1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/PseudoProbe.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/SSAUpdater.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
97     cl::init(false),
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool> DupRet(
117     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
118     cl::desc("Duplicate return instructions into unconditional branches"));
119 
120 static cl::opt<bool>
121     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
122                 cl::desc("Hoist common instructions up to the parent block"));
123 
124 static cl::opt<bool>
125     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
126                cl::desc("Sink common instructions down to the end block"));
127 
128 static cl::opt<bool> HoistCondStores(
129     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
130     cl::desc("Hoist conditional stores if an unconditional store precedes"));
131 
132 static cl::opt<bool> MergeCondStores(
133     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
134     cl::desc("Hoist conditional stores even if an unconditional store does not "
135              "precede - hoist multiple conditional stores into a single "
136              "predicated store"));
137 
138 static cl::opt<bool> MergeCondStoresAggressively(
139     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
140     cl::desc("When merging conditional stores, do so even if the resultant "
141              "basic blocks are unlikely to be if-converted as a result"));
142 
143 static cl::opt<bool> SpeculateOneExpensiveInst(
144     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
145     cl::desc("Allow exactly one expensive instruction to be speculatively "
146              "executed"));
147 
148 static cl::opt<unsigned> MaxSpeculationDepth(
149     "max-speculation-depth", cl::Hidden, cl::init(10),
150     cl::desc("Limit maximum recursion depth when calculating costs of "
151              "speculatively executed instructions"));
152 
153 static cl::opt<int>
154     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
155                       cl::init(10),
156                       cl::desc("Max size of a block which is still considered "
157                                "small enough to thread through"));
158 
159 // Two is chosen to allow one negation and a logical combine.
160 static cl::opt<unsigned>
161     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
162                         cl::init(2),
163                         cl::desc("Maximum cost of combining conditions when "
164                                  "folding branches"));
165 
166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
167 STATISTIC(NumLinearMaps,
168           "Number of switch instructions turned into linear mapping");
169 STATISTIC(NumLookupTables,
170           "Number of switch instructions turned into lookup tables");
171 STATISTIC(
172     NumLookupTablesHoles,
173     "Number of switch instructions turned into lookup tables (holes checked)");
174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
175 STATISTIC(NumFoldValueComparisonIntoPredecessors,
176           "Number of value comparisons folded into predecessor basic blocks");
177 STATISTIC(NumFoldBranchToCommonDest,
178           "Number of branches folded into predecessor basic block");
179 STATISTIC(
180     NumHoistCommonCode,
181     "Number of common instruction 'blocks' hoisted up to the begin block");
182 STATISTIC(NumHoistCommonInstrs,
183           "Number of common instructions hoisted up to the begin block");
184 STATISTIC(NumSinkCommonCode,
185           "Number of common instruction 'blocks' sunk down to the end block");
186 STATISTIC(NumSinkCommonInstrs,
187           "Number of common instructions sunk down to the end block");
188 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
189 STATISTIC(NumInvokes,
190           "Number of invokes with empty resume blocks simplified into calls");
191 
192 namespace {
193 
194 // The first field contains the value that the switch produces when a certain
195 // case group is selected, and the second field is a vector containing the
196 // cases composing the case group.
197 using SwitchCaseResultVectorTy =
198     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
199 
200 // The first field contains the phi node that generates a result of the switch
201 // and the second field contains the value generated for a certain case in the
202 // switch for that PHI.
203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
204 
205 /// ValueEqualityComparisonCase - Represents a case of a switch.
206 struct ValueEqualityComparisonCase {
207   ConstantInt *Value;
208   BasicBlock *Dest;
209 
210   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
211       : Value(Value), Dest(Dest) {}
212 
213   bool operator<(ValueEqualityComparisonCase RHS) const {
214     // Comparing pointers is ok as we only rely on the order for uniquing.
215     return Value < RHS.Value;
216   }
217 
218   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
219 };
220 
221 class SimplifyCFGOpt {
222   const TargetTransformInfo &TTI;
223   DomTreeUpdater *DTU;
224   const DataLayout &DL;
225   ArrayRef<WeakVH> LoopHeaders;
226   const SimplifyCFGOptions &Options;
227   bool Resimplify;
228 
229   Value *isValueEqualityComparison(Instruction *TI);
230   BasicBlock *GetValueEqualityComparisonCases(
231       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
232   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
233                                                      BasicBlock *Pred,
234                                                      IRBuilder<> &Builder);
235   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
236                                                     Instruction *PTI,
237                                                     IRBuilder<> &Builder);
238   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
239                                            IRBuilder<> &Builder);
240 
241   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
242   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
243   bool simplifySingleResume(ResumeInst *RI);
244   bool simplifyCommonResume(ResumeInst *RI);
245   bool simplifyCleanupReturn(CleanupReturnInst *RI);
246   bool simplifyUnreachable(UnreachableInst *UI);
247   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
248   bool simplifyIndirectBr(IndirectBrInst *IBI);
249   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
250   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
251   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
252   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
253 
254   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
255                                              IRBuilder<> &Builder);
256 
257   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
258                              bool EqTermsOnly);
259   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
260                               const TargetTransformInfo &TTI);
261   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
262                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
263                                   uint32_t TrueWeight, uint32_t FalseWeight);
264   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
265                                  const DataLayout &DL);
266   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
267   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
268   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
269 
270 public:
271   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
272                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
273                  const SimplifyCFGOptions &Opts)
274       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
275     assert((!DTU || !DTU->hasPostDomTree()) &&
276            "SimplifyCFG is not yet capable of maintaining validity of a "
277            "PostDomTree, so don't ask for it.");
278   }
279 
280   bool simplifyOnce(BasicBlock *BB);
281   bool simplifyOnceImpl(BasicBlock *BB);
282   bool run(BasicBlock *BB);
283 
284   // Helper to set Resimplify and return change indication.
285   bool requestResimplify() {
286     Resimplify = true;
287     return true;
288   }
289 };
290 
291 } // end anonymous namespace
292 
293 /// Return true if it is safe to merge these two
294 /// terminator instructions together.
295 static bool
296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
297                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
298   if (SI1 == SI2)
299     return false; // Can't merge with self!
300 
301   // It is not safe to merge these two switch instructions if they have a common
302   // successor, and if that successor has a PHI node, and if *that* PHI node has
303   // conflicting incoming values from the two switch blocks.
304   BasicBlock *SI1BB = SI1->getParent();
305   BasicBlock *SI2BB = SI2->getParent();
306 
307   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
308   bool Fail = false;
309   for (BasicBlock *Succ : successors(SI2BB))
310     if (SI1Succs.count(Succ))
311       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
312         PHINode *PN = cast<PHINode>(BBI);
313         if (PN->getIncomingValueForBlock(SI1BB) !=
314             PN->getIncomingValueForBlock(SI2BB)) {
315           if (FailBlocks)
316             FailBlocks->insert(Succ);
317           Fail = true;
318         }
319       }
320 
321   return !Fail;
322 }
323 
324 /// Update PHI nodes in Succ to indicate that there will now be entries in it
325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
326 /// will be the same as those coming in from ExistPred, an existing predecessor
327 /// of Succ.
328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
329                                   BasicBlock *ExistPred,
330                                   MemorySSAUpdater *MSSAU = nullptr) {
331   for (PHINode &PN : Succ->phis())
332     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
333   if (MSSAU)
334     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
335       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
336 }
337 
338 /// Compute an abstract "cost" of speculating the given instruction,
339 /// which is assumed to be safe to speculate. TCC_Free means cheap,
340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
341 /// expensive.
342 static InstructionCost computeSpeculationCost(const User *I,
343                                               const TargetTransformInfo &TTI) {
344   assert(isSafeToSpeculativelyExecute(I) &&
345          "Instruction is not safe to speculatively execute!");
346   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
347 }
348 
349 /// If we have a merge point of an "if condition" as accepted above,
350 /// return true if the specified value dominates the block.  We
351 /// don't handle the true generality of domination here, just a special case
352 /// which works well enough for us.
353 ///
354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
355 /// see if V (which must be an instruction) and its recursive operands
356 /// that do not dominate BB have a combined cost lower than Budget and
357 /// are non-trapping.  If both are true, the instruction is inserted into the
358 /// set and true is returned.
359 ///
360 /// The cost for most non-trapping instructions is defined as 1 except for
361 /// Select whose cost is 2.
362 ///
363 /// After this function returns, Cost is increased by the cost of
364 /// V plus its non-dominating operands.  If that cost is greater than
365 /// Budget, false is returned and Cost is undefined.
366 static bool dominatesMergePoint(Value *V, BasicBlock *BB,
367                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
368                                 InstructionCost &Cost,
369                                 InstructionCost Budget,
370                                 const TargetTransformInfo &TTI,
371                                 unsigned Depth = 0) {
372   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
373   // so limit the recursion depth.
374   // TODO: While this recursion limit does prevent pathological behavior, it
375   // would be better to track visited instructions to avoid cycles.
376   if (Depth == MaxSpeculationDepth)
377     return false;
378 
379   Instruction *I = dyn_cast<Instruction>(V);
380   if (!I) {
381     // Non-instructions all dominate instructions, but not all constantexprs
382     // can be executed unconditionally.
383     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
384       if (C->canTrap())
385         return false;
386     return true;
387   }
388   BasicBlock *PBB = I->getParent();
389 
390   // We don't want to allow weird loops that might have the "if condition" in
391   // the bottom of this block.
392   if (PBB == BB)
393     return false;
394 
395   // If this instruction is defined in a block that contains an unconditional
396   // branch to BB, then it must be in the 'conditional' part of the "if
397   // statement".  If not, it definitely dominates the region.
398   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
399   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
400     return true;
401 
402   // If we have seen this instruction before, don't count it again.
403   if (AggressiveInsts.count(I))
404     return true;
405 
406   // Okay, it looks like the instruction IS in the "condition".  Check to
407   // see if it's a cheap instruction to unconditionally compute, and if it
408   // only uses stuff defined outside of the condition.  If so, hoist it out.
409   if (!isSafeToSpeculativelyExecute(I))
410     return false;
411 
412   Cost += computeSpeculationCost(I, TTI);
413 
414   // Allow exactly one instruction to be speculated regardless of its cost
415   // (as long as it is safe to do so).
416   // This is intended to flatten the CFG even if the instruction is a division
417   // or other expensive operation. The speculation of an expensive instruction
418   // is expected to be undone in CodeGenPrepare if the speculation has not
419   // enabled further IR optimizations.
420   if (Cost > Budget &&
421       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
422        !Cost.isValid()))
423     return false;
424 
425   // Okay, we can only really hoist these out if their operands do
426   // not take us over the cost threshold.
427   for (Use &Op : I->operands())
428     if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
429                              Depth + 1))
430       return false;
431   // Okay, it's safe to do this!  Remember this instruction.
432   AggressiveInsts.insert(I);
433   return true;
434 }
435 
436 /// Extract ConstantInt from value, looking through IntToPtr
437 /// and PointerNullValue. Return NULL if value is not a constant int.
438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
439   // Normal constant int.
440   ConstantInt *CI = dyn_cast<ConstantInt>(V);
441   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
442     return CI;
443 
444   // This is some kind of pointer constant. Turn it into a pointer-sized
445   // ConstantInt if possible.
446   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
447 
448   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
449   if (isa<ConstantPointerNull>(V))
450     return ConstantInt::get(PtrTy, 0);
451 
452   // IntToPtr const int.
453   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
454     if (CE->getOpcode() == Instruction::IntToPtr)
455       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
456         // The constant is very likely to have the right type already.
457         if (CI->getType() == PtrTy)
458           return CI;
459         else
460           return cast<ConstantInt>(
461               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
462       }
463   return nullptr;
464 }
465 
466 namespace {
467 
468 /// Given a chain of or (||) or and (&&) comparison of a value against a
469 /// constant, this will try to recover the information required for a switch
470 /// structure.
471 /// It will depth-first traverse the chain of comparison, seeking for patterns
472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
473 /// representing the different cases for the switch.
474 /// Note that if the chain is composed of '||' it will build the set of elements
475 /// that matches the comparisons (i.e. any of this value validate the chain)
476 /// while for a chain of '&&' it will build the set elements that make the test
477 /// fail.
478 struct ConstantComparesGatherer {
479   const DataLayout &DL;
480 
481   /// Value found for the switch comparison
482   Value *CompValue = nullptr;
483 
484   /// Extra clause to be checked before the switch
485   Value *Extra = nullptr;
486 
487   /// Set of integers to match in switch
488   SmallVector<ConstantInt *, 8> Vals;
489 
490   /// Number of comparisons matched in the and/or chain
491   unsigned UsedICmps = 0;
492 
493   /// Construct and compute the result for the comparison instruction Cond
494   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
495     gather(Cond);
496   }
497 
498   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
499   ConstantComparesGatherer &
500   operator=(const ConstantComparesGatherer &) = delete;
501 
502 private:
503   /// Try to set the current value used for the comparison, it succeeds only if
504   /// it wasn't set before or if the new value is the same as the old one
505   bool setValueOnce(Value *NewVal) {
506     if (CompValue && CompValue != NewVal)
507       return false;
508     CompValue = NewVal;
509     return (CompValue != nullptr);
510   }
511 
512   /// Try to match Instruction "I" as a comparison against a constant and
513   /// populates the array Vals with the set of values that match (or do not
514   /// match depending on isEQ).
515   /// Return false on failure. On success, the Value the comparison matched
516   /// against is placed in CompValue.
517   /// If CompValue is already set, the function is expected to fail if a match
518   /// is found but the value compared to is different.
519   bool matchInstruction(Instruction *I, bool isEQ) {
520     // If this is an icmp against a constant, handle this as one of the cases.
521     ICmpInst *ICI;
522     ConstantInt *C;
523     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
524           (C = GetConstantInt(I->getOperand(1), DL)))) {
525       return false;
526     }
527 
528     Value *RHSVal;
529     const APInt *RHSC;
530 
531     // Pattern match a special case
532     // (x & ~2^z) == y --> x == y || x == y|2^z
533     // This undoes a transformation done by instcombine to fuse 2 compares.
534     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
535       // It's a little bit hard to see why the following transformations are
536       // correct. Here is a CVC3 program to verify them for 64-bit values:
537 
538       /*
539          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
540          x    : BITVECTOR(64);
541          y    : BITVECTOR(64);
542          z    : BITVECTOR(64);
543          mask : BITVECTOR(64) = BVSHL(ONE, z);
544          QUERY( (y & ~mask = y) =>
545                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
546          );
547          QUERY( (y |  mask = y) =>
548                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
549          );
550       */
551 
552       // Please note that each pattern must be a dual implication (<--> or
553       // iff). One directional implication can create spurious matches. If the
554       // implication is only one-way, an unsatisfiable condition on the left
555       // side can imply a satisfiable condition on the right side. Dual
556       // implication ensures that satisfiable conditions are transformed to
557       // other satisfiable conditions and unsatisfiable conditions are
558       // transformed to other unsatisfiable conditions.
559 
560       // Here is a concrete example of a unsatisfiable condition on the left
561       // implying a satisfiable condition on the right:
562       //
563       // mask = (1 << z)
564       // (x & ~mask) == y  --> (x == y || x == (y | mask))
565       //
566       // Substituting y = 3, z = 0 yields:
567       // (x & -2) == 3 --> (x == 3 || x == 2)
568 
569       // Pattern match a special case:
570       /*
571         QUERY( (y & ~mask = y) =>
572                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
573         );
574       */
575       if (match(ICI->getOperand(0),
576                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
577         APInt Mask = ~*RHSC;
578         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
579           // If we already have a value for the switch, it has to match!
580           if (!setValueOnce(RHSVal))
581             return false;
582 
583           Vals.push_back(C);
584           Vals.push_back(
585               ConstantInt::get(C->getContext(),
586                                C->getValue() | Mask));
587           UsedICmps++;
588           return true;
589         }
590       }
591 
592       // Pattern match a special case:
593       /*
594         QUERY( (y |  mask = y) =>
595                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
596         );
597       */
598       if (match(ICI->getOperand(0),
599                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
600         APInt Mask = *RHSC;
601         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
602           // If we already have a value for the switch, it has to match!
603           if (!setValueOnce(RHSVal))
604             return false;
605 
606           Vals.push_back(C);
607           Vals.push_back(ConstantInt::get(C->getContext(),
608                                           C->getValue() & ~Mask));
609           UsedICmps++;
610           return true;
611         }
612       }
613 
614       // If we already have a value for the switch, it has to match!
615       if (!setValueOnce(ICI->getOperand(0)))
616         return false;
617 
618       UsedICmps++;
619       Vals.push_back(C);
620       return ICI->getOperand(0);
621     }
622 
623     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
624     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
625         ICI->getPredicate(), C->getValue());
626 
627     // Shift the range if the compare is fed by an add. This is the range
628     // compare idiom as emitted by instcombine.
629     Value *CandidateVal = I->getOperand(0);
630     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
631       Span = Span.subtract(*RHSC);
632       CandidateVal = RHSVal;
633     }
634 
635     // If this is an and/!= check, then we are looking to build the set of
636     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
637     // x != 0 && x != 1.
638     if (!isEQ)
639       Span = Span.inverse();
640 
641     // If there are a ton of values, we don't want to make a ginormous switch.
642     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
643       return false;
644     }
645 
646     // If we already have a value for the switch, it has to match!
647     if (!setValueOnce(CandidateVal))
648       return false;
649 
650     // Add all values from the range to the set
651     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
652       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
653 
654     UsedICmps++;
655     return true;
656   }
657 
658   /// Given a potentially 'or'd or 'and'd together collection of icmp
659   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
660   /// the value being compared, and stick the list constants into the Vals
661   /// vector.
662   /// One "Extra" case is allowed to differ from the other.
663   void gather(Value *V) {
664     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
665 
666     // Keep a stack (SmallVector for efficiency) for depth-first traversal
667     SmallVector<Value *, 8> DFT;
668     SmallPtrSet<Value *, 8> Visited;
669 
670     // Initialize
671     Visited.insert(V);
672     DFT.push_back(V);
673 
674     while (!DFT.empty()) {
675       V = DFT.pop_back_val();
676 
677       if (Instruction *I = dyn_cast<Instruction>(V)) {
678         // If it is a || (or && depending on isEQ), process the operands.
679         Value *Op0, *Op1;
680         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
681                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
682           if (Visited.insert(Op1).second)
683             DFT.push_back(Op1);
684           if (Visited.insert(Op0).second)
685             DFT.push_back(Op0);
686 
687           continue;
688         }
689 
690         // Try to match the current instruction
691         if (matchInstruction(I, isEQ))
692           // Match succeed, continue the loop
693           continue;
694       }
695 
696       // One element of the sequence of || (or &&) could not be match as a
697       // comparison against the same value as the others.
698       // We allow only one "Extra" case to be checked before the switch
699       if (!Extra) {
700         Extra = V;
701         continue;
702       }
703       // Failed to parse a proper sequence, abort now
704       CompValue = nullptr;
705       break;
706     }
707   }
708 };
709 
710 } // end anonymous namespace
711 
712 static void EraseTerminatorAndDCECond(Instruction *TI,
713                                       MemorySSAUpdater *MSSAU = nullptr) {
714   Instruction *Cond = nullptr;
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cond = dyn_cast<Instruction>(SI->getCondition());
717   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
718     if (BI->isConditional())
719       Cond = dyn_cast<Instruction>(BI->getCondition());
720   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
721     Cond = dyn_cast<Instruction>(IBI->getAddress());
722   }
723 
724   TI->eraseFromParent();
725   if (Cond)
726     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
727 }
728 
729 /// Return true if the specified terminator checks
730 /// to see if a value is equal to constant integer value.
731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
732   Value *CV = nullptr;
733   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
734     // Do not permit merging of large switch instructions into their
735     // predecessors unless there is only one predecessor.
736     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
737       CV = SI->getCondition();
738   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
739     if (BI->isConditional() && BI->getCondition()->hasOneUse())
740       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
741         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
742           CV = ICI->getOperand(0);
743       }
744 
745   // Unwrap any lossless ptrtoint cast.
746   if (CV) {
747     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
748       Value *Ptr = PTII->getPointerOperand();
749       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
750         CV = Ptr;
751     }
752   }
753   return CV;
754 }
755 
756 /// Given a value comparison instruction,
757 /// decode all of the 'cases' that it represents and return the 'default' block.
758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
759     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
760   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
761     Cases.reserve(SI->getNumCases());
762     for (auto Case : SI->cases())
763       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
764                                                   Case.getCaseSuccessor()));
765     return SI->getDefaultDest();
766   }
767 
768   BranchInst *BI = cast<BranchInst>(TI);
769   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
770   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
771   Cases.push_back(ValueEqualityComparisonCase(
772       GetConstantInt(ICI->getOperand(1), DL), Succ));
773   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
774 }
775 
776 /// Given a vector of bb/value pairs, remove any entries
777 /// in the list that match the specified block.
778 static void
779 EliminateBlockCases(BasicBlock *BB,
780                     std::vector<ValueEqualityComparisonCase> &Cases) {
781   llvm::erase_value(Cases, BB);
782 }
783 
784 /// Return true if there are any keys in C1 that exist in C2 as well.
785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
786                           std::vector<ValueEqualityComparisonCase> &C2) {
787   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
788 
789   // Make V1 be smaller than V2.
790   if (V1->size() > V2->size())
791     std::swap(V1, V2);
792 
793   if (V1->empty())
794     return false;
795   if (V1->size() == 1) {
796     // Just scan V2.
797     ConstantInt *TheVal = (*V1)[0].Value;
798     for (unsigned i = 0, e = V2->size(); i != e; ++i)
799       if (TheVal == (*V2)[i].Value)
800         return true;
801   }
802 
803   // Otherwise, just sort both lists and compare element by element.
804   array_pod_sort(V1->begin(), V1->end());
805   array_pod_sort(V2->begin(), V2->end());
806   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
807   while (i1 != e1 && i2 != e2) {
808     if ((*V1)[i1].Value == (*V2)[i2].Value)
809       return true;
810     if ((*V1)[i1].Value < (*V2)[i2].Value)
811       ++i1;
812     else
813       ++i2;
814   }
815   return false;
816 }
817 
818 // Set branch weights on SwitchInst. This sets the metadata if there is at
819 // least one non-zero weight.
820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
821   // Check that there is at least one non-zero weight. Otherwise, pass
822   // nullptr to setMetadata which will erase the existing metadata.
823   MDNode *N = nullptr;
824   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
825     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
826   SI->setMetadata(LLVMContext::MD_prof, N);
827 }
828 
829 // Similar to the above, but for branch and select instructions that take
830 // exactly 2 weights.
831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
832                              uint32_t FalseWeight) {
833   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
834   // Check that there is at least one non-zero weight. Otherwise, pass
835   // nullptr to setMetadata which will erase the existing metadata.
836   MDNode *N = nullptr;
837   if (TrueWeight || FalseWeight)
838     N = MDBuilder(I->getParent()->getContext())
839             .createBranchWeights(TrueWeight, FalseWeight);
840   I->setMetadata(LLVMContext::MD_prof, N);
841 }
842 
843 /// If TI is known to be a terminator instruction and its block is known to
844 /// only have a single predecessor block, check to see if that predecessor is
845 /// also a value comparison with the same value, and if that comparison
846 /// determines the outcome of this comparison. If so, simplify TI. This does a
847 /// very limited form of jump threading.
848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
849     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
850   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
851   if (!PredVal)
852     return false; // Not a value comparison in predecessor.
853 
854   Value *ThisVal = isValueEqualityComparison(TI);
855   assert(ThisVal && "This isn't a value comparison!!");
856   if (ThisVal != PredVal)
857     return false; // Different predicates.
858 
859   // TODO: Preserve branch weight metadata, similarly to how
860   // FoldValueComparisonIntoPredecessors preserves it.
861 
862   // Find out information about when control will move from Pred to TI's block.
863   std::vector<ValueEqualityComparisonCase> PredCases;
864   BasicBlock *PredDef =
865       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
866   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
867 
868   // Find information about how control leaves this block.
869   std::vector<ValueEqualityComparisonCase> ThisCases;
870   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
871   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
872 
873   // If TI's block is the default block from Pred's comparison, potentially
874   // simplify TI based on this knowledge.
875   if (PredDef == TI->getParent()) {
876     // If we are here, we know that the value is none of those cases listed in
877     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
878     // can simplify TI.
879     if (!ValuesOverlap(PredCases, ThisCases))
880       return false;
881 
882     if (isa<BranchInst>(TI)) {
883       // Okay, one of the successors of this condbr is dead.  Convert it to a
884       // uncond br.
885       assert(ThisCases.size() == 1 && "Branch can only have one case!");
886       // Insert the new branch.
887       Instruction *NI = Builder.CreateBr(ThisDef);
888       (void)NI;
889 
890       // Remove PHI node entries for the dead edge.
891       ThisCases[0].Dest->removePredecessor(PredDef);
892 
893       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
894                         << "Through successor TI: " << *TI << "Leaving: " << *NI
895                         << "\n");
896 
897       EraseTerminatorAndDCECond(TI);
898 
899       if (DTU)
900         DTU->applyUpdates(
901             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
902 
903       return true;
904     }
905 
906     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
907     // Okay, TI has cases that are statically dead, prune them away.
908     SmallPtrSet<Constant *, 16> DeadCases;
909     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
910       DeadCases.insert(PredCases[i].Value);
911 
912     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
913                       << "Through successor TI: " << *TI);
914 
915     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
916     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
917       --i;
918       auto *Successor = i->getCaseSuccessor();
919       if (DTU)
920         ++NumPerSuccessorCases[Successor];
921       if (DeadCases.count(i->getCaseValue())) {
922         Successor->removePredecessor(PredDef);
923         SI.removeCase(i);
924         if (DTU)
925           --NumPerSuccessorCases[Successor];
926       }
927     }
928 
929     if (DTU) {
930       std::vector<DominatorTree::UpdateType> Updates;
931       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
932         if (I.second == 0)
933           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
934       DTU->applyUpdates(Updates);
935     }
936 
937     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
938     return true;
939   }
940 
941   // Otherwise, TI's block must correspond to some matched value.  Find out
942   // which value (or set of values) this is.
943   ConstantInt *TIV = nullptr;
944   BasicBlock *TIBB = TI->getParent();
945   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
946     if (PredCases[i].Dest == TIBB) {
947       if (TIV)
948         return false; // Cannot handle multiple values coming to this block.
949       TIV = PredCases[i].Value;
950     }
951   assert(TIV && "No edge from pred to succ?");
952 
953   // Okay, we found the one constant that our value can be if we get into TI's
954   // BB.  Find out which successor will unconditionally be branched to.
955   BasicBlock *TheRealDest = nullptr;
956   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
957     if (ThisCases[i].Value == TIV) {
958       TheRealDest = ThisCases[i].Dest;
959       break;
960     }
961 
962   // If not handled by any explicit cases, it is handled by the default case.
963   if (!TheRealDest)
964     TheRealDest = ThisDef;
965 
966   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
967 
968   // Remove PHI node entries for dead edges.
969   BasicBlock *CheckEdge = TheRealDest;
970   for (BasicBlock *Succ : successors(TIBB))
971     if (Succ != CheckEdge) {
972       if (Succ != TheRealDest)
973         RemovedSuccs.insert(Succ);
974       Succ->removePredecessor(TIBB);
975     } else
976       CheckEdge = nullptr;
977 
978   // Insert the new branch.
