1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Metadata.h"
23 #include "llvm/Type.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/ConstantRange.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/IRBuilder.h"
38 #include "llvm/Support/NoFolder.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <set>
42 #include <map>
43 using namespace llvm;
44 
45 static cl::opt<unsigned>
46 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
47    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
48 
49 static cl::opt<bool>
50 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
51        cl::desc("Duplicate return instructions into unconditional branches"));
52 
53 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
54 
55 namespace {
56 class SimplifyCFGOpt {
57   const TargetData *const TD;
58 
59   Value *isValueEqualityComparison(TerminatorInst *TI);
60   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
61     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
62   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
63                                                      BasicBlock *Pred,
64                                                      IRBuilder<> &Builder);
65   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
66                                            IRBuilder<> &Builder);
67 
68   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
69   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
70   bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
71   bool SimplifyUnreachable(UnreachableInst *UI);
72   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
73   bool SimplifyIndirectBr(IndirectBrInst *IBI);
74   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
75   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
76 
77 public:
78   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
79   bool run(BasicBlock *BB);
80 };
81 }
82 
83 /// SafeToMergeTerminators - Return true if it is safe to merge these two
84 /// terminator instructions together.
85 ///
86 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
87   if (SI1 == SI2) return false;  // Can't merge with self!
88 
89   // It is not safe to merge these two switch instructions if they have a common
90   // successor, and if that successor has a PHI node, and if *that* PHI node has
91   // conflicting incoming values from the two switch blocks.
92   BasicBlock *SI1BB = SI1->getParent();
93   BasicBlock *SI2BB = SI2->getParent();
94   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
95 
96   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
97     if (SI1Succs.count(*I))
98       for (BasicBlock::iterator BBI = (*I)->begin();
99            isa<PHINode>(BBI); ++BBI) {
100         PHINode *PN = cast<PHINode>(BBI);
101         if (PN->getIncomingValueForBlock(SI1BB) !=
102             PN->getIncomingValueForBlock(SI2BB))
103           return false;
104       }
105 
106   return true;
107 }
108 
109 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
110 /// now be entries in it from the 'NewPred' block.  The values that will be
111 /// flowing into the PHI nodes will be the same as those coming in from
112 /// ExistPred, an existing predecessor of Succ.
113 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
114                                   BasicBlock *ExistPred) {
115   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
116 
117   PHINode *PN;
118   for (BasicBlock::iterator I = Succ->begin();
119        (PN = dyn_cast<PHINode>(I)); ++I)
120     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
121 }
122 
123 
124 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
125 /// least one PHI node in it), check to see if the merge at this block is due
126 /// to an "if condition".  If so, return the boolean condition that determines
127 /// which entry into BB will be taken.  Also, return by references the block
128 /// that will be entered from if the condition is true, and the block that will
129 /// be entered if the condition is false.
130 ///
131 /// This does no checking to see if the true/false blocks have large or unsavory
132 /// instructions in them.
133 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
134                              BasicBlock *&IfFalse) {
135   PHINode *SomePHI = cast<PHINode>(BB->begin());
136   assert(SomePHI->getNumIncomingValues() == 2 &&
137          "Function can only handle blocks with 2 predecessors!");
138   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
139   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
140 
141   // We can only handle branches.  Other control flow will be lowered to
142   // branches if possible anyway.
143   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
144   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
145   if (Pred1Br == 0 || Pred2Br == 0)
146     return 0;
147 
148   // Eliminate code duplication by ensuring that Pred1Br is conditional if
149   // either are.
150   if (Pred2Br->isConditional()) {
151     // If both branches are conditional, we don't have an "if statement".  In
152     // reality, we could transform this case, but since the condition will be
153     // required anyway, we stand no chance of eliminating it, so the xform is
154     // probably not profitable.
155     if (Pred1Br->isConditional())
156       return 0;
157 
158     std::swap(Pred1, Pred2);
159     std::swap(Pred1Br, Pred2Br);
160   }
161 
162   if (Pred1Br->isConditional()) {
163     // The only thing we have to watch out for here is to make sure that Pred2
164     // doesn't have incoming edges from other blocks.  If it does, the condition
165     // doesn't dominate BB.
166     if (Pred2->getSinglePredecessor() == 0)
167       return 0;
168 
169     // If we found a conditional branch predecessor, make sure that it branches
170     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
171     if (Pred1Br->getSuccessor(0) == BB &&
172         Pred1Br->getSuccessor(1) == Pred2) {
173       IfTrue = Pred1;
174       IfFalse = Pred2;
175     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
176                Pred1Br->getSuccessor(1) == BB) {
177       IfTrue = Pred2;
178       IfFalse = Pred1;
179     } else {
180       // We know that one arm of the conditional goes to BB, so the other must
181       // go somewhere unrelated, and this must not be an "if statement".
182       return 0;
183     }
184 
185     return Pred1Br->getCondition();
186   }
187 
188   // Ok, if we got here, both predecessors end with an unconditional branch to
189   // BB.  Don't panic!  If both blocks only have a single (identical)
190   // predecessor, and THAT is a conditional branch, then we're all ok!
191   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
192   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
193     return 0;
194 
195   // Otherwise, if this is a conditional branch, then we can use it!
196   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
197   if (BI == 0) return 0;
198 
199   assert(BI->isConditional() && "Two successors but not conditional?");
200   if (BI->getSuccessor(0) == Pred1) {
201     IfTrue = Pred1;
202     IfFalse = Pred2;
203   } else {
204     IfTrue = Pred2;
205     IfFalse = Pred1;
206   }
207   return BI->getCondition();
208 }
209 
210 /// DominatesMergePoint - If we have a merge point of an "if condition" as
211 /// accepted above, return true if the specified value dominates the block.  We
212 /// don't handle the true generality of domination here, just a special case
213 /// which works well enough for us.
214 ///
215 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
216 /// see if V (which must be an instruction) and its recursive operands
217 /// that do not dominate BB have a combined cost lower than CostRemaining and
218 /// are non-trapping.  If both are true, the instruction is inserted into the
219 /// set and true is returned.
220 ///
221 /// The cost for most non-trapping instructions is defined as 1 except for
222 /// Select whose cost is 2.
223 ///
224 /// After this function returns, CostRemaining is decreased by the cost of
225 /// V plus its non-dominating operands.  If that cost is greater than
226 /// CostRemaining, false is returned and CostRemaining is undefined.
227 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
228                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
229                                 unsigned &CostRemaining) {
230   Instruction *I = dyn_cast<Instruction>(V);
231   if (!I) {
232     // Non-instructions all dominate instructions, but not all constantexprs
233     // can be executed unconditionally.
234     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
235       if (C->canTrap())
236         return false;
237     return true;
238   }
239   BasicBlock *PBB = I->getParent();
240 
241   // We don't want to allow weird loops that might have the "if condition" in
242   // the bottom of this block.
243   if (PBB == BB) return false;
244 
245   // If this instruction is defined in a block that contains an unconditional
246   // branch to BB, then it must be in the 'conditional' part of the "if
247   // statement".  If not, it definitely dominates the region.
248   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
249   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
250     return true;
251 
252   // If we aren't allowing aggressive promotion anymore, then don't consider
253   // instructions in the 'if region'.
254   if (AggressiveInsts == 0) return false;
255 
256   // If we have seen this instruction before, don't count it again.
257   if (AggressiveInsts->count(I)) return true;
258 
259   // Okay, it looks like the instruction IS in the "condition".  Check to
260   // see if it's a cheap instruction to unconditionally compute, and if it
261   // only uses stuff defined outside of the condition.  If so, hoist it out.
