1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10), 155 cl::desc("Max size of a block which is still considered " 156 "small enough to thread through")); 157 158 // Two is chosen to allow one negation and a logical combine. 159 static cl::opt<unsigned> 160 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 161 cl::init(2), 162 cl::desc("Maximum cost of combining conditions when " 163 "folding branches")); 164 165 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 166 STATISTIC(NumLinearMaps, 167 "Number of switch instructions turned into linear mapping"); 168 STATISTIC(NumLookupTables, 169 "Number of switch instructions turned into lookup tables"); 170 STATISTIC( 171 NumLookupTablesHoles, 172 "Number of switch instructions turned into lookup tables (holes checked)"); 173 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 174 STATISTIC(NumFoldValueComparisonIntoPredecessors, 175 "Number of value comparisons folded into predecessor basic blocks"); 176 STATISTIC(NumFoldBranchToCommonDest, 177 "Number of branches folded into predecessor basic block"); 178 STATISTIC( 179 NumHoistCommonCode, 180 "Number of common instruction 'blocks' hoisted up to the begin block"); 181 STATISTIC(NumHoistCommonInstrs, 182 "Number of common instructions hoisted up to the begin block"); 183 STATISTIC(NumSinkCommonCode, 184 "Number of common instruction 'blocks' sunk down to the end block"); 185 STATISTIC(NumSinkCommonInstrs, 186 "Number of common instructions sunk down to the end block"); 187 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 188 STATISTIC(NumInvokes, 189 "Number of invokes with empty resume blocks simplified into calls"); 190 191 namespace { 192 193 // The first field contains the value that the switch produces when a certain 194 // case group is selected, and the second field is a vector containing the 195 // cases composing the case group. 196 using SwitchCaseResultVectorTy = 197 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 198 199 // The first field contains the phi node that generates a result of the switch 200 // and the second field contains the value generated for a certain case in the 201 // switch for that PHI. 202 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 203 204 /// ValueEqualityComparisonCase - Represents a case of a switch. 205 struct ValueEqualityComparisonCase { 206 ConstantInt *Value; 207 BasicBlock *Dest; 208 209 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 210 : Value(Value), Dest(Dest) {} 211 212 bool operator<(ValueEqualityComparisonCase RHS) const { 213 // Comparing pointers is ok as we only rely on the order for uniquing. 214 return Value < RHS.Value; 215 } 216 217 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 218 }; 219 220 class SimplifyCFGOpt { 221 const TargetTransformInfo &TTI; 222 DomTreeUpdater *DTU; 223 const DataLayout &DL; 224 ArrayRef<WeakVH> LoopHeaders; 225 const SimplifyCFGOptions &Options; 226 bool Resimplify; 227 228 Value *isValueEqualityComparison(Instruction *TI); 229 BasicBlock *GetValueEqualityComparisonCases( 230 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 231 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 232 BasicBlock *Pred, 233 IRBuilder<> &Builder); 234 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 235 Instruction *PTI, 236 IRBuilder<> &Builder); 237 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 238 IRBuilder<> &Builder); 239 240 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 241 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 242 bool simplifySingleResume(ResumeInst *RI); 243 bool simplifyCommonResume(ResumeInst *RI); 244 bool simplifyCleanupReturn(CleanupReturnInst *RI); 245 bool simplifyUnreachable(UnreachableInst *UI); 246 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 247 bool simplifyIndirectBr(IndirectBrInst *IBI); 248 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 249 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 250 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 252 253 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 254 IRBuilder<> &Builder); 255 256 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI); 257 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 258 const TargetTransformInfo &TTI); 259 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 260 BasicBlock *TrueBB, BasicBlock *FalseBB, 261 uint32_t TrueWeight, uint32_t FalseWeight); 262 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 263 const DataLayout &DL); 264 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 265 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 266 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 267 268 public: 269 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 270 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 271 const SimplifyCFGOptions &Opts) 272 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 273 assert((!DTU || !DTU->hasPostDomTree()) && 274 "SimplifyCFG is not yet capable of maintaining validity of a " 275 "PostDomTree, so don't ask for it."); 276 } 277 278 bool simplifyOnce(BasicBlock *BB); 279 bool simplifyOnceImpl(BasicBlock *BB); 280 bool run(BasicBlock *BB); 281 282 // Helper to set Resimplify and return change indication. 283 bool requestResimplify() { 284 Resimplify = true; 285 return true; 286 } 287 }; 288 289 } // end anonymous namespace 290 291 /// Return true if it is safe to merge these two 292 /// terminator instructions together. 293 static bool 294 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 295 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 296 if (SI1 == SI2) 297 return false; // Can't merge with self! 298 299 // It is not safe to merge these two switch instructions if they have a common 300 // successor, and if that successor has a PHI node, and if *that* PHI node has 301 // conflicting incoming values from the two switch blocks. 302 BasicBlock *SI1BB = SI1->getParent(); 303 BasicBlock *SI2BB = SI2->getParent(); 304 305 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 306 bool Fail = false; 307 for (BasicBlock *Succ : successors(SI2BB)) 308 if (SI1Succs.count(Succ)) 309 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 310 PHINode *PN = cast<PHINode>(BBI); 311 if (PN->getIncomingValueForBlock(SI1BB) != 312 PN->getIncomingValueForBlock(SI2BB)) { 313 if (FailBlocks) 314 FailBlocks->insert(Succ); 315 Fail = true; 316 } 317 } 318 319 return !Fail; 320 } 321 322 /// Update PHI nodes in Succ to indicate that there will now be entries in it 323 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 324 /// will be the same as those coming in from ExistPred, an existing predecessor 325 /// of Succ. 326 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 327 BasicBlock *ExistPred, 328 MemorySSAUpdater *MSSAU = nullptr) { 329 for (PHINode &PN : Succ->phis()) 330 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 331 if (MSSAU) 332 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 333 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 334 } 335 336 /// Compute an abstract "cost" of speculating the given instruction, 337 /// which is assumed to be safe to speculate. TCC_Free means cheap, 338 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 339 /// expensive. 340 static InstructionCost computeSpeculationCost(const User *I, 341 const TargetTransformInfo &TTI) { 342 assert(isSafeToSpeculativelyExecute(I) && 343 "Instruction is not safe to speculatively execute!"); 344 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 345 } 346 347 /// If we have a merge point of an "if condition" as accepted above, 348 /// return true if the specified value dominates the block. We 349 /// don't handle the true generality of domination here, just a special case 350 /// which works well enough for us. 351 /// 352 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 353 /// see if V (which must be an instruction) and its recursive operands 354 /// that do not dominate BB have a combined cost lower than Budget and 355 /// are non-trapping. If both are true, the instruction is inserted into the 356 /// set and true is returned. 357 /// 358 /// The cost for most non-trapping instructions is defined as 1 except for 359 /// Select whose cost is 2. 360 /// 361 /// After this function returns, Cost is increased by the cost of 362 /// V plus its non-dominating operands. If that cost is greater than 363 /// Budget, false is returned and Cost is undefined. 364 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 365 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 366 InstructionCost &Cost, 367 InstructionCost Budget, 368 const TargetTransformInfo &TTI, 369 unsigned Depth = 0) { 370 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 371 // so limit the recursion depth. 372 // TODO: While this recursion limit does prevent pathological behavior, it 373 // would be better to track visited instructions to avoid cycles. 374 if (Depth == MaxSpeculationDepth) 375 return false; 376 377 Instruction *I = dyn_cast<Instruction>(V); 378 if (!I) { 379 // Non-instructions all dominate instructions, but not all constantexprs 380 // can be executed unconditionally. 381 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 382 if (C->canTrap()) 383 return false; 384 return true; 385 } 386 BasicBlock *PBB = I->getParent(); 387 388 // We don't want to allow weird loops that might have the "if condition" in 389 // the bottom of this block. 390 if (PBB == BB) 391 return false; 392 393 // If this instruction is defined in a block that contains an unconditional 394 // branch to BB, then it must be in the 'conditional' part of the "if 395 // statement". If not, it definitely dominates the region. 396 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 397 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 398 return true; 399 400 // If we have seen this instruction before, don't count it again. 401 if (AggressiveInsts.count(I)) 402 return true; 403 404 // Okay, it looks like the instruction IS in the "condition". Check to 405 // see if it's a cheap instruction to unconditionally compute, and if it 406 // only uses stuff defined outside of the condition. If so, hoist it out. 407 if (!isSafeToSpeculativelyExecute(I)) 408 return false; 409 410 Cost += computeSpeculationCost(I, TTI); 411 412 // Allow exactly one instruction to be speculated regardless of its cost 413 // (as long as it is safe to do so). 414 // This is intended to flatten the CFG even if the instruction is a division 415 // or other expensive operation. The speculation of an expensive instruction 416 // is expected to be undone in CodeGenPrepare if the speculation has not 417 // enabled further IR optimizations. 418 if (Cost > Budget && 419 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 420 !Cost.isValid())) 421 return false; 422 423 // Okay, we can only really hoist these out if their operands do 424 // not take us over the cost threshold. 425 for (Use &Op : I->operands()) 426 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 427 Depth + 1)) 428 return false; 429 // Okay, it's safe to do this! Remember this instruction. 430 AggressiveInsts.insert(I); 431 return true; 432 } 433 434 /// Extract ConstantInt from value, looking through IntToPtr 435 /// and PointerNullValue. Return NULL if value is not a constant int. 436 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 437 // Normal constant int. 438 ConstantInt *CI = dyn_cast<ConstantInt>(V); 439 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 440 return CI; 441 442 // This is some kind of pointer constant. Turn it into a pointer-sized 443 // ConstantInt if possible. 444 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 445 446 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 447 if (isa<ConstantPointerNull>(V)) 448 return ConstantInt::get(PtrTy, 0); 449 450 // IntToPtr const int. 451 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 452 if (CE->getOpcode() == Instruction::IntToPtr) 453 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 454 // The constant is very likely to have the right type already. 455 if (CI->getType() == PtrTy) 456 return CI; 457 else 458 return cast<ConstantInt>( 459 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 460 } 461 return nullptr; 462 } 463 464 namespace { 465 466 /// Given a chain of or (||) or and (&&) comparison of a value against a 467 /// constant, this will try to recover the information required for a switch 468 /// structure. 469 /// It will depth-first traverse the chain of comparison, seeking for patterns 470 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 471 /// representing the different cases for the switch. 472 /// Note that if the chain is composed of '||' it will build the set of elements 473 /// that matches the comparisons (i.e. any of this value validate the chain) 474 /// while for a chain of '&&' it will build the set elements that make the test 475 /// fail. 476 struct ConstantComparesGatherer { 477 const DataLayout &DL; 478 479 /// Value found for the switch comparison 480 Value *CompValue = nullptr; 481 482 /// Extra clause to be checked before the switch 483 Value *Extra = nullptr; 484 485 /// Set of integers to match in switch 486 SmallVector<ConstantInt *, 8> Vals; 487 488 /// Number of comparisons matched in the and/or chain 489 unsigned UsedICmps = 0; 490 491 /// Construct and compute the result for the comparison instruction Cond 492 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 493 gather(Cond); 494 } 495 496 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 497 ConstantComparesGatherer & 498 operator=(const ConstantComparesGatherer &) = delete; 499 500 private: 501 /// Try to set the current value used for the comparison, it succeeds only if 502 /// it wasn't set before or if the new value is the same as the old one 503 bool setValueOnce(Value *NewVal) { 504 if (CompValue && CompValue != NewVal) 505 return false; 506 CompValue = NewVal; 507 return (CompValue != nullptr); 508 } 509 510 /// Try to match Instruction "I" as a comparison against a constant and 511 /// populates the array Vals with the set of values that match (or do not 512 /// match depending on isEQ). 513 /// Return false on failure. On success, the Value the comparison matched 514 /// against is placed in CompValue. 515 /// If CompValue is already set, the function is expected to fail if a match 516 /// is found but the value compared to is different. 517 bool matchInstruction(Instruction *I, bool isEQ) { 518 // If this is an icmp against a constant, handle this as one of the cases. 519 ICmpInst *ICI; 520 ConstantInt *C; 521 if (!((ICI = dyn_cast<ICmpInst>(I)) && 522 (C = GetConstantInt(I->getOperand(1), DL)))) { 523 return false; 524 } 525 526 Value *RHSVal; 527 const APInt *RHSC; 528 529 // Pattern match a special case 530 // (x & ~2^z) == y --> x == y || x == y|2^z 531 // This undoes a transformation done by instcombine to fuse 2 compares. 532 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 533 // It's a little bit hard to see why the following transformations are 534 // correct. Here is a CVC3 program to verify them for 64-bit values: 535 536 /* 537 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 538 x : BITVECTOR(64); 539 y : BITVECTOR(64); 540 z : BITVECTOR(64); 541 mask : BITVECTOR(64) = BVSHL(ONE, z); 542 QUERY( (y & ~mask = y) => 543 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 544 ); 545 QUERY( (y | mask = y) => 546 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 547 ); 548 */ 549 550 // Please note that each pattern must be a dual implication (<--> or 551 // iff). One directional implication can create spurious matches. If the 552 // implication is only one-way, an unsatisfiable condition on the left 553 // side can imply a satisfiable condition on the right side. Dual 554 // implication ensures that satisfiable conditions are transformed to 555 // other satisfiable conditions and unsatisfiable conditions are 556 // transformed to other unsatisfiable conditions. 557 558 // Here is a concrete example of a unsatisfiable condition on the left 559 // implying a satisfiable condition on the right: 560 // 561 // mask = (1 << z) 562 // (x & ~mask) == y --> (x == y || x == (y | mask)) 563 // 564 // Substituting y = 3, z = 0 yields: 565 // (x & -2) == 3 --> (x == 3 || x == 2) 566 567 // Pattern match a special case: 568 /* 569 QUERY( (y & ~mask = y) => 570 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 571 ); 572 */ 573 if (match(ICI->getOperand(0), 574 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 575 APInt Mask = ~*RHSC; 576 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(RHSVal)) 579 return false; 580 581 Vals.push_back(C); 582 Vals.push_back( 583 ConstantInt::get(C->getContext(), 584 C->getValue() | Mask)); 585 UsedICmps++; 586 return true; 587 } 588 } 589 590 // Pattern match a special case: 591 /* 592 QUERY( (y | mask = y) => 593 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 594 ); 595 */ 596 if (match(ICI->getOperand(0), 597 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 598 APInt Mask = *RHSC; 599 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 600 // If we already have a value for the switch, it has to match! 601 if (!setValueOnce(RHSVal)) 602 return false; 603 604 Vals.push_back(C); 605 Vals.push_back(ConstantInt::get(C->getContext(), 606 C->getValue() & ~Mask)); 607 UsedICmps++; 608 return true; 609 } 610 } 611 612 // If we already have a value for the switch, it has to match! 613 if (!setValueOnce(ICI->getOperand(0))) 614 return false; 615 616 UsedICmps++; 617 Vals.push_back(C); 618 return ICI->getOperand(0); 619 } 620 621 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 622 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 623 ICI->getPredicate(), C->getValue()); 624 625 // Shift the range if the compare is fed by an add. This is the range 626 // compare idiom as emitted by instcombine. 627 Value *CandidateVal = I->getOperand(0); 628 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 629 Span = Span.subtract(*RHSC); 630 CandidateVal = RHSVal; 631 } 632 633 // If this is an and/!= check, then we are looking to build the set of 634 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 635 // x != 0 && x != 1. 636 if (!isEQ) 637 Span = Span.inverse(); 638 639 // If there are a ton of values, we don't want to make a ginormous switch. 640 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 641 return false; 642 } 643 644 // If we already have a value for the switch, it has to match! 645 if (!setValueOnce(CandidateVal)) 646 return false; 647 648 // Add all values from the range to the set 649 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 650 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 651 652 UsedICmps++; 653 return true; 654 } 655 656 /// Given a potentially 'or'd or 'and'd together collection of icmp 657 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 658 /// the value being compared, and stick the list constants into the Vals 659 /// vector. 660 /// One "Extra" case is allowed to differ from the other. 661 void gather(Value *V) { 662 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 663 664 // Keep a stack (SmallVector for efficiency) for depth-first traversal 665 SmallVector<Value *, 8> DFT; 666 SmallPtrSet<Value *, 8> Visited; 667 668 // Initialize 669 Visited.insert(V); 670 DFT.push_back(V); 671 672 while (!DFT.empty()) { 673 V = DFT.pop_back_val(); 674 675 if (Instruction *I = dyn_cast<Instruction>(V)) { 676 // If it is a || (or && depending on isEQ), process the operands. 677 Value *Op0, *Op1; 678 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 679 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 680 if (Visited.insert(Op1).second) 681 DFT.push_back(Op1); 682 if (Visited.insert(Op0).second) 683 DFT.push_back(Op0); 684 685 continue; 686 } 687 688 // Try to match the current instruction 689 if (matchInstruction(I, isEQ)) 690 // Match succeed, continue the loop 691 continue; 692 } 693 694 // One element of the sequence of || (or &&) could not be match as a 695 // comparison against the same value as the others. 696 // We allow only one "Extra" case to be checked before the switch 697 if (!Extra) { 698 Extra = V; 699 continue; 700 } 701 // Failed to parse a proper sequence, abort now 702 CompValue = nullptr; 703 break; 704 } 705 } 706 }; 707 708 } // end anonymous namespace 709 710 static void EraseTerminatorAndDCECond(Instruction *TI, 711 MemorySSAUpdater *MSSAU = nullptr) { 712 Instruction *Cond = nullptr; 713 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 714 Cond = dyn_cast<Instruction>(SI->getCondition()); 715 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 716 if (BI->isConditional()) 717 Cond = dyn_cast<Instruction>(BI->getCondition()); 718 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 719 Cond = dyn_cast<Instruction>(IBI->getAddress()); 720 } 721 722 TI->eraseFromParent(); 723 if (Cond) 724 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 725 } 726 727 /// Return true if the specified terminator checks 728 /// to see if a value is equal to constant integer value. 729 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 730 Value *CV = nullptr; 731 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 732 // Do not permit merging of large switch instructions into their 733 // predecessors unless there is only one predecessor. 734 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 735 CV = SI->getCondition(); 736 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 737 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 738 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 739 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 740 CV = ICI->getOperand(0); 741 } 742 743 // Unwrap any lossless ptrtoint cast. 744 if (CV) { 745 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 746 Value *Ptr = PTII->getPointerOperand(); 747 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 748 CV = Ptr; 749 } 750 } 751 return CV; 752 } 753 754 /// Given a value comparison instruction, 755 /// decode all of the 'cases' that it represents and return the 'default' block. 756 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 757 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 758 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 759 Cases.reserve(SI->getNumCases()); 760 for (auto Case : SI->cases()) 761 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 762 Case.getCaseSuccessor())); 763 return SI->getDefaultDest(); 764 } 765 766 BranchInst *BI = cast<BranchInst>(TI); 767 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 768 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 769 Cases.push_back(ValueEqualityComparisonCase( 770 GetConstantInt(ICI->getOperand(1), DL), Succ)); 771 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 772 } 773 774 /// Given a vector of bb/value pairs, remove any entries 775 /// in the list that match the specified block. 776 static void 777 EliminateBlockCases(BasicBlock *BB, 778 std::vector<ValueEqualityComparisonCase> &Cases) { 779 llvm::erase_value(Cases, BB); 780 } 781 782 /// Return true if there are any keys in C1 that exist in C2 as well. 783 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 784 std::vector<ValueEqualityComparisonCase> &C2) { 785 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 786 787 // Make V1 be smaller than V2. 788 if (V1->size() > V2->size()) 789 std::swap(V1, V2); 790 791 if (V1->empty()) 792 return false; 793 if (V1->size() == 1) { 794 // Just scan V2. 795 ConstantInt *TheVal = (*V1)[0].Value; 796 for (unsigned i = 0, e = V2->size(); i != e; ++i) 797 if (TheVal == (*V2)[i].Value) 798 return true; 799 } 800 801 // Otherwise, just sort both lists and compare element by element. 802 array_pod_sort(V1->begin(), V1->end()); 803 array_pod_sort(V2->begin(), V2->end()); 804 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 805 while (i1 != e1 && i2 != e2) { 806 if ((*V1)[i1].Value == (*V2)[i2].Value) 807 return true; 808 if ((*V1)[i1].Value < (*V2)[i2].Value) 809 ++i1; 810 else 811 ++i2; 812 } 813 return false; 814 } 815 816 // Set branch weights on SwitchInst. This sets the metadata if there is at 817 // least one non-zero weight. 818 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 819 // Check that there is at least one non-zero weight. Otherwise, pass 820 // nullptr to setMetadata which will erase the existing metadata. 821 MDNode *N = nullptr; 822 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 823 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 824 SI->setMetadata(LLVMContext::MD_prof, N); 825 } 826 827 // Similar to the above, but for branch and select instructions that take 828 // exactly 2 weights. 829 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 830 uint32_t FalseWeight) { 831 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 832 // Check that there is at least one non-zero weight. Otherwise, pass 833 // nullptr to setMetadata which will erase the existing metadata. 834 MDNode *N = nullptr; 835 if (TrueWeight || FalseWeight) 836 N = MDBuilder(I->getParent()->getContext()) 837 .createBranchWeights(TrueWeight, FalseWeight); 838 I->setMetadata(LLVMContext::MD_prof, N); 839 } 840 841 /// If TI is known to be a terminator instruction and its block is known to 842 /// only have a single predecessor block, check to see if that predecessor is 843 /// also a value comparison with the same value, and if that comparison 844 /// determines the outcome of this comparison. If so, simplify TI. This does a 845 /// very limited form of jump threading. 846 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 847 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 848 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 849 if (!PredVal) 850 return false; // Not a value comparison in predecessor. 851 852 Value *ThisVal = isValueEqualityComparison(TI); 853 assert(ThisVal && "This isn't a value comparison!!"); 854 if (ThisVal != PredVal) 855 return false; // Different predicates. 856 857 // TODO: Preserve branch weight metadata, similarly to how 858 // FoldValueComparisonIntoPredecessors preserves it. 859 860 // Find out information about when control will move from Pred to TI's block. 861 std::vector<ValueEqualityComparisonCase> PredCases; 862 BasicBlock *PredDef = 863 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 864 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 865 866 // Find information about how control leaves this block. 867 std::vector<ValueEqualityComparisonCase> ThisCases; 868 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 869 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 870 871 // If TI's block is the default block from Pred's comparison, potentially 872 // simplify TI based on this knowledge. 873 if (PredDef == TI->getParent()) { 874 // If we are here, we know that the value is none of those cases listed in 875 // PredCases. If there are any cases in ThisCases that are in PredCases, we 876 // can simplify TI. 877 if (!ValuesOverlap(PredCases, ThisCases)) 878 return false; 879 880 if (isa<BranchInst>(TI)) { 881 // Okay, one of the successors of this condbr is dead. Convert it to a 882 // uncond br. 883 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 884 // Insert the new branch. 885 Instruction *NI = Builder.CreateBr(ThisDef); 886 (void)NI; 887 888 // Remove PHI node entries for the dead edge. 889 ThisCases[0].Dest->removePredecessor(PredDef); 890 891 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 892 << "Through successor TI: " << *TI << "Leaving: " << *NI 893 << "\n"); 894 895 EraseTerminatorAndDCECond(TI); 896 897 if (DTU) 898 DTU->applyUpdates( 899 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 900 901 return true; 902 } 903 904 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 905 // Okay, TI has cases that are statically dead, prune them away. 906 SmallPtrSet<Constant *, 16> DeadCases; 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 DeadCases.insert(PredCases[i].Value); 909 910 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 911 << "Through successor TI: " << *TI); 912 913 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 914 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 915 --i; 916 auto *Successor = i->getCaseSuccessor(); 917 ++NumPerSuccessorCases[Successor]; 918 if (DeadCases.count(i->getCaseValue())) { 919 Successor->removePredecessor(PredDef); 920 SI.removeCase(i); 921 --NumPerSuccessorCases[Successor]; 922 } 923 } 924 925 std::vector<DominatorTree::UpdateType> Updates; 926 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 927 if (I.second == 0) 928 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 929 if (DTU) 930 DTU->applyUpdates(Updates); 931 932 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 933 return true; 934 } 935 936 // Otherwise, TI's block must correspond to some matched value. Find out 937 // which value (or set of values) this is. 938 ConstantInt *TIV = nullptr; 939 BasicBlock *TIBB = TI->getParent(); 940 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 941 if (PredCases[i].Dest == TIBB) { 942 if (TIV) 943 return false; // Cannot handle multiple values coming to this block. 944 TIV = PredCases[i].Value; 945 } 946 assert(TIV && "No edge from pred to succ?"); 947 948 // Okay, we found the one constant that our value can be if we get into TI's 949 // BB. Find out which successor will unconditionally be branched to. 950 BasicBlock *TheRealDest = nullptr; 951 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 952 if (ThisCases[i].Value == TIV) { 953 TheRealDest = ThisCases[i].Dest; 954 break; 955 } 956 957 // If not handled by any explicit cases, it is handled by the default case. 958 if (!TheRealDest) 959 TheRealDest = ThisDef; 960 961 SmallSetVector<BasicBlock *, 2> RemovedSuccs; 962 963 // Remove PHI node entries for dead edges. 964 BasicBlock *CheckEdge = TheRealDest; 965 for (BasicBlock *Succ : successors(TIBB)) 966 if (Succ != CheckEdge) { 967 if (Succ != TheRealDest) 968 RemovedSuccs.insert(Succ); 969 Succ->removePredecessor(TIBB); 970 } else 971 CheckEdge = nullptr; 972 973 // Insert the new branch. 