979   Instruction *NI = Builder.CreateBr(TheRealDest);
980   (void)NI;
981 
982   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
983                     << "Through successor TI: " << *TI << "Leaving: " << *NI
984                     << "\n");
985 
986   EraseTerminatorAndDCECond(TI);
987   if (DTU) {
988     SmallVector<DominatorTree::UpdateType, 2> Updates;
989     Updates.reserve(RemovedSuccs.size());
990     for (auto *RemovedSucc : RemovedSuccs)
991       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
992     DTU->applyUpdates(Updates);
993   }
994   return true;
995 }
996 
997 namespace {
998 
999 /// This class implements a stable ordering of constant
1000 /// integers that does not depend on their address.  This is important for
1001 /// applications that sort ConstantInt's to ensure uniqueness.
1002 struct ConstantIntOrdering {
1003   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1004     return LHS->getValue().ult(RHS->getValue());
1005   }
1006 };
1007 
1008 } // end anonymous namespace
1009 
1010 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1011                                     ConstantInt *const *P2) {
1012   const ConstantInt *LHS = *P1;
1013   const ConstantInt *RHS = *P2;
1014   if (LHS == RHS)
1015     return 0;
1016   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1017 }
1018 
1019 static inline bool HasBranchWeights(const Instruction *I) {
1020   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1021   if (ProfMD && ProfMD->getOperand(0))
1022     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1023       return MDS->getString().equals("branch_weights");
1024 
1025   return false;
1026 }
1027 
1028 /// Get Weights of a given terminator, the default weight is at the front
1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1030 /// metadata.
1031 static void GetBranchWeights(Instruction *TI,
1032                              SmallVectorImpl<uint64_t> &Weights) {
1033   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1034   assert(MD);
1035   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1036     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1037     Weights.push_back(CI->getValue().getZExtValue());
1038   }
1039 
1040   // If TI is a conditional eq, the default case is the false case,
1041   // and the corresponding branch-weight data is at index 2. We swap the
1042   // default weight to be the first entry.
1043   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1044     assert(Weights.size() == 2);
1045     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1046     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1047       std::swap(Weights.front(), Weights.back());
1048   }
1049 }
1050 
1051 /// Keep halving the weights until all can fit in uint32_t.
1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1053   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1054   if (Max > UINT_MAX) {
1055     unsigned Offset = 32 - countLeadingZeros(Max);
1056     for (uint64_t &I : Weights)
1057       I >>= Offset;
1058   }
1059 }
1060 
1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1062     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1063   Instruction *PTI = PredBlock->getTerminator();
1064 
1065   // If we have bonus instructions, clone them into the predecessor block.
1066   // Note that there may be multiple predecessor blocks, so we cannot move
1067   // bonus instructions to a predecessor block.
1068   for (Instruction &BonusInst : *BB) {
1069     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1070       continue;
1071 
1072     Instruction *NewBonusInst = BonusInst.clone();
1073 
1074     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1075       // Unless the instruction has the same !dbg location as the original
1076       // branch, drop it. When we fold the bonus instructions we want to make
1077       // sure we reset their debug locations in order to avoid stepping on
1078       // dead code caused by folding dead branches.
1079       NewBonusInst->setDebugLoc(DebugLoc());
1080     }
1081 
1082     RemapInstruction(NewBonusInst, VMap,
1083                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1084     VMap[&BonusInst] = NewBonusInst;
1085 
1086     // If we moved a load, we cannot any longer claim any knowledge about
1087     // its potential value. The previous information might have been valid
1088     // only given the branch precondition.
1089     // For an analogous reason, we must also drop all the metadata whose
1090     // semantics we don't understand. We *can* preserve !annotation, because
1091     // it is tied to the instruction itself, not the value or position.
1092     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1093 
1094     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1095     NewBonusInst->takeName(&BonusInst);
1096     BonusInst.setName(NewBonusInst->getName() + ".old");
1097 
1098     // Update (liveout) uses of bonus instructions,
1099     // now that the bonus instruction has been cloned into predecessor.
1100     SSAUpdater SSAUpdate;
1101     SSAUpdate.Initialize(BonusInst.getType(),
1102                          (NewBonusInst->getName() + ".merge").str());
1103     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1104     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1105     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1106       auto *UI = cast<Instruction>(U.getUser());
1107       if (UI->getParent() != PredBlock)
1108         SSAUpdate.RewriteUseAfterInsertions(U);
1109       else // Use is in the same block as, and comes before, NewBonusInst.
1110         SSAUpdate.RewriteUse(U);
1111     }
1112   }
1113 }
1114 
1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1116     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1117   BasicBlock *BB = TI->getParent();
1118   BasicBlock *Pred = PTI->getParent();
1119 
1120   SmallVector<DominatorTree::UpdateType, 32> Updates;
1121 
1122   // Figure out which 'cases' to copy from SI to PSI.
1123   std::vector<ValueEqualityComparisonCase> BBCases;
1124   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1125 
1126   std::vector<ValueEqualityComparisonCase> PredCases;
1127   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1128 
1129   // Based on whether the default edge from PTI goes to BB or not, fill in
1130   // PredCases and PredDefault with the new switch cases we would like to
1131   // build.
1132   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1133 
1134   // Update the branch weight metadata along the way
1135   SmallVector<uint64_t, 8> Weights;
1136   bool PredHasWeights = HasBranchWeights(PTI);
1137   bool SuccHasWeights = HasBranchWeights(TI);
1138 
1139   if (PredHasWeights) {
1140     GetBranchWeights(PTI, Weights);
1141     // branch-weight metadata is inconsistent here.
1142     if (Weights.size() != 1 + PredCases.size())
1143       PredHasWeights = SuccHasWeights = false;
1144   } else if (SuccHasWeights)
1145     // If there are no predecessor weights but there are successor weights,
1146     // populate Weights with 1, which will later be scaled to the sum of
1147     // successor's weights
1148     Weights.assign(1 + PredCases.size(), 1);
1149 
1150   SmallVector<uint64_t, 8> SuccWeights;
1151   if (SuccHasWeights) {
1152     GetBranchWeights(TI, SuccWeights);
1153     // branch-weight metadata is inconsistent here.
1154     if (SuccWeights.size() != 1 + BBCases.size())
1155       PredHasWeights = SuccHasWeights = false;
1156   } else if (PredHasWeights)
1157     SuccWeights.assign(1 + BBCases.size(), 1);
1158 
1159   if (PredDefault == BB) {
1160     // If this is the default destination from PTI, only the edges in TI
1161     // that don't occur in PTI, or that branch to BB will be activated.
1162     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1163     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1164       if (PredCases[i].Dest != BB)
1165         PTIHandled.insert(PredCases[i].Value);
1166       else {
1167         // The default destination is BB, we don't need explicit targets.
1168         std::swap(PredCases[i], PredCases.back());
1169 
1170         if (PredHasWeights || SuccHasWeights) {
1171           // Increase weight for the default case.
1172           Weights[0] += Weights[i + 1];
1173           std::swap(Weights[i + 1], Weights.back());
1174           Weights.pop_back();
1175         }
1176 
1177         PredCases.pop_back();
1178         --i;
1179         --e;
1180       }
1181 
1182     // Reconstruct the new switch statement we will be building.
1183     if (PredDefault != BBDefault) {
1184       PredDefault->removePredecessor(Pred);
1185       if (DTU && PredDefault != BB)
1186         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1187       PredDefault = BBDefault;
1188       ++NewSuccessors[BBDefault];
1189     }
1190 
1191     unsigned CasesFromPred = Weights.size();
1192     uint64_t ValidTotalSuccWeight = 0;
1193     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1194       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1195         PredCases.push_back(BBCases[i]);
1196         ++NewSuccessors[BBCases[i].Dest];
1197         if (SuccHasWeights || PredHasWeights) {
1198           // The default weight is at index 0, so weight for the ith case
1199           // should be at index i+1. Scale the cases from successor by
1200           // PredDefaultWeight (Weights[0]).
1201           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1202           ValidTotalSuccWeight += SuccWeights[i + 1];
1203         }
1204       }
1205 
1206     if (SuccHasWeights || PredHasWeights) {
1207       ValidTotalSuccWeight += SuccWeights[0];
1208       // Scale the cases from predecessor by ValidTotalSuccWeight.
1209       for (unsigned i = 1; i < CasesFromPred; ++i)
1210         Weights[i] *= ValidTotalSuccWeight;
1211       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1212       Weights[0] *= SuccWeights[0];
1213     }
1214   } else {
1215     // If this is not the default destination from PSI, only the edges
1216     // in SI that occur in PSI with a destination of BB will be
1217     // activated.
1218     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1219     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1220     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1221       if (PredCases[i].Dest == BB) {
1222         PTIHandled.insert(PredCases[i].Value);
1223 
1224         if (PredHasWeights || SuccHasWeights) {
1225           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1226           std::swap(Weights[i + 1], Weights.back());
1227           Weights.pop_back();
1228         }
1229 
1230         std::swap(PredCases[i], PredCases.back());
1231         PredCases.pop_back();
1232         --i;
1233         --e;
1234       }
1235 
1236     // Okay, now we know which constants were sent to BB from the
1237     // predecessor.  Figure out where they will all go now.
1238     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1239       if (PTIHandled.count(BBCases[i].Value)) {
1240         // If this is one we are capable of getting...
1241         if (PredHasWeights || SuccHasWeights)
1242           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1243         PredCases.push_back(BBCases[i]);
1244         ++NewSuccessors[BBCases[i].Dest];
1245         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1246       }
1247 
1248     // If there are any constants vectored to BB that TI doesn't handle,
1249     // they must go to the default destination of TI.
1250     for (ConstantInt *I : PTIHandled) {
1251       if (PredHasWeights || SuccHasWeights)
1252         Weights.push_back(WeightsForHandled[I]);
1253       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1254       ++NewSuccessors[BBDefault];
1255     }
1256   }
1257 
1258   // Okay, at this point, we know which new successor Pred will get.  Make
1259   // sure we update the number of entries in the PHI nodes for these
1260   // successors.
1261   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1262   if (DTU) {
1263     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1264     Updates.reserve(Updates.size() + NewSuccessors.size());
1265   }
1266   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1267        NewSuccessors) {
1268     for (auto I : seq(0, NewSuccessor.second)) {
1269       (void)I;
1270       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1271     }
1272     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1273       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1274   }
1275 
1276   Builder.SetInsertPoint(PTI);
1277   // Convert pointer to int before we switch.
1278   if (CV->getType()->isPointerTy()) {
1279     CV =
1280         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1281   }
1282 
1283   // Now that the successors are updated, create the new Switch instruction.
1284   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1285   NewSI->setDebugLoc(PTI->getDebugLoc());
1286   for (ValueEqualityComparisonCase &V : PredCases)
1287     NewSI->addCase(V.Value, V.Dest);
1288 
1289   if (PredHasWeights || SuccHasWeights) {
1290     // Halve the weights if any of them cannot fit in an uint32_t
1291     FitWeights(Weights);
1292 
1293     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1294 
1295     setBranchWeights(NewSI, MDWeights);
1296   }
1297 
1298   EraseTerminatorAndDCECond(PTI);
1299 
1300   // Okay, last check.  If BB is still a successor of PSI, then we must
1301   // have an infinite loop case.  If so, add an infinitely looping block
1302   // to handle the case to preserve the behavior of the code.
1303   BasicBlock *InfLoopBlock = nullptr;
1304   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1305     if (NewSI->getSuccessor(i) == BB) {
1306       if (!InfLoopBlock) {
1307         // Insert it at the end of the function, because it's either code,
1308         // or it won't matter if it's hot. :)
1309         InfLoopBlock =
1310             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1311         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1312         if (DTU)
1313           Updates.push_back(
1314               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1315       }
1316       NewSI->setSuccessor(i, InfLoopBlock);
1317     }
1318 
1319   if (DTU) {
1320     if (InfLoopBlock)
1321       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1322 
1323     Updates.push_back({DominatorTree::Delete, Pred, BB});
1324 
1325     DTU->applyUpdates(Updates);
1326   }
1327 
1328   ++NumFoldValueComparisonIntoPredecessors;
1329   return true;
1330 }
1331 
1332 /// The specified terminator is a value equality comparison instruction
1333 /// (either a switch or a branch on "X == c").
1334 /// See if any of the predecessors of the terminator block are value comparisons
1335 /// on the same value.  If so, and if safe to do so, fold them together.
1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1337                                                          IRBuilder<> &Builder) {
1338   BasicBlock *BB = TI->getParent();
1339   Value *CV = isValueEqualityComparison(TI); // CondVal
1340   assert(CV && "Not a comparison?");
1341 
1342   bool Changed = false;
1343 
1344   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1345   while (!Preds.empty()) {
1346     BasicBlock *Pred = Preds.pop_back_val();
1347     Instruction *PTI = Pred->getTerminator();
1348 
1349     // Don't try to fold into itself.
1350     if (Pred == BB)
1351       continue;
1352 
1353     // See if the predecessor is a comparison with the same value.
1354     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1355     if (PCV != CV)
1356       continue;
1357 
1358     SmallSetVector<BasicBlock *, 4> FailBlocks;
1359     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1360       for (auto *Succ : FailBlocks) {
1361         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1362           return false;
1363       }
1364     }
1365 
1366     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1367     Changed = true;
1368   }
1369   return Changed;
1370 }
1371 
1372 // If we would need to insert a select that uses the value of this invoke
1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1374 // can't hoist the invoke, as there is nowhere to put the select in this case.
1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1376                                 Instruction *I1, Instruction *I2) {
1377   for (BasicBlock *Succ : successors(BB1)) {
1378     for (const PHINode &PN : Succ->phis()) {
1379       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1380       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1381       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1382         return false;
1383       }
1384     }
1385   }
1386   return true;
1387 }
1388 
1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1390 
1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1392 /// in the two blocks up into the branch block. The caller of this function
1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
1394 /// only perform hoisting in case both blocks only contain a terminator. In that
1395 /// case, only the original BI will be replaced and selects for PHIs are added.
1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1397                                            const TargetTransformInfo &TTI,
1398                                            bool EqTermsOnly) {
1399   // This does very trivial matching, with limited scanning, to find identical
1400   // instructions in the two blocks.  In particular, we don't want to get into
1401   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1402   // such, we currently just scan for obviously identical instructions in an
1403   // identical order.
1404   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1405   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1406 
1407   BasicBlock::iterator BB1_Itr = BB1->begin();
1408   BasicBlock::iterator BB2_Itr = BB2->begin();
1409 
1410   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1411   // Skip debug info if it is not identical.
1412   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1413   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1414   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1415     while (isa<DbgInfoIntrinsic>(I1))
1416       I1 = &*BB1_Itr++;
1417     while (isa<DbgInfoIntrinsic>(I2))
1418       I2 = &*BB2_Itr++;
1419   }
1420   // FIXME: Can we define a safety predicate for CallBr?
1421   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1422       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1423       isa<CallBrInst>(I1))
1424     return false;
1425 
1426   BasicBlock *BIParent = BI->getParent();
1427 
1428   bool Changed = false;
1429 
1430   auto _ = make_scope_exit([&]() {
1431     if (Changed)
1432       ++NumHoistCommonCode;
1433   });
1434 
1435   // Check if only hoisting terminators is allowed. This does not add new
1436   // instructions to the hoist location.
1437   if (EqTermsOnly) {
1438     // Skip any debug intrinsics, as they are free to hoist.
1439     auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
1440     auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
1441     if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
1442       return false;
1443     if (!I1NonDbg->isTerminator())
1444       return false;
1445     // Now we know that we only need to hoist debug instrinsics and the
1446     // terminator. Let the loop below handle those 2 cases.
1447   }
1448 
1449   do {
1450     // If we are hoisting the terminator instruction, don't move one (making a
1451     // broken BB), instead clone it, and remove BI.
1452     if (I1->isTerminator())
1453       goto HoistTerminator;
1454 
1455     // If we're going to hoist a call, make sure that the two instructions we're
1456     // commoning/hoisting are both marked with musttail, or neither of them is
1457     // marked as such. Otherwise, we might end up in a situation where we hoist
1458     // from a block where the terminator is a `ret` to a block where the terminator
1459     // is a `br`, and `musttail` calls expect to be followed by a return.
1460     auto *C1 = dyn_cast<CallInst>(I1);
1461     auto *C2 = dyn_cast<CallInst>(I2);
1462     if (C1 && C2)
1463       if (C1->isMustTailCall() != C2->isMustTailCall())
1464         return Changed;
1465 
1466     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1467       return Changed;
1468 
1469     // If any of the two call sites has nomerge attribute, stop hoisting.
1470     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1471       if (CB1->cannotMerge())
1472         return Changed;
1473     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1474       if (CB2->cannotMerge())
1475         return Changed;
1476 
1477     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1478       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1479       // The debug location is an integral part of a debug info intrinsic
1480       // and can't be separated from it or replaced.  Instead of attempting
1481       // to merge locations, simply hoist both copies of the intrinsic.
1482       BIParent->getInstList().splice(BI->getIterator(),
1483                                      BB1->getInstList(), I1);
1484       BIParent->getInstList().splice(BI->getIterator(),
1485                                      BB2->getInstList(), I2);
1486       Changed = true;
1487     } else {
1488       // For a normal instruction, we just move one to right before the branch,
1489       // then replace all uses of the other with the first.  Finally, we remove
1490       // the now redundant second instruction.
1491       BIParent->getInstList().splice(BI->getIterator(),
1492                                      BB1->getInstList(), I1);
1493       if (!I2->use_empty())
1494         I2->replaceAllUsesWith(I1);
1495       I1->andIRFlags(I2);
1496       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1497                              LLVMContext::MD_range,
1498                              LLVMContext::MD_fpmath,
1499                              LLVMContext::MD_invariant_load,
1500                              LLVMContext::MD_nonnull,
1501                              LLVMContext::MD_invariant_group,
1502                              LLVMContext::MD_align,
1503                              LLVMContext::MD_dereferenceable,
1504                              LLVMContext::MD_dereferenceable_or_null,
1505                              LLVMContext::MD_mem_parallel_loop_access,
1506                              LLVMContext::MD_access_group,
1507                              LLVMContext::MD_preserve_access_index};
1508       combineMetadata(I1, I2, KnownIDs, true);
1509 
1510       // I1 and I2 are being combined into a single instruction.  Its debug
1511       // location is the merged locations of the original instructions.
1512       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1513 
1514       I2->eraseFromParent();
1515       Changed = true;
1516     }
1517     ++NumHoistCommonInstrs;
1518 
1519     I1 = &*BB1_Itr++;
1520     I2 = &*BB2_Itr++;
1521     // Skip debug info if it is not identical.
1522     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1523     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1524     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1525       while (isa<DbgInfoIntrinsic>(I1))
1526         I1 = &*BB1_Itr++;
1527       while (isa<DbgInfoIntrinsic>(I2))
1528         I2 = &*BB2_Itr++;
1529     }
1530   } while (I1->isIdenticalToWhenDefined(I2));
1531 
1532   return true;
1533 
1534 HoistTerminator:
1535   // It may not be possible to hoist an invoke.
1536   // FIXME: Can we define a safety predicate for CallBr?
1537   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1538     return Changed;
1539 
1540   // TODO: callbr hoisting currently disabled pending further study.
1541   if (isa<CallBrInst>(I1))
1542     return Changed;
1543 
1544   for (BasicBlock *Succ : successors(BB1)) {
1545     for (PHINode &PN : Succ->phis()) {
1546       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1547       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1548       if (BB1V == BB2V)
1549         continue;
1550 
1551       // Check for passingValueIsAlwaysUndefined here because we would rather
1552       // eliminate undefined control flow then converting it to a select.
1553       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1554           passingValueIsAlwaysUndefined(BB2V, &PN))
1555         return Changed;
1556 
1557       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1558         return Changed;
1559       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1560         return Changed;
1561     }
1562   }
1563 
1564   // Okay, it is safe to hoist the terminator.
1565   Instruction *NT = I1->clone();
1566   BIParent->getInstList().insert(BI->getIterator(), NT);
1567   if (!NT->getType()->isVoidTy()) {
1568     I1->replaceAllUsesWith(NT);
1569     I2->replaceAllUsesWith(NT);
1570     NT->takeName(I1);
1571   }
1572   Changed = true;
1573   ++NumHoistCommonInstrs;
1574 
1575   // Ensure terminator gets a debug location, even an unknown one, in case
1576   // it involves inlinable calls.
1577   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1578 
1579   // PHIs created below will adopt NT's merged DebugLoc.
1580   IRBuilder<NoFolder> Builder(NT);
1581 
1582   // Hoisting one of the terminators from our successor is a great thing.
1583   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1584   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1585   // nodes, so we insert select instruction to compute the final result.
1586   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1587   for (BasicBlock *Succ : successors(BB1)) {
1588     for (PHINode &PN : Succ->phis()) {
1589       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1590       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1591       if (BB1V == BB2V)
1592         continue;
1593 
1594       // These values do not agree.  Insert a select instruction before NT
1595       // that determines the right value.
1596       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1597       if (!SI) {
1598         // Propagate fast-math-flags from phi node to its replacement select.
1599         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1600         if (isa<FPMathOperator>(PN))
1601           Builder.setFastMathFlags(PN.getFastMathFlags());
1602 
1603         SI = cast<SelectInst>(
1604             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1605                                  BB1V->getName() + "." + BB2V->getName(), BI));
1606       }
1607 
1608       // Make the PHI node use the select for all incoming values for BB1/BB2
1609       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1610         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1611           PN.setIncomingValue(i, SI);
1612     }
1613   }
1614 
1615   SmallVector<DominatorTree::UpdateType, 4> Updates;
1616 
1617   // Update any PHI nodes in our new successors.
1618   for (BasicBlock *Succ : successors(BB1)) {
1619     AddPredecessorToBlock(Succ, BIParent, BB1);
1620     if (DTU)
1621       Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1622   }
1623 
1624   if (DTU)
1625     for (BasicBlock *Succ : successors(BI))
1626       Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1627 
1628   EraseTerminatorAndDCECond(BI);
1629   if (DTU)
1630     DTU->applyUpdates(Updates);
1631   return Changed;
1632 }
1633 
1634 // Check lifetime markers.
1635 static bool isLifeTimeMarker(const Instruction *I) {
1636   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1637     switch (II->getIntrinsicID()) {
1638     default:
1639       break;
1640     case Intrinsic::lifetime_start:
1641     case Intrinsic::lifetime_end:
1642       return true;
1643     }
1644   }
1645   return false;
1646 }
1647 
1648 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1649 // into variables.
1650 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1651                                                 int OpIdx) {
1652   return !isa<IntrinsicInst>(I);
1653 }
1654 
1655 // All instructions in Insts belong to different blocks that all unconditionally
1656 // branch to a common successor. Analyze each instruction and return true if it
1657 // would be possible to sink them into their successor, creating one common
1658 // instruction instead. For every value that would be required to be provided by
1659 // PHI node (because an operand varies in each input block), add to PHIOperands.
1660 static bool canSinkInstructions(
1661     ArrayRef<Instruction *> Insts,
1662     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1663   // Prune out obviously bad instructions to move. Each instruction must have
1664   // exactly zero or one use, and we check later that use is by a single, common
1665   // PHI instruction in the successor.
1666   bool HasUse = !Insts.front()->user_empty();
1667   for (auto *I : Insts) {
1668     // These instructions may change or break semantics if moved.
1669     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1670         I->getType()->isTokenTy())
1671       return false;
1672 
1673     // Do not try to sink an instruction in an infinite loop - it can cause
1674     // this algorithm to infinite loop.
1675     if (I->getParent()->getSingleSuccessor() == I->getParent())
1676       return false;
1677 
1678     // Conservatively return false if I is an inline-asm instruction. Sinking
1679     // and merging inline-asm instructions can potentially create arguments
1680     // that cannot satisfy the inline-asm constraints.
1681     // If the instruction has nomerge attribute, return false.
1682     if (const auto *C = dyn_cast<CallBase>(I))
1683       if (C->isInlineAsm() || C->cannotMerge())
1684         return false;
1685 
1686     // Each instruction must have zero or one use.
1687     if (HasUse && !I->hasOneUse())
1688       return false;
1689     if (!HasUse && !I->user_empty())
1690       return false;
1691   }
1692 
1693   const Instruction *I0 = Insts.front();
1694   for (auto *I : Insts)
1695     if (!I->isSameOperationAs(I0))
1696       return false;
1697 
1698   // All instructions in Insts are known to be the same opcode. If they have a
1699   // use, check that the only user is a PHI or in the same block as the
1700   // instruction, because if a user is in the same block as an instruction we're
1701   // contemplating sinking, it must already be determined to be sinkable.
1702   if (HasUse) {
1703     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1704     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1705     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1706           auto *U = cast<Instruction>(*I->user_begin());
1707           return (PNUse &&
1708                   PNUse->getParent() == Succ &&
1709                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1710                  U->getParent() == I->getParent();
1711         }))
1712       return false;
1713   }
1714 
1715   // Because SROA can't handle speculating stores of selects, try not to sink
1716   // loads, stores or lifetime markers of allocas when we'd have to create a
1717   // PHI for the address operand. Also, because it is likely that loads or
1718   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1719   // them.
1720   // This can cause code churn which can have unintended consequences down
1721   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1722   // FIXME: This is a workaround for a deficiency in SROA - see
1723   // https://llvm.org/bugs/show_bug.cgi?id=30188
1724   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1725         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1726       }))
1727     return false;
1728   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1729         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1730       }))
1731     return false;
1732   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1733         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1734       }))
1735     return false;
1736 
1737   // For calls to be sinkable, they must all be indirect, or have same callee.
1738   // I.e. if we have two direct calls to different callees, we don't want to
1739   // turn that into an indirect call. Likewise, if we have an indirect call,
1740   // and a direct call, we don't actually want to have a single indirect call.
1741   if (isa<CallBase>(I0)) {
1742     auto IsIndirectCall = [](const Instruction *I) {
1743       return cast<CallBase>(I)->isIndirectCall();
1744     };
1745     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
1746     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
1747     if (HaveIndirectCalls) {
1748       if (!AllCallsAreIndirect)
1749         return false;
1750     } else {
1751       // All callees must be identical.
1752       Value *Callee = nullptr;
1753       for (const Instruction *I : Insts) {
1754         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
1755         if (!Callee)
1756           Callee = CurrCallee;
1757         else if (Callee != CurrCallee)
1758           return false;
1759       }
1760     }
1761   }
1762 
1763   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1764     Value *Op = I0->getOperand(OI);
1765     if (Op->getType()->isTokenTy())
1766       // Don't touch any operand of token type.
1767       return false;
1768 
1769     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1770       assert(I->getNumOperands() == I0->getNumOperands());
1771       return I->getOperand(OI) == I0->getOperand(OI);
1772     };
1773     if (!all_of(Insts, SameAsI0)) {
1774       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1775           !canReplaceOperandWithVariable(I0, OI))
1776         // We can't create a PHI from this GEP.
1777         return false;
1778       for (auto *I : Insts)
1779         PHIOperands[I].push_back(I->getOperand(OI));
1780     }
1781   }
1782   return true;
1783 }
1784 
1785 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1786 // instruction of every block in Blocks to their common successor, commoning
1787 // into one instruction.
1788 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1789   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1790 
1791   // canSinkInstructions returning true guarantees that every block has at
1792   // least one non-terminator instruction.