262   if (!isSafeToSpeculativelyExecute(I))
263     return false;
264 
265   unsigned Cost = 0;
266 
267   switch (I->getOpcode()) {
268   default: return false;  // Cannot hoist this out safely.
269   case Instruction::Load:
270     // We have to check to make sure there are no instructions before the
271     // load in its basic block, as we are going to hoist the load out to its
272     // predecessor.
273     if (PBB->getFirstNonPHIOrDbg() != I)
274       return false;
275     Cost = 1;
276     break;
277   case Instruction::GetElementPtr:
278     // GEPs are cheap if all indices are constant.
279     if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
280       return false;
281     Cost = 1;
282     break;
283   case Instruction::Add:
284   case Instruction::Sub:
285   case Instruction::And:
286   case Instruction::Or:
287   case Instruction::Xor:
288   case Instruction::Shl:
289   case Instruction::LShr:
290   case Instruction::AShr:
291   case Instruction::ICmp:
292   case Instruction::Trunc:
293   case Instruction::ZExt:
294   case Instruction::SExt:
295     Cost = 1;
296     break;   // These are all cheap and non-trapping instructions.
297 
298   case Instruction::Call:
299   case Instruction::Select:
300     Cost = 2;
301     break;
302   }
303 
304   if (Cost > CostRemaining)
305     return false;
306 
307   CostRemaining -= Cost;
308 
309   // Okay, we can only really hoist these out if their operands do
310   // not take us over the cost threshold.
311   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
312     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
313       return false;
314   // Okay, it's safe to do this!  Remember this instruction.
315   AggressiveInsts->insert(I);
316   return true;
317 }
318 
319 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
320 /// and PointerNullValue. Return NULL if value is not a constant int.
321 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
322   // Normal constant int.
323   ConstantInt *CI = dyn_cast<ConstantInt>(V);
324   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
325     return CI;
326 
327   // This is some kind of pointer constant. Turn it into a pointer-sized
328   // ConstantInt if possible.
329   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
330 
331   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
332   if (isa<ConstantPointerNull>(V))
333     return ConstantInt::get(PtrTy, 0);
334 
335   // IntToPtr const int.
336   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
337     if (CE->getOpcode() == Instruction::IntToPtr)
338       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
339         // The constant is very likely to have the right type already.
340         if (CI->getType() == PtrTy)
341           return CI;
342         else
343           return cast<ConstantInt>
344             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
345       }
346   return 0;
347 }
348 
349 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
350 /// collection of icmp eq/ne instructions that compare a value against a
351 /// constant, return the value being compared, and stick the constant into the
352 /// Values vector.
353 static Value *
354 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
355                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
356   Instruction *I = dyn_cast<Instruction>(V);
357   if (I == 0) return 0;
358 
359   // If this is an icmp against a constant, handle this as one of the cases.
360   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
361     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
362       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
363         UsedICmps++;
364         Vals.push_back(C);
365         return I->getOperand(0);
366       }
367 
368       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
369       // the set.
370       ConstantRange Span =
371         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
372 
373       // If this is an and/!= check then we want to optimize "x ugt 2" into
374       // x != 0 && x != 1.
375       if (!isEQ)
376         Span = Span.inverse();
377 
378       // If there are a ton of values, we don't want to make a ginormous switch.
379       if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
380           // We don't handle wrapped sets yet.
381           Span.isWrappedSet())
382         return 0;
383 
384       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
385         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
386       UsedICmps++;
387       return I->getOperand(0);
388     }
389     return 0;
390   }
391 
392   // Otherwise, we can only handle an | or &, depending on isEQ.
393   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
394     return 0;
395 
396   unsigned NumValsBeforeLHS = Vals.size();
397   unsigned UsedICmpsBeforeLHS = UsedICmps;
398   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
399                                           isEQ, UsedICmps)) {
400     unsigned NumVals = Vals.size();
401     unsigned UsedICmpsBeforeRHS = UsedICmps;
402     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
403                                             isEQ, UsedICmps)) {
404       if (LHS == RHS)
405         return LHS;
406       Vals.resize(NumVals);
407       UsedICmps = UsedICmpsBeforeRHS;
408     }
409 
410     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
411     // set it and return success.
412     if (Extra == 0 || Extra == I->getOperand(1)) {
413       Extra = I->getOperand(1);
414       return LHS;
415     }
416 
417     Vals.resize(NumValsBeforeLHS);
418     UsedICmps = UsedICmpsBeforeLHS;
419     return 0;
420   }
421 
422   // If the LHS can't be folded in, but Extra is available and RHS can, try to
423   // use LHS as Extra.
424   if (Extra == 0 || Extra == I->getOperand(0)) {
425     Value *OldExtra = Extra;
426     Extra = I->getOperand(0);
427     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
428                                             isEQ, UsedICmps))
429       return RHS;
430     assert(Vals.size() == NumValsBeforeLHS);
431     Extra = OldExtra;
432   }
433 
434   return 0;
435 }
436 
437 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
438   Instruction *Cond = 0;
439   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
440     Cond = dyn_cast<Instruction>(SI->getCondition());
441   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
442     if (BI->isConditional())
443       Cond = dyn_cast<Instruction>(BI->getCondition());
444   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
445     Cond = dyn_cast<Instruction>(IBI->getAddress());
446   }
447 
448   TI->eraseFromParent();
449   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
450 }
451 
452 /// isValueEqualityComparison - Return true if the specified terminator checks
453 /// to see if a value is equal to constant integer value.
454 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
455   Value *CV = 0;
456   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
457     // Do not permit merging of large switch instructions into their
458     // predecessors unless there is only one predecessor.
459     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
460                                              pred_end(SI->getParent())) <= 128)
461       CV = SI->getCondition();
462   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
463     if (BI->isConditional() && BI->getCondition()->hasOneUse())
464       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
465         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
466              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
467             GetConstantInt(ICI->getOperand(1), TD))
468           CV = ICI->getOperand(0);
469 
470   // Unwrap any lossless ptrtoint cast.
471   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
472     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
473       CV = PTII->getOperand(0);
474   return CV;
475 }
476 
477 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
478 /// decode all of the 'cases' that it represents and return the 'default' block.
479 BasicBlock *SimplifyCFGOpt::
480 GetValueEqualityComparisonCases(TerminatorInst *TI,
481                                 std::vector<std::pair<ConstantInt*,
482                                                       BasicBlock*> > &Cases) {
483   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
484     Cases.reserve(SI->getNumCases());
485     for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
486       Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
487     return SI->getDefaultDest();
488   }
489 
490   BranchInst *BI = cast<BranchInst>(TI);
491   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
492   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
493                                  BI->getSuccessor(ICI->getPredicate() ==
494                                                   ICmpInst::ICMP_NE)));
495   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
496 }
497 
498 
499 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
500 /// in the list that match the specified block.
501 static void EliminateBlockCases(BasicBlock *BB,
502                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
503   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
504     if (Cases[i].second == BB) {
505       Cases.erase(Cases.begin()+i);
506       --i; --e;
507     }
508 }
509 
510 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
511 /// well.
512 static bool
513 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
514               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
515   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
516 
517   // Make V1 be smaller than V2.
518   if (V1->size() > V2->size())
519     std::swap(V1, V2);
520 
521   if (V1->size() == 0) return false;
522   if (V1->size() == 1) {
523     // Just scan V2.
524     ConstantInt *TheVal = (*V1)[0].first;
525     for (unsigned i = 0, e = V2->size(); i != e; ++i)
526       if (TheVal == (*V2)[i].first)
527         return true;
528   }
529 
530   // Otherwise, just sort both lists and compare element by element.