974 Instruction *NI = Builder.CreateBr(TheRealDest); 975 (void)NI; 976 977 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 978 << "Through successor TI: " << *TI << "Leaving: " << *NI 979 << "\n"); 980 981 EraseTerminatorAndDCECond(TI); 982 if (DTU) { 983 SmallVector<DominatorTree::UpdateType, 2> Updates; 984 Updates.reserve(RemovedSuccs.size()); 985 for (auto *RemovedSucc : RemovedSuccs) 986 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 987 DTU->applyUpdates(Updates); 988 } 989 return true; 990 } 991 992 namespace { 993 994 /// This class implements a stable ordering of constant 995 /// integers that does not depend on their address. This is important for 996 /// applications that sort ConstantInt's to ensure uniqueness. 997 struct ConstantIntOrdering { 998 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 999 return LHS->getValue().ult(RHS->getValue()); 1000 } 1001 }; 1002 1003 } // end anonymous namespace 1004 1005 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1006 ConstantInt *const *P2) { 1007 const ConstantInt *LHS = *P1; 1008 const ConstantInt *RHS = *P2; 1009 if (LHS == RHS) 1010 return 0; 1011 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1012 } 1013 1014 static inline bool HasBranchWeights(const Instruction *I) { 1015 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1016 if (ProfMD && ProfMD->getOperand(0)) 1017 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1018 return MDS->getString().equals("branch_weights"); 1019 1020 return false; 1021 } 1022 1023 /// Get Weights of a given terminator, the default weight is at the front 1024 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1025 /// metadata. 1026 static void GetBranchWeights(Instruction *TI, 1027 SmallVectorImpl<uint64_t> &Weights) { 1028 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1029 assert(MD); 1030 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1031 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1032 Weights.push_back(CI->getValue().getZExtValue()); 1033 } 1034 1035 // If TI is a conditional eq, the default case is the false case, 1036 // and the corresponding branch-weight data is at index 2. We swap the 1037 // default weight to be the first entry. 1038 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1039 assert(Weights.size() == 2); 1040 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1041 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1042 std::swap(Weights.front(), Weights.back()); 1043 } 1044 } 1045 1046 /// Keep halving the weights until all can fit in uint32_t. 1047 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1048 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1049 if (Max > UINT_MAX) { 1050 unsigned Offset = 32 - countLeadingZeros(Max); 1051 for (uint64_t &I : Weights) 1052 I >>= Offset; 1053 } 1054 } 1055 1056 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1057 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1058 Instruction *PTI = PredBlock->getTerminator(); 1059 1060 // If we have bonus instructions, clone them into the predecessor block. 1061 // Note that there may be multiple predecessor blocks, so we cannot move 1062 // bonus instructions to a predecessor block. 1063 for (Instruction &BonusInst : *BB) { 1064 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1065 continue; 1066 1067 Instruction *NewBonusInst = BonusInst.clone(); 1068 1069 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1070 // Unless the instruction has the same !dbg location as the original 1071 // branch, drop it. When we fold the bonus instructions we want to make 1072 // sure we reset their debug locations in order to avoid stepping on 1073 // dead code caused by folding dead branches. 1074 NewBonusInst->setDebugLoc(DebugLoc()); 1075 } 1076 1077 RemapInstruction(NewBonusInst, VMap, 1078 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1079 VMap[&BonusInst] = NewBonusInst; 1080 1081 // If we moved a load, we cannot any longer claim any knowledge about 1082 // its potential value. The previous information might have been valid 1083 // only given the branch precondition. 1084 // For an analogous reason, we must also drop all the metadata whose 1085 // semantics we don't understand. We *can* preserve !annotation, because 1086 // it is tied to the instruction itself, not the value or position. 1087 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1088 1089 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1090 NewBonusInst->takeName(&BonusInst); 1091 BonusInst.setName(NewBonusInst->getName() + ".old"); 1092 1093 // Update (liveout) uses of bonus instructions, 1094 // now that the bonus instruction has been cloned into predecessor. 1095 SSAUpdater SSAUpdate; 1096 SSAUpdate.Initialize(BonusInst.getType(), 1097 (NewBonusInst->getName() + ".merge").str()); 1098 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1099 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1100 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1101 auto *UI = cast<Instruction>(U.getUser()); 1102 if (UI->getParent() != PredBlock) 1103 SSAUpdate.RewriteUseAfterInsertions(U); 1104 else // Use is in the same block as, and comes before, NewBonusInst. 1105 SSAUpdate.RewriteUse(U); 1106 } 1107 } 1108 } 1109 1110 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1111 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1112 BasicBlock *BB = TI->getParent(); 1113 BasicBlock *Pred = PTI->getParent(); 1114 1115 std::vector<DominatorTree::UpdateType> Updates; 1116 1117 // Figure out which 'cases' to copy from SI to PSI. 1118 std::vector<ValueEqualityComparisonCase> BBCases; 1119 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1120 1121 std::vector<ValueEqualityComparisonCase> PredCases; 1122 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1123 1124 // Based on whether the default edge from PTI goes to BB or not, fill in 1125 // PredCases and PredDefault with the new switch cases we would like to 1126 // build. 1127 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1128 1129 // Update the branch weight metadata along the way 1130 SmallVector<uint64_t, 8> Weights; 1131 bool PredHasWeights = HasBranchWeights(PTI); 1132 bool SuccHasWeights = HasBranchWeights(TI); 1133 1134 if (PredHasWeights) { 1135 GetBranchWeights(PTI, Weights); 1136 // branch-weight metadata is inconsistent here. 1137 if (Weights.size() != 1 + PredCases.size()) 1138 PredHasWeights = SuccHasWeights = false; 1139 } else if (SuccHasWeights) 1140 // If there are no predecessor weights but there are successor weights, 1141 // populate Weights with 1, which will later be scaled to the sum of 1142 // successor's weights 1143 Weights.assign(1 + PredCases.size(), 1); 1144 1145 SmallVector<uint64_t, 8> SuccWeights; 1146 if (SuccHasWeights) { 1147 GetBranchWeights(TI, SuccWeights); 1148 // branch-weight metadata is inconsistent here. 1149 if (SuccWeights.size() != 1 + BBCases.size()) 1150 PredHasWeights = SuccHasWeights = false; 1151 } else if (PredHasWeights) 1152 SuccWeights.assign(1 + BBCases.size(), 1); 1153 1154 if (PredDefault == BB) { 1155 // If this is the default destination from PTI, only the edges in TI 1156 // that don't occur in PTI, or that branch to BB will be activated. 1157 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1158 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1159 if (PredCases[i].Dest != BB) 1160 PTIHandled.insert(PredCases[i].Value); 1161 else { 1162 // The default destination is BB, we don't need explicit targets. 1163 std::swap(PredCases[i], PredCases.back()); 1164 1165 if (PredHasWeights || SuccHasWeights) { 1166 // Increase weight for the default case. 1167 Weights[0] += Weights[i + 1]; 1168 std::swap(Weights[i + 1], Weights.back()); 1169 Weights.pop_back(); 1170 } 1171 1172 PredCases.pop_back(); 1173 --i; 1174 --e; 1175 } 1176 1177 // Reconstruct the new switch statement we will be building. 1178 if (PredDefault != BBDefault) { 1179 PredDefault->removePredecessor(Pred); 1180 if (PredDefault != BB) 1181 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1182 PredDefault = BBDefault; 1183 ++NewSuccessors[BBDefault]; 1184 } 1185 1186 unsigned CasesFromPred = Weights.size(); 1187 uint64_t ValidTotalSuccWeight = 0; 1188 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1189 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1190 PredCases.push_back(BBCases[i]); 1191 ++NewSuccessors[BBCases[i].Dest]; 1192 if (SuccHasWeights || PredHasWeights) { 1193 // The default weight is at index 0, so weight for the ith case 1194 // should be at index i+1. Scale the cases from successor by 1195 // PredDefaultWeight (Weights[0]). 1196 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1197 ValidTotalSuccWeight += SuccWeights[i + 1]; 1198 } 1199 } 1200 1201 if (SuccHasWeights || PredHasWeights) { 1202 ValidTotalSuccWeight += SuccWeights[0]; 1203 // Scale the cases from predecessor by ValidTotalSuccWeight. 1204 for (unsigned i = 1; i < CasesFromPred; ++i) 1205 Weights[i] *= ValidTotalSuccWeight; 1206 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1207 Weights[0] *= SuccWeights[0]; 1208 } 1209 } else { 1210 // If this is not the default destination from PSI, only the edges 1211 // in SI that occur in PSI with a destination of BB will be 1212 // activated. 1213 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1214 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1215 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1216 if (PredCases[i].Dest == BB) { 1217 PTIHandled.insert(PredCases[i].Value); 1218 1219 if (PredHasWeights || SuccHasWeights) { 1220 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1221 std::swap(Weights[i + 1], Weights.back()); 1222 Weights.pop_back(); 1223 } 1224 1225 std::swap(PredCases[i], PredCases.back()); 1226 PredCases.pop_back(); 1227 --i; 1228 --e; 1229 } 1230 1231 // Okay, now we know which constants were sent to BB from the 1232 // predecessor. Figure out where they will all go now. 1233 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1234 if (PTIHandled.count(BBCases[i].Value)) { 1235 // If this is one we are capable of getting... 1236 if (PredHasWeights || SuccHasWeights) 1237 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1238 PredCases.push_back(BBCases[i]); 1239 ++NewSuccessors[BBCases[i].Dest]; 1240 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1241 } 1242 1243 // If there are any constants vectored to BB that TI doesn't handle, 1244 // they must go to the default destination of TI. 1245 for (ConstantInt *I : PTIHandled) { 1246 if (PredHasWeights || SuccHasWeights) 1247 Weights.push_back(WeightsForHandled[I]); 1248 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1249 ++NewSuccessors[BBDefault]; 1250 } 1251 } 1252 1253 // Okay, at this point, we know which new successor Pred will get. Make 1254 // sure we update the number of entries in the PHI nodes for these 1255 // successors. 1256 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1257 NewSuccessors) { 1258 for (auto I : seq(0, NewSuccessor.second)) { 1259 (void)I; 1260 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1261 } 1262 if (!is_contained(successors(Pred), NewSuccessor.first)) 1263 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1264 } 1265 1266 Builder.SetInsertPoint(PTI); 1267 // Convert pointer to int before we switch. 1268 if (CV->getType()->isPointerTy()) { 1269 CV = 1270 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1271 } 1272 1273 // Now that the successors are updated, create the new Switch instruction. 1274 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1275 NewSI->setDebugLoc(PTI->getDebugLoc()); 1276 for (ValueEqualityComparisonCase &V : PredCases) 1277 NewSI->addCase(V.Value, V.Dest); 1278 1279 if (PredHasWeights || SuccHasWeights) { 1280 // Halve the weights if any of them cannot fit in an uint32_t 1281 FitWeights(Weights); 1282 1283 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1284 1285 setBranchWeights(NewSI, MDWeights); 1286 } 1287 1288 EraseTerminatorAndDCECond(PTI); 1289 1290 // Okay, last check. If BB is still a successor of PSI, then we must 1291 // have an infinite loop case. If so, add an infinitely looping block 1292 // to handle the case to preserve the behavior of the code. 1293 BasicBlock *InfLoopBlock = nullptr; 1294 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1295 if (NewSI->getSuccessor(i) == BB) { 1296 if (!InfLoopBlock) { 1297 // Insert it at the end of the function, because it's either code, 1298 // or it won't matter if it's hot. :) 1299 InfLoopBlock = 1300 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1301 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1302 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1303 } 1304 NewSI->setSuccessor(i, InfLoopBlock); 1305 } 1306 1307 if (InfLoopBlock) 1308 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1309 1310 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1311 1312 if (DTU) 1313 DTU->applyUpdates(Updates); 1314 1315 ++NumFoldValueComparisonIntoPredecessors; 1316 return true; 1317 } 1318 1319 /// The specified terminator is a value equality comparison instruction 1320 /// (either a switch or a branch on "X == c"). 1321 /// See if any of the predecessors of the terminator block are value comparisons 1322 /// on the same value. If so, and if safe to do so, fold them together. 1323 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1324 IRBuilder<> &Builder) { 1325 BasicBlock *BB = TI->getParent(); 1326 Value *CV = isValueEqualityComparison(TI); // CondVal 1327 assert(CV && "Not a comparison?"); 1328 1329 bool Changed = false; 1330 1331 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1332 while (!Preds.empty()) { 1333 BasicBlock *Pred = Preds.pop_back_val(); 1334 Instruction *PTI = Pred->getTerminator(); 1335 1336 // Don't try to fold into itself. 1337 if (Pred == BB) 1338 continue; 1339 1340 // See if the predecessor is a comparison with the same value. 1341 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1342 if (PCV != CV) 1343 continue; 1344 1345 SmallSetVector<BasicBlock *, 4> FailBlocks; 1346 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1347 for (auto *Succ : FailBlocks) { 1348 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1349 return false; 1350 } 1351 } 1352 1353 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1354 Changed = true; 1355 } 1356 return Changed; 1357 } 1358 1359 // If we would need to insert a select that uses the value of this invoke 1360 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1361 // can't hoist the invoke, as there is nowhere to put the select in this case. 1362 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1363 Instruction *I1, Instruction *I2) { 1364 for (BasicBlock *Succ : successors(BB1)) { 1365 for (const PHINode &PN : Succ->phis()) { 1366 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1367 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1368 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1369 return false; 1370 } 1371 } 1372 } 1373 return true; 1374 } 1375 1376 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1377 1378 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1379 /// in the two blocks up into the branch block. The caller of this function 1380 /// guarantees that BI's block dominates BB1 and BB2. 1381 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1382 const TargetTransformInfo &TTI) { 1383 // This does very trivial matching, with limited scanning, to find identical 1384 // instructions in the two blocks. In particular, we don't want to get into 1385 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1386 // such, we currently just scan for obviously identical instructions in an 1387 // identical order. 1388 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1389 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1390 1391 BasicBlock::iterator BB1_Itr = BB1->begin(); 1392 BasicBlock::iterator BB2_Itr = BB2->begin(); 1393 1394 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1395 // Skip debug info if it is not identical. 1396 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1397 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1398 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1399 while (isa<DbgInfoIntrinsic>(I1)) 1400 I1 = &*BB1_Itr++; 1401 while (isa<DbgInfoIntrinsic>(I2)) 1402 I2 = &*BB2_Itr++; 1403 } 1404 // FIXME: Can we define a safety predicate for CallBr? 1405 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1406 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1407 isa<CallBrInst>(I1)) 1408 return false; 1409 1410 BasicBlock *BIParent = BI->getParent(); 1411 1412 bool Changed = false; 1413 1414 auto _ = make_scope_exit([&]() { 1415 if (Changed) 1416 ++NumHoistCommonCode; 1417 }); 1418 1419 do { 1420 // If we are hoisting the terminator instruction, don't move one (making a 1421 // broken BB), instead clone it, and remove BI. 1422 if (I1->isTerminator()) 1423 goto HoistTerminator; 1424 1425 // If we're going to hoist a call, make sure that the two instructions we're 1426 // commoning/hoisting are both marked with musttail, or neither of them is 1427 // marked as such. Otherwise, we might end up in a situation where we hoist 1428 // from a block where the terminator is a `ret` to a block where the terminator 1429 // is a `br`, and `musttail` calls expect to be followed by a return. 1430 auto *C1 = dyn_cast<CallInst>(I1); 1431 auto *C2 = dyn_cast<CallInst>(I2); 1432 if (C1 && C2) 1433 if (C1->isMustTailCall() != C2->isMustTailCall()) 1434 return Changed; 1435 1436 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1437 return Changed; 1438 1439 // If any of the two call sites has nomerge attribute, stop hoisting. 1440 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1441 if (CB1->cannotMerge()) 1442 return Changed; 1443 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1444 if (CB2->cannotMerge()) 1445 return Changed; 1446 1447 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1448 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1449 // The debug location is an integral part of a debug info intrinsic 1450 // and can't be separated from it or replaced. Instead of attempting 1451 // to merge locations, simply hoist both copies of the intrinsic. 1452 BIParent->getInstList().splice(BI->getIterator(), 1453 BB1->getInstList(), I1); 1454 BIParent->getInstList().splice(BI->getIterator(), 1455 BB2->getInstList(), I2); 1456 Changed = true; 1457 } else { 1458 // For a normal instruction, we just move one to right before the branch, 1459 // then replace all uses of the other with the first. Finally, we remove 1460 // the now redundant second instruction. 1461 BIParent->getInstList().splice(BI->getIterator(), 1462 BB1->getInstList(), I1); 1463 if (!I2->use_empty()) 1464 I2->replaceAllUsesWith(I1); 1465 I1->andIRFlags(I2); 1466 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1467 LLVMContext::MD_range, 1468 LLVMContext::MD_fpmath, 1469 LLVMContext::MD_invariant_load, 1470 LLVMContext::MD_nonnull, 1471 LLVMContext::MD_invariant_group, 1472 LLVMContext::MD_align, 1473 LLVMContext::MD_dereferenceable, 1474 LLVMContext::MD_dereferenceable_or_null, 1475 LLVMContext::MD_mem_parallel_loop_access, 1476 LLVMContext::MD_access_group, 1477 LLVMContext::MD_preserve_access_index}; 1478 combineMetadata(I1, I2, KnownIDs, true); 1479 1480 // I1 and I2 are being combined into a single instruction. Its debug 1481 // location is the merged locations of the original instructions. 1482 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1483 1484 I2->eraseFromParent(); 1485 Changed = true; 1486 } 1487 ++NumHoistCommonInstrs; 1488 1489 I1 = &*BB1_Itr++; 1490 I2 = &*BB2_Itr++; 1491 // Skip debug info if it is not identical. 1492 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1493 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1494 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1495 while (isa<DbgInfoIntrinsic>(I1)) 1496 I1 = &*BB1_Itr++; 1497 while (isa<DbgInfoIntrinsic>(I2)) 1498 I2 = &*BB2_Itr++; 1499 } 1500 } while (I1->isIdenticalToWhenDefined(I2)); 1501 1502 return true; 1503 1504 HoistTerminator: 1505 // It may not be possible to hoist an invoke. 1506 // FIXME: Can we define a safety predicate for CallBr? 1507 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1508 return Changed; 1509 1510 // TODO: callbr hoisting currently disabled pending further study. 1511 if (isa<CallBrInst>(I1)) 1512 return Changed; 1513 1514 for (BasicBlock *Succ : successors(BB1)) { 1515 for (PHINode &PN : Succ->phis()) { 1516 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1517 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1518 if (BB1V == BB2V) 1519 continue; 1520 1521 // Check for passingValueIsAlwaysUndefined here because we would rather 1522 // eliminate undefined control flow then converting it to a select. 1523 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1524 passingValueIsAlwaysUndefined(BB2V, &PN)) 1525 return Changed; 1526 1527 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1528 return Changed; 1529 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1530 return Changed; 1531 } 1532 } 1533 1534 // Okay, it is safe to hoist the terminator. 1535 Instruction *NT = I1->clone(); 1536 BIParent->getInstList().insert(BI->getIterator(), NT); 1537 if (!NT->getType()->isVoidTy()) { 1538 I1->replaceAllUsesWith(NT); 1539 I2->replaceAllUsesWith(NT); 1540 NT->takeName(I1); 1541 } 1542 Changed = true; 1543 ++NumHoistCommonInstrs; 1544 1545 // Ensure terminator gets a debug location, even an unknown one, in case 1546 // it involves inlinable calls. 1547 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1548 1549 // PHIs created below will adopt NT's merged DebugLoc. 1550 IRBuilder<NoFolder> Builder(NT); 1551 1552 // Hoisting one of the terminators from our successor is a great thing. 1553 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1554 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1555 // nodes, so we insert select instruction to compute the final result. 1556 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1557 for (BasicBlock *Succ : successors(BB1)) { 1558 for (PHINode &PN : Succ->phis()) { 1559 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1560 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1561 if (BB1V == BB2V) 1562 continue; 1563 1564 // These values do not agree. Insert a select instruction before NT 1565 // that determines the right value. 1566 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1567 if (!SI) { 1568 // Propagate fast-math-flags from phi node to its replacement select. 1569 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1570 if (isa<FPMathOperator>(PN)) 1571 Builder.setFastMathFlags(PN.getFastMathFlags()); 1572 1573 SI = cast<SelectInst>( 1574 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1575 BB1V->getName() + "." + BB2V->getName(), BI)); 1576 } 1577 1578 // Make the PHI node use the select for all incoming values for BB1/BB2 1579 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1580 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1581 PN.setIncomingValue(i, SI); 1582 } 1583 } 1584 1585 SmallVector<DominatorTree::UpdateType, 4> Updates; 1586 1587 // Update any PHI nodes in our new successors. 1588 for (BasicBlock *Succ : successors(BB1)) { 1589 AddPredecessorToBlock(Succ, BIParent, BB1); 1590 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1591 } 1592 for (BasicBlock *Succ : successors(BI)) 1593 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1594 1595 EraseTerminatorAndDCECond(BI); 1596 if (DTU) 1597 DTU->applyUpdates(Updates); 1598 return Changed; 1599 } 1600 1601 // Check lifetime markers. 1602 static bool isLifeTimeMarker(const Instruction *I) { 1603 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1604 switch (II->getIntrinsicID()) { 1605 default: 1606 break; 1607 case Intrinsic::lifetime_start: 1608 case Intrinsic::lifetime_end: 1609 return true; 1610 } 1611 } 1612 return false; 1613 } 1614 1615 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1616 // into variables. 1617 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1618 int OpIdx) { 1619 return !isa<IntrinsicInst>(I); 1620 } 1621 1622 // All instructions in Insts belong to different blocks that all unconditionally 1623 // branch to a common successor. Analyze each instruction and return true if it 1624 // would be possible to sink them into their successor, creating one common 1625 // instruction instead. For every value that would be required to be provided by 1626 // PHI node (because an operand varies in each input block), add to PHIOperands. 1627 static bool canSinkInstructions( 1628 ArrayRef<Instruction *> Insts, 1629 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1630 // Prune out obviously bad instructions to move. Each instruction must have 1631 // exactly zero or one use, and we check later that use is by a single, common 1632 // PHI instruction in the successor. 1633 bool HasUse = !Insts.front()->user_empty(); 1634 for (auto *I : Insts) { 1635 // These instructions may change or break semantics if moved. 1636 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1637 I->getType()->isTokenTy()) 1638 return false; 1639 1640 // Do not try to sink an instruction in an infinite loop - it can cause 1641 // this algorithm to infinite loop. 1642 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1643 return false; 1644 1645 // Conservatively return false if I is an inline-asm instruction. Sinking 1646 // and merging inline-asm instructions can potentially create arguments 1647 // that cannot satisfy the inline-asm constraints. 1648 // If the instruction has nomerge attribute, return false. 1649 if (const auto *C = dyn_cast<CallBase>(I)) 1650 if (C->isInlineAsm() || C->cannotMerge()) 1651 return false; 1652 1653 // Each instruction must have zero or one use. 1654 if (HasUse && !I->hasOneUse()) 1655 return false; 1656 if (!HasUse && !I->user_empty()) 1657 return false; 1658 } 1659 1660 const Instruction *I0 = Insts.front(); 1661 for (auto *I : Insts) 1662 if (!I->isSameOperationAs(I0)) 1663 return false; 1664 1665 // All instructions in Insts are known to be the same opcode. If they have a 1666 // use, check that the only user is a PHI or in the same block as the 1667 // instruction, because if a user is in the same block as an instruction we're 1668 // contemplating sinking, it must already be determined to be sinkable. 1669 if (HasUse) { 1670 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1671 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1672 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1673 auto *U = cast<Instruction>(*I->user_begin()); 1674 return (PNUse && 1675 PNUse->getParent() == Succ && 1676 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1677 U->getParent() == I->getParent(); 1678 })) 1679 return false; 1680 } 1681 1682 // Because SROA can't handle speculating stores of selects, try not to sink 1683 // loads, stores or lifetime markers of allocas when we'd have to create a 1684 // PHI for the address operand. Also, because it is likely that loads or 1685 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1686 // them. 1687 // This can cause code churn which can have unintended consequences down 1688 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1689 // FIXME: This is a workaround for a deficiency in SROA - see 1690 // https://llvm.org/bugs/show_bug.cgi?id=30188 1691 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1692 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1693 })) 1694 return false; 1695 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1696 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1697 })) 1698 return false; 1699 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1700 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1701 })) 1702 return false; 1703 1704 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1705 Value *Op = I0->getOperand(OI); 1706 if (Op->getType()->isTokenTy()) 1707 // Don't touch any operand of token type. 1708 return false; 1709 1710 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1711 assert(I->getNumOperands() == I0->getNumOperands()); 1712 return I->getOperand(OI) == I0->getOperand(OI); 1713 }; 1714 if (!all_of(Insts, SameAsI0)) { 1715 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1716 !canReplaceOperandWithVariable(I0, OI)) 1717 // We can't create a PHI from this GEP. 1718 return false; 1719 // Don't create indirect calls! The called value is the final operand. 1720 if (isa<CallBase>(I0) && OI == OE - 1) { 1721 // FIXME: if the call was *already* indirect, we should do this. 1722 return false; 1723 } 1724 for (auto *I : Insts) 1725 PHIOperands[I].push_back(I->getOperand(OI)); 1726 } 1727 } 1728 return true; 1729 } 1730 1731 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1732 // instruction of every block in Blocks to their common successor, commoning 1733 // into one instruction. 1734 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1735 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1736 1737 // canSinkInstructions returning true guarantees that every block has at 1738 // least one non-terminator instruction. 1739 SmallVector<Instruction*,4> Insts; 1740 for (auto *BB : Blocks) { 1741 Instruction *I = BB->getTerminator(); 1742 do { 1743 I = I->getPrevNode(); 1744 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1745 if (!isa<DbgInfoIntrinsic>(I)) 1746 Insts.push_back(I); 1747 } 1748 1749 // The only checking we need to do now is that all users of all instructions 1750 // are the same PHI node. canSinkInstructions should have checked this but 1751 // it is slightly over-aggressive - it gets confused by commutative 1752 // instructions so double-check it here. 1753 Instruction *I0 = Insts.front(); 1754 if (!I0->user_empty()) { 1755 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1756 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1757 auto *U = cast<Instruction>(*I->user_begin()); 1758 return U == PNUse; 1759 })) 1760 return false; 1761 } 1762 1763 // We don't need to do any more checking here; canSinkInstructions should 1764 // have done it all for us. 1765 SmallVector<Value*, 4> NewOperands; 1766 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1767 // This check is different to that in canSinkInstructions. There, we 1768 // cared about the global view once simplifycfg (and instcombine) have 1769 // completed - it takes into account PHIs that become trivially 1770 // simplifiable. However here we need a more local view; if an operand 1771 // differs we create a PHI and rely on instcombine to clean up the very 1772 // small mess we may make. 1773 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1774 return I->getOperand(O) != I0->getOperand(O); 1775 }); 1776 if (!NeedPHI) { 1777 NewOperands.push_back(I0->getOperand(O)); 1778 continue; 1779 } 1780 1781 // Create a new PHI in the successor block and populate it. 1782 auto *Op = I0->getOperand(O); 1783 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1784 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1785 Op->getName() + ".sink", &BBEnd->front()); 1786 for (auto *I : Insts) 1787 PN->addIncoming(I->getOperand(O), I->getParent()); 1788 NewOperands.push_back(PN); 1789 } 1790 1791 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1792 // and move it to the start of the successor block. 