1793   SmallVector<Instruction*,4> Insts;
1794   for (auto *BB : Blocks) {
1795     Instruction *I = BB->getTerminator();
1796     do {
1797       I = I->getPrevNode();
1798     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1799     if (!isa<DbgInfoIntrinsic>(I))
1800       Insts.push_back(I);
1801   }
1802 
1803   // The only checking we need to do now is that all users of all instructions
1804   // are the same PHI node. canSinkInstructions should have checked this but
1805   // it is slightly over-aggressive - it gets confused by commutative
1806   // instructions so double-check it here.
1807   Instruction *I0 = Insts.front();
1808   if (!I0->user_empty()) {
1809     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1810     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1811           auto *U = cast<Instruction>(*I->user_begin());
1812           return U == PNUse;
1813         }))
1814       return false;
1815   }
1816 
1817   // We don't need to do any more checking here; canSinkInstructions should
1818   // have done it all for us.
1819   SmallVector<Value*, 4> NewOperands;
1820   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1821     // This check is different to that in canSinkInstructions. There, we
1822     // cared about the global view once simplifycfg (and instcombine) have
1823     // completed - it takes into account PHIs that become trivially
1824     // simplifiable.  However here we need a more local view; if an operand
1825     // differs we create a PHI and rely on instcombine to clean up the very
1826     // small mess we may make.
1827     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1828       return I->getOperand(O) != I0->getOperand(O);
1829     });
1830     if (!NeedPHI) {
1831       NewOperands.push_back(I0->getOperand(O));
1832       continue;
1833     }
1834 
1835     // Create a new PHI in the successor block and populate it.
1836     auto *Op = I0->getOperand(O);
1837     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1838     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1839                                Op->getName() + ".sink", &BBEnd->front());
1840     for (auto *I : Insts)
1841       PN->addIncoming(I->getOperand(O), I->getParent());
1842     NewOperands.push_back(PN);
1843   }
1844 
1845   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1846   // and move it to the start of the successor block.
1847   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1848     I0->getOperandUse(O).set(NewOperands[O]);
1849   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1850 
1851   // Update metadata and IR flags, and merge debug locations.
1852   for (auto *I : Insts)
1853     if (I != I0) {
1854       // The debug location for the "common" instruction is the merged locations
1855       // of all the commoned instructions.  We start with the original location
1856       // of the "common" instruction and iteratively merge each location in the
1857       // loop below.
1858       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1859       // However, as N-way merge for CallInst is rare, so we use simplified API
1860       // instead of using complex API for N-way merge.
1861       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1862       combineMetadataForCSE(I0, I, true);
1863       I0->andIRFlags(I);
1864     }
1865 
1866   if (!I0->user_empty()) {
1867     // canSinkLastInstruction checked that all instructions were used by
1868     // one and only one PHI node. Find that now, RAUW it to our common
1869     // instruction and nuke it.
1870     auto *PN = cast<PHINode>(*I0->user_begin());
1871     PN->replaceAllUsesWith(I0);
1872     PN->eraseFromParent();
1873   }
1874 
1875   // Finally nuke all instructions apart from the common instruction.
1876   for (auto *I : Insts)
1877     if (I != I0)
1878       I->eraseFromParent();
1879 
1880   return true;
1881 }
1882 
1883 namespace {
1884 
1885   // LockstepReverseIterator - Iterates through instructions
1886   // in a set of blocks in reverse order from the first non-terminator.
1887   // For example (assume all blocks have size n):
1888   //   LockstepReverseIterator I([B1, B2, B3]);
1889   //   *I-- = [B1[n], B2[n], B3[n]];
1890   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1891   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1892   //   ...
1893   class LockstepReverseIterator {
1894     ArrayRef<BasicBlock*> Blocks;
1895     SmallVector<Instruction*,4> Insts;
1896     bool Fail;
1897 
1898   public:
1899     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1900       reset();
1901     }
1902 
1903     void reset() {
1904       Fail = false;
1905       Insts.clear();
1906       for (auto *BB : Blocks) {
1907         Instruction *Inst = BB->getTerminator();
1908         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1909           Inst = Inst->getPrevNode();
1910         if (!Inst) {
1911           // Block wasn't big enough.
1912           Fail = true;
1913           return;
1914         }
1915         Insts.push_back(Inst);
1916       }
1917     }
1918 
1919     bool isValid() const {
1920       return !Fail;
1921     }
1922 
1923     void operator--() {
1924       if (Fail)
1925         return;
1926       for (auto *&Inst : Insts) {
1927         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1928           Inst = Inst->getPrevNode();
1929         // Already at beginning of block.
1930         if (!Inst) {
1931           Fail = true;
1932           return;
1933         }
1934       }
1935     }
1936 
1937     void operator++() {
1938       if (Fail)
1939         return;
1940       for (auto *&Inst : Insts) {
1941         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1942           Inst = Inst->getNextNode();
1943         // Already at end of block.
1944         if (!Inst) {
1945           Fail = true;
1946           return;
1947         }
1948       }
1949     }
1950 
1951     ArrayRef<Instruction*> operator * () const {
1952       return Insts;
1953     }
1954   };
1955 
1956 } // end anonymous namespace
1957 
1958 /// Check whether BB's predecessors end with unconditional branches. If it is
1959 /// true, sink any common code from the predecessors to BB.
1960 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1961                                            DomTreeUpdater *DTU) {
1962   // We support two situations:
1963   //   (1) all incoming arcs are unconditional
1964   //   (2) there are non-unconditional incoming arcs
1965   //
1966   // (2) is very common in switch defaults and
1967   // else-if patterns;
1968   //
1969   //   if (a) f(1);
1970   //   else if (b) f(2);
1971   //
1972   // produces:
1973   //
1974   //       [if]
1975   //      /    \
1976   //    [f(1)] [if]
1977   //      |     | \
1978   //      |     |  |
1979   //      |  [f(2)]|
1980   //       \    | /
1981   //        [ end ]
1982   //
1983   // [end] has two unconditional predecessor arcs and one conditional. The
1984   // conditional refers to the implicit empty 'else' arc. This conditional
1985   // arc can also be caused by an empty default block in a switch.
1986   //
1987   // In this case, we attempt to sink code from all *unconditional* arcs.
1988   // If we can sink instructions from these arcs (determined during the scan
1989   // phase below) we insert a common successor for all unconditional arcs and
1990   // connect that to [end], to enable sinking:
1991   //
1992   //       [if]
1993   //      /    \
1994   //    [x(1)] [if]
1995   //      |     | \
1996   //      |     |  \
1997   //      |  [x(2)] |
1998   //       \   /    |
1999   //   [sink.split] |
2000   //         \     /
2001   //         [ end ]
2002   //
2003   SmallVector<BasicBlock*,4> UnconditionalPreds;
2004   bool HaveNonUnconditionalPredecessors = false;
2005   for (auto *PredBB : predecessors(BB)) {
2006     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2007     if (PredBr && PredBr->isUnconditional())
2008       UnconditionalPreds.push_back(PredBB);
2009     else
2010       HaveNonUnconditionalPredecessors = true;
2011   }
2012   if (UnconditionalPreds.size() < 2)
2013     return false;
2014 
2015   // We take a two-step approach to tail sinking. First we scan from the end of
2016   // each block upwards in lockstep. If the n'th instruction from the end of each
2017   // block can be sunk, those instructions are added to ValuesToSink and we
2018   // carry on. If we can sink an instruction but need to PHI-merge some operands
2019   // (because they're not identical in each instruction) we add these to
2020   // PHIOperands.
2021   int ScanIdx = 0;
2022   SmallPtrSet<Value*,4> InstructionsToSink;
2023   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
2024   LockstepReverseIterator LRI(UnconditionalPreds);
2025   while (LRI.isValid() &&
2026          canSinkInstructions(*LRI, PHIOperands)) {
2027     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2028                       << "\n");
2029     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2030     ++ScanIdx;
2031     --LRI;
2032   }
2033 
2034   // If no instructions can be sunk, early-return.
2035   if (ScanIdx == 0)
2036     return false;
2037 
2038   // Okay, we *could* sink last ScanIdx instructions. But how many can we
2039   // actually sink before encountering instruction that is unprofitable to sink?
2040   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2041     unsigned NumPHIdValues = 0;
2042     for (auto *I : *LRI)
2043       for (auto *V : PHIOperands[I]) {
2044         if (InstructionsToSink.count(V) == 0)
2045           ++NumPHIdValues;
2046         // FIXME: this check is overly optimistic. We may end up not sinking
2047         // said instruction, due to the very same profitability check.
2048         // See @creating_too_many_phis in sink-common-code.ll.
2049       }
2050     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
2051     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
2052     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
2053         NumPHIInsts++;
2054 
2055     return NumPHIInsts <= 1;
2056   };
2057 
2058   // If no instructions can be sunk, early-return.
2059   if (ScanIdx == 0)
2060     return false;
2061 
2062   // We've determined that we are going to sink last ScanIdx instructions,
2063   // and recorded them in InstructionsToSink. Now, some instructions may be
2064   // unprofitable to sink. But that determination depends on the instructions
2065   // that we are going to sink.
2066 
2067   // First, forward scan: find the first instruction unprofitable to sink,
2068   // recording all the ones that are profitable to sink.
2069   // FIXME: would it be better, after we detect that not all are profitable.
2070   // to either record the profitable ones, or erase the unprofitable ones?
2071   // Maybe we need to choose (at runtime) the one that will touch least instrs?
2072   LRI.reset();
2073   int Idx = 0;
2074   SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2075   while (Idx < ScanIdx) {
2076     if (!ProfitableToSinkInstruction(LRI)) {
2077       // Too many PHIs would be created.
2078       LLVM_DEBUG(
2079           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2080       break;
2081     }
2082     InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2083     --LRI;
2084     ++Idx;
2085   }
2086 
2087   // If no instructions can be sunk, early-return.
2088   if (Idx == 0)
2089     return false;
2090 
2091   // Did we determine that (only) some instructions are unprofitable to sink?
2092   if (Idx < ScanIdx) {
2093     // Okay, some instructions are unprofitable.
2094     ScanIdx = Idx;
2095     InstructionsToSink = InstructionsProfitableToSink;
2096 
2097     // But, that may make other instructions unprofitable, too.
2098     // So, do a backward scan, do any earlier instructions become unprofitable?
2099     assert(!ProfitableToSinkInstruction(LRI) &&
2100            "We already know that the last instruction is unprofitable to sink");
2101     ++LRI;
2102     --Idx;
2103     while (Idx >= 0) {
2104       // If we detect that an instruction becomes unprofitable to sink,
2105       // all earlier instructions won't be sunk either,
2106       // so preemptively keep InstructionsProfitableToSink in sync.
2107       // FIXME: is this the most performant approach?
2108       for (auto *I : *LRI)
2109         InstructionsProfitableToSink.erase(I);
2110       if (!ProfitableToSinkInstruction(LRI)) {
2111         // Everything starting with this instruction won't be sunk.
2112         ScanIdx = Idx;
2113         InstructionsToSink = InstructionsProfitableToSink;
2114       }
2115       ++LRI;
2116       --Idx;
2117     }
2118   }
2119 
2120   // If no instructions can be sunk, early-return.
2121   if (ScanIdx == 0)
2122     return false;
2123 
2124   bool Changed = false;
2125 
2126   if (HaveNonUnconditionalPredecessors) {
2127     // It is always legal to sink common instructions from unconditional
2128     // predecessors. However, if not all predecessors are unconditional,
2129     // this transformation might be pessimizing. So as a rule of thumb,
2130     // don't do it unless we'd sink at least one non-speculatable instruction.
2131     // See https://bugs.llvm.org/show_bug.cgi?id=30244
2132     LRI.reset();
2133     int Idx = 0;
2134     bool Profitable = false;
2135     while (Idx < ScanIdx) {
2136       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2137         Profitable = true;
2138         break;
2139       }
2140       --LRI;
2141       ++Idx;
2142     }
2143     if (!Profitable)
2144       return false;
2145 
2146     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2147     // We have a conditional edge and we're going to sink some instructions.
2148     // Insert a new block postdominating all blocks we're going to sink from.
2149     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2150       // Edges couldn't be split.
2151       return false;
2152     Changed = true;
2153   }
2154 
2155   // Now that we've analyzed all potential sinking candidates, perform the
2156   // actual sink. We iteratively sink the last non-terminator of the source
2157   // blocks into their common successor unless doing so would require too
2158   // many PHI instructions to be generated (currently only one PHI is allowed
2159   // per sunk instruction).
2160   //
2161   // We can use InstructionsToSink to discount values needing PHI-merging that will
2162   // actually be sunk in a later iteration. This allows us to be more
2163   // aggressive in what we sink. This does allow a false positive where we
2164   // sink presuming a later value will also be sunk, but stop half way through
2165   // and never actually sink it which means we produce more PHIs than intended.
2166   // This is unlikely in practice though.
2167   int SinkIdx = 0;
2168   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2169     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2170                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2171                       << "\n");
2172 
2173     // Because we've sunk every instruction in turn, the current instruction to
2174     // sink is always at index 0.
2175     LRI.reset();
2176 
2177     if (!sinkLastInstruction(UnconditionalPreds)) {
2178       LLVM_DEBUG(
2179           dbgs()
2180           << "SINK: stopping here, failed to actually sink instruction!\n");
2181       break;
2182     }
2183 
2184     NumSinkCommonInstrs++;
2185     Changed = true;
2186   }
2187   if (SinkIdx != 0)
2188     ++NumSinkCommonCode;
2189   return Changed;
2190 }
2191 
2192 /// Determine if we can hoist sink a sole store instruction out of a
2193 /// conditional block.
2194 ///
2195 /// We are looking for code like the following:
2196 ///   BrBB:
2197 ///     store i32 %add, i32* %arrayidx2
2198 ///     ... // No other stores or function calls (we could be calling a memory
2199 ///     ... // function).
2200 ///     %cmp = icmp ult %x, %y
2201 ///     br i1 %cmp, label %EndBB, label %ThenBB
2202 ///   ThenBB:
2203 ///     store i32 %add5, i32* %arrayidx2
2204 ///     br label EndBB
2205 ///   EndBB:
2206 ///     ...
2207 ///   We are going to transform this into:
2208 ///   BrBB:
2209 ///     store i32 %add, i32* %arrayidx2
2210 ///     ... //
2211 ///     %cmp = icmp ult %x, %y
2212 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2213 ///     store i32 %add.add5, i32* %arrayidx2
2214 ///     ...
2215 ///
2216 /// \return The pointer to the value of the previous store if the store can be
2217 ///         hoisted into the predecessor block. 0 otherwise.
2218 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2219                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2220   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2221   if (!StoreToHoist)
2222     return nullptr;
2223 
2224   // Volatile or atomic.
2225   if (!StoreToHoist->isSimple())
2226     return nullptr;
2227 
2228   Value *StorePtr = StoreToHoist->getPointerOperand();
2229 
2230   // Look for a store to the same pointer in BrBB.
2231   unsigned MaxNumInstToLookAt = 9;
2232   // Skip pseudo probe intrinsic calls which are not really killing any memory
2233   // accesses.
2234   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2235     if (!MaxNumInstToLookAt)
2236       break;
2237     --MaxNumInstToLookAt;
2238 
2239     // Could be calling an instruction that affects memory like free().
2240     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2241       return nullptr;
2242 
2243     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2244       // Found the previous store make sure it stores to the same location.
2245       if (SI->getPointerOperand() == StorePtr)
2246         // Found the previous store, return its value operand.
2247         return SI->getValueOperand();
2248       return nullptr; // Unknown store.
2249     }
2250   }
2251 
2252   return nullptr;
2253 }
2254 
2255 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2256 /// converted to selects.
2257 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2258                                            BasicBlock *EndBB,
2259                                            unsigned &SpeculatedInstructions,
2260                                            InstructionCost &Cost,
2261                                            const TargetTransformInfo &TTI) {
2262   TargetTransformInfo::TargetCostKind CostKind =
2263     BB->getParent()->hasMinSize()
2264     ? TargetTransformInfo::TCK_CodeSize
2265     : TargetTransformInfo::TCK_SizeAndLatency;
2266 
2267   bool HaveRewritablePHIs = false;
2268   for (PHINode &PN : EndBB->phis()) {
2269     Value *OrigV = PN.getIncomingValueForBlock(BB);
2270     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2271 
2272     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2273     // Skip PHIs which are trivial.
2274     if (ThenV == OrigV)
2275       continue;
2276 
2277     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2278                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2279 
2280     // Don't convert to selects if we could remove undefined behavior instead.
2281     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2282         passingValueIsAlwaysUndefined(ThenV, &PN))
2283       return false;
2284 
2285     HaveRewritablePHIs = true;
2286     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2287     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2288     if (!OrigCE && !ThenCE)
2289       continue; // Known safe and cheap.
2290 
2291     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2292         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2293       return false;
2294     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2295     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2296     InstructionCost MaxCost =
2297         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2298     if (OrigCost + ThenCost > MaxCost)
2299       return false;
2300 
2301     // Account for the cost of an unfolded ConstantExpr which could end up
2302     // getting expanded into Instructions.
2303     // FIXME: This doesn't account for how many operations are combined in the
2304     // constant expression.
2305     ++SpeculatedInstructions;
2306     if (SpeculatedInstructions > 1)
2307       return false;
2308   }
2309 
2310   return HaveRewritablePHIs;
2311 }
2312 
2313 /// Speculate a conditional basic block flattening the CFG.
2314 ///
2315 /// Note that this is a very risky transform currently. Speculating
2316 /// instructions like this is most often not desirable. Instead, there is an MI
2317 /// pass which can do it with full awareness of the resource constraints.
2318 /// However, some cases are "obvious" and we should do directly. An example of
2319 /// this is speculating a single, reasonably cheap instruction.
2320 ///
2321 /// There is only one distinct advantage to flattening the CFG at the IR level:
2322 /// it makes very common but simplistic optimizations such as are common in
2323 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2324 /// modeling their effects with easier to reason about SSA value graphs.
2325 ///
2326 ///
2327 /// An illustration of this transform is turning this IR:
2328 /// \code
2329 ///   BB:
2330 ///     %cmp = icmp ult %x, %y
2331 ///     br i1 %cmp, label %EndBB, label %ThenBB
2332 ///   ThenBB:
2333 ///     %sub = sub %x, %y
2334 ///     br label BB2
2335 ///   EndBB:
2336 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2337 ///     ...
2338 /// \endcode
2339 ///
2340 /// Into this IR:
2341 /// \code
2342 ///   BB:
2343 ///     %cmp = icmp ult %x, %y
2344 ///     %sub = sub %x, %y
2345 ///     %cond = select i1 %cmp, 0, %sub
2346 ///     ...
2347 /// \endcode
2348 ///
2349 /// \returns true if the conditional block is removed.
2350 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2351                                             const TargetTransformInfo &TTI) {
2352   // Be conservative for now. FP select instruction can often be expensive.
2353   Value *BrCond = BI->getCondition();
2354   if (isa<FCmpInst>(BrCond))
2355     return false;
2356 
2357   BasicBlock *BB = BI->getParent();
2358   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2359   InstructionCost Budget =
2360       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2361 
2362   // If ThenBB is actually on the false edge of the conditional branch, remember
2363   // to swap the select operands later.
2364   bool Invert = false;
2365   if (ThenBB != BI->getSuccessor(0)) {
2366     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2367     Invert = true;
2368   }
2369   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2370 
2371   // Keep a count of how many times instructions are used within ThenBB when
2372   // they are candidates for sinking into ThenBB. Specifically:
2373   // - They are defined in BB, and
2374   // - They have no side effects, and
2375   // - All of their uses are in ThenBB.
2376   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2377 
2378   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2379 
2380   unsigned SpeculatedInstructions = 0;
2381   Value *SpeculatedStoreValue = nullptr;
2382   StoreInst *SpeculatedStore = nullptr;
2383   for (BasicBlock::iterator BBI = ThenBB->begin(),
2384                             BBE = std::prev(ThenBB->end());
2385        BBI != BBE; ++BBI) {
2386     Instruction *I = &*BBI;
2387     // Skip debug info.
2388     if (isa<DbgInfoIntrinsic>(I)) {
2389       SpeculatedDbgIntrinsics.push_back(I);
2390       continue;
2391     }
2392 
2393     // Skip pseudo probes. The consequence is we lose track of the branch
2394     // probability for ThenBB, which is fine since the optimization here takes
2395     // place regardless of the branch probability.
2396     if (isa<PseudoProbeInst>(I)) {
2397       continue;
2398     }
2399 
2400     // Only speculatively execute a single instruction (not counting the
2401     // terminator) for now.
2402     ++SpeculatedInstructions;
2403     if (SpeculatedInstructions > 1)
2404       return false;
2405 
2406     // Don't hoist the instruction if it's unsafe or expensive.
2407     if (!isSafeToSpeculativelyExecute(I) &&
2408         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2409                                   I, BB, ThenBB, EndBB))))
2410       return false;
2411     if (!SpeculatedStoreValue &&
2412         computeSpeculationCost(I, TTI) >
2413             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2414       return false;
2415 
2416     // Store the store speculation candidate.
2417     if (SpeculatedStoreValue)
2418       SpeculatedStore = cast<StoreInst>(I);
2419 
2420     // Do not hoist the instruction if any of its operands are defined but not
2421     // used in BB. The transformation will prevent the operand from
2422     // being sunk into the use block.
2423     for (Use &Op : I->operands()) {
2424       Instruction *OpI = dyn_cast<Instruction>(Op);
2425       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2426         continue; // Not a candidate for sinking.
2427 
2428       ++SinkCandidateUseCounts[OpI];
2429     }
2430   }
2431 
2432   // Consider any sink candidates which are only used in ThenBB as costs for
2433   // speculation. Note, while we iterate over a DenseMap here, we are summing
2434   // and so iteration order isn't significant.
2435   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2436            I = SinkCandidateUseCounts.begin(),
2437            E = SinkCandidateUseCounts.end();
2438        I != E; ++I)
2439     if (I->first->hasNUses(I->second)) {
2440       ++SpeculatedInstructions;
2441       if (SpeculatedInstructions > 1)
2442         return false;
2443     }
2444 
2445   // Check that we can insert the selects and that it's not too expensive to do
2446   // so.
2447   bool Convert = SpeculatedStore != nullptr;
2448   InstructionCost Cost = 0;
2449   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2450                                             SpeculatedInstructions,
2451                                             Cost, TTI);
2452   if (!Convert || Cost > Budget)
2453     return false;
2454 
2455   // If we get here, we can hoist the instruction and if-convert.
2456   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2457 
2458   // Insert a select of the value of the speculated store.
2459   if (SpeculatedStoreValue) {
2460     IRBuilder<NoFolder> Builder(BI);
2461     Value *TrueV = SpeculatedStore->getValueOperand();
2462     Value *FalseV = SpeculatedStoreValue;
2463     if (Invert)
2464       std::swap(TrueV, FalseV);
2465     Value *S = Builder.CreateSelect(
2466         BrCond, TrueV, FalseV, "spec.store.select", BI);
2467     SpeculatedStore->setOperand(0, S);
2468     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2469                                          SpeculatedStore->getDebugLoc());
2470   }
2471 
2472   // A hoisted conditional probe should be treated as dangling so that it will
2473   // not be over-counted when the samples collected on the non-conditional path
2474   // are counted towards the conditional path. We leave it for the counts
2475   // inference algorithm to figure out a proper count for a danglng probe.
2476   moveAndDanglePseudoProbes(ThenBB, BI);
2477 
2478   // Metadata can be dependent on the condition we are hoisting above.
2479   // Conservatively strip all metadata on the instruction. Drop the debug loc
2480   // to avoid making it appear as if the condition is a constant, which would
2481   // be misleading while debugging.
2482   for (auto &I : *ThenBB) {
2483     assert(!isa<PseudoProbeInst>(I) &&
2484            "Should not drop debug info from any pseudo probes.");
2485     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2486       I.setDebugLoc(DebugLoc());
2487     I.dropUnknownNonDebugMetadata();
2488   }
2489 
2490   // Hoist the instructions.
2491   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2492                            ThenBB->begin(), std::prev(ThenBB->end()));
2493 
2494   // Insert selects and rewrite the PHI operands.
2495   IRBuilder<NoFolder> Builder(BI);
2496   for (PHINode &PN : EndBB->phis()) {
2497     unsigned OrigI = PN.getBasicBlockIndex(BB);
2498     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2499     Value *OrigV = PN.getIncomingValue(OrigI);
2500     Value *ThenV = PN.getIncomingValue(ThenI);
2501 
2502     // Skip PHIs which are trivial.
2503     if (OrigV == ThenV)
2504       continue;
2505 
2506     // Create a select whose true value is the speculatively executed value and
2507     // false value is the pre-existing value. Swap them if the branch
2508     // destinations were inverted.
2509     Value *TrueV = ThenV, *FalseV = OrigV;
2510     if (Invert)
2511       std::swap(TrueV, FalseV);
2512     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2513     PN.setIncomingValue(OrigI, V);
2514     PN.setIncomingValue(ThenI, V);
2515   }
2516 
2517   // Remove speculated dbg intrinsics.
2518   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2519   // dbg value for the different flows and inserting it after the select.
2520   for (Instruction *I : SpeculatedDbgIntrinsics)
2521     I->eraseFromParent();
2522 
2523   ++NumSpeculations;
2524   return true;
2525 }
2526 
2527 /// Return true if we can thread a branch across this block.
2528 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2529   int Size = 0;
2530 
2531   SmallPtrSet<const Value *, 32> EphValues;
2532   auto IsEphemeral = [&](const Value *V) {
2533     if (isa<AssumeInst>(V))
2534       return true;
2535     return isSafeToSpeculativelyExecute(V) &&
2536            all_of(V->users(),
2537                   [&](const User *U) { return EphValues.count(U); });
2538   };
2539 
2540   // Walk the loop in reverse so that we can identify ephemeral values properly
2541   // (values only feeding assumes).
2542   for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
2543     // Can't fold blocks that contain noduplicate or convergent calls.
2544     if (CallInst *CI = dyn_cast<CallInst>(&I))
2545       if (CI->cannotDuplicate() || CI->isConvergent())
2546         return false;
2547 
2548     // Ignore ephemeral values which are deleted during codegen.
2549     if (IsEphemeral(&I))
2550       EphValues.insert(&I);
2551     // We will delete Phis while threading, so Phis should not be accounted in
2552     // block's size.
2553     else if (!isa<PHINode>(I)) {
2554       if (Size++ > MaxSmallBlockSize)
2555         return false; // Don't clone large BB's.
2556     }
2557 
2558     // We can only support instructions that do not define values that are
2559     // live outside of the current basic block.
2560     for (User *U : I.users()) {
2561       Instruction *UI = cast<Instruction>(U);
2562       if (UI->getParent() != BB || isa<PHINode>(UI))
2563         return false;
2564     }
2565 
2566     // Looks ok, continue checking.
2567   }
2568 
2569   return true;
2570 }
2571 
2572 /// If we have a conditional branch on a PHI node value that is defined in the
2573 /// same block as the branch and if any PHI entries are constants, thread edges
2574 /// corresponding to that entry to be branches to their ultimate destination.
2575 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2576                                 const DataLayout &DL, AssumptionCache *AC) {
2577   BasicBlock *BB = BI->getParent();
2578   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2579   // NOTE: we currently cannot transform this case if the PHI node is used
2580   // outside of the block.