531   array_pod_sort(V1->begin(), V1->end());
532   array_pod_sort(V2->begin(), V2->end());
533   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
534   while (i1 != e1 && i2 != e2) {
535     if ((*V1)[i1].first == (*V2)[i2].first)
536       return true;
537     if ((*V1)[i1].first < (*V2)[i2].first)
538       ++i1;
539     else
540       ++i2;
541   }
542   return false;
543 }
544 
545 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
546 /// terminator instruction and its block is known to only have a single
547 /// predecessor block, check to see if that predecessor is also a value
548 /// comparison with the same value, and if that comparison determines the
549 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
550 /// form of jump threading.
551 bool SimplifyCFGOpt::
552 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
553                                               BasicBlock *Pred,
554                                               IRBuilder<> &Builder) {
555   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
556   if (!PredVal) return false;  // Not a value comparison in predecessor.
557 
558   Value *ThisVal = isValueEqualityComparison(TI);
559   assert(ThisVal && "This isn't a value comparison!!");
560   if (ThisVal != PredVal) return false;  // Different predicates.
561 
562   // Find out information about when control will move from Pred to TI's block.
563   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
564   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
565                                                         PredCases);
566   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
567 
568   // Find information about how control leaves this block.
569   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
570   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
571   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
572 
573   // If TI's block is the default block from Pred's comparison, potentially
574   // simplify TI based on this knowledge.
575   if (PredDef == TI->getParent()) {
576     // If we are here, we know that the value is none of those cases listed in
577     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
578     // can simplify TI.
579     if (!ValuesOverlap(PredCases, ThisCases))
580       return false;
581 
582     if (isa<BranchInst>(TI)) {
583       // Okay, one of the successors of this condbr is dead.  Convert it to a
584       // uncond br.
585       assert(ThisCases.size() == 1 && "Branch can only have one case!");
586       // Insert the new branch.
587       Instruction *NI = Builder.CreateBr(ThisDef);
588       (void) NI;
589 
590       // Remove PHI node entries for the dead edge.
591       ThisCases[0].second->removePredecessor(TI->getParent());
592 
593       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
594            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
595 
596       EraseTerminatorInstAndDCECond(TI);
597       return true;
598     }
599 
600     SwitchInst *SI = cast<SwitchInst>(TI);
601     // Okay, TI has cases that are statically dead, prune them away.
602     SmallPtrSet<Constant*, 16> DeadCases;
603     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
604       DeadCases.insert(PredCases[i].first);
605 
606     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
607                  << "Through successor TI: " << *TI);
608 
609     for (unsigned i = SI->getNumCases()-1; i != 0; --i)
610       if (DeadCases.count(SI->getCaseValue(i))) {
611         SI->getSuccessor(i)->removePredecessor(TI->getParent());
612         SI->removeCase(i);
613       }
614 
615     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
616     return true;
617   }
618 
619   // Otherwise, TI's block must correspond to some matched value.  Find out
620   // which value (or set of values) this is.
621   ConstantInt *TIV = 0;
622   BasicBlock *TIBB = TI->getParent();
623   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
624     if (PredCases[i].second == TIBB) {
625       if (TIV != 0)
626         return false;  // Cannot handle multiple values coming to this block.
627       TIV = PredCases[i].first;
628     }
629   assert(TIV && "No edge from pred to succ?");
630 
631   // Okay, we found the one constant that our value can be if we get into TI's
632   // BB.  Find out which successor will unconditionally be branched to.
633   BasicBlock *TheRealDest = 0;
634   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
635     if (ThisCases[i].first == TIV) {
636       TheRealDest = ThisCases[i].second;
637       break;
638     }
639 
640   // If not handled by any explicit cases, it is handled by the default case.
641   if (TheRealDest == 0) TheRealDest = ThisDef;
642 
643   // Remove PHI node entries for dead edges.
644   BasicBlock *CheckEdge = TheRealDest;
645   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
646     if (*SI != CheckEdge)
647       (*SI)->removePredecessor(TIBB);
648     else
649       CheckEdge = 0;
650 
651   // Insert the new branch.
652   Instruction *NI = Builder.CreateBr(TheRealDest);
653   (void) NI;
654 
655   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
656             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
657 
658   EraseTerminatorInstAndDCECond(TI);
659   return true;
660 }
661 
662 namespace {
663   /// ConstantIntOrdering - This class implements a stable ordering of constant
664   /// integers that does not depend on their address.  This is important for
665   /// applications that sort ConstantInt's to ensure uniqueness.
666   struct ConstantIntOrdering {
667     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
668       return LHS->getValue().ult(RHS->getValue());
669     }
670   };
671 }
672 
673 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
674   const ConstantInt *LHS = *(const ConstantInt**)P1;
675   const ConstantInt *RHS = *(const ConstantInt**)P2;
676   if (LHS->getValue().ult(RHS->getValue()))
677     return 1;
678   if (LHS->getValue() == RHS->getValue())
679     return 0;
680   return -1;
681 }
682 
683 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
684 /// equality comparison instruction (either a switch or a branch on "X == c").
685 /// See if any of the predecessors of the terminator block are value comparisons
686 /// on the same value.  If so, and if safe to do so, fold them together.
687 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
688                                                          IRBuilder<> &Builder) {
689   BasicBlock *BB = TI->getParent();
690   Value *CV = isValueEqualityComparison(TI);  // CondVal
691   assert(CV && "Not a comparison?");
692   bool Changed = false;
693 
694   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
695   while (!Preds.empty()) {
696     BasicBlock *Pred = Preds.pop_back_val();
697 
698     // See if the predecessor is a comparison with the same value.
699     TerminatorInst *PTI = Pred->getTerminator();
700     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
701 
702     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
703       // Figure out which 'cases' to copy from SI to PSI.
704       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
705       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
706 
707       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
708       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
709 
710       // Based on whether the default edge from PTI goes to BB or not, fill in
711       // PredCases and PredDefault with the new switch cases we would like to
712       // build.
713       SmallVector<BasicBlock*, 8> NewSuccessors;
714 
715       if (PredDefault == BB) {
716         // If this is the default destination from PTI, only the edges in TI
717         // that don't occur in PTI, or that branch to BB will be activated.
718         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
719         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
720           if (PredCases[i].second != BB)
721             PTIHandled.insert(PredCases[i].first);
722           else {
723             // The default destination is BB, we don't need explicit targets.
724             std::swap(PredCases[i], PredCases.back());
725             PredCases.pop_back();
726             --i; --e;
727           }
728 
729         // Reconstruct the new switch statement we will be building.
730         if (PredDefault != BBDefault) {
731           PredDefault->removePredecessor(Pred);
732           PredDefault = BBDefault;
733           NewSuccessors.push_back(BBDefault);
734         }
735         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
736           if (!PTIHandled.count(BBCases[i].first) &&
737               BBCases[i].second != BBDefault) {
738             PredCases.push_back(BBCases[i]);
739             NewSuccessors.push_back(BBCases[i].second);
740           }
741 
742       } else {
743         // If this is not the default destination from PSI, only the edges
744         // in SI that occur in PSI with a destination of BB will be
745         // activated.
746         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
747         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
748           if (PredCases[i].second == BB) {
749             PTIHandled.insert(PredCases[i].first);
750             std::swap(PredCases[i], PredCases.back());
751             PredCases.pop_back();
752             --i; --e;
753           }
754 
755         // Okay, now we know which constants were sent to BB from the
756         // predecessor.  Figure out where they will all go now.
757         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
758           if (PTIHandled.count(BBCases[i].first)) {
759             // If this is one we are capable of getting...