1793 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1794 I0->getOperandUse(O).set(NewOperands[O]); 1795 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1796 1797 // Update metadata and IR flags, and merge debug locations. 1798 for (auto *I : Insts) 1799 if (I != I0) { 1800 // The debug location for the "common" instruction is the merged locations 1801 // of all the commoned instructions. We start with the original location 1802 // of the "common" instruction and iteratively merge each location in the 1803 // loop below. 1804 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1805 // However, as N-way merge for CallInst is rare, so we use simplified API 1806 // instead of using complex API for N-way merge. 1807 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1808 combineMetadataForCSE(I0, I, true); 1809 I0->andIRFlags(I); 1810 } 1811 1812 if (!I0->user_empty()) { 1813 // canSinkLastInstruction checked that all instructions were used by 1814 // one and only one PHI node. Find that now, RAUW it to our common 1815 // instruction and nuke it. 1816 auto *PN = cast<PHINode>(*I0->user_begin()); 1817 PN->replaceAllUsesWith(I0); 1818 PN->eraseFromParent(); 1819 } 1820 1821 // Finally nuke all instructions apart from the common instruction. 1822 for (auto *I : Insts) 1823 if (I != I0) 1824 I->eraseFromParent(); 1825 1826 return true; 1827 } 1828 1829 namespace { 1830 1831 // LockstepReverseIterator - Iterates through instructions 1832 // in a set of blocks in reverse order from the first non-terminator. 1833 // For example (assume all blocks have size n): 1834 // LockstepReverseIterator I([B1, B2, B3]); 1835 // *I-- = [B1[n], B2[n], B3[n]]; 1836 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1837 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1838 // ... 1839 class LockstepReverseIterator { 1840 ArrayRef<BasicBlock*> Blocks; 1841 SmallVector<Instruction*,4> Insts; 1842 bool Fail; 1843 1844 public: 1845 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1846 reset(); 1847 } 1848 1849 void reset() { 1850 Fail = false; 1851 Insts.clear(); 1852 for (auto *BB : Blocks) { 1853 Instruction *Inst = BB->getTerminator(); 1854 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1855 Inst = Inst->getPrevNode(); 1856 if (!Inst) { 1857 // Block wasn't big enough. 1858 Fail = true; 1859 return; 1860 } 1861 Insts.push_back(Inst); 1862 } 1863 } 1864 1865 bool isValid() const { 1866 return !Fail; 1867 } 1868 1869 void operator--() { 1870 if (Fail) 1871 return; 1872 for (auto *&Inst : Insts) { 1873 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1874 Inst = Inst->getPrevNode(); 1875 // Already at beginning of block. 1876 if (!Inst) { 1877 Fail = true; 1878 return; 1879 } 1880 } 1881 } 1882 1883 ArrayRef<Instruction*> operator * () const { 1884 return Insts; 1885 } 1886 }; 1887 1888 } // end anonymous namespace 1889 1890 /// Check whether BB's predecessors end with unconditional branches. If it is 1891 /// true, sink any common code from the predecessors to BB. 1892 /// We also allow one predecessor to end with conditional branch (but no more 1893 /// than one). 1894 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1895 DomTreeUpdater *DTU) { 1896 // We support two situations: 1897 // (1) all incoming arcs are unconditional 1898 // (2) one incoming arc is conditional 1899 // 1900 // (2) is very common in switch defaults and 1901 // else-if patterns; 1902 // 1903 // if (a) f(1); 1904 // else if (b) f(2); 1905 // 1906 // produces: 1907 // 1908 // [if] 1909 // / \ 1910 // [f(1)] [if] 1911 // | | \ 1912 // | | | 1913 // | [f(2)]| 1914 // \ | / 1915 // [ end ] 1916 // 1917 // [end] has two unconditional predecessor arcs and one conditional. The 1918 // conditional refers to the implicit empty 'else' arc. This conditional 1919 // arc can also be caused by an empty default block in a switch. 1920 // 1921 // In this case, we attempt to sink code from all *unconditional* arcs. 1922 // If we can sink instructions from these arcs (determined during the scan 1923 // phase below) we insert a common successor for all unconditional arcs and 1924 // connect that to [end], to enable sinking: 1925 // 1926 // [if] 1927 // / \ 1928 // [x(1)] [if] 1929 // | | \ 1930 // | | \ 1931 // | [x(2)] | 1932 // \ / | 1933 // [sink.split] | 1934 // \ / 1935 // [ end ] 1936 // 1937 SmallVector<BasicBlock*,4> UnconditionalPreds; 1938 Instruction *Cond = nullptr; 1939 for (auto *B : predecessors(BB)) { 1940 auto *T = B->getTerminator(); 1941 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1942 UnconditionalPreds.push_back(B); 1943 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1944 Cond = T; 1945 else 1946 return false; 1947 } 1948 if (UnconditionalPreds.size() < 2) 1949 return false; 1950 1951 // We take a two-step approach to tail sinking. First we scan from the end of 1952 // each block upwards in lockstep. If the n'th instruction from the end of each 1953 // block can be sunk, those instructions are added to ValuesToSink and we 1954 // carry on. If we can sink an instruction but need to PHI-merge some operands 1955 // (because they're not identical in each instruction) we add these to 1956 // PHIOperands. 1957 unsigned ScanIdx = 0; 1958 SmallPtrSet<Value*,4> InstructionsToSink; 1959 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1960 LockstepReverseIterator LRI(UnconditionalPreds); 1961 while (LRI.isValid() && 1962 canSinkInstructions(*LRI, PHIOperands)) { 1963 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1964 << "\n"); 1965 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1966 ++ScanIdx; 1967 --LRI; 1968 } 1969 1970 // If no instructions can be sunk, early-return. 1971 if (ScanIdx == 0) 1972 return false; 1973 1974 bool Changed = false; 1975 1976 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1977 unsigned NumPHIdValues = 0; 1978 for (auto *I : *LRI) 1979 for (auto *V : PHIOperands[I]) 1980 if (InstructionsToSink.count(V) == 0) 1981 ++NumPHIdValues; 1982 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1983 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1984 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1985 NumPHIInsts++; 1986 1987 return NumPHIInsts <= 1; 1988 }; 1989 1990 if (Cond) { 1991 // Check if we would actually sink anything first! This mutates the CFG and 1992 // adds an extra block. The goal in doing this is to allow instructions that 1993 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1994 // (such as trunc, add) can be sunk and predicated already. So we check that 1995 // we're going to sink at least one non-speculatable instruction. 1996 LRI.reset(); 1997 unsigned Idx = 0; 1998 bool Profitable = false; 1999 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 2000 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2001 Profitable = true; 2002 break; 2003 } 2004 --LRI; 2005 ++Idx; 2006 } 2007 if (!Profitable) 2008 return false; 2009 2010 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2011 // We have a conditional edge and we're going to sink some instructions. 2012 // Insert a new block postdominating all blocks we're going to sink from. 2013 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2014 // Edges couldn't be split. 2015 return false; 2016 Changed = true; 2017 } 2018 2019 // Now that we've analyzed all potential sinking candidates, perform the 2020 // actual sink. We iteratively sink the last non-terminator of the source 2021 // blocks into their common successor unless doing so would require too 2022 // many PHI instructions to be generated (currently only one PHI is allowed 2023 // per sunk instruction). 2024 // 2025 // We can use InstructionsToSink to discount values needing PHI-merging that will 2026 // actually be sunk in a later iteration. This allows us to be more 2027 // aggressive in what we sink. This does allow a false positive where we 2028 // sink presuming a later value will also be sunk, but stop half way through 2029 // and never actually sink it which means we produce more PHIs than intended. 2030 // This is unlikely in practice though. 2031 unsigned SinkIdx = 0; 2032 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2033 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2034 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2035 << "\n"); 2036 2037 // Because we've sunk every instruction in turn, the current instruction to 2038 // sink is always at index 0. 2039 LRI.reset(); 2040 if (!ProfitableToSinkInstruction(LRI)) { 2041 // Too many PHIs would be created. 2042 LLVM_DEBUG( 2043 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2044 break; 2045 } 2046 2047 if (!sinkLastInstruction(UnconditionalPreds)) { 2048 LLVM_DEBUG( 2049 dbgs() 2050 << "SINK: stopping here, failed to actually sink instruction!\n"); 2051 break; 2052 } 2053 2054 NumSinkCommonInstrs++; 2055 Changed = true; 2056 } 2057 if (SinkIdx != 0) 2058 ++NumSinkCommonCode; 2059 return Changed; 2060 } 2061 2062 /// Determine if we can hoist sink a sole store instruction out of a 2063 /// conditional block. 2064 /// 2065 /// We are looking for code like the following: 2066 /// BrBB: 2067 /// store i32 %add, i32* %arrayidx2 2068 /// ... // No other stores or function calls (we could be calling a memory 2069 /// ... // function). 2070 /// %cmp = icmp ult %x, %y 2071 /// br i1 %cmp, label %EndBB, label %ThenBB 2072 /// ThenBB: 2073 /// store i32 %add5, i32* %arrayidx2 2074 /// br label EndBB 2075 /// EndBB: 2076 /// ... 2077 /// We are going to transform this into: 2078 /// BrBB: 2079 /// store i32 %add, i32* %arrayidx2 2080 /// ... // 2081 /// %cmp = icmp ult %x, %y 2082 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2083 /// store i32 %add.add5, i32* %arrayidx2 2084 /// ... 2085 /// 2086 /// \return The pointer to the value of the previous store if the store can be 2087 /// hoisted into the predecessor block. 0 otherwise. 2088 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2089 BasicBlock *StoreBB, BasicBlock *EndBB) { 2090 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2091 if (!StoreToHoist) 2092 return nullptr; 2093 2094 // Volatile or atomic. 2095 if (!StoreToHoist->isSimple()) 2096 return nullptr; 2097 2098 Value *StorePtr = StoreToHoist->getPointerOperand(); 2099 2100 // Look for a store to the same pointer in BrBB. 2101 unsigned MaxNumInstToLookAt = 9; 2102 // Skip pseudo probe intrinsic calls which are not really killing any memory 2103 // accesses. 2104 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2105 if (!MaxNumInstToLookAt) 2106 break; 2107 --MaxNumInstToLookAt; 2108 2109 // Could be calling an instruction that affects memory like free(). 2110 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2111 return nullptr; 2112 2113 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2114 // Found the previous store make sure it stores to the same location. 2115 if (SI->getPointerOperand() == StorePtr) 2116 // Found the previous store, return its value operand. 2117 return SI->getValueOperand(); 2118 return nullptr; // Unknown store. 2119 } 2120 } 2121 2122 return nullptr; 2123 } 2124 2125 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2126 /// converted to selects. 2127 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2128 BasicBlock *EndBB, 2129 unsigned &SpeculatedInstructions, 2130 InstructionCost &Cost, 2131 const TargetTransformInfo &TTI) { 2132 TargetTransformInfo::TargetCostKind CostKind = 2133 BB->getParent()->hasMinSize() 2134 ? TargetTransformInfo::TCK_CodeSize 2135 : TargetTransformInfo::TCK_SizeAndLatency; 2136 2137 bool HaveRewritablePHIs = false; 2138 for (PHINode &PN : EndBB->phis()) { 2139 Value *OrigV = PN.getIncomingValueForBlock(BB); 2140 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2141 2142 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2143 // Skip PHIs which are trivial. 2144 if (ThenV == OrigV) 2145 continue; 2146 2147 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2148 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2149 2150 // Don't convert to selects if we could remove undefined behavior instead. 2151 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2152 passingValueIsAlwaysUndefined(ThenV, &PN)) 2153 return false; 2154 2155 HaveRewritablePHIs = true; 2156 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2157 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2158 if (!OrigCE && !ThenCE) 2159 continue; // Known safe and cheap. 2160 2161 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2162 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2163 return false; 2164 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2165 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2166 InstructionCost MaxCost = 2167 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2168 if (OrigCost + ThenCost > MaxCost) 2169 return false; 2170 2171 // Account for the cost of an unfolded ConstantExpr which could end up 2172 // getting expanded into Instructions. 2173 // FIXME: This doesn't account for how many operations are combined in the 2174 // constant expression. 2175 ++SpeculatedInstructions; 2176 if (SpeculatedInstructions > 1) 2177 return false; 2178 } 2179 2180 return HaveRewritablePHIs; 2181 } 2182 2183 /// Speculate a conditional basic block flattening the CFG. 2184 /// 2185 /// Note that this is a very risky transform currently. Speculating 2186 /// instructions like this is most often not desirable. Instead, there is an MI 2187 /// pass which can do it with full awareness of the resource constraints. 2188 /// However, some cases are "obvious" and we should do directly. An example of 2189 /// this is speculating a single, reasonably cheap instruction. 2190 /// 2191 /// There is only one distinct advantage to flattening the CFG at the IR level: 2192 /// it makes very common but simplistic optimizations such as are common in 2193 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2194 /// modeling their effects with easier to reason about SSA value graphs. 2195 /// 2196 /// 2197 /// An illustration of this transform is turning this IR: 2198 /// \code 2199 /// BB: 2200 /// %cmp = icmp ult %x, %y 2201 /// br i1 %cmp, label %EndBB, label %ThenBB 2202 /// ThenBB: 2203 /// %sub = sub %x, %y 2204 /// br label BB2 2205 /// EndBB: 2206 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2207 /// ... 2208 /// \endcode 2209 /// 2210 /// Into this IR: 2211 /// \code 2212 /// BB: 2213 /// %cmp = icmp ult %x, %y 2214 /// %sub = sub %x, %y 2215 /// %cond = select i1 %cmp, 0, %sub 2216 /// ... 2217 /// \endcode 2218 /// 2219 /// \returns true if the conditional block is removed. 2220 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2221 const TargetTransformInfo &TTI) { 2222 // Be conservative for now. FP select instruction can often be expensive. 2223 Value *BrCond = BI->getCondition(); 2224 if (isa<FCmpInst>(BrCond)) 2225 return false; 2226 2227 BasicBlock *BB = BI->getParent(); 2228 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2229 InstructionCost Budget = 2230 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2231 2232 // If ThenBB is actually on the false edge of the conditional branch, remember 2233 // to swap the select operands later. 2234 bool Invert = false; 2235 if (ThenBB != BI->getSuccessor(0)) { 2236 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2237 Invert = true; 2238 } 2239 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2240 2241 // Keep a count of how many times instructions are used within ThenBB when 2242 // they are candidates for sinking into ThenBB. Specifically: 2243 // - They are defined in BB, and 2244 // - They have no side effects, and 2245 // - All of their uses are in ThenBB. 2246 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2247 2248 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2249 2250 unsigned SpeculatedInstructions = 0; 2251 Value *SpeculatedStoreValue = nullptr; 2252 StoreInst *SpeculatedStore = nullptr; 2253 for (BasicBlock::iterator BBI = ThenBB->begin(), 2254 BBE = std::prev(ThenBB->end()); 2255 BBI != BBE; ++BBI) { 2256 Instruction *I = &*BBI; 2257 // Skip debug info. 2258 if (isa<DbgInfoIntrinsic>(I)) { 2259 SpeculatedDbgIntrinsics.push_back(I); 2260 continue; 2261 } 2262 2263 // Skip pseudo probes. The consequence is we lose track of the branch 2264 // probability for ThenBB, which is fine since the optimization here takes 2265 // place regardless of the branch probability. 2266 if (isa<PseudoProbeInst>(I)) { 2267 continue; 2268 } 2269 2270 // Only speculatively execute a single instruction (not counting the 2271 // terminator) for now. 2272 ++SpeculatedInstructions; 2273 if (SpeculatedInstructions > 1) 2274 return false; 2275 2276 // Don't hoist the instruction if it's unsafe or expensive. 2277 if (!isSafeToSpeculativelyExecute(I) && 2278 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2279 I, BB, ThenBB, EndBB)))) 2280 return false; 2281 if (!SpeculatedStoreValue && 2282 computeSpeculationCost(I, TTI) > 2283 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2284 return false; 2285 2286 // Store the store speculation candidate. 2287 if (SpeculatedStoreValue) 2288 SpeculatedStore = cast<StoreInst>(I); 2289 2290 // Do not hoist the instruction if any of its operands are defined but not 2291 // used in BB. The transformation will prevent the operand from 2292 // being sunk into the use block. 2293 for (Use &Op : I->operands()) { 2294 Instruction *OpI = dyn_cast<Instruction>(Op); 2295 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2296 continue; // Not a candidate for sinking. 2297 2298 ++SinkCandidateUseCounts[OpI]; 2299 } 2300 } 2301 2302 // Consider any sink candidates which are only used in ThenBB as costs for 2303 // speculation. Note, while we iterate over a DenseMap here, we are summing 2304 // and so iteration order isn't significant. 2305 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2306 I = SinkCandidateUseCounts.begin(), 2307 E = SinkCandidateUseCounts.end(); 2308 I != E; ++I) 2309 if (I->first->hasNUses(I->second)) { 2310 ++SpeculatedInstructions; 2311 if (SpeculatedInstructions > 1) 2312 return false; 2313 } 2314 2315 // Check that we can insert the selects and that it's not too expensive to do 2316 // so. 2317 bool Convert = SpeculatedStore != nullptr; 2318 InstructionCost Cost = 0; 2319 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2320 SpeculatedInstructions, 2321 Cost, TTI); 2322 if (!Convert || Cost > Budget) 2323 return false; 2324 2325 // If we get here, we can hoist the instruction and if-convert. 2326 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2327 2328 // Insert a select of the value of the speculated store. 2329 if (SpeculatedStoreValue) { 2330 IRBuilder<NoFolder> Builder(BI); 2331 Value *TrueV = SpeculatedStore->getValueOperand(); 2332 Value *FalseV = SpeculatedStoreValue; 2333 if (Invert) 2334 std::swap(TrueV, FalseV); 2335 Value *S = Builder.CreateSelect( 2336 BrCond, TrueV, FalseV, "spec.store.select", BI); 2337 SpeculatedStore->setOperand(0, S); 2338 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2339 SpeculatedStore->getDebugLoc()); 2340 } 2341 2342 // Metadata can be dependent on the condition we are hoisting above. 2343 // Conservatively strip all metadata on the instruction. Drop the debug loc 2344 // to avoid making it appear as if the condition is a constant, which would 2345 // be misleading while debugging. 2346 for (auto &I : *ThenBB) { 2347 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2348 I.setDebugLoc(DebugLoc()); 2349 I.dropUnknownNonDebugMetadata(); 2350 } 2351 2352 // A hoisted conditional probe should be treated as dangling so that it will 2353 // not be over-counted when the samples collected on the non-conditional path 2354 // are counted towards the conditional path. We leave it for the counts 2355 // inference algorithm to figure out a proper count for a danglng probe. 2356 moveAndDanglePseudoProbes(ThenBB, BI); 2357 2358 // Hoist the instructions. 2359 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2360 ThenBB->begin(), std::prev(ThenBB->end())); 2361 2362 // Insert selects and rewrite the PHI operands. 2363 IRBuilder<NoFolder> Builder(BI); 2364 for (PHINode &PN : EndBB->phis()) { 2365 unsigned OrigI = PN.getBasicBlockIndex(BB); 2366 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2367 Value *OrigV = PN.getIncomingValue(OrigI); 2368 Value *ThenV = PN.getIncomingValue(ThenI); 2369 2370 // Skip PHIs which are trivial. 2371 if (OrigV == ThenV) 2372 continue; 2373 2374 // Create a select whose true value is the speculatively executed value and 2375 // false value is the pre-existing value. Swap them if the branch 2376 // destinations were inverted. 2377 Value *TrueV = ThenV, *FalseV = OrigV; 2378 if (Invert) 2379 std::swap(TrueV, FalseV); 2380 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2381 PN.setIncomingValue(OrigI, V); 2382 PN.setIncomingValue(ThenI, V); 2383 } 2384 2385 // Remove speculated dbg intrinsics. 2386 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2387 // dbg value for the different flows and inserting it after the select. 2388 for (Instruction *I : SpeculatedDbgIntrinsics) 2389 I->eraseFromParent(); 2390 2391 ++NumSpeculations; 2392 return true; 2393 } 2394 2395 /// Return true if we can thread a branch across this block. 2396 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2397 int Size = 0; 2398 2399 for (Instruction &I : BB->instructionsWithoutDebug()) { 2400 if (Size > MaxSmallBlockSize) 2401 return false; // Don't clone large BB's. 2402 2403 // Can't fold blocks that contain noduplicate or convergent calls. 2404 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2405 if (CI->cannotDuplicate() || CI->isConvergent()) 2406 return false; 2407 2408 // We will delete Phis while threading, so Phis should not be accounted in 2409 // block's size 2410 if (!isa<PHINode>(I)) 2411 ++Size; 2412 2413 // We can only support instructions that do not define values that are 2414 // live outside of the current basic block. 2415 for (User *U : I.users()) { 2416 Instruction *UI = cast<Instruction>(U); 2417 if (UI->getParent() != BB || isa<PHINode>(UI)) 2418 return false; 2419 } 2420 2421 // Looks ok, continue checking. 2422 } 2423 2424 return true; 2425 } 2426 2427 /// If we have a conditional branch on a PHI node value that is defined in the 2428 /// same block as the branch and if any PHI entries are constants, thread edges 2429 /// corresponding to that entry to be branches to their ultimate destination. 2430 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2431 const DataLayout &DL, AssumptionCache *AC) { 2432 BasicBlock *BB = BI->getParent(); 2433 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2434 // NOTE: we currently cannot transform this case if the PHI node is used 2435 // outside of the block. 2436 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2437 return false; 2438 2439 // Degenerate case of a single entry PHI. 2440 if (PN->getNumIncomingValues() == 1) { 2441 FoldSingleEntryPHINodes(PN->getParent()); 2442 return true; 2443 } 2444 2445 // Now we know that this block has multiple preds and two succs. 2446 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2447 return false; 2448 2449 // Okay, this is a simple enough basic block. See if any phi values are 2450 // constants. 2451 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2452 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2453 if (!CB || !CB->getType()->isIntegerTy(1)) 2454 continue; 2455 2456 // Okay, we now know that all edges from PredBB should be revectored to 2457 // branch to RealDest. 2458 BasicBlock *PredBB = PN->getIncomingBlock(i); 2459 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2460 2461 if (RealDest == BB) 2462 continue; // Skip self loops. 2463 // Skip if the predecessor's terminator is an indirect branch. 2464 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2465 continue; 2466 2467 SmallVector<DominatorTree::UpdateType, 3> Updates; 2468 2469 // The dest block might have PHI nodes, other predecessors and other 2470 // difficult cases. Instead of being smart about this, just insert a new 2471 // block that jumps to the destination block, effectively splitting 2472 // the edge we are about to create. 2473 BasicBlock *EdgeBB = 2474 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2475 RealDest->getParent(), RealDest); 2476 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2477 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2478 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2479 2480 // Update PHI nodes. 2481 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2482 2483 // BB may have instructions that are being threaded over. Clone these 2484 // instructions into EdgeBB. We know that there will be no uses of the 2485 // cloned instructions outside of EdgeBB. 2486 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2487 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2488 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2489 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2490 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2491 continue; 2492 } 2493 // Clone the instruction. 2494 Instruction *N = BBI->clone(); 2495 if (BBI->hasName()) 2496 N->setName(BBI->getName() + ".c"); 2497 2498 // Update operands due to translation. 2499 for (Use &Op : N->operands()) { 2500 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2501 if (PI != TranslateMap.end()) 2502 Op = PI->second; 2503 } 2504 2505 // Check for trivial simplification. 2506 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2507 if (!BBI->use_empty()) 2508 TranslateMap[&*BBI] = V; 2509 if (!N->mayHaveSideEffects()) { 2510 N->deleteValue(); // Instruction folded away, don't need actual inst 2511 N = nullptr; 2512 } 2513 } else { 2514 if (!BBI->use_empty()) 2515 TranslateMap[&*BBI] = N; 2516 } 2517 if (N) { 2518 // Insert the new instruction into its new home. 2519 EdgeBB->getInstList().insert(InsertPt, N); 2520 2521 // Register the new instruction with the assumption cache if necessary. 2522 if (AC && match(N, m_Intrinsic<Intrinsic::assume>())) 2523 AC->registerAssumption(cast<IntrinsicInst>(N)); 2524 } 2525 } 2526 2527 // Loop over all of the edges from PredBB to BB, changing them to branch 2528 // to EdgeBB instead. 2529 Instruction *PredBBTI = PredBB->getTerminator(); 2530 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2531 if (PredBBTI->getSuccessor(i) == BB) { 2532 BB->removePredecessor(PredBB); 2533 PredBBTI->setSuccessor(i, EdgeBB); 2534 } 2535 2536 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2537 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2538 2539 if (DTU) 2540 DTU->applyUpdates(Updates); 2541 2542 // Recurse, simplifying any other constants. 2543 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2544 } 2545 2546 return false; 2547 } 2548 2549 /// Given a BB that starts with the specified two-entry PHI node, 2550 /// see if we can eliminate it. 2551 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2552 DomTreeUpdater *DTU, const DataLayout &DL) { 2553 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2554 // statement", which has a very simple dominance structure. Basically, we 2555 // are trying to find the condition that is being branched on, which 2556 // subsequently causes this merge to happen. We really want control 2557 // dependence information for this check, but simplifycfg can't keep it up 2558 // to date, and this catches most of the cases we care about anyway. 2559 BasicBlock *BB = PN->getParent(); 2560 2561 BasicBlock *IfTrue, *IfFalse; 2562 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2563 if (!IfCond || 2564 // Don't bother if the branch will be constant folded trivially. 2565 isa<ConstantInt>(IfCond)) 2566 return false; 2567 2568 // Okay, we found that we can merge this two-entry phi node into a select. 2569 // Doing so would require us to fold *all* two entry phi nodes in this block. 2570 // At some point this becomes non-profitable (particularly if the target 2571 // doesn't support cmov's). Only do this transformation if there are two or 2572 // fewer PHI nodes in this block. 2573 unsigned NumPhis = 0; 2574 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2575 if (NumPhis > 2) 2576 return false; 2577 2578 // Loop over the PHI's seeing if we can promote them all to select 2579 // instructions. While we are at it, keep track of the instructions 2580 // that need to be moved to the dominating block. 2581 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2582 InstructionCost Cost = 0; 2583 InstructionCost Budget = 2584 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2585 2586 bool Changed = false; 2587 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2588 PHINode *PN = cast<PHINode>(II++); 2589 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2590 PN->replaceAllUsesWith(V); 2591 PN->eraseFromParent(); 2592 Changed = true; 2593 continue; 2594 } 2595 2596 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2597 Cost, Budget, TTI) || 2598 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2599 Cost, Budget, TTI)) 2600 return Changed; 2601 } 2602 2603 // If we folded the first phi, PN dangles at this point. Refresh it. If 2604 // we ran out of PHIs then we simplified them all. 2605 PN = dyn_cast<PHINode>(BB->begin()); 2606 if (!PN) 2607 return true; 2608 2609 // Return true if at least one of these is a 'not', and another is either 2610 // a 'not' too, or a constant. 2611 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2612 if (!match(V0, m_Not(m_Value()))) 2613 std::swap(V0, V1); 2614 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2615 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2616 }; 2617 2618 // Don't fold i1 branches on PHIs which contain binary operators or 2619 // select form of or/ands, unless one of the incoming values is an 'not' and 2620 // another one is freely invertible. 