2581   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2582     return false;
2583 
2584   // Degenerate case of a single entry PHI.
2585   if (PN->getNumIncomingValues() == 1) {
2586     FoldSingleEntryPHINodes(PN->getParent());
2587     return true;
2588   }
2589 
2590   // Now we know that this block has multiple preds and two succs.
2591   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2592     return false;
2593 
2594   // Okay, this is a simple enough basic block.  See if any phi values are
2595   // constants.
2596   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2597     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2598     if (!CB || !CB->getType()->isIntegerTy(1))
2599       continue;
2600 
2601     // Okay, we now know that all edges from PredBB should be revectored to
2602     // branch to RealDest.
2603     BasicBlock *PredBB = PN->getIncomingBlock(i);
2604     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2605 
2606     if (RealDest == BB)
2607       continue; // Skip self loops.
2608     // Skip if the predecessor's terminator is an indirect branch.
2609     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2610       continue;
2611 
2612     SmallVector<DominatorTree::UpdateType, 3> Updates;
2613 
2614     // The dest block might have PHI nodes, other predecessors and other
2615     // difficult cases.  Instead of being smart about this, just insert a new
2616     // block that jumps to the destination block, effectively splitting
2617     // the edge we are about to create.
2618     BasicBlock *EdgeBB =
2619         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2620                            RealDest->getParent(), RealDest);
2621     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2622     if (DTU)
2623       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2624     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2625 
2626     // Update PHI nodes.
2627     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2628 
2629     // BB may have instructions that are being threaded over.  Clone these
2630     // instructions into EdgeBB.  We know that there will be no uses of the
2631     // cloned instructions outside of EdgeBB.
2632     BasicBlock::iterator InsertPt = EdgeBB->begin();
2633     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2634     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2635       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2636         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2637         continue;
2638       }
2639       // Clone the instruction.
2640       Instruction *N = BBI->clone();
2641       if (BBI->hasName())
2642         N->setName(BBI->getName() + ".c");
2643 
2644       // Update operands due to translation.
2645       for (Use &Op : N->operands()) {
2646         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
2647         if (PI != TranslateMap.end())
2648           Op = PI->second;
2649       }
2650 
2651       // Check for trivial simplification.
2652       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2653         if (!BBI->use_empty())
2654           TranslateMap[&*BBI] = V;
2655         if (!N->mayHaveSideEffects()) {
2656           N->deleteValue(); // Instruction folded away, don't need actual inst
2657           N = nullptr;
2658         }
2659       } else {
2660         if (!BBI->use_empty())
2661           TranslateMap[&*BBI] = N;
2662       }
2663       if (N) {
2664         // Insert the new instruction into its new home.
2665         EdgeBB->getInstList().insert(InsertPt, N);
2666 
2667         // Register the new instruction with the assumption cache if necessary.
2668         if (auto *Assume = dyn_cast<AssumeInst>(N))
2669           if (AC)
2670             AC->registerAssumption(Assume);
2671       }
2672     }
2673 
2674     // Loop over all of the edges from PredBB to BB, changing them to branch
2675     // to EdgeBB instead.
2676     Instruction *PredBBTI = PredBB->getTerminator();
2677     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2678       if (PredBBTI->getSuccessor(i) == BB) {
2679         BB->removePredecessor(PredBB);
2680         PredBBTI->setSuccessor(i, EdgeBB);
2681       }
2682 
2683     if (DTU) {
2684       Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2685       Updates.push_back({DominatorTree::Delete, PredBB, BB});
2686 
2687       DTU->applyUpdates(Updates);
2688     }
2689 
2690     // Recurse, simplifying any other constants.
2691     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2692   }
2693 
2694   return false;
2695 }
2696 
2697 /// Given a BB that starts with the specified two-entry PHI node,
2698 /// see if we can eliminate it.
2699 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2700                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2701   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2702   // statement", which has a very simple dominance structure.  Basically, we
2703   // are trying to find the condition that is being branched on, which
2704   // subsequently causes this merge to happen.  We really want control
2705   // dependence information for this check, but simplifycfg can't keep it up
2706   // to date, and this catches most of the cases we care about anyway.
2707   BasicBlock *BB = PN->getParent();
2708 
2709   BasicBlock *IfTrue, *IfFalse;
2710   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2711   if (!IfCond ||
2712       // Don't bother if the branch will be constant folded trivially.
2713       isa<ConstantInt>(IfCond))
2714     return false;
2715 
2716   // Okay, we found that we can merge this two-entry phi node into a select.
2717   // Doing so would require us to fold *all* two entry phi nodes in this block.
2718   // At some point this becomes non-profitable (particularly if the target
2719   // doesn't support cmov's).  Only do this transformation if there are two or
2720   // fewer PHI nodes in this block.
2721   unsigned NumPhis = 0;
2722   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2723     if (NumPhis > 2)
2724       return false;
2725 
2726   // Loop over the PHI's seeing if we can promote them all to select
2727   // instructions.  While we are at it, keep track of the instructions
2728   // that need to be moved to the dominating block.
2729   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2730   InstructionCost Cost = 0;
2731   InstructionCost Budget =
2732       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2733 
2734   bool Changed = false;
2735   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2736     PHINode *PN = cast<PHINode>(II++);
2737     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2738       PN->replaceAllUsesWith(V);
2739       PN->eraseFromParent();
2740       Changed = true;
2741       continue;
2742     }
2743 
2744     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2745                              Cost, Budget, TTI) ||
2746         !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2747                              Cost, Budget, TTI))
2748       return Changed;
2749   }
2750 
2751   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2752   // we ran out of PHIs then we simplified them all.
2753   PN = dyn_cast<PHINode>(BB->begin());
2754   if (!PN)
2755     return true;
2756 
2757   // Return true if at least one of these is a 'not', and another is either
2758   // a 'not' too, or a constant.
2759   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2760     if (!match(V0, m_Not(m_Value())))
2761       std::swap(V0, V1);
2762     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2763     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2764   };
2765 
2766   // Don't fold i1 branches on PHIs which contain binary operators or
2767   // select form of or/ands, unless one of the incoming values is an 'not' and
2768   // another one is freely invertible.
2769   // These can often be turned into switches and other things.
2770   auto IsBinOpOrAnd = [](Value *V) {
2771     return match(
2772         V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr())));
2773   };
2774   if (PN->getType()->isIntegerTy(1) &&
2775       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
2776        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
2777       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2778                                  PN->getIncomingValue(1)))
2779     return Changed;
2780 
2781   // If all PHI nodes are promotable, check to make sure that all instructions
2782   // in the predecessor blocks can be promoted as well. If not, we won't be able
2783   // to get rid of the control flow, so it's not worth promoting to select
2784   // instructions.
2785   BasicBlock *DomBlock = nullptr;
2786   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2787   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2788   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2789     IfBlock1 = nullptr;
2790   } else {
2791     DomBlock = *pred_begin(IfBlock1);
2792     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2793       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2794           !isa<PseudoProbeInst>(I)) {
2795         // This is not an aggressive instruction that we can promote.
2796         // Because of this, we won't be able to get rid of the control flow, so
2797         // the xform is not worth it.
2798         return Changed;
2799       }
2800   }
2801 
2802   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2803     IfBlock2 = nullptr;
2804   } else {
2805     DomBlock = *pred_begin(IfBlock2);
2806     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2807       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2808           !isa<PseudoProbeInst>(I)) {
2809         // This is not an aggressive instruction that we can promote.
2810         // Because of this, we won't be able to get rid of the control flow, so
2811         // the xform is not worth it.
2812         return Changed;
2813       }
2814   }
2815   assert(DomBlock && "Failed to find root DomBlock");
2816 
2817   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2818                     << "  T: " << IfTrue->getName()
2819                     << "  F: " << IfFalse->getName() << "\n");
2820 
2821   // If we can still promote the PHI nodes after this gauntlet of tests,
2822   // do all of the PHI's now.
2823   Instruction *InsertPt = DomBlock->getTerminator();
2824   IRBuilder<NoFolder> Builder(InsertPt);
2825 
2826   // Move all 'aggressive' instructions, which are defined in the
2827   // conditional parts of the if's up to the dominating block.
2828   if (IfBlock1)
2829     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2830   if (IfBlock2)
2831     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2832 
2833   // Propagate fast-math-flags from phi nodes to replacement selects.
2834   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2835   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2836     if (isa<FPMathOperator>(PN))
2837       Builder.setFastMathFlags(PN->getFastMathFlags());
2838 
2839     // Change the PHI node into a select instruction.
2840     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2841     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2842 
2843     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2844     PN->replaceAllUsesWith(Sel);
2845     Sel->takeName(PN);
2846     PN->eraseFromParent();
2847   }
2848 
2849   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2850   // has been flattened.  Change DomBlock to jump directly to our new block to
2851   // avoid other simplifycfg's kicking in on the diamond.
2852   Instruction *OldTI = DomBlock->getTerminator();
2853   Builder.SetInsertPoint(OldTI);
2854   Builder.CreateBr(BB);
2855 
2856   SmallVector<DominatorTree::UpdateType, 3> Updates;
2857   if (DTU) {
2858     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2859     for (auto *Successor : successors(DomBlock))
2860       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2861   }
2862 
2863   OldTI->eraseFromParent();
2864   if (DTU)
2865     DTU->applyUpdates(Updates);
2866 
2867   return true;
2868 }
2869 
2870 /// If we found a conditional branch that goes to two returning blocks,
2871 /// try to merge them together into one return,
2872 /// introducing a select if the return values disagree.
2873 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2874                                                     IRBuilder<> &Builder) {
2875   auto *BB = BI->getParent();
2876   assert(BI->isConditional() && "Must be a conditional branch");
2877   BasicBlock *TrueSucc = BI->getSuccessor(0);
2878   BasicBlock *FalseSucc = BI->getSuccessor(1);
2879   // NOTE: destinations may match, this could be degenerate uncond branch.
2880   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2881   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2882 
2883   // Check to ensure both blocks are empty (just a return) or optionally empty
2884   // with PHI nodes.  If there are other instructions, merging would cause extra
2885   // computation on one path or the other.
2886   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2887     return false;
2888   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2889     return false;
2890 
2891   Builder.SetInsertPoint(BI);
2892   // Okay, we found a branch that is going to two return nodes.  If
2893   // there is no return value for this function, just change the
2894   // branch into a return.
2895   if (FalseRet->getNumOperands() == 0) {
2896     TrueSucc->removePredecessor(BB);
2897     FalseSucc->removePredecessor(BB);
2898     Builder.CreateRetVoid();
2899     EraseTerminatorAndDCECond(BI);
2900     if (DTU) {
2901       SmallVector<DominatorTree::UpdateType, 2> Updates;
2902       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2903       if (TrueSucc != FalseSucc)
2904         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2905       DTU->applyUpdates(Updates);
2906     }
2907     return true;
2908   }
2909 
2910   // Otherwise, figure out what the true and false return values are
2911   // so we can insert a new select instruction.
2912   Value *TrueValue = TrueRet->getReturnValue();
2913   Value *FalseValue = FalseRet->getReturnValue();
2914 
2915   // Unwrap any PHI nodes in the return blocks.
2916   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2917     if (TVPN->getParent() == TrueSucc)
2918       TrueValue = TVPN->getIncomingValueForBlock(BB);
2919   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2920     if (FVPN->getParent() == FalseSucc)
2921       FalseValue = FVPN->getIncomingValueForBlock(BB);
2922 
2923   // In order for this transformation to be safe, we must be able to
2924   // unconditionally execute both operands to the return.  This is
2925   // normally the case, but we could have a potentially-trapping
2926   // constant expression that prevents this transformation from being
2927   // safe.
2928   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2929     if (TCV->canTrap())
2930       return false;
2931   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2932     if (FCV->canTrap())
2933       return false;
2934 
2935   // Okay, we collected all the mapped values and checked them for sanity, and
2936   // defined to really do this transformation.  First, update the CFG.
2937   TrueSucc->removePredecessor(BB);
2938   FalseSucc->removePredecessor(BB);
2939 
2940   // Insert select instructions where needed.
2941   Value *BrCond = BI->getCondition();
2942   if (TrueValue) {
2943     // Insert a select if the results differ.
2944     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2945     } else if (isa<UndefValue>(TrueValue)) {
2946       TrueValue = FalseValue;
2947     } else {
2948       TrueValue =
2949           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2950     }
2951   }
2952 
2953   Value *RI =
2954       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2955 
2956   (void)RI;
2957 
2958   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2959                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2960                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2961 
2962   EraseTerminatorAndDCECond(BI);
2963   if (DTU) {
2964     SmallVector<DominatorTree::UpdateType, 2> Updates;
2965     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2966     if (TrueSucc != FalseSucc)
2967       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2968     DTU->applyUpdates(Updates);
2969   }
2970 
2971   return true;
2972 }
2973 
2974 static Value *createLogicalOp(IRBuilderBase &Builder,
2975                               Instruction::BinaryOps Opc, Value *LHS,
2976                               Value *RHS, const Twine &Name = "") {
2977   // Try to relax logical op to binary op.
2978   if (impliesPoison(RHS, LHS))
2979     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
2980   if (Opc == Instruction::And)
2981     return Builder.CreateLogicalAnd(LHS, RHS, Name);
2982   if (Opc == Instruction::Or)
2983     return Builder.CreateLogicalOr(LHS, RHS, Name);
2984   llvm_unreachable("Invalid logical opcode");
2985 }
2986 
2987 /// Return true if either PBI or BI has branch weight available, and store
2988 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2989 /// not have branch weight, use 1:1 as its weight.
2990 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2991                                    uint64_t &PredTrueWeight,
2992                                    uint64_t &PredFalseWeight,
2993                                    uint64_t &SuccTrueWeight,
2994                                    uint64_t &SuccFalseWeight) {
2995   bool PredHasWeights =
2996       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2997   bool SuccHasWeights =
2998       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2999   if (PredHasWeights || SuccHasWeights) {
3000     if (!PredHasWeights)
3001       PredTrueWeight = PredFalseWeight = 1;
3002     if (!SuccHasWeights)
3003       SuccTrueWeight = SuccFalseWeight = 1;
3004     return true;
3005   } else {
3006     return false;
3007   }
3008 }
3009 
3010 /// Determine if the two branches share a common destination and deduce a glue
3011 /// that joins the branches' conditions to arrive at the common destination if
3012 /// that would be profitable.
3013 static Optional<std::pair<Instruction::BinaryOps, bool>>
3014 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3015                                           const TargetTransformInfo *TTI) {
3016   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3017          "Both blocks must end with a conditional branches.");
3018   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3019          "PredBB must be a predecessor of BB.");
3020 
3021   // We have the potential to fold the conditions together, but if the
3022   // predecessor branch is predictable, we may not want to merge them.
3023   uint64_t PTWeight, PFWeight;
3024   BranchProbability PBITrueProb, Likely;
3025   if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) &&
3026       (PTWeight + PFWeight) != 0) {
3027     PBITrueProb =
3028         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3029     Likely = TTI->getPredictableBranchThreshold();
3030   }
3031 
3032   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3033     // Speculate the 2nd condition unless the 1st is probably true.
3034     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3035       return {{Instruction::Or, false}};
3036   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3037     // Speculate the 2nd condition unless the 1st is probably false.
3038     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3039       return {{Instruction::And, false}};
3040   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3041     // Speculate the 2nd condition unless the 1st is probably true.
3042     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3043       return {{Instruction::And, true}};
3044   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3045     // Speculate the 2nd condition unless the 1st is probably false.
3046     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3047       return {{Instruction::Or, true}};
3048   }
3049   return None;
3050 }
3051 
3052 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3053                                              DomTreeUpdater *DTU,
3054                                              MemorySSAUpdater *MSSAU,
3055                                              const TargetTransformInfo *TTI) {
3056   BasicBlock *BB = BI->getParent();
3057   BasicBlock *PredBlock = PBI->getParent();
3058 
3059   // Determine if the two branches share a common destination.
3060   Instruction::BinaryOps Opc;
3061   bool InvertPredCond;
3062   std::tie(Opc, InvertPredCond) =
3063       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3064 
3065   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3066 
3067   IRBuilder<> Builder(PBI);
3068   // The builder is used to create instructions to eliminate the branch in BB.
3069   // If BB's terminator has !annotation metadata, add it to the new
3070   // instructions.
3071   Builder.CollectMetadataToCopy(BB->getTerminator(),
3072                                 {LLVMContext::MD_annotation});
3073 
3074   // If we need to invert the condition in the pred block to match, do so now.
3075   if (InvertPredCond) {
3076     Value *NewCond = PBI->getCondition();
3077     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
3078       CmpInst *CI = cast<CmpInst>(NewCond);
3079       CI->setPredicate(CI->getInversePredicate());
3080     } else {
3081       NewCond =
3082           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
3083     }
3084 
3085     PBI->setCondition(NewCond);
3086     PBI->swapSuccessors();
3087   }
3088 
3089   BasicBlock *UniqueSucc =
3090       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3091 
3092   // Before cloning instructions, notify the successor basic block that it
3093   // is about to have a new predecessor. This will update PHI nodes,
3094   // which will allow us to update live-out uses of bonus instructions.
3095   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3096 
3097   // Try to update branch weights.
3098   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3099   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3100                              SuccTrueWeight, SuccFalseWeight)) {
3101     SmallVector<uint64_t, 8> NewWeights;
3102 
3103     if (PBI->getSuccessor(0) == BB) {
3104       // PBI: br i1 %x, BB, FalseDest
3105       // BI:  br i1 %y, UniqueSucc, FalseDest
3106       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3107       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3108       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3109       //               TrueWeight for PBI * FalseWeight for BI.
3110       // We assume that total weights of a BranchInst can fit into 32 bits.
3111       // Therefore, we will not have overflow using 64-bit arithmetic.
3112       NewWeights.push_back(PredFalseWeight *
3113                                (SuccFalseWeight + SuccTrueWeight) +
3114                            PredTrueWeight * SuccFalseWeight);
3115     } else {
3116       // PBI: br i1 %x, TrueDest, BB
3117       // BI:  br i1 %y, TrueDest, UniqueSucc
3118       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3119       //              FalseWeight for PBI * TrueWeight for BI.
3120       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3121                            PredFalseWeight * SuccTrueWeight);
3122       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3123       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3124     }
3125 
3126     // Halve the weights if any of them cannot fit in an uint32_t
3127     FitWeights(NewWeights);
3128 
3129     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3130     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
3131 
3132     // TODO: If BB is reachable from all paths through PredBlock, then we
3133     // could replace PBI's branch probabilities with BI's.
3134   } else
3135     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
3136 
3137   // Now, update the CFG.
3138   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
3139 
3140   if (DTU)
3141     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
3142                        {DominatorTree::Delete, PredBlock, BB}});
3143 
3144   // If BI was a loop latch, it may have had associated loop metadata.
3145   // We need to copy it to the new latch, that is, PBI.
3146   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
3147     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
3148 
3149   ValueToValueMapTy VMap; // maps original values to cloned values
3150   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
3151 
3152   // Now that the Cond was cloned into the predecessor basic block,
3153   // or/and the two conditions together.
3154   Value *BICond = VMap[BI->getCondition()];
3155   PBI->setCondition(
3156       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
3157 
3158   // Copy any debug value intrinsics into the end of PredBlock.
3159   for (Instruction &I : *BB) {
3160     if (isa<DbgInfoIntrinsic>(I)) {
3161       Instruction *NewI = I.clone();
3162       RemapInstruction(NewI, VMap,
3163                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
3164       NewI->insertBefore(PBI);
3165     }
3166   }
3167 
3168   ++NumFoldBranchToCommonDest;
3169   return true;
3170 }
3171 
3172 /// If this basic block is simple enough, and if a predecessor branches to us
3173 /// and one of our successors, fold the block into the predecessor and use
3174 /// logical operations to pick the right destination.
3175 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
3176                                   MemorySSAUpdater *MSSAU,
3177                                   const TargetTransformInfo *TTI,
3178                                   unsigned BonusInstThreshold) {
3179   // If this block ends with an unconditional branch,
3180   // let SpeculativelyExecuteBB() deal with it.
3181   if (!BI->isConditional())
3182     return false;
3183 
3184   BasicBlock *BB = BI->getParent();
3185 
3186   bool Changed = false;
3187 
3188   TargetTransformInfo::TargetCostKind CostKind =
3189     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
3190                                   : TargetTransformInfo::TCK_SizeAndLatency;
3191 
3192   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3193 
3194   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
3195       Cond->getParent() != BB || !Cond->hasOneUse())
3196     return Changed;
3197 
3198   // Cond is known to be a compare or binary operator.  Check to make sure that
3199   // neither operand is a potentially-trapping constant expression.
3200   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3201     if (CE->canTrap())
3202       return Changed;
3203   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3204     if (CE->canTrap())
3205       return Changed;
3206 
3207   // Finally, don't infinitely unroll conditional loops.
3208   if (is_contained(successors(BB), BB))
3209     return Changed;
3210 
3211   // With which predecessors will we want to deal with?
3212   SmallVector<BasicBlock *, 8> Preds;
3213   for (BasicBlock *PredBlock : predecessors(BB)) {
3214     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3215 
3216     // Check that we have two conditional branches.  If there is a PHI node in
3217     // the common successor, verify that the same value flows in from both
3218     // blocks.
3219     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3220       continue;
3221 
3222     // Determine if the two branches share a common destination.
3223     Instruction::BinaryOps Opc;
3224     bool InvertPredCond;
3225     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
3226       std::tie(Opc, InvertPredCond) = *Recipe;
3227     else
3228       continue;
3229 
3230     // Check the cost of inserting the necessary logic before performing the
3231     // transformation.
3232     if (TTI) {
3233       Type *Ty = BI->getCondition()->getType();
3234       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3235       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3236           !isa<CmpInst>(PBI->getCondition())))
3237         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3238 
3239       if (Cost > BranchFoldThreshold)
3240         continue;
3241     }
3242 
3243     // Ok, we do want to deal with this predecessor. Record it.
3244     Preds.emplace_back(PredBlock);
3245   }
3246 
3247   // If there aren't any predecessors into which we can fold,
3248   // don't bother checking the cost.
3249   if (Preds.empty())
3250     return Changed;
3251 
3252   // Only allow this transformation if computing the condition doesn't involve
3253   // too many instructions and these involved instructions can be executed
3254   // unconditionally. We denote all involved instructions except the condition
3255   // as "bonus instructions", and only allow this transformation when the
3256   // number of the bonus instructions we'll need to create when cloning into
3257   // each predecessor does not exceed a certain threshold.
3258   unsigned NumBonusInsts = 0;
3259   const unsigned PredCount = Preds.size();
3260   for (Instruction &I : *BB) {
3261     // Don't check the branch condition comparison itself.
3262     if (&I == Cond)
3263       continue;
3264     // Ignore dbg intrinsics, and the terminator.
3265     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3266       continue;
3267     // I must be safe to execute unconditionally.
3268     if (!isSafeToSpeculativelyExecute(&I))
3269       return Changed;
3270 
3271     // Account for the cost of duplicating this instruction into each
3272     // predecessor.
3273     NumBonusInsts += PredCount;
3274     // Early exits once we reach the limit.
3275     if (NumBonusInsts > BonusInstThreshold)
3276       return Changed;
3277   }
3278 
3279   // Ok, we have the budget. Perform the transformation.
3280   for (BasicBlock *PredBlock : Preds) {
3281     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
3282     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
3283   }
3284   return Changed;
3285 }
3286 
3287 // If there is only one store in BB1 and BB2, return it, otherwise return
3288 // nullptr.
3289 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3290   StoreInst *S = nullptr;
3291   for (auto *BB : {BB1, BB2}) {
3292     if (!BB)
3293       continue;
3294     for (auto &I : *BB)
3295       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3296         if (S)
3297           // Multiple stores seen.
3298           return nullptr;
3299         else
3300           S = SI;
3301       }
3302   }
3303   return S;
3304 }
3305 
3306 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3307                                               Value *AlternativeV = nullptr) {
3308   // PHI is going to be a PHI node that allows the value V that is defined in
3309   // BB to be referenced in BB's only successor.
3310   //
3311   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3312   // doesn't matter to us what the other operand is (it'll never get used). We
3313   // could just create a new PHI with an undef incoming value, but that could
3314   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3315   // other PHI. So here we directly look for some PHI in BB's successor with V
3316   // as an incoming operand. If we find one, we use it, else we create a new
3317   // one.
3318   //
3319   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3320   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3321   // where OtherBB is the single other predecessor of BB's only successor.
3322   PHINode *PHI = nullptr;
3323   BasicBlock *Succ = BB->getSingleSuccessor();
3324 
3325   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3326     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3327       PHI = cast<PHINode>(I);
3328       if (!AlternativeV)
3329         break;
3330 
3331       assert(Succ->hasNPredecessors(2));
3332       auto PredI = pred_begin(Succ);
3333       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3334       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3335         break;
3336       PHI = nullptr;
3337     }
3338   if (PHI)
3339     return PHI;
3340 
3341   // If V is not an instruction defined in BB, just return it.
3342   if (!AlternativeV &&
3343       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3344     return V;
3345 
3346   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3347   PHI->addIncoming(V, BB);
3348   for (BasicBlock *PredBB : predecessors(Succ))
3349     if (PredBB != BB)
3350       PHI->addIncoming(
3351           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3352   return PHI;
3353 }
3354 
3355 static bool mergeConditionalStoreToAddress(
3356     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3357     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3358     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3359   // For every pointer, there must be exactly two stores, one coming from
3360   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3361   // store (to any address) in PTB,PFB or QTB,QFB.
3362   // FIXME: We could relax this restriction with a bit more work and performance
3363   // testing.
3364   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3365   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3366   if (!PStore || !QStore)
3367     return false;
3368 
3369   // Now check the stores are compatible.
3370   if (!QStore->isUnordered() || !PStore->isUnordered())
3371     return false;
3372 
3373   // Check that sinking the store won't cause program behavior changes. Sinking
3374   // the store out of the Q blocks won't change any behavior as we're sinking
3375   // from a block to its unconditional successor. But we're moving a store from
3376   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3377   // So we need to check that there are no aliasing loads or stores in
3378   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3379   // operations between PStore and the end of its parent block.
3380   //
3381   // The ideal way to do this is to query AliasAnalysis, but we don't
3382   // preserve AA currently so that is dangerous. Be super safe and just
3383   // check there are no other memory operations at all.
3384   for (auto &I : *QFB->getSinglePredecessor())
3385     if (I.mayReadOrWriteMemory())
3386       return false;
3387   for (auto &I : *QFB)
3388     if (&I != QStore && I.mayReadOrWriteMemory())
3389       return false;
3390   if (QTB)
3391     for (auto &I : *QTB)
3392       if (&I != QStore && I.mayReadOrWriteMemory())
3393         return false;
3394   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3395        I != E; ++I)
3396     if (&*I != PStore && I->mayReadOrWriteMemory())
3397       return false;
3398 
3399   // If we're not in aggressive mode, we only optimize if we have some
3400   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3401   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3402     if (!BB)
3403       return true;
3404     // Heuristic: if the block can be if-converted/phi-folded and the
3405     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3406     // thread this store.
3407     InstructionCost Cost = 0;
3408     InstructionCost Budget =
3409         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3410     for (auto &I : BB->instructionsWithoutDebug()) {
3411       // Consider terminator instruction to be free.
