1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetOperations.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/NoFolder.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/ValueMapper.h"
49 #include <algorithm>
50 #include <map>
51 #include <set>
52 using namespace llvm;
53 using namespace PatternMatch;
54 
55 #define DEBUG_TYPE "simplifycfg"
56 
57 // Chosen as 2 so as to be cheap, but still to have enough power to fold
58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
59 // To catch this, we need to fold a compare and a select, hence '2' being the
60 // minimum reasonable default.
61 static cl::opt<unsigned> PHINodeFoldingThreshold(
62     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
63     cl::desc(
64         "Control the amount of phi node folding to perform (default = 2)"));
65 
66 static cl::opt<bool> DupRet(
67     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
68     cl::desc("Duplicate return instructions into unconditional branches"));
69 
70 static cl::opt<bool>
71     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
72                cl::desc("Sink common instructions down to the end block"));
73 
74 static cl::opt<bool> HoistCondStores(
75     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
76     cl::desc("Hoist conditional stores if an unconditional store precedes"));
77 
78 static cl::opt<bool> MergeCondStores(
79     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
80     cl::desc("Hoist conditional stores even if an unconditional store does not "
81              "precede - hoist multiple conditional stores into a single "
82              "predicated store"));
83 
84 static cl::opt<bool> MergeCondStoresAggressively(
85     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
86     cl::desc("When merging conditional stores, do so even if the resultant "
87              "basic blocks are unlikely to be if-converted as a result"));
88 
89 static cl::opt<bool> SpeculateOneExpensiveInst(
90     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
91     cl::desc("Allow exactly one expensive instruction to be speculatively "
92              "executed"));
93 
94 static cl::opt<unsigned> MaxSpeculationDepth(
95     "max-speculation-depth", cl::Hidden, cl::init(10),
96     cl::desc("Limit maximum recursion depth when calculating costs of "
97              "speculatively executed instructions"));
98 
99 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
100 STATISTIC(NumLinearMaps,
101           "Number of switch instructions turned into linear mapping");
102 STATISTIC(NumLookupTables,
103           "Number of switch instructions turned into lookup tables");
104 STATISTIC(
105     NumLookupTablesHoles,
106     "Number of switch instructions turned into lookup tables (holes checked)");
107 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
108 STATISTIC(NumSinkCommons,
109           "Number of common instructions sunk down to the end block");
110 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
111 
112 namespace {
113 // The first field contains the value that the switch produces when a certain
114 // case group is selected, and the second field is a vector containing the
115 // cases composing the case group.
116 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
117     SwitchCaseResultVectorTy;
118 // The first field contains the phi node that generates a result of the switch
119 // and the second field contains the value generated for a certain case in the
120 // switch for that PHI.
121 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
122 
123 /// ValueEqualityComparisonCase - Represents a case of a switch.
124 struct ValueEqualityComparisonCase {
125   ConstantInt *Value;
126   BasicBlock *Dest;
127 
128   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
129       : Value(Value), Dest(Dest) {}
130 
131   bool operator<(ValueEqualityComparisonCase RHS) const {
132     // Comparing pointers is ok as we only rely on the order for uniquing.
133     return Value < RHS.Value;
134   }
135 
136   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
137 };
138 
139 class SimplifyCFGOpt {
140   const TargetTransformInfo &TTI;
141   const DataLayout &DL;
142   unsigned BonusInstThreshold;
143   AssumptionCache *AC;
144   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
145   Value *isValueEqualityComparison(TerminatorInst *TI);
146   BasicBlock *GetValueEqualityComparisonCases(
147       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
148   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
149                                                      BasicBlock *Pred,
150                                                      IRBuilder<> &Builder);
151   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
152                                            IRBuilder<> &Builder);
153 
154   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
155   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
156   bool SimplifySingleResume(ResumeInst *RI);
157   bool SimplifyCommonResume(ResumeInst *RI);
158   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
159   bool SimplifyUnreachable(UnreachableInst *UI);
160   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
161   bool SimplifyIndirectBr(IndirectBrInst *IBI);
162   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
163   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
164 
165 public:
166   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
167                  unsigned BonusInstThreshold, AssumptionCache *AC,
168                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
169       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
170         LoopHeaders(LoopHeaders) {}
171   bool run(BasicBlock *BB);
172 };
173 }
174 
175 /// Return true if it is safe to merge these two
176 /// terminator instructions together.
177 static bool
178 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
179                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
180   if (SI1 == SI2)
181     return false; // Can't merge with self!
182 
183   // It is not safe to merge these two switch instructions if they have a common
184   // successor, and if that successor has a PHI node, and if *that* PHI node has
185   // conflicting incoming values from the two switch blocks.
186   BasicBlock *SI1BB = SI1->getParent();
187   BasicBlock *SI2BB = SI2->getParent();
188 
189   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
190   bool Fail = false;
191   for (BasicBlock *Succ : successors(SI2BB))
192     if (SI1Succs.count(Succ))
193       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
194         PHINode *PN = cast<PHINode>(BBI);
195         if (PN->getIncomingValueForBlock(SI1BB) !=
196             PN->getIncomingValueForBlock(SI2BB)) {
197           if (FailBlocks)
198             FailBlocks->insert(Succ);
199           Fail = true;
200         }
201       }
202 
203   return !Fail;
204 }
205 
206 /// Return true if it is safe and profitable to merge these two terminator
207 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
208 /// store all PHI nodes in common successors.
209 static bool
210 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
211                                 Instruction *Cond,
212                                 SmallVectorImpl<PHINode *> &PhiNodes) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215   assert(SI1->isUnconditional() && SI2->isConditional());
216 
217   // We fold the unconditional branch if we can easily update all PHI nodes in
218   // common successors:
219   // 1> We have a constant incoming value for the conditional branch;
220   // 2> We have "Cond" as the incoming value for the unconditional branch;
221   // 3> SI2->getCondition() and Cond have same operands.
222   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
223   if (!Ci2)
224     return false;
225   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
226         Cond->getOperand(1) == Ci2->getOperand(1)) &&
227       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
228         Cond->getOperand(1) == Ci2->getOperand(0)))
229     return false;
230 
231   BasicBlock *SI1BB = SI1->getParent();
232   BasicBlock *SI2BB = SI2->getParent();
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   for (BasicBlock *Succ : successors(SI2BB))
235     if (SI1Succs.count(Succ))
236       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
237         PHINode *PN = cast<PHINode>(BBI);
238         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
239             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
240           return false;
241         PhiNodes.push_back(PN);
242       }
243   return true;
244 }
245 
246 /// Update PHI nodes in Succ to indicate that there will now be entries in it
247 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
248 /// will be the same as those coming in from ExistPred, an existing predecessor
249 /// of Succ.
250 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
251                                   BasicBlock *ExistPred) {
252   if (!isa<PHINode>(Succ->begin()))
253     return; // Quick exit if nothing to do
254 
255   PHINode *PN;
256   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
257     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
258 }
259 
260 /// Compute an abstract "cost" of speculating the given instruction,
261 /// which is assumed to be safe to speculate. TCC_Free means cheap,
262 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
263 /// expensive.
264 static unsigned ComputeSpeculationCost(const User *I,
265                                        const TargetTransformInfo &TTI) {
266   assert(isSafeToSpeculativelyExecute(I) &&
267          "Instruction is not safe to speculatively execute!");
268   return TTI.getUserCost(I);
269 }
270 
271 /// If we have a merge point of an "if condition" as accepted above,
272 /// return true if the specified value dominates the block.  We
273 /// don't handle the true generality of domination here, just a special case
274 /// which works well enough for us.
275 ///
276 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
277 /// see if V (which must be an instruction) and its recursive operands
278 /// that do not dominate BB have a combined cost lower than CostRemaining and
279 /// are non-trapping.  If both are true, the instruction is inserted into the
280 /// set and true is returned.
281 ///
282 /// The cost for most non-trapping instructions is defined as 1 except for
283 /// Select whose cost is 2.
284 ///
285 /// After this function returns, CostRemaining is decreased by the cost of
286 /// V plus its non-dominating operands.  If that cost is greater than
287 /// CostRemaining, false is returned and CostRemaining is undefined.
288 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
289                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
290                                 unsigned &CostRemaining,
291                                 const TargetTransformInfo &TTI,
292                                 unsigned Depth = 0) {
293   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
294   // so limit the recursion depth.
295   // TODO: While this recursion limit does prevent pathological behavior, it
296   // would be better to track visited instructions to avoid cycles.
297   if (Depth == MaxSpeculationDepth)
298     return false;
299 
300   Instruction *I = dyn_cast<Instruction>(V);
301   if (!I) {
302     // Non-instructions all dominate instructions, but not all constantexprs
303     // can be executed unconditionally.
304     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
305       if (C->canTrap())
306         return false;
307     return true;
308   }
309   BasicBlock *PBB = I->getParent();
310 
311   // We don't want to allow weird loops that might have the "if condition" in
312   // the bottom of this block.
313   if (PBB == BB)
314     return false;
315 
316   // If this instruction is defined in a block that contains an unconditional
317   // branch to BB, then it must be in the 'conditional' part of the "if
318   // statement".  If not, it definitely dominates the region.
319   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
320   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
321     return true;
322 
323   // If we aren't allowing aggressive promotion anymore, then don't consider
324   // instructions in the 'if region'.
325   if (!AggressiveInsts)
326     return false;
327 
328   // If we have seen this instruction before, don't count it again.
329   if (AggressiveInsts->count(I))
330     return true;
331 
332   // Okay, it looks like the instruction IS in the "condition".  Check to
333   // see if it's a cheap instruction to unconditionally compute, and if it
334   // only uses stuff defined outside of the condition.  If so, hoist it out.
335   if (!isSafeToSpeculativelyExecute(I))
336     return false;
337 
338   unsigned Cost = ComputeSpeculationCost(I, TTI);
339 
340   // Allow exactly one instruction to be speculated regardless of its cost
341   // (as long as it is safe to do so).
342   // This is intended to flatten the CFG even if the instruction is a division
343   // or other expensive operation. The speculation of an expensive instruction
344   // is expected to be undone in CodeGenPrepare if the speculation has not
345   // enabled further IR optimizations.
346   if (Cost > CostRemaining &&
347       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
348     return false;
349 
350   // Avoid unsigned wrap.
351   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
352 
353   // Okay, we can only really hoist these out if their operands do
354   // not take us over the cost threshold.
355   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
356     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
357                              Depth + 1))
358       return false;
359   // Okay, it's safe to do this!  Remember this instruction.
360   AggressiveInsts->insert(I);
361   return true;
362 }
363 
364 /// Extract ConstantInt from value, looking through IntToPtr
365 /// and PointerNullValue. Return NULL if value is not a constant int.
366 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
367   // Normal constant int.
368   ConstantInt *CI = dyn_cast<ConstantInt>(V);
369   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
370     return CI;
371 
372   // This is some kind of pointer constant. Turn it into a pointer-sized
373   // ConstantInt if possible.
374   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
375 
376   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
377   if (isa<ConstantPointerNull>(V))
378     return ConstantInt::get(PtrTy, 0);
379 
380   // IntToPtr const int.
381   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
382     if (CE->getOpcode() == Instruction::IntToPtr)
383       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
384         // The constant is very likely to have the right type already.
385         if (CI->getType() == PtrTy)
386           return CI;
387         else
388           return cast<ConstantInt>(
389               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
390       }
391   return nullptr;
392 }
393 
394 namespace {
395 
396 /// Given a chain of or (||) or and (&&) comparison of a value against a
397 /// constant, this will try to recover the information required for a switch
398 /// structure.
399 /// It will depth-first traverse the chain of comparison, seeking for patterns
400 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
401 /// representing the different cases for the switch.
402 /// Note that if the chain is composed of '||' it will build the set of elements
403 /// that matches the comparisons (i.e. any of this value validate the chain)
404 /// while for a chain of '&&' it will build the set elements that make the test
405 /// fail.
406 struct ConstantComparesGatherer {
407   const DataLayout &DL;
408   Value *CompValue; /// Value found for the switch comparison
409   Value *Extra;     /// Extra clause to be checked before the switch
410   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
411   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
412 
413   /// Construct and compute the result for the comparison instruction Cond
414   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
415       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
416     gather(Cond);
417   }
418 
419   /// Prevent copy
420   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
421   ConstantComparesGatherer &
422   operator=(const ConstantComparesGatherer &) = delete;
423 
424 private:
425   /// Try to set the current value used for the comparison, it succeeds only if
426   /// it wasn't set before or if the new value is the same as the old one
427   bool setValueOnce(Value *NewVal) {
428     if (CompValue && CompValue != NewVal)
429       return false;
430     CompValue = NewVal;
431     return (CompValue != nullptr);
432   }
433 
434   /// Try to match Instruction "I" as a comparison against a constant and
435   /// populates the array Vals with the set of values that match (or do not
436   /// match depending on isEQ).
437   /// Return false on failure. On success, the Value the comparison matched
438   /// against is placed in CompValue.
439   /// If CompValue is already set, the function is expected to fail if a match
440   /// is found but the value compared to is different.
441   bool matchInstruction(Instruction *I, bool isEQ) {
442     // If this is an icmp against a constant, handle this as one of the cases.
443     ICmpInst *ICI;
444     ConstantInt *C;
445     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
446           (C = GetConstantInt(I->getOperand(1), DL)))) {
447       return false;
448     }
449 
450     Value *RHSVal;
451     const APInt *RHSC;
452 
453     // Pattern match a special case
454     // (x & ~2^z) == y --> x == y || x == y|2^z
455     // This undoes a transformation done by instcombine to fuse 2 compares.
456     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
457 
458       // It's a little bit hard to see why the following transformations are
459       // correct. Here is a CVC3 program to verify them for 64-bit values:
460 
461       /*
462          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
463          x    : BITVECTOR(64);
464          y    : BITVECTOR(64);
465          z    : BITVECTOR(64);
466          mask : BITVECTOR(64) = BVSHL(ONE, z);
467          QUERY( (y & ~mask = y) =>
468                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
469          );
470          QUERY( (y |  mask = y) =>
471                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
472          );
473       */
474 
475       // Please note that each pattern must be a dual implication (<--> or
476       // iff). One directional implication can create spurious matches. If the
477       // implication is only one-way, an unsatisfiable condition on the left
478       // side can imply a satisfiable condition on the right side. Dual
479       // implication ensures that satisfiable conditions are transformed to
480       // other satisfiable conditions and unsatisfiable conditions are
481       // transformed to other unsatisfiable conditions.
482 
483       // Here is a concrete example of a unsatisfiable condition on the left
484       // implying a satisfiable condition on the right:
485       //
486       // mask = (1 << z)
487       // (x & ~mask) == y  --> (x == y || x == (y | mask))
488       //
489       // Substituting y = 3, z = 0 yields:
490       // (x & -2) == 3 --> (x == 3 || x == 2)
491 
492       // Pattern match a special case:
493       /*
494         QUERY( (y & ~mask = y) =>
495                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
496         );
497       */
498       if (match(ICI->getOperand(0),
499                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
500         APInt Mask = ~*RHSC;
501         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
502           // If we already have a value for the switch, it has to match!
503           if (!setValueOnce(RHSVal))
504             return false;
505 
506           Vals.push_back(C);
507           Vals.push_back(
508               ConstantInt::get(C->getContext(),
509                                C->getValue() | Mask));
510           UsedICmps++;
511           return true;
512         }
513       }
514 
515       // Pattern match a special case:
516       /*
517         QUERY( (y |  mask = y) =>
518                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
519         );
520       */
521       if (match(ICI->getOperand(0),
522                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
523         APInt Mask = *RHSC;
524         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
525           // If we already have a value for the switch, it has to match!
526           if (!setValueOnce(RHSVal))
527             return false;
528 
529           Vals.push_back(C);
530           Vals.push_back(ConstantInt::get(C->getContext(),
531                                           C->getValue() & ~Mask));
532           UsedICmps++;
533           return true;
534         }
535       }
536 
537       // If we already have a value for the switch, it has to match!
538       if (!setValueOnce(ICI->getOperand(0)))
539         return false;
540 
541       UsedICmps++;
542       Vals.push_back(C);
543       return ICI->getOperand(0);
544     }
545 
546     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
547     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
548         ICI->getPredicate(), C->getValue());
549 
550     // Shift the range if the compare is fed by an add. This is the range
551     // compare idiom as emitted by instcombine.
552     Value *CandidateVal = I->getOperand(0);
553     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
554       Span = Span.subtract(*RHSC);
555       CandidateVal = RHSVal;
556     }
557 
558     // If this is an and/!= check, then we are looking to build the set of
559     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
560     // x != 0 && x != 1.
561     if (!isEQ)
562       Span = Span.inverse();
563 
564     // If there are a ton of values, we don't want to make a ginormous switch.
565     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
566       return false;
567     }
568 
569     // If we already have a value for the switch, it has to match!
570     if (!setValueOnce(CandidateVal))
571       return false;
572 
573     // Add all values from the range to the set
574     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
575       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
576 
577     UsedICmps++;
578     return true;
579   }
580 
581   /// Given a potentially 'or'd or 'and'd together collection of icmp
582   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
583   /// the value being compared, and stick the list constants into the Vals
584   /// vector.
585   /// One "Extra" case is allowed to differ from the other.
586   void gather(Value *V) {
587     Instruction *I = dyn_cast<Instruction>(V);
588     bool isEQ = (I->getOpcode() == Instruction::Or);
589 
590     // Keep a stack (SmallVector for efficiency) for depth-first traversal
591     SmallVector<Value *, 8> DFT;
592     SmallPtrSet<Value *, 8> Visited;
593 
594     // Initialize
595     Visited.insert(V);
596     DFT.push_back(V);
597 
598     while (!DFT.empty()) {
599       V = DFT.pop_back_val();
600 
601       if (Instruction *I = dyn_cast<Instruction>(V)) {
602         // If it is a || (or && depending on isEQ), process the operands.
603         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
604           if (Visited.insert(I->getOperand(1)).second)
605             DFT.push_back(I->getOperand(1));
606           if (Visited.insert(I->getOperand(0)).second)
607             DFT.push_back(I->getOperand(0));
608           continue;
609         }
610 
611         // Try to match the current instruction
612         if (matchInstruction(I, isEQ))
613           // Match succeed, continue the loop
614           continue;
615       }
616 
617       // One element of the sequence of || (or &&) could not be match as a
618       // comparison against the same value as the others.
619       // We allow only one "Extra" case to be checked before the switch
620       if (!Extra) {
621         Extra = V;
622         continue;
623       }
624       // Failed to parse a proper sequence, abort now
625       CompValue = nullptr;
626       break;
627     }
628   }
629 };
630 }
631 
632 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
633   Instruction *Cond = nullptr;
634   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
635     Cond = dyn_cast<Instruction>(SI->getCondition());
636   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
637     if (BI->isConditional())
638       Cond = dyn_cast<Instruction>(BI->getCondition());
639   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
640     Cond = dyn_cast<Instruction>(IBI->getAddress());
641   }
642 
643   TI->eraseFromParent();
644   if (Cond)
645     RecursivelyDeleteTriviallyDeadInstructions(Cond);
646 }
647 
648 /// Return true if the specified terminator checks
649 /// to see if a value is equal to constant integer value.
650 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
651   Value *CV = nullptr;
652   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
653     // Do not permit merging of large switch instructions into their
654     // predecessors unless there is only one predecessor.
655     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
656                                                pred_end(SI->getParent())) <=
657         128)
658       CV = SI->getCondition();
659   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660     if (BI->isConditional() && BI->getCondition()->hasOneUse())
661       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
662         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
663           CV = ICI->getOperand(0);
664       }
665 
666   // Unwrap any lossless ptrtoint cast.
667   if (CV) {
668     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
669       Value *Ptr = PTII->getPointerOperand();
670       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
671         CV = Ptr;
672     }
673   }
674   return CV;
675 }
676 
677 /// Given a value comparison instruction,
678 /// decode all of the 'cases' that it represents and return the 'default' block.
679 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
680     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
681   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
682     Cases.reserve(SI->getNumCases());
683     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
684          ++i)
685       Cases.push_back(
686           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
687     return SI->getDefaultDest();
688   }
689 
690   BranchInst *BI = cast<BranchInst>(TI);
691   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
692   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
693   Cases.push_back(ValueEqualityComparisonCase(
694       GetConstantInt(ICI->getOperand(1), DL), Succ));
695   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
696 }
697 
698 /// Given a vector of bb/value pairs, remove any entries
699 /// in the list that match the specified block.
700 static void
701 EliminateBlockCases(BasicBlock *BB,
702                     std::vector<ValueEqualityComparisonCase> &Cases) {
703   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
704 }
705 
706 /// Return true if there are any keys in C1 that exist in C2 as well.
707 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
708                           std::vector<ValueEqualityComparisonCase> &C2) {
709   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
710 
711   // Make V1 be smaller than V2.
712   if (V1->size() > V2->size())
713     std::swap(V1, V2);
714 
715   if (V1->size() == 0)
716     return false;
717   if (V1->size() == 1) {
718     // Just scan V2.
719     ConstantInt *TheVal = (*V1)[0].Value;
720     for (unsigned i = 0, e = V2->size(); i != e; ++i)
721       if (TheVal == (*V2)[i].Value)
722         return true;
723   }
724 
725   // Otherwise, just sort both lists and compare element by element.
726   array_pod_sort(V1->begin(), V1->end());
727   array_pod_sort(V2->begin(), V2->end());
728   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
729   while (i1 != e1 && i2 != e2) {
730     if ((*V1)[i1].Value == (*V2)[i2].Value)
731       return true;
732     if ((*V1)[i1].Value < (*V2)[i2].Value)
733       ++i1;
734     else
735       ++i2;
736   }
737   return false;
738 }
739 
740 /// If TI is known to be a terminator instruction and its block is known to
741 /// only have a single predecessor block, check to see if that predecessor is
742 /// also a value comparison with the same value, and if that comparison
743 /// determines the outcome of this comparison. If so, simplify TI. This does a
744 /// very limited form of jump threading.
745 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
746     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
747   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
748   if (!PredVal)
749     return false; // Not a value comparison in predecessor.
750 
751   Value *ThisVal = isValueEqualityComparison(TI);
752   assert(ThisVal && "This isn't a value comparison!!");
753   if (ThisVal != PredVal)
754     return false; // Different predicates.
755 
756   // TODO: Preserve branch weight metadata, similarly to how
757   // FoldValueComparisonIntoPredecessors preserves it.
758 
759   // Find out information about when control will move from Pred to TI's block.
760   std::vector<ValueEqualityComparisonCase> PredCases;
761   BasicBlock *PredDef =
762       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
763   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
764 
765   // Find information about how control leaves this block.
766   std::vector<ValueEqualityComparisonCase> ThisCases;
767   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
768   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
769 
770   // If TI's block is the default block from Pred's comparison, potentially
771   // simplify TI based on this knowledge.
772   if (PredDef == TI->getParent()) {
773     // If we are here, we know that the value is none of those cases listed in
774     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
775     // can simplify TI.
776     if (!ValuesOverlap(PredCases, ThisCases))
777       return false;
778 
779     if (isa<BranchInst>(TI)) {
780       // Okay, one of the successors of this condbr is dead.  Convert it to a
781       // uncond br.
782       assert(ThisCases.size() == 1 && "Branch can only have one case!");
783       // Insert the new branch.
784       Instruction *NI = Builder.CreateBr(ThisDef);
785       (void)NI;
786 
787       // Remove PHI node entries for the dead edge.
788       ThisCases[0].Dest->removePredecessor(TI->getParent());
789 
790       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
791                    << "Through successor TI: " << *TI << "Leaving: " << *NI
792                    << "\n");
793 
794       EraseTerminatorInstAndDCECond(TI);
795       return true;
796     }
797 
798     SwitchInst *SI = cast<SwitchInst>(TI);
799     // Okay, TI has cases that are statically dead, prune them away.
800     SmallPtrSet<Constant *, 16> DeadCases;
801     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
802       DeadCases.insert(PredCases[i].Value);
803 
804     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
805                  << "Through successor TI: " << *TI);
806 
807     // Collect branch weights into a vector.