760             PredCases.push_back(BBCases[i]);
761             NewSuccessors.push_back(BBCases[i].second);
762             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
763           }
764 
765         // If there are any constants vectored to BB that TI doesn't handle,
766         // they must go to the default destination of TI.
767         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
768                                     PTIHandled.begin(),
769                E = PTIHandled.end(); I != E; ++I) {
770           PredCases.push_back(std::make_pair(*I, BBDefault));
771           NewSuccessors.push_back(BBDefault);
772         }
773       }
774 
775       // Okay, at this point, we know which new successor Pred will get.  Make
776       // sure we update the number of entries in the PHI nodes for these
777       // successors.
778       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
779         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
780 
781       Builder.SetInsertPoint(PTI);
782       // Convert pointer to int before we switch.
783       if (CV->getType()->isPointerTy()) {
784         assert(TD && "Cannot switch on pointer without TargetData");
785         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
786                                     "magicptr");
787       }
788 
789       // Now that the successors are updated, create the new Switch instruction.
790       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
791                                                PredCases.size());
792       NewSI->setDebugLoc(PTI->getDebugLoc());
793       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
794         NewSI->addCase(PredCases[i].first, PredCases[i].second);
795 
796       EraseTerminatorInstAndDCECond(PTI);
797 
798       // Okay, last check.  If BB is still a successor of PSI, then we must
799       // have an infinite loop case.  If so, add an infinitely looping block
800       // to handle the case to preserve the behavior of the code.
801       BasicBlock *InfLoopBlock = 0;
802       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
803         if (NewSI->getSuccessor(i) == BB) {
804           if (InfLoopBlock == 0) {
805             // Insert it at the end of the function, because it's either code,
806             // or it won't matter if it's hot. :)
807             InfLoopBlock = BasicBlock::Create(BB->getContext(),
808                                               "infloop", BB->getParent());
809             BranchInst::Create(InfLoopBlock, InfLoopBlock);
810           }
811           NewSI->setSuccessor(i, InfLoopBlock);
812         }
813 
814       Changed = true;
815     }
816   }
817   return Changed;
818 }
819 
820 // isSafeToHoistInvoke - If we would need to insert a select that uses the
821 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
822 // would need to do this), we can't hoist the invoke, as there is nowhere
823 // to put the select in this case.
824 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
825                                 Instruction *I1, Instruction *I2) {
826   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
827     PHINode *PN;
828     for (BasicBlock::iterator BBI = SI->begin();
829          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
830       Value *BB1V = PN->getIncomingValueForBlock(BB1);
831       Value *BB2V = PN->getIncomingValueForBlock(BB2);
832       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
833         return false;
834       }
835     }
836   }
837   return true;
838 }
839 
840 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
841 /// BB2, hoist any common code in the two blocks up into the branch block.  The
842 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
843 static bool HoistThenElseCodeToIf(BranchInst *BI) {
844   // This does very trivial matching, with limited scanning, to find identical
845   // instructions in the two blocks.  In particular, we don't want to get into
846   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
847   // such, we currently just scan for obviously identical instructions in an
848   // identical order.
849   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
850   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
851 
852   BasicBlock::iterator BB1_Itr = BB1->begin();
853   BasicBlock::iterator BB2_Itr = BB2->begin();
854 
855   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
856   // Skip debug info if it is not identical.
857   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
858   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
859   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
860     while (isa<DbgInfoIntrinsic>(I1))
861       I1 = BB1_Itr++;
862     while (isa<DbgInfoIntrinsic>(I2))
863       I2 = BB2_Itr++;
864   }
865   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
866       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
867     return false;
868 
869   // If we get here, we can hoist at least one instruction.
870   BasicBlock *BIParent = BI->getParent();
871 
872   do {
873     // If we are hoisting the terminator instruction, don't move one (making a
874     // broken BB), instead clone it, and remove BI.
875     if (isa<TerminatorInst>(I1))
876       goto HoistTerminator;
877 
878     // For a normal instruction, we just move one to right before the branch,
879     // then replace all uses of the other with the first.  Finally, we remove
880     // the now redundant second instruction.
881     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
882     if (!I2->use_empty())
883       I2->replaceAllUsesWith(I1);
884     I1->intersectOptionalDataWith(I2);
885     I2->eraseFromParent();
886 
887     I1 = BB1_Itr++;
888     I2 = BB2_Itr++;
889     // Skip debug info if it is not identical.
890     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
891     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
892     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
893       while (isa<DbgInfoIntrinsic>(I1))
894         I1 = BB1_Itr++;
895       while (isa<DbgInfoIntrinsic>(I2))
896         I2 = BB2_Itr++;
897     }
898   } while (I1->isIdenticalToWhenDefined(I2));
899 
900   return true;
901 
902 HoistTerminator:
903   // It may not be possible to hoist an invoke.
904   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
905     return true;
906 
907   // Okay, it is safe to hoist the terminator.
908   Instruction *NT = I1->clone();
909   BIParent->getInstList().insert(BI, NT);
910   if (!NT->getType()->isVoidTy()) {
911     I1->replaceAllUsesWith(NT);
912     I2->replaceAllUsesWith(NT);
913     NT->takeName(I1);
914   }
915 
916   IRBuilder<true, NoFolder> Builder(NT);
917   // Hoisting one of the terminators from our successor is a great thing.
918   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
919   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
920   // nodes, so we insert select instruction to compute the final result.
921   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
922   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
923     PHINode *PN;
924     for (BasicBlock::iterator BBI = SI->begin();
925          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
926       Value *BB1V = PN->getIncomingValueForBlock(BB1);
927       Value *BB2V = PN->getIncomingValueForBlock(BB2);
928       if (BB1V == BB2V) continue;
929 
930       // These values do not agree.  Insert a select instruction before NT
931       // that determines the right value.
932       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
933       if (SI == 0)
934         SI = cast<SelectInst>
935           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
936                                 BB1V->getName()+"."+BB2V->getName()));
937 
938       // Make the PHI node use the select for all incoming values for BB1/BB2
939       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
940         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
941           PN->setIncomingValue(i, SI);
942     }
943   }
944 
945   // Update any PHI nodes in our new successors.
946   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
947     AddPredecessorToBlock(*SI, BIParent, BB1);
948 
949   EraseTerminatorInstAndDCECond(BI);
950   return true;
951 }
952 
953 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
954 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
955 /// (for now, restricted to a single instruction that's side effect free) from
956 /// the BB1 into the branch block to speculatively execute it.
957 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
958   // Only speculatively execution a single instruction (not counting the
959   // terminator) for now.
960   Instruction *HInst = NULL;
961   Instruction *Term = BB1->getTerminator();
962   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
963        BBI != BBE; ++BBI) {
964     Instruction *I = BBI;
965     // Skip debug info.
966     if (isa<DbgInfoIntrinsic>(I)) continue;
967     if (I == Term) break;
968 
969     if (HInst)
970       return false;
971     HInst = I;
972   }
973   if (!HInst)
974     return false;
975 
976   // Be conservative for now. FP select instruction can often be expensive.
977   Value *BrCond = BI->getCondition();
978   if (isa<FCmpInst>(BrCond))
979     return false;
980 
981   // If BB1 is actually on the false edge of the conditional branch, remember
982   // to swap the select operands later.