2621 // These can often be turned into switches and other things. 2622 auto IsBinOpOrAnd = [](Value *V) { 2623 return match( 2624 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2625 }; 2626 if (PN->getType()->isIntegerTy(1) && 2627 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2628 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2629 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2630 PN->getIncomingValue(1))) 2631 return Changed; 2632 2633 // If all PHI nodes are promotable, check to make sure that all instructions 2634 // in the predecessor blocks can be promoted as well. If not, we won't be able 2635 // to get rid of the control flow, so it's not worth promoting to select 2636 // instructions. 2637 BasicBlock *DomBlock = nullptr; 2638 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2639 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2640 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2641 IfBlock1 = nullptr; 2642 } else { 2643 DomBlock = *pred_begin(IfBlock1); 2644 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2645 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2646 !isa<PseudoProbeInst>(I)) { 2647 // This is not an aggressive instruction that we can promote. 2648 // Because of this, we won't be able to get rid of the control flow, so 2649 // the xform is not worth it. 2650 return Changed; 2651 } 2652 } 2653 2654 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2655 IfBlock2 = nullptr; 2656 } else { 2657 DomBlock = *pred_begin(IfBlock2); 2658 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2659 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2660 !isa<PseudoProbeInst>(I)) { 2661 // This is not an aggressive instruction that we can promote. 2662 // Because of this, we won't be able to get rid of the control flow, so 2663 // the xform is not worth it. 2664 return Changed; 2665 } 2666 } 2667 assert(DomBlock && "Failed to find root DomBlock"); 2668 2669 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2670 << " T: " << IfTrue->getName() 2671 << " F: " << IfFalse->getName() << "\n"); 2672 2673 // If we can still promote the PHI nodes after this gauntlet of tests, 2674 // do all of the PHI's now. 2675 Instruction *InsertPt = DomBlock->getTerminator(); 2676 IRBuilder<NoFolder> Builder(InsertPt); 2677 2678 // Move all 'aggressive' instructions, which are defined in the 2679 // conditional parts of the if's up to the dominating block. 2680 if (IfBlock1) 2681 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2682 if (IfBlock2) 2683 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2684 2685 // Propagate fast-math-flags from phi nodes to replacement selects. 2686 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2687 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2688 if (isa<FPMathOperator>(PN)) 2689 Builder.setFastMathFlags(PN->getFastMathFlags()); 2690 2691 // Change the PHI node into a select instruction. 2692 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2693 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2694 2695 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2696 PN->replaceAllUsesWith(Sel); 2697 Sel->takeName(PN); 2698 PN->eraseFromParent(); 2699 } 2700 2701 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2702 // has been flattened. Change DomBlock to jump directly to our new block to 2703 // avoid other simplifycfg's kicking in on the diamond. 2704 Instruction *OldTI = DomBlock->getTerminator(); 2705 Builder.SetInsertPoint(OldTI); 2706 Builder.CreateBr(BB); 2707 2708 SmallVector<DominatorTree::UpdateType, 3> Updates; 2709 if (DTU) { 2710 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2711 for (auto *Successor : successors(DomBlock)) 2712 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2713 } 2714 2715 OldTI->eraseFromParent(); 2716 if (DTU) 2717 DTU->applyUpdates(Updates); 2718 2719 return true; 2720 } 2721 2722 /// If we found a conditional branch that goes to two returning blocks, 2723 /// try to merge them together into one return, 2724 /// introducing a select if the return values disagree. 2725 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2726 IRBuilder<> &Builder) { 2727 auto *BB = BI->getParent(); 2728 assert(BI->isConditional() && "Must be a conditional branch"); 2729 BasicBlock *TrueSucc = BI->getSuccessor(0); 2730 BasicBlock *FalseSucc = BI->getSuccessor(1); 2731 // NOTE: destinations may match, this could be degenerate uncond branch. 2732 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2733 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2734 2735 // Check to ensure both blocks are empty (just a return) or optionally empty 2736 // with PHI nodes. If there are other instructions, merging would cause extra 2737 // computation on one path or the other. 2738 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2739 return false; 2740 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2741 return false; 2742 2743 Builder.SetInsertPoint(BI); 2744 // Okay, we found a branch that is going to two return nodes. If 2745 // there is no return value for this function, just change the 2746 // branch into a return. 2747 if (FalseRet->getNumOperands() == 0) { 2748 TrueSucc->removePredecessor(BB); 2749 FalseSucc->removePredecessor(BB); 2750 Builder.CreateRetVoid(); 2751 EraseTerminatorAndDCECond(BI); 2752 if (DTU) { 2753 SmallVector<DominatorTree::UpdateType, 2> Updates; 2754 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2755 if (TrueSucc != FalseSucc) 2756 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2757 DTU->applyUpdates(Updates); 2758 } 2759 return true; 2760 } 2761 2762 // Otherwise, figure out what the true and false return values are 2763 // so we can insert a new select instruction. 2764 Value *TrueValue = TrueRet->getReturnValue(); 2765 Value *FalseValue = FalseRet->getReturnValue(); 2766 2767 // Unwrap any PHI nodes in the return blocks. 2768 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2769 if (TVPN->getParent() == TrueSucc) 2770 TrueValue = TVPN->getIncomingValueForBlock(BB); 2771 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2772 if (FVPN->getParent() == FalseSucc) 2773 FalseValue = FVPN->getIncomingValueForBlock(BB); 2774 2775 // In order for this transformation to be safe, we must be able to 2776 // unconditionally execute both operands to the return. This is 2777 // normally the case, but we could have a potentially-trapping 2778 // constant expression that prevents this transformation from being 2779 // safe. 2780 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2781 if (TCV->canTrap()) 2782 return false; 2783 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2784 if (FCV->canTrap()) 2785 return false; 2786 2787 // Okay, we collected all the mapped values and checked them for sanity, and 2788 // defined to really do this transformation. First, update the CFG. 2789 TrueSucc->removePredecessor(BB); 2790 FalseSucc->removePredecessor(BB); 2791 2792 // Insert select instructions where needed. 2793 Value *BrCond = BI->getCondition(); 2794 if (TrueValue) { 2795 // Insert a select if the results differ. 2796 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2797 } else if (isa<UndefValue>(TrueValue)) { 2798 TrueValue = FalseValue; 2799 } else { 2800 TrueValue = 2801 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2802 } 2803 } 2804 2805 Value *RI = 2806 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2807 2808 (void)RI; 2809 2810 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2811 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2812 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2813 2814 EraseTerminatorAndDCECond(BI); 2815 if (DTU) { 2816 SmallVector<DominatorTree::UpdateType, 2> Updates; 2817 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2818 if (TrueSucc != FalseSucc) 2819 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2820 DTU->applyUpdates(Updates); 2821 } 2822 2823 return true; 2824 } 2825 2826 /// Return true if either PBI or BI has branch weight available, and store 2827 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2828 /// not have branch weight, use 1:1 as its weight. 2829 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2830 uint64_t &PredTrueWeight, 2831 uint64_t &PredFalseWeight, 2832 uint64_t &SuccTrueWeight, 2833 uint64_t &SuccFalseWeight) { 2834 bool PredHasWeights = 2835 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2836 bool SuccHasWeights = 2837 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2838 if (PredHasWeights || SuccHasWeights) { 2839 if (!PredHasWeights) 2840 PredTrueWeight = PredFalseWeight = 1; 2841 if (!SuccHasWeights) 2842 SuccTrueWeight = SuccFalseWeight = 1; 2843 return true; 2844 } else { 2845 return false; 2846 } 2847 } 2848 2849 /// Determine if the two branches share a common destination and deduce a glue 2850 /// that joins the branches' conditions to arrive at the common destination if 2851 /// that would be profitable. 2852 static Optional<std::pair<Instruction::BinaryOps, bool>> 2853 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 2854 const TargetTransformInfo *TTI) { 2855 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 2856 "Both blocks must end with a conditional branches."); 2857 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 2858 "PredBB must be a predecessor of BB."); 2859 2860 // We have the potential to fold the conditions together, but if the 2861 // predecessor branch is predictable, we may not want to merge them. 2862 uint64_t PTWeight, PFWeight; 2863 BranchProbability PBITrueProb, Likely; 2864 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 2865 (PTWeight + PFWeight) != 0) { 2866 PBITrueProb = 2867 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 2868 Likely = TTI->getPredictableBranchThreshold(); 2869 } 2870 2871 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 2872 // Speculate the 2nd condition unless the 1st is probably true. 2873 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2874 return {{Instruction::Or, false}}; 2875 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 2876 // Speculate the 2nd condition unless the 1st is probably false. 2877 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2878 return {{Instruction::And, false}}; 2879 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 2880 // Speculate the 2nd condition unless the 1st is probably true. 2881 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 2882 return {{Instruction::And, true}}; 2883 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 2884 // Speculate the 2nd condition unless the 1st is probably false. 2885 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 2886 return {{Instruction::Or, true}}; 2887 } 2888 return None; 2889 } 2890 2891 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 2892 DomTreeUpdater *DTU, 2893 MemorySSAUpdater *MSSAU, 2894 bool PoisonSafe, 2895 const TargetTransformInfo *TTI) { 2896 BasicBlock *BB = BI->getParent(); 2897 BasicBlock *PredBlock = PBI->getParent(); 2898 2899 // Determine if the two branches share a common destination. 2900 Instruction::BinaryOps Opc; 2901 bool InvertPredCond; 2902 std::tie(Opc, InvertPredCond) = 2903 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 2904 2905 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2906 2907 IRBuilder<> Builder(PBI); 2908 // The builder is used to create instructions to eliminate the branch in BB. 2909 // If BB's terminator has !annotation metadata, add it to the new 2910 // instructions. 2911 Builder.CollectMetadataToCopy(BB->getTerminator(), 2912 {LLVMContext::MD_annotation}); 2913 2914 // If we need to invert the condition in the pred block to match, do so now. 2915 if (InvertPredCond) { 2916 Value *NewCond = PBI->getCondition(); 2917 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2918 CmpInst *CI = cast<CmpInst>(NewCond); 2919 CI->setPredicate(CI->getInversePredicate()); 2920 } else { 2921 NewCond = 2922 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2923 } 2924 2925 PBI->setCondition(NewCond); 2926 PBI->swapSuccessors(); 2927 } 2928 2929 BasicBlock *UniqueSucc = 2930 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 2931 2932 // Before cloning instructions, notify the successor basic block that it 2933 // is about to have a new predecessor. This will update PHI nodes, 2934 // which will allow us to update live-out uses of bonus instructions. 2935 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 2936 2937 // Try to update branch weights. 2938 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2939 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2940 SuccTrueWeight, SuccFalseWeight)) { 2941 SmallVector<uint64_t, 8> NewWeights; 2942 2943 if (PBI->getSuccessor(0) == BB) { 2944 // PBI: br i1 %x, BB, FalseDest 2945 // BI: br i1 %y, UniqueSucc, FalseDest 2946 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2947 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2948 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2949 // TrueWeight for PBI * FalseWeight for BI. 2950 // We assume that total weights of a BranchInst can fit into 32 bits. 2951 // Therefore, we will not have overflow using 64-bit arithmetic. 2952 NewWeights.push_back(PredFalseWeight * 2953 (SuccFalseWeight + SuccTrueWeight) + 2954 PredTrueWeight * SuccFalseWeight); 2955 } else { 2956 // PBI: br i1 %x, TrueDest, BB 2957 // BI: br i1 %y, TrueDest, UniqueSucc 2958 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2959 // FalseWeight for PBI * TrueWeight for BI. 2960 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 2961 PredFalseWeight * SuccTrueWeight); 2962 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2963 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2964 } 2965 2966 // Halve the weights if any of them cannot fit in an uint32_t 2967 FitWeights(NewWeights); 2968 2969 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 2970 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2971 2972 // TODO: If BB is reachable from all paths through PredBlock, then we 2973 // could replace PBI's branch probabilities with BI's. 2974 } else 2975 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2976 2977 // Now, update the CFG. 2978 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 2979 2980 if (DTU) 2981 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 2982 {DominatorTree::Delete, PredBlock, BB}}); 2983 2984 // If BI was a loop latch, it may have had associated loop metadata. 2985 // We need to copy it to the new latch, that is, PBI. 2986 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2987 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2988 2989 ValueToValueMapTy VMap; // maps original values to cloned values 2990 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 2991 2992 // Now that the Cond was cloned into the predecessor basic block, 2993 // or/and the two conditions together. 2994 Value *NewCond = nullptr; 2995 Value *BICond = VMap[BI->getCondition()]; 2996 bool UseBinOp = !PoisonSafe || impliesPoison(BICond, PBI->getCondition()); 2997 2998 if (UseBinOp) 2999 NewCond = Builder.CreateBinOp(Opc, PBI->getCondition(), BICond, "or.cond"); 3000 else 3001 NewCond = 3002 Opc == Instruction::And 3003 ? Builder.CreateLogicalAnd(PBI->getCondition(), BICond, "or.cond") 3004 : Builder.CreateLogicalOr(PBI->getCondition(), BICond, "or.cond"); 3005 PBI->setCondition(NewCond); 3006 3007 // Copy any debug value intrinsics into the end of PredBlock. 3008 for (Instruction &I : *BB) { 3009 if (isa<DbgInfoIntrinsic>(I)) { 3010 Instruction *NewI = I.clone(); 3011 RemapInstruction(NewI, VMap, 3012 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3013 NewI->insertBefore(PBI); 3014 } 3015 } 3016 3017 ++NumFoldBranchToCommonDest; 3018 return true; 3019 } 3020 3021 /// If this basic block is simple enough, and if a predecessor branches to us 3022 /// and one of our successors, fold the block into the predecessor and use 3023 /// logical operations to pick the right destination. 3024 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3025 MemorySSAUpdater *MSSAU, 3026 const TargetTransformInfo *TTI, 3027 unsigned BonusInstThreshold, 3028 bool PoisonSafe) { 3029 // If this block ends with an unconditional branch, 3030 // let SpeculativelyExecuteBB() deal with it. 3031 if (!BI->isConditional()) 3032 return false; 3033 3034 BasicBlock *BB = BI->getParent(); 3035 3036 bool Changed = false; 3037 3038 TargetTransformInfo::TargetCostKind CostKind = 3039 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3040 : TargetTransformInfo::TCK_SizeAndLatency; 3041 3042 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3043 3044 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3045 Cond->getParent() != BB || !Cond->hasOneUse()) 3046 return Changed; 3047 3048 // Cond is known to be a compare or binary operator. Check to make sure that 3049 // neither operand is a potentially-trapping constant expression. 3050 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3051 if (CE->canTrap()) 3052 return Changed; 3053 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3054 if (CE->canTrap()) 3055 return Changed; 3056 3057 // Finally, don't infinitely unroll conditional loops. 3058 if (is_contained(successors(BB), BB)) 3059 return Changed; 3060 3061 // With which predecessors will we want to deal with? 3062 SmallVector<BasicBlock *, 8> Preds; 3063 for (BasicBlock *PredBlock : predecessors(BB)) { 3064 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3065 3066 // Check that we have two conditional branches. If there is a PHI node in 3067 // the common successor, verify that the same value flows in from both 3068 // blocks. 3069 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3070 continue; 3071 3072 // Determine if the two branches share a common destination. 3073 Instruction::BinaryOps Opc; 3074 bool InvertPredCond; 3075 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3076 std::tie(Opc, InvertPredCond) = *Recipe; 3077 else 3078 continue; 3079 3080 // Check the cost of inserting the necessary logic before performing the 3081 // transformation. 3082 if (TTI) { 3083 Type *Ty = BI->getCondition()->getType(); 3084 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3085 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3086 !isa<CmpInst>(PBI->getCondition()))) 3087 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3088 3089 if (Cost > BranchFoldThreshold) 3090 continue; 3091 } 3092 3093 // Ok, we do want to deal with this predecessor. Record it. 3094 Preds.emplace_back(PredBlock); 3095 } 3096 3097 const unsigned PredCount = Preds.size(); 3098 // Only allow this transformation if computing the condition doesn't involve 3099 // too many instructions and these involved instructions can be executed 3100 // unconditionally. We denote all involved instructions except the condition 3101 // as "bonus instructions", and only allow this transformation when the 3102 // number of the bonus instructions we'll need to create when cloning into 3103 // each predecessor does not exceed a certain threshold. 3104 unsigned NumBonusInsts = 0; 3105 for (Instruction &I : *BB) { 3106 // Don't check the branch condition comparison itself. 3107 if (&I == Cond) 3108 continue; 3109 // Ignore dbg intrinsics, and the terminator. 3110 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3111 continue; 3112 // I must be safe to execute unconditionally. 3113 if (!isSafeToSpeculativelyExecute(&I)) 3114 return Changed; 3115 3116 // Account for the cost of duplicating this instruction into each 3117 // predecessor. 3118 NumBonusInsts += PredCount; 3119 // Early exits once we reach the limit. 3120 if (NumBonusInsts > BonusInstThreshold) 3121 return Changed; 3122 } 3123 3124 // Ok, we have the budget. Perform the transformation. 3125 for (BasicBlock *PredBlock : Preds) { 3126 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3127 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, PoisonSafe, 3128 TTI); 3129 } 3130 return Changed; 3131 } 3132 3133 // If there is only one store in BB1 and BB2, return it, otherwise return 3134 // nullptr. 3135 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3136 StoreInst *S = nullptr; 3137 for (auto *BB : {BB1, BB2}) { 3138 if (!BB) 3139 continue; 3140 for (auto &I : *BB) 3141 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3142 if (S) 3143 // Multiple stores seen. 3144 return nullptr; 3145 else 3146 S = SI; 3147 } 3148 } 3149 return S; 3150 } 3151 3152 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3153 Value *AlternativeV = nullptr) { 3154 // PHI is going to be a PHI node that allows the value V that is defined in 3155 // BB to be referenced in BB's only successor. 3156 // 3157 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3158 // doesn't matter to us what the other operand is (it'll never get used). We 3159 // could just create a new PHI with an undef incoming value, but that could 3160 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3161 // other PHI. So here we directly look for some PHI in BB's successor with V 3162 // as an incoming operand. If we find one, we use it, else we create a new 3163 // one. 3164 // 3165 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3166 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3167 // where OtherBB is the single other predecessor of BB's only successor. 3168 PHINode *PHI = nullptr; 3169 BasicBlock *Succ = BB->getSingleSuccessor(); 3170 3171 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3172 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3173 PHI = cast<PHINode>(I); 3174 if (!AlternativeV) 3175 break; 3176 3177 assert(Succ->hasNPredecessors(2)); 3178 auto PredI = pred_begin(Succ); 3179 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3180 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3181 break; 3182 PHI = nullptr; 3183 } 3184 if (PHI) 3185 return PHI; 3186 3187 // If V is not an instruction defined in BB, just return it. 3188 if (!AlternativeV && 3189 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3190 return V; 3191 3192 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3193 PHI->addIncoming(V, BB); 3194 for (BasicBlock *PredBB : predecessors(Succ)) 3195 if (PredBB != BB) 3196 PHI->addIncoming( 3197 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3198 return PHI; 3199 } 3200 3201 static bool mergeConditionalStoreToAddress( 3202 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3203 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3204 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3205 // For every pointer, there must be exactly two stores, one coming from 3206 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3207 // store (to any address) in PTB,PFB or QTB,QFB. 3208 // FIXME: We could relax this restriction with a bit more work and performance 3209 // testing. 3210 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3211 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3212 if (!PStore || !QStore) 3213 return false; 3214 3215 // Now check the stores are compatible. 3216 if (!QStore->isUnordered() || !PStore->isUnordered()) 3217 return false; 3218 3219 // Check that sinking the store won't cause program behavior changes. Sinking 3220 // the store out of the Q blocks won't change any behavior as we're sinking 3221 // from a block to its unconditional successor. But we're moving a store from 3222 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3223 // So we need to check that there are no aliasing loads or stores in 3224 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3225 // operations between PStore and the end of its parent block. 3226 // 3227 // The ideal way to do this is to query AliasAnalysis, but we don't 3228 // preserve AA currently so that is dangerous. Be super safe and just 3229 // check there are no other memory operations at all. 3230 for (auto &I : *QFB->getSinglePredecessor()) 3231 if (I.mayReadOrWriteMemory()) 3232 return false; 3233 for (auto &I : *QFB) 3234 if (&I != QStore && I.mayReadOrWriteMemory()) 3235 return false; 3236 if (QTB) 3237 for (auto &I : *QTB) 3238 if (&I != QStore && I.mayReadOrWriteMemory()) 3239 return false; 3240 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3241 I != E; ++I) 3242 if (&*I != PStore && I->mayReadOrWriteMemory()) 3243 return false; 3244 3245 // If we're not in aggressive mode, we only optimize if we have some 3246 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3247 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3248 if (!BB) 3249 return true; 3250 // Heuristic: if the block can be if-converted/phi-folded and the 3251 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3252 // thread this store. 3253 InstructionCost Cost = 0; 3254 InstructionCost Budget = 3255 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3256 for (auto &I : BB->instructionsWithoutDebug()) { 3257 // Consider terminator instruction to be free. 3258 if (I.isTerminator()) 3259 continue; 3260 // If this is one the stores that we want to speculate out of this BB, 3261 // then don't count it's cost, consider it to be free. 3262 if (auto *S = dyn_cast<StoreInst>(&I)) 3263 if (llvm::find(FreeStores, S)) 3264 continue; 3265 // Else, we have a white-list of instructions that we are ak speculating. 3266 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3267 return false; // Not in white-list - not worthwhile folding. 3268 // And finally, if this is a non-free instruction that we are okay 3269 // speculating, ensure that we consider the speculation budget. 3270 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3271 if (Cost > Budget) 3272 return false; // Eagerly refuse to fold as soon as we're out of budget. 3273 } 3274 assert(Cost <= Budget && 3275 "When we run out of budget we will eagerly return from within the " 3276 "per-instruction loop."); 3277 return true; 3278 }; 3279 3280 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3281 if (!MergeCondStoresAggressively && 3282 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3283 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3284 return false; 3285 3286 // If PostBB has more than two predecessors, we need to split it so we can 3287 // sink the store. 3288 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3289 // We know that QFB's only successor is PostBB. And QFB has a single 3290 // predecessor. If QTB exists, then its only successor is also PostBB. 3291 // If QTB does not exist, then QFB's only predecessor has a conditional 3292 // branch to QFB and PostBB. 3293 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3294 BasicBlock *NewBB = 3295 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3296 if (!NewBB) 3297 return false; 3298 PostBB = NewBB; 3299 } 3300 3301 // OK, we're going to sink the stores to PostBB. The store has to be 3302 // conditional though, so first create the predicate. 3303 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3304 ->getCondition(); 3305 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3306 ->getCondition(); 3307 3308 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3309 PStore->getParent()); 3310 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3311 QStore->getParent(), PPHI); 3312 3313 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3314 3315 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3316 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3317 3318 if (InvertPCond) 3319 PPred = QB.CreateNot(PPred); 3320 if (InvertQCond) 3321 QPred = QB.CreateNot(QPred); 3322 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3323 3324 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3325 /*Unreachable=*/false, 3326 /*BranchWeights=*/nullptr, DTU); 3327 QB.SetInsertPoint(T); 3328 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3329 AAMDNodes AAMD; 3330 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3331 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3332 SI->setAAMetadata(AAMD); 3333 // Choose the minimum alignment. If we could prove both stores execute, we 3334 // could use biggest one. In this case, though, we only know that one of the 3335 // stores executes. And we don't know it's safe to take the alignment from a 3336 // store that doesn't execute. 3337 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3338 3339 QStore->eraseFromParent(); 3340 PStore->eraseFromParent(); 3341 3342 return true; 3343 } 3344 3345 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3346 DomTreeUpdater *DTU, const DataLayout &DL, 3347 const TargetTransformInfo &TTI) { 3348 // The intention here is to find diamonds or triangles (see below) where each 3349 // conditional block contains a store to the same address. Both of these 3350 // stores are conditional, so they can't be unconditionally sunk. But it may 3351 // be profitable to speculatively sink the stores into one merged store at the 3352 // end, and predicate the merged store on the union of the two conditions of 3353 // PBI and QBI. 3354 // 3355 // This can reduce the number of stores executed if both of the conditions are 3356 // true, and can allow the blocks to become small enough to be if-converted. 3357 // This optimization will also chain, so that ladders of test-and-set 3358 // sequences can be if-converted away. 3359 // 3360 // We only deal with simple diamonds or triangles: 3361 // 3362 // PBI or PBI or a combination of the two 3363 // / \ | \ 3364 // PTB PFB | PFB 3365 // \ / | / 3366 // QBI QBI 3367 // / \ | \ 3368 // QTB QFB | QFB 3369 // \ / | / 3370 // PostBB PostBB 3371 // 3372 // We model triangles as a type of diamond with a nullptr "true" block. 3373 // Triangles are canonicalized so that the fallthrough edge is represented by 3374 // a true condition, as in the diagram above. 3375 BasicBlock *PTB = PBI->getSuccessor(0); 3376 BasicBlock *PFB = PBI->getSuccessor(1); 3377 BasicBlock *QTB = QBI->getSuccessor(0); 3378 BasicBlock *QFB = QBI->getSuccessor(1); 3379 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3380 3381 // Make sure we have a good guess for PostBB. If QTB's only successor is 3382 // QFB, then QFB is a better PostBB. 3383 if (QTB->getSingleSuccessor() == QFB) 3384 PostBB = QFB; 3385 3386 // If we couldn't find a good PostBB, stop. 3387 if (!PostBB) 3388 return false; 3389 3390 bool InvertPCond = false, InvertQCond = false; 3391 // Canonicalize fallthroughs to the true branches. 