808     SmallVector<uint32_t, 8> Weights;
809     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
810     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
811     if (HasWeight)
812       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
813            ++MD_i) {
814         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
815         Weights.push_back(CI->getValue().getZExtValue());
816       }
817     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
818       --i;
819       if (DeadCases.count(i.getCaseValue())) {
820         if (HasWeight) {
821           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
822           Weights.pop_back();
823         }
824         i.getCaseSuccessor()->removePredecessor(TI->getParent());
825         SI->removeCase(i);
826       }
827     }
828     if (HasWeight && Weights.size() >= 2)
829       SI->setMetadata(LLVMContext::MD_prof,
830                       MDBuilder(SI->getParent()->getContext())
831                           .createBranchWeights(Weights));
832 
833     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
834     return true;
835   }
836 
837   // Otherwise, TI's block must correspond to some matched value.  Find out
838   // which value (or set of values) this is.
839   ConstantInt *TIV = nullptr;
840   BasicBlock *TIBB = TI->getParent();
841   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
842     if (PredCases[i].Dest == TIBB) {
843       if (TIV)
844         return false; // Cannot handle multiple values coming to this block.
845       TIV = PredCases[i].Value;
846     }
847   assert(TIV && "No edge from pred to succ?");
848 
849   // Okay, we found the one constant that our value can be if we get into TI's
850   // BB.  Find out which successor will unconditionally be branched to.
851   BasicBlock *TheRealDest = nullptr;
852   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
853     if (ThisCases[i].Value == TIV) {
854       TheRealDest = ThisCases[i].Dest;
855       break;
856     }
857 
858   // If not handled by any explicit cases, it is handled by the default case.
859   if (!TheRealDest)
860     TheRealDest = ThisDef;
861 
862   // Remove PHI node entries for dead edges.
863   BasicBlock *CheckEdge = TheRealDest;
864   for (BasicBlock *Succ : successors(TIBB))
865     if (Succ != CheckEdge)
866       Succ->removePredecessor(TIBB);
867     else
868       CheckEdge = nullptr;
869 
870   // Insert the new branch.
871   Instruction *NI = Builder.CreateBr(TheRealDest);
872   (void)NI;
873 
874   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
875                << "Through successor TI: " << *TI << "Leaving: " << *NI
876                << "\n");
877 
878   EraseTerminatorInstAndDCECond(TI);
879   return true;
880 }
881 
882 namespace {
883 /// This class implements a stable ordering of constant
884 /// integers that does not depend on their address.  This is important for
885 /// applications that sort ConstantInt's to ensure uniqueness.
886 struct ConstantIntOrdering {
887   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
888     return LHS->getValue().ult(RHS->getValue());
889   }
890 };
891 }
892 
893 static int ConstantIntSortPredicate(ConstantInt *const *P1,
894                                     ConstantInt *const *P2) {
895   const ConstantInt *LHS = *P1;
896   const ConstantInt *RHS = *P2;
897   if (LHS == RHS)
898     return 0;
899   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
900 }
901 
902 static inline bool HasBranchWeights(const Instruction *I) {
903   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
904   if (ProfMD && ProfMD->getOperand(0))
905     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
906       return MDS->getString().equals("branch_weights");
907 
908   return false;
909 }
910 
911 /// Get Weights of a given TerminatorInst, the default weight is at the front
912 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
913 /// metadata.
914 static void GetBranchWeights(TerminatorInst *TI,
915                              SmallVectorImpl<uint64_t> &Weights) {
916   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
917   assert(MD);
918   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
919     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
920     Weights.push_back(CI->getValue().getZExtValue());
921   }
922 
923   // If TI is a conditional eq, the default case is the false case,
924   // and the corresponding branch-weight data is at index 2. We swap the
925   // default weight to be the first entry.
926   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
927     assert(Weights.size() == 2);
928     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
929     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
930       std::swap(Weights.front(), Weights.back());
931   }
932 }
933 
934 /// Keep halving the weights until all can fit in uint32_t.
935 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
936   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
937   if (Max > UINT_MAX) {
938     unsigned Offset = 32 - countLeadingZeros(Max);
939     for (uint64_t &I : Weights)
940       I >>= Offset;
941   }
942 }
943 
944 /// The specified terminator is a value equality comparison instruction
945 /// (either a switch or a branch on "X == c").
946 /// See if any of the predecessors of the terminator block are value comparisons
947 /// on the same value.  If so, and if safe to do so, fold them together.
948 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
949                                                          IRBuilder<> &Builder) {
950   BasicBlock *BB = TI->getParent();
951   Value *CV = isValueEqualityComparison(TI); // CondVal
952   assert(CV && "Not a comparison?");
953   bool Changed = false;
954 
955   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
956   while (!Preds.empty()) {
957     BasicBlock *Pred = Preds.pop_back_val();
958 
959     // See if the predecessor is a comparison with the same value.
960     TerminatorInst *PTI = Pred->getTerminator();
961     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
962 
963     if (PCV == CV && TI != PTI) {
964       SmallSetVector<BasicBlock*, 4> FailBlocks;
965       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
966         for (auto *Succ : FailBlocks) {
967           std::vector<BasicBlock*> Blocks = { TI->getParent() };
968           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
969             return false;
970         }
971       }
972 
973       // Figure out which 'cases' to copy from SI to PSI.
974       std::vector<ValueEqualityComparisonCase> BBCases;
975       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
976 
977       std::vector<ValueEqualityComparisonCase> PredCases;
978       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
979 
980       // Based on whether the default edge from PTI goes to BB or not, fill in
981       // PredCases and PredDefault with the new switch cases we would like to
982       // build.
983       SmallVector<BasicBlock *, 8> NewSuccessors;
984 
985       // Update the branch weight metadata along the way
986       SmallVector<uint64_t, 8> Weights;
987       bool PredHasWeights = HasBranchWeights(PTI);
988       bool SuccHasWeights = HasBranchWeights(TI);
989 
990       if (PredHasWeights) {
991         GetBranchWeights(PTI, Weights);
992         // branch-weight metadata is inconsistent here.
993         if (Weights.size() != 1 + PredCases.size())
994           PredHasWeights = SuccHasWeights = false;
995       } else if (SuccHasWeights)
996         // If there are no predecessor weights but there are successor weights,
997         // populate Weights with 1, which will later be scaled to the sum of
998         // successor's weights
999         Weights.assign(1 + PredCases.size(), 1);
1000 
1001       SmallVector<uint64_t, 8> SuccWeights;
1002       if (SuccHasWeights) {
1003         GetBranchWeights(TI, SuccWeights);
1004         // branch-weight metadata is inconsistent here.
1005         if (SuccWeights.size() != 1 + BBCases.size())
1006           PredHasWeights = SuccHasWeights = false;
1007       } else if (PredHasWeights)
1008         SuccWeights.assign(1 + BBCases.size(), 1);
1009 
1010       if (PredDefault == BB) {
1011         // If this is the default destination from PTI, only the edges in TI
1012         // that don't occur in PTI, or that branch to BB will be activated.
1013         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1014         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1015           if (PredCases[i].Dest != BB)
1016             PTIHandled.insert(PredCases[i].Value);
1017           else {
1018             // The default destination is BB, we don't need explicit targets.
1019             std::swap(PredCases[i], PredCases.back());
1020 
1021             if (PredHasWeights || SuccHasWeights) {
1022               // Increase weight for the default case.
1023               Weights[0] += Weights[i + 1];
1024               std::swap(Weights[i + 1], Weights.back());
1025               Weights.pop_back();
1026             }
1027 
1028             PredCases.pop_back();
1029             --i;
1030             --e;
1031           }
1032 
1033         // Reconstruct the new switch statement we will be building.
1034         if (PredDefault != BBDefault) {
1035           PredDefault->removePredecessor(Pred);
1036           PredDefault = BBDefault;
1037           NewSuccessors.push_back(BBDefault);
1038         }
1039 
1040         unsigned CasesFromPred = Weights.size();
1041         uint64_t ValidTotalSuccWeight = 0;
1042         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1043           if (!PTIHandled.count(BBCases[i].Value) &&
1044               BBCases[i].Dest != BBDefault) {
1045             PredCases.push_back(BBCases[i]);
1046             NewSuccessors.push_back(BBCases[i].Dest);
1047             if (SuccHasWeights || PredHasWeights) {
1048               // The default weight is at index 0, so weight for the ith case
1049               // should be at index i+1. Scale the cases from successor by
1050               // PredDefaultWeight (Weights[0]).
1051               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1052               ValidTotalSuccWeight += SuccWeights[i + 1];
1053             }
1054           }
1055 
1056         if (SuccHasWeights || PredHasWeights) {
1057           ValidTotalSuccWeight += SuccWeights[0];
1058           // Scale the cases from predecessor by ValidTotalSuccWeight.
1059           for (unsigned i = 1; i < CasesFromPred; ++i)
1060             Weights[i] *= ValidTotalSuccWeight;
1061           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1062           Weights[0] *= SuccWeights[0];
1063         }
1064       } else {
1065         // If this is not the default destination from PSI, only the edges
1066         // in SI that occur in PSI with a destination of BB will be
1067         // activated.
1068         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1069         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1070         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1071           if (PredCases[i].Dest == BB) {
1072             PTIHandled.insert(PredCases[i].Value);
1073 
1074             if (PredHasWeights || SuccHasWeights) {
1075               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1076               std::swap(Weights[i + 1], Weights.back());
1077               Weights.pop_back();
1078             }
1079 
1080             std::swap(PredCases[i], PredCases.back());
1081             PredCases.pop_back();
1082             --i;
1083             --e;
1084           }
1085 
1086         // Okay, now we know which constants were sent to BB from the
1087         // predecessor.  Figure out where they will all go now.
1088         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1089           if (PTIHandled.count(BBCases[i].Value)) {
1090             // If this is one we are capable of getting...
1091             if (PredHasWeights || SuccHasWeights)
1092               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1093             PredCases.push_back(BBCases[i]);
1094             NewSuccessors.push_back(BBCases[i].Dest);
1095             PTIHandled.erase(
1096                 BBCases[i].Value); // This constant is taken care of
1097           }
1098 
1099         // If there are any constants vectored to BB that TI doesn't handle,
1100         // they must go to the default destination of TI.
1101         for (ConstantInt *I : PTIHandled) {
1102           if (PredHasWeights || SuccHasWeights)
1103             Weights.push_back(WeightsForHandled[I]);
1104           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1105           NewSuccessors.push_back(BBDefault);
1106         }
1107       }
1108 
1109       // Okay, at this point, we know which new successor Pred will get.  Make
1110       // sure we update the number of entries in the PHI nodes for these
1111       // successors.
1112       for (BasicBlock *NewSuccessor : NewSuccessors)
1113         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1114 
1115       Builder.SetInsertPoint(PTI);
1116       // Convert pointer to int before we switch.
1117       if (CV->getType()->isPointerTy()) {
1118         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1119                                     "magicptr");
1120       }
1121 
1122       // Now that the successors are updated, create the new Switch instruction.
1123       SwitchInst *NewSI =
1124           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1125       NewSI->setDebugLoc(PTI->getDebugLoc());
1126       for (ValueEqualityComparisonCase &V : PredCases)
1127         NewSI->addCase(V.Value, V.Dest);
1128 
1129       if (PredHasWeights || SuccHasWeights) {
1130         // Halve the weights if any of them cannot fit in an uint32_t
1131         FitWeights(Weights);
1132 
1133         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1134 
1135         NewSI->setMetadata(
1136             LLVMContext::MD_prof,
1137             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1138       }
1139 
1140       EraseTerminatorInstAndDCECond(PTI);
1141 
1142       // Okay, last check.  If BB is still a successor of PSI, then we must
1143       // have an infinite loop case.  If so, add an infinitely looping block
1144       // to handle the case to preserve the behavior of the code.
1145       BasicBlock *InfLoopBlock = nullptr;
1146       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1147         if (NewSI->getSuccessor(i) == BB) {
1148           if (!InfLoopBlock) {
1149             // Insert it at the end of the function, because it's either code,
1150             // or it won't matter if it's hot. :)
1151             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1152                                               BB->getParent());
1153             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1154           }
1155           NewSI->setSuccessor(i, InfLoopBlock);
1156         }
1157 
1158       Changed = true;
1159     }
1160   }
1161   return Changed;
1162 }
1163 
1164 // If we would need to insert a select that uses the value of this invoke
1165 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1166 // can't hoist the invoke, as there is nowhere to put the select in this case.
1167 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1168                                 Instruction *I1, Instruction *I2) {
1169   for (BasicBlock *Succ : successors(BB1)) {
1170     PHINode *PN;
1171     for (BasicBlock::iterator BBI = Succ->begin();
1172          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1173       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1174       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1175       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1176         return false;
1177       }
1178     }
1179   }
1180   return true;
1181 }
1182 
1183 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1184 
1185 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1186 /// in the two blocks up into the branch block. The caller of this function
1187 /// guarantees that BI's block dominates BB1 and BB2.
1188 static bool HoistThenElseCodeToIf(BranchInst *BI,
1189                                   const TargetTransformInfo &TTI) {
1190   // This does very trivial matching, with limited scanning, to find identical
1191   // instructions in the two blocks.  In particular, we don't want to get into
1192   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1193   // such, we currently just scan for obviously identical instructions in an
1194   // identical order.
1195   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1196   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1197 
1198   BasicBlock::iterator BB1_Itr = BB1->begin();
1199   BasicBlock::iterator BB2_Itr = BB2->begin();
1200 
1201   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1202   // Skip debug info if it is not identical.
1203   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1204   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1205   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1206     while (isa<DbgInfoIntrinsic>(I1))
1207       I1 = &*BB1_Itr++;
1208     while (isa<DbgInfoIntrinsic>(I2))
1209       I2 = &*BB2_Itr++;
1210   }
1211   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1212       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1213     return false;
1214 
1215   BasicBlock *BIParent = BI->getParent();
1216 
1217   bool Changed = false;
1218   do {
1219     // If we are hoisting the terminator instruction, don't move one (making a
1220     // broken BB), instead clone it, and remove BI.
1221     if (isa<TerminatorInst>(I1))
1222       goto HoistTerminator;
1223 
1224     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1225       return Changed;
1226 
1227     // For a normal instruction, we just move one to right before the branch,
1228     // then replace all uses of the other with the first.  Finally, we remove
1229     // the now redundant second instruction.
1230     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1231     if (!I2->use_empty())
1232       I2->replaceAllUsesWith(I1);
1233     I1->andIRFlags(I2);
1234     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1235                            LLVMContext::MD_range,
1236                            LLVMContext::MD_fpmath,
1237                            LLVMContext::MD_invariant_load,
1238                            LLVMContext::MD_nonnull,
1239                            LLVMContext::MD_invariant_group,
1240                            LLVMContext::MD_align,
1241                            LLVMContext::MD_dereferenceable,
1242                            LLVMContext::MD_dereferenceable_or_null,
1243                            LLVMContext::MD_mem_parallel_loop_access};
1244     combineMetadata(I1, I2, KnownIDs);
1245 
1246     // If the debug loc for I1 and I2 are different, as we are combining them
1247     // into one instruction, we do not want to select debug loc randomly from
1248     // I1 or I2. Instead, we set the 0-line DebugLoc to note that we do not
1249     // know the debug loc of the hoisted instruction.
1250     if (!isa<CallInst>(I1) &&  I1->getDebugLoc() != I2->getDebugLoc())
1251       I1->setDebugLoc(DebugLoc());
1252 
1253     I2->eraseFromParent();
1254     Changed = true;
1255 
1256     I1 = &*BB1_Itr++;
1257     I2 = &*BB2_Itr++;
1258     // Skip debug info if it is not identical.
1259     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1260     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1261     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1262       while (isa<DbgInfoIntrinsic>(I1))
1263         I1 = &*BB1_Itr++;
1264       while (isa<DbgInfoIntrinsic>(I2))
1265         I2 = &*BB2_Itr++;
1266     }
1267   } while (I1->isIdenticalToWhenDefined(I2));
1268 
1269   return true;
1270 
1271 HoistTerminator:
1272   // It may not be possible to hoist an invoke.
1273   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1274     return Changed;
1275 
1276   for (BasicBlock *Succ : successors(BB1)) {
1277     PHINode *PN;
1278     for (BasicBlock::iterator BBI = Succ->begin();
1279          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1280       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1281       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1282       if (BB1V == BB2V)
1283         continue;
1284 
1285       // Check for passingValueIsAlwaysUndefined here because we would rather
1286       // eliminate undefined control flow then converting it to a select.
1287       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1288           passingValueIsAlwaysUndefined(BB2V, PN))
1289         return Changed;
1290 
1291       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1292         return Changed;
1293       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1294         return Changed;
1295     }
1296   }
1297 
1298   // Okay, it is safe to hoist the terminator.
1299   Instruction *NT = I1->clone();
1300   BIParent->getInstList().insert(BI->getIterator(), NT);
1301   if (!NT->getType()->isVoidTy()) {
1302     I1->replaceAllUsesWith(NT);
1303     I2->replaceAllUsesWith(NT);
1304     NT->takeName(I1);
1305   }
1306 
1307   IRBuilder<NoFolder> Builder(NT);
1308   // Hoisting one of the terminators from our successor is a great thing.
1309   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1310   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1311   // nodes, so we insert select instruction to compute the final result.
1312   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1313   for (BasicBlock *Succ : successors(BB1)) {
1314     PHINode *PN;
1315     for (BasicBlock::iterator BBI = Succ->begin();
1316          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1317       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1318       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1319       if (BB1V == BB2V)
1320         continue;
1321 
1322       // These values do not agree.  Insert a select instruction before NT
1323       // that determines the right value.
1324       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1325       if (!SI)
1326         SI = cast<SelectInst>(
1327             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1328                                  BB1V->getName() + "." + BB2V->getName(), BI));
1329 
1330       // Make the PHI node use the select for all incoming values for BB1/BB2
1331       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1332         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1333           PN->setIncomingValue(i, SI);
1334     }
1335   }
1336 
1337   // Update any PHI nodes in our new successors.
1338   for (BasicBlock *Succ : successors(BB1))
1339     AddPredecessorToBlock(Succ, BIParent, BB1);
1340 
1341   EraseTerminatorInstAndDCECond(BI);
1342   return true;
1343 }
1344 
1345 // Is it legal to place a variable in operand \c OpIdx of \c I?
1346 // FIXME: This should be promoted to Instruction.
1347 static bool canReplaceOperandWithVariable(const Instruction *I,
1348                                           unsigned OpIdx) {
1349   // We can't have a PHI with a metadata type.
1350   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1351     return false;
1352 
1353   // Early exit.
1354   if (!isa<Constant>(I->getOperand(OpIdx)))
1355     return true;
1356 
1357   switch (I->getOpcode()) {
1358   default:
1359     return true;
1360   case Instruction::Call:
1361   case Instruction::Invoke:
1362     // FIXME: many arithmetic intrinsics have no issue taking a
1363     // variable, however it's hard to distingish these from
1364     // specials such as @llvm.frameaddress that require a constant.
1365     return !isa<IntrinsicInst>(I);
1366   case Instruction::ShuffleVector:
1367     // Shufflevector masks are constant.
1368     return OpIdx != 2;
1369   case Instruction::ExtractValue:
1370   case Instruction::InsertValue:
1371     // All operands apart from the first are constant.
1372     return OpIdx == 0;
1373   case Instruction::Alloca:
1374     return false;
1375   case Instruction::GetElementPtr:
1376     if (OpIdx == 0)
1377       return true;
1378     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1379     return !It->isStructTy();
1380   }
1381 }
1382 
1383 // All instructions in Insts belong to different blocks that all unconditionally
1384 // branch to a common successor. Analyze each instruction and return true if it
1385 // would be possible to sink them into their successor, creating one common
1386 // instruction instead. For every value that would be required to be provided by
1387 // PHI node (because an operand varies in each input block), add to PHIOperands.
1388 static bool canSinkInstructions(
1389     ArrayRef<Instruction *> Insts,
1390     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1391   // Prune out obviously bad instructions to move. Any non-store instruction
1392   // must have exactly one use, and we check later that use is by a single,
1393   // common PHI instruction in the successor.
1394   for (auto *I : Insts) {
1395     // These instructions may change or break semantics if moved.
1396     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1397         I->getType()->isTokenTy())
1398       return false;
1399     // Everything must have only one use too, apart from stores which
1400     // have no uses.
1401     if (!isa<StoreInst>(I) && !I->hasOneUse())
1402       return false;
1403   }
1404 
1405   const Instruction *I0 = Insts.front();
1406   for (auto *I : Insts)
1407     if (!I->isSameOperationAs(I0))
1408       return false;
1409 
1410   // All instructions in Insts are known to be the same opcode. If they aren't
1411   // stores, check the only user of each is a PHI or in the same block as the
1412   // instruction, because if a user is in the same block as an instruction
1413   // we're contemplating sinking, it must already be determined to be sinkable.
1414   if (!isa<StoreInst>(I0)) {
1415     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1416     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1417     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1418           auto *U = cast<Instruction>(*I->user_begin());
1419           return (PNUse &&
1420                   PNUse->getParent() == Succ &&
1421                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1422                  U->getParent() == I->getParent();
1423         }))
1424       return false;
1425   }
1426 
1427   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1428     if (I0->getOperand(OI)->getType()->isTokenTy())
1429       // Don't touch any operand of token type.
1430       return false;
1431 
1432     // Because SROA can't handle speculating stores of selects, try not
1433     // to sink loads or stores of allocas when we'd have to create a PHI for
1434     // the address operand. Also, because it is likely that loads or stores
1435     // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1436     // This can cause code churn which can have unintended consequences down
1437     // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1438     // FIXME: This is a workaround for a deficiency in SROA - see
1439     // https://llvm.org/bugs/show_bug.cgi?id=30188
1440     if (OI == 1 && isa<StoreInst>(I0) &&
1441         any_of(Insts, [](const Instruction *I) {
1442           return isa<AllocaInst>(I->getOperand(1));
1443         }))
1444       return false;
1445     if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1446           return isa<AllocaInst>(I->getOperand(0));
1447         }))
1448       return false;
1449 
1450     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1451       assert(I->getNumOperands() == I0->getNumOperands());
1452       return I->getOperand(OI) == I0->getOperand(OI);
1453     };
1454     if (!all_of(Insts, SameAsI0)) {
1455       if (!canReplaceOperandWithVariable(I0, OI))
1456         // We can't create a PHI from this GEP.
1457         return false;
1458       // Don't create indirect calls! The called value is the final operand.
1459       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1460         // FIXME: if the call was *already* indirect, we should do this.
1461         return false;
1462       }
1463       for (auto *I : Insts)
1464         PHIOperands[I].push_back(I->getOperand(OI));
1465     }
1466   }
1467   return true;
1468 }
1469 
1470 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1471 // instruction of every block in Blocks to their common successor, commoning
1472 // into one instruction.
1473 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1474   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1475 
1476   // canSinkLastInstruction returning true guarantees that every block has at
1477   // least one non-terminator instruction.
1478   SmallVector<Instruction*,4> Insts;
1479   for (auto *BB : Blocks)
1480     Insts.push_back(BB->getTerminator()->getPrevNode());
1481 
1482   // The only checking we need to do now is that all users of all instructions
1483   // are the same PHI node. canSinkLastInstruction should have checked this but
1484   // it is slightly over-aggressive - it gets confused by commutative instructions
1485   // so double-check it here.
1486   Instruction *I0 = Insts.front();
1487   if (!isa<StoreInst>(I0)) {
1488     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1489     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1490           auto *U = cast<Instruction>(*I->user_begin());
1491           return U == PNUse;
1492         }))
1493       return false;
1494   }
1495 
1496   // We don't need to do any more checking here; canSinkLastInstruction should
1497   // have done it all for us.