983   bool Invert = false;
984   if (BB1 != BI->getSuccessor(0)) {
985     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
986     Invert = true;
987   }
988 
989   // Turn
990   // BB:
991   //     %t1 = icmp
992   //     br i1 %t1, label %BB1, label %BB2
993   // BB1:
994   //     %t3 = add %t2, c
995   //     br label BB2
996   // BB2:
997   // =>
998   // BB:
999   //     %t1 = icmp
1000   //     %t4 = add %t2, c
1001   //     %t3 = select i1 %t1, %t2, %t3
1002   switch (HInst->getOpcode()) {
1003   default: return false;  // Not safe / profitable to hoist.
1004   case Instruction::Add:
1005   case Instruction::Sub:
1006     // Not worth doing for vector ops.
1007     if (HInst->getType()->isVectorTy())
1008       return false;
1009     break;
1010   case Instruction::And:
1011   case Instruction::Or:
1012   case Instruction::Xor:
1013   case Instruction::Shl:
1014   case Instruction::LShr:
1015   case Instruction::AShr:
1016     // Don't mess with vector operations.
1017     if (HInst->getType()->isVectorTy())
1018       return false;
1019     break;   // These are all cheap and non-trapping instructions.
1020   }
1021 
1022   // If the instruction is obviously dead, don't try to predicate it.
1023   if (HInst->use_empty()) {
1024     HInst->eraseFromParent();
1025     return true;
1026   }
1027 
1028   // Can we speculatively execute the instruction? And what is the value
1029   // if the condition is false? Consider the phi uses, if the incoming value
1030   // from the "if" block are all the same V, then V is the value of the
1031   // select if the condition is false.
1032   BasicBlock *BIParent = BI->getParent();
1033   SmallVector<PHINode*, 4> PHIUses;
1034   Value *FalseV = NULL;
1035 
1036   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1037   for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1038        UI != E; ++UI) {
1039     // Ignore any user that is not a PHI node in BB2.  These can only occur in
1040     // unreachable blocks, because they would not be dominated by the instr.
1041     PHINode *PN = dyn_cast<PHINode>(*UI);
1042     if (!PN || PN->getParent() != BB2)
1043       return false;
1044     PHIUses.push_back(PN);
1045 
1046     Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1047     if (!FalseV)
1048       FalseV = PHIV;
1049     else if (FalseV != PHIV)
1050       return false;  // Inconsistent value when condition is false.
1051   }
1052 
1053   assert(FalseV && "Must have at least one user, and it must be a PHI");
1054 
1055   // Do not hoist the instruction if any of its operands are defined but not
1056   // used in this BB. The transformation will prevent the operand from
1057   // being sunk into the use block.
1058   for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1059        i != e; ++i) {
1060     Instruction *OpI = dyn_cast<Instruction>(*i);
1061     if (OpI && OpI->getParent() == BIParent &&
1062         !OpI->isUsedInBasicBlock(BIParent))
1063       return false;
1064   }
1065 
1066   // If we get here, we can hoist the instruction. Try to place it
1067   // before the icmp instruction preceding the conditional branch.
1068   BasicBlock::iterator InsertPos = BI;
1069   if (InsertPos != BIParent->begin())
1070     --InsertPos;
1071   // Skip debug info between condition and branch.
1072   while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1073     --InsertPos;
1074   if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1075     SmallPtrSet<Instruction *, 4> BB1Insns;
1076     for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1077         BB1I != BB1E; ++BB1I)
1078       BB1Insns.insert(BB1I);
1079     for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1080         UI != UE; ++UI) {
1081       Instruction *Use = cast<Instruction>(*UI);
1082       if (!BB1Insns.count(Use)) continue;
1083 
1084       // If BrCond uses the instruction that place it just before
1085       // branch instruction.
1086       InsertPos = BI;
1087       break;
1088     }
1089   } else
1090     InsertPos = BI;
1091   BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1092 
1093   // Create a select whose true value is the speculatively executed value and
1094   // false value is the previously determined FalseV.
1095   IRBuilder<true, NoFolder> Builder(BI);
1096   SelectInst *SI;
1097   if (Invert)
1098     SI = cast<SelectInst>
1099       (Builder.CreateSelect(BrCond, FalseV, HInst,
1100                             FalseV->getName() + "." + HInst->getName()));
1101   else
1102     SI = cast<SelectInst>
1103       (Builder.CreateSelect(BrCond, HInst, FalseV,
1104                             HInst->getName() + "." + FalseV->getName()));
1105 
1106   // Make the PHI node use the select for all incoming values for "then" and
1107   // "if" blocks.
1108   for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1109     PHINode *PN = PHIUses[i];
1110     for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1111       if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1112         PN->setIncomingValue(j, SI);
1113   }
1114 
1115   ++NumSpeculations;
1116   return true;
1117 }
1118 
1119 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1120 /// across this block.
1121 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1122   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1123   unsigned Size = 0;
1124 
1125   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1126     if (isa<DbgInfoIntrinsic>(BBI))
1127       continue;
1128     if (Size > 10) return false;  // Don't clone large BB's.
1129     ++Size;
1130 
1131     // We can only support instructions that do not define values that are
1132     // live outside of the current basic block.
1133     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1134          UI != E; ++UI) {
1135       Instruction *U = cast<Instruction>(*UI);
1136       if (U->getParent() != BB || isa<PHINode>(U)) return false;
1137     }
1138 
1139     // Looks ok, continue checking.
1140   }
1141 
1142   return true;
1143 }
1144 
1145 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1146 /// that is defined in the same block as the branch and if any PHI entries are
1147 /// constants, thread edges corresponding to that entry to be branches to their
1148 /// ultimate destination.
1149 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1150   BasicBlock *BB = BI->getParent();
1151   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1152   // NOTE: we currently cannot transform this case if the PHI node is used
1153   // outside of the block.
1154   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1155     return false;
1156 
1157   // Degenerate case of a single entry PHI.
1158   if (PN->getNumIncomingValues() == 1) {
1159     FoldSingleEntryPHINodes(PN->getParent());
1160     return true;
1161   }
1162 
1163   // Now we know that this block has multiple preds and two succs.
1164   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1165 
1166   // Okay, this is a simple enough basic block.  See if any phi values are
1167   // constants.
1168   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1169     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1170     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1171 
1172     // Okay, we now know that all edges from PredBB should be revectored to
1173     // branch to RealDest.
1174     BasicBlock *PredBB = PN->getIncomingBlock(i);
1175     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1176 
1177     if (RealDest == BB) continue;  // Skip self loops.
1178     // Skip if the predecessor's terminator is an indirect branch.
1179     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1180 
1181     // The dest block might have PHI nodes, other predecessors and other
1182     // difficult cases.  Instead of being smart about this, just insert a new
1183     // block that jumps to the destination block, effectively splitting
1184     // the edge we are about to create.
1185     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1186                                             RealDest->getName()+".critedge",
1187                                             RealDest->getParent(), RealDest);
1188     BranchInst::Create(RealDest, EdgeBB);
1189 
1190     // Update PHI nodes.
1191     AddPredecessorToBlock(RealDest, EdgeBB, BB);
1192 
1193     // BB may have instructions that are being threaded over.  Clone these
1194     // instructions into EdgeBB.  We know that there will be no uses of the
1195     // cloned instructions outside of EdgeBB.
1196     BasicBlock::iterator InsertPt = EdgeBB->begin();
1197     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1198     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1199       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1200         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1201         continue;
1202       }
1203       // Clone the instruction.
1204       Instruction *N = BBI->clone();
1205       if (BBI->hasName()) N->setName(BBI->getName()+".c");
1206 
1207       // Update operands due to translation.
1208       for (User::op_iterator i = N->op_begin(), e = N->op_end();
1209            i != e; ++i) {
1210         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1211         if (PI != TranslateMap.end())
1212           *i = PI->second;
1213       }
1214 
1215       // Check for trivial simplification.
