == OtherPred)
6680       continue;
6681     BasicBlock::iterator I = OtherPred->begin();
6682     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6683     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6684       continue;
6685     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6686       ;
6687     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6688     if (!BI2 || !BI2->isIdenticalTo(BI))
6689       continue;
6690 
6691     std::vector<DominatorTree::UpdateType> Updates;
6692 
6693     // We've found an identical block.  Update our predecessors to take that
6694     // path instead and make ourselves dead.
6695     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
6696     for (BasicBlock *Pred : UniquePreds) {
6697       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6698       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6699              "unexpected successor");
6700       II->setUnwindDest(OtherPred);
6701       if (DTU) {
6702         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6703         Updates.push_back({DominatorTree::Delete, Pred, BB});
6704       }
6705     }
6706 
6707     // The debug info in OtherPred doesn't cover the merged control flow that
6708     // used to go through BB.  We need to delete it or update it.
6709     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
6710       if (isa<DbgInfoIntrinsic>(Inst))
6711         Inst.eraseFromParent();
6712 
6713     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
6714     for (BasicBlock *Succ : UniqueSuccs) {
6715       Succ->removePredecessor(BB);
6716       if (DTU)
6717         Updates.push_back({DominatorTree::Delete, BB, Succ});
6718     }
6719 
6720     IRBuilder<> Builder(BI);
6721     Builder.CreateUnreachable();
6722     BI->eraseFromParent();
6723     if (DTU)
6724       DTU->applyUpdates(Updates);
6725     return true;
6726   }
6727   return false;
6728 }
6729 
6730 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6731   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6732                                    : simplifyCondBranch(Branch, Builder);
6733 }
6734 
6735 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6736                                           IRBuilder<> &Builder) {
6737   BasicBlock *BB = BI->getParent();
6738   BasicBlock *Succ = BI->getSuccessor(0);
6739 
6740   // If the Terminator is the only non-phi instruction, simplify the block.
6741   // If LoopHeader is provided, check if the block or its successor is a loop
6742   // header. (This is for early invocations before loop simplify and
6743   // vectorization to keep canonical loop forms for nested loops. These blocks
6744   // can be eliminated when the pass is invoked later in the back-end.)
6745   // Note that if BB has only one predecessor then we do not introduce new
6746   // backedge, so we can eliminate BB.
6747   bool NeedCanonicalLoop =
6748       Options.NeedCanonicalLoop &&
6749       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6750        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6751   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6752   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6753       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6754     return true;
6755 
6756   // If the only instruction in the block is a seteq/setne comparison against a
6757   // constant, try to simplify the block.
6758   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6759     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6760       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6761         ;
6762       if (I->isTerminator() &&
6763           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6764         return true;
6765     }
6766 
6767   // See if we can merge an empty landing pad block with another which is
6768   // equivalent.
6769   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6770     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6771       ;
6772     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6773       return true;
6774   }
6775 
6776   // If this basic block is ONLY a compare and a branch, and if a predecessor
6777   // branches to us and our successor, fold the comparison into the
6778   // predecessor and use logical operations to update the incoming value
6779   // for PHI nodes in common successor.
6780   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6781                              Options.BonusInstThreshold))
6782     return requestResimplify();
6783   return false;
6784 }
6785 
6786 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6787   BasicBlock *PredPred = nullptr;
6788   for (auto *P : predecessors(BB)) {
6789     BasicBlock *PPred = P->getSinglePredecessor();
6790     if (!PPred || (PredPred && PredPred != PPred))
6791       return nullptr;
6792     PredPred = PPred;
6793   }
6794   return PredPred;
6795 }
6796 
6797 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6798   assert(
6799       !isa<ConstantInt>(BI->getCondition()) &&
6800       BI->getSuccessor(0) != BI->getSuccessor(1) &&
6801       "Tautological conditional branch should have been eliminated already.");
6802 
6803   BasicBlock *BB = BI->getParent();
6804   if (!Options.SimplifyCondBranch)
6805     return false;
6806 
6807   // Conditional branch
6808   if (isValueEqualityComparison(BI)) {
6809     // If we only have one predecessor, and if it is a branch on this value,
6810     // see if that predecessor totally determines the outcome of this
6811     // switch.