1498   SmallVector<Value*, 4> NewOperands;
1499   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1500     // This check is different to that in canSinkLastInstruction. There, we
1501     // cared about the global view once simplifycfg (and instcombine) have
1502     // completed - it takes into account PHIs that become trivially
1503     // simplifiable.  However here we need a more local view; if an operand
1504     // differs we create a PHI and rely on instcombine to clean up the very
1505     // small mess we may make.
1506     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1507       return I->getOperand(O) != I0->getOperand(O);
1508     });
1509     if (!NeedPHI) {
1510       NewOperands.push_back(I0->getOperand(O));
1511       continue;
1512     }
1513 
1514     // Create a new PHI in the successor block and populate it.
1515     auto *Op = I0->getOperand(O);
1516     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1517     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1518                                Op->getName() + ".sink", &BBEnd->front());
1519     for (auto *I : Insts)
1520       PN->addIncoming(I->getOperand(O), I->getParent());
1521     NewOperands.push_back(PN);
1522   }
1523 
1524   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1525   // and move it to the start of the successor block.
1526   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1527     I0->getOperandUse(O).set(NewOperands[O]);
1528   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1529 
1530   // Update metadata and IR flags.
1531   for (auto *I : Insts)
1532     if (I != I0) {
1533       combineMetadataForCSE(I0, I);
1534       I0->andIRFlags(I);
1535     }
1536 
1537   if (!isa<StoreInst>(I0)) {
1538     // canSinkLastInstruction checked that all instructions were used by
1539     // one and only one PHI node. Find that now, RAUW it to our common
1540     // instruction and nuke it.
1541     assert(I0->hasOneUse());
1542     auto *PN = cast<PHINode>(*I0->user_begin());
1543     PN->replaceAllUsesWith(I0);
1544     PN->eraseFromParent();
1545   }
1546 
1547   // Finally nuke all instructions apart from the common instruction.
1548   for (auto *I : Insts)
1549     if (I != I0)
1550       I->eraseFromParent();
1551 
1552   return true;
1553 }
1554 
1555 namespace {
1556   // LockstepReverseIterator - Iterates through instructions
1557   // in a set of blocks in reverse order from the first non-terminator.
1558   // For example (assume all blocks have size n):
1559   //   LockstepReverseIterator I([B1, B2, B3]);
1560   //   *I-- = [B1[n], B2[n], B3[n]];
1561   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1562   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1563   //   ...
1564   class LockstepReverseIterator {
1565     ArrayRef<BasicBlock*> Blocks;
1566     SmallVector<Instruction*,4> Insts;
1567     bool Fail;
1568   public:
1569     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1570       Blocks(Blocks) {
1571       reset();
1572     }
1573 
1574     void reset() {
1575       Fail = false;
1576       Insts.clear();
1577       for (auto *BB : Blocks) {
1578         if (BB->size() <= 1) {
1579           // Block wasn't big enough
1580           Fail = true;
1581           return;
1582         }
1583         Insts.push_back(BB->getTerminator()->getPrevNode());
1584       }
1585     }
1586 
1587     bool isValid() const {
1588       return !Fail;
1589     }
1590 
1591     void operator -- () {
1592       if (Fail)
1593         return;
1594       for (auto *&Inst : Insts) {
1595         if (Inst == &Inst->getParent()->front()) {
1596           Fail = true;
1597           return;
1598         }
1599         Inst = Inst->getPrevNode();
1600       }
1601     }
1602 
1603     ArrayRef<Instruction*> operator * () const {
1604       return Insts;
1605     }
1606   };
1607 }
1608 
1609 /// Given an unconditional branch that goes to BBEnd,
1610 /// check whether BBEnd has only two predecessors and the other predecessor
1611 /// ends with an unconditional branch. If it is true, sink any common code
1612 /// in the two predecessors to BBEnd.
1613 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1614   assert(BI1->isUnconditional());
1615   BasicBlock *BBEnd = BI1->getSuccessor(0);
1616 
1617   // We support two situations:
1618   //   (1) all incoming arcs are unconditional
1619   //   (2) one incoming arc is conditional
1620   //
1621   // (2) is very common in switch defaults and
1622   // else-if patterns;
1623   //
1624   //   if (a) f(1);
1625   //   else if (b) f(2);
1626   //
1627   // produces:
1628   //
1629   //       [if]
1630   //      /    \
1631   //    [f(1)] [if]
1632   //      |     | \
1633   //      |     |  \
1634   //      |  [f(2)]|
1635   //       \    | /
1636   //        [ end ]
1637   //
1638   // [end] has two unconditional predecessor arcs and one conditional. The
1639   // conditional refers to the implicit empty 'else' arc. This conditional
1640   // arc can also be caused by an empty default block in a switch.
1641   //
1642   // In this case, we attempt to sink code from all *unconditional* arcs.
1643   // If we can sink instructions from these arcs (determined during the scan
1644   // phase below) we insert a common successor for all unconditional arcs and
1645   // connect that to [end], to enable sinking:
1646   //
1647   //       [if]
1648   //      /    \
1649   //    [x(1)] [if]
1650   //      |     | \
1651   //      |     |  \
1652   //      |  [x(2)] |
1653   //       \   /    |
1654   //   [sink.split] |
1655   //         \     /
1656   //         [ end ]
1657   //
1658   SmallVector<BasicBlock*,4> UnconditionalPreds;
1659   Instruction *Cond = nullptr;
1660   for (auto *B : predecessors(BBEnd)) {
1661     auto *T = B->getTerminator();
1662     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1663       UnconditionalPreds.push_back(B);
1664     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1665       Cond = T;
1666     else
1667       return false;
1668   }
1669   if (UnconditionalPreds.size() < 2)
1670     return false;
1671 
1672   bool Changed = false;
1673   // We take a two-step approach to tail sinking. First we scan from the end of
1674   // each block upwards in lockstep. If the n'th instruction from the end of each
1675   // block can be sunk, those instructions are added to ValuesToSink and we
1676   // carry on. If we can sink an instruction but need to PHI-merge some operands
1677   // (because they're not identical in each instruction) we add these to
1678   // PHIOperands.
1679   unsigned ScanIdx = 0;
1680   SmallPtrSet<Value*,4> InstructionsToSink;
1681   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1682   LockstepReverseIterator LRI(UnconditionalPreds);
1683   while (LRI.isValid() &&
1684          canSinkInstructions(*LRI, PHIOperands)) {
1685     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1686     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1687     ++ScanIdx;
1688     --LRI;
1689   }
1690 
1691   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1692     unsigned NumPHIdValues = 0;
1693     for (auto *I : *LRI)
1694       for (auto *V : PHIOperands[I])
1695         if (InstructionsToSink.count(V) == 0)
1696           ++NumPHIdValues;
1697     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1698     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1699     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1700         NumPHIInsts++;
1701 
1702     return NumPHIInsts <= 1;
1703   };
1704 
1705   if (ScanIdx > 0 && Cond) {
1706     // Check if we would actually sink anything first! This mutates the CFG and
1707     // adds an extra block. The goal in doing this is to allow instructions that
1708     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1709     // (such as trunc, add) can be sunk and predicated already. So we check that
1710     // we're going to sink at least one non-speculatable instruction.
1711     LRI.reset();
1712     unsigned Idx = 0;
1713     bool Profitable = false;
1714     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1715       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1716         Profitable = true;
1717         break;
1718       }
1719       --LRI;
1720       ++Idx;
1721     }
1722     if (!Profitable)
1723       return false;
1724 
1725     DEBUG(dbgs() << "SINK: Splitting edge\n");
1726     // We have a conditional edge and we're going to sink some instructions.
1727     // Insert a new block postdominating all blocks we're going to sink from.
1728     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1729                                 ".sink.split"))
1730       // Edges couldn't be split.
1731       return false;
1732     Changed = true;
1733   }
1734 
1735   // Now that we've analyzed all potential sinking candidates, perform the
1736   // actual sink. We iteratively sink the last non-terminator of the source
1737   // blocks into their common successor unless doing so would require too
1738   // many PHI instructions to be generated (currently only one PHI is allowed
1739   // per sunk instruction).
1740   //
1741   // We can use InstructionsToSink to discount values needing PHI-merging that will
1742   // actually be sunk in a later iteration. This allows us to be more
1743   // aggressive in what we sink. This does allow a false positive where we
1744   // sink presuming a later value will also be sunk, but stop half way through
1745   // and never actually sink it which means we produce more PHIs than intended.
1746   // This is unlikely in practice though.
1747   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1748     DEBUG(dbgs() << "SINK: Sink: "
1749                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1750                  << "\n");
1751 
1752     // Because we've sunk every instruction in turn, the current instruction to
1753     // sink is always at index 0.
1754     LRI.reset();
1755     if (!ProfitableToSinkInstruction(LRI)) {
1756       // Too many PHIs would be created.
1757       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1758       break;
1759     }
1760 
1761     if (!sinkLastInstruction(UnconditionalPreds))
1762       return Changed;
1763     NumSinkCommons++;
1764     Changed = true;
1765   }
1766   return Changed;
1767 }
1768 
1769 /// \brief Determine if we can hoist sink a sole store instruction out of a
1770 /// conditional block.
1771 ///
1772 /// We are looking for code like the following:
1773 ///   BrBB:
1774 ///     store i32 %add, i32* %arrayidx2
1775 ///     ... // No other stores or function calls (we could be calling a memory
1776 ///     ... // function).
1777 ///     %cmp = icmp ult %x, %y
1778 ///     br i1 %cmp, label %EndBB, label %ThenBB
1779 ///   ThenBB:
1780 ///     store i32 %add5, i32* %arrayidx2
1781 ///     br label EndBB
1782 ///   EndBB:
1783 ///     ...
1784 ///   We are going to transform this into:
1785 ///   BrBB:
1786 ///     store i32 %add, i32* %arrayidx2
1787 ///     ... //
1788 ///     %cmp = icmp ult %x, %y
1789 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1790 ///     store i32 %add.add5, i32* %arrayidx2
1791 ///     ...
1792 ///
1793 /// \return The pointer to the value of the previous store if the store can be
1794 ///         hoisted into the predecessor block. 0 otherwise.
1795 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1796                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1797   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1798   if (!StoreToHoist)
1799     return nullptr;
1800 
1801   // Volatile or atomic.
1802   if (!StoreToHoist->isSimple())
1803     return nullptr;
1804 
1805   Value *StorePtr = StoreToHoist->getPointerOperand();
1806 
1807   // Look for a store to the same pointer in BrBB.
1808   unsigned MaxNumInstToLookAt = 9;
1809   for (Instruction &CurI : reverse(*BrBB)) {
1810     if (!MaxNumInstToLookAt)
1811       break;
1812     // Skip debug info.
1813     if (isa<DbgInfoIntrinsic>(CurI))
1814       continue;
1815     --MaxNumInstToLookAt;
1816 
1817     // Could be calling an instruction that affects memory like free().
1818     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1819       return nullptr;
1820 
1821     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1822       // Found the previous store make sure it stores to the same location.
1823       if (SI->getPointerOperand() == StorePtr)
1824         // Found the previous store, return its value operand.
1825         return SI->getValueOperand();
1826       return nullptr; // Unknown store.
1827     }
1828   }
1829 
1830   return nullptr;
1831 }
1832 
1833 /// \brief Speculate a conditional basic block flattening the CFG.
1834 ///
1835 /// Note that this is a very risky transform currently. Speculating
1836 /// instructions like this is most often not desirable. Instead, there is an MI
1837 /// pass which can do it with full awareness of the resource constraints.
1838 /// However, some cases are "obvious" and we should do directly. An example of
1839 /// this is speculating a single, reasonably cheap instruction.
1840 ///
1841 /// There is only one distinct advantage to flattening the CFG at the IR level:
1842 /// it makes very common but simplistic optimizations such as are common in
1843 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1844 /// modeling their effects with easier to reason about SSA value graphs.
1845 ///
1846 ///
1847 /// An illustration of this transform is turning this IR:
1848 /// \code
1849 ///   BB:
1850 ///     %cmp = icmp ult %x, %y
1851 ///     br i1 %cmp, label %EndBB, label %ThenBB
1852 ///   ThenBB:
1853 ///     %sub = sub %x, %y
1854 ///     br label BB2
1855 ///   EndBB:
1856 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1857 ///     ...
1858 /// \endcode
1859 ///
1860 /// Into this IR:
1861 /// \code
1862 ///   BB:
1863 ///     %cmp = icmp ult %x, %y
1864 ///     %sub = sub %x, %y
1865 ///     %cond = select i1 %cmp, 0, %sub
1866 ///     ...
1867 /// \endcode
1868 ///
1869 /// \returns true if the conditional block is removed.
1870 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1871                                    const TargetTransformInfo &TTI) {
1872   // Be conservative for now. FP select instruction can often be expensive.
1873   Value *BrCond = BI->getCondition();
1874   if (isa<FCmpInst>(BrCond))
1875     return false;
1876 
1877   BasicBlock *BB = BI->getParent();
1878   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1879 
1880   // If ThenBB is actually on the false edge of the conditional branch, remember
1881   // to swap the select operands later.
1882   bool Invert = false;
1883   if (ThenBB != BI->getSuccessor(0)) {
1884     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1885     Invert = true;
1886   }
1887   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1888 
1889   // Keep a count of how many times instructions are used within CondBB when
1890   // they are candidates for sinking into CondBB. Specifically:
1891   // - They are defined in BB, and
1892   // - They have no side effects, and
1893   // - All of their uses are in CondBB.
1894   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1895 
1896   unsigned SpeculationCost = 0;
1897   Value *SpeculatedStoreValue = nullptr;
1898   StoreInst *SpeculatedStore = nullptr;
1899   for (BasicBlock::iterator BBI = ThenBB->begin(),
1900                             BBE = std::prev(ThenBB->end());
1901        BBI != BBE; ++BBI) {
1902     Instruction *I = &*BBI;
1903     // Skip debug info.
1904     if (isa<DbgInfoIntrinsic>(I))
1905       continue;
1906 
1907     // Only speculatively execute a single instruction (not counting the
1908     // terminator) for now.
1909     ++SpeculationCost;
1910     if (SpeculationCost > 1)
1911       return false;
1912 
1913     // Don't hoist the instruction if it's unsafe or expensive.
1914     if (!isSafeToSpeculativelyExecute(I) &&
1915         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1916                                   I, BB, ThenBB, EndBB))))
1917       return false;
1918     if (!SpeculatedStoreValue &&
1919         ComputeSpeculationCost(I, TTI) >
1920             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1921       return false;
1922 
1923     // Store the store speculation candidate.
1924     if (SpeculatedStoreValue)
1925       SpeculatedStore = cast<StoreInst>(I);
1926 
1927     // Do not hoist the instruction if any of its operands are defined but not
1928     // used in BB. The transformation will prevent the operand from
1929     // being sunk into the use block.
1930     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1931       Instruction *OpI = dyn_cast<Instruction>(*i);
1932       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1933         continue; // Not a candidate for sinking.
1934 
1935       ++SinkCandidateUseCounts[OpI];
1936     }
1937   }
1938 
1939   // Consider any sink candidates which are only used in CondBB as costs for
1940   // speculation. Note, while we iterate over a DenseMap here, we are summing
1941   // and so iteration order isn't significant.
1942   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
1943            I = SinkCandidateUseCounts.begin(),
1944            E = SinkCandidateUseCounts.end();
1945        I != E; ++I)
1946     if (I->first->getNumUses() == I->second) {
1947       ++SpeculationCost;
1948       if (SpeculationCost > 1)
1949         return false;
1950     }
1951 
1952   // Check that the PHI nodes can be converted to selects.
1953   bool HaveRewritablePHIs = false;
1954   for (BasicBlock::iterator I = EndBB->begin();
1955        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1956     Value *OrigV = PN->getIncomingValueForBlock(BB);
1957     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1958 
1959     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1960     // Skip PHIs which are trivial.
1961     if (ThenV == OrigV)
1962       continue;
1963 
1964     // Don't convert to selects if we could remove undefined behavior instead.
1965     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
1966         passingValueIsAlwaysUndefined(ThenV, PN))
1967       return false;
1968 
1969     HaveRewritablePHIs = true;
1970     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1971     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1972     if (!OrigCE && !ThenCE)
1973       continue; // Known safe and cheap.
1974 
1975     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1976         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1977       return false;
1978     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
1979     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
1980     unsigned MaxCost =
1981         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
1982     if (OrigCost + ThenCost > MaxCost)
1983       return false;
1984 
1985     // Account for the cost of an unfolded ConstantExpr which could end up
1986     // getting expanded into Instructions.
1987     // FIXME: This doesn't account for how many operations are combined in the
1988     // constant expression.
1989     ++SpeculationCost;
1990     if (SpeculationCost > 1)
1991       return false;
1992   }
1993 
1994   // If there are no PHIs to process, bail early. This helps ensure idempotence
1995   // as well.
1996   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1997     return false;
1998 
1999   // If we get here, we can hoist the instruction and if-convert.
2000   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2001 
2002   // Insert a select of the value of the speculated store.
2003   if (SpeculatedStoreValue) {
2004     IRBuilder<NoFolder> Builder(BI);
2005     Value *TrueV = SpeculatedStore->getValueOperand();
2006     Value *FalseV = SpeculatedStoreValue;
2007     if (Invert)
2008       std::swap(TrueV, FalseV);
2009     Value *S = Builder.CreateSelect(
2010         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2011     SpeculatedStore->setOperand(0, S);
2012   }
2013 
2014   // Metadata can be dependent on the condition we are hoisting above.
2015   // Conservatively strip all metadata on the instruction.
2016   for (auto &I : *ThenBB)
2017     I.dropUnknownNonDebugMetadata();
2018 
2019   // Hoist the instructions.
2020   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2021                            ThenBB->begin(), std::prev(ThenBB->end()));
2022 
2023   // Insert selects and rewrite the PHI operands.
2024   IRBuilder<NoFolder> Builder(BI);
2025   for (BasicBlock::iterator I = EndBB->begin();
2026        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2027     unsigned OrigI = PN->getBasicBlockIndex(BB);
2028     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2029     Value *OrigV = PN->getIncomingValue(OrigI);
2030     Value *ThenV = PN->getIncomingValue(ThenI);
2031 
2032     // Skip PHIs which are trivial.
2033     if (OrigV == ThenV)
2034       continue;
2035 
2036     // Create a select whose true value is the speculatively executed value and
2037     // false value is the preexisting value. Swap them if the branch
2038     // destinations were inverted.
2039     Value *TrueV = ThenV, *FalseV = OrigV;
2040     if (Invert)
2041       std::swap(TrueV, FalseV);
2042     Value *V = Builder.CreateSelect(
2043         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2044     PN->setIncomingValue(OrigI, V);
2045     PN->setIncomingValue(ThenI, V);
2046   }
2047 
2048   ++NumSpeculations;
2049   return true;
2050 }
2051 
2052 /// Return true if we can thread a branch across this block.
2053 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2054   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2055   unsigned Size = 0;
2056 
2057   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2058     if (isa<DbgInfoIntrinsic>(BBI))
2059       continue;
2060     if (Size > 10)
2061       return false; // Don't clone large BB's.
2062     ++Size;
2063 
2064     // We can only support instructions that do not define values that are
2065     // live outside of the current basic block.
2066     for (User *U : BBI->users()) {
2067       Instruction *UI = cast<Instruction>(U);
2068       if (UI->getParent() != BB || isa<PHINode>(UI))
2069         return false;
2070     }
2071 
2072     // Looks ok, continue checking.
2073   }
2074 
2075   return true;
2076 }
2077 
2078 /// If we have a conditional branch on a PHI node value that is defined in the
2079 /// same block as the branch and if any PHI entries are constants, thread edges
2080 /// corresponding to that entry to be branches to their ultimate destination.
2081 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2082   BasicBlock *BB = BI->getParent();
2083   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2084   // NOTE: we currently cannot transform this case if the PHI node is used
2085   // outside of the block.
2086   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2087     return false;
2088 
2089   // Degenerate case of a single entry PHI.
2090   if (PN->getNumIncomingValues() == 1) {
2091     FoldSingleEntryPHINodes(PN->getParent());
2092     return true;
2093   }
2094 
2095   // Now we know that this block has multiple preds and two succs.
2096   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2097     return false;
2098 
2099   // Can't fold blocks that contain noduplicate or convergent calls.
2100   if (any_of(*BB, [](const Instruction &I) {
2101         const CallInst *CI = dyn_cast<CallInst>(&I);
2102         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2103       }))
2104     return false;
2105 
2106   // Okay, this is a simple enough basic block.  See if any phi values are
2107   // constants.
2108   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2109     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2110     if (!CB || !CB->getType()->isIntegerTy(1))
2111       continue;
2112 
2113     // Okay, we now know that all edges from PredBB should be revectored to
2114     // branch to RealDest.
2115     BasicBlock *PredBB = PN->getIncomingBlock(i);
2116     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2117 
2118     if (RealDest == BB)
2119       continue; // Skip self loops.
2120     // Skip if the predecessor's terminator is an indirect branch.
2121     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2122       continue;
2123 
2124     // The dest block might have PHI nodes, other predecessors and other
2125     // difficult cases.  Instead of being smart about this, just insert a new
2126     // block that jumps to the destination block, effectively splitting
2127     // the edge we are about to create.
2128     BasicBlock *EdgeBB =
2129         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2130                            RealDest->getParent(), RealDest);
2131     BranchInst::Create(RealDest, EdgeBB);
2132 
2133     // Update PHI nodes.
2134     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2135 
2136     // BB may have instructions that are being threaded over.  Clone these
2137     // instructions into EdgeBB.  We know that there will be no uses of the
2138     // cloned instructions outside of EdgeBB.
2139     BasicBlock::iterator InsertPt = EdgeBB->begin();
2140     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2141     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2142       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2143         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2144         continue;
2145       }
2146       // Clone the instruction.
2147       Instruction *N = BBI->clone();
2148       if (BBI->hasName())
2149         N->setName(BBI->getName() + ".c");
2150 
2151       // Update operands due to translation.
2152       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2153         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2154         if (PI != TranslateMap.end())
2155           *i = PI->second;
2156       }
2157 
2158       // Check for trivial simplification.
2159       if (Value *V = SimplifyInstruction(N, DL)) {
2160         if (!BBI->use_empty())
2161           TranslateMap[&*BBI] = V;
2162         if (!N->mayHaveSideEffects()) {
2163           delete N; // Instruction folded away, don't need actual inst
2164           N = nullptr;
2165         }
2166       } else {
2167         if (!BBI->use_empty())
2168           TranslateMap[&*BBI] = N;
2169       }
2170       // Insert the new instruction into its new home.
2171       if (N)
2172         EdgeBB->getInstList().insert(InsertPt, N);
2173     }
2174 
2175     // Loop over all of the edges from PredBB to BB, changing them to branch
2176     // to EdgeBB instead.
2177     TerminatorInst *PredBBTI = PredBB->getTerminator();
2178     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2179       if (PredBBTI->getSuccessor(i) == BB) {
2180         BB->removePredecessor(PredBB);
2181         PredBBTI->setSuccessor(i, EdgeBB);
2182       }
2183 
2184     // Recurse, simplifying any other constants.
2185     return FoldCondBranchOnPHI(BI, DL) | true;
2186   }
2187 
2188   return false;
2189 }
2190 
2191 /// Given a BB that starts with the specified two-entry PHI node,
2192 /// see if we can eliminate it.
2193 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2194                                 const DataLayout &DL) {
2195   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2196   // statement", which has a very simple dominance structure.  Basically, we
2197   // are trying to find the condition that is being branched on, which
2198   // subsequently causes this merge to happen.  We really want control
2199   // dependence information for this check, but simplifycfg can't keep it up
2200   // to date, and this catches most of the cases we care about anyway.
2201   BasicBlock *BB = PN->getParent();
2202   BasicBlock *IfTrue, *IfFalse;
2203   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2204   if (!IfCond ||
2205       // Don't bother if the branch will be constant folded trivially.
2206       isa<ConstantInt>(IfCond))
2207     return false;
2208 
2209   // Okay, we found that we can merge this two-entry phi node into a select.
2210   // Doing so would require us to fold *all* two entry phi nodes in this block.