3392 if (PFB == QBI->getParent()) { 3393 std::swap(PFB, PTB); 3394 InvertPCond = true; 3395 } 3396 if (QFB == PostBB) { 3397 std::swap(QFB, QTB); 3398 InvertQCond = true; 3399 } 3400 3401 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3402 // and QFB may not. Model fallthroughs as a nullptr block. 3403 if (PTB == QBI->getParent()) 3404 PTB = nullptr; 3405 if (QTB == PostBB) 3406 QTB = nullptr; 3407 3408 // Legality bailouts. We must have at least the non-fallthrough blocks and 3409 // the post-dominating block, and the non-fallthroughs must only have one 3410 // predecessor. 3411 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3412 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3413 }; 3414 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3415 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3416 return false; 3417 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3418 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3419 return false; 3420 if (!QBI->getParent()->hasNUses(2)) 3421 return false; 3422 3423 // OK, this is a sequence of two diamonds or triangles. 3424 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3425 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3426 for (auto *BB : {PTB, PFB}) { 3427 if (!BB) 3428 continue; 3429 for (auto &I : *BB) 3430 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3431 PStoreAddresses.insert(SI->getPointerOperand()); 3432 } 3433 for (auto *BB : {QTB, QFB}) { 3434 if (!BB) 3435 continue; 3436 for (auto &I : *BB) 3437 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3438 QStoreAddresses.insert(SI->getPointerOperand()); 3439 } 3440 3441 set_intersect(PStoreAddresses, QStoreAddresses); 3442 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3443 // clear what it contains. 3444 auto &CommonAddresses = PStoreAddresses; 3445 3446 bool Changed = false; 3447 for (auto *Address : CommonAddresses) 3448 Changed |= 3449 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3450 InvertPCond, InvertQCond, DTU, DL, TTI); 3451 return Changed; 3452 } 3453 3454 /// If the previous block ended with a widenable branch, determine if reusing 3455 /// the target block is profitable and legal. This will have the effect of 3456 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3457 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3458 DomTreeUpdater *DTU) { 3459 // TODO: This can be generalized in two important ways: 3460 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3461 // values from the PBI edge. 3462 // 2) We can sink side effecting instructions into BI's fallthrough 3463 // successor provided they doesn't contribute to computation of 3464 // BI's condition. 3465 Value *CondWB, *WC; 3466 BasicBlock *IfTrueBB, *IfFalseBB; 3467 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3468 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3469 return false; 3470 if (!IfFalseBB->phis().empty()) 3471 return false; // TODO 3472 // Use lambda to lazily compute expensive condition after cheap ones. 3473 auto NoSideEffects = [](BasicBlock &BB) { 3474 return !llvm::any_of(BB, [](const Instruction &I) { 3475 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3476 }); 3477 }; 3478 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3479 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3480 NoSideEffects(*BI->getParent())) { 3481 auto *OldSuccessor = BI->getSuccessor(1); 3482 OldSuccessor->removePredecessor(BI->getParent()); 3483 BI->setSuccessor(1, IfFalseBB); 3484 if (DTU) 3485 DTU->applyUpdates( 3486 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3487 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3488 return true; 3489 } 3490 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3491 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3492 NoSideEffects(*BI->getParent())) { 3493 auto *OldSuccessor = BI->getSuccessor(0); 3494 OldSuccessor->removePredecessor(BI->getParent()); 3495 BI->setSuccessor(0, IfFalseBB); 3496 if (DTU) 3497 DTU->applyUpdates( 3498 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3499 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3500 return true; 3501 } 3502 return false; 3503 } 3504 3505 /// If we have a conditional branch as a predecessor of another block, 3506 /// this function tries to simplify it. We know 3507 /// that PBI and BI are both conditional branches, and BI is in one of the 3508 /// successor blocks of PBI - PBI branches to BI. 3509 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3510 DomTreeUpdater *DTU, 3511 const DataLayout &DL, 3512 const TargetTransformInfo &TTI) { 3513 assert(PBI->isConditional() && BI->isConditional()); 3514 BasicBlock *BB = BI->getParent(); 3515 3516 // If this block ends with a branch instruction, and if there is a 3517 // predecessor that ends on a branch of the same condition, make 3518 // this conditional branch redundant. 3519 if (PBI->getCondition() == BI->getCondition() && 3520 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3521 // Okay, the outcome of this conditional branch is statically 3522 // knowable. If this block had a single pred, handle specially. 3523 if (BB->getSinglePredecessor()) { 3524 // Turn this into a branch on constant. 3525 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3526 BI->setCondition( 3527 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3528 return true; // Nuke the branch on constant. 3529 } 3530 3531 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3532 // in the constant and simplify the block result. Subsequent passes of 3533 // simplifycfg will thread the block. 3534 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3535 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3536 PHINode *NewPN = PHINode::Create( 3537 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3538 BI->getCondition()->getName() + ".pr", &BB->front()); 3539 // Okay, we're going to insert the PHI node. Since PBI is not the only 3540 // predecessor, compute the PHI'd conditional value for all of the preds. 3541 // Any predecessor where the condition is not computable we keep symbolic. 3542 for (pred_iterator PI = PB; PI != PE; ++PI) { 3543 BasicBlock *P = *PI; 3544 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3545 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3546 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3547 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3548 NewPN->addIncoming( 3549 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3550 P); 3551 } else { 3552 NewPN->addIncoming(BI->getCondition(), P); 3553 } 3554 } 3555 3556 BI->setCondition(NewPN); 3557 return true; 3558 } 3559 } 3560 3561 // If the previous block ended with a widenable branch, determine if reusing 3562 // the target block is profitable and legal. This will have the effect of 3563 // "widening" PBI, but doesn't require us to reason about hosting safety. 3564 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3565 return true; 3566 3567 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3568 if (CE->canTrap()) 3569 return false; 3570 3571 // If both branches are conditional and both contain stores to the same 3572 // address, remove the stores from the conditionals and create a conditional 3573 // merged store at the end. 3574 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3575 return true; 3576 3577 // If this is a conditional branch in an empty block, and if any 3578 // predecessors are a conditional branch to one of our destinations, 3579 // fold the conditions into logical ops and one cond br. 3580 3581 // Ignore dbg intrinsics. 3582 if (&*BB->instructionsWithoutDebug().begin() != BI) 3583 return false; 3584 3585 int PBIOp, BIOp; 3586 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3587 PBIOp = 0; 3588 BIOp = 0; 3589 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3590 PBIOp = 0; 3591 BIOp = 1; 3592 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3593 PBIOp = 1; 3594 BIOp = 0; 3595 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3596 PBIOp = 1; 3597 BIOp = 1; 3598 } else { 3599 return false; 3600 } 3601 3602 // Check to make sure that the other destination of this branch 3603 // isn't BB itself. If so, this is an infinite loop that will 3604 // keep getting unwound. 3605 if (PBI->getSuccessor(PBIOp) == BB) 3606 return false; 3607 3608 // Do not perform this transformation if it would require 3609 // insertion of a large number of select instructions. For targets 3610 // without predication/cmovs, this is a big pessimization. 3611 3612 // Also do not perform this transformation if any phi node in the common 3613 // destination block can trap when reached by BB or PBB (PR17073). In that 3614 // case, it would be unsafe to hoist the operation into a select instruction. 3615 3616 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3617 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3618 unsigned NumPhis = 0; 3619 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3620 ++II, ++NumPhis) { 3621 if (NumPhis > 2) // Disable this xform. 3622 return false; 3623 3624 PHINode *PN = cast<PHINode>(II); 3625 Value *BIV = PN->getIncomingValueForBlock(BB); 3626 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3627 if (CE->canTrap()) 3628 return false; 3629 3630 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3631 Value *PBIV = PN->getIncomingValue(PBBIdx); 3632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3633 if (CE->canTrap()) 3634 return false; 3635 } 3636 3637 // Finally, if everything is ok, fold the branches to logical ops. 3638 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3639 3640 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3641 << "AND: " << *BI->getParent()); 3642 3643 SmallVector<DominatorTree::UpdateType, 5> Updates; 3644 3645 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3646 // branch in it, where one edge (OtherDest) goes back to itself but the other 3647 // exits. We don't *know* that the program avoids the infinite loop 3648 // (even though that seems likely). If we do this xform naively, we'll end up 3649 // recursively unpeeling the loop. Since we know that (after the xform is 3650 // done) that the block *is* infinite if reached, we just make it an obviously 3651 // infinite loop with no cond branch. 3652 if (OtherDest == BB) { 3653 // Insert it at the end of the function, because it's either code, 3654 // or it won't matter if it's hot. :) 3655 BasicBlock *InfLoopBlock = 3656 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3657 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3658 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3659 OtherDest = InfLoopBlock; 3660 } 3661 3662 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3663 3664 // BI may have other predecessors. Because of this, we leave 3665 // it alone, but modify PBI. 3666 3667 // Make sure we get to CommonDest on True&True directions. 3668 Value *PBICond = PBI->getCondition(); 3669 IRBuilder<NoFolder> Builder(PBI); 3670 if (PBIOp) 3671 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3672 3673 Value *BICond = BI->getCondition(); 3674 if (BIOp) 3675 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3676 3677 // Merge the conditions. 3678 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3679 3680 // Modify PBI to branch on the new condition to the new dests. 3681 PBI->setCondition(Cond); 3682 PBI->setSuccessor(0, CommonDest); 3683 PBI->setSuccessor(1, OtherDest); 3684 3685 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3686 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3687 3688 if (DTU) 3689 DTU->applyUpdates(Updates); 3690 3691 // Update branch weight for PBI. 3692 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3693 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3694 bool HasWeights = 3695 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3696 SuccTrueWeight, SuccFalseWeight); 3697 if (HasWeights) { 3698 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3699 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3700 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3701 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3702 // The weight to CommonDest should be PredCommon * SuccTotal + 3703 // PredOther * SuccCommon. 3704 // The weight to OtherDest should be PredOther * SuccOther. 3705 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3706 PredOther * SuccCommon, 3707 PredOther * SuccOther}; 3708 // Halve the weights if any of them cannot fit in an uint32_t 3709 FitWeights(NewWeights); 3710 3711 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3712 } 3713 3714 // OtherDest may have phi nodes. If so, add an entry from PBI's 3715 // block that are identical to the entries for BI's block. 3716 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3717 3718 // We know that the CommonDest already had an edge from PBI to 3719 // it. If it has PHIs though, the PHIs may have different 3720 // entries for BB and PBI's BB. If so, insert a select to make 3721 // them agree. 3722 for (PHINode &PN : CommonDest->phis()) { 3723 Value *BIV = PN.getIncomingValueForBlock(BB); 3724 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3725 Value *PBIV = PN.getIncomingValue(PBBIdx); 3726 if (BIV != PBIV) { 3727 // Insert a select in PBI to pick the right value. 3728 SelectInst *NV = cast<SelectInst>( 3729 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3730 PN.setIncomingValue(PBBIdx, NV); 3731 // Although the select has the same condition as PBI, the original branch 3732 // weights for PBI do not apply to the new select because the select's 3733 // 'logical' edges are incoming edges of the phi that is eliminated, not 3734 // the outgoing edges of PBI. 3735 if (HasWeights) { 3736 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3737 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3738 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3739 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3740 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3741 // The weight to PredOtherDest should be PredOther * SuccCommon. 3742 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3743 PredOther * SuccCommon}; 3744 3745 FitWeights(NewWeights); 3746 3747 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3748 } 3749 } 3750 } 3751 3752 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3753 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3754 3755 // This basic block is probably dead. We know it has at least 3756 // one fewer predecessor. 3757 return true; 3758 } 3759 3760 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3761 // true or to FalseBB if Cond is false. 3762 // Takes care of updating the successors and removing the old terminator. 3763 // Also makes sure not to introduce new successors by assuming that edges to 3764 // non-successor TrueBBs and FalseBBs aren't reachable. 3765 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3766 Value *Cond, BasicBlock *TrueBB, 3767 BasicBlock *FalseBB, 3768 uint32_t TrueWeight, 3769 uint32_t FalseWeight) { 3770 auto *BB = OldTerm->getParent(); 3771 // Remove any superfluous successor edges from the CFG. 3772 // First, figure out which successors to preserve. 3773 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3774 // successor. 3775 BasicBlock *KeepEdge1 = TrueBB; 3776 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3777 3778 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 3779 3780 // Then remove the rest. 3781 for (BasicBlock *Succ : successors(OldTerm)) { 3782 // Make sure only to keep exactly one copy of each edge. 3783 if (Succ == KeepEdge1) 3784 KeepEdge1 = nullptr; 3785 else if (Succ == KeepEdge2) 3786 KeepEdge2 = nullptr; 3787 else { 3788 Succ->removePredecessor(BB, 3789 /*KeepOneInputPHIs=*/true); 3790 3791 if (Succ != TrueBB && Succ != FalseBB) 3792 RemovedSuccessors.insert(Succ); 3793 } 3794 } 3795 3796 IRBuilder<> Builder(OldTerm); 3797 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3798 3799 // Insert an appropriate new terminator. 3800 if (!KeepEdge1 && !KeepEdge2) { 3801 if (TrueBB == FalseBB) { 3802 // We were only looking for one successor, and it was present. 3803 // Create an unconditional branch to it. 3804 Builder.CreateBr(TrueBB); 3805 } else { 3806 // We found both of the successors we were looking for. 3807 // Create a conditional branch sharing the condition of the select. 3808 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3809 if (TrueWeight != FalseWeight) 3810 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3811 } 3812 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3813 // Neither of the selected blocks were successors, so this 3814 // terminator must be unreachable. 3815 new UnreachableInst(OldTerm->getContext(), OldTerm); 3816 } else { 3817 // One of the selected values was a successor, but the other wasn't. 3818 // Insert an unconditional branch to the one that was found; 3819 // the edge to the one that wasn't must be unreachable. 3820 if (!KeepEdge1) { 3821 // Only TrueBB was found. 3822 Builder.CreateBr(TrueBB); 3823 } else { 3824 // Only FalseBB was found. 3825 Builder.CreateBr(FalseBB); 3826 } 3827 } 3828 3829 EraseTerminatorAndDCECond(OldTerm); 3830 3831 if (DTU) { 3832 SmallVector<DominatorTree::UpdateType, 2> Updates; 3833 Updates.reserve(RemovedSuccessors.size()); 3834 for (auto *RemovedSuccessor : RemovedSuccessors) 3835 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3836 DTU->applyUpdates(Updates); 3837 } 3838 3839 return true; 3840 } 3841 3842 // Replaces 3843 // (switch (select cond, X, Y)) on constant X, Y 3844 // with a branch - conditional if X and Y lead to distinct BBs, 3845 // unconditional otherwise. 3846 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 3847 SelectInst *Select) { 3848 // Check for constant integer values in the select. 3849 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3850 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3851 if (!TrueVal || !FalseVal) 3852 return false; 3853 3854 // Find the relevant condition and destinations. 3855 Value *Condition = Select->getCondition(); 3856 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3857 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3858 3859 // Get weight for TrueBB and FalseBB. 3860 uint32_t TrueWeight = 0, FalseWeight = 0; 3861 SmallVector<uint64_t, 8> Weights; 3862 bool HasWeights = HasBranchWeights(SI); 3863 if (HasWeights) { 3864 GetBranchWeights(SI, Weights); 3865 if (Weights.size() == 1 + SI->getNumCases()) { 3866 TrueWeight = 3867 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3868 FalseWeight = 3869 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3870 } 3871 } 3872 3873 // Perform the actual simplification. 3874 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3875 FalseWeight); 3876 } 3877 3878 // Replaces 3879 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3880 // blockaddress(@fn, BlockB))) 3881 // with 3882 // (br cond, BlockA, BlockB). 3883 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 3884 SelectInst *SI) { 3885 // Check that both operands of the select are block addresses. 3886 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3887 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3888 if (!TBA || !FBA) 3889 return false; 3890 3891 // Extract the actual blocks. 3892 BasicBlock *TrueBB = TBA->getBasicBlock(); 3893 BasicBlock *FalseBB = FBA->getBasicBlock(); 3894 3895 // Perform the actual simplification. 3896 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3897 0); 3898 } 3899 3900 /// This is called when we find an icmp instruction 3901 /// (a seteq/setne with a constant) as the only instruction in a 3902 /// block that ends with an uncond branch. We are looking for a very specific 3903 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3904 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3905 /// default value goes to an uncond block with a seteq in it, we get something 3906 /// like: 3907 /// 3908 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3909 /// DEFAULT: 3910 /// %tmp = icmp eq i8 %A, 92 3911 /// br label %end 3912 /// end: 3913 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3914 /// 3915 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3916 /// the PHI, merging the third icmp into the switch. 3917 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3918 ICmpInst *ICI, IRBuilder<> &Builder) { 3919 BasicBlock *BB = ICI->getParent(); 3920 3921 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3922 // complex. 3923 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3924 return false; 3925 3926 Value *V = ICI->getOperand(0); 3927 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3928 3929 // The pattern we're looking for is where our only predecessor is a switch on 3930 // 'V' and this block is the default case for the switch. In this case we can 3931 // fold the compared value into the switch to simplify things. 3932 BasicBlock *Pred = BB->getSinglePredecessor(); 3933 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3934 return false; 3935 3936 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3937 if (SI->getCondition() != V) 3938 return false; 3939 3940 // If BB is reachable on a non-default case, then we simply know the value of 3941 // V in this block. Substitute it and constant fold the icmp instruction 3942 // away. 3943 if (SI->getDefaultDest() != BB) { 3944 ConstantInt *VVal = SI->findCaseDest(BB); 3945 assert(VVal && "Should have a unique destination value"); 3946 ICI->setOperand(0, VVal); 3947 3948 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3949 ICI->replaceAllUsesWith(V); 3950 ICI->eraseFromParent(); 3951 } 3952 // BB is now empty, so it is likely to simplify away. 3953 return requestResimplify(); 3954 } 3955 3956 // Ok, the block is reachable from the default dest. If the constant we're 3957 // comparing exists in one of the other edges, then we can constant fold ICI 3958 // and zap it. 3959 if (SI->findCaseValue(Cst) != SI->case_default()) { 3960 Value *V; 3961 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3962 V = ConstantInt::getFalse(BB->getContext()); 3963 else 3964 V = ConstantInt::getTrue(BB->getContext()); 3965 3966 ICI->replaceAllUsesWith(V); 3967 ICI->eraseFromParent(); 3968 // BB is now empty, so it is likely to simplify away. 3969 return requestResimplify(); 3970 } 3971 3972 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3973 // the block. 3974 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3975 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3976 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3977 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3978 return false; 3979 3980 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3981 // true in the PHI. 3982 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3983 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3984 3985 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3986 std::swap(DefaultCst, NewCst); 3987 3988 // Replace ICI (which is used by the PHI for the default value) with true or 3989 // false depending on if it is EQ or NE. 3990 ICI->replaceAllUsesWith(DefaultCst); 3991 ICI->eraseFromParent(); 3992 3993 SmallVector<DominatorTree::UpdateType, 2> Updates; 3994 3995 // Okay, the switch goes to this block on a default value. Add an edge from 3996 // the switch to the merge point on the compared value. 3997 BasicBlock *NewBB = 3998 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3999 { 4000 SwitchInstProfUpdateWrapper SIW(*SI); 4001 auto W0 = SIW.getSuccessorWeight(0); 4002 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4003 if (W0) { 4004 NewW = ((uint64_t(*W0) + 1) >> 1); 4005 SIW.setSuccessorWeight(0, *NewW); 4006 } 4007 SIW.addCase(Cst, NewBB, NewW); 4008 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4009 } 4010 4011 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4012 Builder.SetInsertPoint(NewBB); 4013 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4014 Builder.CreateBr(SuccBlock); 4015 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4016 PHIUse->addIncoming(NewCst, NewBB); 4017 if (DTU) 4018 DTU->applyUpdates(Updates); 4019 return true; 4020 } 4021 4022 /// The specified branch is a conditional branch. 4023 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4024 /// fold it into a switch instruction if so. 4025 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4026 IRBuilder<> &Builder, 4027 const DataLayout &DL) { 4028 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4029 if (!Cond) 4030 return false; 4031 4032 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4033 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4034 // 'setne's and'ed together, collect them. 4035 4036 // Try to gather values from a chain of and/or to be turned into a switch 4037 ConstantComparesGatherer ConstantCompare(Cond, DL); 4038 // Unpack the result 4039 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4040 Value *CompVal = ConstantCompare.CompValue; 4041 unsigned UsedICmps = ConstantCompare.UsedICmps; 4042 Value *ExtraCase = ConstantCompare.Extra; 4043 4044 // If we didn't have a multiply compared value, fail. 4045 if (!CompVal) 4046 return false; 4047 4048 // Avoid turning single icmps into a switch. 4049 if (UsedICmps <= 1) 4050 return false; 4051 4052 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4053 4054 // There might be duplicate constants in the list, which the switch 4055 // instruction can't handle, remove them now. 4056 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4057 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4058 4059 // If Extra was used, we require at least two switch values to do the 4060 // transformation. A switch with one value is just a conditional branch. 4061 if (ExtraCase && Values.size() < 2) 4062 return false; 4063 4064 // TODO: Preserve branch weight metadata, similarly to how 4065 // FoldValueComparisonIntoPredecessors preserves it. 4066 4067 // Figure out which block is which destination. 4068 BasicBlock *DefaultBB = BI->getSuccessor(1); 4069 BasicBlock *EdgeBB = BI->getSuccessor(0); 4070 if (!TrueWhenEqual) 4071 std::swap(DefaultBB, EdgeBB); 4072 4073 BasicBlock *BB = BI->getParent(); 4074 4075 // MSAN does not like undefs as branch condition which can be introduced 4076 // with "explicit branch". 4077 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4078 return false; 4079 4080 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4081 << " cases into SWITCH. BB is:\n" 4082 << *BB); 4083 4084 SmallVector<DominatorTree::UpdateType, 2> Updates; 4085 4086 // If there are any extra values that couldn't be folded into the switch 4087 // then we evaluate them with an explicit branch first. Split the block 4088 // right before the condbr to handle it. 4089 if (ExtraCase) { 4090 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4091 /*MSSAU=*/nullptr, "switch.early.test"); 4092 4093 // Remove the uncond branch added to the old block. 4094 Instruction *OldTI = BB->getTerminator(); 4095 Builder.SetInsertPoint(OldTI); 4096 4097 if (TrueWhenEqual) 4098 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4099 else 4100 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4101 4102 OldTI->eraseFromParent(); 4103 4104 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4105 4106 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4107 // for the edge we just added. 4108 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4109 4110 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4111 << "\nEXTRABB = " << *BB); 4112 BB = NewBB; 4113 } 4114 4115 Builder.SetInsertPoint(BI); 4116 // Convert pointer to int before we switch. 4117 if (CompVal->getType()->isPointerTy()) { 4118 CompVal = Builder.CreatePtrToInt( 4119 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4120 } 4121 4122 // Create the new switch instruction now. 4123 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4124 4125 // Add all of the 'cases' to the switch instruction. 4126 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4127 New->addCase(Values[i], EdgeBB); 4128 4129 // We added edges from PI to the EdgeBB. As such, if there were any 4130 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4131 // the number of edges added. 4132 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4133 PHINode *PN = cast<PHINode>(BBI); 4134 Value *InVal = PN->getIncomingValueForBlock(BB); 4135 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4136 PN->addIncoming(InVal, BB); 4137 } 4138 4139 // Erase the old branch instruction. 4140 EraseTerminatorAndDCECond(BI); 4141 if (DTU) 4142 DTU->applyUpdates(Updates); 4143 4144 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4145 return true; 4146 } 4147 4148 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4149 if (isa<PHINode>(RI->getValue())) 4150 return simplifyCommonResume(RI); 4151 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4152 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4153 // The resume must unwind the exception that caused control to branch here. 4154 return simplifySingleResume(RI); 4155 4156 return false; 4157 } 4158 4159 // Check if cleanup block is empty 4160 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4161 for (Instruction &I : R) { 4162 auto *II = dyn_cast<IntrinsicInst>(&I); 4163 if (!II) 4164 return false; 4165 4166 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4167 switch (IntrinsicID) { 4168 case Intrinsic::dbg_declare: 4169 case Intrinsic::dbg_value: 4170 case Intrinsic::dbg_label: 4171 case Intrinsic::lifetime_end: 4172 break; 4173 default: 4174 return false; 4175 } 4176 } 4177 return true; 4178 } 4179 4180 // Simplify resume that is shared by several landing pads (phi of landing pad). 4181 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4182 BasicBlock *BB = RI->getParent(); 4183 4184 // Check that there are no other instructions except for debug and lifetime 4185 // intrinsics between the phi's and resume instruction. 4186 if (!isCleanupBlockEmpty( 4187 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4188 return false; 4189 4190 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4191 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4192 4193 // Check incoming blocks to see if any of them are trivial. 