1216       if (Value *V = SimplifyInstruction(N, TD)) {
1217         TranslateMap[BBI] = V;
1218         delete N;   // Instruction folded away, don't need actual inst
1219       } else {
1220         // Insert the new instruction into its new home.
1221         EdgeBB->getInstList().insert(InsertPt, N);
1222         if (!BBI->use_empty())
1223           TranslateMap[BBI] = N;
1224       }
1225     }
1226 
1227     // Loop over all of the edges from PredBB to BB, changing them to branch
1228     // to EdgeBB instead.
1229     TerminatorInst *PredBBTI = PredBB->getTerminator();
1230     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1231       if (PredBBTI->getSuccessor(i) == BB) {
1232         BB->removePredecessor(PredBB);
1233         PredBBTI->setSuccessor(i, EdgeBB);
1234       }
1235 
1236     // Recurse, simplifying any other constants.
1237     return FoldCondBranchOnPHI(BI, TD) | true;
1238   }
1239 
1240   return false;
1241 }
1242 
1243 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1244 /// PHI node, see if we can eliminate it.
1245 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1246   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1247   // statement", which has a very simple dominance structure.  Basically, we
1248   // are trying to find the condition that is being branched on, which
1249   // subsequently causes this merge to happen.  We really want control
1250   // dependence information for this check, but simplifycfg can't keep it up
1251   // to date, and this catches most of the cases we care about anyway.
1252   BasicBlock *BB = PN->getParent();
1253   BasicBlock *IfTrue, *IfFalse;
1254   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1255   if (!IfCond ||
1256       // Don't bother if the branch will be constant folded trivially.
1257       isa<ConstantInt>(IfCond))
1258     return false;
1259 
1260   // Okay, we found that we can merge this two-entry phi node into a select.
1261   // Doing so would require us to fold *all* two entry phi nodes in this block.
1262   // At some point this becomes non-profitable (particularly if the target
1263   // doesn't support cmov's).  Only do this transformation if there are two or
1264   // fewer PHI nodes in this block.
1265   unsigned NumPhis = 0;
1266   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1267     if (NumPhis > 2)
1268       return false;
1269 
1270   // Loop over the PHI's seeing if we can promote them all to select
1271   // instructions.  While we are at it, keep track of the instructions
1272   // that need to be moved to the dominating block.
1273   SmallPtrSet<Instruction*, 4> AggressiveInsts;
1274   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1275            MaxCostVal1 = PHINodeFoldingThreshold;
1276 
1277   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1278     PHINode *PN = cast<PHINode>(II++);
1279     if (Value *V = SimplifyInstruction(PN, TD)) {
1280       PN->replaceAllUsesWith(V);
1281       PN->eraseFromParent();
1282       continue;
1283     }
1284 
1285     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1286                              MaxCostVal0) ||
1287         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1288                              MaxCostVal1))
1289       return false;
1290   }
1291 
1292   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1293   // we ran out of PHIs then we simplified them all.
1294   PN = dyn_cast<PHINode>(BB->begin());
1295   if (PN == 0) return true;
1296 
1297   // Don't fold i1 branches on PHIs which contain binary operators.  These can
1298   // often be turned into switches and other things.
1299   if (PN->getType()->isIntegerTy(1) &&
1300       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1301        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1302        isa<BinaryOperator>(IfCond)))
1303     return false;
1304 
1305   // If we all PHI nodes are promotable, check to make sure that all
1306   // instructions in the predecessor blocks can be promoted as well.  If
1307   // not, we won't be able to get rid of the control flow, so it's not
1308   // worth promoting to select instructions.
1309   BasicBlock *DomBlock = 0;
1310   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1311   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1312   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1313     IfBlock1 = 0;
1314   } else {
1315     DomBlock = *pred_begin(IfBlock1);
1316     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1317       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1318         // This is not an aggressive instruction that we can promote.
1319         // Because of this, we won't be able to get rid of the control
1320         // flow, so the xform is not worth it.
1321         return false;
1322       }
1323   }
1324 
1325   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1326     IfBlock2 = 0;
1327   } else {
1328     DomBlock = *pred_begin(IfBlock2);
1329     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1330       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1331         // This is not an aggressive instruction that we can promote.
1332         // Because of this, we won't be able to get rid of the control
1333         // flow, so the xform is not worth it.
1334         return false;
1335       }
1336   }
1337 
1338   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1339                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1340 
1341   // If we can still promote the PHI nodes after this gauntlet of tests,
1342   // do all of the PHI's now.
1343   Instruction *InsertPt = DomBlock->getTerminator();
1344   IRBuilder<true, NoFolder> Builder(InsertPt);
1345 
1346   // Move all 'aggressive' instructions, which are defined in the
1347   // conditional parts of the if's up to the dominating block.
1348   if (IfBlock1)
1349     DomBlock->getInstList().splice(InsertPt,
1350                                    IfBlock1->getInstList(), IfBlock1->begin(),
1351                                    IfBlock1->getTerminator());
1352   if (IfBlock2)
1353     DomBlock->getInstList().splice(InsertPt,
1354                                    IfBlock2->getInstList(), IfBlock2->begin(),
1355                                    IfBlock2->getTerminator());
1356 
1357   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1358     // Change the PHI node into a select instruction.
1359     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1360     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1361 
1362     SelectInst *NV =
1363       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1364     PN->replaceAllUsesWith(NV);
1365     NV->takeName(PN);
1366     PN->eraseFromParent();
1367   }
1368 
1369   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1370   // has been flattened.  Change DomBlock to jump directly to our new block to
1371   // avoid other simplifycfg's kicking in on the diamond.
1372   TerminatorInst *OldTI = DomBlock->getTerminator();
1373   Builder.SetInsertPoint(OldTI);
1374   Builder.CreateBr(BB);
1375   OldTI->eraseFromParent();
1376   return true;
1377 }
1378 
1379 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1380 /// to two returning blocks, try to merge them together into one return,
1381 /// introducing a select if the return values disagree.
1382 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1383                                            IRBuilder<> &Builder) {
1384   assert(BI->isConditional() && "Must be a conditional branch");
1385   BasicBlock *TrueSucc = BI->getSuccessor(0);
1386   BasicBlock *FalseSucc = BI->getSuccessor(1);
1387   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1388   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1389 
1390   // Check to ensure both blocks are empty (just a return) or optionally empty
1391   // with PHI nodes.  If there are other instructions, merging would cause extra
1392   // computation on one path or the other.
1393   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1394     return false;
1395   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1396     return false;
1397 
1398   Builder.SetInsertPoint(BI);
1399   // Okay, we found a branch that is going to two return nodes.  If
1400   // there is no return value for this function, just change the
1401   // branch into a return.
1402   if (FalseRet->getNumOperands() == 0) {
1403     TrueSucc->removePredecessor(BI->getParent());
1404     FalseSucc->removePredecessor(BI->getParent());
1405     Builder.CreateRetVoid();
1406     EraseTerminatorInstAndDCECond(BI);
1407     return true;
1408   }
1409 
1410   // Otherwise, figure out what the true and false return values are
1411   // so we can insert a new select instruction.
1412   Value *TrueValue = TrueRet->getReturnValue();
1413   Value *FalseValue = FalseRet->getReturnValue();
1414 
1415   // Unwrap any PHI nodes in the return blocks.
1416   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1417     if (TVPN->getParent() == TrueSucc)
1418       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1419   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1420     if (FVPN->getParent() == FalseSucc)
1421       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1422 
1423   // In order for this transformation to be safe, we must be able to
1424   // unconditionally execute both operands to the return.  This is
1425   // normally the case, but we could have a potentially-trapping
1426   // constant expression that prevents this transformation from being
1427   // safe.