2211   // At some point this becomes non-profitable (particularly if the target
2212   // doesn't support cmov's).  Only do this transformation if there are two or
2213   // fewer PHI nodes in this block.
2214   unsigned NumPhis = 0;
2215   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2216     if (NumPhis > 2)
2217       return false;
2218 
2219   // Loop over the PHI's seeing if we can promote them all to select
2220   // instructions.  While we are at it, keep track of the instructions
2221   // that need to be moved to the dominating block.
2222   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2223   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2224            MaxCostVal1 = PHINodeFoldingThreshold;
2225   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2226   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2227 
2228   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2229     PHINode *PN = cast<PHINode>(II++);
2230     if (Value *V = SimplifyInstruction(PN, DL)) {
2231       PN->replaceAllUsesWith(V);
2232       PN->eraseFromParent();
2233       continue;
2234     }
2235 
2236     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2237                              MaxCostVal0, TTI) ||
2238         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2239                              MaxCostVal1, TTI))
2240       return false;
2241   }
2242 
2243   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2244   // we ran out of PHIs then we simplified them all.
2245   PN = dyn_cast<PHINode>(BB->begin());
2246   if (!PN)
2247     return true;
2248 
2249   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2250   // often be turned into switches and other things.
2251   if (PN->getType()->isIntegerTy(1) &&
2252       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2253        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2254        isa<BinaryOperator>(IfCond)))
2255     return false;
2256 
2257   // If all PHI nodes are promotable, check to make sure that all instructions
2258   // in the predecessor blocks can be promoted as well. If not, we won't be able
2259   // to get rid of the control flow, so it's not worth promoting to select
2260   // instructions.
2261   BasicBlock *DomBlock = nullptr;
2262   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2263   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2264   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2265     IfBlock1 = nullptr;
2266   } else {
2267     DomBlock = *pred_begin(IfBlock1);
2268     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2269          ++I)
2270       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2271         // This is not an aggressive instruction that we can promote.
2272         // Because of this, we won't be able to get rid of the control flow, so
2273         // the xform is not worth it.
2274         return false;
2275       }
2276   }
2277 
2278   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2279     IfBlock2 = nullptr;
2280   } else {
2281     DomBlock = *pred_begin(IfBlock2);
2282     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2283          ++I)
2284       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2285         // This is not an aggressive instruction that we can promote.
2286         // Because of this, we won't be able to get rid of the control flow, so
2287         // the xform is not worth it.
2288         return false;
2289       }
2290   }
2291 
2292   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2293                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2294 
2295   // If we can still promote the PHI nodes after this gauntlet of tests,
2296   // do all of the PHI's now.
2297   Instruction *InsertPt = DomBlock->getTerminator();
2298   IRBuilder<NoFolder> Builder(InsertPt);
2299 
2300   // Move all 'aggressive' instructions, which are defined in the
2301   // conditional parts of the if's up to the dominating block.
2302   if (IfBlock1) {
2303     for (auto &I : *IfBlock1)
2304       I.dropUnknownNonDebugMetadata();
2305     DomBlock->getInstList().splice(InsertPt->getIterator(),
2306                                    IfBlock1->getInstList(), IfBlock1->begin(),
2307                                    IfBlock1->getTerminator()->getIterator());
2308   }
2309   if (IfBlock2) {
2310     for (auto &I : *IfBlock2)
2311       I.dropUnknownNonDebugMetadata();
2312     DomBlock->getInstList().splice(InsertPt->getIterator(),
2313                                    IfBlock2->getInstList(), IfBlock2->begin(),
2314                                    IfBlock2->getTerminator()->getIterator());
2315   }
2316 
2317   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2318     // Change the PHI node into a select instruction.
2319     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2320     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2321 
2322     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2323     PN->replaceAllUsesWith(Sel);
2324     Sel->takeName(PN);
2325     PN->eraseFromParent();
2326   }
2327 
2328   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2329   // has been flattened.  Change DomBlock to jump directly to our new block to
2330   // avoid other simplifycfg's kicking in on the diamond.
2331   TerminatorInst *OldTI = DomBlock->getTerminator();
2332   Builder.SetInsertPoint(OldTI);
2333   Builder.CreateBr(BB);
2334   OldTI->eraseFromParent();
2335   return true;
2336 }
2337 
2338 /// If we found a conditional branch that goes to two returning blocks,
2339 /// try to merge them together into one return,
2340 /// introducing a select if the return values disagree.
2341 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2342                                            IRBuilder<> &Builder) {
2343   assert(BI->isConditional() && "Must be a conditional branch");
2344   BasicBlock *TrueSucc = BI->getSuccessor(0);
2345   BasicBlock *FalseSucc = BI->getSuccessor(1);
2346   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2347   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2348 
2349   // Check to ensure both blocks are empty (just a return) or optionally empty
2350   // with PHI nodes.  If there are other instructions, merging would cause extra
2351   // computation on one path or the other.
2352   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2353     return false;
2354   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2355     return false;
2356 
2357   Builder.SetInsertPoint(BI);
2358   // Okay, we found a branch that is going to two return nodes.  If
2359   // there is no return value for this function, just change the
2360   // branch into a return.
2361   if (FalseRet->getNumOperands() == 0) {
2362     TrueSucc->removePredecessor(BI->getParent());
2363     FalseSucc->removePredecessor(BI->getParent());
2364     Builder.CreateRetVoid();
2365     EraseTerminatorInstAndDCECond(BI);
2366     return true;
2367   }
2368 
2369   // Otherwise, figure out what the true and false return values are
2370   // so we can insert a new select instruction.
2371   Value *TrueValue = TrueRet->getReturnValue();
2372   Value *FalseValue = FalseRet->getReturnValue();
2373 
2374   // Unwrap any PHI nodes in the return blocks.
2375   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2376     if (TVPN->getParent() == TrueSucc)
2377       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2378   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2379     if (FVPN->getParent() == FalseSucc)
2380       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2381 
2382   // In order for this transformation to be safe, we must be able to
2383   // unconditionally execute both operands to the return.  This is
2384   // normally the case, but we could have a potentially-trapping
2385   // constant expression that prevents this transformation from being
2386   // safe.
2387   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2388     if (TCV->canTrap())
2389       return false;
2390   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2391     if (FCV->canTrap())
2392       return false;
2393 
2394   // Okay, we collected all the mapped values and checked them for sanity, and
2395   // defined to really do this transformation.  First, update the CFG.
2396   TrueSucc->removePredecessor(BI->getParent());
2397   FalseSucc->removePredecessor(BI->getParent());
2398 
2399   // Insert select instructions where needed.
2400   Value *BrCond = BI->getCondition();
2401   if (TrueValue) {
2402     // Insert a select if the results differ.
2403     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2404     } else if (isa<UndefValue>(TrueValue)) {
2405       TrueValue = FalseValue;
2406     } else {
2407       TrueValue =
2408           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2409     }
2410   }
2411 
2412   Value *RI =
2413       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2414 
2415   (void)RI;
2416 
2417   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2418                << "\n  " << *BI << "NewRet = " << *RI
2419                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2420 
2421   EraseTerminatorInstAndDCECond(BI);
2422 
2423   return true;
2424 }
2425 
2426 /// Return true if the given instruction is available
2427 /// in its predecessor block. If yes, the instruction will be removed.
2428 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2429   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2430     return false;
2431   for (Instruction &I : *PB) {
2432     Instruction *PBI = &I;
2433     // Check whether Inst and PBI generate the same value.
2434     if (Inst->isIdenticalTo(PBI)) {
2435       Inst->replaceAllUsesWith(PBI);
2436       Inst->eraseFromParent();
2437       return true;
2438     }
2439   }
2440   return false;
2441 }
2442 
2443 /// Return true if either PBI or BI has branch weight available, and store
2444 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2445 /// not have branch weight, use 1:1 as its weight.
2446 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2447                                    uint64_t &PredTrueWeight,
2448                                    uint64_t &PredFalseWeight,
2449                                    uint64_t &SuccTrueWeight,
2450                                    uint64_t &SuccFalseWeight) {
2451   bool PredHasWeights =
2452       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2453   bool SuccHasWeights =
2454       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2455   if (PredHasWeights || SuccHasWeights) {
2456     if (!PredHasWeights)
2457       PredTrueWeight = PredFalseWeight = 1;
2458     if (!SuccHasWeights)
2459       SuccTrueWeight = SuccFalseWeight = 1;
2460     return true;
2461   } else {
2462     return false;
2463   }
2464 }
2465 
2466 /// If this basic block is simple enough, and if a predecessor branches to us
2467 /// and one of our successors, fold the block into the predecessor and use
2468 /// logical operations to pick the right destination.
2469 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2470   BasicBlock *BB = BI->getParent();
2471 
2472   Instruction *Cond = nullptr;
2473   if (BI->isConditional())
2474     Cond = dyn_cast<Instruction>(BI->getCondition());
2475   else {
2476     // For unconditional branch, check for a simple CFG pattern, where
2477     // BB has a single predecessor and BB's successor is also its predecessor's
2478     // successor. If such pattern exisits, check for CSE between BB and its
2479     // predecessor.
2480     if (BasicBlock *PB = BB->getSinglePredecessor())
2481       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2482         if (PBI->isConditional() &&
2483             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2484              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2485           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2486             Instruction *Curr = &*I++;
2487             if (isa<CmpInst>(Curr)) {
2488               Cond = Curr;
2489               break;
2490             }
2491             // Quit if we can't remove this instruction.
2492             if (!checkCSEInPredecessor(Curr, PB))
2493               return false;
2494           }
2495         }
2496 
2497     if (!Cond)
2498       return false;
2499   }
2500 
2501   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2502       Cond->getParent() != BB || !Cond->hasOneUse())
2503     return false;
2504 
2505   // Make sure the instruction after the condition is the cond branch.
2506   BasicBlock::iterator CondIt = ++Cond->getIterator();
2507 
2508   // Ignore dbg intrinsics.
2509   while (isa<DbgInfoIntrinsic>(CondIt))
2510     ++CondIt;
2511 
2512   if (&*CondIt != BI)
2513     return false;
2514 
2515   // Only allow this transformation if computing the condition doesn't involve
2516   // too many instructions and these involved instructions can be executed
2517   // unconditionally. We denote all involved instructions except the condition
2518   // as "bonus instructions", and only allow this transformation when the
2519   // number of the bonus instructions does not exceed a certain threshold.
2520   unsigned NumBonusInsts = 0;
2521   for (auto I = BB->begin(); Cond != &*I; ++I) {
2522     // Ignore dbg intrinsics.
2523     if (isa<DbgInfoIntrinsic>(I))
2524       continue;
2525     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2526       return false;
2527     // I has only one use and can be executed unconditionally.
2528     Instruction *User = dyn_cast<Instruction>(I->user_back());
2529     if (User == nullptr || User->getParent() != BB)
2530       return false;
2531     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2532     // to use any other instruction, User must be an instruction between next(I)
2533     // and Cond.
2534     ++NumBonusInsts;
2535     // Early exits once we reach the limit.
2536     if (NumBonusInsts > BonusInstThreshold)
2537       return false;
2538   }
2539 
2540   // Cond is known to be a compare or binary operator.  Check to make sure that
2541   // neither operand is a potentially-trapping constant expression.
2542   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2543     if (CE->canTrap())
2544       return false;
2545   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2546     if (CE->canTrap())
2547       return false;
2548 
2549   // Finally, don't infinitely unroll conditional loops.
2550   BasicBlock *TrueDest = BI->getSuccessor(0);
2551   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2552   if (TrueDest == BB || FalseDest == BB)
2553     return false;
2554 
2555   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2556     BasicBlock *PredBlock = *PI;
2557     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2558 
2559     // Check that we have two conditional branches.  If there is a PHI node in
2560     // the common successor, verify that the same value flows in from both
2561     // blocks.
2562     SmallVector<PHINode *, 4> PHIs;
2563     if (!PBI || PBI->isUnconditional() ||
2564         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2565         (!BI->isConditional() &&
2566          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2567       continue;
2568 
2569     // Determine if the two branches share a common destination.
2570     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2571     bool InvertPredCond = false;
2572 
2573     if (BI->isConditional()) {
2574       if (PBI->getSuccessor(0) == TrueDest) {
2575         Opc = Instruction::Or;
2576       } else if (PBI->getSuccessor(1) == FalseDest) {
2577         Opc = Instruction::And;
2578       } else if (PBI->getSuccessor(0) == FalseDest) {
2579         Opc = Instruction::And;
2580         InvertPredCond = true;
2581       } else if (PBI->getSuccessor(1) == TrueDest) {
2582         Opc = Instruction::Or;
2583         InvertPredCond = true;
2584       } else {
2585         continue;
2586       }
2587     } else {
2588       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2589         continue;
2590     }
2591 
2592     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2593     IRBuilder<> Builder(PBI);
2594 
2595     // If we need to invert the condition in the pred block to match, do so now.
2596     if (InvertPredCond) {
2597       Value *NewCond = PBI->getCondition();
2598 
2599       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2600         CmpInst *CI = cast<CmpInst>(NewCond);
2601         CI->setPredicate(CI->getInversePredicate());
2602       } else {
2603         NewCond =
2604             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2605       }
2606 
2607       PBI->setCondition(NewCond);
2608       PBI->swapSuccessors();
2609     }
2610 
2611     // If we have bonus instructions, clone them into the predecessor block.
2612     // Note that there may be multiple predecessor blocks, so we cannot move
2613     // bonus instructions to a predecessor block.
2614     ValueToValueMapTy VMap; // maps original values to cloned values
2615     // We already make sure Cond is the last instruction before BI. Therefore,
2616     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2617     // instructions.
2618     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2619       if (isa<DbgInfoIntrinsic>(BonusInst))
2620         continue;
2621       Instruction *NewBonusInst = BonusInst->clone();
2622       RemapInstruction(NewBonusInst, VMap,
2623                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2624       VMap[&*BonusInst] = NewBonusInst;
2625 
2626       // If we moved a load, we cannot any longer claim any knowledge about
2627       // its potential value. The previous information might have been valid
2628       // only given the branch precondition.
2629       // For an analogous reason, we must also drop all the metadata whose
2630       // semantics we don't understand.
2631       NewBonusInst->dropUnknownNonDebugMetadata();
2632 
2633       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2634       NewBonusInst->takeName(&*BonusInst);
2635       BonusInst->setName(BonusInst->getName() + ".old");
2636     }
2637 
2638     // Clone Cond into the predecessor basic block, and or/and the
2639     // two conditions together.
2640     Instruction *New = Cond->clone();
2641     RemapInstruction(New, VMap,
2642                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2643     PredBlock->getInstList().insert(PBI->getIterator(), New);
2644     New->takeName(Cond);
2645     Cond->setName(New->getName() + ".old");
2646 
2647     if (BI->isConditional()) {
2648       Instruction *NewCond = cast<Instruction>(
2649           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2650       PBI->setCondition(NewCond);
2651 
2652       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2653       bool HasWeights =
2654           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2655                                  SuccTrueWeight, SuccFalseWeight);
2656       SmallVector<uint64_t, 8> NewWeights;
2657 
2658       if (PBI->getSuccessor(0) == BB) {
2659         if (HasWeights) {
2660           // PBI: br i1 %x, BB, FalseDest
2661           // BI:  br i1 %y, TrueDest, FalseDest
2662           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2663           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2664           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2665           //               TrueWeight for PBI * FalseWeight for BI.
2666           // We assume that total weights of a BranchInst can fit into 32 bits.
2667           // Therefore, we will not have overflow using 64-bit arithmetic.
2668           NewWeights.push_back(PredFalseWeight *
2669                                    (SuccFalseWeight + SuccTrueWeight) +
2670                                PredTrueWeight * SuccFalseWeight);
2671         }
2672         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2673         PBI->setSuccessor(0, TrueDest);
2674       }
2675       if (PBI->getSuccessor(1) == BB) {
2676         if (HasWeights) {
2677           // PBI: br i1 %x, TrueDest, BB
2678           // BI:  br i1 %y, TrueDest, FalseDest
2679           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2680           //              FalseWeight for PBI * TrueWeight for BI.
2681           NewWeights.push_back(PredTrueWeight *
2682                                    (SuccFalseWeight + SuccTrueWeight) +
2683                                PredFalseWeight * SuccTrueWeight);
2684           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2685           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2686         }
2687         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2688         PBI->setSuccessor(1, FalseDest);
2689       }
2690       if (NewWeights.size() == 2) {
2691         // Halve the weights if any of them cannot fit in an uint32_t
2692         FitWeights(NewWeights);
2693 
2694         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2695                                            NewWeights.end());
2696         PBI->setMetadata(
2697             LLVMContext::MD_prof,
2698             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2699       } else
2700         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2701     } else {
2702       // Update PHI nodes in the common successors.
2703       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2704         ConstantInt *PBI_C = cast<ConstantInt>(
2705             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2706         assert(PBI_C->getType()->isIntegerTy(1));
2707         Instruction *MergedCond = nullptr;
2708         if (PBI->getSuccessor(0) == TrueDest) {
2709           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2710           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2711           //       is false: !PBI_Cond and BI_Value
2712           Instruction *NotCond = cast<Instruction>(
2713               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2714           MergedCond = cast<Instruction>(
2715               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2716           if (PBI_C->isOne())
2717             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2718                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2719         } else {
2720           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2721           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2722           //       is false: PBI_Cond and BI_Value
2723           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2724               Instruction::And, PBI->getCondition(), New, "and.cond"));
2725           if (PBI_C->isOne()) {
2726             Instruction *NotCond = cast<Instruction>(
2727                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2728             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2729                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2730           }
2731         }
2732         // Update PHI Node.
2733         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2734                                   MergedCond);
2735       }
2736       // Change PBI from Conditional to Unconditional.
2737       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2738       EraseTerminatorInstAndDCECond(PBI);
2739       PBI = New_PBI;
2740     }
2741 
2742     // TODO: If BB is reachable from all paths through PredBlock, then we
2743     // could replace PBI's branch probabilities with BI's.
2744 
2745     // Copy any debug value intrinsics into the end of PredBlock.
2746     for (Instruction &I : *BB)
2747       if (isa<DbgInfoIntrinsic>(I))
2748         I.clone()->insertBefore(PBI);
2749 
2750     return true;
2751   }
2752   return false;
2753 }
2754 
2755 // If there is only one store in BB1 and BB2, return it, otherwise return
2756 // nullptr.
2757 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2758   StoreInst *S = nullptr;
2759   for (auto *BB : {BB1, BB2}) {
2760     if (!BB)
2761       continue;
2762     for (auto &I : *BB)
2763       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2764         if (S)
2765           // Multiple stores seen.
2766           return nullptr;
2767         else
2768           S = SI;
2769       }
2770   }
2771   return S;
2772 }
2773 
2774 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2775                                               Value *AlternativeV = nullptr) {
2776   // PHI is going to be a PHI node that allows the value V that is defined in
2777   // BB to be referenced in BB's only successor.
2778   //
2779   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2780   // doesn't matter to us what the other operand is (it'll never get used). We
2781   // could just create a new PHI with an undef incoming value, but that could
2782   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2783   // other PHI. So here we directly look for some PHI in BB's successor with V
2784   // as an incoming operand. If we find one, we use it, else we create a new
2785   // one.
2786   //
2787   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2788   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2789   // where OtherBB is the single other predecessor of BB's only successor.
2790   PHINode *PHI = nullptr;
2791   BasicBlock *Succ = BB->getSingleSuccessor();
2792 
2793   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2794     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2795       PHI = cast<PHINode>(I);
2796       if (!AlternativeV)
2797         break;
2798 
2799       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2800       auto PredI = pred_begin(Succ);
2801       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2802       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2803         break;
2804       PHI = nullptr;
2805     }
2806   if (PHI)
2807     return PHI;
2808 
2809   // If V is not an instruction defined in BB, just return it.
2810   if (!AlternativeV &&
2811       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2812     return V;
2813 
2814   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2815   PHI->addIncoming(V, BB);
2816   for (BasicBlock *PredBB : predecessors(Succ))
2817     if (PredBB != BB)
2818       PHI->addIncoming(
2819           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2820   return PHI;
2821 }
2822 
2823 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2824                                            BasicBlock *QTB, BasicBlock *QFB,
2825                                            BasicBlock *PostBB, Value *Address,
2826                                            bool InvertPCond, bool InvertQCond) {
2827   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2828     return Operator::getOpcode(&I) == Instruction::BitCast &&
2829            I.getType()->isPointerTy();
2830   };
2831 
2832   // If we're not in aggressive mode, we only optimize if we have some
2833   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2834   auto IsWorthwhile = [&](BasicBlock *BB) {
2835     if (!BB)
2836       return true;
2837     // Heuristic: if the block can be if-converted/phi-folded and the
2838     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2839     // thread this store.
2840     unsigned N = 0;
2841     for (auto &I : *BB) {
2842       // Cheap instructions viable for folding.
2843       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2844           isa<StoreInst>(I))
2845         ++N;
2846       // Free instructions.
2847       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2848                IsaBitcastOfPointerType(I))
2849         continue;
2850       else
2851         return false;
2852     }
2853     return N <= PHINodeFoldingThreshold;
2854   };
2855 
2856   if (!MergeCondStoresAggressively &&
2857       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2858        !IsWorthwhile(QFB)))
2859     return false;
2860 
2861   // For every pointer, there must be exactly two stores, one coming from
2862   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2863   // store (to any address) in PTB,PFB or QTB,QFB.
2864   // FIXME: We could relax this restriction with a bit more work and performance
2865   // testing.
2866   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2867   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2868   if (!PStore || !QStore)
2869     return false;
2870 
2871   // Now check the stores are compatible.
2872   if (!QStore->isUnordered() || !PStore->isUnordered())
2873     return false;
2874 
2875   // Check that sinking the store won't cause program behavior changes. Sinking
2876   // the store out of the Q blocks won't change any behavior as we're sinking
2877   // from a block to its unconditional successor. But we're moving a store from
2878   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2879   // So we need to check that there are no aliasing loads or stores in
2880   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2881   // operations between PStore and the end of its parent block.
2882   //
2883   // The ideal way to do this is to query AliasAnalysis, but we don't
2884   // preserve AA currently so that is dangerous. Be super safe and just
2885   // check there are no other memory operations at all.
2886   for (auto &I : *QFB->getSinglePredecessor())
2887     if (I.mayReadOrWriteMemory())
2888       return false;
2889   for (auto &I : *QFB)
2890     if (&I != QStore && I.mayReadOrWriteMemory())
2891       return false;
2892   if (QTB)
2893     for (auto &I : *QTB)
2894       if (&I != QStore && I.mayReadOrWriteMemory())
2895         return false;
2896   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2897        I != E; ++I)
2898     if (&*I != PStore && I->mayReadOrWriteMemory())
2899       return false;
2900 
2901   // OK, we're going to sink the stores to PostBB. The store has to be
2902   // conditional though, so first create the predicate.
2903   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2904                      ->getCondition();
2905   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2906                      ->getCondition();
2907 
2908   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2909                                                 PStore->getParent());
2910   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2911                                                 QStore->getParent(), PPHI);
2912 
2913   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2914 
2915   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2916   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2917 
2918   if (InvertPCond)
2919     PPred = QB.CreateNot(PPred);
2920   if (InvertQCond)
2921     QPred = QB.CreateNot(QPred);
2922   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2923 
2924   auto *T =
2925       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
2926   QB.SetInsertPoint(T);
2927   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
2928   AAMDNodes AAMD;
2929   PStore->getAAMetadata(AAMD, /*Merge=*/false);
2930   PStore->getAAMetadata(AAMD, /*Merge=*/true);
2931   SI->setAAMetadata(AAMD);
2932 
2933   QStore->eraseFromParent();
2934   PStore->eraseFromParent();
2935 
2936   return true;
2937 }
2938 
2939 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
2940   // The intention here is to find diamonds or triangles (see below) where each
2941   // conditional block contains a store to the same address. Both of these
2942   // stores are conditional, so they can't be unconditionally sunk. But it may
2943   // be profitable to speculatively sink the stores into one merged store at the
2944   // end, and predicate the merged store on the union of the two conditions of
2945   // PBI and QBI.