4194 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4195 Idx++) { 4196 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4197 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4198 4199 // If the block has other successors, we can not delete it because 4200 // it has other dependents. 4201 if (IncomingBB->getUniqueSuccessor() != BB) 4202 continue; 4203 4204 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4205 // Not the landing pad that caused the control to branch here. 4206 if (IncomingValue != LandingPad) 4207 continue; 4208 4209 if (isCleanupBlockEmpty( 4210 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4211 TrivialUnwindBlocks.insert(IncomingBB); 4212 } 4213 4214 // If no trivial unwind blocks, don't do any simplifications. 4215 if (TrivialUnwindBlocks.empty()) 4216 return false; 4217 4218 // Turn all invokes that unwind here into calls. 4219 for (auto *TrivialBB : TrivialUnwindBlocks) { 4220 // Blocks that will be simplified should be removed from the phi node. 4221 // Note there could be multiple edges to the resume block, and we need 4222 // to remove them all. 4223 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4224 BB->removePredecessor(TrivialBB, true); 4225 4226 for (BasicBlock *Pred : 4227 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4228 removeUnwindEdge(Pred, DTU); 4229 ++NumInvokes; 4230 } 4231 4232 // In each SimplifyCFG run, only the current processed block can be erased. 4233 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4234 // of erasing TrivialBB, we only remove the branch to the common resume 4235 // block so that we can later erase the resume block since it has no 4236 // predecessors. 4237 TrivialBB->getTerminator()->eraseFromParent(); 4238 new UnreachableInst(RI->getContext(), TrivialBB); 4239 if (DTU) 4240 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4241 } 4242 4243 // Delete the resume block if all its predecessors have been removed. 4244 if (pred_empty(BB)) { 4245 if (DTU) 4246 DTU->deleteBB(BB); 4247 else 4248 BB->eraseFromParent(); 4249 } 4250 4251 return !TrivialUnwindBlocks.empty(); 4252 } 4253 4254 // Simplify resume that is only used by a single (non-phi) landing pad. 4255 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4256 BasicBlock *BB = RI->getParent(); 4257 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4258 assert(RI->getValue() == LPInst && 4259 "Resume must unwind the exception that caused control to here"); 4260 4261 // Check that there are no other instructions except for debug intrinsics. 4262 if (!isCleanupBlockEmpty( 4263 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4264 return false; 4265 4266 // Turn all invokes that unwind here into calls and delete the basic block. 4267 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4268 removeUnwindEdge(Pred, DTU); 4269 ++NumInvokes; 4270 } 4271 4272 // The landingpad is now unreachable. Zap it. 4273 if (DTU) 4274 DTU->deleteBB(BB); 4275 else 4276 BB->eraseFromParent(); 4277 return true; 4278 } 4279 4280 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4281 // If this is a trivial cleanup pad that executes no instructions, it can be 4282 // eliminated. If the cleanup pad continues to the caller, any predecessor 4283 // that is an EH pad will be updated to continue to the caller and any 4284 // predecessor that terminates with an invoke instruction will have its invoke 4285 // instruction converted to a call instruction. If the cleanup pad being 4286 // simplified does not continue to the caller, each predecessor will be 4287 // updated to continue to the unwind destination of the cleanup pad being 4288 // simplified. 4289 BasicBlock *BB = RI->getParent(); 4290 CleanupPadInst *CPInst = RI->getCleanupPad(); 4291 if (CPInst->getParent() != BB) 4292 // This isn't an empty cleanup. 4293 return false; 4294 4295 // We cannot kill the pad if it has multiple uses. This typically arises 4296 // from unreachable basic blocks. 4297 if (!CPInst->hasOneUse()) 4298 return false; 4299 4300 // Check that there are no other instructions except for benign intrinsics. 4301 if (!isCleanupBlockEmpty( 4302 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4303 return false; 4304 4305 // If the cleanup return we are simplifying unwinds to the caller, this will 4306 // set UnwindDest to nullptr. 4307 BasicBlock *UnwindDest = RI->getUnwindDest(); 4308 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4309 4310 // We're about to remove BB from the control flow. Before we do, sink any 4311 // PHINodes into the unwind destination. Doing this before changing the 4312 // control flow avoids some potentially slow checks, since we can currently 4313 // be certain that UnwindDest and BB have no common predecessors (since they 4314 // are both EH pads). 4315 if (UnwindDest) { 4316 // First, go through the PHI nodes in UnwindDest and update any nodes that 4317 // reference the block we are removing 4318 for (BasicBlock::iterator I = UnwindDest->begin(), 4319 IE = DestEHPad->getIterator(); 4320 I != IE; ++I) { 4321 PHINode *DestPN = cast<PHINode>(I); 4322 4323 int Idx = DestPN->getBasicBlockIndex(BB); 4324 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4325 assert(Idx != -1); 4326 // This PHI node has an incoming value that corresponds to a control 4327 // path through the cleanup pad we are removing. If the incoming 4328 // value is in the cleanup pad, it must be a PHINode (because we 4329 // verified above that the block is otherwise empty). Otherwise, the 4330 // value is either a constant or a value that dominates the cleanup 4331 // pad being removed. 4332 // 4333 // Because BB and UnwindDest are both EH pads, all of their 4334 // predecessors must unwind to these blocks, and since no instruction 4335 // can have multiple unwind destinations, there will be no overlap in 4336 // incoming blocks between SrcPN and DestPN. 4337 Value *SrcVal = DestPN->getIncomingValue(Idx); 4338 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4339 4340 // Remove the entry for the block we are deleting. 4341 DestPN->removeIncomingValue(Idx, false); 4342 4343 if (SrcPN && SrcPN->getParent() == BB) { 4344 // If the incoming value was a PHI node in the cleanup pad we are 4345 // removing, we need to merge that PHI node's incoming values into 4346 // DestPN. 4347 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 4348 SrcIdx != SrcE; ++SrcIdx) { 4349 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 4350 SrcPN->getIncomingBlock(SrcIdx)); 4351 } 4352 } else { 4353 // Otherwise, the incoming value came from above BB and 4354 // so we can just reuse it. We must associate all of BB's 4355 // predecessors with this value. 4356 for (auto *pred : predecessors(BB)) { 4357 DestPN->addIncoming(SrcVal, pred); 4358 } 4359 } 4360 } 4361 4362 // Sink any remaining PHI nodes directly into UnwindDest. 4363 Instruction *InsertPt = DestEHPad; 4364 for (BasicBlock::iterator I = BB->begin(), 4365 IE = BB->getFirstNonPHI()->getIterator(); 4366 I != IE;) { 4367 // The iterator must be incremented here because the instructions are 4368 // being moved to another block. 4369 PHINode *PN = cast<PHINode>(I++); 4370 if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB)) 4371 // If the PHI node has no uses or all of its uses are in this basic 4372 // block (meaning they are debug or lifetime intrinsics), just leave 4373 // it. It will be erased when we erase BB below. 4374 continue; 4375 4376 // Otherwise, sink this PHI node into UnwindDest. 4377 // Any predecessors to UnwindDest which are not already represented 4378 // must be back edges which inherit the value from the path through 4379 // BB. In this case, the PHI value must reference itself. 4380 for (auto *pred : predecessors(UnwindDest)) 4381 if (pred != BB) 4382 PN->addIncoming(PN, pred); 4383 PN->moveBefore(InsertPt); 4384 } 4385 } 4386 4387 std::vector<DominatorTree::UpdateType> Updates; 4388 4389 // We use make_early_inc_range here because we may remove some predecessors. 4390 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4391 if (UnwindDest == nullptr) { 4392 if (DTU) 4393 DTU->applyUpdates(Updates); 4394 Updates.clear(); 4395 removeUnwindEdge(PredBB, DTU); 4396 ++NumInvokes; 4397 } else { 4398 Instruction *TI = PredBB->getTerminator(); 4399 TI->replaceUsesOfWith(BB, UnwindDest); 4400 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4401 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4402 } 4403 } 4404 4405 if (DTU) { 4406 DTU->applyUpdates(Updates); 4407 DTU->deleteBB(BB); 4408 } else 4409 // The cleanup pad is now unreachable. Zap it. 4410 BB->eraseFromParent(); 4411 4412 return true; 4413 } 4414 4415 // Try to merge two cleanuppads together. 4416 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4417 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4418 // with. 4419 BasicBlock *UnwindDest = RI->getUnwindDest(); 4420 if (!UnwindDest) 4421 return false; 4422 4423 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4424 // be safe to merge without code duplication. 4425 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4426 return false; 4427 4428 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4429 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4430 if (!SuccessorCleanupPad) 4431 return false; 4432 4433 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4434 // Replace any uses of the successor cleanupad with the predecessor pad 4435 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4436 // funclet bundle operands. 4437 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4438 // Remove the old cleanuppad. 4439 SuccessorCleanupPad->eraseFromParent(); 4440 // Now, we simply replace the cleanupret with a branch to the unwind 4441 // destination. 4442 BranchInst::Create(UnwindDest, RI->getParent()); 4443 RI->eraseFromParent(); 4444 4445 return true; 4446 } 4447 4448 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4449 // It is possible to transiantly have an undef cleanuppad operand because we 4450 // have deleted some, but not all, dead blocks. 4451 // Eventually, this block will be deleted. 4452 if (isa<UndefValue>(RI->getOperand(0))) 4453 return false; 4454 4455 if (mergeCleanupPad(RI)) 4456 return true; 4457 4458 if (removeEmptyCleanup(RI, DTU)) 4459 return true; 4460 4461 return false; 4462 } 4463 4464 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4465 BasicBlock *BB = RI->getParent(); 4466 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4467 return false; 4468 4469 // Find predecessors that end with branches. 4470 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4471 SmallVector<BranchInst *, 8> CondBranchPreds; 4472 for (BasicBlock *P : predecessors(BB)) { 4473 Instruction *PTI = P->getTerminator(); 4474 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4475 if (BI->isUnconditional()) 4476 UncondBranchPreds.push_back(P); 4477 else 4478 CondBranchPreds.push_back(BI); 4479 } 4480 } 4481 4482 // If we found some, do the transformation! 4483 if (!UncondBranchPreds.empty() && DupRet) { 4484 while (!UncondBranchPreds.empty()) { 4485 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4486 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4487 << "INTO UNCOND BRANCH PRED: " << *Pred); 4488 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4489 } 4490 4491 // If we eliminated all predecessors of the block, delete the block now. 4492 if (pred_empty(BB)) { 4493 // We know there are no successors, so just nuke the block. 4494 if (DTU) 4495 DTU->deleteBB(BB); 4496 else 4497 BB->eraseFromParent(); 4498 } 4499 4500 return true; 4501 } 4502 4503 // Check out all of the conditional branches going to this return 4504 // instruction. If any of them just select between returns, change the 4505 // branch itself into a select/return pair. 4506 while (!CondBranchPreds.empty()) { 4507 BranchInst *BI = CondBranchPreds.pop_back_val(); 4508 4509 // Check to see if the non-BB successor is also a return block. 4510 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4511 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4512 SimplifyCondBranchToTwoReturns(BI, Builder)) 4513 return true; 4514 } 4515 return false; 4516 } 4517 4518 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4519 BasicBlock *BB = UI->getParent(); 4520 4521 bool Changed = false; 4522 4523 // If there are any instructions immediately before the unreachable that can 4524 // be removed, do so. 4525 while (UI->getIterator() != BB->begin()) { 4526 BasicBlock::iterator BBI = UI->getIterator(); 4527 --BBI; 4528 // Do not delete instructions that can have side effects which might cause 4529 // the unreachable to not be reachable; specifically, calls and volatile 4530 // operations may have this effect. 4531 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4532 break; 4533 4534 if (BBI->mayHaveSideEffects()) { 4535 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4536 if (SI->isVolatile()) 4537 break; 4538 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4539 if (LI->isVolatile()) 4540 break; 4541 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4542 if (RMWI->isVolatile()) 4543 break; 4544 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4545 if (CXI->isVolatile()) 4546 break; 4547 } else if (isa<CatchPadInst>(BBI)) { 4548 // A catchpad may invoke exception object constructors and such, which 4549 // in some languages can be arbitrary code, so be conservative by 4550 // default. 4551 // For CoreCLR, it just involves a type test, so can be removed. 4552 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4553 EHPersonality::CoreCLR) 4554 break; 4555 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4556 !isa<LandingPadInst>(BBI)) { 4557 break; 4558 } 4559 // Note that deleting LandingPad's here is in fact okay, although it 4560 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4561 // all the predecessors of this block will be the unwind edges of Invokes, 4562 // and we can therefore guarantee this block will be erased. 4563 } 4564 4565 // Delete this instruction (any uses are guaranteed to be dead) 4566 if (!BBI->use_empty()) 4567 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4568 BBI->eraseFromParent(); 4569 Changed = true; 4570 } 4571 4572 // If the unreachable instruction is the first in the block, take a gander 4573 // at all of the predecessors of this instruction, and simplify them. 4574 if (&BB->front() != UI) 4575 return Changed; 4576 4577 std::vector<DominatorTree::UpdateType> Updates; 4578 4579 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4580 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4581 auto *Predecessor = Preds[i]; 4582 Instruction *TI = Predecessor->getTerminator(); 4583 IRBuilder<> Builder(TI); 4584 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4585 // We could either have a proper unconditional branch, 4586 // or a degenerate conditional branch with matching destinations. 4587 if (all_of(BI->successors(), 4588 [BB](auto *Successor) { return Successor == BB; })) { 4589 new UnreachableInst(TI->getContext(), TI); 4590 TI->eraseFromParent(); 4591 Changed = true; 4592 } else { 4593 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4594 Value* Cond = BI->getCondition(); 4595 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4596 "The destinations are guaranteed to be different here."); 4597 if (BI->getSuccessor(0) == BB) { 4598 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4599 Builder.CreateBr(BI->getSuccessor(1)); 4600 } else { 4601 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4602 Builder.CreateAssumption(Cond); 4603 Builder.CreateBr(BI->getSuccessor(0)); 4604 } 4605 EraseTerminatorAndDCECond(BI); 4606 Changed = true; 4607 } 4608 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4609 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4610 SwitchInstProfUpdateWrapper SU(*SI); 4611 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4612 if (i->getCaseSuccessor() != BB) { 4613 ++i; 4614 continue; 4615 } 4616 BB->removePredecessor(SU->getParent()); 4617 i = SU.removeCase(i); 4618 e = SU->case_end(); 4619 Changed = true; 4620 } 4621 // Note that the default destination can't be removed! 4622 if (SI->getDefaultDest() != BB) 4623 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4624 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4625 if (II->getUnwindDest() == BB) { 4626 if (DTU) 4627 DTU->applyUpdates(Updates); 4628 Updates.clear(); 4629 removeUnwindEdge(TI->getParent(), DTU); 4630 Changed = true; 4631 } 4632 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4633 if (CSI->getUnwindDest() == BB) { 4634 if (DTU) 4635 DTU->applyUpdates(Updates); 4636 Updates.clear(); 4637 removeUnwindEdge(TI->getParent(), DTU); 4638 Changed = true; 4639 continue; 4640 } 4641 4642 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4643 E = CSI->handler_end(); 4644 I != E; ++I) { 4645 if (*I == BB) { 4646 CSI->removeHandler(I); 4647 --I; 4648 --E; 4649 Changed = true; 4650 } 4651 } 4652 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4653 if (CSI->getNumHandlers() == 0) { 4654 if (CSI->hasUnwindDest()) { 4655 // Redirect all predecessors of the block containing CatchSwitchInst 4656 // to instead branch to the CatchSwitchInst's unwind destination. 4657 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4658 Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor, 4659 CSI->getUnwindDest()}); 4660 Updates.push_back( 4661 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor}); 4662 } 4663 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4664 } else { 4665 // Rewrite all preds to unwind to caller (or from invoke to call). 4666 if (DTU) 4667 DTU->applyUpdates(Updates); 4668 Updates.clear(); 4669 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4670 for (BasicBlock *EHPred : EHPreds) 4671 removeUnwindEdge(EHPred, DTU); 4672 } 4673 // The catchswitch is no longer reachable. 4674 new UnreachableInst(CSI->getContext(), CSI); 4675 CSI->eraseFromParent(); 4676 Changed = true; 4677 } 4678 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4679 (void)CRI; 4680 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4681 "Expected to always have an unwind to BB."); 4682 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4683 new UnreachableInst(TI->getContext(), TI); 4684 TI->eraseFromParent(); 4685 Changed = true; 4686 } 4687 } 4688 4689 if (DTU) 4690 DTU->applyUpdates(Updates); 4691 4692 // If this block is now dead, remove it. 4693 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4694 // We know there are no successors, so just nuke the block. 4695 if (DTU) 4696 DTU->deleteBB(BB); 4697 else 4698 BB->eraseFromParent(); 4699 return true; 4700 } 4701 4702 return Changed; 4703 } 4704 4705 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4706 assert(Cases.size() >= 1); 4707 4708 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4709 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4710 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4711 return false; 4712 } 4713 return true; 4714 } 4715 4716 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4717 DomTreeUpdater *DTU) { 4718 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4719 auto *BB = Switch->getParent(); 4720 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4721 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4722 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4723 Switch->setDefaultDest(&*NewDefaultBlock); 4724 if (DTU) 4725 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4726 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4727 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4728 SmallVector<DominatorTree::UpdateType, 2> Updates; 4729 for (auto *Successor : successors(NewDefaultBlock)) 4730 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4731 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4732 new UnreachableInst(Switch->getContext(), NewTerminator); 4733 EraseTerminatorAndDCECond(NewTerminator); 4734 if (DTU) 4735 DTU->applyUpdates(Updates); 4736 } 4737 4738 /// Turn a switch with two reachable destinations into an integer range 4739 /// comparison and branch. 4740 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4741 IRBuilder<> &Builder) { 4742 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4743 4744 bool HasDefault = 4745 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4746 4747 auto *BB = SI->getParent(); 4748 4749 // Partition the cases into two sets with different destinations. 4750 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4751 BasicBlock *DestB = nullptr; 4752 SmallVector<ConstantInt *, 16> CasesA; 4753 SmallVector<ConstantInt *, 16> CasesB; 4754 4755 for (auto Case : SI->cases()) { 4756 BasicBlock *Dest = Case.getCaseSuccessor(); 4757 if (!DestA) 4758 DestA = Dest; 4759 if (Dest == DestA) { 4760 CasesA.push_back(Case.getCaseValue()); 4761 continue; 4762 } 4763 if (!DestB) 4764 DestB = Dest; 4765 if (Dest == DestB) { 4766 CasesB.push_back(Case.getCaseValue()); 4767 continue; 4768 } 4769 return false; // More than two destinations. 4770 } 4771 4772 assert(DestA && DestB && 4773 "Single-destination switch should have been folded."); 4774 assert(DestA != DestB); 4775 assert(DestB != SI->getDefaultDest()); 4776 assert(!CasesB.empty() && "There must be non-default cases."); 4777 assert(!CasesA.empty() || HasDefault); 4778 4779 // Figure out if one of the sets of cases form a contiguous range. 4780 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4781 BasicBlock *ContiguousDest = nullptr; 4782 BasicBlock *OtherDest = nullptr; 4783 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4784 ContiguousCases = &CasesA; 4785 ContiguousDest = DestA; 4786 OtherDest = DestB; 4787 } else if (CasesAreContiguous(CasesB)) { 4788 ContiguousCases = &CasesB; 4789 ContiguousDest = DestB; 4790 OtherDest = DestA; 4791 } else 4792 return false; 4793 4794 // Start building the compare and branch. 4795 4796 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4797 Constant *NumCases = 4798 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4799 4800 Value *Sub = SI->getCondition(); 4801 if (!Offset->isNullValue()) 4802 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4803 4804 Value *Cmp; 4805 // If NumCases overflowed, then all possible values jump to the successor. 4806 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4807 Cmp = ConstantInt::getTrue(SI->getContext()); 4808 else 4809 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4810 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4811 4812 // Update weight for the newly-created conditional branch. 4813 if (HasBranchWeights(SI)) { 4814 SmallVector<uint64_t, 8> Weights; 4815 GetBranchWeights(SI, Weights); 4816 if (Weights.size() == 1 + SI->getNumCases()) { 4817 uint64_t TrueWeight = 0; 4818 uint64_t FalseWeight = 0; 4819 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4820 if (SI->getSuccessor(I) == ContiguousDest) 4821 TrueWeight += Weights[I]; 4822 else 4823 FalseWeight += Weights[I]; 4824 } 4825 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4826 TrueWeight /= 2; 4827 FalseWeight /= 2; 4828 } 4829 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4830 } 4831 } 4832 4833 // Prune obsolete incoming values off the successors' PHI nodes. 4834 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4835 unsigned PreviousEdges = ContiguousCases->size(); 4836 if (ContiguousDest == SI->getDefaultDest()) 4837 ++PreviousEdges; 4838 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4839 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4840 } 4841 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4842 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4843 if (OtherDest == SI->getDefaultDest()) 4844 ++PreviousEdges; 4845 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4846 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4847 } 4848 4849 // Clean up the default block - it may have phis or other instructions before 4850 // the unreachable terminator. 4851 if (!HasDefault) 4852 createUnreachableSwitchDefault(SI, DTU); 4853 4854 auto *UnreachableDefault = SI->getDefaultDest(); 4855 4856 // Drop the switch. 4857 SI->eraseFromParent(); 4858 4859 if (!HasDefault && DTU) 4860 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4861 4862 return true; 4863 } 4864 4865 /// Compute masked bits for the condition of a switch 4866 /// and use it to remove dead cases. 4867 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 4868 AssumptionCache *AC, 4869 const DataLayout &DL) { 4870 Value *Cond = SI->getCondition(); 4871 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4872 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4873 4874 // We can also eliminate cases by determining that their values are outside of 4875 // the limited range of the condition based on how many significant (non-sign) 4876 // bits are in the condition value. 4877 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4878 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4879 4880 // Gather dead cases. 4881 SmallVector<ConstantInt *, 8> DeadCases; 4882 SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases; 4883 for (auto &Case : SI->cases()) { 4884 auto *Successor = Case.getCaseSuccessor(); 4885 ++NumPerSuccessorCases[Successor]; 4886 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4887 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4888 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4889 DeadCases.push_back(Case.getCaseValue()); 4890 --NumPerSuccessorCases[Successor]; 4891 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4892 << " is dead.\n"); 4893 } 4894 } 4895 4896 // If we can prove that the cases must cover all possible values, the 4897 // default destination becomes dead and we can remove it. If we know some 4898 // of the bits in the value, we can use that to more precisely compute the 4899 // number of possible unique case values. 4900 bool HasDefault = 4901 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4902 const unsigned NumUnknownBits = 4903 Bits - (Known.Zero | Known.One).countPopulation(); 4904 assert(NumUnknownBits <= Bits); 4905 if (HasDefault && DeadCases.empty() && 4906 NumUnknownBits < 64 /* avoid overflow */ && 4907 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4908 createUnreachableSwitchDefault(SI, DTU); 4909 return true; 4910 } 4911 4912 if (DeadCases.empty()) 4913 return false; 4914 4915 SwitchInstProfUpdateWrapper SIW(*SI); 4916 for (ConstantInt *DeadCase : DeadCases) { 4917 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4918 assert(CaseI != SI->case_default() && 4919 "Case was not found. Probably mistake in DeadCases forming."); 4920 // Prune unused values from PHI nodes. 4921 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4922 SIW.removeCase(CaseI); 4923 } 4924 4925 std::vector<DominatorTree::UpdateType> Updates; 4926 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 4927 if (I.second == 0) 4928 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 4929 if (DTU) 4930 DTU->applyUpdates(Updates); 4931 4932 return true; 4933 } 4934 4935 /// If BB would be eligible for simplification by 4936 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4937 /// by an unconditional branch), look at the phi node for BB in the successor 4938 /// block and see if the incoming value is equal to CaseValue. If so, return 4939 /// the phi node, and set PhiIndex to BB's index in the phi node. 4940 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4941 BasicBlock *BB, int *PhiIndex) { 4942 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4943 return nullptr; // BB must be empty to be a candidate for simplification. 4944 if (!BB->getSinglePredecessor()) 4945 return nullptr; // BB must be dominated by the switch. 4946 4947 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4948 if (!Branch || !Branch->isUnconditional()) 4949 return nullptr; // Terminator must be unconditional branch. 4950 4951 BasicBlock *Succ = Branch->getSuccessor(0); 4952 4953 for (PHINode &PHI : Succ->phis()) { 4954 int Idx = PHI.getBasicBlockIndex(BB); 4955 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4956 4957 Value *InValue = PHI.getIncomingValue(Idx); 4958 if (InValue != CaseValue) 4959 continue; 4960 4961 *PhiIndex = Idx; 4962 return &PHI; 4963 } 4964 4965 return nullptr; 4966 } 4967 4968 /// Try to forward the condition of a switch instruction to a phi node 4969 /// dominated by the switch, if that would mean that some of the destination 4970 /// blocks of the switch can be folded away. Return true if a change is made. 4971 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4972 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4973 4974 ForwardingNodesMap ForwardingNodes; 4975 BasicBlock *SwitchBlock = SI->getParent(); 4976 bool Changed = false; 4977 for (auto &Case : SI->cases()) { 4978 ConstantInt *CaseValue = Case.getCaseValue(); 4979 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4980 4981 // Replace phi operands in successor blocks that are using the constant case 4982 // value rather than the switch condition variable: 4983 // switchbb: 4984 // switch i32 %x, label %default [ 4985 // i32 17, label %succ 4986 // ... 4987 // succ: 4988 // %r = phi i32 ... [ 17, %switchbb ] ... 4989 // --> 4990 // %r = phi i32 ... [ %x, %switchbb ] ... 4991 4992 for (PHINode &Phi : CaseDest->phis()) { 4993 // This only works if there is exactly 1 incoming edge from the switch to 4994 // a phi. If there is >1, that means multiple cases of the switch map to 1 4995 // value in the phi, and that phi value is not the switch condition. Thus, 4996 // this transform would not make sense (the phi would be invalid because 4997 // a phi can't have different incoming values from the same block). 4998 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4999 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5000 count(Phi.blocks(), SwitchBlock) == 1) { 5001 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5002 Changed = true; 5003 } 5004 } 5005 5006 // Collect phi nodes that are indirectly using this switch's case constants. 