6812     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6813       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6814         return requestResimplify();
6815 
6816     // This block must be empty, except for the setcond inst, if it exists.
6817     // Ignore dbg and pseudo intrinsics.
6818     auto I = BB->instructionsWithoutDebug(true).begin();
6819     if (&*I == BI) {
6820       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6821         return requestResimplify();
6822     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6823       ++I;
6824       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6825         return requestResimplify();
6826     }
6827   }
6828 
6829   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6830   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6831     return true;
6832 
6833   // If this basic block has dominating predecessor blocks and the dominating
6834   // blocks' conditions imply BI's condition, we know the direction of BI.
6835   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6836   if (Imp) {
6837     // Turn this into a branch on constant.
6838     auto *OldCond = BI->getCondition();
6839     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6840                              : ConstantInt::getFalse(BB->getContext());
6841     BI->setCondition(TorF);
6842     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6843     return requestResimplify();
6844   }
6845 
6846   // If this basic block is ONLY a compare and a branch, and if a predecessor
6847   // branches to us and one of our successors, fold the comparison into the
6848   // predecessor and use logical operations to pick the right destination.
6849   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6850                              Options.BonusInstThreshold))
6851     return requestResimplify();
6852 
6853   // We have a conditional branch to two blocks that are only reachable
6854   // from BI.  We know that the condbr dominates the two blocks, so see if
6855   // there is any identical code in the "then" and "else" blocks.  If so, we
6856   // can hoist it up to the branching block.
6857   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6858     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6859       if (HoistCommon &&
6860           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6861         return requestResimplify();
6862     } else {
6863       // If Successor #1 has multiple preds, we may be able to conditionally
6864       // execute Successor #0 if it branches to Successor #1.
6865       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6866       if (Succ0TI->getNumSuccessors() == 1 &&
6867           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6868         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6869           return requestResimplify();
6870     }
6871   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6872     // If Successor #0 has multiple preds, we may be able to conditionally
6873     // execute Successor #1 if it branches to Successor #0.
6874     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6875     if (Succ1TI->getNumSuccessors() == 1 &&
6876         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6877       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6878         return requestResimplify();
6879   }
6880 
6881   // If this is a branch on something for which we know the constant value in
6882   // predecessors (e.g. a phi node in the current block), thread control
6883   // through this block.
6884   if (FoldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
6885     return requestResimplify();
6886 
6887   // Scan predecessor blocks for conditional branches.
6888   for (BasicBlock *Pred : predecessors(BB))
6889     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6890       if (PBI != BI && PBI->isConditional())
6891         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6892           return requestResimplify();
6893 
6894   // Look for diamond patterns.
6895   if (MergeCondStores)
6896     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6897       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6898         if (PBI != BI && PBI->isConditional())
6899           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6900             return requestResimplify();
6901 
6902   return false;
6903 }
6904 
6905 /// Check if passing a value to an instruction will cause undefined behavior.
6906 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6907   Constant *C = dyn_cast<Constant>(V);
6908   if (!C)
6909     return false;
6910 
6911   if (I->use_empty())
6912     return false;
6913 
6914   if (C->isNullValue() || isa<UndefValue>(C)) {
6915     // Only look at the first use, avoid hurting compile time with long uselists
6916     auto *Use = cast<Instruction>(*I->user_begin());
6917     // Bail out if Use is not in the same BB as I or Use == I or Use comes
6918     // before I in the block. The latter two can be the case if Use is a PHI
6919     // node.