2946   //
2947   // This can reduce the number of stores executed if both of the conditions are
2948   // true, and can allow the blocks to become small enough to be if-converted.
2949   // This optimization will also chain, so that ladders of test-and-set
2950   // sequences can be if-converted away.
2951   //
2952   // We only deal with simple diamonds or triangles:
2953   //
2954   //     PBI       or      PBI        or a combination of the two
2955   //    /   \               | \
2956   //   PTB  PFB             |  PFB
2957   //    \   /               | /
2958   //     QBI                QBI
2959   //    /  \                | \
2960   //   QTB  QFB             |  QFB
2961   //    \  /                | /
2962   //    PostBB            PostBB
2963   //
2964   // We model triangles as a type of diamond with a nullptr "true" block.
2965   // Triangles are canonicalized so that the fallthrough edge is represented by
2966   // a true condition, as in the diagram above.
2967   //
2968   BasicBlock *PTB = PBI->getSuccessor(0);
2969   BasicBlock *PFB = PBI->getSuccessor(1);
2970   BasicBlock *QTB = QBI->getSuccessor(0);
2971   BasicBlock *QFB = QBI->getSuccessor(1);
2972   BasicBlock *PostBB = QFB->getSingleSuccessor();
2973 
2974   bool InvertPCond = false, InvertQCond = false;
2975   // Canonicalize fallthroughs to the true branches.
2976   if (PFB == QBI->getParent()) {
2977     std::swap(PFB, PTB);
2978     InvertPCond = true;
2979   }
2980   if (QFB == PostBB) {
2981     std::swap(QFB, QTB);
2982     InvertQCond = true;
2983   }
2984 
2985   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
2986   // and QFB may not. Model fallthroughs as a nullptr block.
2987   if (PTB == QBI->getParent())
2988     PTB = nullptr;
2989   if (QTB == PostBB)
2990     QTB = nullptr;
2991 
2992   // Legality bailouts. We must have at least the non-fallthrough blocks and
2993   // the post-dominating block, and the non-fallthroughs must only have one
2994   // predecessor.
2995   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
2996     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
2997   };
2998   if (!PostBB ||
2999       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3000       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3001     return false;
3002   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3003       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3004     return false;
3005   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3006     return false;
3007 
3008   // OK, this is a sequence of two diamonds or triangles.
3009   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3010   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3011   for (auto *BB : {PTB, PFB}) {
3012     if (!BB)
3013       continue;
3014     for (auto &I : *BB)
3015       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3016         PStoreAddresses.insert(SI->getPointerOperand());
3017   }
3018   for (auto *BB : {QTB, QFB}) {
3019     if (!BB)
3020       continue;
3021     for (auto &I : *BB)
3022       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3023         QStoreAddresses.insert(SI->getPointerOperand());
3024   }
3025 
3026   set_intersect(PStoreAddresses, QStoreAddresses);
3027   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3028   // clear what it contains.
3029   auto &CommonAddresses = PStoreAddresses;
3030 
3031   bool Changed = false;
3032   for (auto *Address : CommonAddresses)
3033     Changed |= mergeConditionalStoreToAddress(
3034         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3035   return Changed;
3036 }
3037 
3038 /// If we have a conditional branch as a predecessor of another block,
3039 /// this function tries to simplify it.  We know
3040 /// that PBI and BI are both conditional branches, and BI is in one of the
3041 /// successor blocks of PBI - PBI branches to BI.
3042 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3043                                            const DataLayout &DL) {
3044   assert(PBI->isConditional() && BI->isConditional());
3045   BasicBlock *BB = BI->getParent();
3046 
3047   // If this block ends with a branch instruction, and if there is a
3048   // predecessor that ends on a branch of the same condition, make
3049   // this conditional branch redundant.
3050   if (PBI->getCondition() == BI->getCondition() &&
3051       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3052     // Okay, the outcome of this conditional branch is statically
3053     // knowable.  If this block had a single pred, handle specially.
3054     if (BB->getSinglePredecessor()) {
3055       // Turn this into a branch on constant.
3056       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3057       BI->setCondition(
3058           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3059       return true; // Nuke the branch on constant.
3060     }
3061 
3062     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3063     // in the constant and simplify the block result.  Subsequent passes of
3064     // simplifycfg will thread the block.
3065     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3066       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3067       PHINode *NewPN = PHINode::Create(
3068           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3069           BI->getCondition()->getName() + ".pr", &BB->front());
3070       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3071       // predecessor, compute the PHI'd conditional value for all of the preds.
3072       // Any predecessor where the condition is not computable we keep symbolic.
3073       for (pred_iterator PI = PB; PI != PE; ++PI) {
3074         BasicBlock *P = *PI;
3075         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3076             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3077             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3078           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3079           NewPN->addIncoming(
3080               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3081               P);
3082         } else {
3083           NewPN->addIncoming(BI->getCondition(), P);
3084         }
3085       }
3086 
3087       BI->setCondition(NewPN);
3088       return true;
3089     }
3090   }
3091 
3092   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3093     if (CE->canTrap())
3094       return false;
3095 
3096   // If both branches are conditional and both contain stores to the same
3097   // address, remove the stores from the conditionals and create a conditional
3098   // merged store at the end.
3099   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3100     return true;
3101 
3102   // If this is a conditional branch in an empty block, and if any
3103   // predecessors are a conditional branch to one of our destinations,
3104   // fold the conditions into logical ops and one cond br.
3105   BasicBlock::iterator BBI = BB->begin();
3106   // Ignore dbg intrinsics.
3107   while (isa<DbgInfoIntrinsic>(BBI))
3108     ++BBI;
3109   if (&*BBI != BI)
3110     return false;
3111 
3112   int PBIOp, BIOp;
3113   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3114     PBIOp = 0;
3115     BIOp = 0;
3116   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3117     PBIOp = 0;
3118     BIOp = 1;
3119   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3120     PBIOp = 1;
3121     BIOp = 0;
3122   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3123     PBIOp = 1;
3124     BIOp = 1;
3125   } else {
3126     return false;
3127   }
3128 
3129   // Check to make sure that the other destination of this branch
3130   // isn't BB itself.  If so, this is an infinite loop that will
3131   // keep getting unwound.
3132   if (PBI->getSuccessor(PBIOp) == BB)
3133     return false;
3134 
3135   // Do not perform this transformation if it would require
3136   // insertion of a large number of select instructions. For targets
3137   // without predication/cmovs, this is a big pessimization.
3138 
3139   // Also do not perform this transformation if any phi node in the common
3140   // destination block can trap when reached by BB or PBB (PR17073). In that
3141   // case, it would be unsafe to hoist the operation into a select instruction.
3142 
3143   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3144   unsigned NumPhis = 0;
3145   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3146        ++II, ++NumPhis) {
3147     if (NumPhis > 2) // Disable this xform.
3148       return false;
3149 
3150     PHINode *PN = cast<PHINode>(II);
3151     Value *BIV = PN->getIncomingValueForBlock(BB);
3152     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3153       if (CE->canTrap())
3154         return false;
3155 
3156     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3157     Value *PBIV = PN->getIncomingValue(PBBIdx);
3158     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3159       if (CE->canTrap())
3160         return false;
3161   }
3162 
3163   // Finally, if everything is ok, fold the branches to logical ops.
3164   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3165 
3166   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3167                << "AND: " << *BI->getParent());
3168 
3169   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3170   // branch in it, where one edge (OtherDest) goes back to itself but the other
3171   // exits.  We don't *know* that the program avoids the infinite loop
3172   // (even though that seems likely).  If we do this xform naively, we'll end up
3173   // recursively unpeeling the loop.  Since we know that (after the xform is
3174   // done) that the block *is* infinite if reached, we just make it an obviously
3175   // infinite loop with no cond branch.
3176   if (OtherDest == BB) {
3177     // Insert it at the end of the function, because it's either code,
3178     // or it won't matter if it's hot. :)
3179     BasicBlock *InfLoopBlock =
3180         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3181     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3182     OtherDest = InfLoopBlock;
3183   }
3184 
3185   DEBUG(dbgs() << *PBI->getParent()->getParent());
3186 
3187   // BI may have other predecessors.  Because of this, we leave
3188   // it alone, but modify PBI.
3189 
3190   // Make sure we get to CommonDest on True&True directions.
3191   Value *PBICond = PBI->getCondition();
3192   IRBuilder<NoFolder> Builder(PBI);
3193   if (PBIOp)
3194     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3195 
3196   Value *BICond = BI->getCondition();
3197   if (BIOp)
3198     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3199 
3200   // Merge the conditions.
3201   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3202 
3203   // Modify PBI to branch on the new condition to the new dests.
3204   PBI->setCondition(Cond);
3205   PBI->setSuccessor(0, CommonDest);
3206   PBI->setSuccessor(1, OtherDest);
3207 
3208   // Update branch weight for PBI.
3209   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3210   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3211   bool HasWeights =
3212       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3213                              SuccTrueWeight, SuccFalseWeight);
3214   if (HasWeights) {
3215     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3216     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3217     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3218     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3219     // The weight to CommonDest should be PredCommon * SuccTotal +
3220     //                                    PredOther * SuccCommon.
3221     // The weight to OtherDest should be PredOther * SuccOther.
3222     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3223                                   PredOther * SuccCommon,
3224                               PredOther * SuccOther};
3225     // Halve the weights if any of them cannot fit in an uint32_t
3226     FitWeights(NewWeights);
3227 
3228     PBI->setMetadata(LLVMContext::MD_prof,
3229                      MDBuilder(BI->getContext())
3230                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3231   }
3232 
3233   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3234   // block that are identical to the entries for BI's block.
3235   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3236 
3237   // We know that the CommonDest already had an edge from PBI to
3238   // it.  If it has PHIs though, the PHIs may have different
3239   // entries for BB and PBI's BB.  If so, insert a select to make
3240   // them agree.
3241   PHINode *PN;
3242   for (BasicBlock::iterator II = CommonDest->begin();
3243        (PN = dyn_cast<PHINode>(II)); ++II) {
3244     Value *BIV = PN->getIncomingValueForBlock(BB);
3245     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3246     Value *PBIV = PN->getIncomingValue(PBBIdx);
3247     if (BIV != PBIV) {
3248       // Insert a select in PBI to pick the right value.
3249       SelectInst *NV = cast<SelectInst>(
3250           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3251       PN->setIncomingValue(PBBIdx, NV);
3252       // Although the select has the same condition as PBI, the original branch
3253       // weights for PBI do not apply to the new select because the select's
3254       // 'logical' edges are incoming edges of the phi that is eliminated, not
3255       // the outgoing edges of PBI.
3256       if (HasWeights) {
3257         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3258         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3259         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3260         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3261         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3262         // The weight to PredOtherDest should be PredOther * SuccCommon.
3263         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3264                                   PredOther * SuccCommon};
3265 
3266         FitWeights(NewWeights);
3267 
3268         NV->setMetadata(LLVMContext::MD_prof,
3269                         MDBuilder(BI->getContext())
3270                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3271       }
3272     }
3273   }
3274 
3275   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3276   DEBUG(dbgs() << *PBI->getParent()->getParent());
3277 
3278   // This basic block is probably dead.  We know it has at least
3279   // one fewer predecessor.
3280   return true;
3281 }
3282 
3283 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3284 // true or to FalseBB if Cond is false.
3285 // Takes care of updating the successors and removing the old terminator.
3286 // Also makes sure not to introduce new successors by assuming that edges to
3287 // non-successor TrueBBs and FalseBBs aren't reachable.
3288 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3289                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3290                                        uint32_t TrueWeight,
3291                                        uint32_t FalseWeight) {
3292   // Remove any superfluous successor edges from the CFG.
3293   // First, figure out which successors to preserve.
3294   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3295   // successor.
3296   BasicBlock *KeepEdge1 = TrueBB;
3297   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3298 
3299   // Then remove the rest.
3300   for (BasicBlock *Succ : OldTerm->successors()) {
3301     // Make sure only to keep exactly one copy of each edge.
3302     if (Succ == KeepEdge1)
3303       KeepEdge1 = nullptr;
3304     else if (Succ == KeepEdge2)
3305       KeepEdge2 = nullptr;
3306     else
3307       Succ->removePredecessor(OldTerm->getParent(),
3308                               /*DontDeleteUselessPHIs=*/true);
3309   }
3310 
3311   IRBuilder<> Builder(OldTerm);
3312   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3313 
3314   // Insert an appropriate new terminator.
3315   if (!KeepEdge1 && !KeepEdge2) {
3316     if (TrueBB == FalseBB)
3317       // We were only looking for one successor, and it was present.
3318       // Create an unconditional branch to it.
3319       Builder.CreateBr(TrueBB);
3320     else {
3321       // We found both of the successors we were looking for.
3322       // Create a conditional branch sharing the condition of the select.
3323       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3324       if (TrueWeight != FalseWeight)
3325         NewBI->setMetadata(LLVMContext::MD_prof,
3326                            MDBuilder(OldTerm->getContext())
3327                                .createBranchWeights(TrueWeight, FalseWeight));
3328     }
3329   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3330     // Neither of the selected blocks were successors, so this
3331     // terminator must be unreachable.
3332     new UnreachableInst(OldTerm->getContext(), OldTerm);
3333   } else {
3334     // One of the selected values was a successor, but the other wasn't.
3335     // Insert an unconditional branch to the one that was found;
3336     // the edge to the one that wasn't must be unreachable.
3337     if (!KeepEdge1)
3338       // Only TrueBB was found.
3339       Builder.CreateBr(TrueBB);
3340     else
3341       // Only FalseBB was found.
3342       Builder.CreateBr(FalseBB);
3343   }
3344 
3345   EraseTerminatorInstAndDCECond(OldTerm);
3346   return true;
3347 }
3348 
3349 // Replaces
3350 //   (switch (select cond, X, Y)) on constant X, Y
3351 // with a branch - conditional if X and Y lead to distinct BBs,
3352 // unconditional otherwise.
3353 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3354   // Check for constant integer values in the select.
3355   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3356   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3357   if (!TrueVal || !FalseVal)
3358     return false;
3359 
3360   // Find the relevant condition and destinations.
3361   Value *Condition = Select->getCondition();
3362   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3363   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3364 
3365   // Get weight for TrueBB and FalseBB.
3366   uint32_t TrueWeight = 0, FalseWeight = 0;
3367   SmallVector<uint64_t, 8> Weights;
3368   bool HasWeights = HasBranchWeights(SI);
3369   if (HasWeights) {
3370     GetBranchWeights(SI, Weights);
3371     if (Weights.size() == 1 + SI->getNumCases()) {
3372       TrueWeight =
3373           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3374       FalseWeight =
3375           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3376     }
3377   }
3378 
3379   // Perform the actual simplification.
3380   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3381                                     FalseWeight);
3382 }
3383 
3384 // Replaces
3385 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3386 //                             blockaddress(@fn, BlockB)))
3387 // with
3388 //   (br cond, BlockA, BlockB).
3389 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3390   // Check that both operands of the select are block addresses.
3391   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3392   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3393   if (!TBA || !FBA)
3394     return false;
3395 
3396   // Extract the actual blocks.
3397   BasicBlock *TrueBB = TBA->getBasicBlock();
3398   BasicBlock *FalseBB = FBA->getBasicBlock();
3399 
3400   // Perform the actual simplification.
3401   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3402                                     0);
3403 }
3404 
3405 /// This is called when we find an icmp instruction
3406 /// (a seteq/setne with a constant) as the only instruction in a
3407 /// block that ends with an uncond branch.  We are looking for a very specific
3408 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3409 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3410 /// default value goes to an uncond block with a seteq in it, we get something
3411 /// like:
3412 ///
3413 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3414 /// DEFAULT:
3415 ///   %tmp = icmp eq i8 %A, 92
3416 ///   br label %end
3417 /// end:
3418 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3419 ///
3420 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3421 /// the PHI, merging the third icmp into the switch.
3422 static bool TryToSimplifyUncondBranchWithICmpInIt(
3423     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3424     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3425     AssumptionCache *AC) {
3426   BasicBlock *BB = ICI->getParent();
3427 
3428   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3429   // complex.
3430   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3431     return false;
3432 
3433   Value *V = ICI->getOperand(0);
3434   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3435 
3436   // The pattern we're looking for is where our only predecessor is a switch on
3437   // 'V' and this block is the default case for the switch.  In this case we can
3438   // fold the compared value into the switch to simplify things.
3439   BasicBlock *Pred = BB->getSinglePredecessor();
3440   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3441     return false;
3442 
3443   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3444   if (SI->getCondition() != V)
3445     return false;
3446 
3447   // If BB is reachable on a non-default case, then we simply know the value of
3448   // V in this block.  Substitute it and constant fold the icmp instruction
3449   // away.
3450   if (SI->getDefaultDest() != BB) {
3451     ConstantInt *VVal = SI->findCaseDest(BB);
3452     assert(VVal && "Should have a unique destination value");
3453     ICI->setOperand(0, VVal);
3454 
3455     if (Value *V = SimplifyInstruction(ICI, DL)) {
3456       ICI->replaceAllUsesWith(V);
3457       ICI->eraseFromParent();
3458     }
3459     // BB is now empty, so it is likely to simplify away.
3460     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3461   }
3462 
3463   // Ok, the block is reachable from the default dest.  If the constant we're
3464   // comparing exists in one of the other edges, then we can constant fold ICI
3465   // and zap it.
3466   if (SI->findCaseValue(Cst) != SI->case_default()) {
3467     Value *V;
3468     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3469       V = ConstantInt::getFalse(BB->getContext());
3470     else
3471       V = ConstantInt::getTrue(BB->getContext());
3472 
3473     ICI->replaceAllUsesWith(V);
3474     ICI->eraseFromParent();
3475     // BB is now empty, so it is likely to simplify away.
3476     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3477   }
3478 
3479   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3480   // the block.
3481   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3482   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3483   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3484       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3485     return false;
3486 
3487   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3488   // true in the PHI.
3489   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3490   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3491 
3492   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3493     std::swap(DefaultCst, NewCst);
3494 
3495   // Replace ICI (which is used by the PHI for the default value) with true or
3496   // false depending on if it is EQ or NE.
3497   ICI->replaceAllUsesWith(DefaultCst);
3498   ICI->eraseFromParent();
3499 
3500   // Okay, the switch goes to this block on a default value.  Add an edge from
3501   // the switch to the merge point on the compared value.
3502   BasicBlock *NewBB =
3503       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3504   SmallVector<uint64_t, 8> Weights;
3505   bool HasWeights = HasBranchWeights(SI);
3506   if (HasWeights) {
3507     GetBranchWeights(SI, Weights);
3508     if (Weights.size() == 1 + SI->getNumCases()) {
3509       // Split weight for default case to case for "Cst".
3510       Weights[0] = (Weights[0] + 1) >> 1;
3511       Weights.push_back(Weights[0]);
3512 
3513       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3514       SI->setMetadata(
3515           LLVMContext::MD_prof,
3516           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3517     }
3518   }
3519   SI->addCase(Cst, NewBB);
3520 
3521   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3522   Builder.SetInsertPoint(NewBB);
3523   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3524   Builder.CreateBr(SuccBlock);
3525   PHIUse->addIncoming(NewCst, NewBB);
3526   return true;
3527 }
3528 
3529 /// The specified branch is a conditional branch.
3530 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3531 /// fold it into a switch instruction if so.
3532 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3533                                       const DataLayout &DL) {
3534   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3535   if (!Cond)
3536     return false;
3537 
3538   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3539   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3540   // 'setne's and'ed together, collect them.
3541 
3542   // Try to gather values from a chain of and/or to be turned into a switch
3543   ConstantComparesGatherer ConstantCompare(Cond, DL);
3544   // Unpack the result
3545   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3546   Value *CompVal = ConstantCompare.CompValue;
3547   unsigned UsedICmps = ConstantCompare.UsedICmps;
3548   Value *ExtraCase = ConstantCompare.Extra;
3549 
3550   // If we didn't have a multiply compared value, fail.
3551   if (!CompVal)
3552     return false;
3553 
3554   // Avoid turning single icmps into a switch.
3555   if (UsedICmps <= 1)
3556     return false;
3557 
3558   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3559 
3560   // There might be duplicate constants in the list, which the switch
3561   // instruction can't handle, remove them now.
3562   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3563   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3564 
3565   // If Extra was used, we require at least two switch values to do the
3566   // transformation.  A switch with one value is just a conditional branch.
3567   if (ExtraCase && Values.size() < 2)
3568     return false;
3569 
3570   // TODO: Preserve branch weight metadata, similarly to how
3571   // FoldValueComparisonIntoPredecessors preserves it.
3572 
3573   // Figure out which block is which destination.
3574   BasicBlock *DefaultBB = BI->getSuccessor(1);
3575   BasicBlock *EdgeBB = BI->getSuccessor(0);
3576   if (!TrueWhenEqual)
3577     std::swap(DefaultBB, EdgeBB);
3578 
3579   BasicBlock *BB = BI->getParent();
3580 
3581   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3582                << " cases into SWITCH.  BB is:\n"
3583                << *BB);
3584 
3585   // If there are any extra values that couldn't be folded into the switch
3586   // then we evaluate them with an explicit branch first.  Split the block
3587   // right before the condbr to handle it.
3588   if (ExtraCase) {
3589     BasicBlock *NewBB =
3590         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3591     // Remove the uncond branch added to the old block.
3592     TerminatorInst *OldTI = BB->getTerminator();
3593     Builder.SetInsertPoint(OldTI);
3594 
3595     if (TrueWhenEqual)
3596       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3597     else
3598       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3599 
3600     OldTI->eraseFromParent();
3601 
3602     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3603     // for the edge we just added.
3604     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3605 
3606     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3607                  << "\nEXTRABB = " << *BB);
3608     BB = NewBB;
3609   }
3610 
3611   Builder.SetInsertPoint(BI);
3612   // Convert pointer to int before we switch.
3613   if (CompVal->getType()->isPointerTy()) {
3614     CompVal = Builder.CreatePtrToInt(
3615         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3616   }
3617 
3618   // Create the new switch instruction now.
3619   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3620 
3621   // Add all of the 'cases' to the switch instruction.
3622   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3623     New->addCase(Values[i], EdgeBB);
3624 
3625   // We added edges from PI to the EdgeBB.  As such, if there were any
3626   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3627   // the number of edges added.
3628   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3629     PHINode *PN = cast<PHINode>(BBI);
3630     Value *InVal = PN->getIncomingValueForBlock(BB);
3631     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3632       PN->addIncoming(InVal, BB);
3633   }
3634 
3635   // Erase the old branch instruction.
3636   EraseTerminatorInstAndDCECond(BI);
3637 
3638   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3639   return true;
3640 }
3641 
3642 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3643   if (isa<PHINode>(RI->getValue()))
3644     return SimplifyCommonResume(RI);
3645   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3646            RI->getValue() == RI->getParent()->getFirstNonPHI())
3647     // The resume must unwind the exception that caused control to branch here.
3648     return SimplifySingleResume(RI);
3649 
3650   return false;
3651 }
3652 
3653 // Simplify resume that is shared by several landing pads (phi of landing pad).
3654 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3655   BasicBlock *BB = RI->getParent();
3656 
3657   // Check that there are no other instructions except for debug intrinsics
3658   // between the phi of landing pads (RI->getValue()) and resume instruction.
3659   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3660                        E = RI->getIterator();
3661   while (++I != E)
3662     if (!isa<DbgInfoIntrinsic>(I))
3663       return false;
3664 
3665   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3666   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3667 
3668   // Check incoming blocks to see if any of them are trivial.
3669   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3670        Idx++) {
3671     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3672     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3673 
3674     // If the block has other successors, we can not delete it because
3675     // it has other dependents.
3676     if (IncomingBB->getUniqueSuccessor() != BB)
3677       continue;
3678 
3679     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3680     // Not the landing pad that caused the control to branch here.