5007 int PhiIdx; 5008 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5009 ForwardingNodes[Phi].push_back(PhiIdx); 5010 } 5011 5012 for (auto &ForwardingNode : ForwardingNodes) { 5013 PHINode *Phi = ForwardingNode.first; 5014 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5015 if (Indexes.size() < 2) 5016 continue; 5017 5018 for (int Index : Indexes) 5019 Phi->setIncomingValue(Index, SI->getCondition()); 5020 Changed = true; 5021 } 5022 5023 return Changed; 5024 } 5025 5026 /// Return true if the backend will be able to handle 5027 /// initializing an array of constants like C. 5028 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5029 if (C->isThreadDependent()) 5030 return false; 5031 if (C->isDLLImportDependent()) 5032 return false; 5033 5034 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5035 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5036 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5037 return false; 5038 5039 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5040 if (!CE->isGEPWithNoNotionalOverIndexing()) 5041 return false; 5042 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5043 return false; 5044 } 5045 5046 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5047 return false; 5048 5049 return true; 5050 } 5051 5052 /// If V is a Constant, return it. Otherwise, try to look up 5053 /// its constant value in ConstantPool, returning 0 if it's not there. 5054 static Constant * 5055 LookupConstant(Value *V, 5056 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5057 if (Constant *C = dyn_cast<Constant>(V)) 5058 return C; 5059 return ConstantPool.lookup(V); 5060 } 5061 5062 /// Try to fold instruction I into a constant. This works for 5063 /// simple instructions such as binary operations where both operands are 5064 /// constant or can be replaced by constants from the ConstantPool. Returns the 5065 /// resulting constant on success, 0 otherwise. 5066 static Constant * 5067 ConstantFold(Instruction *I, const DataLayout &DL, 5068 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5069 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5070 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5071 if (!A) 5072 return nullptr; 5073 if (A->isAllOnesValue()) 5074 return LookupConstant(Select->getTrueValue(), ConstantPool); 5075 if (A->isNullValue()) 5076 return LookupConstant(Select->getFalseValue(), ConstantPool); 5077 return nullptr; 5078 } 5079 5080 SmallVector<Constant *, 4> COps; 5081 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5082 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5083 COps.push_back(A); 5084 else 5085 return nullptr; 5086 } 5087 5088 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5089 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5090 COps[1], DL); 5091 } 5092 5093 return ConstantFoldInstOperands(I, COps, DL); 5094 } 5095 5096 /// Try to determine the resulting constant values in phi nodes 5097 /// at the common destination basic block, *CommonDest, for one of the case 5098 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5099 /// case), of a switch instruction SI. 5100 static bool 5101 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5102 BasicBlock **CommonDest, 5103 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5104 const DataLayout &DL, const TargetTransformInfo &TTI) { 5105 // The block from which we enter the common destination. 5106 BasicBlock *Pred = SI->getParent(); 5107 5108 // If CaseDest is empty except for some side-effect free instructions through 5109 // which we can constant-propagate the CaseVal, continue to its successor. 5110 SmallDenseMap<Value *, Constant *> ConstantPool; 5111 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5112 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5113 if (I.isTerminator()) { 5114 // If the terminator is a simple branch, continue to the next block. 5115 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5116 return false; 5117 Pred = CaseDest; 5118 CaseDest = I.getSuccessor(0); 5119 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5120 // Instruction is side-effect free and constant. 5121 5122 // If the instruction has uses outside this block or a phi node slot for 5123 // the block, it is not safe to bypass the instruction since it would then 5124 // no longer dominate all its uses. 5125 for (auto &Use : I.uses()) { 5126 User *User = Use.getUser(); 5127 if (Instruction *I = dyn_cast<Instruction>(User)) 5128 if (I->getParent() == CaseDest) 5129 continue; 5130 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5131 if (Phi->getIncomingBlock(Use) == CaseDest) 5132 continue; 5133 return false; 5134 } 5135 5136 ConstantPool.insert(std::make_pair(&I, C)); 5137 } else { 5138 break; 5139 } 5140 } 5141 5142 // If we did not have a CommonDest before, use the current one. 5143 if (!*CommonDest) 5144 *CommonDest = CaseDest; 5145 // If the destination isn't the common one, abort. 5146 if (CaseDest != *CommonDest) 5147 return false; 5148 5149 // Get the values for this case from phi nodes in the destination block. 5150 for (PHINode &PHI : (*CommonDest)->phis()) { 5151 int Idx = PHI.getBasicBlockIndex(Pred); 5152 if (Idx == -1) 5153 continue; 5154 5155 Constant *ConstVal = 5156 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5157 if (!ConstVal) 5158 return false; 5159 5160 // Be conservative about which kinds of constants we support. 5161 if (!ValidLookupTableConstant(ConstVal, TTI)) 5162 return false; 5163 5164 Res.push_back(std::make_pair(&PHI, ConstVal)); 5165 } 5166 5167 return Res.size() > 0; 5168 } 5169 5170 // Helper function used to add CaseVal to the list of cases that generate 5171 // Result. Returns the updated number of cases that generate this result. 5172 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5173 SwitchCaseResultVectorTy &UniqueResults, 5174 Constant *Result) { 5175 for (auto &I : UniqueResults) { 5176 if (I.first == Result) { 5177 I.second.push_back(CaseVal); 5178 return I.second.size(); 5179 } 5180 } 5181 UniqueResults.push_back( 5182 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5183 return 1; 5184 } 5185 5186 // Helper function that initializes a map containing 5187 // results for the PHI node of the common destination block for a switch 5188 // instruction. Returns false if multiple PHI nodes have been found or if 5189 // there is not a common destination block for the switch. 5190 static bool 5191 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5192 SwitchCaseResultVectorTy &UniqueResults, 5193 Constant *&DefaultResult, const DataLayout &DL, 5194 const TargetTransformInfo &TTI, 5195 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5196 for (auto &I : SI->cases()) { 5197 ConstantInt *CaseVal = I.getCaseValue(); 5198 5199 // Resulting value at phi nodes for this case value. 5200 SwitchCaseResultsTy Results; 5201 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5202 DL, TTI)) 5203 return false; 5204 5205 // Only one value per case is permitted. 5206 if (Results.size() > 1) 5207 return false; 5208 5209 // Add the case->result mapping to UniqueResults. 5210 const uintptr_t NumCasesForResult = 5211 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5212 5213 // Early out if there are too many cases for this result. 5214 if (NumCasesForResult > MaxCasesPerResult) 5215 return false; 5216 5217 // Early out if there are too many unique results. 5218 if (UniqueResults.size() > MaxUniqueResults) 5219 return false; 5220 5221 // Check the PHI consistency. 5222 if (!PHI) 5223 PHI = Results[0].first; 5224 else if (PHI != Results[0].first) 5225 return false; 5226 } 5227 // Find the default result value. 5228 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5229 BasicBlock *DefaultDest = SI->getDefaultDest(); 5230 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5231 DL, TTI); 5232 // If the default value is not found abort unless the default destination 5233 // is unreachable. 5234 DefaultResult = 5235 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5236 if ((!DefaultResult && 5237 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5238 return false; 5239 5240 return true; 5241 } 5242 5243 // Helper function that checks if it is possible to transform a switch with only 5244 // two cases (or two cases + default) that produces a result into a select. 5245 // Example: 5246 // switch (a) { 5247 // case 10: %0 = icmp eq i32 %a, 10 5248 // return 10; %1 = select i1 %0, i32 10, i32 4 5249 // case 20: ----> %2 = icmp eq i32 %a, 20 5250 // return 2; %3 = select i1 %2, i32 2, i32 %1 5251 // default: 5252 // return 4; 5253 // } 5254 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5255 Constant *DefaultResult, Value *Condition, 5256 IRBuilder<> &Builder) { 5257 assert(ResultVector.size() == 2 && 5258 "We should have exactly two unique results at this point"); 5259 // If we are selecting between only two cases transform into a simple 5260 // select or a two-way select if default is possible. 5261 if (ResultVector[0].second.size() == 1 && 5262 ResultVector[1].second.size() == 1) { 5263 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5264 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5265 5266 bool DefaultCanTrigger = DefaultResult; 5267 Value *SelectValue = ResultVector[1].first; 5268 if (DefaultCanTrigger) { 5269 Value *const ValueCompare = 5270 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5271 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5272 DefaultResult, "switch.select"); 5273 } 5274 Value *const ValueCompare = 5275 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5276 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5277 SelectValue, "switch.select"); 5278 } 5279 5280 return nullptr; 5281 } 5282 5283 // Helper function to cleanup a switch instruction that has been converted into 5284 // a select, fixing up PHI nodes and basic blocks. 5285 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5286 Value *SelectValue, 5287 IRBuilder<> &Builder, 5288 DomTreeUpdater *DTU) { 5289 std::vector<DominatorTree::UpdateType> Updates; 5290 5291 BasicBlock *SelectBB = SI->getParent(); 5292 BasicBlock *DestBB = PHI->getParent(); 5293 5294 if (!is_contained(predecessors(DestBB), SelectBB)) 5295 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5296 Builder.CreateBr(DestBB); 5297 5298 // Remove the switch. 5299 5300 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5301 PHI->removeIncomingValue(SelectBB); 5302 PHI->addIncoming(SelectValue, SelectBB); 5303 5304 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5305 BasicBlock *Succ = SI->getSuccessor(i); 5306 5307 if (Succ == DestBB) 5308 continue; 5309 Succ->removePredecessor(SelectBB); 5310 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5311 } 5312 SI->eraseFromParent(); 5313 if (DTU) 5314 DTU->applyUpdates(Updates); 5315 } 5316 5317 /// If the switch is only used to initialize one or more 5318 /// phi nodes in a common successor block with only two different 5319 /// constant values, replace the switch with select. 5320 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5321 DomTreeUpdater *DTU, const DataLayout &DL, 5322 const TargetTransformInfo &TTI) { 5323 Value *const Cond = SI->getCondition(); 5324 PHINode *PHI = nullptr; 5325 BasicBlock *CommonDest = nullptr; 5326 Constant *DefaultResult; 5327 SwitchCaseResultVectorTy UniqueResults; 5328 // Collect all the cases that will deliver the same value from the switch. 5329 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5330 DL, TTI, 2, 1)) 5331 return false; 5332 // Selects choose between maximum two values. 5333 if (UniqueResults.size() != 2) 5334 return false; 5335 assert(PHI != nullptr && "PHI for value select not found"); 5336 5337 Builder.SetInsertPoint(SI); 5338 Value *SelectValue = 5339 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5340 if (SelectValue) { 5341 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5342 return true; 5343 } 5344 // The switch couldn't be converted into a select. 5345 return false; 5346 } 5347 5348 namespace { 5349 5350 /// This class represents a lookup table that can be used to replace a switch. 5351 class SwitchLookupTable { 5352 public: 5353 /// Create a lookup table to use as a switch replacement with the contents 5354 /// of Values, using DefaultValue to fill any holes in the table. 5355 SwitchLookupTable( 5356 Module &M, uint64_t TableSize, ConstantInt *Offset, 5357 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5358 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5359 5360 /// Build instructions with Builder to retrieve the value at 5361 /// the position given by Index in the lookup table. 5362 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5363 5364 /// Return true if a table with TableSize elements of 5365 /// type ElementType would fit in a target-legal register. 5366 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5367 Type *ElementType); 5368 5369 private: 5370 // Depending on the contents of the table, it can be represented in 5371 // different ways. 5372 enum { 5373 // For tables where each element contains the same value, we just have to 5374 // store that single value and return it for each lookup. 5375 SingleValueKind, 5376 5377 // For tables where there is a linear relationship between table index 5378 // and values. We calculate the result with a simple multiplication 5379 // and addition instead of a table lookup. 5380 LinearMapKind, 5381 5382 // For small tables with integer elements, we can pack them into a bitmap 5383 // that fits into a target-legal register. Values are retrieved by 5384 // shift and mask operations. 5385 BitMapKind, 5386 5387 // The table is stored as an array of values. Values are retrieved by load 5388 // instructions from the table. 5389 ArrayKind 5390 } Kind; 5391 5392 // For SingleValueKind, this is the single value. 5393 Constant *SingleValue = nullptr; 5394 5395 // For BitMapKind, this is the bitmap. 5396 ConstantInt *BitMap = nullptr; 5397 IntegerType *BitMapElementTy = nullptr; 5398 5399 // For LinearMapKind, these are the constants used to derive the value. 5400 ConstantInt *LinearOffset = nullptr; 5401 ConstantInt *LinearMultiplier = nullptr; 5402 5403 // For ArrayKind, this is the array. 5404 GlobalVariable *Array = nullptr; 5405 }; 5406 5407 } // end anonymous namespace 5408 5409 SwitchLookupTable::SwitchLookupTable( 5410 Module &M, uint64_t TableSize, ConstantInt *Offset, 5411 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5412 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5413 assert(Values.size() && "Can't build lookup table without values!"); 5414 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5415 5416 // If all values in the table are equal, this is that value. 5417 SingleValue = Values.begin()->second; 5418 5419 Type *ValueType = Values.begin()->second->getType(); 5420 5421 // Build up the table contents. 5422 SmallVector<Constant *, 64> TableContents(TableSize); 5423 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5424 ConstantInt *CaseVal = Values[I].first; 5425 Constant *CaseRes = Values[I].second; 5426 assert(CaseRes->getType() == ValueType); 5427 5428 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5429 TableContents[Idx] = CaseRes; 5430 5431 if (CaseRes != SingleValue) 5432 SingleValue = nullptr; 5433 } 5434 5435 // Fill in any holes in the table with the default result. 5436 if (Values.size() < TableSize) { 5437 assert(DefaultValue && 5438 "Need a default value to fill the lookup table holes."); 5439 assert(DefaultValue->getType() == ValueType); 5440 for (uint64_t I = 0; I < TableSize; ++I) { 5441 if (!TableContents[I]) 5442 TableContents[I] = DefaultValue; 5443 } 5444 5445 if (DefaultValue != SingleValue) 5446 SingleValue = nullptr; 5447 } 5448 5449 // If each element in the table contains the same value, we only need to store 5450 // that single value. 5451 if (SingleValue) { 5452 Kind = SingleValueKind; 5453 return; 5454 } 5455 5456 // Check if we can derive the value with a linear transformation from the 5457 // table index. 5458 if (isa<IntegerType>(ValueType)) { 5459 bool LinearMappingPossible = true; 5460 APInt PrevVal; 5461 APInt DistToPrev; 5462 assert(TableSize >= 2 && "Should be a SingleValue table."); 5463 // Check if there is the same distance between two consecutive values. 5464 for (uint64_t I = 0; I < TableSize; ++I) { 5465 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5466 if (!ConstVal) { 5467 // This is an undef. We could deal with it, but undefs in lookup tables 5468 // are very seldom. It's probably not worth the additional complexity. 5469 LinearMappingPossible = false; 5470 break; 5471 } 5472 const APInt &Val = ConstVal->getValue(); 5473 if (I != 0) { 5474 APInt Dist = Val - PrevVal; 5475 if (I == 1) { 5476 DistToPrev = Dist; 5477 } else if (Dist != DistToPrev) { 5478 LinearMappingPossible = false; 5479 break; 5480 } 5481 } 5482 PrevVal = Val; 5483 } 5484 if (LinearMappingPossible) { 5485 LinearOffset = cast<ConstantInt>(TableContents[0]); 5486 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5487 Kind = LinearMapKind; 5488 ++NumLinearMaps; 5489 return; 5490 } 5491 } 5492 5493 // If the type is integer and the table fits in a register, build a bitmap. 5494 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5495 IntegerType *IT = cast<IntegerType>(ValueType); 5496 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5497 for (uint64_t I = TableSize; I > 0; --I) { 5498 TableInt <<= IT->getBitWidth(); 5499 // Insert values into the bitmap. Undef values are set to zero. 5500 if (!isa<UndefValue>(TableContents[I - 1])) { 5501 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5502 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5503 } 5504 } 5505 BitMap = ConstantInt::get(M.getContext(), TableInt); 5506 BitMapElementTy = IT; 5507 Kind = BitMapKind; 5508 ++NumBitMaps; 5509 return; 5510 } 5511 5512 // Store the table in an array. 5513 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5514 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5515 5516 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5517 GlobalVariable::PrivateLinkage, Initializer, 5518 "switch.table." + FuncName); 5519 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5520 // Set the alignment to that of an array items. We will be only loading one 5521 // value out of it. 5522 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5523 Kind = ArrayKind; 5524 } 5525 5526 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5527 switch (Kind) { 5528 case SingleValueKind: 5529 return SingleValue; 5530 case LinearMapKind: { 5531 // Derive the result value from the input value. 5532 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5533 false, "switch.idx.cast"); 5534 if (!LinearMultiplier->isOne()) 5535 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5536 if (!LinearOffset->isZero()) 5537 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5538 return Result; 5539 } 5540 case BitMapKind: { 5541 // Type of the bitmap (e.g. i59). 5542 IntegerType *MapTy = BitMap->getType(); 5543 5544 // Cast Index to the same type as the bitmap. 5545 // Note: The Index is <= the number of elements in the table, so 5546 // truncating it to the width of the bitmask is safe. 5547 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5548 5549 // Multiply the shift amount by the element width. 5550 ShiftAmt = Builder.CreateMul( 5551 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5552 "switch.shiftamt"); 5553 5554 // Shift down. 5555 Value *DownShifted = 5556 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5557 // Mask off. 5558 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5559 } 5560 case ArrayKind: { 5561 // Make sure the table index will not overflow when treated as signed. 5562 IntegerType *IT = cast<IntegerType>(Index->getType()); 5563 uint64_t TableSize = 5564 Array->getInitializer()->getType()->getArrayNumElements(); 5565 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5566 Index = Builder.CreateZExt( 5567 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5568 "switch.tableidx.zext"); 5569 5570 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5571 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5572 GEPIndices, "switch.gep"); 5573 return Builder.CreateLoad( 5574 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5575 "switch.load"); 5576 } 5577 } 5578 llvm_unreachable("Unknown lookup table kind!"); 5579 } 5580 5581 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5582 uint64_t TableSize, 5583 Type *ElementType) { 5584 auto *IT = dyn_cast<IntegerType>(ElementType); 5585 if (!IT) 5586 return false; 5587 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5588 // are <= 15, we could try to narrow the type. 5589 5590 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5591 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5592 return false; 5593 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5594 } 5595 5596 /// Determine whether a lookup table should be built for this switch, based on 5597 /// the number of cases, size of the table, and the types of the results. 5598 static bool 5599 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5600 const TargetTransformInfo &TTI, const DataLayout &DL, 5601 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5602 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5603 return false; // TableSize overflowed, or mul below might overflow. 5604 5605 bool AllTablesFitInRegister = true; 5606 bool HasIllegalType = false; 5607 for (const auto &I : ResultTypes) { 5608 Type *Ty = I.second; 5609 5610 // Saturate this flag to true. 5611 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5612 5613 // Saturate this flag to false. 5614 AllTablesFitInRegister = 5615 AllTablesFitInRegister && 5616 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5617 5618 // If both flags saturate, we're done. NOTE: This *only* works with 5619 // saturating flags, and all flags have to saturate first due to the 5620 // non-deterministic behavior of iterating over a dense map. 5621 if (HasIllegalType && !AllTablesFitInRegister) 5622 break; 5623 } 5624 5625 // If each table would fit in a register, we should build it anyway. 5626 if (AllTablesFitInRegister) 5627 return true; 5628 5629 // Don't build a table that doesn't fit in-register if it has illegal types. 5630 if (HasIllegalType) 5631 return false; 5632 5633 // The table density should be at least 40%. This is the same criterion as for 5634 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5635 // FIXME: Find the best cut-off. 5636 return SI->getNumCases() * 10 >= TableSize * 4; 5637 } 5638 5639 /// Try to reuse the switch table index compare. Following pattern: 5640 /// \code 5641 /// if (idx < tablesize) 5642 /// r = table[idx]; // table does not contain default_value 5643 /// else 5644 /// r = default_value; 5645 /// if (r != default_value) 5646 /// ... 5647 /// \endcode 5648 /// Is optimized to: 5649 /// \code 5650 /// cond = idx < tablesize; 5651 /// if (cond) 5652 /// r = table[idx]; 5653 /// else 5654 /// r = default_value; 5655 /// if (cond) 5656 /// ... 5657 /// \endcode 5658 /// Jump threading will then eliminate the second if(cond). 5659 static void reuseTableCompare( 5660 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5661 Constant *DefaultValue, 5662 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5663 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5664 if (!CmpInst) 5665 return; 5666 5667 // We require that the compare is in the same block as the phi so that jump 5668 // threading can do its work afterwards. 5669 if (CmpInst->getParent() != PhiBlock) 5670 return; 5671 5672 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5673 if (!CmpOp1) 5674 return; 5675 5676 Value *RangeCmp = RangeCheckBranch->getCondition(); 5677 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5678 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5679 5680 // Check if the compare with the default value is constant true or false. 5681 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5682 DefaultValue, CmpOp1, true); 5683 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5684 return; 5685 5686 // Check if the compare with the case values is distinct from the default 5687 // compare result. 5688 for (auto ValuePair : Values) { 5689 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5690 ValuePair.second, CmpOp1, true); 5691 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5692 return; 5693 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5694 "Expect true or false as compare result."); 5695 } 5696 5697 // Check if the branch instruction dominates the phi node. It's a simple 5698 // dominance check, but sufficient for our needs. 5699 // Although this check is invariant in the calling loops, it's better to do it 5700 // at this late stage. Practically we do it at most once for a switch. 5701 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5702 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5703 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5704 return; 5705 } 5706 5707 if (DefaultConst == FalseConst) { 5708 // The compare yields the same result. We can replace it. 5709 CmpInst->replaceAllUsesWith(RangeCmp); 5710 ++NumTableCmpReuses; 5711 } else { 5712 // The compare yields the same result, just inverted. We can replace it. 5713 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5714 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5715 RangeCheckBranch); 5716 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5717 ++NumTableCmpReuses; 5718 } 5719 } 5720 5721 /// If the switch is only used to initialize one or more phi nodes in a common 5722 /// successor block with different constant values, replace the switch with 5723 /// lookup tables. 5724 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5725 DomTreeUpdater *DTU, const DataLayout &DL, 5726 const TargetTransformInfo &TTI) { 5727 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5728 5729 BasicBlock *BB = SI->getParent(); 5730 Function *Fn = BB->getParent(); 5731 // Only build lookup table when we have a target that supports it or the 5732 // attribute is not set. 5733 if (!TTI.shouldBuildLookupTables() || 5734 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5735 return false; 5736 5737 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5738 // split off a dense part and build a lookup table for that. 5739 5740 // FIXME: This creates arrays of GEPs to constant strings, which means each 5741 // GEP needs a runtime relocation in PIC code. We should just build one big 5742 // string and lookup indices into that. 5743 5744 // Ignore switches with less than three cases. Lookup tables will not make 5745 // them faster, so we don't analyze them. 5746 if (SI->getNumCases() < 3) 5747 return false; 5748 5749 // Figure out the corresponding result for each case value and phi node in the 5750 // common destination, as well as the min and max case values. 5751 assert(!SI->cases().empty()); 5752 SwitchInst::CaseIt CI = SI->case_begin(); 5753 ConstantInt *MinCaseVal = CI->getCaseValue(); 5754 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5755 5756 BasicBlock *CommonDest = nullptr; 5757 5758 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5759 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5760 5761 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5762 SmallDenseMap<PHINode *, Type *> ResultTypes; 5763 SmallVector<PHINode *, 4> PHIs; 5764 5765 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5766 ConstantInt *CaseVal = CI->getCaseValue(); 5767 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5768 MinCaseVal = CaseVal; 5769 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5770 MaxCaseVal = CaseVal; 5771 5772 // Resulting value at phi nodes for this case value. 5773 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5774 ResultsTy Results; 5775 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5776 Results, DL, TTI)) 5777 return false; 5778 5779 // Append the result from this case to the list for each phi. 5780 for (const auto &I : Results) { 5781 PHINode *PHI = I.first; 5782 Constant *Value = I.second; 5783 if (!ResultLists.count(PHI)) 5784 PHIs.push_back(PHI); 5785 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5786 } 5787 } 5788 5789 // Keep track of the result types. 5790 for (PHINode *PHI : PHIs) { 5791 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5792 } 5793 5794 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5795 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5796 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5797 bool TableHasHoles = (NumResults < TableSize); 5798 5799 // If the table has holes, we need a constant result for the default case 5800 // or a bitmask that fits in a register. 5801 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5802 bool HasDefaultResults = 5803 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5804 DefaultResultsList, DL, TTI); 5805 5806 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5807 if (NeedMask) { 5808 // As an extra penalty for the validity test we require more cases. 5809 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5810 return false; 5811 if (!DL.fitsInLegalInteger(TableSize)) 5812 return false; 5813 } 5814 5815 for (const auto &I : DefaultResultsList) { 5816 PHINode *PHI = I.first; 5817 Constant *Result = I.second; 5818 DefaultResults[PHI] = Result; 5819 } 5820 5821 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5822 return false; 5823 5824 std::vector<DominatorTree::UpdateType> Updates; 5825 5826 // Create the BB that does the lookups. 5827 Module &Mod = *CommonDest->getParent()->getParent(); 5828 BasicBlock *LookupBB = BasicBlock::Create( 5829 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5830 5831 // Compute the table index value. 5832 Builder.SetInsertPoint(SI); 5833 Value *TableIndex; 5834 if (MinCaseVal->isNullValue()) 5835 TableIndex = SI->getCondition(); 5836 else 5837 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5838 "switch.tableidx"); 5839 5840 // Compute the maximum table size representable by the integer type we are 5841 // switching upon. 5842 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5843 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5844 assert(MaxTableSize >= TableSize && 5845 "It is impossible for a switch to have more entries than the max " 5846 "representable value of its input integer type's size."); 5847 5848 // If the default destination is unreachable, or if the lookup table covers 5849 // all values of the conditional variable, branch directly to the lookup table 5850 // BB. Otherwise, check that the condition is within the case range. 