6920     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
6921       return false;
6922 
6923     // Now make sure that there are no instructions in between that can alter
6924     // control flow (eg. calls)
6925     auto InstrRange =
6926         make_range(std::next(I->getIterator()), Use->getIterator());
6927     if (any_of(InstrRange, [](Instruction &I) {
6928           return !isGuaranteedToTransferExecutionToSuccessor(&I);
6929         }))
6930       return false;
6931 
6932     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6933     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6934       if (GEP->getPointerOperand() == I) {
6935         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6936           PtrValueMayBeModified = true;
6937         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6938       }
6939 
6940     // Look through bitcasts.
6941     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6942       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6943 
6944     // Load from null is undefined.
6945     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6946       if (!LI->isVolatile())
6947         return !NullPointerIsDefined(LI->getFunction(),
6948                                      LI->getPointerAddressSpace());
6949 
6950     // Store to null is undefined.
6951     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6952       if (!SI->isVolatile())
6953         return (!NullPointerIsDefined(SI->getFunction(),
6954                                       SI->getPointerAddressSpace())) &&
6955                SI->getPointerOperand() == I;
6956 
6957     if (auto *CB = dyn_cast<CallBase>(Use)) {
6958       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6959         return false;
6960       // A call to null is undefined.
6961       if (CB->getCalledOperand() == I)
6962         return true;
6963 
6964       if (C->isNullValue()) {
6965         for (const llvm::Use &Arg : CB->args())
6966           if (Arg == I) {
6967             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6968             if (CB->isPassingUndefUB(ArgIdx) &&
6969                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6970               // Passing null to a nonnnull+noundef argument is undefined.
6971               return !PtrValueMayBeModified;
6972             }
6973           }
6974       } else if (isa<UndefValue>(C)) {
6975         // Passing undef to a noundef argument is undefined.
6976         for (const llvm::Use &Arg : CB->args())
6977           if (Arg == I) {
6978             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6979             if (CB->isPassingUndefUB(ArgIdx)) {
6980               // Passing undef to a noundef argument is undefined.
6981               return true;
6982             }
6983           }
6984       }
6985     }
6986   }
6987   return false;
6988 }
6989 
6990 /// If BB has an incoming value that will always trigger undefined behavior
6991 /// (eg. null pointer dereference), remove the branch leading here.
6992 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6993                                               DomTreeUpdater *DTU) {
6994   for (PHINode &PHI : BB->phis())
6995     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6996       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6997         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6998         Instruction *T = Predecessor->getTerminator();
6999         IRBuilder<> Builder(T);
7000         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
7001           BB->removePredecessor(Predecessor);
7002           // Turn uncoditional branches into unreachables and remove the dead
7003           // destination from conditional branches.
7004           if (BI->isUnconditional())
7005             Builder.CreateUnreachable();
7006           else {
7007             // Preserve guarding condition in assume, because it might not be
7008             // inferrable from any dominating condition.
7009             Value *Cond = BI->getCondition();
7010             if (BI->getSuccessor(0) == BB)
7011               Builder.CreateAssumption(Builder.CreateNot(Cond));
7012             else
7013               Builder.CreateAssumption(Cond);
7014             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
7015                                                        : BI->getSuccessor(0));
7016           }
7017           BI->eraseFromParent();
7018           if (DTU)
7019             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
7020           return true;
7021         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
7022           // Redirect all branches leading to UB into
7023           // a newly created unreachable block.