1428   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1429     if (TCV->canTrap())
1430       return false;
1431   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1432     if (FCV->canTrap())
1433       return false;
1434 
1435   // Okay, we collected all the mapped values and checked them for sanity, and
1436   // defined to really do this transformation.  First, update the CFG.
1437   TrueSucc->removePredecessor(BI->getParent());
1438   FalseSucc->removePredecessor(BI->getParent());
1439 
1440   // Insert select instructions where needed.
1441   Value *BrCond = BI->getCondition();
1442   if (TrueValue) {
1443     // Insert a select if the results differ.
1444     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1445     } else if (isa<UndefValue>(TrueValue)) {
1446       TrueValue = FalseValue;
1447     } else {
1448       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1449                                        FalseValue, "retval");
1450     }
1451   }
1452 
1453   Value *RI = !TrueValue ?
1454     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1455 
1456   (void) RI;
1457 
1458   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1459                << "\n  " << *BI << "NewRet = " << *RI
1460                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1461 
1462   EraseTerminatorInstAndDCECond(BI);
1463 
1464   return true;
1465 }
1466 
1467 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1468 /// probabilities of the branch taking each edge. Fills in the two APInt
1469 /// parameters and return true, or returns false if no or invalid metadata was
1470 /// found.
1471 static bool ExtractBranchMetadata(BranchInst *BI,
1472                                   APInt &ProbTrue, APInt &ProbFalse) {
1473   assert(BI->isConditional() &&
1474          "Looking for probabilities on unconditional branch?");
1475   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1476   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1477   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1478   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1479   if (!CITrue || !CIFalse) return false;
1480   ProbTrue = CITrue->getValue();
1481   ProbFalse = CIFalse->getValue();
1482   assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1483          "Branch probability metadata must be 32-bit integers");
1484   return true;
1485 }
1486 
1487 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1488 /// predecessor branches to us and one of our successors, fold the block into
1489 /// the predecessor and use logical operations to pick the right destination.
1490 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1491   BasicBlock *BB = BI->getParent();
1492 
1493   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1494   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1495     Cond->getParent() != BB || !Cond->hasOneUse())
1496   return false;
1497 
1498   // Only allow this if the condition is a simple instruction that can be
1499   // executed unconditionally.  It must be in the same block as the branch, and
1500   // must be at the front of the block.
1501   BasicBlock::iterator FrontIt = BB->front();
1502 
1503   // Ignore dbg intrinsics.
1504   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1505 
1506   // Allow a single instruction to be hoisted in addition to the compare
1507   // that feeds the branch.  We later ensure that any values that _it_ uses
1508   // were also live in the predecessor, so that we don't unnecessarily create
1509   // register pressure or inhibit out-of-order execution.
1510   Instruction *BonusInst = 0;
1511   if (&*FrontIt != Cond &&
1512       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1513       isSafeToSpeculativelyExecute(FrontIt)) {
1514     BonusInst = &*FrontIt;
1515     ++FrontIt;
1516 
1517     // Ignore dbg intrinsics.
1518     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1519   }
1520 
1521   // Only a single bonus inst is allowed.
1522   if (&*FrontIt != Cond)
1523     return false;
1524 
1525   // Make sure the instruction after the condition is the cond branch.
1526   BasicBlock::iterator CondIt = Cond; ++CondIt;
1527 
1528   // Ingore dbg intrinsics.
1529   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1530 
1531   if (&*CondIt != BI)
1532     return false;
1533 
1534   // Cond is known to be a compare or binary operator.  Check to make sure that
1535   // neither operand is a potentially-trapping constant expression.
1536   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1537     if (CE->canTrap())
1538       return false;
1539   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1540     if (CE->canTrap())
1541       return false;
1542 
1543   // Finally, don't infinitely unroll conditional loops.
1544   BasicBlock *TrueDest  = BI->getSuccessor(0);
1545   BasicBlock *FalseDest = BI->getSuccessor(1);
1546   if (TrueDest == BB || FalseDest == BB)
1547     return false;
1548 
1549   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1550     BasicBlock *PredBlock = *PI;
1551     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1552 
1553     // Check that we have two conditional branches.  If there is a PHI node in
1554     // the common successor, verify that the same value flows in from both
1555     // blocks.
1556     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1557       continue;
1558 
1559     // Determine if the two branches share a common destination.
1560     Instruction::BinaryOps Opc;
1561     bool InvertPredCond = false;
1562 
1563     if (PBI->getSuccessor(0) == TrueDest)
1564       Opc = Instruction::Or;
1565     else if (PBI->getSuccessor(1) == FalseDest)
1566       Opc = Instruction::And;
1567     else if (PBI->getSuccessor(0) == FalseDest)
1568       Opc = Instruction::And, InvertPredCond = true;
1569     else if (PBI->getSuccessor(1) == TrueDest)
1570       Opc = Instruction::Or, InvertPredCond = true;
1571     else
1572       continue;
1573 
1574     // Ensure that any values used in the bonus instruction are also used
1575     // by the terminator of the predecessor.  This means that those values
1576     // must already have been resolved, so we won't be inhibiting the
1577     // out-of-order core by speculating them earlier.
1578     if (BonusInst) {
1579       // Collect the values used by the bonus inst
1580       SmallPtrSet<Value*, 4> UsedValues;
1581       for (Instruction::op_iterator OI = BonusInst->op_begin(),
1582            OE = BonusInst->op_end(); OI != OE; ++OI) {
1583         Value *V = *OI;
1584         if (!isa<Constant>(V))
1585           UsedValues.insert(V);
1586       }
1587 
1588       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1589       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1590 
1591       // Walk up to four levels back up the use-def chain of the predecessor's
1592       // terminator to see if all those values were used.  The choice of four
1593       // levels is arbitrary, to provide a compile-time-cost bound.
1594       while (!Worklist.empty()) {
1595         std::pair<Value*, unsigned> Pair = Worklist.back();
1596         Worklist.pop_back();
1597 
1598         if (Pair.second >= 4) continue;
1599         UsedValues.erase(Pair.first);
1600         if (UsedValues.empty()) break;
1601 
1602         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1603           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1604                OI != OE; ++OI)
1605             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1606         }
1607       }
1608 
1609       if (!UsedValues.empty()) return false;
1610     }
1611 
1612     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1613     IRBuilder<> Builder(PBI);
1614 
1615     // If we need to invert the condition in the pred block to match, do so now.
1616     if (InvertPredCond) {
1617       Value *NewCond = PBI->getCondition();
1618 
1619       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1620         CmpInst *CI = cast<CmpInst>(NewCond);
1621         CI->setPredicate(CI->getInversePredicate());
1622       } else {
1623         NewCond = Builder.CreateNot(NewCond,
1624                                     PBI->getCondition()->getName()+".not");
1625       }
1626 
1627       PBI->setCondition(NewCond);
1628       PBI->swapSuccessors();
1629     }
1630 
1631     // If we have a bonus inst, clone it into the predecessor block.
1632     Instruction *NewBonus = 0;
1633     if (BonusInst) {
1634       NewBonus = BonusInst->clone();
1635       PredBlock->getInstList().insert(PBI, NewBonus);
1636       NewBonus->takeName(BonusInst);
1637       BonusInst->setName(BonusInst->getName()+".old");
1638     }
1639 
1640     // Clone Cond into the predecessor basic block, and or/and the
1641     // two conditions together.