5851 const bool DefaultIsReachable = 5852 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5853 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5854 BranchInst *RangeCheckBranch = nullptr; 5855 5856 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5857 Builder.CreateBr(LookupBB); 5858 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5859 // Note: We call removeProdecessor later since we need to be able to get the 5860 // PHI value for the default case in case we're using a bit mask. 5861 } else { 5862 Value *Cmp = Builder.CreateICmpULT( 5863 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5864 RangeCheckBranch = 5865 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5866 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 5867 } 5868 5869 // Populate the BB that does the lookups. 5870 Builder.SetInsertPoint(LookupBB); 5871 5872 if (NeedMask) { 5873 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5874 // re-purposed to do the hole check, and we create a new LookupBB. 5875 BasicBlock *MaskBB = LookupBB; 5876 MaskBB->setName("switch.hole_check"); 5877 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5878 CommonDest->getParent(), CommonDest); 5879 5880 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5881 // unnecessary illegal types. 5882 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5883 APInt MaskInt(TableSizePowOf2, 0); 5884 APInt One(TableSizePowOf2, 1); 5885 // Build bitmask; fill in a 1 bit for every case. 5886 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5887 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5888 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5889 .getLimitedValue(); 5890 MaskInt |= One << Idx; 5891 } 5892 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5893 5894 // Get the TableIndex'th bit of the bitmask. 5895 // If this bit is 0 (meaning hole) jump to the default destination, 5896 // else continue with table lookup. 5897 IntegerType *MapTy = TableMask->getType(); 5898 Value *MaskIndex = 5899 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5900 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5901 Value *LoBit = Builder.CreateTrunc( 5902 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5903 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5904 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 5905 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 5906 Builder.SetInsertPoint(LookupBB); 5907 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 5908 } 5909 5910 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5911 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5912 // do not delete PHINodes here. 5913 SI->getDefaultDest()->removePredecessor(BB, 5914 /*KeepOneInputPHIs=*/true); 5915 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 5916 } 5917 5918 bool ReturnedEarly = false; 5919 for (PHINode *PHI : PHIs) { 5920 const ResultListTy &ResultList = ResultLists[PHI]; 5921 5922 // If using a bitmask, use any value to fill the lookup table holes. 5923 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5924 StringRef FuncName = Fn->getName(); 5925 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5926 FuncName); 5927 5928 Value *Result = Table.BuildLookup(TableIndex, Builder); 5929 5930 // If the result is used to return immediately from the function, we want to 5931 // do that right here. 5932 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5933 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5934 Builder.CreateRet(Result); 5935 ReturnedEarly = true; 5936 break; 5937 } 5938 5939 // Do a small peephole optimization: re-use the switch table compare if 5940 // possible. 5941 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5942 BasicBlock *PhiBlock = PHI->getParent(); 5943 // Search for compare instructions which use the phi. 5944 for (auto *User : PHI->users()) { 5945 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5946 } 5947 } 5948 5949 PHI->addIncoming(Result, LookupBB); 5950 } 5951 5952 if (!ReturnedEarly) { 5953 Builder.CreateBr(CommonDest); 5954 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 5955 } 5956 5957 // Remove the switch. 5958 SmallSetVector<BasicBlock *, 8> RemovedSuccessors; 5959 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5960 BasicBlock *Succ = SI->getSuccessor(i); 5961 5962 if (Succ == SI->getDefaultDest()) 5963 continue; 5964 Succ->removePredecessor(BB); 5965 RemovedSuccessors.insert(Succ); 5966 } 5967 SI->eraseFromParent(); 5968 5969 if (DTU) { 5970 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 5971 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 5972 DTU->applyUpdates(Updates); 5973 } 5974 5975 ++NumLookupTables; 5976 if (NeedMask) 5977 ++NumLookupTablesHoles; 5978 return true; 5979 } 5980 5981 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5982 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5983 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5984 uint64_t Range = Diff + 1; 5985 uint64_t NumCases = Values.size(); 5986 // 40% is the default density for building a jump table in optsize/minsize mode. 5987 uint64_t MinDensity = 40; 5988 5989 return NumCases * 100 >= Range * MinDensity; 5990 } 5991 5992 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5993 /// of cases. 5994 /// 5995 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5996 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5997 /// 5998 /// This converts a sparse switch into a dense switch which allows better 5999 /// lowering and could also allow transforming into a lookup table. 6000 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6001 const DataLayout &DL, 6002 const TargetTransformInfo &TTI) { 6003 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6004 if (CondTy->getIntegerBitWidth() > 64 || 6005 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6006 return false; 6007 // Only bother with this optimization if there are more than 3 switch cases; 6008 // SDAG will only bother creating jump tables for 4 or more cases. 6009 if (SI->getNumCases() < 4) 6010 return false; 6011 6012 // This transform is agnostic to the signedness of the input or case values. We 6013 // can treat the case values as signed or unsigned. We can optimize more common 6014 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6015 // as signed. 6016 SmallVector<int64_t,4> Values; 6017 for (auto &C : SI->cases()) 6018 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6019 llvm::sort(Values); 6020 6021 // If the switch is already dense, there's nothing useful to do here. 6022 if (isSwitchDense(Values)) 6023 return false; 6024 6025 // First, transform the values such that they start at zero and ascend. 6026 int64_t Base = Values[0]; 6027 for (auto &V : Values) 6028 V -= (uint64_t)(Base); 6029 6030 // Now we have signed numbers that have been shifted so that, given enough 6031 // precision, there are no negative values. Since the rest of the transform 6032 // is bitwise only, we switch now to an unsigned representation. 6033 6034 // This transform can be done speculatively because it is so cheap - it 6035 // results in a single rotate operation being inserted. 6036 // FIXME: It's possible that optimizing a switch on powers of two might also 6037 // be beneficial - flag values are often powers of two and we could use a CLZ 6038 // as the key function. 6039 6040 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6041 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6042 // less than 64. 6043 unsigned Shift = 64; 6044 for (auto &V : Values) 6045 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6046 assert(Shift < 64); 6047 if (Shift > 0) 6048 for (auto &V : Values) 6049 V = (int64_t)((uint64_t)V >> Shift); 6050 6051 if (!isSwitchDense(Values)) 6052 // Transform didn't create a dense switch. 6053 return false; 6054 6055 // The obvious transform is to shift the switch condition right and emit a 6056 // check that the condition actually cleanly divided by GCD, i.e. 6057 // C & (1 << Shift - 1) == 0 6058 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6059 // 6060 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6061 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6062 // are nonzero then the switch condition will be very large and will hit the 6063 // default case. 6064 6065 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6066 Builder.SetInsertPoint(SI); 6067 auto *ShiftC = ConstantInt::get(Ty, Shift); 6068 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6069 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6070 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6071 auto *Rot = Builder.CreateOr(LShr, Shl); 6072 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6073 6074 for (auto Case : SI->cases()) { 6075 auto *Orig = Case.getCaseValue(); 6076 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6077 Case.setValue( 6078 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6079 } 6080 return true; 6081 } 6082 6083 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6084 BasicBlock *BB = SI->getParent(); 6085 6086 if (isValueEqualityComparison(SI)) { 6087 // If we only have one predecessor, and if it is a branch on this value, 6088 // see if that predecessor totally determines the outcome of this switch. 6089 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6090 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6091 return requestResimplify(); 6092 6093 Value *Cond = SI->getCondition(); 6094 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6095 if (SimplifySwitchOnSelect(SI, Select)) 6096 return requestResimplify(); 6097 6098 // If the block only contains the switch, see if we can fold the block 6099 // away into any preds. 6100 if (SI == &*BB->instructionsWithoutDebug().begin()) 6101 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6102 return requestResimplify(); 6103 } 6104 6105 // Try to transform the switch into an icmp and a branch. 6106 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6107 return requestResimplify(); 6108 6109 // Remove unreachable cases. 6110 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6111 return requestResimplify(); 6112 6113 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6114 return requestResimplify(); 6115 6116 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6117 return requestResimplify(); 6118 6119 // The conversion from switch to lookup tables results in difficult-to-analyze 6120 // code and makes pruning branches much harder. This is a problem if the 6121 // switch expression itself can still be restricted as a result of inlining or 6122 // CVP. Therefore, only apply this transformation during late stages of the 6123 // optimisation pipeline. 6124 if (Options.ConvertSwitchToLookupTable && 6125 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6126 return requestResimplify(); 6127 6128 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6129 return requestResimplify(); 6130 6131 return false; 6132 } 6133 6134 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6135 BasicBlock *BB = IBI->getParent(); 6136 bool Changed = false; 6137 6138 // Eliminate redundant destinations. 6139 SmallPtrSet<Value *, 8> Succs; 6140 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 6141 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6142 BasicBlock *Dest = IBI->getDestination(i); 6143 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6144 if (!Dest->hasAddressTaken()) 6145 RemovedSuccs.insert(Dest); 6146 Dest->removePredecessor(BB); 6147 IBI->removeDestination(i); 6148 --i; 6149 --e; 6150 Changed = true; 6151 } 6152 } 6153 6154 if (DTU) { 6155 std::vector<DominatorTree::UpdateType> Updates; 6156 Updates.reserve(RemovedSuccs.size()); 6157 for (auto *RemovedSucc : RemovedSuccs) 6158 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6159 DTU->applyUpdates(Updates); 6160 } 6161 6162 if (IBI->getNumDestinations() == 0) { 6163 // If the indirectbr has no successors, change it to unreachable. 6164 new UnreachableInst(IBI->getContext(), IBI); 6165 EraseTerminatorAndDCECond(IBI); 6166 return true; 6167 } 6168 6169 if (IBI->getNumDestinations() == 1) { 6170 // If the indirectbr has one successor, change it to a direct branch. 6171 BranchInst::Create(IBI->getDestination(0), IBI); 6172 EraseTerminatorAndDCECond(IBI); 6173 return true; 6174 } 6175 6176 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6177 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6178 return requestResimplify(); 6179 } 6180 return Changed; 6181 } 6182 6183 /// Given an block with only a single landing pad and a unconditional branch 6184 /// try to find another basic block which this one can be merged with. This 6185 /// handles cases where we have multiple invokes with unique landing pads, but 6186 /// a shared handler. 6187 /// 6188 /// We specifically choose to not worry about merging non-empty blocks 6189 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6190 /// practice, the optimizer produces empty landing pad blocks quite frequently 6191 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6192 /// sinking in this file) 6193 /// 6194 /// This is primarily a code size optimization. We need to avoid performing 6195 /// any transform which might inhibit optimization (such as our ability to 6196 /// specialize a particular handler via tail commoning). We do this by not 6197 /// merging any blocks which require us to introduce a phi. Since the same 6198 /// values are flowing through both blocks, we don't lose any ability to 6199 /// specialize. If anything, we make such specialization more likely. 6200 /// 6201 /// TODO - This transformation could remove entries from a phi in the target 6202 /// block when the inputs in the phi are the same for the two blocks being 6203 /// merged. In some cases, this could result in removal of the PHI entirely. 6204 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6205 BasicBlock *BB, DomTreeUpdater *DTU) { 6206 auto Succ = BB->getUniqueSuccessor(); 6207 assert(Succ); 6208 // If there's a phi in the successor block, we'd likely have to introduce 6209 // a phi into the merged landing pad block. 6210 if (isa<PHINode>(*Succ->begin())) 6211 return false; 6212 6213 for (BasicBlock *OtherPred : predecessors(Succ)) { 6214 if (BB == OtherPred) 6215 continue; 6216 BasicBlock::iterator I = OtherPred->begin(); 6217 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6218 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6219 continue; 6220 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6221 ; 6222 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6223 if (!BI2 || !BI2->isIdenticalTo(BI)) 6224 continue; 6225 6226 std::vector<DominatorTree::UpdateType> Updates; 6227 6228 // We've found an identical block. Update our predecessors to take that 6229 // path instead and make ourselves dead. 6230 SmallPtrSet<BasicBlock *, 16> Preds; 6231 Preds.insert(pred_begin(BB), pred_end(BB)); 6232 for (BasicBlock *Pred : Preds) { 6233 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6234 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6235 "unexpected successor"); 6236 II->setUnwindDest(OtherPred); 6237 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6238 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6239 } 6240 6241 // The debug info in OtherPred doesn't cover the merged control flow that 6242 // used to go through BB. We need to delete it or update it. 6243 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6244 Instruction &Inst = *I; 6245 I++; 6246 if (isa<DbgInfoIntrinsic>(Inst)) 6247 Inst.eraseFromParent(); 6248 } 6249 6250 SmallPtrSet<BasicBlock *, 16> Succs; 6251 Succs.insert(succ_begin(BB), succ_end(BB)); 6252 for (BasicBlock *Succ : Succs) { 6253 Succ->removePredecessor(BB); 6254 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6255 } 6256 6257 IRBuilder<> Builder(BI); 6258 Builder.CreateUnreachable(); 6259 BI->eraseFromParent(); 6260 if (DTU) 6261 DTU->applyUpdates(Updates); 6262 return true; 6263 } 6264 return false; 6265 } 6266 6267 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6268 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6269 : simplifyCondBranch(Branch, Builder); 6270 } 6271 6272 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6273 IRBuilder<> &Builder) { 6274 BasicBlock *BB = BI->getParent(); 6275 BasicBlock *Succ = BI->getSuccessor(0); 6276 6277 // If the Terminator is the only non-phi instruction, simplify the block. 6278 // If LoopHeader is provided, check if the block or its successor is a loop 6279 // header. (This is for early invocations before loop simplify and 6280 // vectorization to keep canonical loop forms for nested loops. These blocks 6281 // can be eliminated when the pass is invoked later in the back-end.) 6282 // Note that if BB has only one predecessor then we do not introduce new 6283 // backedge, so we can eliminate BB. 6284 bool NeedCanonicalLoop = 6285 Options.NeedCanonicalLoop && 6286 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6287 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6288 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6289 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6290 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6291 return true; 6292 6293 // If the only instruction in the block is a seteq/setne comparison against a 6294 // constant, try to simplify the block. 6295 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6296 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6297 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6298 ; 6299 if (I->isTerminator() && 6300 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6301 return true; 6302 } 6303 6304 // See if we can merge an empty landing pad block with another which is 6305 // equivalent. 6306 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6307 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6308 ; 6309 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6310 return true; 6311 } 6312 6313 // If this basic block is ONLY a compare and a branch, and if a predecessor 6314 // branches to us and our successor, fold the comparison into the 6315 // predecessor and use logical operations to update the incoming value 6316 // for PHI nodes in common successor. 6317 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6318 Options.BonusInstThreshold, true)) 6319 return requestResimplify(); 6320 return false; 6321 } 6322 6323 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6324 BasicBlock *PredPred = nullptr; 6325 for (auto *P : predecessors(BB)) { 6326 BasicBlock *PPred = P->getSinglePredecessor(); 6327 if (!PPred || (PredPred && PredPred != PPred)) 6328 return nullptr; 6329 PredPred = PPred; 6330 } 6331 return PredPred; 6332 } 6333 6334 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6335 BasicBlock *BB = BI->getParent(); 6336 if (!Options.SimplifyCondBranch) 6337 return false; 6338 6339 // Conditional branch 6340 if (isValueEqualityComparison(BI)) { 6341 // If we only have one predecessor, and if it is a branch on this value, 6342 // see if that predecessor totally determines the outcome of this 6343 // switch. 6344 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6345 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6346 return requestResimplify(); 6347 6348 // This block must be empty, except for the setcond inst, if it exists. 6349 // Ignore dbg and pseudo intrinsics. 6350 auto I = BB->instructionsWithoutDebug(true).begin(); 6351 if (&*I == BI) { 6352 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6353 return requestResimplify(); 6354 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6355 ++I; 6356 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6357 return requestResimplify(); 6358 } 6359 } 6360 6361 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6362 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6363 return true; 6364 6365 // If this basic block has dominating predecessor blocks and the dominating 6366 // blocks' conditions imply BI's condition, we know the direction of BI. 6367 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6368 if (Imp) { 6369 // Turn this into a branch on constant. 6370 auto *OldCond = BI->getCondition(); 6371 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6372 : ConstantInt::getFalse(BB->getContext()); 6373 BI->setCondition(TorF); 6374 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6375 return requestResimplify(); 6376 } 6377 6378 // If this basic block is ONLY a compare and a branch, and if a predecessor 6379 // branches to us and one of our successors, fold the comparison into the 6380 // predecessor and use logical operations to pick the right destination. 6381 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6382 Options.BonusInstThreshold, true)) 6383 return requestResimplify(); 6384 6385 // We have a conditional branch to two blocks that are only reachable 6386 // from BI. We know that the condbr dominates the two blocks, so see if 6387 // there is any identical code in the "then" and "else" blocks. If so, we 6388 // can hoist it up to the branching block. 6389 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6390 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6391 if (HoistCommon && Options.HoistCommonInsts) 6392 if (HoistThenElseCodeToIf(BI, TTI)) 6393 return requestResimplify(); 6394 } else { 6395 // If Successor #1 has multiple preds, we may be able to conditionally 6396 // execute Successor #0 if it branches to Successor #1. 6397 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6398 if (Succ0TI->getNumSuccessors() == 1 && 6399 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6400 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6401 return requestResimplify(); 6402 } 6403 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6404 // If Successor #0 has multiple preds, we may be able to conditionally 6405 // execute Successor #1 if it branches to Successor #0. 6406 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6407 if (Succ1TI->getNumSuccessors() == 1 && 6408 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6409 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6410 return requestResimplify(); 6411 } 6412 6413 // If this is a branch on a phi node in the current block, thread control 6414 // through this block if any PHI node entries are constants. 6415 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6416 if (PN->getParent() == BI->getParent()) 6417 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6418 return requestResimplify(); 6419 6420 // Scan predecessor blocks for conditional branches. 6421 for (BasicBlock *Pred : predecessors(BB)) 6422 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6423 if (PBI != BI && PBI->isConditional()) 6424 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6425 return requestResimplify(); 6426 6427 // Look for diamond patterns. 6428 if (MergeCondStores) 6429 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6430 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6431 if (PBI != BI && PBI->isConditional()) 6432 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6433 return requestResimplify(); 6434 6435 return false; 6436 } 6437 6438 /// Check if passing a value to an instruction will cause undefined behavior. 6439 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6440 Constant *C = dyn_cast<Constant>(V); 6441 if (!C) 6442 return false; 6443 6444 if (I->use_empty()) 6445 return false; 6446 6447 if (C->isNullValue() || isa<UndefValue>(C)) { 6448 // Only look at the first use, avoid hurting compile time with long uselists 6449 User *Use = *I->user_begin(); 6450 6451 // Now make sure that there are no instructions in between that can alter 6452 // control flow (eg. calls) 6453 for (BasicBlock::iterator 6454 i = ++BasicBlock::iterator(I), 6455 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6456 i != UI; ++i) 6457 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 6458 return false; 6459 6460 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6461 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6462 if (GEP->getPointerOperand() == I) { 6463 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6464 PtrValueMayBeModified = true; 6465 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6466 } 6467 6468 // Look through bitcasts. 6469 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6470 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6471 6472 // Load from null is undefined. 6473 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6474 if (!LI->isVolatile()) 6475 return !NullPointerIsDefined(LI->getFunction(), 6476 LI->getPointerAddressSpace()); 6477 6478 // Store to null is undefined. 6479 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6480 if (!SI->isVolatile()) 6481 return (!NullPointerIsDefined(SI->getFunction(), 6482 SI->getPointerAddressSpace())) && 6483 SI->getPointerOperand() == I; 6484 6485 if (auto *CB = dyn_cast<CallBase>(Use)) { 6486 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6487 return false; 6488 // A call to null is undefined. 6489 if (CB->getCalledOperand() == I) 6490 return true; 6491 6492 if (C->isNullValue()) { 6493 for (const llvm::Use &Arg : CB->args()) 6494 if (Arg == I) { 6495 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6496 if (CB->isPassingUndefUB(ArgIdx) && 6497 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6498 // Passing null to a nonnnull+noundef argument is undefined. 6499 return !PtrValueMayBeModified; 6500 } 6501 } 6502 } else if (isa<UndefValue>(C)) { 6503 // Passing undef to a noundef argument is undefined. 6504 for (const llvm::Use &Arg : CB->args()) 6505 if (Arg == I) { 6506 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6507 if (CB->isPassingUndefUB(ArgIdx)) { 6508 // Passing undef to a noundef argument is undefined. 6509 return true; 6510 } 6511 } 6512 } 6513 } 6514 } 6515 return false; 6516 } 6517 6518 /// If BB has an incoming value that will always trigger undefined behavior 6519 /// (eg. null pointer dereference), remove the branch leading here. 6520 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6521 DomTreeUpdater *DTU) { 6522 for (PHINode &PHI : BB->phis()) 6523 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6524 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6525 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6526 Instruction *T = Predecessor->getTerminator(); 6527 IRBuilder<> Builder(T); 6528 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6529 BB->removePredecessor(Predecessor); 6530 // Turn uncoditional branches into unreachables and remove the dead 6531 // destination from conditional branches. 6532 if (BI->isUnconditional()) 6533 Builder.CreateUnreachable(); 6534 else 6535 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6536 : BI->getSuccessor(0)); 6537 BI->eraseFromParent(); 6538 if (DTU) 6539 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6540 return true; 6541 } 6542 // TODO: SwitchInst. 6543 } 6544 6545 return false; 6546 } 6547 6548 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6549 bool Changed = false; 6550 6551 assert(BB && BB->getParent() && "Block not embedded in function!"); 6552 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6553 6554 // Remove basic blocks that have no predecessors (except the entry block)... 6555 // or that just have themself as a predecessor. These are unreachable. 6556 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6557 BB->getSinglePredecessor() == BB) { 6558 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6559 DeleteDeadBlock(BB, DTU); 6560 return true; 6561 } 6562 6563 // Check to see if we can constant propagate this terminator instruction 6564 // away... 6565 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6566 /*TLI=*/nullptr, DTU); 6567 6568 // Check for and eliminate duplicate PHI nodes in this block. 6569 Changed |= EliminateDuplicatePHINodes(BB); 6570 6571 // Check for and remove branches that will always cause undefined behavior. 6572 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6573 6574 // Merge basic blocks into their predecessor if there is only one distinct 6575 // pred, and if there is only one distinct successor of the predecessor, and 6576 // if there are no PHI nodes. 6577 if (MergeBlockIntoPredecessor(BB, DTU)) 6578 return true; 6579 6580 if (SinkCommon && Options.SinkCommonInsts) 6581 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6582 6583 IRBuilder<> Builder(BB); 6584 6585 if (Options.FoldTwoEntryPHINode) { 6586 // If there is a trivial two-entry PHI node in this basic block, and we can 6587 // eliminate it, do so now. 6588 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6589 if (PN->getNumIncomingValues() == 2) 6590 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6591 } 6592 6593 Instruction *Terminator = BB->getTerminator(); 6594 Builder.SetInsertPoint(Terminator); 6595 switch (Terminator->getOpcode()) { 6596 case Instruction::Br: 6597 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6598 break; 6599 case Instruction::Ret: 6600 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6601 break; 6602 case Instruction::Resume: 6603 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6604 break; 6605 case Instruction::CleanupRet: 6606 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6607 break; 6608 case Instruction::Switch: 6609 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6610 break; 6611 case Instruction::Unreachable: 6612 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6613 break; 6614 case Instruction::IndirectBr: 6615 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6616 break; 6617 } 6618 6619 return Changed; 6620 } 6621 6622 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6623 bool Changed = simplifyOnceImpl(BB); 6624 6625 return Changed; 6626 } 6627 6628 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6629 bool Changed = false; 6630 6631 // Repeated simplify BB as long as resimplification is requested. 6632 do { 6633 Resimplify = false; 6634 6635 // Perform one round of simplifcation. Resimplify flag will be set if 6636 // another iteration is requested. 6637 Changed |= simplifyOnce(BB); 6638 } while (Resimplify); 6639 6640 return Changed; 6641 } 6642 6643 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6644 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6645 ArrayRef<WeakVH> LoopHeaders) { 6646 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6647 Options) 6648 .run(BB); 6649 } 6650