7024           BasicBlock *Unreachable = BasicBlock::Create(
7025               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
7026           Builder.SetInsertPoint(Unreachable);
7027           // The new block contains only one instruction: Unreachable
7028           Builder.CreateUnreachable();
7029           for (auto &Case : SI->cases())
7030             if (Case.getCaseSuccessor() == BB) {
7031               BB->removePredecessor(Predecessor);
7032               Case.setSuccessor(Unreachable);
7033             }
7034           if (SI->getDefaultDest() == BB) {
7035             BB->removePredecessor(Predecessor);
7036             SI->setDefaultDest(Unreachable);
7037           }
7038 
7039           if (DTU)
7040             DTU->applyUpdates(
7041                 { { DominatorTree::Insert, Predecessor, Unreachable },
7042                   { DominatorTree::Delete, Predecessor, BB } });
7043           return true;
7044         }
7045       }
7046 
7047   return false;
7048 }
7049 
7050 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
7051   bool Changed = false;
7052 
7053   assert(BB && BB->getParent() && "Block not embedded in function!");
7054   assert(BB->getTerminator() && "Degenerate basic block encountered!");
7055 
7056   // Remove basic blocks that have no predecessors (except the entry block)...
7057   // or that just have themself as a predecessor.  These are unreachable.
7058   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
7059       BB->getSinglePredecessor() == BB) {
7060     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
7061     DeleteDeadBlock(BB, DTU);
7062     return true;
7063   }
7064 
7065   // Check to see if we can constant propagate this terminator instruction
7066   // away...
7067   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
7068                                     /*TLI=*/nullptr, DTU);
7069 
7070   // Check for and eliminate duplicate PHI nodes in this block.
7071   Changed |= EliminateDuplicatePHINodes(BB);
7072 
7073   // Check for and remove branches that will always cause undefined behavior.
7074   if (removeUndefIntroducingPredecessor(BB, DTU))
7075     return requestResimplify();
7076 
7077   // Merge basic blocks into their predecessor if there is only one distinct
7078   // pred, and if there is only one distinct successor of the predecessor, and
7079   // if there are no PHI nodes.
7080   if (MergeBlockIntoPredecessor(BB, DTU))
7081     return true;
7082 
7083   if (SinkCommon && Options.SinkCommonInsts)
7084     if (SinkCommonCodeFromPredecessors(BB, DTU) ||
7085         MergeCompatibleInvokes(BB, DTU)) {
7086       // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
7087       // so we may now how duplicate PHI's.
7088       // Let's rerun EliminateDuplicatePHINodes() first,
7089       // before FoldTwoEntryPHINode() potentially converts them into select's,
7090       // after which we'd need a whole EarlyCSE pass run to cleanup them.
7091       return true;
7092     }
7093 
7094   IRBuilder<> Builder(BB);
7095 
7096   if (Options.FoldTwoEntryPHINode) {
7097     // If there is a trivial two-entry PHI node in this basic block, and we can
7098     // eliminate it, do so now.
7099     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
7100       if (PN->getNumIncomingValues() == 2)
7101         if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
7102           return true;
7103   }
7104 
7105   Instruction *Terminator = BB->getTerminator();
7106   Builder.SetInsertPoint(Terminator);
7107   switch (Terminator->getOpcode()) {
7108   case Instruction::Br:
7109     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
7110     break;
7111   case Instruction::Resume:
7112     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
7113     break;
7114   case Instruction::CleanupRet:
7115     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
7116     break;
7117   case Instruction::Switch:
7118     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
7119     break;
7120   case Instruction::Unreachable:
7121     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
7122     break;
7123   case Instruction::IndirectBr:
7124     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
7125     break;
7126   }
7127 
7128   return Changed;
7129 }
7130 
7131 bool SimplifyCFGOpt::run(BasicBlock *BB) {
7132   bool Changed = false;
7133 
7134   // Repeated simplify BB as long as resimplification is requested.
7135   do {
7136     Resimplify = false;
7137 
7138     // Perform one round of simplifcation. Resimplify flag will be set if
7139     // another iteration is requested.
7140     Changed |= simplifyOnce(BB);
7141   } while (Resimplify);
7142 
7143   return Changed;
7144 }
7145 
7146 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
7147                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
7148                        ArrayRef<WeakVH> LoopHeaders) {
7149   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
7150                         Options)
7151       .run(BB);
7152 }
7153