3412       if (I.isTerminator())
3413         continue;
3414       // If this is one the stores that we want to speculate out of this BB,
3415       // then don't count it's cost, consider it to be free.
3416       if (auto *S = dyn_cast<StoreInst>(&I))
3417         if (llvm::find(FreeStores, S))
3418           continue;
3419       // Else, we have a white-list of instructions that we are ak speculating.
3420       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3421         return false; // Not in white-list - not worthwhile folding.
3422       // And finally, if this is a non-free instruction that we are okay
3423       // speculating, ensure that we consider the speculation budget.
3424       Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3425       if (Cost > Budget)
3426         return false; // Eagerly refuse to fold as soon as we're out of budget.
3427     }
3428     assert(Cost <= Budget &&
3429            "When we run out of budget we will eagerly return from within the "
3430            "per-instruction loop.");
3431     return true;
3432   };
3433 
3434   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3435   if (!MergeCondStoresAggressively &&
3436       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3437        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3438     return false;
3439 
3440   // If PostBB has more than two predecessors, we need to split it so we can
3441   // sink the store.
3442   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3443     // We know that QFB's only successor is PostBB. And QFB has a single
3444     // predecessor. If QTB exists, then its only successor is also PostBB.
3445     // If QTB does not exist, then QFB's only predecessor has a conditional
3446     // branch to QFB and PostBB.
3447     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3448     BasicBlock *NewBB =
3449         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3450     if (!NewBB)
3451       return false;
3452     PostBB = NewBB;
3453   }
3454 
3455   // OK, we're going to sink the stores to PostBB. The store has to be
3456   // conditional though, so first create the predicate.
3457   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3458                      ->getCondition();
3459   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3460                      ->getCondition();
3461 
3462   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3463                                                 PStore->getParent());
3464   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3465                                                 QStore->getParent(), PPHI);
3466 
3467   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3468 
3469   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3470   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3471 
3472   if (InvertPCond)
3473     PPred = QB.CreateNot(PPred);
3474   if (InvertQCond)
3475     QPred = QB.CreateNot(QPred);
3476   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3477 
3478   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3479                                       /*Unreachable=*/false,
3480                                       /*BranchWeights=*/nullptr, DTU);
3481   QB.SetInsertPoint(T);
3482   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3483   AAMDNodes AAMD;
3484   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3485   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3486   SI->setAAMetadata(AAMD);
3487   // Choose the minimum alignment. If we could prove both stores execute, we
3488   // could use biggest one.  In this case, though, we only know that one of the
3489   // stores executes.  And we don't know it's safe to take the alignment from a
3490   // store that doesn't execute.
3491   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3492 
3493   QStore->eraseFromParent();
3494   PStore->eraseFromParent();
3495 
3496   return true;
3497 }
3498 
3499 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3500                                    DomTreeUpdater *DTU, const DataLayout &DL,
3501                                    const TargetTransformInfo &TTI) {
3502   // The intention here is to find diamonds or triangles (see below) where each
3503   // conditional block contains a store to the same address. Both of these
3504   // stores are conditional, so they can't be unconditionally sunk. But it may
3505   // be profitable to speculatively sink the stores into one merged store at the
3506   // end, and predicate the merged store on the union of the two conditions of
3507   // PBI and QBI.
3508   //
3509   // This can reduce the number of stores executed if both of the conditions are
3510   // true, and can allow the blocks to become small enough to be if-converted.
3511   // This optimization will also chain, so that ladders of test-and-set
3512   // sequences can be if-converted away.
3513   //
3514   // We only deal with simple diamonds or triangles:
3515   //
3516   //     PBI       or      PBI        or a combination of the two
3517   //    /   \               | \
3518   //   PTB  PFB             |  PFB
3519   //    \   /               | /
3520   //     QBI                QBI
3521   //    /  \                | \
3522   //   QTB  QFB             |  QFB
3523   //    \  /                | /
3524   //    PostBB            PostBB
3525   //
3526   // We model triangles as a type of diamond with a nullptr "true" block.
3527   // Triangles are canonicalized so that the fallthrough edge is represented by
3528   // a true condition, as in the diagram above.
3529   BasicBlock *PTB = PBI->getSuccessor(0);
3530   BasicBlock *PFB = PBI->getSuccessor(1);
3531   BasicBlock *QTB = QBI->getSuccessor(0);
3532   BasicBlock *QFB = QBI->getSuccessor(1);
3533   BasicBlock *PostBB = QFB->getSingleSuccessor();
3534 
3535   // Make sure we have a good guess for PostBB. If QTB's only successor is
3536   // QFB, then QFB is a better PostBB.
3537   if (QTB->getSingleSuccessor() == QFB)
3538     PostBB = QFB;
3539 
3540   // If we couldn't find a good PostBB, stop.
3541   if (!PostBB)
3542     return false;
3543 
3544   bool InvertPCond = false, InvertQCond = false;
3545   // Canonicalize fallthroughs to the true branches.
3546   if (PFB == QBI->getParent()) {
3547     std::swap(PFB, PTB);
3548     InvertPCond = true;
3549   }
3550   if (QFB == PostBB) {
3551     std::swap(QFB, QTB);
3552     InvertQCond = true;
3553   }
3554 
3555   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3556   // and QFB may not. Model fallthroughs as a nullptr block.
3557   if (PTB == QBI->getParent())
3558     PTB = nullptr;
3559   if (QTB == PostBB)
3560     QTB = nullptr;
3561 
3562   // Legality bailouts. We must have at least the non-fallthrough blocks and
3563   // the post-dominating block, and the non-fallthroughs must only have one
3564   // predecessor.
3565   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3566     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3567   };
3568   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3569       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3570     return false;
3571   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3572       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3573     return false;
3574   if (!QBI->getParent()->hasNUses(2))
3575     return false;
3576 
3577   // OK, this is a sequence of two diamonds or triangles.
3578   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3579   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3580   for (auto *BB : {PTB, PFB}) {
3581     if (!BB)
3582       continue;
3583     for (auto &I : *BB)
3584       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3585         PStoreAddresses.insert(SI->getPointerOperand());
3586   }
3587   for (auto *BB : {QTB, QFB}) {
3588     if (!BB)
3589       continue;
3590     for (auto &I : *BB)
3591       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3592         QStoreAddresses.insert(SI->getPointerOperand());
3593   }
3594 
3595   set_intersect(PStoreAddresses, QStoreAddresses);
3596   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3597   // clear what it contains.
3598   auto &CommonAddresses = PStoreAddresses;
3599 
3600   bool Changed = false;
3601   for (auto *Address : CommonAddresses)
3602     Changed |=
3603         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3604                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3605   return Changed;
3606 }
3607 
3608 /// If the previous block ended with a widenable branch, determine if reusing
3609 /// the target block is profitable and legal.  This will have the effect of
3610 /// "widening" PBI, but doesn't require us to reason about hosting safety.
3611 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3612                                            DomTreeUpdater *DTU) {
3613   // TODO: This can be generalized in two important ways:
3614   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3615   //    values from the PBI edge.
3616   // 2) We can sink side effecting instructions into BI's fallthrough
3617   //    successor provided they doesn't contribute to computation of
3618   //    BI's condition.
3619   Value *CondWB, *WC;
3620   BasicBlock *IfTrueBB, *IfFalseBB;
3621   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3622       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3623     return false;
3624   if (!IfFalseBB->phis().empty())
3625     return false; // TODO
3626   // Use lambda to lazily compute expensive condition after cheap ones.
3627   auto NoSideEffects = [](BasicBlock &BB) {
3628     return !llvm::any_of(BB, [](const Instruction &I) {
3629         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3630       });
3631   };
3632   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3633       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3634       NoSideEffects(*BI->getParent())) {
3635     auto *OldSuccessor = BI->getSuccessor(1);
3636     OldSuccessor->removePredecessor(BI->getParent());
3637     BI->setSuccessor(1, IfFalseBB);
3638     if (DTU)
3639       DTU->applyUpdates(
3640           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3641            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3642     return true;
3643   }
3644   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3645       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3646       NoSideEffects(*BI->getParent())) {
3647     auto *OldSuccessor = BI->getSuccessor(0);
3648     OldSuccessor->removePredecessor(BI->getParent());
3649     BI->setSuccessor(0, IfFalseBB);
3650     if (DTU)
3651       DTU->applyUpdates(
3652           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3653            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3654     return true;
3655   }
3656   return false;
3657 }
3658 
3659 /// If we have a conditional branch as a predecessor of another block,
3660 /// this function tries to simplify it.  We know
3661 /// that PBI and BI are both conditional branches, and BI is in one of the
3662 /// successor blocks of PBI - PBI branches to BI.
3663 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3664                                            DomTreeUpdater *DTU,
3665                                            const DataLayout &DL,
3666                                            const TargetTransformInfo &TTI) {
3667   assert(PBI->isConditional() && BI->isConditional());
3668   BasicBlock *BB = BI->getParent();
3669 
3670   // If this block ends with a branch instruction, and if there is a
3671   // predecessor that ends on a branch of the same condition, make
3672   // this conditional branch redundant.
3673   if (PBI->getCondition() == BI->getCondition() &&
3674       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3675     // Okay, the outcome of this conditional branch is statically
3676     // knowable.  If this block had a single pred, handle specially.
3677     if (BB->getSinglePredecessor()) {
3678       // Turn this into a branch on constant.
3679       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3680       BI->setCondition(
3681           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3682       return true; // Nuke the branch on constant.
3683     }
3684 
3685     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3686     // in the constant and simplify the block result.  Subsequent passes of
3687     // simplifycfg will thread the block.
3688     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3689       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3690       PHINode *NewPN = PHINode::Create(
3691           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3692           BI->getCondition()->getName() + ".pr", &BB->front());
3693       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3694       // predecessor, compute the PHI'd conditional value for all of the preds.
3695       // Any predecessor where the condition is not computable we keep symbolic.
3696       for (pred_iterator PI = PB; PI != PE; ++PI) {
3697         BasicBlock *P = *PI;
3698         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3699             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3700             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3701           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3702           NewPN->addIncoming(
3703               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3704               P);
3705         } else {
3706           NewPN->addIncoming(BI->getCondition(), P);
3707         }
3708       }
3709 
3710       BI->setCondition(NewPN);
3711       return true;
3712     }
3713   }
3714 
3715   // If the previous block ended with a widenable branch, determine if reusing
3716   // the target block is profitable and legal.  This will have the effect of
3717   // "widening" PBI, but doesn't require us to reason about hosting safety.
3718   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3719     return true;
3720 
3721   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3722     if (CE->canTrap())
3723       return false;
3724 
3725   // If both branches are conditional and both contain stores to the same
3726   // address, remove the stores from the conditionals and create a conditional
3727   // merged store at the end.
3728   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3729     return true;
3730 
3731   // If this is a conditional branch in an empty block, and if any
3732   // predecessors are a conditional branch to one of our destinations,
3733   // fold the conditions into logical ops and one cond br.
3734 
3735   // Ignore dbg intrinsics.
3736   if (&*BB->instructionsWithoutDebug().begin() != BI)
3737     return false;
3738 
3739   int PBIOp, BIOp;
3740   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3741     PBIOp = 0;
3742     BIOp = 0;
3743   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3744     PBIOp = 0;
3745     BIOp = 1;
3746   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3747     PBIOp = 1;
3748     BIOp = 0;
3749   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3750     PBIOp = 1;
3751     BIOp = 1;
3752   } else {
3753     return false;
3754   }
3755 
3756   // Check to make sure that the other destination of this branch
3757   // isn't BB itself.  If so, this is an infinite loop that will
3758   // keep getting unwound.
3759   if (PBI->getSuccessor(PBIOp) == BB)
3760     return false;
3761 
3762   // Do not perform this transformation if it would require
3763   // insertion of a large number of select instructions. For targets
3764   // without predication/cmovs, this is a big pessimization.
3765 
3766   // Also do not perform this transformation if any phi node in the common
3767   // destination block can trap when reached by BB or PBB (PR17073). In that
3768   // case, it would be unsafe to hoist the operation into a select instruction.
3769 
3770   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3771   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3772   unsigned NumPhis = 0;
3773   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3774        ++II, ++NumPhis) {
3775     if (NumPhis > 2) // Disable this xform.
3776       return false;
3777 
3778     PHINode *PN = cast<PHINode>(II);
3779     Value *BIV = PN->getIncomingValueForBlock(BB);
3780     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3781       if (CE->canTrap())
3782         return false;
3783 
3784     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3785     Value *PBIV = PN->getIncomingValue(PBBIdx);
3786     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3787       if (CE->canTrap())
3788         return false;
3789   }
3790 
3791   // Finally, if everything is ok, fold the branches to logical ops.
3792   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3793 
3794   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3795                     << "AND: " << *BI->getParent());
3796 
3797   SmallVector<DominatorTree::UpdateType, 5> Updates;
3798 
3799   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3800   // branch in it, where one edge (OtherDest) goes back to itself but the other
3801   // exits.  We don't *know* that the program avoids the infinite loop
3802   // (even though that seems likely).  If we do this xform naively, we'll end up
3803   // recursively unpeeling the loop.  Since we know that (after the xform is
3804   // done) that the block *is* infinite if reached, we just make it an obviously
3805   // infinite loop with no cond branch.
3806   if (OtherDest == BB) {
3807     // Insert it at the end of the function, because it's either code,
3808     // or it won't matter if it's hot. :)
3809     BasicBlock *InfLoopBlock =
3810         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3811     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3812     if (DTU)
3813       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3814     OtherDest = InfLoopBlock;
3815   }
3816 
3817   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3818 
3819   // BI may have other predecessors.  Because of this, we leave
3820   // it alone, but modify PBI.
3821 
3822   // Make sure we get to CommonDest on True&True directions.
3823   Value *PBICond = PBI->getCondition();
3824   IRBuilder<NoFolder> Builder(PBI);
3825   if (PBIOp)
3826     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3827 
3828   Value *BICond = BI->getCondition();
3829   if (BIOp)
3830     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3831 
3832   // Merge the conditions.
3833   Value *Cond =
3834       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
3835 
3836   // Modify PBI to branch on the new condition to the new dests.
3837   PBI->setCondition(Cond);
3838   PBI->setSuccessor(0, CommonDest);
3839   PBI->setSuccessor(1, OtherDest);
3840 
3841   if (DTU) {
3842     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3843     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3844 
3845     DTU->applyUpdates(Updates);
3846   }
3847 
3848   // Update branch weight for PBI.
3849   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3850   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3851   bool HasWeights =
3852       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3853                              SuccTrueWeight, SuccFalseWeight);
3854   if (HasWeights) {
3855     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3856     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3857     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3858     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3859     // The weight to CommonDest should be PredCommon * SuccTotal +
3860     //                                    PredOther * SuccCommon.
3861     // The weight to OtherDest should be PredOther * SuccOther.
3862     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3863                                   PredOther * SuccCommon,
3864                               PredOther * SuccOther};
3865     // Halve the weights if any of them cannot fit in an uint32_t
3866     FitWeights(NewWeights);
3867 
3868     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3869   }
3870 
3871   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3872   // block that are identical to the entries for BI's block.
3873   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3874 
3875   // We know that the CommonDest already had an edge from PBI to
3876   // it.  If it has PHIs though, the PHIs may have different
3877   // entries for BB and PBI's BB.  If so, insert a select to make
3878   // them agree.
3879   for (PHINode &PN : CommonDest->phis()) {
3880     Value *BIV = PN.getIncomingValueForBlock(BB);
3881     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3882     Value *PBIV = PN.getIncomingValue(PBBIdx);
3883     if (BIV != PBIV) {
3884       // Insert a select in PBI to pick the right value.
3885       SelectInst *NV = cast<SelectInst>(
3886           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3887       PN.setIncomingValue(PBBIdx, NV);
3888       // Although the select has the same condition as PBI, the original branch
3889       // weights for PBI do not apply to the new select because the select's
3890       // 'logical' edges are incoming edges of the phi that is eliminated, not
3891       // the outgoing edges of PBI.
3892       if (HasWeights) {
3893         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3894         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3895         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3896         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3897         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3898         // The weight to PredOtherDest should be PredOther * SuccCommon.
3899         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3900                                   PredOther * SuccCommon};
3901 
3902         FitWeights(NewWeights);
3903 
3904         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3905       }
3906     }
3907   }
3908 
3909   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3910   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3911 
3912   // This basic block is probably dead.  We know it has at least
3913   // one fewer predecessor.
3914   return true;
3915 }
3916 
3917 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3918 // true or to FalseBB if Cond is false.
3919 // Takes care of updating the successors and removing the old terminator.
3920 // Also makes sure not to introduce new successors by assuming that edges to
3921 // non-successor TrueBBs and FalseBBs aren't reachable.
3922 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3923                                                 Value *Cond, BasicBlock *TrueBB,
3924                                                 BasicBlock *FalseBB,
3925                                                 uint32_t TrueWeight,
3926                                                 uint32_t FalseWeight) {
3927   auto *BB = OldTerm->getParent();
3928   // Remove any superfluous successor edges from the CFG.
3929   // First, figure out which successors to preserve.
3930   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3931   // successor.
3932   BasicBlock *KeepEdge1 = TrueBB;
3933   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3934 
3935   SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
3936 
3937   // Then remove the rest.
3938   for (BasicBlock *Succ : successors(OldTerm)) {
3939     // Make sure only to keep exactly one copy of each edge.
3940     if (Succ == KeepEdge1)
3941       KeepEdge1 = nullptr;
3942     else if (Succ == KeepEdge2)
3943       KeepEdge2 = nullptr;
3944     else {
3945       Succ->removePredecessor(BB,
3946                               /*KeepOneInputPHIs=*/true);
3947 
3948       if (Succ != TrueBB && Succ != FalseBB)
3949         RemovedSuccessors.insert(Succ);
3950     }
3951   }
3952 
3953   IRBuilder<> Builder(OldTerm);
3954   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3955 
3956   // Insert an appropriate new terminator.
3957   if (!KeepEdge1 && !KeepEdge2) {
3958     if (TrueBB == FalseBB) {
3959       // We were only looking for one successor, and it was present.
3960       // Create an unconditional branch to it.
3961       Builder.CreateBr(TrueBB);
3962     } else {
3963       // We found both of the successors we were looking for.
3964       // Create a conditional branch sharing the condition of the select.
3965       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3966       if (TrueWeight != FalseWeight)
3967         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3968     }
3969   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3970     // Neither of the selected blocks were successors, so this
3971     // terminator must be unreachable.
3972     new UnreachableInst(OldTerm->getContext(), OldTerm);
3973   } else {
3974     // One of the selected values was a successor, but the other wasn't.
3975     // Insert an unconditional branch to the one that was found;
3976     // the edge to the one that wasn't must be unreachable.
3977     if (!KeepEdge1) {
3978       // Only TrueBB was found.
3979       Builder.CreateBr(TrueBB);
3980     } else {
3981       // Only FalseBB was found.
3982       Builder.CreateBr(FalseBB);
3983     }
3984   }
3985 
3986   EraseTerminatorAndDCECond(OldTerm);
3987 
3988   if (DTU) {
3989     SmallVector<DominatorTree::UpdateType, 2> Updates;
3990     Updates.reserve(RemovedSuccessors.size());
3991     for (auto *RemovedSuccessor : RemovedSuccessors)
3992       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3993     DTU->applyUpdates(Updates);
3994   }
3995 
3996   return true;
3997 }
3998 
3999 // Replaces
4000 //   (switch (select cond, X, Y)) on constant X, Y
4001 // with a branch - conditional if X and Y lead to distinct BBs,
4002 // unconditional otherwise.
4003 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
4004                                             SelectInst *Select) {
4005   // Check for constant integer values in the select.
4006   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4007   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4008   if (!TrueVal || !FalseVal)
4009     return false;
4010 
4011   // Find the relevant condition and destinations.
4012   Value *Condition = Select->getCondition();
4013   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4014   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4015 
4016   // Get weight for TrueBB and FalseBB.
4017   uint32_t TrueWeight = 0, FalseWeight = 0;
4018   SmallVector<uint64_t, 8> Weights;
4019   bool HasWeights = HasBranchWeights(SI);
4020   if (HasWeights) {
4021     GetBranchWeights(SI, Weights);
4022     if (Weights.size() == 1 + SI->getNumCases()) {
4023       TrueWeight =
4024           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4025       FalseWeight =
4026           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4027     }
4028   }
4029 
4030   // Perform the actual simplification.
4031   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4032                                     FalseWeight);
4033 }
4034 
4035 // Replaces
4036 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4037 //                             blockaddress(@fn, BlockB)))
4038 // with
4039 //   (br cond, BlockA, BlockB).
4040 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4041                                                 SelectInst *SI) {
4042   // Check that both operands of the select are block addresses.
4043   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4044   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4045   if (!TBA || !FBA)
4046     return false;
4047 
4048   // Extract the actual blocks.
4049   BasicBlock *TrueBB = TBA->getBasicBlock();
4050   BasicBlock *FalseBB = FBA->getBasicBlock();
4051 
4052   // Perform the actual simplification.
4053   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4054                                     0);
4055 }
4056 
4057 /// This is called when we find an icmp instruction
4058 /// (a seteq/setne with a constant) as the only instruction in a
4059 /// block that ends with an uncond branch.  We are looking for a very specific
4060 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4061 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4062 /// default value goes to an uncond block with a seteq in it, we get something
4063 /// like:
4064 ///
4065 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4066 /// DEFAULT:
4067 ///   %tmp = icmp eq i8 %A, 92
4068 ///   br label %end
4069 /// end:
4070 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4071 ///
4072 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4073 /// the PHI, merging the third icmp into the switch.
4074 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4075     ICmpInst *ICI, IRBuilder<> &Builder) {
4076   BasicBlock *BB = ICI->getParent();
4077 
4078   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4079   // complex.
4080   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4081     return false;
4082 
4083   Value *V = ICI->getOperand(0);
4084   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4085 
4086   // The pattern we're looking for is where our only predecessor is a switch on
4087   // 'V' and this block is the default case for the switch.  In this case we can
4088   // fold the compared value into the switch to simplify things.
4089   BasicBlock *Pred = BB->getSinglePredecessor();
4090   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4091     return false;
4092 
4093   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4094   if (SI->getCondition() != V)
4095     return false;
4096 
4097   // If BB is reachable on a non-default case, then we simply know the value of
4098   // V in this block.  Substitute it and constant fold the icmp instruction
4099   // away.
4100   if (SI->getDefaultDest() != BB) {
4101     ConstantInt *VVal = SI->findCaseDest(BB);
4102     assert(VVal && "Should have a unique destination value");
4103     ICI->setOperand(0, VVal);
4104 
4105     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
4106       ICI->replaceAllUsesWith(V);
4107       ICI->eraseFromParent();
4108     }
4109     // BB is now empty, so it is likely to simplify away.
4110     return requestResimplify();
4111   }
4112 
4113   // Ok, the block is reachable from the default dest.  If the constant we're
4114   // comparing exists in one of the other edges, then we can constant fold ICI
4115   // and zap it.
4116   if (SI->findCaseValue(Cst) != SI->case_default()) {
4117     Value *V;
4118     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4119       V = ConstantInt::getFalse(BB->getContext());
4120     else
4121       V = ConstantInt::getTrue(BB->getContext());
4122 
4123     ICI->replaceAllUsesWith(V);
4124     ICI->eraseFromParent();
4125     // BB is now empty, so it is likely to simplify away.
4126     return requestResimplify();
4127   }
4128 
4129   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4130   // the block.
4131   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4132   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
4133   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
4134       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
4135     return false;
4136 
4137   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
4138   // true in the PHI.
4139   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
4140   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
4141 
4142   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4143     std::swap(DefaultCst, NewCst);
4144 
4145   // Replace ICI (which is used by the PHI for the default value) with true or
4146   // false depending on if it is EQ or NE.
4147   ICI->replaceAllUsesWith(DefaultCst);
4148   ICI->eraseFromParent();
4149 
4150   SmallVector<DominatorTree::UpdateType, 2> Updates;
4151 
4152   // Okay, the switch goes to this block on a default value.  Add an edge from
4153   // the switch to the merge point on the compared value.
4154   BasicBlock *NewBB =
4155       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
4156   {
4157     SwitchInstProfUpdateWrapper SIW(*SI);
4158     auto W0 = SIW.getSuccessorWeight(0);
4159     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
4160     if (W0) {
4161       NewW = ((uint64_t(*W0) + 1) >> 1);
4162       SIW.setSuccessorWeight(0, *NewW);
4163     }
4164     SIW.addCase(Cst, NewBB, NewW);
4165     if (DTU)
4166       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
4167   }
4168 
4169   // NewBB branches to the phi block, add the uncond branch and the phi entry.
4170   Builder.SetInsertPoint(NewBB);
4171   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
4172   Builder.CreateBr(SuccBlock);
4173   PHIUse->addIncoming(NewCst, NewBB);
4174   if (DTU) {
4175     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
4176     DTU->applyUpdates(Updates);
4177   }
4178   return true;
4179 }
4180 
4181 /// The specified branch is a conditional branch.
4182 /// Check to see if it is branching on an or/and chain of icmp instructions, and
4183 /// fold it into a switch instruction if so.
4184 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
4185                                                IRBuilder<> &Builder,
4186                                                const DataLayout &DL) {
4187   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4188   if (!Cond)
4189     return false;
4190 
4191   // Change br (X == 0 | X == 1), T, F into a switch instruction.
4192   // If this is a bunch of seteq's or'd together, or if it's a bunch of
4193   // 'setne's and'ed together, collect them.
4194 
4195   // Try to gather values from a chain of and/or to be turned into a switch
4196   ConstantComparesGatherer ConstantCompare(Cond, DL);
4197   // Unpack the result
4198   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
4199   Value *CompVal = ConstantCompare.CompValue;
4200   unsigned UsedICmps = ConstantCompare.UsedICmps;
4201   Value *ExtraCase = ConstantCompare.Extra;
4202 
4203   // If we didn't have a multiply compared value, fail.
4204   if (!CompVal)
4205     return false;
4206 
4207   // Avoid turning single icmps into a switch.
4208   if (UsedICmps <= 1)
4209     return false;
4210 
4211   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
4212 
4213   // There might be duplicate constants in the list, which the switch
4214   // instruction can't handle, remove them now.
4215   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
4216   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
4217 
4218   // If Extra was used, we require at least two switch values to do the
4219   // transformation.  A switch with one value is just a conditional branch.
4220   if (ExtraCase && Values.size() < 2)
4221     return false;
4222 
4223   // TODO: Preserve branch weight metadata, similarly to how
4224   // FoldValueComparisonIntoPredecessors preserves it.
4225 
4226   // Figure out which block is which destination.
4227   BasicBlock *DefaultBB = BI->getSuccessor(1);
4228   BasicBlock *EdgeBB = BI->getSuccessor(0);
4229   if (!TrueWhenEqual)
4230     std::swap(DefaultBB, EdgeBB);
4231 
4232   BasicBlock *BB = BI->getParent();
4233 
4234   // MSAN does not like undefs as branch condition which can be introduced
4235   // with "explicit branch".
4236   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4237     return false;
4238 
4239   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4240                     << " cases into SWITCH.  BB is:\n"
4241                     << *BB);
4242 
4243   SmallVector<DominatorTree::UpdateType, 2> Updates;
4244 
4245   // If there are any extra values that couldn't be folded into the switch
4246   // then we evaluate them with an explicit branch first. Split the block
4247   // right before the condbr to handle it.