3681     if (IncomingValue != LandingPad)
3682       continue;
3683 
3684     bool isTrivial = true;
3685 
3686     I = IncomingBB->getFirstNonPHI()->getIterator();
3687     E = IncomingBB->getTerminator()->getIterator();
3688     while (++I != E)
3689       if (!isa<DbgInfoIntrinsic>(I)) {
3690         isTrivial = false;
3691         break;
3692       }
3693 
3694     if (isTrivial)
3695       TrivialUnwindBlocks.insert(IncomingBB);
3696   }
3697 
3698   // If no trivial unwind blocks, don't do any simplifications.
3699   if (TrivialUnwindBlocks.empty())
3700     return false;
3701 
3702   // Turn all invokes that unwind here into calls.
3703   for (auto *TrivialBB : TrivialUnwindBlocks) {
3704     // Blocks that will be simplified should be removed from the phi node.
3705     // Note there could be multiple edges to the resume block, and we need
3706     // to remove them all.
3707     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3708       BB->removePredecessor(TrivialBB, true);
3709 
3710     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3711          PI != PE;) {
3712       BasicBlock *Pred = *PI++;
3713       removeUnwindEdge(Pred);
3714     }
3715 
3716     // In each SimplifyCFG run, only the current processed block can be erased.
3717     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3718     // of erasing TrivialBB, we only remove the branch to the common resume
3719     // block so that we can later erase the resume block since it has no
3720     // predecessors.
3721     TrivialBB->getTerminator()->eraseFromParent();
3722     new UnreachableInst(RI->getContext(), TrivialBB);
3723   }
3724 
3725   // Delete the resume block if all its predecessors have been removed.
3726   if (pred_empty(BB))
3727     BB->eraseFromParent();
3728 
3729   return !TrivialUnwindBlocks.empty();
3730 }
3731 
3732 // Simplify resume that is only used by a single (non-phi) landing pad.
3733 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3734   BasicBlock *BB = RI->getParent();
3735   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3736   assert(RI->getValue() == LPInst &&
3737          "Resume must unwind the exception that caused control to here");
3738 
3739   // Check that there are no other instructions except for debug intrinsics.
3740   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3741   while (++I != E)
3742     if (!isa<DbgInfoIntrinsic>(I))
3743       return false;
3744 
3745   // Turn all invokes that unwind here into calls and delete the basic block.
3746   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3747     BasicBlock *Pred = *PI++;
3748     removeUnwindEdge(Pred);
3749   }
3750 
3751   // The landingpad is now unreachable.  Zap it.
3752   BB->eraseFromParent();
3753   if (LoopHeaders)
3754     LoopHeaders->erase(BB);
3755   return true;
3756 }
3757 
3758 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3759   // If this is a trivial cleanup pad that executes no instructions, it can be
3760   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3761   // that is an EH pad will be updated to continue to the caller and any
3762   // predecessor that terminates with an invoke instruction will have its invoke
3763   // instruction converted to a call instruction.  If the cleanup pad being
3764   // simplified does not continue to the caller, each predecessor will be
3765   // updated to continue to the unwind destination of the cleanup pad being
3766   // simplified.
3767   BasicBlock *BB = RI->getParent();
3768   CleanupPadInst *CPInst = RI->getCleanupPad();
3769   if (CPInst->getParent() != BB)
3770     // This isn't an empty cleanup.
3771     return false;
3772 
3773   // We cannot kill the pad if it has multiple uses.  This typically arises
3774   // from unreachable basic blocks.
3775   if (!CPInst->hasOneUse())
3776     return false;
3777 
3778   // Check that there are no other instructions except for benign intrinsics.
3779   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3780   while (++I != E) {
3781     auto *II = dyn_cast<IntrinsicInst>(I);
3782     if (!II)
3783       return false;
3784 
3785     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3786     switch (IntrinsicID) {
3787     case Intrinsic::dbg_declare:
3788     case Intrinsic::dbg_value:
3789     case Intrinsic::lifetime_end:
3790       break;
3791     default:
3792       return false;
3793     }
3794   }
3795 
3796   // If the cleanup return we are simplifying unwinds to the caller, this will
3797   // set UnwindDest to nullptr.
3798   BasicBlock *UnwindDest = RI->getUnwindDest();
3799   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3800 
3801   // We're about to remove BB from the control flow.  Before we do, sink any
3802   // PHINodes into the unwind destination.  Doing this before changing the
3803   // control flow avoids some potentially slow checks, since we can currently
3804   // be certain that UnwindDest and BB have no common predecessors (since they
3805   // are both EH pads).
3806   if (UnwindDest) {
3807     // First, go through the PHI nodes in UnwindDest and update any nodes that
3808     // reference the block we are removing
3809     for (BasicBlock::iterator I = UnwindDest->begin(),
3810                               IE = DestEHPad->getIterator();
3811          I != IE; ++I) {
3812       PHINode *DestPN = cast<PHINode>(I);
3813 
3814       int Idx = DestPN->getBasicBlockIndex(BB);
3815       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3816       assert(Idx != -1);
3817       // This PHI node has an incoming value that corresponds to a control
3818       // path through the cleanup pad we are removing.  If the incoming
3819       // value is in the cleanup pad, it must be a PHINode (because we
3820       // verified above that the block is otherwise empty).  Otherwise, the
3821       // value is either a constant or a value that dominates the cleanup
3822       // pad being removed.
3823       //
3824       // Because BB and UnwindDest are both EH pads, all of their
3825       // predecessors must unwind to these blocks, and since no instruction
3826       // can have multiple unwind destinations, there will be no overlap in
3827       // incoming blocks between SrcPN and DestPN.
3828       Value *SrcVal = DestPN->getIncomingValue(Idx);
3829       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3830 
3831       // Remove the entry for the block we are deleting.
3832       DestPN->removeIncomingValue(Idx, false);
3833 
3834       if (SrcPN && SrcPN->getParent() == BB) {
3835         // If the incoming value was a PHI node in the cleanup pad we are
3836         // removing, we need to merge that PHI node's incoming values into
3837         // DestPN.
3838         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3839              SrcIdx != SrcE; ++SrcIdx) {
3840           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3841                               SrcPN->getIncomingBlock(SrcIdx));
3842         }
3843       } else {
3844         // Otherwise, the incoming value came from above BB and
3845         // so we can just reuse it.  We must associate all of BB's
3846         // predecessors with this value.
3847         for (auto *pred : predecessors(BB)) {
3848           DestPN->addIncoming(SrcVal, pred);
3849         }
3850       }
3851     }
3852 
3853     // Sink any remaining PHI nodes directly into UnwindDest.
3854     Instruction *InsertPt = DestEHPad;
3855     for (BasicBlock::iterator I = BB->begin(),
3856                               IE = BB->getFirstNonPHI()->getIterator();
3857          I != IE;) {
3858       // The iterator must be incremented here because the instructions are
3859       // being moved to another block.
3860       PHINode *PN = cast<PHINode>(I++);
3861       if (PN->use_empty())
3862         // If the PHI node has no uses, just leave it.  It will be erased
3863         // when we erase BB below.
3864         continue;
3865 
3866       // Otherwise, sink this PHI node into UnwindDest.
3867       // Any predecessors to UnwindDest which are not already represented
3868       // must be back edges which inherit the value from the path through
3869       // BB.  In this case, the PHI value must reference itself.
3870       for (auto *pred : predecessors(UnwindDest))
3871         if (pred != BB)
3872           PN->addIncoming(PN, pred);
3873       PN->moveBefore(InsertPt);
3874     }
3875   }
3876 
3877   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3878     // The iterator must be updated here because we are removing this pred.
3879     BasicBlock *PredBB = *PI++;
3880     if (UnwindDest == nullptr) {
3881       removeUnwindEdge(PredBB);
3882     } else {
3883       TerminatorInst *TI = PredBB->getTerminator();
3884       TI->replaceUsesOfWith(BB, UnwindDest);
3885     }
3886   }
3887 
3888   // The cleanup pad is now unreachable.  Zap it.
3889   BB->eraseFromParent();
3890   return true;
3891 }
3892 
3893 // Try to merge two cleanuppads together.
3894 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3895   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3896   // with.
3897   BasicBlock *UnwindDest = RI->getUnwindDest();
3898   if (!UnwindDest)
3899     return false;
3900 
3901   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3902   // be safe to merge without code duplication.
3903   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3904     return false;
3905 
3906   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3907   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3908   if (!SuccessorCleanupPad)
3909     return false;
3910 
3911   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3912   // Replace any uses of the successor cleanupad with the predecessor pad
3913   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3914   // funclet bundle operands.
3915   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3916   // Remove the old cleanuppad.
3917   SuccessorCleanupPad->eraseFromParent();
3918   // Now, we simply replace the cleanupret with a branch to the unwind
3919   // destination.
3920   BranchInst::Create(UnwindDest, RI->getParent());
3921   RI->eraseFromParent();
3922 
3923   return true;
3924 }
3925 
3926 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
3927   // It is possible to transiantly have an undef cleanuppad operand because we
3928   // have deleted some, but not all, dead blocks.
3929   // Eventually, this block will be deleted.
3930   if (isa<UndefValue>(RI->getOperand(0)))
3931     return false;
3932 
3933   if (mergeCleanupPad(RI))
3934     return true;
3935 
3936   if (removeEmptyCleanup(RI))
3937     return true;
3938 
3939   return false;
3940 }
3941 
3942 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
3943   BasicBlock *BB = RI->getParent();
3944   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
3945     return false;
3946 
3947   // Find predecessors that end with branches.
3948   SmallVector<BasicBlock *, 8> UncondBranchPreds;
3949   SmallVector<BranchInst *, 8> CondBranchPreds;
3950   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3951     BasicBlock *P = *PI;
3952     TerminatorInst *PTI = P->getTerminator();
3953     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
3954       if (BI->isUnconditional())
3955         UncondBranchPreds.push_back(P);
3956       else
3957         CondBranchPreds.push_back(BI);
3958     }
3959   }
3960 
3961   // If we found some, do the transformation!
3962   if (!UncondBranchPreds.empty() && DupRet) {
3963     while (!UncondBranchPreds.empty()) {
3964       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
3965       DEBUG(dbgs() << "FOLDING: " << *BB
3966                    << "INTO UNCOND BRANCH PRED: " << *Pred);
3967       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
3968     }
3969 
3970     // If we eliminated all predecessors of the block, delete the block now.
3971     if (pred_empty(BB)) {
3972       // We know there are no successors, so just nuke the block.
3973       BB->eraseFromParent();
3974       if (LoopHeaders)
3975         LoopHeaders->erase(BB);
3976     }
3977 
3978     return true;
3979   }
3980 
3981   // Check out all of the conditional branches going to this return
3982   // instruction.  If any of them just select between returns, change the
3983   // branch itself into a select/return pair.
3984   while (!CondBranchPreds.empty()) {
3985     BranchInst *BI = CondBranchPreds.pop_back_val();
3986 
3987     // Check to see if the non-BB successor is also a return block.
3988     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
3989         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
3990         SimplifyCondBranchToTwoReturns(BI, Builder))
3991       return true;
3992   }
3993   return false;
3994 }
3995 
3996 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
3997   BasicBlock *BB = UI->getParent();
3998 
3999   bool Changed = false;
4000 
4001   // If there are any instructions immediately before the unreachable that can
4002   // be removed, do so.
4003   while (UI->getIterator() != BB->begin()) {
4004     BasicBlock::iterator BBI = UI->getIterator();
4005     --BBI;
4006     // Do not delete instructions that can have side effects which might cause
4007     // the unreachable to not be reachable; specifically, calls and volatile
4008     // operations may have this effect.
4009     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4010       break;
4011 
4012     if (BBI->mayHaveSideEffects()) {
4013       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4014         if (SI->isVolatile())
4015           break;
4016       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4017         if (LI->isVolatile())
4018           break;
4019       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4020         if (RMWI->isVolatile())
4021           break;
4022       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4023         if (CXI->isVolatile())
4024           break;
4025       } else if (isa<CatchPadInst>(BBI)) {
4026         // A catchpad may invoke exception object constructors and such, which
4027         // in some languages can be arbitrary code, so be conservative by
4028         // default.
4029         // For CoreCLR, it just involves a type test, so can be removed.
4030         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4031             EHPersonality::CoreCLR)
4032           break;
4033       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4034                  !isa<LandingPadInst>(BBI)) {
4035         break;
4036       }
4037       // Note that deleting LandingPad's here is in fact okay, although it
4038       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4039       // all the predecessors of this block will be the unwind edges of Invokes,
4040       // and we can therefore guarantee this block will be erased.
4041     }
4042 
4043     // Delete this instruction (any uses are guaranteed to be dead)
4044     if (!BBI->use_empty())
4045       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4046     BBI->eraseFromParent();
4047     Changed = true;
4048   }
4049 
4050   // If the unreachable instruction is the first in the block, take a gander
4051   // at all of the predecessors of this instruction, and simplify them.
4052   if (&BB->front() != UI)
4053     return Changed;
4054 
4055   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4056   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4057     TerminatorInst *TI = Preds[i]->getTerminator();
4058     IRBuilder<> Builder(TI);
4059     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4060       if (BI->isUnconditional()) {
4061         if (BI->getSuccessor(0) == BB) {
4062           new UnreachableInst(TI->getContext(), TI);
4063           TI->eraseFromParent();
4064           Changed = true;
4065         }
4066       } else {
4067         if (BI->getSuccessor(0) == BB) {
4068           Builder.CreateBr(BI->getSuccessor(1));
4069           EraseTerminatorInstAndDCECond(BI);
4070         } else if (BI->getSuccessor(1) == BB) {
4071           Builder.CreateBr(BI->getSuccessor(0));
4072           EraseTerminatorInstAndDCECond(BI);
4073           Changed = true;
4074         }
4075       }
4076     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4077       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4078            ++i)
4079         if (i.getCaseSuccessor() == BB) {
4080           BB->removePredecessor(SI->getParent());
4081           SI->removeCase(i);
4082           --i;
4083           --e;
4084           Changed = true;
4085         }
4086     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4087       if (II->getUnwindDest() == BB) {
4088         removeUnwindEdge(TI->getParent());
4089         Changed = true;
4090       }
4091     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4092       if (CSI->getUnwindDest() == BB) {
4093         removeUnwindEdge(TI->getParent());
4094         Changed = true;
4095         continue;
4096       }
4097 
4098       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4099                                              E = CSI->handler_end();
4100            I != E; ++I) {
4101         if (*I == BB) {
4102           CSI->removeHandler(I);
4103           --I;
4104           --E;
4105           Changed = true;
4106         }
4107       }
4108       if (CSI->getNumHandlers() == 0) {
4109         BasicBlock *CatchSwitchBB = CSI->getParent();
4110         if (CSI->hasUnwindDest()) {
4111           // Redirect preds to the unwind dest
4112           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4113         } else {
4114           // Rewrite all preds to unwind to caller (or from invoke to call).
4115           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4116           for (BasicBlock *EHPred : EHPreds)
4117             removeUnwindEdge(EHPred);
4118         }
4119         // The catchswitch is no longer reachable.
4120         new UnreachableInst(CSI->getContext(), CSI);
4121         CSI->eraseFromParent();
4122         Changed = true;
4123       }
4124     } else if (isa<CleanupReturnInst>(TI)) {
4125       new UnreachableInst(TI->getContext(), TI);
4126       TI->eraseFromParent();
4127       Changed = true;
4128     }
4129   }
4130 
4131   // If this block is now dead, remove it.
4132   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4133     // We know there are no successors, so just nuke the block.
4134     BB->eraseFromParent();
4135     if (LoopHeaders)
4136       LoopHeaders->erase(BB);
4137     return true;
4138   }
4139 
4140   return Changed;
4141 }
4142 
4143 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4144   assert(Cases.size() >= 1);
4145 
4146   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4147   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4148     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4149       return false;
4150   }
4151   return true;
4152 }
4153 
4154 /// Turn a switch with two reachable destinations into an integer range
4155 /// comparison and branch.
4156 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4157   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4158 
4159   bool HasDefault =
4160       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4161 
4162   // Partition the cases into two sets with different destinations.
4163   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4164   BasicBlock *DestB = nullptr;
4165   SmallVector<ConstantInt *, 16> CasesA;
4166   SmallVector<ConstantInt *, 16> CasesB;
4167 
4168   for (SwitchInst::CaseIt I : SI->cases()) {
4169     BasicBlock *Dest = I.getCaseSuccessor();
4170     if (!DestA)
4171       DestA = Dest;
4172     if (Dest == DestA) {
4173       CasesA.push_back(I.getCaseValue());
4174       continue;
4175     }
4176     if (!DestB)
4177       DestB = Dest;
4178     if (Dest == DestB) {
4179       CasesB.push_back(I.getCaseValue());
4180       continue;
4181     }
4182     return false; // More than two destinations.
4183   }
4184 
4185   assert(DestA && DestB &&
4186          "Single-destination switch should have been folded.");
4187   assert(DestA != DestB);
4188   assert(DestB != SI->getDefaultDest());
4189   assert(!CasesB.empty() && "There must be non-default cases.");
4190   assert(!CasesA.empty() || HasDefault);
4191 
4192   // Figure out if one of the sets of cases form a contiguous range.
4193   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4194   BasicBlock *ContiguousDest = nullptr;
4195   BasicBlock *OtherDest = nullptr;
4196   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4197     ContiguousCases = &CasesA;
4198     ContiguousDest = DestA;
4199     OtherDest = DestB;
4200   } else if (CasesAreContiguous(CasesB)) {
4201     ContiguousCases = &CasesB;
4202     ContiguousDest = DestB;
4203     OtherDest = DestA;
4204   } else
4205     return false;
4206 
4207   // Start building the compare and branch.
4208 
4209   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4210   Constant *NumCases =
4211       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4212 
4213   Value *Sub = SI->getCondition();
4214   if (!Offset->isNullValue())
4215     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4216 
4217   Value *Cmp;
4218   // If NumCases overflowed, then all possible values jump to the successor.
4219   if (NumCases->isNullValue() && !ContiguousCases->empty())
4220     Cmp = ConstantInt::getTrue(SI->getContext());
4221   else
4222     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4223   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4224 
4225   // Update weight for the newly-created conditional branch.
4226   if (HasBranchWeights(SI)) {
4227     SmallVector<uint64_t, 8> Weights;
4228     GetBranchWeights(SI, Weights);
4229     if (Weights.size() == 1 + SI->getNumCases()) {
4230       uint64_t TrueWeight = 0;
4231       uint64_t FalseWeight = 0;
4232       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4233         if (SI->getSuccessor(I) == ContiguousDest)
4234           TrueWeight += Weights[I];
4235         else
4236           FalseWeight += Weights[I];
4237       }
4238       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4239         TrueWeight /= 2;
4240         FalseWeight /= 2;
4241       }
4242       NewBI->setMetadata(LLVMContext::MD_prof,
4243                          MDBuilder(SI->getContext())
4244                              .createBranchWeights((uint32_t)TrueWeight,
4245                                                   (uint32_t)FalseWeight));
4246     }
4247   }
4248 
4249   // Prune obsolete incoming values off the successors' PHI nodes.
4250   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4251     unsigned PreviousEdges = ContiguousCases->size();
4252     if (ContiguousDest == SI->getDefaultDest())
4253       ++PreviousEdges;
4254     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4255       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4256   }
4257   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4258     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4259     if (OtherDest == SI->getDefaultDest())
4260       ++PreviousEdges;
4261     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4262       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4263   }
4264 
4265   // Drop the switch.
4266   SI->eraseFromParent();
4267 
4268   return true;
4269 }
4270 
4271 /// Compute masked bits for the condition of a switch
4272 /// and use it to remove dead cases.
4273 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4274                                      const DataLayout &DL) {
4275   Value *Cond = SI->getCondition();
4276   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4277   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4278   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4279 
4280   // We can also eliminate cases by determining that their values are outside of
4281   // the limited range of the condition based on how many significant (non-sign)
4282   // bits are in the condition value.
4283   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4284   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4285 
4286   // Gather dead cases.
4287   SmallVector<ConstantInt *, 8> DeadCases;
4288   for (auto &Case : SI->cases()) {
4289     APInt CaseVal = Case.getCaseValue()->getValue();
4290     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4291         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4292       DeadCases.push_back(Case.getCaseValue());
4293       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4294     }
4295   }
4296 
4297   // If we can prove that the cases must cover all possible values, the
4298   // default destination becomes dead and we can remove it.  If we know some
4299   // of the bits in the value, we can use that to more precisely compute the
4300   // number of possible unique case values.
4301   bool HasDefault =
4302       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4303   const unsigned NumUnknownBits =
4304       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4305   assert(NumUnknownBits <= Bits);
4306   if (HasDefault && DeadCases.empty() &&
4307       NumUnknownBits < 64 /* avoid overflow */ &&
4308       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4309     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4310     BasicBlock *NewDefault =
4311         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4312     SI->setDefaultDest(&*NewDefault);
4313     SplitBlock(&*NewDefault, &NewDefault->front());
4314     auto *OldTI = NewDefault->getTerminator();
4315     new UnreachableInst(SI->getContext(), OldTI);
4316     EraseTerminatorInstAndDCECond(OldTI);
4317     return true;
4318   }
4319 
4320   SmallVector<uint64_t, 8> Weights;
4321   bool HasWeight = HasBranchWeights(SI);
4322   if (HasWeight) {
4323     GetBranchWeights(SI, Weights);
4324     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4325   }
4326 
4327   // Remove dead cases from the switch.
4328   for (ConstantInt *DeadCase : DeadCases) {
4329     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4330     assert(Case != SI->case_default() &&
4331            "Case was not found. Probably mistake in DeadCases forming.");
4332     if (HasWeight) {
4333       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4334       Weights.pop_back();
4335     }
4336 
4337     // Prune unused values from PHI nodes.
4338     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4339     SI->removeCase(Case);
4340   }
4341   if (HasWeight && Weights.size() >= 2) {
4342     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4343     SI->setMetadata(LLVMContext::MD_prof,
4344                     MDBuilder(SI->getParent()->getContext())
4345                         .createBranchWeights(MDWeights));
4346   }
4347 
4348   return !DeadCases.empty();
4349 }
4350 
4351 /// If BB would be eligible for simplification by
4352 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4353 /// by an unconditional branch), look at the phi node for BB in the successor
4354 /// block and see if the incoming value is equal to CaseValue. If so, return
4355 /// the phi node, and set PhiIndex to BB's index in the phi node.
4356 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4357                                               BasicBlock *BB, int *PhiIndex) {
4358   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4359     return nullptr; // BB must be empty to be a candidate for simplification.
4360   if (!BB->getSinglePredecessor())
4361     return nullptr; // BB must be dominated by the switch.
4362 
4363   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4364   if (!Branch || !Branch->isUnconditional())
4365     return nullptr; // Terminator must be unconditional branch.
4366 
4367   BasicBlock *Succ = Branch->getSuccessor(0);
4368 
4369   BasicBlock::iterator I = Succ->begin();
4370   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4371     int Idx = PHI->getBasicBlockIndex(BB);
4372     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4373 
4374     Value *InValue = PHI->getIncomingValue(Idx);
4375     if (InValue != CaseValue)
4376       continue;
4377 
4378     *PhiIndex = Idx;
4379     return PHI;
4380   }
4381 
4382   return nullptr;
4383 }
4384 
4385 /// Try to forward the condition of a switch instruction to a phi node
4386 /// dominated by the switch, if that would mean that some of the destination
4387 /// blocks of the switch can be folded away.
4388 /// Returns true if a change is made.
4389 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4390   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4391   ForwardingNodesMap ForwardingNodes;
4392 
4393   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4394        ++I) {
4395     ConstantInt *CaseValue = I.getCaseValue();
4396     BasicBlock *CaseDest = I.getCaseSuccessor();
4397 
4398     int PhiIndex;
4399     PHINode *PHI =
4400         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4401     if (!PHI)
4402       continue;
4403 
4404     ForwardingNodes[PHI].push_back(PhiIndex);
4405   }
4406 
4407   bool Changed = false;
4408 
4409   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4410                                     E = ForwardingNodes.end();
4411        I != E; ++I) {
4412     PHINode *Phi = I->first;
4413     SmallVectorImpl<int> &Indexes = I->second;
4414 
4415     if (Indexes.size() < 2)
4416       continue;
4417 
4418     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4419       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4420     Changed = true;
4421   }
4422 
4423   return Changed;
4424 }
4425 
4426 /// Return true if the backend will be able to handle
4427 /// initializing an array of constants like C.