4248   if (ExtraCase) {
4249     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4250                                    /*MSSAU=*/nullptr, "switch.early.test");
4251 
4252     // Remove the uncond branch added to the old block.
4253     Instruction *OldTI = BB->getTerminator();
4254     Builder.SetInsertPoint(OldTI);
4255 
4256     if (TrueWhenEqual)
4257       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4258     else
4259       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4260 
4261     OldTI->eraseFromParent();
4262 
4263     if (DTU)
4264       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4265 
4266     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4267     // for the edge we just added.
4268     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4269 
4270     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4271                       << "\nEXTRABB = " << *BB);
4272     BB = NewBB;
4273   }
4274 
4275   Builder.SetInsertPoint(BI);
4276   // Convert pointer to int before we switch.
4277   if (CompVal->getType()->isPointerTy()) {
4278     CompVal = Builder.CreatePtrToInt(
4279         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4280   }
4281 
4282   // Create the new switch instruction now.
4283   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4284 
4285   // Add all of the 'cases' to the switch instruction.
4286   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4287     New->addCase(Values[i], EdgeBB);
4288 
4289   // We added edges from PI to the EdgeBB.  As such, if there were any
4290   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4291   // the number of edges added.
4292   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4293     PHINode *PN = cast<PHINode>(BBI);
4294     Value *InVal = PN->getIncomingValueForBlock(BB);
4295     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4296       PN->addIncoming(InVal, BB);
4297   }
4298 
4299   // Erase the old branch instruction.
4300   EraseTerminatorAndDCECond(BI);
4301   if (DTU)
4302     DTU->applyUpdates(Updates);
4303 
4304   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4305   return true;
4306 }
4307 
4308 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4309   if (isa<PHINode>(RI->getValue()))
4310     return simplifyCommonResume(RI);
4311   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4312            RI->getValue() == RI->getParent()->getFirstNonPHI())
4313     // The resume must unwind the exception that caused control to branch here.
4314     return simplifySingleResume(RI);
4315 
4316   return false;
4317 }
4318 
4319 // Check if cleanup block is empty
4320 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4321   for (Instruction &I : R) {
4322     auto *II = dyn_cast<IntrinsicInst>(&I);
4323     if (!II)
4324       return false;
4325 
4326     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4327     switch (IntrinsicID) {
4328     case Intrinsic::dbg_declare:
4329     case Intrinsic::dbg_value:
4330     case Intrinsic::dbg_label:
4331     case Intrinsic::lifetime_end:
4332       break;
4333     default:
4334       return false;
4335     }
4336   }
4337   return true;
4338 }
4339 
4340 // Simplify resume that is shared by several landing pads (phi of landing pad).
4341 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4342   BasicBlock *BB = RI->getParent();
4343 
4344   // Check that there are no other instructions except for debug and lifetime
4345   // intrinsics between the phi's and resume instruction.
4346   if (!isCleanupBlockEmpty(
4347           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4348     return false;
4349 
4350   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4351   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4352 
4353   // Check incoming blocks to see if any of them are trivial.
4354   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4355        Idx++) {
4356     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4357     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4358 
4359     // If the block has other successors, we can not delete it because
4360     // it has other dependents.
4361     if (IncomingBB->getUniqueSuccessor() != BB)
4362       continue;
4363 
4364     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4365     // Not the landing pad that caused the control to branch here.
4366     if (IncomingValue != LandingPad)
4367       continue;
4368 
4369     if (isCleanupBlockEmpty(
4370             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4371       TrivialUnwindBlocks.insert(IncomingBB);
4372   }
4373 
4374   // If no trivial unwind blocks, don't do any simplifications.
4375   if (TrivialUnwindBlocks.empty())
4376     return false;
4377 
4378   // Turn all invokes that unwind here into calls.
4379   for (auto *TrivialBB : TrivialUnwindBlocks) {
4380     // Blocks that will be simplified should be removed from the phi node.
4381     // Note there could be multiple edges to the resume block, and we need
4382     // to remove them all.
4383     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4384       BB->removePredecessor(TrivialBB, true);
4385 
4386     for (BasicBlock *Pred :
4387          llvm::make_early_inc_range(predecessors(TrivialBB))) {
4388       removeUnwindEdge(Pred, DTU);
4389       ++NumInvokes;
4390     }
4391 
4392     // In each SimplifyCFG run, only the current processed block can be erased.
4393     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4394     // of erasing TrivialBB, we only remove the branch to the common resume
4395     // block so that we can later erase the resume block since it has no
4396     // predecessors.
4397     TrivialBB->getTerminator()->eraseFromParent();
4398     new UnreachableInst(RI->getContext(), TrivialBB);
4399     if (DTU)
4400       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4401   }
4402 
4403   // Delete the resume block if all its predecessors have been removed.
4404   if (pred_empty(BB)) {
4405     if (DTU)
4406       DTU->deleteBB(BB);
4407     else
4408       BB->eraseFromParent();
4409   }
4410 
4411   return !TrivialUnwindBlocks.empty();
4412 }
4413 
4414 // Simplify resume that is only used by a single (non-phi) landing pad.
4415 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4416   BasicBlock *BB = RI->getParent();
4417   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4418   assert(RI->getValue() == LPInst &&
4419          "Resume must unwind the exception that caused control to here");
4420 
4421   // Check that there are no other instructions except for debug intrinsics.
4422   if (!isCleanupBlockEmpty(
4423           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4424     return false;
4425 
4426   // Turn all invokes that unwind here into calls and delete the basic block.
4427   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
4428     removeUnwindEdge(Pred, DTU);
4429     ++NumInvokes;
4430   }
4431 
4432   // The landingpad is now unreachable.  Zap it.
4433   if (DTU)
4434     DTU->deleteBB(BB);
4435   else
4436     BB->eraseFromParent();
4437   return true;
4438 }
4439 
4440 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4441   // If this is a trivial cleanup pad that executes no instructions, it can be
4442   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4443   // that is an EH pad will be updated to continue to the caller and any
4444   // predecessor that terminates with an invoke instruction will have its invoke
4445   // instruction converted to a call instruction.  If the cleanup pad being
4446   // simplified does not continue to the caller, each predecessor will be
4447   // updated to continue to the unwind destination of the cleanup pad being
4448   // simplified.
4449   BasicBlock *BB = RI->getParent();
4450   CleanupPadInst *CPInst = RI->getCleanupPad();
4451   if (CPInst->getParent() != BB)
4452     // This isn't an empty cleanup.
4453     return false;
4454 
4455   // We cannot kill the pad if it has multiple uses.  This typically arises
4456   // from unreachable basic blocks.
4457   if (!CPInst->hasOneUse())
4458     return false;
4459 
4460   // Check that there are no other instructions except for benign intrinsics.
4461   if (!isCleanupBlockEmpty(
4462           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4463     return false;
4464 
4465   // If the cleanup return we are simplifying unwinds to the caller, this will
4466   // set UnwindDest to nullptr.
4467   BasicBlock *UnwindDest = RI->getUnwindDest();
4468   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4469 
4470   // We're about to remove BB from the control flow.  Before we do, sink any
4471   // PHINodes into the unwind destination.  Doing this before changing the
4472   // control flow avoids some potentially slow checks, since we can currently
4473   // be certain that UnwindDest and BB have no common predecessors (since they
4474   // are both EH pads).
4475   if (UnwindDest) {
4476     // First, go through the PHI nodes in UnwindDest and update any nodes that
4477     // reference the block we are removing
4478     for (BasicBlock::iterator I = UnwindDest->begin(),
4479                               IE = DestEHPad->getIterator();
4480          I != IE; ++I) {
4481       PHINode *DestPN = cast<PHINode>(I);
4482 
4483       int Idx = DestPN->getBasicBlockIndex(BB);
4484       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4485       assert(Idx != -1);
4486       // This PHI node has an incoming value that corresponds to a control
4487       // path through the cleanup pad we are removing.  If the incoming
4488       // value is in the cleanup pad, it must be a PHINode (because we
4489       // verified above that the block is otherwise empty).  Otherwise, the
4490       // value is either a constant or a value that dominates the cleanup
4491       // pad being removed.
4492       //
4493       // Because BB and UnwindDest are both EH pads, all of their
4494       // predecessors must unwind to these blocks, and since no instruction
4495       // can have multiple unwind destinations, there will be no overlap in
4496       // incoming blocks between SrcPN and DestPN.
4497       Value *SrcVal = DestPN->getIncomingValue(Idx);
4498       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4499 
4500       // Remove the entry for the block we are deleting.
4501       DestPN->removeIncomingValue(Idx, false);
4502 
4503       if (SrcPN && SrcPN->getParent() == BB) {
4504         // If the incoming value was a PHI node in the cleanup pad we are
4505         // removing, we need to merge that PHI node's incoming values into
4506         // DestPN.
4507         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4508              SrcIdx != SrcE; ++SrcIdx) {
4509           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4510                               SrcPN->getIncomingBlock(SrcIdx));
4511         }
4512       } else {
4513         // Otherwise, the incoming value came from above BB and
4514         // so we can just reuse it.  We must associate all of BB's
4515         // predecessors with this value.
4516         for (auto *pred : predecessors(BB)) {
4517           DestPN->addIncoming(SrcVal, pred);
4518         }
4519       }
4520     }
4521 
4522     // Sink any remaining PHI nodes directly into UnwindDest.
4523     Instruction *InsertPt = DestEHPad;
4524     for (BasicBlock::iterator I = BB->begin(),
4525                               IE = BB->getFirstNonPHI()->getIterator();
4526          I != IE;) {
4527       // The iterator must be incremented here because the instructions are
4528       // being moved to another block.
4529       PHINode *PN = cast<PHINode>(I++);
4530       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4531         // If the PHI node has no uses or all of its uses are in this basic
4532         // block (meaning they are debug or lifetime intrinsics), just leave
4533         // it.  It will be erased when we erase BB below.
4534         continue;
4535 
4536       // Otherwise, sink this PHI node into UnwindDest.
4537       // Any predecessors to UnwindDest which are not already represented
4538       // must be back edges which inherit the value from the path through
4539       // BB.  In this case, the PHI value must reference itself.
4540       for (auto *pred : predecessors(UnwindDest))
4541         if (pred != BB)
4542           PN->addIncoming(PN, pred);
4543       PN->moveBefore(InsertPt);
4544     }
4545   }
4546 
4547   std::vector<DominatorTree::UpdateType> Updates;
4548 
4549   // We use make_early_inc_range here because we may remove some predecessors.
4550   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
4551     if (UnwindDest == nullptr) {
4552       if (DTU) {
4553         DTU->applyUpdates(Updates);
4554         Updates.clear();
4555       }
4556       removeUnwindEdge(PredBB, DTU);
4557       ++NumInvokes;
4558     } else {
4559       Instruction *TI = PredBB->getTerminator();
4560       TI->replaceUsesOfWith(BB, UnwindDest);
4561       if (DTU) {
4562         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4563         Updates.push_back({DominatorTree::Delete, PredBB, BB});
4564       }
4565     }
4566   }
4567 
4568   if (DTU) {
4569     DTU->applyUpdates(Updates);
4570     DTU->deleteBB(BB);
4571   } else
4572     // The cleanup pad is now unreachable.  Zap it.
4573     BB->eraseFromParent();
4574 
4575   return true;
4576 }
4577 
4578 // Try to merge two cleanuppads together.
4579 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4580   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4581   // with.
4582   BasicBlock *UnwindDest = RI->getUnwindDest();
4583   if (!UnwindDest)
4584     return false;
4585 
4586   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4587   // be safe to merge without code duplication.
4588   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4589     return false;
4590 
4591   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4592   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4593   if (!SuccessorCleanupPad)
4594     return false;
4595 
4596   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4597   // Replace any uses of the successor cleanupad with the predecessor pad
4598   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4599   // funclet bundle operands.
4600   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4601   // Remove the old cleanuppad.
4602   SuccessorCleanupPad->eraseFromParent();
4603   // Now, we simply replace the cleanupret with a branch to the unwind
4604   // destination.
4605   BranchInst::Create(UnwindDest, RI->getParent());
4606   RI->eraseFromParent();
4607 
4608   return true;
4609 }
4610 
4611 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4612   // It is possible to transiantly have an undef cleanuppad operand because we
4613   // have deleted some, but not all, dead blocks.
4614   // Eventually, this block will be deleted.
4615   if (isa<UndefValue>(RI->getOperand(0)))
4616     return false;
4617 
4618   if (mergeCleanupPad(RI))
4619     return true;
4620 
4621   if (removeEmptyCleanup(RI, DTU))
4622     return true;
4623 
4624   return false;
4625 }
4626 
4627 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4628   BasicBlock *BB = RI->getParent();
4629   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4630     return false;
4631 
4632   // Find predecessors that end with branches.
4633   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4634   SmallVector<BranchInst *, 8> CondBranchPreds;
4635   for (BasicBlock *P : predecessors(BB)) {
4636     Instruction *PTI = P->getTerminator();
4637     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4638       if (BI->isUnconditional())
4639         UncondBranchPreds.push_back(P);
4640       else
4641         CondBranchPreds.push_back(BI);
4642     }
4643   }
4644 
4645   // If we found some, do the transformation!
4646   if (!UncondBranchPreds.empty() && DupRet) {
4647     while (!UncondBranchPreds.empty()) {
4648       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4649       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4650                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4651       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4652     }
4653 
4654     // If we eliminated all predecessors of the block, delete the block now.
4655     if (pred_empty(BB)) {
4656       // We know there are no successors, so just nuke the block.
4657       if (DTU)
4658         DTU->deleteBB(BB);
4659       else
4660         BB->eraseFromParent();
4661     }
4662 
4663     return true;
4664   }
4665 
4666   // Check out all of the conditional branches going to this return
4667   // instruction.  If any of them just select between returns, change the
4668   // branch itself into a select/return pair.
4669   while (!CondBranchPreds.empty()) {
4670     BranchInst *BI = CondBranchPreds.pop_back_val();
4671 
4672     // Check to see if the non-BB successor is also a return block.
4673     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4674         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4675         SimplifyCondBranchToTwoReturns(BI, Builder))
4676       return true;
4677   }
4678   return false;
4679 }
4680 
4681 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4682   BasicBlock *BB = UI->getParent();
4683 
4684   bool Changed = false;
4685 
4686   // If there are any instructions immediately before the unreachable that can
4687   // be removed, do so.
4688   while (UI->getIterator() != BB->begin()) {
4689     BasicBlock::iterator BBI = UI->getIterator();
4690     --BBI;
4691     // Do not delete instructions that can have side effects which might cause
4692     // the unreachable to not be reachable; specifically, calls and volatile
4693     // operations may have this effect.
4694     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4695       break;
4696 
4697     if (BBI->mayHaveSideEffects()) {
4698       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4699         if (SI->isVolatile())
4700           break;
4701       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4702         if (LI->isVolatile())
4703           break;
4704       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4705         if (RMWI->isVolatile())
4706           break;
4707       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4708         if (CXI->isVolatile())
4709           break;
4710       } else if (isa<CatchPadInst>(BBI)) {
4711         // A catchpad may invoke exception object constructors and such, which
4712         // in some languages can be arbitrary code, so be conservative by
4713         // default.
4714         // For CoreCLR, it just involves a type test, so can be removed.
4715         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4716             EHPersonality::CoreCLR)
4717           break;
4718       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4719                  !isa<LandingPadInst>(BBI)) {
4720         break;
4721       }
4722       // Note that deleting LandingPad's here is in fact okay, although it
4723       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4724       // all the predecessors of this block will be the unwind edges of Invokes,
4725       // and we can therefore guarantee this block will be erased.
4726     }
4727 
4728     // Delete this instruction (any uses are guaranteed to be dead)
4729     if (!BBI->use_empty())
4730       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4731     BBI->eraseFromParent();
4732     Changed = true;
4733   }
4734 
4735   // If the unreachable instruction is the first in the block, take a gander
4736   // at all of the predecessors of this instruction, and simplify them.
4737   if (&BB->front() != UI)
4738     return Changed;
4739 
4740   std::vector<DominatorTree::UpdateType> Updates;
4741 
4742   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4743   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4744     auto *Predecessor = Preds[i];
4745     Instruction *TI = Predecessor->getTerminator();
4746     IRBuilder<> Builder(TI);
4747     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4748       // We could either have a proper unconditional branch,
4749       // or a degenerate conditional branch with matching destinations.
4750       if (all_of(BI->successors(),
4751                  [BB](auto *Successor) { return Successor == BB; })) {
4752         new UnreachableInst(TI->getContext(), TI);
4753         TI->eraseFromParent();
4754         Changed = true;
4755       } else {
4756         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4757         Value* Cond = BI->getCondition();
4758         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4759                "The destinations are guaranteed to be different here.");
4760         if (BI->getSuccessor(0) == BB) {
4761           Builder.CreateAssumption(Builder.CreateNot(Cond));
4762           Builder.CreateBr(BI->getSuccessor(1));
4763         } else {
4764           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4765           Builder.CreateAssumption(Cond);
4766           Builder.CreateBr(BI->getSuccessor(0));
4767         }
4768         EraseTerminatorAndDCECond(BI);
4769         Changed = true;
4770       }
4771       if (DTU)
4772         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4773     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4774       SwitchInstProfUpdateWrapper SU(*SI);
4775       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4776         if (i->getCaseSuccessor() != BB) {
4777           ++i;
4778           continue;
4779         }
4780         BB->removePredecessor(SU->getParent());
4781         i = SU.removeCase(i);
4782         e = SU->case_end();
4783         Changed = true;
4784       }
4785       // Note that the default destination can't be removed!
4786       if (DTU && SI->getDefaultDest() != BB)
4787         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4788     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4789       if (II->getUnwindDest() == BB) {
4790         if (DTU) {
4791           DTU->applyUpdates(Updates);
4792           Updates.clear();
4793         }
4794         removeUnwindEdge(TI->getParent(), DTU);
4795         Changed = true;
4796       }
4797     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4798       if (CSI->getUnwindDest() == BB) {
4799         if (DTU) {
4800           DTU->applyUpdates(Updates);
4801           Updates.clear();
4802         }
4803         removeUnwindEdge(TI->getParent(), DTU);
4804         Changed = true;
4805         continue;
4806       }
4807 
4808       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4809                                              E = CSI->handler_end();
4810            I != E; ++I) {
4811         if (*I == BB) {
4812           CSI->removeHandler(I);
4813           --I;
4814           --E;
4815           Changed = true;
4816         }
4817       }
4818       if (DTU)
4819         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4820       if (CSI->getNumHandlers() == 0) {
4821         if (CSI->hasUnwindDest()) {
4822           // Redirect all predecessors of the block containing CatchSwitchInst
4823           // to instead branch to the CatchSwitchInst's unwind destination.
4824           if (DTU) {
4825             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4826               Updates.push_back({DominatorTree::Insert,
4827                                  PredecessorOfPredecessor,
4828                                  CSI->getUnwindDest()});
4829               Updates.push_back({DominatorTree::Delete,
4830                                  PredecessorOfPredecessor, Predecessor});
4831             }
4832           }
4833           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4834         } else {
4835           // Rewrite all preds to unwind to caller (or from invoke to call).
4836           if (DTU) {
4837             DTU->applyUpdates(Updates);
4838             Updates.clear();
4839           }
4840           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4841           for (BasicBlock *EHPred : EHPreds)
4842             removeUnwindEdge(EHPred, DTU);
4843         }
4844         // The catchswitch is no longer reachable.
4845         new UnreachableInst(CSI->getContext(), CSI);
4846         CSI->eraseFromParent();
4847         Changed = true;
4848       }
4849     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4850       (void)CRI;
4851       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4852              "Expected to always have an unwind to BB.");
4853       if (DTU)
4854         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4855       new UnreachableInst(TI->getContext(), TI);
4856       TI->eraseFromParent();
4857       Changed = true;
4858     }
4859   }
4860 
4861   if (DTU)
4862     DTU->applyUpdates(Updates);
4863 
4864   // If this block is now dead, remove it.
4865   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4866     // We know there are no successors, so just nuke the block.
4867     if (DTU)
4868       DTU->deleteBB(BB);
4869     else
4870       BB->eraseFromParent();
4871     return true;
4872   }
4873 
4874   return Changed;
4875 }
4876 
4877 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4878   assert(Cases.size() >= 1);
4879 
4880   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4881   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4882     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4883       return false;
4884   }
4885   return true;
4886 }
4887 
4888 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4889                                            DomTreeUpdater *DTU) {
4890   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4891   auto *BB = Switch->getParent();
4892   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4893       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4894   auto *OrigDefaultBlock = Switch->getDefaultDest();
4895   Switch->setDefaultDest(&*NewDefaultBlock);
4896   if (DTU)
4897     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4898                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4899   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4900   SmallVector<DominatorTree::UpdateType, 2> Updates;
4901   if (DTU)
4902     for (auto *Successor : successors(NewDefaultBlock))
4903       Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4904   auto *NewTerminator = NewDefaultBlock->getTerminator();
4905   new UnreachableInst(Switch->getContext(), NewTerminator);
4906   EraseTerminatorAndDCECond(NewTerminator);
4907   if (DTU)
4908     DTU->applyUpdates(Updates);
4909 }
4910 
4911 /// Turn a switch with two reachable destinations into an integer range
4912 /// comparison and branch.
4913 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4914                                              IRBuilder<> &Builder) {
4915   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4916 
4917   bool HasDefault =
4918       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4919 
4920   auto *BB = SI->getParent();
4921 
4922   // Partition the cases into two sets with different destinations.
4923   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4924   BasicBlock *DestB = nullptr;
4925   SmallVector<ConstantInt *, 16> CasesA;
4926   SmallVector<ConstantInt *, 16> CasesB;
4927 
4928   for (auto Case : SI->cases()) {
4929     BasicBlock *Dest = Case.getCaseSuccessor();
4930     if (!DestA)
4931       DestA = Dest;
4932     if (Dest == DestA) {
4933       CasesA.push_back(Case.getCaseValue());
4934       continue;
4935     }
4936     if (!DestB)
4937       DestB = Dest;
4938     if (Dest == DestB) {
4939       CasesB.push_back(Case.getCaseValue());
4940       continue;
4941     }
4942     return false; // More than two destinations.
4943   }
4944 
4945   assert(DestA && DestB &&
4946          "Single-destination switch should have been folded.");
4947   assert(DestA != DestB);
4948   assert(DestB != SI->getDefaultDest());
4949   assert(!CasesB.empty() && "There must be non-default cases.");
4950   assert(!CasesA.empty() || HasDefault);
4951 
4952   // Figure out if one of the sets of cases form a contiguous range.
4953   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4954   BasicBlock *ContiguousDest = nullptr;
4955   BasicBlock *OtherDest = nullptr;
4956   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4957     ContiguousCases = &CasesA;
4958     ContiguousDest = DestA;
4959     OtherDest = DestB;
4960   } else if (CasesAreContiguous(CasesB)) {
4961     ContiguousCases = &CasesB;
4962     ContiguousDest = DestB;
4963     OtherDest = DestA;
4964   } else
4965     return false;
4966 
4967   // Start building the compare and branch.
4968 
4969   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4970   Constant *NumCases =
4971       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4972 
4973   Value *Sub = SI->getCondition();
4974   if (!Offset->isNullValue())
4975     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4976 
4977   Value *Cmp;
4978   // If NumCases overflowed, then all possible values jump to the successor.
4979   if (NumCases->isNullValue() && !ContiguousCases->empty())
4980     Cmp = ConstantInt::getTrue(SI->getContext());
4981   else
4982     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4983   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4984 
4985   // Update weight for the newly-created conditional branch.
4986   if (HasBranchWeights(SI)) {
4987     SmallVector<uint64_t, 8> Weights;
4988     GetBranchWeights(SI, Weights);
4989     if (Weights.size() == 1 + SI->getNumCases()) {
4990       uint64_t TrueWeight = 0;
4991       uint64_t FalseWeight = 0;
4992       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4993         if (SI->getSuccessor(I) == ContiguousDest)
4994           TrueWeight += Weights[I];
4995         else
4996           FalseWeight += Weights[I];
4997       }
4998       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4999         TrueWeight /= 2;
5000         FalseWeight /= 2;
5001       }
5002       setBranchWeights(NewBI, TrueWeight, FalseWeight);
5003     }
5004   }
5005 
5006   // Prune obsolete incoming values off the successors' PHI nodes.
5007   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5008     unsigned PreviousEdges = ContiguousCases->size();
5009     if (ContiguousDest == SI->getDefaultDest())
5010       ++PreviousEdges;
5011     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5012       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5013   }
5014   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5015     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5016     if (OtherDest == SI->getDefaultDest())
5017       ++PreviousEdges;
5018     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5019       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5020   }
5021 
5022   // Clean up the default block - it may have phis or other instructions before
5023   // the unreachable terminator.
5024   if (!HasDefault)
5025     createUnreachableSwitchDefault(SI, DTU);
5026 
5027   auto *UnreachableDefault = SI->getDefaultDest();
5028 
5029   // Drop the switch.
5030   SI->eraseFromParent();
5031 
5032   if (!HasDefault && DTU)
5033     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5034 
5035   return true;
5036 }
5037 
5038 /// Compute masked bits for the condition of a switch
5039 /// and use it to remove dead cases.
5040 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5041                                      AssumptionCache *AC,
5042                                      const DataLayout &DL) {
5043   Value *Cond = SI->getCondition();
5044   unsigned Bits = Cond->getType()->getIntegerBitWidth();
5045   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5046 
5047   // We can also eliminate cases by determining that their values are outside of
5048   // the limited range of the condition based on how many significant (non-sign)
5049   // bits are in the condition value.
5050   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
5051   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
5052 
5053   // Gather dead cases.
5054   SmallVector<ConstantInt *, 8> DeadCases;
5055   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5056   for (auto &Case : SI->cases()) {
5057     auto *Successor = Case.getCaseSuccessor();
5058     if (DTU)
5059       ++NumPerSuccessorCases[Successor];
5060     const APInt &CaseVal = Case.getCaseValue()->getValue();
5061     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5062         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
5063       DeadCases.push_back(Case.getCaseValue());
5064       if (DTU)
5065         --NumPerSuccessorCases[Successor];
5066       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5067                         << " is dead.\n");
5068     }
5069   }
5070 
5071   // If we can prove that the cases must cover all possible values, the
5072   // default destination becomes dead and we can remove it.  If we know some
5073   // of the bits in the value, we can use that to more precisely compute the
5074   // number of possible unique case values.
5075   bool HasDefault =
5076       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5077   const unsigned NumUnknownBits =
5078       Bits - (Known.Zero | Known.One).countPopulation();
5079   assert(NumUnknownBits <= Bits);
5080   if (HasDefault && DeadCases.empty() &&
5081       NumUnknownBits < 64 /* avoid overflow */ &&
5082       SI->getNumCases() == (1ULL << NumUnknownBits)) {
5083     createUnreachableSwitchDefault(SI, DTU);
5084     return true;
5085   }
5086 
5087   if (DeadCases.empty())
5088     return false;
5089 
5090   SwitchInstProfUpdateWrapper SIW(*SI);
5091   for (ConstantInt *DeadCase : DeadCases) {
5092     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5093     assert(CaseI != SI->case_default() &&
5094            "Case was not found. Probably mistake in DeadCases forming.");
5095     // Prune unused values from PHI nodes.