4428 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4429   if (C->isThreadDependent())
4430     return false;
4431   if (C->isDLLImportDependent())
4432     return false;
4433 
4434   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4435       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4436       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4437     return false;
4438 
4439   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
4440     if (!CE->isGEPWithNoNotionalOverIndexing())
4441       return false;
4442 
4443   if (!TTI.shouldBuildLookupTablesForConstant(C))
4444     return false;
4445 
4446   return true;
4447 }
4448 
4449 /// If V is a Constant, return it. Otherwise, try to look up
4450 /// its constant value in ConstantPool, returning 0 if it's not there.
4451 static Constant *
4452 LookupConstant(Value *V,
4453                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4454   if (Constant *C = dyn_cast<Constant>(V))
4455     return C;
4456   return ConstantPool.lookup(V);
4457 }
4458 
4459 /// Try to fold instruction I into a constant. This works for
4460 /// simple instructions such as binary operations where both operands are
4461 /// constant or can be replaced by constants from the ConstantPool. Returns the
4462 /// resulting constant on success, 0 otherwise.
4463 static Constant *
4464 ConstantFold(Instruction *I, const DataLayout &DL,
4465              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4466   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4467     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4468     if (!A)
4469       return nullptr;
4470     if (A->isAllOnesValue())
4471       return LookupConstant(Select->getTrueValue(), ConstantPool);
4472     if (A->isNullValue())
4473       return LookupConstant(Select->getFalseValue(), ConstantPool);
4474     return nullptr;
4475   }
4476 
4477   SmallVector<Constant *, 4> COps;
4478   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4479     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4480       COps.push_back(A);
4481     else
4482       return nullptr;
4483   }
4484 
4485   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4486     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4487                                            COps[1], DL);
4488   }
4489 
4490   return ConstantFoldInstOperands(I, COps, DL);
4491 }
4492 
4493 /// Try to determine the resulting constant values in phi nodes
4494 /// at the common destination basic block, *CommonDest, for one of the case
4495 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4496 /// case), of a switch instruction SI.
4497 static bool
4498 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4499                BasicBlock **CommonDest,
4500                SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
4501                const DataLayout &DL, const TargetTransformInfo &TTI) {
4502   // The block from which we enter the common destination.
4503   BasicBlock *Pred = SI->getParent();
4504 
4505   // If CaseDest is empty except for some side-effect free instructions through
4506   // which we can constant-propagate the CaseVal, continue to its successor.
4507   SmallDenseMap<Value *, Constant *> ConstantPool;
4508   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4509   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4510        ++I) {
4511     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4512       // If the terminator is a simple branch, continue to the next block.
4513       if (T->getNumSuccessors() != 1 || T->isExceptional())
4514         return false;
4515       Pred = CaseDest;
4516       CaseDest = T->getSuccessor(0);
4517     } else if (isa<DbgInfoIntrinsic>(I)) {
4518       // Skip debug intrinsic.
4519       continue;
4520     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4521       // Instruction is side-effect free and constant.
4522 
4523       // If the instruction has uses outside this block or a phi node slot for
4524       // the block, it is not safe to bypass the instruction since it would then
4525       // no longer dominate all its uses.
4526       for (auto &Use : I->uses()) {
4527         User *User = Use.getUser();
4528         if (Instruction *I = dyn_cast<Instruction>(User))
4529           if (I->getParent() == CaseDest)
4530             continue;
4531         if (PHINode *Phi = dyn_cast<PHINode>(User))
4532           if (Phi->getIncomingBlock(Use) == CaseDest)
4533             continue;
4534         return false;
4535       }
4536 
4537       ConstantPool.insert(std::make_pair(&*I, C));
4538     } else {
4539       break;
4540     }
4541   }
4542 
4543   // If we did not have a CommonDest before, use the current one.
4544   if (!*CommonDest)
4545     *CommonDest = CaseDest;
4546   // If the destination isn't the common one, abort.
4547   if (CaseDest != *CommonDest)
4548     return false;
4549 
4550   // Get the values for this case from phi nodes in the destination block.
4551   BasicBlock::iterator I = (*CommonDest)->begin();
4552   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4553     int Idx = PHI->getBasicBlockIndex(Pred);
4554     if (Idx == -1)
4555       continue;
4556 
4557     Constant *ConstVal =
4558         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4559     if (!ConstVal)
4560       return false;
4561 
4562     // Be conservative about which kinds of constants we support.
4563     if (!ValidLookupTableConstant(ConstVal, TTI))
4564       return false;
4565 
4566     Res.push_back(std::make_pair(PHI, ConstVal));
4567   }
4568 
4569   return Res.size() > 0;
4570 }
4571 
4572 // Helper function used to add CaseVal to the list of cases that generate
4573 // Result.
4574 static void MapCaseToResult(ConstantInt *CaseVal,
4575                             SwitchCaseResultVectorTy &UniqueResults,
4576                             Constant *Result) {
4577   for (auto &I : UniqueResults) {
4578     if (I.first == Result) {
4579       I.second.push_back(CaseVal);
4580       return;
4581     }
4582   }
4583   UniqueResults.push_back(
4584       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4585 }
4586 
4587 // Helper function that initializes a map containing
4588 // results for the PHI node of the common destination block for a switch
4589 // instruction. Returns false if multiple PHI nodes have been found or if
4590 // there is not a common destination block for the switch.
4591 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4592                                   BasicBlock *&CommonDest,
4593                                   SwitchCaseResultVectorTy &UniqueResults,
4594                                   Constant *&DefaultResult,
4595                                   const DataLayout &DL,
4596                                   const TargetTransformInfo &TTI) {
4597   for (auto &I : SI->cases()) {
4598     ConstantInt *CaseVal = I.getCaseValue();
4599 
4600     // Resulting value at phi nodes for this case value.
4601     SwitchCaseResultsTy Results;
4602     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4603                         DL, TTI))
4604       return false;
4605 
4606     // Only one value per case is permitted
4607     if (Results.size() > 1)
4608       return false;
4609     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4610 
4611     // Check the PHI consistency.
4612     if (!PHI)
4613       PHI = Results[0].first;
4614     else if (PHI != Results[0].first)
4615       return false;
4616   }
4617   // Find the default result value.
4618   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4619   BasicBlock *DefaultDest = SI->getDefaultDest();
4620   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4621                  DL, TTI);
4622   // If the default value is not found abort unless the default destination
4623   // is unreachable.
4624   DefaultResult =
4625       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4626   if ((!DefaultResult &&
4627        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4628     return false;
4629 
4630   return true;
4631 }
4632 
4633 // Helper function that checks if it is possible to transform a switch with only
4634 // two cases (or two cases + default) that produces a result into a select.
4635 // Example:
4636 // switch (a) {
4637 //   case 10:                %0 = icmp eq i32 %a, 10
4638 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4639 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4640 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4641 //   default:
4642 //     return 4;
4643 // }
4644 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4645                                    Constant *DefaultResult, Value *Condition,
4646                                    IRBuilder<> &Builder) {
4647   assert(ResultVector.size() == 2 &&
4648          "We should have exactly two unique results at this point");
4649   // If we are selecting between only two cases transform into a simple
4650   // select or a two-way select if default is possible.
4651   if (ResultVector[0].second.size() == 1 &&
4652       ResultVector[1].second.size() == 1) {
4653     ConstantInt *const FirstCase = ResultVector[0].second[0];
4654     ConstantInt *const SecondCase = ResultVector[1].second[0];
4655 
4656     bool DefaultCanTrigger = DefaultResult;
4657     Value *SelectValue = ResultVector[1].first;
4658     if (DefaultCanTrigger) {
4659       Value *const ValueCompare =
4660           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4661       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4662                                          DefaultResult, "switch.select");
4663     }
4664     Value *const ValueCompare =
4665         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4666     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4667                                 SelectValue, "switch.select");
4668   }
4669 
4670   return nullptr;
4671 }
4672 
4673 // Helper function to cleanup a switch instruction that has been converted into
4674 // a select, fixing up PHI nodes and basic blocks.
4675 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4676                                               Value *SelectValue,
4677                                               IRBuilder<> &Builder) {
4678   BasicBlock *SelectBB = SI->getParent();
4679   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4680     PHI->removeIncomingValue(SelectBB);
4681   PHI->addIncoming(SelectValue, SelectBB);
4682 
4683   Builder.CreateBr(PHI->getParent());
4684 
4685   // Remove the switch.
4686   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4687     BasicBlock *Succ = SI->getSuccessor(i);
4688 
4689     if (Succ == PHI->getParent())
4690       continue;
4691     Succ->removePredecessor(SelectBB);
4692   }
4693   SI->eraseFromParent();
4694 }
4695 
4696 /// If the switch is only used to initialize one or more
4697 /// phi nodes in a common successor block with only two different
4698 /// constant values, replace the switch with select.
4699 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4700                            AssumptionCache *AC, const DataLayout &DL,
4701                            const TargetTransformInfo &TTI) {
4702   Value *const Cond = SI->getCondition();
4703   PHINode *PHI = nullptr;
4704   BasicBlock *CommonDest = nullptr;
4705   Constant *DefaultResult;
4706   SwitchCaseResultVectorTy UniqueResults;
4707   // Collect all the cases that will deliver the same value from the switch.
4708   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4709                              DL, TTI))
4710     return false;
4711   // Selects choose between maximum two values.
4712   if (UniqueResults.size() != 2)
4713     return false;
4714   assert(PHI != nullptr && "PHI for value select not found");
4715 
4716   Builder.SetInsertPoint(SI);
4717   Value *SelectValue =
4718       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4719   if (SelectValue) {
4720     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4721     return true;
4722   }
4723   // The switch couldn't be converted into a select.
4724   return false;
4725 }
4726 
4727 namespace {
4728 /// This class represents a lookup table that can be used to replace a switch.
4729 class SwitchLookupTable {
4730 public:
4731   /// Create a lookup table to use as a switch replacement with the contents
4732   /// of Values, using DefaultValue to fill any holes in the table.
4733   SwitchLookupTable(
4734       Module &M, uint64_t TableSize, ConstantInt *Offset,
4735       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4736       Constant *DefaultValue, const DataLayout &DL);
4737 
4738   /// Build instructions with Builder to retrieve the value at
4739   /// the position given by Index in the lookup table.
4740   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4741 
4742   /// Return true if a table with TableSize elements of
4743   /// type ElementType would fit in a target-legal register.
4744   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4745                                  Type *ElementType);
4746 
4747 private:
4748   // Depending on the contents of the table, it can be represented in
4749   // different ways.
4750   enum {
4751     // For tables where each element contains the same value, we just have to
4752     // store that single value and return it for each lookup.
4753     SingleValueKind,
4754 
4755     // For tables where there is a linear relationship between table index
4756     // and values. We calculate the result with a simple multiplication
4757     // and addition instead of a table lookup.
4758     LinearMapKind,
4759 
4760     // For small tables with integer elements, we can pack them into a bitmap
4761     // that fits into a target-legal register. Values are retrieved by
4762     // shift and mask operations.
4763     BitMapKind,
4764 
4765     // The table is stored as an array of values. Values are retrieved by load
4766     // instructions from the table.
4767     ArrayKind
4768   } Kind;
4769 
4770   // For SingleValueKind, this is the single value.
4771   Constant *SingleValue;
4772 
4773   // For BitMapKind, this is the bitmap.
4774   ConstantInt *BitMap;
4775   IntegerType *BitMapElementTy;
4776 
4777   // For LinearMapKind, these are the constants used to derive the value.
4778   ConstantInt *LinearOffset;
4779   ConstantInt *LinearMultiplier;
4780 
4781   // For ArrayKind, this is the array.
4782   GlobalVariable *Array;
4783 };
4784 }
4785 
4786 SwitchLookupTable::SwitchLookupTable(
4787     Module &M, uint64_t TableSize, ConstantInt *Offset,
4788     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4789     Constant *DefaultValue, const DataLayout &DL)
4790     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4791       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4792   assert(Values.size() && "Can't build lookup table without values!");
4793   assert(TableSize >= Values.size() && "Can't fit values in table!");
4794 
4795   // If all values in the table are equal, this is that value.
4796   SingleValue = Values.begin()->second;
4797 
4798   Type *ValueType = Values.begin()->second->getType();
4799 
4800   // Build up the table contents.
4801   SmallVector<Constant *, 64> TableContents(TableSize);
4802   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4803     ConstantInt *CaseVal = Values[I].first;
4804     Constant *CaseRes = Values[I].second;
4805     assert(CaseRes->getType() == ValueType);
4806 
4807     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4808     TableContents[Idx] = CaseRes;
4809 
4810     if (CaseRes != SingleValue)
4811       SingleValue = nullptr;
4812   }
4813 
4814   // Fill in any holes in the table with the default result.
4815   if (Values.size() < TableSize) {
4816     assert(DefaultValue &&
4817            "Need a default value to fill the lookup table holes.");
4818     assert(DefaultValue->getType() == ValueType);
4819     for (uint64_t I = 0; I < TableSize; ++I) {
4820       if (!TableContents[I])
4821         TableContents[I] = DefaultValue;
4822     }
4823 
4824     if (DefaultValue != SingleValue)
4825       SingleValue = nullptr;
4826   }
4827 
4828   // If each element in the table contains the same value, we only need to store
4829   // that single value.
4830   if (SingleValue) {
4831     Kind = SingleValueKind;
4832     return;
4833   }
4834 
4835   // Check if we can derive the value with a linear transformation from the
4836   // table index.
4837   if (isa<IntegerType>(ValueType)) {
4838     bool LinearMappingPossible = true;
4839     APInt PrevVal;
4840     APInt DistToPrev;
4841     assert(TableSize >= 2 && "Should be a SingleValue table.");
4842     // Check if there is the same distance between two consecutive values.
4843     for (uint64_t I = 0; I < TableSize; ++I) {
4844       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4845       if (!ConstVal) {
4846         // This is an undef. We could deal with it, but undefs in lookup tables
4847         // are very seldom. It's probably not worth the additional complexity.
4848         LinearMappingPossible = false;
4849         break;
4850       }
4851       APInt Val = ConstVal->getValue();
4852       if (I != 0) {
4853         APInt Dist = Val - PrevVal;
4854         if (I == 1) {
4855           DistToPrev = Dist;
4856         } else if (Dist != DistToPrev) {
4857           LinearMappingPossible = false;
4858           break;
4859         }
4860       }
4861       PrevVal = Val;
4862     }
4863     if (LinearMappingPossible) {
4864       LinearOffset = cast<ConstantInt>(TableContents[0]);
4865       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4866       Kind = LinearMapKind;
4867       ++NumLinearMaps;
4868       return;
4869     }
4870   }
4871 
4872   // If the type is integer and the table fits in a register, build a bitmap.
4873   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4874     IntegerType *IT = cast<IntegerType>(ValueType);
4875     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4876     for (uint64_t I = TableSize; I > 0; --I) {
4877       TableInt <<= IT->getBitWidth();
4878       // Insert values into the bitmap. Undef values are set to zero.
4879       if (!isa<UndefValue>(TableContents[I - 1])) {
4880         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4881         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4882       }
4883     }
4884     BitMap = ConstantInt::get(M.getContext(), TableInt);
4885     BitMapElementTy = IT;
4886     Kind = BitMapKind;
4887     ++NumBitMaps;
4888     return;
4889   }
4890 
4891   // Store the table in an array.
4892   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4893   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4894 
4895   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4896                              GlobalVariable::PrivateLinkage, Initializer,
4897                              "switch.table");
4898   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4899   Kind = ArrayKind;
4900 }
4901 
4902 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4903   switch (Kind) {
4904   case SingleValueKind:
4905     return SingleValue;
4906   case LinearMapKind: {
4907     // Derive the result value from the input value.
4908     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4909                                           false, "switch.idx.cast");
4910     if (!LinearMultiplier->isOne())
4911       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4912     if (!LinearOffset->isZero())
4913       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4914     return Result;
4915   }
4916   case BitMapKind: {
4917     // Type of the bitmap (e.g. i59).
4918     IntegerType *MapTy = BitMap->getType();
4919 
4920     // Cast Index to the same type as the bitmap.
4921     // Note: The Index is <= the number of elements in the table, so
4922     // truncating it to the width of the bitmask is safe.
4923     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
4924 
4925     // Multiply the shift amount by the element width.
4926     ShiftAmt = Builder.CreateMul(
4927         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
4928         "switch.shiftamt");
4929 
4930     // Shift down.
4931     Value *DownShifted =
4932         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
4933     // Mask off.
4934     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
4935   }
4936   case ArrayKind: {
4937     // Make sure the table index will not overflow when treated as signed.
4938     IntegerType *IT = cast<IntegerType>(Index->getType());
4939     uint64_t TableSize =
4940         Array->getInitializer()->getType()->getArrayNumElements();
4941     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
4942       Index = Builder.CreateZExt(
4943           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
4944           "switch.tableidx.zext");
4945 
4946     Value *GEPIndices[] = {Builder.getInt32(0), Index};
4947     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
4948                                            GEPIndices, "switch.gep");
4949     return Builder.CreateLoad(GEP, "switch.load");
4950   }
4951   }
4952   llvm_unreachable("Unknown lookup table kind!");
4953 }
4954 
4955 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
4956                                            uint64_t TableSize,
4957                                            Type *ElementType) {
4958   auto *IT = dyn_cast<IntegerType>(ElementType);
4959   if (!IT)
4960     return false;
4961   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
4962   // are <= 15, we could try to narrow the type.
4963 
4964   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
4965   if (TableSize >= UINT_MAX / IT->getBitWidth())
4966     return false;
4967   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
4968 }
4969 
4970 /// Determine whether a lookup table should be built for this switch, based on
4971 /// the number of cases, size of the table, and the types of the results.
4972 static bool
4973 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
4974                        const TargetTransformInfo &TTI, const DataLayout &DL,
4975                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
4976   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
4977     return false; // TableSize overflowed, or mul below might overflow.
4978 
4979   bool AllTablesFitInRegister = true;
4980   bool HasIllegalType = false;
4981   for (const auto &I : ResultTypes) {
4982     Type *Ty = I.second;
4983 
4984     // Saturate this flag to true.
4985     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
4986 
4987     // Saturate this flag to false.
4988     AllTablesFitInRegister =
4989         AllTablesFitInRegister &&
4990         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
4991 
4992     // If both flags saturate, we're done. NOTE: This *only* works with
4993     // saturating flags, and all flags have to saturate first due to the
4994     // non-deterministic behavior of iterating over a dense map.
4995     if (HasIllegalType && !AllTablesFitInRegister)
4996       break;
4997   }
4998 
4999   // If each table would fit in a register, we should build it anyway.
5000   if (AllTablesFitInRegister)
5001     return true;
5002 
5003   // Don't build a table that doesn't fit in-register if it has illegal types.
5004   if (HasIllegalType)
5005     return false;
5006 
5007   // The table density should be at least 40%. This is the same criterion as for
5008   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5009   // FIXME: Find the best cut-off.
5010   return SI->getNumCases() * 10 >= TableSize * 4;
5011 }
5012 
5013 /// Try to reuse the switch table index compare. Following pattern:
5014 /// \code
5015 ///     if (idx < tablesize)
5016 ///        r = table[idx]; // table does not contain default_value
5017 ///     else
5018 ///        r = default_value;
5019 ///     if (r != default_value)
5020 ///        ...
5021 /// \endcode
5022 /// Is optimized to:
5023 /// \code
5024 ///     cond = idx < tablesize;
5025 ///     if (cond)
5026 ///        r = table[idx];
5027 ///     else
5028 ///        r = default_value;
5029 ///     if (cond)
5030 ///        ...
5031 /// \endcode
5032 /// Jump threading will then eliminate the second if(cond).
5033 static void reuseTableCompare(
5034     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5035     Constant *DefaultValue,
5036     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5037 
5038   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5039   if (!CmpInst)
5040     return;
5041 
5042   // We require that the compare is in the same block as the phi so that jump
5043   // threading can do its work afterwards.
5044   if (CmpInst->getParent() != PhiBlock)
5045     return;
5046 
5047   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5048   if (!CmpOp1)
5049     return;
5050 
5051   Value *RangeCmp = RangeCheckBranch->getCondition();
5052   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5053   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5054 
5055   // Check if the compare with the default value is constant true or false.
5056   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5057                                                  DefaultValue, CmpOp1, true);
5058   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5059     return;
5060 
5061   // Check if the compare with the case values is distinct from the default
5062   // compare result.
5063   for (auto ValuePair : Values) {
5064     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5065                                                 ValuePair.second, CmpOp1, true);
5066     if (!CaseConst || CaseConst == DefaultConst)
5067       return;
5068     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5069            "Expect true or false as compare result.");
5070   }
5071 
5072   // Check if the branch instruction dominates the phi node. It's a simple
5073   // dominance check, but sufficient for our needs.
5074   // Although this check is invariant in the calling loops, it's better to do it
5075   // at this late stage. Practically we do it at most once for a switch.
5076   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5077   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5078     BasicBlock *Pred = *PI;
5079     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5080       return;
5081   }
5082 
5083   if (DefaultConst == FalseConst) {
5084     // The compare yields the same result. We can replace it.
5085     CmpInst->replaceAllUsesWith(RangeCmp);
5086     ++NumTableCmpReuses;
5087   } else {
5088     // The compare yields the same result, just inverted. We can replace it.
5089     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5090         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5091         RangeCheckBranch);
5092     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5093     ++NumTableCmpReuses;
5094   }
5095 }
5096 
5097 /// If the switch is only used to initialize one or more phi nodes in a common
5098 /// successor block with different constant values, replace the switch with
5099 /// lookup tables.
5100 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5101                                 const DataLayout &DL,
5102                                 const TargetTransformInfo &TTI) {
5103   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5104 
5105   // Only build lookup table when we have a target that supports it.
5106   if (!TTI.shouldBuildLookupTables())
5107     return false;
5108 
5109   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5110   // split off a dense part and build a lookup table for that.
5111 
5112   // FIXME: This creates arrays of GEPs to constant strings, which means each
5113   // GEP needs a runtime relocation in PIC code. We should just build one big
5114   // string and lookup indices into that.
5115 
5116   // Ignore switches with less than three cases. Lookup tables will not make
5117   // them
5118   // faster, so we don't analyze them.
5119   if (SI->getNumCases() < 3)
5120     return false;
5121 
5122   // Figure out the corresponding result for each case value and phi node in the
5123   // common destination, as well as the min and max case values.
5124   assert(SI->case_begin() != SI->case_end());
5125   SwitchInst::CaseIt CI = SI->case_begin();
5126   ConstantInt *MinCaseVal = CI.getCaseValue();
5127   ConstantInt *MaxCaseVal = CI.getCaseValue();
5128 
5129   BasicBlock *CommonDest = nullptr;
5130   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5131   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5132   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5133   SmallDenseMap<PHINode *, Type *> ResultTypes;
5134   SmallVector<PHINode *, 4> PHIs;
5135 
5136   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5137     ConstantInt *CaseVal = CI.getCaseValue();
5138     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5139       MinCaseVal = CaseVal;
5140     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5141       MaxCaseVal = CaseVal;
5142 
5143     // Resulting value at phi nodes for this case value.
5144     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5145     ResultsTy Results;
5146     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5147                         Results, DL, TTI))
5148       return false;
5149 
5150     // Append the result from this case to the list for each phi.
5151     for (const auto &I : Results) {
5152       PHINode *PHI = I.first;
5153       Constant *Value = I.second;
5154       if (!ResultLists.count(PHI))
5155         PHIs.push_back(PHI);
5156       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5157     }
5158   }
5159 
5160   // Keep track of the result types.