5096     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5097     SIW.removeCase(CaseI);
5098   }
5099 
5100   if (DTU) {
5101     std::vector<DominatorTree::UpdateType> Updates;
5102     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
5103       if (I.second == 0)
5104         Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
5105     DTU->applyUpdates(Updates);
5106   }
5107 
5108   return true;
5109 }
5110 
5111 /// If BB would be eligible for simplification by
5112 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5113 /// by an unconditional branch), look at the phi node for BB in the successor
5114 /// block and see if the incoming value is equal to CaseValue. If so, return
5115 /// the phi node, and set PhiIndex to BB's index in the phi node.
5116 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
5117                                               BasicBlock *BB, int *PhiIndex) {
5118   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5119     return nullptr; // BB must be empty to be a candidate for simplification.
5120   if (!BB->getSinglePredecessor())
5121     return nullptr; // BB must be dominated by the switch.
5122 
5123   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5124   if (!Branch || !Branch->isUnconditional())
5125     return nullptr; // Terminator must be unconditional branch.
5126 
5127   BasicBlock *Succ = Branch->getSuccessor(0);
5128 
5129   for (PHINode &PHI : Succ->phis()) {
5130     int Idx = PHI.getBasicBlockIndex(BB);
5131     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5132 
5133     Value *InValue = PHI.getIncomingValue(Idx);
5134     if (InValue != CaseValue)
5135       continue;
5136 
5137     *PhiIndex = Idx;
5138     return &PHI;
5139   }
5140 
5141   return nullptr;
5142 }
5143 
5144 /// Try to forward the condition of a switch instruction to a phi node
5145 /// dominated by the switch, if that would mean that some of the destination
5146 /// blocks of the switch can be folded away. Return true if a change is made.
5147 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
5148   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5149 
5150   ForwardingNodesMap ForwardingNodes;
5151   BasicBlock *SwitchBlock = SI->getParent();
5152   bool Changed = false;
5153   for (auto &Case : SI->cases()) {
5154     ConstantInt *CaseValue = Case.getCaseValue();
5155     BasicBlock *CaseDest = Case.getCaseSuccessor();
5156 
5157     // Replace phi operands in successor blocks that are using the constant case
5158     // value rather than the switch condition variable:
5159     //   switchbb:
5160     //   switch i32 %x, label %default [
5161     //     i32 17, label %succ
5162     //   ...
5163     //   succ:
5164     //     %r = phi i32 ... [ 17, %switchbb ] ...
5165     // -->
5166     //     %r = phi i32 ... [ %x, %switchbb ] ...
5167 
5168     for (PHINode &Phi : CaseDest->phis()) {
5169       // This only works if there is exactly 1 incoming edge from the switch to
5170       // a phi. If there is >1, that means multiple cases of the switch map to 1
5171       // value in the phi, and that phi value is not the switch condition. Thus,
5172       // this transform would not make sense (the phi would be invalid because
5173       // a phi can't have different incoming values from the same block).
5174       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5175       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5176           count(Phi.blocks(), SwitchBlock) == 1) {
5177         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5178         Changed = true;
5179       }
5180     }
5181 
5182     // Collect phi nodes that are indirectly using this switch's case constants.
5183     int PhiIdx;
5184     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5185       ForwardingNodes[Phi].push_back(PhiIdx);
5186   }
5187 
5188   for (auto &ForwardingNode : ForwardingNodes) {
5189     PHINode *Phi = ForwardingNode.first;
5190     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5191     if (Indexes.size() < 2)
5192       continue;
5193 
5194     for (int Index : Indexes)
5195       Phi->setIncomingValue(Index, SI->getCondition());
5196     Changed = true;
5197   }
5198 
5199   return Changed;
5200 }
5201 
5202 /// Return true if the backend will be able to handle
5203 /// initializing an array of constants like C.
5204 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
5205   if (C->isThreadDependent())
5206     return false;
5207   if (C->isDLLImportDependent())
5208     return false;
5209 
5210   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
5211       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
5212       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
5213     return false;
5214 
5215   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
5216     if (!CE->isGEPWithNoNotionalOverIndexing())
5217       return false;
5218     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
5219       return false;
5220   }
5221 
5222   if (!TTI.shouldBuildLookupTablesForConstant(C))
5223     return false;
5224 
5225   return true;
5226 }
5227 
5228 /// If V is a Constant, return it. Otherwise, try to look up
5229 /// its constant value in ConstantPool, returning 0 if it's not there.
5230 static Constant *
5231 LookupConstant(Value *V,
5232                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5233   if (Constant *C = dyn_cast<Constant>(V))
5234     return C;
5235   return ConstantPool.lookup(V);
5236 }
5237 
5238 /// Try to fold instruction I into a constant. This works for
5239 /// simple instructions such as binary operations where both operands are
5240 /// constant or can be replaced by constants from the ConstantPool. Returns the
5241 /// resulting constant on success, 0 otherwise.
5242 static Constant *
5243 ConstantFold(Instruction *I, const DataLayout &DL,
5244              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5245   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5246     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5247     if (!A)
5248       return nullptr;
5249     if (A->isAllOnesValue())
5250       return LookupConstant(Select->getTrueValue(), ConstantPool);
5251     if (A->isNullValue())
5252       return LookupConstant(Select->getFalseValue(), ConstantPool);
5253     return nullptr;
5254   }
5255 
5256   SmallVector<Constant *, 4> COps;
5257   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5258     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5259       COps.push_back(A);
5260     else
5261       return nullptr;
5262   }
5263 
5264   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5265     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5266                                            COps[1], DL);
5267   }
5268 
5269   return ConstantFoldInstOperands(I, COps, DL);
5270 }
5271 
5272 /// Try to determine the resulting constant values in phi nodes
5273 /// at the common destination basic block, *CommonDest, for one of the case
5274 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5275 /// case), of a switch instruction SI.
5276 static bool
5277 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5278                BasicBlock **CommonDest,
5279                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5280                const DataLayout &DL, const TargetTransformInfo &TTI) {
5281   // The block from which we enter the common destination.
5282   BasicBlock *Pred = SI->getParent();
5283 
5284   // If CaseDest is empty except for some side-effect free instructions through
5285   // which we can constant-propagate the CaseVal, continue to its successor.
5286   SmallDenseMap<Value *, Constant *> ConstantPool;
5287   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5288   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5289     if (I.isTerminator()) {
5290       // If the terminator is a simple branch, continue to the next block.
5291       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5292         return false;
5293       Pred = CaseDest;
5294       CaseDest = I.getSuccessor(0);
5295     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5296       // Instruction is side-effect free and constant.
5297 
5298       // If the instruction has uses outside this block or a phi node slot for
5299       // the block, it is not safe to bypass the instruction since it would then
5300       // no longer dominate all its uses.
5301       for (auto &Use : I.uses()) {
5302         User *User = Use.getUser();
5303         if (Instruction *I = dyn_cast<Instruction>(User))
5304           if (I->getParent() == CaseDest)
5305             continue;
5306         if (PHINode *Phi = dyn_cast<PHINode>(User))
5307           if (Phi->getIncomingBlock(Use) == CaseDest)
5308             continue;
5309         return false;
5310       }
5311 
5312       ConstantPool.insert(std::make_pair(&I, C));
5313     } else {
5314       break;
5315     }
5316   }
5317 
5318   // If we did not have a CommonDest before, use the current one.
5319   if (!*CommonDest)
5320     *CommonDest = CaseDest;
5321   // If the destination isn't the common one, abort.
5322   if (CaseDest != *CommonDest)
5323     return false;
5324 
5325   // Get the values for this case from phi nodes in the destination block.
5326   for (PHINode &PHI : (*CommonDest)->phis()) {
5327     int Idx = PHI.getBasicBlockIndex(Pred);
5328     if (Idx == -1)
5329       continue;
5330 
5331     Constant *ConstVal =
5332         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5333     if (!ConstVal)
5334       return false;
5335 
5336     // Be conservative about which kinds of constants we support.
5337     if (!ValidLookupTableConstant(ConstVal, TTI))
5338       return false;
5339 
5340     Res.push_back(std::make_pair(&PHI, ConstVal));
5341   }
5342 
5343   return Res.size() > 0;
5344 }
5345 
5346 // Helper function used to add CaseVal to the list of cases that generate
5347 // Result. Returns the updated number of cases that generate this result.
5348 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5349                                  SwitchCaseResultVectorTy &UniqueResults,
5350                                  Constant *Result) {
5351   for (auto &I : UniqueResults) {
5352     if (I.first == Result) {
5353       I.second.push_back(CaseVal);
5354       return I.second.size();
5355     }
5356   }
5357   UniqueResults.push_back(
5358       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5359   return 1;
5360 }
5361 
5362 // Helper function that initializes a map containing
5363 // results for the PHI node of the common destination block for a switch
5364 // instruction. Returns false if multiple PHI nodes have been found or if
5365 // there is not a common destination block for the switch.
5366 static bool
5367 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5368                       SwitchCaseResultVectorTy &UniqueResults,
5369                       Constant *&DefaultResult, const DataLayout &DL,
5370                       const TargetTransformInfo &TTI,
5371                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5372   for (auto &I : SI->cases()) {
5373     ConstantInt *CaseVal = I.getCaseValue();
5374 
5375     // Resulting value at phi nodes for this case value.
5376     SwitchCaseResultsTy Results;
5377     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5378                         DL, TTI))
5379       return false;
5380 
5381     // Only one value per case is permitted.
5382     if (Results.size() > 1)
5383       return false;
5384 
5385     // Add the case->result mapping to UniqueResults.
5386     const uintptr_t NumCasesForResult =
5387         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5388 
5389     // Early out if there are too many cases for this result.
5390     if (NumCasesForResult > MaxCasesPerResult)
5391       return false;
5392 
5393     // Early out if there are too many unique results.
5394     if (UniqueResults.size() > MaxUniqueResults)
5395       return false;
5396 
5397     // Check the PHI consistency.
5398     if (!PHI)
5399       PHI = Results[0].first;
5400     else if (PHI != Results[0].first)
5401       return false;
5402   }
5403   // Find the default result value.
5404   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5405   BasicBlock *DefaultDest = SI->getDefaultDest();
5406   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5407                  DL, TTI);
5408   // If the default value is not found abort unless the default destination
5409   // is unreachable.
5410   DefaultResult =
5411       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5412   if ((!DefaultResult &&
5413        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5414     return false;
5415 
5416   return true;
5417 }
5418 
5419 // Helper function that checks if it is possible to transform a switch with only
5420 // two cases (or two cases + default) that produces a result into a select.
5421 // Example:
5422 // switch (a) {
5423 //   case 10:                %0 = icmp eq i32 %a, 10
5424 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5425 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5426 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5427 //   default:
5428 //     return 4;
5429 // }
5430 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5431                                    Constant *DefaultResult, Value *Condition,
5432                                    IRBuilder<> &Builder) {
5433   // If we are selecting between only two cases transform into a simple
5434   // select or a two-way select if default is possible.
5435   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
5436       ResultVector[1].second.size() == 1) {
5437     ConstantInt *const FirstCase = ResultVector[0].second[0];
5438     ConstantInt *const SecondCase = ResultVector[1].second[0];
5439 
5440     bool DefaultCanTrigger = DefaultResult;
5441     Value *SelectValue = ResultVector[1].first;
5442     if (DefaultCanTrigger) {
5443       Value *const ValueCompare =
5444           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5445       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5446                                          DefaultResult, "switch.select");
5447     }
5448     Value *const ValueCompare =
5449         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5450     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5451                                 SelectValue, "switch.select");
5452   }
5453 
5454   // Handle the degenerate case where two cases have the same value.
5455   if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
5456       DefaultResult) {
5457     Value *Cmp1 = Builder.CreateICmpEQ(
5458         Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
5459     Value *Cmp2 = Builder.CreateICmpEQ(
5460         Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
5461     Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
5462     return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
5463   }
5464 
5465   return nullptr;
5466 }
5467 
5468 // Helper function to cleanup a switch instruction that has been converted into
5469 // a select, fixing up PHI nodes and basic blocks.
5470 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5471                                               Value *SelectValue,
5472                                               IRBuilder<> &Builder,
5473                                               DomTreeUpdater *DTU) {
5474   std::vector<DominatorTree::UpdateType> Updates;
5475 
5476   BasicBlock *SelectBB = SI->getParent();
5477   BasicBlock *DestBB = PHI->getParent();
5478 
5479   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
5480     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5481   Builder.CreateBr(DestBB);
5482 
5483   // Remove the switch.
5484 
5485   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5486     PHI->removeIncomingValue(SelectBB);
5487   PHI->addIncoming(SelectValue, SelectBB);
5488 
5489   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
5490   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5491     BasicBlock *Succ = SI->getSuccessor(i);
5492 
5493     if (Succ == DestBB)
5494       continue;
5495     Succ->removePredecessor(SelectBB);
5496     if (DTU && RemovedSuccessors.insert(Succ).second)
5497       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5498   }
5499   SI->eraseFromParent();
5500   if (DTU)
5501     DTU->applyUpdates(Updates);
5502 }
5503 
5504 /// If the switch is only used to initialize one or more
5505 /// phi nodes in a common successor block with only two different
5506 /// constant values, replace the switch with select.
5507 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5508                            DomTreeUpdater *DTU, const DataLayout &DL,
5509                            const TargetTransformInfo &TTI) {
5510   Value *const Cond = SI->getCondition();
5511   PHINode *PHI = nullptr;
5512   BasicBlock *CommonDest = nullptr;
5513   Constant *DefaultResult;
5514   SwitchCaseResultVectorTy UniqueResults;
5515   // Collect all the cases that will deliver the same value from the switch.
5516   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5517                              DL, TTI, /*MaxUniqueResults*/2,
5518                              /*MaxCasesPerResult*/2))
5519     return false;
5520   assert(PHI != nullptr && "PHI for value select not found");
5521 
5522   Builder.SetInsertPoint(SI);
5523   Value *SelectValue =
5524       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5525   if (SelectValue) {
5526     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5527     return true;
5528   }
5529   // The switch couldn't be converted into a select.
5530   return false;
5531 }
5532 
5533 namespace {
5534 
5535 /// This class represents a lookup table that can be used to replace a switch.
5536 class SwitchLookupTable {
5537 public:
5538   /// Create a lookup table to use as a switch replacement with the contents
5539   /// of Values, using DefaultValue to fill any holes in the table.
5540   SwitchLookupTable(
5541       Module &M, uint64_t TableSize, ConstantInt *Offset,
5542       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5543       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5544 
5545   /// Build instructions with Builder to retrieve the value at
5546   /// the position given by Index in the lookup table.
5547   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5548 
5549   /// Return true if a table with TableSize elements of
5550   /// type ElementType would fit in a target-legal register.
5551   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5552                                  Type *ElementType);
5553 
5554 private:
5555   // Depending on the contents of the table, it can be represented in
5556   // different ways.
5557   enum {
5558     // For tables where each element contains the same value, we just have to
5559     // store that single value and return it for each lookup.
5560     SingleValueKind,
5561 
5562     // For tables where there is a linear relationship between table index
5563     // and values. We calculate the result with a simple multiplication
5564     // and addition instead of a table lookup.
5565     LinearMapKind,
5566 
5567     // For small tables with integer elements, we can pack them into a bitmap
5568     // that fits into a target-legal register. Values are retrieved by
5569     // shift and mask operations.
5570     BitMapKind,
5571 
5572     // The table is stored as an array of values. Values are retrieved by load
5573     // instructions from the table.
5574     ArrayKind
5575   } Kind;
5576 
5577   // For SingleValueKind, this is the single value.
5578   Constant *SingleValue = nullptr;
5579 
5580   // For BitMapKind, this is the bitmap.
5581   ConstantInt *BitMap = nullptr;
5582   IntegerType *BitMapElementTy = nullptr;
5583 
5584   // For LinearMapKind, these are the constants used to derive the value.
5585   ConstantInt *LinearOffset = nullptr;
5586   ConstantInt *LinearMultiplier = nullptr;
5587 
5588   // For ArrayKind, this is the array.
5589   GlobalVariable *Array = nullptr;
5590 };
5591 
5592 } // end anonymous namespace
5593 
5594 SwitchLookupTable::SwitchLookupTable(
5595     Module &M, uint64_t TableSize, ConstantInt *Offset,
5596     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5597     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5598   assert(Values.size() && "Can't build lookup table without values!");
5599   assert(TableSize >= Values.size() && "Can't fit values in table!");
5600 
5601   // If all values in the table are equal, this is that value.
5602   SingleValue = Values.begin()->second;
5603 
5604   Type *ValueType = Values.begin()->second->getType();
5605 
5606   // Build up the table contents.
5607   SmallVector<Constant *, 64> TableContents(TableSize);
5608   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5609     ConstantInt *CaseVal = Values[I].first;
5610     Constant *CaseRes = Values[I].second;
5611     assert(CaseRes->getType() == ValueType);
5612 
5613     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5614     TableContents[Idx] = CaseRes;
5615 
5616     if (CaseRes != SingleValue)
5617       SingleValue = nullptr;
5618   }
5619 
5620   // Fill in any holes in the table with the default result.
5621   if (Values.size() < TableSize) {
5622     assert(DefaultValue &&
5623            "Need a default value to fill the lookup table holes.");
5624     assert(DefaultValue->getType() == ValueType);
5625     for (uint64_t I = 0; I < TableSize; ++I) {
5626       if (!TableContents[I])
5627         TableContents[I] = DefaultValue;
5628     }
5629 
5630     if (DefaultValue != SingleValue)
5631       SingleValue = nullptr;
5632   }
5633 
5634   // If each element in the table contains the same value, we only need to store
5635   // that single value.
5636   if (SingleValue) {
5637     Kind = SingleValueKind;
5638     return;
5639   }
5640 
5641   // Check if we can derive the value with a linear transformation from the
5642   // table index.
5643   if (isa<IntegerType>(ValueType)) {
5644     bool LinearMappingPossible = true;
5645     APInt PrevVal;
5646     APInt DistToPrev;
5647     assert(TableSize >= 2 && "Should be a SingleValue table.");
5648     // Check if there is the same distance between two consecutive values.
5649     for (uint64_t I = 0; I < TableSize; ++I) {
5650       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5651       if (!ConstVal) {
5652         // This is an undef. We could deal with it, but undefs in lookup tables
5653         // are very seldom. It's probably not worth the additional complexity.
5654         LinearMappingPossible = false;
5655         break;
5656       }
5657       const APInt &Val = ConstVal->getValue();
5658       if (I != 0) {
5659         APInt Dist = Val - PrevVal;
5660         if (I == 1) {
5661           DistToPrev = Dist;
5662         } else if (Dist != DistToPrev) {
5663           LinearMappingPossible = false;
5664           break;
5665         }
5666       }
5667       PrevVal = Val;
5668     }
5669     if (LinearMappingPossible) {
5670       LinearOffset = cast<ConstantInt>(TableContents[0]);
5671       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5672       Kind = LinearMapKind;
5673       ++NumLinearMaps;
5674       return;
5675     }
5676   }
5677 
5678   // If the type is integer and the table fits in a register, build a bitmap.
5679   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5680     IntegerType *IT = cast<IntegerType>(ValueType);
5681     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5682     for (uint64_t I = TableSize; I > 0; --I) {
5683       TableInt <<= IT->getBitWidth();
5684       // Insert values into the bitmap. Undef values are set to zero.
5685       if (!isa<UndefValue>(TableContents[I - 1])) {
5686         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5687         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5688       }
5689     }
5690     BitMap = ConstantInt::get(M.getContext(), TableInt);
5691     BitMapElementTy = IT;
5692     Kind = BitMapKind;
5693     ++NumBitMaps;
5694     return;
5695   }
5696 
5697   // Store the table in an array.
5698   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5699   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5700 
5701   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5702                              GlobalVariable::PrivateLinkage, Initializer,
5703                              "switch.table." + FuncName);
5704   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5705   // Set the alignment to that of an array items. We will be only loading one
5706   // value out of it.
5707   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5708   Kind = ArrayKind;
5709 }
5710 
5711 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5712   switch (Kind) {
5713   case SingleValueKind:
5714     return SingleValue;
5715   case LinearMapKind: {
5716     // Derive the result value from the input value.
5717     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5718                                           false, "switch.idx.cast");
5719     if (!LinearMultiplier->isOne())
5720       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5721     if (!LinearOffset->isZero())
5722       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5723     return Result;
5724   }
5725   case BitMapKind: {
5726     // Type of the bitmap (e.g. i59).
5727     IntegerType *MapTy = BitMap->getType();
5728 
5729     // Cast Index to the same type as the bitmap.
5730     // Note: The Index is <= the number of elements in the table, so
5731     // truncating it to the width of the bitmask is safe.
5732     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5733 
5734     // Multiply the shift amount by the element width.
5735     ShiftAmt = Builder.CreateMul(
5736         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5737         "switch.shiftamt");
5738 
5739     // Shift down.
5740     Value *DownShifted =
5741         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5742     // Mask off.
5743     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5744   }
5745   case ArrayKind: {
5746     // Make sure the table index will not overflow when treated as signed.
5747     IntegerType *IT = cast<IntegerType>(Index->getType());
5748     uint64_t TableSize =
5749         Array->getInitializer()->getType()->getArrayNumElements();
5750     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5751       Index = Builder.CreateZExt(
5752           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5753           "switch.tableidx.zext");
5754 
5755     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5756     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5757                                            GEPIndices, "switch.gep");
5758     return Builder.CreateLoad(
5759         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5760         "switch.load");
5761   }
5762   }
5763   llvm_unreachable("Unknown lookup table kind!");
5764 }
5765 
5766 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5767                                            uint64_t TableSize,
5768                                            Type *ElementType) {
5769   auto *IT = dyn_cast<IntegerType>(ElementType);
5770   if (!IT)
5771     return false;
5772   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5773   // are <= 15, we could try to narrow the type.
5774 
5775   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5776   if (TableSize >= UINT_MAX / IT->getBitWidth())
5777     return false;
5778   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5779 }
5780 
5781 /// Determine whether a lookup table should be built for this switch, based on
5782 /// the number of cases, size of the table, and the types of the results.
5783 static bool
5784 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5785                        const TargetTransformInfo &TTI, const DataLayout &DL,
5786                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5787   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5788     return false; // TableSize overflowed, or mul below might overflow.
5789 
5790   bool AllTablesFitInRegister = true;
5791   bool HasIllegalType = false;
5792   for (const auto &I : ResultTypes) {
5793     Type *Ty = I.second;
5794 
5795     // Saturate this flag to true.
5796     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5797 
5798     // Saturate this flag to false.
5799     AllTablesFitInRegister =
5800         AllTablesFitInRegister &&
5801         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5802 
5803     // If both flags saturate, we're done. NOTE: This *only* works with
5804     // saturating flags, and all flags have to saturate first due to the
5805     // non-deterministic behavior of iterating over a dense map.
5806     if (HasIllegalType && !AllTablesFitInRegister)
5807       break;
5808   }
5809 
5810   // If each table would fit in a register, we should build it anyway.
5811   if (AllTablesFitInRegister)
5812     return true;
5813 
5814   // Don't build a table that doesn't fit in-register if it has illegal types.
5815   if (HasIllegalType)
5816     return false;
5817 
5818   // The table density should be at least 40%. This is the same criterion as for
5819   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5820   // FIXME: Find the best cut-off.
5821   return SI->getNumCases() * 10 >= TableSize * 4;
5822 }
5823 
5824 /// Try to reuse the switch table index compare. Following pattern:
5825 /// \code
5826 ///     if (idx < tablesize)
5827 ///        r = table[idx]; // table does not contain default_value
5828 ///     else
5829 ///        r = default_value;
5830 ///     if (r != default_value)
5831 ///        ...
5832 /// \endcode
5833 /// Is optimized to:
5834 /// \code
5835 ///     cond = idx < tablesize;
5836 ///     if (cond)
5837 ///        r = table[idx];
5838 ///     else
5839 ///        r = default_value;
5840 ///     if (cond)
5841 ///        ...
5842 /// \endcode
5843 /// Jump threading will then eliminate the second if(cond).
5844 static void reuseTableCompare(
5845     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5846     Constant *DefaultValue,
5847     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5848   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5849   if (!CmpInst)
5850     return;
5851 
5852   // We require that the compare is in the same block as the phi so that jump
5853   // threading can do its work afterwards.
5854   if (CmpInst->getParent() != PhiBlock)
5855     return;
5856 
5857   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5858   if (!CmpOp1)
5859     return;
5860 
5861   Value *RangeCmp = RangeCheckBranch->getCondition();
5862   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5863   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5864 
5865   // Check if the compare with the default value is constant true or false.
5866   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5867                                                  DefaultValue, CmpOp1, true);
5868   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5869     return;
5870 
5871   // Check if the compare with the case values is distinct from the default
5872   // compare result.
5873   for (auto ValuePair : Values) {
5874     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5875                                                 ValuePair.second, CmpOp1, true);
5876     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5877       return;
5878     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5879            "Expect true or false as compare result.");
5880   }
5881 
5882   // Check if the branch instruction dominates the phi node. It's a simple
5883   // dominance check, but sufficient for our needs.
5884   // Although this check is invariant in the calling loops, it's better to do it
5885   // at this late stage. Practically we do it at most once for a switch.
5886   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5887   for (BasicBlock *Pred : predecessors(PhiBlock)) {
5888     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5889       return;
5890   }
5891 
5892   if (DefaultConst == FalseConst) {
5893     // The compare yields the same result. We can replace it.
5894     CmpInst->replaceAllUsesWith(RangeCmp);
5895     ++NumTableCmpReuses;
5896   } else {
5897     // The compare yields the same result, just inverted. We can replace it.
5898     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5899         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5900         RangeCheckBranch);
5901     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5902     ++NumTableCmpReuses;
5903   }
5904 }
5905 
5906 /// If the switch is only used to initialize one or more phi nodes in a common
5907 /// successor block with different constant values, replace the switch with
5908 /// lookup tables.
5909 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5910                                 DomTreeUpdater *DTU, const DataLayout &DL,
5911                                 const TargetTransformInfo &TTI) {
5912   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5913 
5914   BasicBlock *BB = SI->getParent();
5915   Function *Fn = BB->getParent();
5916   // Only build lookup table when we have a target that supports it or the
5917   // attribute is not set.
5918   if (!TTI.shouldBuildLookupTables() ||
5919       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
5920     return false;
5921 
5922   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5923   // split off a dense part and build a lookup table for that.
5924 
5925   // FIXME: This creates arrays of GEPs to constant strings, which means each
5926   // GEP needs a runtime relocation in PIC code. We should just build one big
5927   // string and lookup indices into that.
5928 
5929   // Ignore switches with less than three cases. Lookup tables will not make
5930   // them faster, so we don't analyze them.
5931   if (SI->getNumCases() < 3)
5932     return false;
5933 
5934   // Figure out the corresponding result for each case value and phi node in the
5935   // common destination, as well as the min and max case values.
5936   assert(!SI->cases().empty());
5937   SwitchInst::CaseIt CI = SI->case_begin();
5938   ConstantInt *MinCaseVal = CI->getCaseValue();
5939   ConstantInt *MaxCaseVal = CI->getCaseValue();
5940 
5941   BasicBlock *CommonDest = nullptr;
5942 
5943   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5944   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5945 
5946   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5947   SmallDenseMap<PHINode *, Type *> ResultTypes;
5948   SmallVector<PHINode *, 4> PHIs;
5949 
5950   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5951     ConstantInt *CaseVal = CI->getCaseValue();
5952     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5953       MinCaseVal = CaseVal;
5954     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5955       MaxCaseVal = CaseVal;
5956 
5957     // Resulting value at phi nodes for this case value.