5161   for (PHINode *PHI : PHIs) {
5162     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5163   }
5164 
5165   uint64_t NumResults = ResultLists[PHIs[0]].size();
5166   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5167   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5168   bool TableHasHoles = (NumResults < TableSize);
5169 
5170   // If the table has holes, we need a constant result for the default case
5171   // or a bitmask that fits in a register.
5172   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5173   bool HasDefaultResults =
5174       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5175                      DefaultResultsList, DL, TTI);
5176 
5177   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5178   if (NeedMask) {
5179     // As an extra penalty for the validity test we require more cases.
5180     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5181       return false;
5182     if (!DL.fitsInLegalInteger(TableSize))
5183       return false;
5184   }
5185 
5186   for (const auto &I : DefaultResultsList) {
5187     PHINode *PHI = I.first;
5188     Constant *Result = I.second;
5189     DefaultResults[PHI] = Result;
5190   }
5191 
5192   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5193     return false;
5194 
5195   // Create the BB that does the lookups.
5196   Module &Mod = *CommonDest->getParent()->getParent();
5197   BasicBlock *LookupBB = BasicBlock::Create(
5198       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5199 
5200   // Compute the table index value.
5201   Builder.SetInsertPoint(SI);
5202   Value *TableIndex =
5203       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5204 
5205   // Compute the maximum table size representable by the integer type we are
5206   // switching upon.
5207   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5208   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5209   assert(MaxTableSize >= TableSize &&
5210          "It is impossible for a switch to have more entries than the max "
5211          "representable value of its input integer type's size.");
5212 
5213   // If the default destination is unreachable, or if the lookup table covers
5214   // all values of the conditional variable, branch directly to the lookup table
5215   // BB. Otherwise, check that the condition is within the case range.
5216   const bool DefaultIsReachable =
5217       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5218   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5219   BranchInst *RangeCheckBranch = nullptr;
5220 
5221   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5222     Builder.CreateBr(LookupBB);
5223     // Note: We call removeProdecessor later since we need to be able to get the
5224     // PHI value for the default case in case we're using a bit mask.
5225   } else {
5226     Value *Cmp = Builder.CreateICmpULT(
5227         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5228     RangeCheckBranch =
5229         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5230   }
5231 
5232   // Populate the BB that does the lookups.
5233   Builder.SetInsertPoint(LookupBB);
5234 
5235   if (NeedMask) {
5236     // Before doing the lookup we do the hole check.
5237     // The LookupBB is therefore re-purposed to do the hole check
5238     // and we create a new LookupBB.
5239     BasicBlock *MaskBB = LookupBB;
5240     MaskBB->setName("switch.hole_check");
5241     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5242                                   CommonDest->getParent(), CommonDest);
5243 
5244     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5245     // unnecessary illegal types.
5246     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5247     APInt MaskInt(TableSizePowOf2, 0);
5248     APInt One(TableSizePowOf2, 1);
5249     // Build bitmask; fill in a 1 bit for every case.
5250     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5251     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5252       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5253                          .getLimitedValue();
5254       MaskInt |= One << Idx;
5255     }
5256     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5257 
5258     // Get the TableIndex'th bit of the bitmask.
5259     // If this bit is 0 (meaning hole) jump to the default destination,
5260     // else continue with table lookup.
5261     IntegerType *MapTy = TableMask->getType();
5262     Value *MaskIndex =
5263         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5264     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5265     Value *LoBit = Builder.CreateTrunc(
5266         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5267     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5268 
5269     Builder.SetInsertPoint(LookupBB);
5270     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5271   }
5272 
5273   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5274     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5275     // do not delete PHINodes here.
5276     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5277                                             /*DontDeleteUselessPHIs=*/true);
5278   }
5279 
5280   bool ReturnedEarly = false;
5281   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5282     PHINode *PHI = PHIs[I];
5283     const ResultListTy &ResultList = ResultLists[PHI];
5284 
5285     // If using a bitmask, use any value to fill the lookup table holes.
5286     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5287     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5288 
5289     Value *Result = Table.BuildLookup(TableIndex, Builder);
5290 
5291     // If the result is used to return immediately from the function, we want to
5292     // do that right here.
5293     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5294         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5295       Builder.CreateRet(Result);
5296       ReturnedEarly = true;
5297       break;
5298     }
5299 
5300     // Do a small peephole optimization: re-use the switch table compare if
5301     // possible.
5302     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5303       BasicBlock *PhiBlock = PHI->getParent();
5304       // Search for compare instructions which use the phi.
5305       for (auto *User : PHI->users()) {
5306         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5307       }
5308     }
5309 
5310     PHI->addIncoming(Result, LookupBB);
5311   }
5312 
5313   if (!ReturnedEarly)
5314     Builder.CreateBr(CommonDest);
5315 
5316   // Remove the switch.
5317   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5318     BasicBlock *Succ = SI->getSuccessor(i);
5319 
5320     if (Succ == SI->getDefaultDest())
5321       continue;
5322     Succ->removePredecessor(SI->getParent());
5323   }
5324   SI->eraseFromParent();
5325 
5326   ++NumLookupTables;
5327   if (NeedMask)
5328     ++NumLookupTablesHoles;
5329   return true;
5330 }
5331 
5332 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5333   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5334   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5335   uint64_t Range = Diff + 1;
5336   uint64_t NumCases = Values.size();
5337   // 40% is the default density for building a jump table in optsize/minsize mode.
5338   uint64_t MinDensity = 40;
5339 
5340   return NumCases * 100 >= Range * MinDensity;
5341 }
5342 
5343 // Try and transform a switch that has "holes" in it to a contiguous sequence
5344 // of cases.
5345 //
5346 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5347 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5348 //
5349 // This converts a sparse switch into a dense switch which allows better
5350 // lowering and could also allow transforming into a lookup table.
5351 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5352                               const DataLayout &DL,
5353                               const TargetTransformInfo &TTI) {
5354   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5355   if (CondTy->getIntegerBitWidth() > 64 ||
5356       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5357     return false;
5358   // Only bother with this optimization if there are more than 3 switch cases;
5359   // SDAG will only bother creating jump tables for 4 or more cases.
5360   if (SI->getNumCases() < 4)
5361     return false;
5362 
5363   // This transform is agnostic to the signedness of the input or case values. We
5364   // can treat the case values as signed or unsigned. We can optimize more common
5365   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5366   // as signed.
5367   SmallVector<int64_t,4> Values;
5368   for (auto &C : SI->cases())
5369     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5370   std::sort(Values.begin(), Values.end());
5371 
5372   // If the switch is already dense, there's nothing useful to do here.
5373   if (isSwitchDense(Values))
5374     return false;
5375 
5376   // First, transform the values such that they start at zero and ascend.
5377   int64_t Base = Values[0];
5378   for (auto &V : Values)
5379     V -= Base;
5380 
5381   // Now we have signed numbers that have been shifted so that, given enough
5382   // precision, there are no negative values. Since the rest of the transform
5383   // is bitwise only, we switch now to an unsigned representation.
5384   uint64_t GCD = 0;
5385   for (auto &V : Values)
5386     GCD = llvm::GreatestCommonDivisor64(GCD, (uint64_t)V);
5387 
5388   // This transform can be done speculatively because it is so cheap - it results
5389   // in a single rotate operation being inserted. This can only happen if the
5390   // factor extracted is a power of 2.
5391   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5392   // inverse of GCD and then perform this transform.
5393   // FIXME: It's possible that optimizing a switch on powers of two might also
5394   // be beneficial - flag values are often powers of two and we could use a CLZ
5395   // as the key function.
5396   if (GCD <= 1 || !llvm::isPowerOf2_64(GCD))
5397     // No common divisor found or too expensive to compute key function.
5398     return false;
5399 
5400   unsigned Shift = llvm::Log2_64(GCD);
5401   for (auto &V : Values)
5402     V = (int64_t)((uint64_t)V >> Shift);
5403 
5404   if (!isSwitchDense(Values))
5405     // Transform didn't create a dense switch.
5406     return false;
5407 
5408   // The obvious transform is to shift the switch condition right and emit a
5409   // check that the condition actually cleanly divided by GCD, i.e.
5410   //   C & (1 << Shift - 1) == 0
5411   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5412   //
5413   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5414   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5415   // are nonzero then the switch condition will be very large and will hit the
5416   // default case.
5417 
5418   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5419   Builder.SetInsertPoint(SI);
5420   auto *ShiftC = ConstantInt::get(Ty, Shift);
5421   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5422   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5423   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5424   auto *Rot = Builder.CreateOr(LShr, Shl);
5425   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5426 
5427   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5428        ++C) {
5429     auto *Orig = C.getCaseValue();
5430     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5431     C.setValue(
5432         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5433   }
5434   return true;
5435 }
5436 
5437 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5438   BasicBlock *BB = SI->getParent();
5439 
5440   if (isValueEqualityComparison(SI)) {
5441     // If we only have one predecessor, and if it is a branch on this value,
5442     // see if that predecessor totally determines the outcome of this switch.
5443     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5444       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5445         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5446 
5447     Value *Cond = SI->getCondition();
5448     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5449       if (SimplifySwitchOnSelect(SI, Select))
5450         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5451 
5452     // If the block only contains the switch, see if we can fold the block
5453     // away into any preds.
5454     BasicBlock::iterator BBI = BB->begin();
5455     // Ignore dbg intrinsics.
5456     while (isa<DbgInfoIntrinsic>(BBI))
5457       ++BBI;
5458     if (SI == &*BBI)
5459       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5460         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5461   }
5462 
5463   // Try to transform the switch into an icmp and a branch.
5464   if (TurnSwitchRangeIntoICmp(SI, Builder))
5465     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5466 
5467   // Remove unreachable cases.
5468   if (EliminateDeadSwitchCases(SI, AC, DL))
5469     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5470 
5471   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5472     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5473 
5474   if (ForwardSwitchConditionToPHI(SI))
5475     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5476 
5477   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5478     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5479 
5480   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5481     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5482 
5483   return false;
5484 }
5485 
5486 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5487   BasicBlock *BB = IBI->getParent();
5488   bool Changed = false;
5489 
5490   // Eliminate redundant destinations.
5491   SmallPtrSet<Value *, 8> Succs;
5492   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5493     BasicBlock *Dest = IBI->getDestination(i);
5494     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5495       Dest->removePredecessor(BB);
5496       IBI->removeDestination(i);
5497       --i;
5498       --e;
5499       Changed = true;
5500     }
5501   }
5502 
5503   if (IBI->getNumDestinations() == 0) {
5504     // If the indirectbr has no successors, change it to unreachable.
5505     new UnreachableInst(IBI->getContext(), IBI);
5506     EraseTerminatorInstAndDCECond(IBI);
5507     return true;
5508   }
5509 
5510   if (IBI->getNumDestinations() == 1) {
5511     // If the indirectbr has one successor, change it to a direct branch.
5512     BranchInst::Create(IBI->getDestination(0), IBI);
5513     EraseTerminatorInstAndDCECond(IBI);
5514     return true;
5515   }
5516 
5517   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5518     if (SimplifyIndirectBrOnSelect(IBI, SI))
5519       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5520   }
5521   return Changed;
5522 }
5523 
5524 /// Given an block with only a single landing pad and a unconditional branch
5525 /// try to find another basic block which this one can be merged with.  This
5526 /// handles cases where we have multiple invokes with unique landing pads, but
5527 /// a shared handler.
5528 ///
5529 /// We specifically choose to not worry about merging non-empty blocks
5530 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5531 /// practice, the optimizer produces empty landing pad blocks quite frequently
5532 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5533 /// sinking in this file)
5534 ///
5535 /// This is primarily a code size optimization.  We need to avoid performing
5536 /// any transform which might inhibit optimization (such as our ability to
5537 /// specialize a particular handler via tail commoning).  We do this by not
5538 /// merging any blocks which require us to introduce a phi.  Since the same
5539 /// values are flowing through both blocks, we don't loose any ability to
5540 /// specialize.  If anything, we make such specialization more likely.
5541 ///
5542 /// TODO - This transformation could remove entries from a phi in the target
5543 /// block when the inputs in the phi are the same for the two blocks being
5544 /// merged.  In some cases, this could result in removal of the PHI entirely.
5545 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5546                                  BasicBlock *BB) {
5547   auto Succ = BB->getUniqueSuccessor();
5548   assert(Succ);
5549   // If there's a phi in the successor block, we'd likely have to introduce
5550   // a phi into the merged landing pad block.
5551   if (isa<PHINode>(*Succ->begin()))
5552     return false;
5553 
5554   for (BasicBlock *OtherPred : predecessors(Succ)) {
5555     if (BB == OtherPred)
5556       continue;
5557     BasicBlock::iterator I = OtherPred->begin();
5558     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5559     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5560       continue;
5561     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5562     }
5563     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5564     if (!BI2 || !BI2->isIdenticalTo(BI))
5565       continue;
5566 
5567     // We've found an identical block.  Update our predecessors to take that
5568     // path instead and make ourselves dead.
5569     SmallSet<BasicBlock *, 16> Preds;
5570     Preds.insert(pred_begin(BB), pred_end(BB));
5571     for (BasicBlock *Pred : Preds) {
5572       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5573       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5574              "unexpected successor");
5575       II->setUnwindDest(OtherPred);
5576     }
5577 
5578     // The debug info in OtherPred doesn't cover the merged control flow that
5579     // used to go through BB.  We need to delete it or update it.
5580     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5581       Instruction &Inst = *I;
5582       I++;
5583       if (isa<DbgInfoIntrinsic>(Inst))
5584         Inst.eraseFromParent();
5585     }
5586 
5587     SmallSet<BasicBlock *, 16> Succs;
5588     Succs.insert(succ_begin(BB), succ_end(BB));
5589     for (BasicBlock *Succ : Succs) {
5590       Succ->removePredecessor(BB);
5591     }
5592 
5593     IRBuilder<> Builder(BI);
5594     Builder.CreateUnreachable();
5595     BI->eraseFromParent();
5596     return true;
5597   }
5598   return false;
5599 }
5600 
5601 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5602                                           IRBuilder<> &Builder) {
5603   BasicBlock *BB = BI->getParent();
5604 
5605   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5606     return true;
5607 
5608   // If the Terminator is the only non-phi instruction, simplify the block.
5609   // if LoopHeader is provided, check if the block is a loop header
5610   // (This is for early invocations before loop simplify and vectorization
5611   // to keep canonical loop forms for nested loops.
5612   // These blocks can be eliminated when the pass is invoked later
5613   // in the back-end.)
5614   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5615   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5616       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5617       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5618     return true;
5619 
5620   // If the only instruction in the block is a seteq/setne comparison
5621   // against a constant, try to simplify the block.
5622   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5623     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5624       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5625         ;
5626       if (I->isTerminator() &&
5627           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5628                                                 BonusInstThreshold, AC))
5629         return true;
5630     }
5631 
5632   // See if we can merge an empty landing pad block with another which is
5633   // equivalent.
5634   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5635     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5636     }
5637     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5638       return true;
5639   }
5640 
5641   // If this basic block is ONLY a compare and a branch, and if a predecessor
5642   // branches to us and our successor, fold the comparison into the
5643   // predecessor and use logical operations to update the incoming value
5644   // for PHI nodes in common successor.
5645   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5646     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5647   return false;
5648 }
5649 
5650 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5651   BasicBlock *PredPred = nullptr;
5652   for (auto *P : predecessors(BB)) {
5653     BasicBlock *PPred = P->getSinglePredecessor();
5654     if (!PPred || (PredPred && PredPred != PPred))
5655       return nullptr;
5656     PredPred = PPred;
5657   }
5658   return PredPred;
5659 }
5660 
5661 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5662   BasicBlock *BB = BI->getParent();
5663 
5664   // Conditional branch
5665   if (isValueEqualityComparison(BI)) {
5666     // If we only have one predecessor, and if it is a branch on this value,
5667     // see if that predecessor totally determines the outcome of this
5668     // switch.
5669     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5670       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5671         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5672 
5673     // This block must be empty, except for the setcond inst, if it exists.
5674     // Ignore dbg intrinsics.
5675     BasicBlock::iterator I = BB->begin();
5676     // Ignore dbg intrinsics.
5677     while (isa<DbgInfoIntrinsic>(I))
5678       ++I;
5679     if (&*I == BI) {
5680       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5681         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5682     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5683       ++I;
5684       // Ignore dbg intrinsics.
5685       while (isa<DbgInfoIntrinsic>(I))
5686         ++I;
5687       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5688         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5689     }
5690   }
5691 
5692   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5693   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5694     return true;
5695 
5696   // If this basic block has a single dominating predecessor block and the
5697   // dominating block's condition implies BI's condition, we know the direction
5698   // of the BI branch.
5699   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5700     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5701     if (PBI && PBI->isConditional() &&
5702         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5703         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5704       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5705       Optional<bool> Implication = isImpliedCondition(
5706           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5707       if (Implication) {
5708         // Turn this into a branch on constant.
5709         auto *OldCond = BI->getCondition();
5710         ConstantInt *CI = *Implication
5711                               ? ConstantInt::getTrue(BB->getContext())
5712                               : ConstantInt::getFalse(BB->getContext());
5713         BI->setCondition(CI);
5714         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5715         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5716       }
5717     }
5718   }
5719 
5720   // If this basic block is ONLY a compare and a branch, and if a predecessor
5721   // branches to us and one of our successors, fold the comparison into the
5722   // predecessor and use logical operations to pick the right destination.
5723   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5724     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5725 
5726   // We have a conditional branch to two blocks that are only reachable
5727   // from BI.  We know that the condbr dominates the two blocks, so see if
5728   // there is any identical code in the "then" and "else" blocks.  If so, we
5729   // can hoist it up to the branching block.
5730   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5731     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5732       if (HoistThenElseCodeToIf(BI, TTI))
5733         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5734     } else {
5735       // If Successor #1 has multiple preds, we may be able to conditionally
5736       // execute Successor #0 if it branches to Successor #1.
5737       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5738       if (Succ0TI->getNumSuccessors() == 1 &&
5739           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5740         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5741           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5742     }
5743   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5744     // If Successor #0 has multiple preds, we may be able to conditionally
5745     // execute Successor #1 if it branches to Successor #0.
5746     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5747     if (Succ1TI->getNumSuccessors() == 1 &&
5748         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5749       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5750         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5751   }
5752 
5753   // If this is a branch on a phi node in the current block, thread control
5754   // through this block if any PHI node entries are constants.
5755   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5756     if (PN->getParent() == BI->getParent())
5757       if (FoldCondBranchOnPHI(BI, DL))
5758         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5759 
5760   // Scan predecessor blocks for conditional branches.
5761   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5762     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5763       if (PBI != BI && PBI->isConditional())
5764         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5765           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5766 
5767   // Look for diamond patterns.
5768   if (MergeCondStores)
5769     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5770       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5771         if (PBI != BI && PBI->isConditional())
5772           if (mergeConditionalStores(PBI, BI))
5773             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5774 
5775   return false;
5776 }
5777 
5778 /// Check if passing a value to an instruction will cause undefined behavior.
5779 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5780   Constant *C = dyn_cast<Constant>(V);
5781   if (!C)
5782     return false;
5783 
5784   if (I->use_empty())
5785     return false;
5786 
5787   if (C->isNullValue() || isa<UndefValue>(C)) {
5788     // Only look at the first use, avoid hurting compile time with long uselists
5789     User *Use = *I->user_begin();
5790 
5791     // Now make sure that there are no instructions in between that can alter
5792     // control flow (eg. calls)
5793     for (BasicBlock::iterator
5794              i = ++BasicBlock::iterator(I),
5795              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5796          i != UI; ++i)
5797       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5798         return false;
5799 
5800     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5801     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5802       if (GEP->getPointerOperand() == I)
5803         return passingValueIsAlwaysUndefined(V, GEP);
5804 
5805     // Look through bitcasts.
5806     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5807       return passingValueIsAlwaysUndefined(V, BC);
5808 
5809     // Load from null is undefined.
5810     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5811       if (!LI->isVolatile())
5812         return LI->getPointerAddressSpace() == 0;
5813 
5814     // Store to null is undefined.
5815     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5816       if (!SI->isVolatile())
5817         return SI->getPointerAddressSpace() == 0 &&
5818                SI->getPointerOperand() == I;
5819 
5820     // A call to null is undefined.
5821     if (auto CS = CallSite(Use))
5822       return CS.getCalledValue() == I;
5823   }
5824   return false;
5825 }
5826 
5827 /// If BB has an incoming value that will always trigger undefined behavior
5828 /// (eg. null pointer dereference), remove the branch leading here.
5829 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5830   for (BasicBlock::iterator i = BB->begin();
5831        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5832     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5833       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5834         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5835         IRBuilder<> Builder(T);
5836         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5837           BB->removePredecessor(PHI->getIncomingBlock(i));
5838           // Turn uncoditional branches into unreachables and remove the dead
5839           // destination from conditional branches.
5840           if (BI->isUnconditional())
5841             Builder.CreateUnreachable();
5842           else
5843             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5844                                                        : BI->getSuccessor(0));
5845           BI->eraseFromParent();
5846           return true;
5847         }
5848         // TODO: SwitchInst.
5849       }
5850 
5851   return false;
5852 }
5853 
5854 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5855   bool Changed = false;
5856 
5857   assert(BB && BB->getParent() && "Block not embedded in function!");
5858   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5859 
5860   // Remove basic blocks that have no predecessors (except the entry block)...
5861   // or that just have themself as a predecessor.  These are unreachable.
5862   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5863       BB->getSinglePredecessor() == BB) {
5864     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5865     DeleteDeadBlock(BB);
5866     return true;
5867   }
5868 
5869   // Check to see if we can constant propagate this terminator instruction
5870   // away...
5871   Changed |= ConstantFoldTerminator(BB, true);
5872 
5873   // Check for and eliminate duplicate PHI nodes in this block.
5874   Changed |= EliminateDuplicatePHINodes(BB);
5875 
5876   // Check for and remove branches that will always cause undefined behavior.
5877   Changed |= removeUndefIntroducingPredecessor(BB);
5878 
5879   // Merge basic blocks into their predecessor if there is only one distinct
5880   // pred, and if there is only one distinct successor of the predecessor, and
5881   // if there are no PHI nodes.
5882   //
5883   if (MergeBlockIntoPredecessor(BB))
5884     return true;
5885 
5886   IRBuilder<> Builder(BB);
5887 
5888   // If there is a trivial two-entry PHI node in this basic block, and we can
5889   // eliminate it, do so now.
5890   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5891     if (PN->getNumIncomingValues() == 2)
5892       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5893 
5894   Builder.SetInsertPoint(BB->getTerminator());
5895   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5896     if (BI->isUnconditional()) {
5897       if (SimplifyUncondBranch(BI, Builder))
5898         return true;
5899     } else {
5900       if (SimplifyCondBranch(BI, Builder))
5901         return true;
5902     }
5903   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5904     if (SimplifyReturn(RI, Builder))
5905       return true;
5906   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5907     if (SimplifyResume(RI, Builder))
5908       return true;
5909   } else if (CleanupReturnInst *RI =
5910                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5911     if (SimplifyCleanupReturn(RI))
5912       return true;
5913   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5914     if (SimplifySwitch(SI, Builder))
5915       return true;
5916   } else if (UnreachableInst *UI =
5917                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5918     if (SimplifyUnreachable(UI))
5919       return true;
5920   } else if (IndirectBrInst *IBI =
5921                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
5922     if (SimplifyIndirectBr(IBI))
5923       return true;
5924   }
5925 
5926   return Changed;
5927 }
5928 
5929 /// This function is used to do simplification of a CFG.
5930 /// For example, it adjusts branches to branches to eliminate the extra hop,
5931 /// eliminates unreachable basic blocks, and does other "peephole" optimization
5932 /// of the CFG.  It returns true if a modification was made.
5933 ///
5934 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
5935                        unsigned BonusInstThreshold, AssumptionCache *AC,
5936                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
5937   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
5938                         BonusInstThreshold, AC, LoopHeaders)
5939       .run(BB);
5940 }
5941