5958     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5959     ResultsTy Results;
5960     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5961                         Results, DL, TTI))
5962       return false;
5963 
5964     // Append the result from this case to the list for each phi.
5965     for (const auto &I : Results) {
5966       PHINode *PHI = I.first;
5967       Constant *Value = I.second;
5968       if (!ResultLists.count(PHI))
5969         PHIs.push_back(PHI);
5970       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5971     }
5972   }
5973 
5974   // Keep track of the result types.
5975   for (PHINode *PHI : PHIs) {
5976     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5977   }
5978 
5979   uint64_t NumResults = ResultLists[PHIs[0]].size();
5980   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5981   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5982   bool TableHasHoles = (NumResults < TableSize);
5983 
5984   // If the table has holes, we need a constant result for the default case
5985   // or a bitmask that fits in a register.
5986   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5987   bool HasDefaultResults =
5988       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5989                      DefaultResultsList, DL, TTI);
5990 
5991   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5992   if (NeedMask) {
5993     // As an extra penalty for the validity test we require more cases.
5994     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5995       return false;
5996     if (!DL.fitsInLegalInteger(TableSize))
5997       return false;
5998   }
5999 
6000   for (const auto &I : DefaultResultsList) {
6001     PHINode *PHI = I.first;
6002     Constant *Result = I.second;
6003     DefaultResults[PHI] = Result;
6004   }
6005 
6006   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6007     return false;
6008 
6009   std::vector<DominatorTree::UpdateType> Updates;
6010 
6011   // Create the BB that does the lookups.
6012   Module &Mod = *CommonDest->getParent()->getParent();
6013   BasicBlock *LookupBB = BasicBlock::Create(
6014       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6015 
6016   // Compute the table index value.
6017   Builder.SetInsertPoint(SI);
6018   Value *TableIndex;
6019   if (MinCaseVal->isNullValue())
6020     TableIndex = SI->getCondition();
6021   else
6022     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
6023                                    "switch.tableidx");
6024 
6025   // Compute the maximum table size representable by the integer type we are
6026   // switching upon.
6027   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6028   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6029   assert(MaxTableSize >= TableSize &&
6030          "It is impossible for a switch to have more entries than the max "
6031          "representable value of its input integer type's size.");
6032 
6033   // If the default destination is unreachable, or if the lookup table covers
6034   // all values of the conditional variable, branch directly to the lookup table
6035   // BB. Otherwise, check that the condition is within the case range.
6036   const bool DefaultIsReachable =
6037       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
6038   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
6039   BranchInst *RangeCheckBranch = nullptr;
6040 
6041   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6042     Builder.CreateBr(LookupBB);
6043     if (DTU)
6044       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6045     // Note: We call removeProdecessor later since we need to be able to get the
6046     // PHI value for the default case in case we're using a bit mask.
6047   } else {
6048     Value *Cmp = Builder.CreateICmpULT(
6049         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
6050     RangeCheckBranch =
6051         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
6052     if (DTU)
6053       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
6054   }
6055 
6056   // Populate the BB that does the lookups.
6057   Builder.SetInsertPoint(LookupBB);
6058 
6059   if (NeedMask) {
6060     // Before doing the lookup, we do the hole check. The LookupBB is therefore
6061     // re-purposed to do the hole check, and we create a new LookupBB.
6062     BasicBlock *MaskBB = LookupBB;
6063     MaskBB->setName("switch.hole_check");
6064     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
6065                                   CommonDest->getParent(), CommonDest);
6066 
6067     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
6068     // unnecessary illegal types.
6069     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
6070     APInt MaskInt(TableSizePowOf2, 0);
6071     APInt One(TableSizePowOf2, 1);
6072     // Build bitmask; fill in a 1 bit for every case.
6073     const ResultListTy &ResultList = ResultLists[PHIs[0]];
6074     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
6075       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
6076                          .getLimitedValue();
6077       MaskInt |= One << Idx;
6078     }
6079     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
6080 
6081     // Get the TableIndex'th bit of the bitmask.
6082     // If this bit is 0 (meaning hole) jump to the default destination,
6083     // else continue with table lookup.
6084     IntegerType *MapTy = TableMask->getType();
6085     Value *MaskIndex =
6086         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
6087     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
6088     Value *LoBit = Builder.CreateTrunc(
6089         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
6090     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
6091     if (DTU) {
6092       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
6093       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
6094     }
6095     Builder.SetInsertPoint(LookupBB);
6096     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
6097   }
6098 
6099   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
6100     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
6101     // do not delete PHINodes here.
6102     SI->getDefaultDest()->removePredecessor(BB,
6103                                             /*KeepOneInputPHIs=*/true);
6104     if (DTU)
6105       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
6106   }
6107 
6108   bool ReturnedEarly = false;
6109   for (PHINode *PHI : PHIs) {
6110     const ResultListTy &ResultList = ResultLists[PHI];
6111 
6112     // If using a bitmask, use any value to fill the lookup table holes.
6113     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
6114     StringRef FuncName = Fn->getName();
6115     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
6116                             FuncName);
6117 
6118     Value *Result = Table.BuildLookup(TableIndex, Builder);
6119 
6120     // If the result is used to return immediately from the function, we want to
6121     // do that right here.
6122     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
6123         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
6124       Builder.CreateRet(Result);
6125       ReturnedEarly = true;
6126       break;
6127     }
6128 
6129     // Do a small peephole optimization: re-use the switch table compare if
6130     // possible.
6131     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
6132       BasicBlock *PhiBlock = PHI->getParent();
6133       // Search for compare instructions which use the phi.
6134       for (auto *User : PHI->users()) {
6135         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
6136       }
6137     }
6138 
6139     PHI->addIncoming(Result, LookupBB);
6140   }
6141 
6142   if (!ReturnedEarly) {
6143     Builder.CreateBr(CommonDest);
6144     if (DTU)
6145       Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
6146   }
6147 
6148   // Remove the switch.
6149   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
6150   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6151     BasicBlock *Succ = SI->getSuccessor(i);
6152 
6153     if (Succ == SI->getDefaultDest())
6154       continue;
6155     Succ->removePredecessor(BB);
6156     RemovedSuccessors.insert(Succ);
6157   }
6158   SI->eraseFromParent();
6159 
6160   if (DTU) {
6161     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
6162       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
6163     DTU->applyUpdates(Updates);
6164   }
6165 
6166   ++NumLookupTables;
6167   if (NeedMask)
6168     ++NumLookupTablesHoles;
6169   return true;
6170 }
6171 
6172 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6173   // See also SelectionDAGBuilder::isDense(), which this function was based on.
6174   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6175   uint64_t Range = Diff + 1;
6176   uint64_t NumCases = Values.size();
6177   // 40% is the default density for building a jump table in optsize/minsize mode.
6178   uint64_t MinDensity = 40;
6179 
6180   return NumCases * 100 >= Range * MinDensity;
6181 }
6182 
6183 /// Try to transform a switch that has "holes" in it to a contiguous sequence
6184 /// of cases.
6185 ///
6186 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
6187 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
6188 ///
6189 /// This converts a sparse switch into a dense switch which allows better
6190 /// lowering and could also allow transforming into a lookup table.
6191 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
6192                               const DataLayout &DL,
6193                               const TargetTransformInfo &TTI) {
6194   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
6195   if (CondTy->getIntegerBitWidth() > 64 ||
6196       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
6197     return false;
6198   // Only bother with this optimization if there are more than 3 switch cases;
6199   // SDAG will only bother creating jump tables for 4 or more cases.
6200   if (SI->getNumCases() < 4)
6201     return false;
6202 
6203   // This transform is agnostic to the signedness of the input or case values. We
6204   // can treat the case values as signed or unsigned. We can optimize more common
6205   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
6206   // as signed.
6207   SmallVector<int64_t,4> Values;
6208   for (auto &C : SI->cases())
6209     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
6210   llvm::sort(Values);
6211 
6212   // If the switch is already dense, there's nothing useful to do here.
6213   if (isSwitchDense(Values))
6214     return false;
6215 
6216   // First, transform the values such that they start at zero and ascend.
6217   int64_t Base = Values[0];
6218   for (auto &V : Values)
6219     V -= (uint64_t)(Base);
6220 
6221   // Now we have signed numbers that have been shifted so that, given enough
6222   // precision, there are no negative values. Since the rest of the transform
6223   // is bitwise only, we switch now to an unsigned representation.
6224 
6225   // This transform can be done speculatively because it is so cheap - it
6226   // results in a single rotate operation being inserted.
6227   // FIXME: It's possible that optimizing a switch on powers of two might also
6228   // be beneficial - flag values are often powers of two and we could use a CLZ
6229   // as the key function.
6230 
6231   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
6232   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
6233   // less than 64.
6234   unsigned Shift = 64;
6235   for (auto &V : Values)
6236     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
6237   assert(Shift < 64);
6238   if (Shift > 0)
6239     for (auto &V : Values)
6240       V = (int64_t)((uint64_t)V >> Shift);
6241 
6242   if (!isSwitchDense(Values))
6243     // Transform didn't create a dense switch.
6244     return false;
6245 
6246   // The obvious transform is to shift the switch condition right and emit a
6247   // check that the condition actually cleanly divided by GCD, i.e.
6248   //   C & (1 << Shift - 1) == 0
6249   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6250   //
6251   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6252   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6253   // are nonzero then the switch condition will be very large and will hit the
6254   // default case.
6255 
6256   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6257   Builder.SetInsertPoint(SI);
6258   auto *ShiftC = ConstantInt::get(Ty, Shift);
6259   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6260   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6261   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6262   auto *Rot = Builder.CreateOr(LShr, Shl);
6263   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6264 
6265   for (auto Case : SI->cases()) {
6266     auto *Orig = Case.getCaseValue();
6267     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6268     Case.setValue(
6269         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6270   }
6271   return true;
6272 }
6273 
6274 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6275   BasicBlock *BB = SI->getParent();
6276 
6277   if (isValueEqualityComparison(SI)) {
6278     // If we only have one predecessor, and if it is a branch on this value,
6279     // see if that predecessor totally determines the outcome of this switch.
6280     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6281       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6282         return requestResimplify();
6283 
6284     Value *Cond = SI->getCondition();
6285     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6286       if (SimplifySwitchOnSelect(SI, Select))
6287         return requestResimplify();
6288 
6289     // If the block only contains the switch, see if we can fold the block
6290     // away into any preds.
6291     if (SI == &*BB->instructionsWithoutDebug().begin())
6292       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6293         return requestResimplify();
6294   }
6295 
6296   // Try to transform the switch into an icmp and a branch.
6297   if (TurnSwitchRangeIntoICmp(SI, Builder))
6298     return requestResimplify();
6299 
6300   // Remove unreachable cases.
6301   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6302     return requestResimplify();
6303 
6304   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6305     return requestResimplify();
6306 
6307   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6308     return requestResimplify();
6309 
6310   // The conversion from switch to lookup tables results in difficult-to-analyze
6311   // code and makes pruning branches much harder. This is a problem if the
6312   // switch expression itself can still be restricted as a result of inlining or
6313   // CVP. Therefore, only apply this transformation during late stages of the
6314   // optimisation pipeline.
6315   if (Options.ConvertSwitchToLookupTable &&
6316       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6317     return requestResimplify();
6318 
6319   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6320     return requestResimplify();
6321 
6322   return false;
6323 }
6324 
6325 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6326   BasicBlock *BB = IBI->getParent();
6327   bool Changed = false;
6328 
6329   // Eliminate redundant destinations.
6330   SmallPtrSet<Value *, 8> Succs;
6331   SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
6332   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6333     BasicBlock *Dest = IBI->getDestination(i);
6334     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6335       if (!Dest->hasAddressTaken())
6336         RemovedSuccs.insert(Dest);
6337       Dest->removePredecessor(BB);
6338       IBI->removeDestination(i);
6339       --i;
6340       --e;
6341       Changed = true;
6342     }
6343   }
6344 
6345   if (DTU) {
6346     std::vector<DominatorTree::UpdateType> Updates;
6347     Updates.reserve(RemovedSuccs.size());
6348     for (auto *RemovedSucc : RemovedSuccs)
6349       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6350     DTU->applyUpdates(Updates);
6351   }
6352 
6353   if (IBI->getNumDestinations() == 0) {
6354     // If the indirectbr has no successors, change it to unreachable.
6355     new UnreachableInst(IBI->getContext(), IBI);
6356     EraseTerminatorAndDCECond(IBI);
6357     return true;
6358   }
6359 
6360   if (IBI->getNumDestinations() == 1) {
6361     // If the indirectbr has one successor, change it to a direct branch.
6362     BranchInst::Create(IBI->getDestination(0), IBI);
6363     EraseTerminatorAndDCECond(IBI);
6364     return true;
6365   }
6366 
6367   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6368     if (SimplifyIndirectBrOnSelect(IBI, SI))
6369       return requestResimplify();
6370   }
6371   return Changed;
6372 }
6373 
6374 /// Given an block with only a single landing pad and a unconditional branch
6375 /// try to find another basic block which this one can be merged with.  This
6376 /// handles cases where we have multiple invokes with unique landing pads, but
6377 /// a shared handler.
6378 ///
6379 /// We specifically choose to not worry about merging non-empty blocks
6380 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6381 /// practice, the optimizer produces empty landing pad blocks quite frequently
6382 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6383 /// sinking in this file)
6384 ///
6385 /// This is primarily a code size optimization.  We need to avoid performing
6386 /// any transform which might inhibit optimization (such as our ability to
6387 /// specialize a particular handler via tail commoning).  We do this by not
6388 /// merging any blocks which require us to introduce a phi.  Since the same
6389 /// values are flowing through both blocks, we don't lose any ability to
6390 /// specialize.  If anything, we make such specialization more likely.
6391 ///
6392 /// TODO - This transformation could remove entries from a phi in the target
6393 /// block when the inputs in the phi are the same for the two blocks being
6394 /// merged.  In some cases, this could result in removal of the PHI entirely.
6395 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6396                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6397   auto Succ = BB->getUniqueSuccessor();
6398   assert(Succ);
6399   // If there's a phi in the successor block, we'd likely have to introduce
6400   // a phi into the merged landing pad block.
6401   if (isa<PHINode>(*Succ->begin()))
6402     return false;
6403 
6404   for (BasicBlock *OtherPred : predecessors(Succ)) {
6405     if (BB == OtherPred)
6406       continue;
6407     BasicBlock::iterator I = OtherPred->begin();
6408     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6409     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6410       continue;
6411     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6412       ;
6413     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6414     if (!BI2 || !BI2->isIdenticalTo(BI))
6415       continue;
6416 
6417     std::vector<DominatorTree::UpdateType> Updates;
6418 
6419     // We've found an identical block.  Update our predecessors to take that
6420     // path instead and make ourselves dead.
6421     SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
6422     for (BasicBlock *Pred : Preds) {
6423       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6424       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6425              "unexpected successor");
6426       II->setUnwindDest(OtherPred);
6427       if (DTU) {
6428         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6429         Updates.push_back({DominatorTree::Delete, Pred, BB});
6430       }
6431     }
6432 
6433     // The debug info in OtherPred doesn't cover the merged control flow that
6434     // used to go through BB.  We need to delete it or update it.
6435     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6436       Instruction &Inst = *I;
6437       I++;
6438       if (isa<DbgInfoIntrinsic>(Inst))
6439         Inst.eraseFromParent();
6440     }
6441 
6442     SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
6443     for (BasicBlock *Succ : Succs) {
6444       Succ->removePredecessor(BB);
6445       if (DTU)
6446         Updates.push_back({DominatorTree::Delete, BB, Succ});
6447     }
6448 
6449     IRBuilder<> Builder(BI);
6450     Builder.CreateUnreachable();
6451     BI->eraseFromParent();
6452     if (DTU)
6453       DTU->applyUpdates(Updates);
6454     return true;
6455   }
6456   return false;
6457 }
6458 
6459 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6460   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6461                                    : simplifyCondBranch(Branch, Builder);
6462 }
6463 
6464 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6465                                           IRBuilder<> &Builder) {
6466   BasicBlock *BB = BI->getParent();
6467   BasicBlock *Succ = BI->getSuccessor(0);
6468 
6469   // If the Terminator is the only non-phi instruction, simplify the block.
6470   // If LoopHeader is provided, check if the block or its successor is a loop
6471   // header. (This is for early invocations before loop simplify and
6472   // vectorization to keep canonical loop forms for nested loops. These blocks
6473   // can be eliminated when the pass is invoked later in the back-end.)
6474   // Note that if BB has only one predecessor then we do not introduce new
6475   // backedge, so we can eliminate BB.
6476   bool NeedCanonicalLoop =
6477       Options.NeedCanonicalLoop &&
6478       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6479        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6480   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
6481   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6482       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6483     return true;
6484 
6485   // If the only instruction in the block is a seteq/setne comparison against a
6486   // constant, try to simplify the block.
6487   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6488     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6489       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6490         ;
6491       if (I->isTerminator() &&
6492           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6493         return true;
6494     }
6495 
6496   // See if we can merge an empty landing pad block with another which is
6497   // equivalent.
6498   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6499     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6500       ;
6501     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6502       return true;
6503   }
6504 
6505   // If this basic block is ONLY a compare and a branch, and if a predecessor
6506   // branches to us and our successor, fold the comparison into the
6507   // predecessor and use logical operations to update the incoming value
6508   // for PHI nodes in common successor.
6509   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6510                              Options.BonusInstThreshold))
6511     return requestResimplify();
6512   return false;
6513 }
6514 
6515 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6516   BasicBlock *PredPred = nullptr;
6517   for (auto *P : predecessors(BB)) {
6518     BasicBlock *PPred = P->getSinglePredecessor();
6519     if (!PPred || (PredPred && PredPred != PPred))
6520       return nullptr;
6521     PredPred = PPred;
6522   }
6523   return PredPred;
6524 }
6525 
6526 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6527   BasicBlock *BB = BI->getParent();
6528   if (!Options.SimplifyCondBranch)
6529     return false;
6530 
6531   // Conditional branch
6532   if (isValueEqualityComparison(BI)) {
6533     // If we only have one predecessor, and if it is a branch on this value,
6534     // see if that predecessor totally determines the outcome of this
6535     // switch.
6536     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6537       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6538         return requestResimplify();
6539 
6540     // This block must be empty, except for the setcond inst, if it exists.
6541     // Ignore dbg and pseudo intrinsics.
6542     auto I = BB->instructionsWithoutDebug(true).begin();
6543     if (&*I == BI) {
6544       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6545         return requestResimplify();
6546     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6547       ++I;
6548       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6549         return requestResimplify();
6550     }
6551   }
6552 
6553   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6554   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6555     return true;
6556 
6557   // If this basic block has dominating predecessor blocks and the dominating
6558   // blocks' conditions imply BI's condition, we know the direction of BI.
6559   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6560   if (Imp) {
6561     // Turn this into a branch on constant.
6562     auto *OldCond = BI->getCondition();
6563     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6564                              : ConstantInt::getFalse(BB->getContext());
6565     BI->setCondition(TorF);
6566     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6567     return requestResimplify();
6568   }
6569 
6570   // If this basic block is ONLY a compare and a branch, and if a predecessor
6571   // branches to us and one of our successors, fold the comparison into the
6572   // predecessor and use logical operations to pick the right destination.
6573   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6574                              Options.BonusInstThreshold))
6575     return requestResimplify();
6576 
6577   // We have a conditional branch to two blocks that are only reachable
6578   // from BI.  We know that the condbr dominates the two blocks, so see if
6579   // there is any identical code in the "then" and "else" blocks.  If so, we
6580   // can hoist it up to the branching block.
6581   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6582     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6583       if (HoistCommon &&
6584           HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
6585         return requestResimplify();
6586     } else {
6587       // If Successor #1 has multiple preds, we may be able to conditionally
6588       // execute Successor #0 if it branches to Successor #1.
6589       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6590       if (Succ0TI->getNumSuccessors() == 1 &&
6591           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6592         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6593           return requestResimplify();
6594     }
6595   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6596     // If Successor #0 has multiple preds, we may be able to conditionally
6597     // execute Successor #1 if it branches to Successor #0.
6598     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6599     if (Succ1TI->getNumSuccessors() == 1 &&
6600         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6601       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6602         return requestResimplify();
6603   }
6604 
6605   // If this is a branch on a phi node in the current block, thread control
6606   // through this block if any PHI node entries are constants.
6607   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6608     if (PN->getParent() == BI->getParent())
6609       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6610         return requestResimplify();
6611 
6612   // Scan predecessor blocks for conditional branches.
6613   for (BasicBlock *Pred : predecessors(BB))
6614     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
6615       if (PBI != BI && PBI->isConditional())
6616         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6617           return requestResimplify();
6618 
6619   // Look for diamond patterns.
6620   if (MergeCondStores)
6621     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6622       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6623         if (PBI != BI && PBI->isConditional())
6624           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6625             return requestResimplify();
6626 
6627   return false;
6628 }
6629 
6630 /// Check if passing a value to an instruction will cause undefined behavior.
6631 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6632   Constant *C = dyn_cast<Constant>(V);
6633   if (!C)
6634     return false;
6635 
6636   if (I->use_empty())
6637     return false;
6638 
6639   if (C->isNullValue() || isa<UndefValue>(C)) {
6640     // Only look at the first use, avoid hurting compile time with long uselists
6641     User *Use = *I->user_begin();
6642 
6643     // Now make sure that there are no instructions in between that can alter
6644     // control flow (eg. calls)
6645     for (BasicBlock::iterator
6646              i = ++BasicBlock::iterator(I),
6647              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6648          i != UI; ++i) {
6649       if (i == I->getParent()->end())
6650         return false;
6651       if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
6652         return false;
6653     }
6654 
6655     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6656     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6657       if (GEP->getPointerOperand() == I) {
6658         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6659           PtrValueMayBeModified = true;
6660         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6661       }
6662 
6663     // Look through bitcasts.
6664     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6665       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6666 
6667     // Load from null is undefined.
6668     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6669       if (!LI->isVolatile())
6670         return !NullPointerIsDefined(LI->getFunction(),
6671                                      LI->getPointerAddressSpace());
6672 
6673     // Store to null is undefined.
6674     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6675       if (!SI->isVolatile())
6676         return (!NullPointerIsDefined(SI->getFunction(),
6677                                       SI->getPointerAddressSpace())) &&
6678                SI->getPointerOperand() == I;
6679 
6680     if (auto *CB = dyn_cast<CallBase>(Use)) {
6681       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6682         return false;
6683       // A call to null is undefined.
6684       if (CB->getCalledOperand() == I)
6685         return true;
6686 
6687       if (C->isNullValue()) {
6688         for (const llvm::Use &Arg : CB->args())
6689           if (Arg == I) {
6690             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6691             if (CB->isPassingUndefUB(ArgIdx) &&
6692                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
6693               // Passing null to a nonnnull+noundef argument is undefined.
6694               return !PtrValueMayBeModified;
6695             }
6696           }
6697       } else if (isa<UndefValue>(C)) {
6698         // Passing undef to a noundef argument is undefined.
6699         for (const llvm::Use &Arg : CB->args())
6700           if (Arg == I) {
6701             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6702             if (CB->isPassingUndefUB(ArgIdx)) {
6703               // Passing undef to a noundef argument is undefined.
6704               return true;
6705             }
6706           }
6707       }
6708     }
6709   }
6710   return false;
6711 }
6712 
6713 /// If BB has an incoming value that will always trigger undefined behavior
6714 /// (eg. null pointer dereference), remove the branch leading here.
6715 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6716                                               DomTreeUpdater *DTU) {
6717   for (PHINode &PHI : BB->phis())
6718     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6719       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6720         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6721         Instruction *T = Predecessor->getTerminator();
6722         IRBuilder<> Builder(T);
6723         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6724           BB->removePredecessor(Predecessor);
6725           // Turn uncoditional branches into unreachables and remove the dead
6726           // destination from conditional branches.
6727           if (BI->isUnconditional())
6728             Builder.CreateUnreachable();
6729           else
6730             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6731                                                        : BI->getSuccessor(0));
6732           BI->eraseFromParent();
6733           if (DTU)
6734             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6735           return true;
6736         }
6737         // TODO: SwitchInst.
6738       }
6739 
6740   return false;
6741 }
6742 
6743 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6744   bool Changed = false;
6745 
6746   assert(BB && BB->getParent() && "Block not embedded in function!");
6747   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6748 
6749   // Remove basic blocks that have no predecessors (except the entry block)...
6750   // or that just have themself as a predecessor.  These are unreachable.
6751   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6752       BB->getSinglePredecessor() == BB) {
6753     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6754     DeleteDeadBlock(BB, DTU);
6755     return true;
6756   }
6757 
6758   // Check to see if we can constant propagate this terminator instruction
6759   // away...
6760   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6761                                     /*TLI=*/nullptr, DTU);
6762 
6763   // Check for and eliminate duplicate PHI nodes in this block.
6764   Changed |= EliminateDuplicatePHINodes(BB);
6765 
6766   // Check for and remove branches that will always cause undefined behavior.
6767   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6768 
6769   // Merge basic blocks into their predecessor if there is only one distinct
6770   // pred, and if there is only one distinct successor of the predecessor, and
6771   // if there are no PHI nodes.
6772   if (MergeBlockIntoPredecessor(BB, DTU))
6773     return true;
6774 
6775   if (SinkCommon && Options.SinkCommonInsts)
6776     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6777 
6778   IRBuilder<> Builder(BB);
6779 
6780   if (Options.FoldTwoEntryPHINode) {
6781     // If there is a trivial two-entry PHI node in this basic block, and we can
6782     // eliminate it, do so now.
6783     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6784       if (PN->getNumIncomingValues() == 2)
6785         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6786   }
6787 
6788   Instruction *Terminator = BB->getTerminator();
6789   Builder.SetInsertPoint(Terminator);
6790   switch (Terminator->getOpcode()) {
6791   case Instruction::Br:
6792     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6793     break;
6794   case Instruction::Ret:
6795     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6796     break;
6797   case Instruction::Resume:
6798     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6799     break;
6800   case Instruction::CleanupRet:
6801     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6802     break;
6803   case Instruction::Switch:
6804     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6805     break;
6806   case Instruction::Unreachable:
6807     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6808     break;
6809   case Instruction::IndirectBr:
6810     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6811     break;
6812   }
6813 
6814   return Changed;
6815 }
6816 
6817 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6818   bool Changed = simplifyOnceImpl(BB);
6819 
6820   return Changed;
6821 }
6822 
6823 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6824   bool Changed = false;
6825 
6826   // Repeated simplify BB as long as resimplification is requested.
6827   do {
6828     Resimplify = false;
6829 
6830     // Perform one round of simplifcation. Resimplify flag will be set if
6831     // another iteration is requested.
6832     Changed |= simplifyOnce(BB);
6833   } while (Resimplify);
6834 
6835   return Changed;
6836 }
6837 
6838 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6839                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6840                        ArrayRef<WeakVH> LoopHeaders) {
6841   return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
6842                         Options)
6843       .run(BB);
6844 }
6845