1642     Instruction *New = Cond->clone();
1643     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1644     PredBlock->getInstList().insert(PBI, New);
1645     New->takeName(Cond);
1646     Cond->setName(New->getName()+".old");
1647 
1648     Instruction *NewCond =
1649       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1650                                             New, "or.cond"));
1651     PBI->setCondition(NewCond);
1652     if (PBI->getSuccessor(0) == BB) {
1653       AddPredecessorToBlock(TrueDest, PredBlock, BB);
1654       PBI->setSuccessor(0, TrueDest);
1655     }
1656     if (PBI->getSuccessor(1) == BB) {
1657       AddPredecessorToBlock(FalseDest, PredBlock, BB);
1658       PBI->setSuccessor(1, FalseDest);
1659     }
1660 
1661     // TODO: If BB is reachable from all paths through PredBlock, then we
1662     // could replace PBI's branch probabilities with BI's.
1663 
1664     // Merge probability data into PredBlock's branch.
1665     APInt A, B, C, D;
1666     if (ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1667       // Given IR which does:
1668       //   bbA:
1669       //     br i1 %x, label %bbB, label %bbC
1670       //   bbB:
1671       //     br i1 %y, label %bbD, label %bbC
1672       // Let's call the probability that we take the edge from %bbA to %bbB
1673       // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1674       // %bbC probability 'd'.
1675       //
1676       // We transform the IR into:
1677       //   bbA:
1678       //     br i1 %z, label %bbD, label %bbC
1679       // where the probability of going to %bbD is (a*c) and going to bbC is
1680       // (b+a*d).
1681       //
1682       // Probabilities aren't stored as ratios directly. Using branch weights,
1683       // we get:
1684       // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
1685 
1686       bool Overflow1 = false, Overflow2 = false, Overflow3 = false;
1687       bool Overflow4 = false, Overflow5 = false, Overflow6 = false;
1688       APInt ProbTrue = A.umul_ov(C, Overflow1);
1689 
1690       APInt Tmp1 = A.umul_ov(D, Overflow2);
1691       APInt Tmp2 = B.umul_ov(C, Overflow3);
1692       APInt Tmp3 = B.umul_ov(D, Overflow4);
1693       APInt Tmp4 = Tmp1.uadd_ov(Tmp2, Overflow5);
1694       APInt ProbFalse = Tmp4.uadd_ov(Tmp3, Overflow6);
1695 
1696       APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
1697       ProbTrue = ProbTrue.udiv(GCD);
1698       ProbFalse = ProbFalse.udiv(GCD);
1699 
1700       if (Overflow1 || Overflow2 || Overflow3 || Overflow4 || Overflow5 ||
1701           Overflow6) {
1702         DEBUG(dbgs() << "Overflow recomputing branch weight on: " << *PBI
1703                      << "when merging with: " << *BI);
1704         PBI->setMetadata(LLVMContext::MD_prof, NULL);
1705       } else {
1706         LLVMContext &Context = BI->getContext();
1707         Value *Ops[3];
1708         Ops[0] = BI->getMetadata(LLVMContext::MD_prof)->getOperand(0);
1709         Ops[1] = ConstantInt::get(Context, ProbTrue);
1710         Ops[2] = ConstantInt::get(Context, ProbFalse);
1711         PBI->setMetadata(LLVMContext::MD_prof, MDNode::get(Context, Ops));
1712       }
1713     } else {
1714       PBI->setMetadata(LLVMContext::MD_prof, NULL);
1715     }
1716 
1717     // Copy any debug value intrinsics into the end of PredBlock.
1718     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1719       if (isa<DbgInfoIntrinsic>(*I))
1720         I->clone()->insertBefore(PBI);
1721 
1722     return true;
1723   }
1724   return false;
1725 }
1726 
1727 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1728 /// predecessor of another block, this function tries to simplify it.  We know
1729 /// that PBI and BI are both conditional branches, and BI is in one of the
1730 /// successor blocks of PBI - PBI branches to BI.
1731 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1732   assert(PBI->isConditional() && BI->isConditional());
1733   BasicBlock *BB = BI->getParent();
1734 
1735   // If this block ends with a branch instruction, and if there is a
1736   // predecessor that ends on a branch of the same condition, make
1737   // this conditional branch redundant.
1738   if (PBI->getCondition() == BI->getCondition() &&
1739       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1740     // Okay, the outcome of this conditional branch is statically
1741     // knowable.  If this block had a single pred, handle specially.
1742     if (BB->getSinglePredecessor()) {
1743       // Turn this into a branch on constant.
1744       bool CondIsTrue = PBI->getSuccessor(0) == BB;
1745       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1746                                         CondIsTrue));
1747       return true;  // Nuke the branch on constant.
1748     }
1749 
1750     // Otherwise, if there are multiple predecessors, insert a PHI that merges
1751     // in the constant and simplify the block result.  Subsequent passes of
1752     // simplifycfg will thread the block.
1753     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1754       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1755       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1756                                        std::distance(PB, PE),
1757                                        BI->getCondition()->getName() + ".pr",
1758                                        BB->begin());
1759       // Okay, we're going to insert the PHI node.  Since PBI is not the only
1760       // predecessor, compute the PHI'd conditional value for all of the preds.
1761       // Any predecessor where the condition is not computable we keep symbolic.
1762       for (pred_iterator PI = PB; PI != PE; ++PI) {
1763         BasicBlock *P = *PI;
1764         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1765             PBI != BI && PBI->isConditional() &&
1766             PBI->getCondition() == BI->getCondition() &&
1767             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1768           bool CondIsTrue = PBI->getSuccessor(0) == BB;
1769           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1770                                               CondIsTrue), P);
1771         } else {
1772           NewPN->addIncoming(BI->getCondition(), P);
1773         }
1774       }
1775 
1776       BI->setCondition(NewPN);
1777       return true;
1778     }
1779   }
1780 
1781   // If this is a conditional branch in an empty block, and if any
1782   // predecessors is a conditional branch to one of our destinations,
1783   // fold the conditions into logical ops and one cond br.
1784   BasicBlock::iterator BBI = BB->begin();
1785   // Ignore dbg intrinsics.
1786   while (isa<DbgInfoIntrinsic>(BBI))
1787     ++BBI;
1788   if (&*BBI != BI)
1789     return false;
1790 
1791 
1792   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1793     if (CE->canTrap())
1794       return false;
1795 
1796   int PBIOp, BIOp;
1797   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1798     PBIOp = BIOp = 0;
1799   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1800     PBIOp = 0, BIOp = 1;
1801   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1802     PBIOp = 1, BIOp = 0;
1803   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1804     PBIOp = BIOp = 1;
1805   else
1806     return false;
1807 
1808   // Check to make sure that the other destination of this branch
1809   // isn't BB itself.  If so, this is an infinite loop that will
1810   // keep getting unwound.
1811   if (PBI->getSuccessor(PBIOp) == BB)
1812     return false;
1813 
1814   // Do not perform this transformation if it would require
1815   // insertion of a large number of select instructions. For targets
1816   // without predication/cmovs, this is a big pessimization.
1817   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1818 
1819   unsigned NumPhis = 0;
1820   for (BasicBlock::iterator II = CommonDest->begin();
1821        isa<PHINode>(II); ++II, ++NumPhis)
1822     if (NumPhis > 2) // Disable this xform.
1823       return false;
1824 
1825   // Finally, if everything is ok, fold the branches to logical ops.
1826   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1827 
1828   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1829                << "AND: " << *BI->getParent());
1830 
1831 
1832   // If OtherDest *is* BB, then BB is a basic block with a single conditional
1833   // branch in it, where one edge (OtherDest) goes back to itself but the other
1834   // exits.  We don't *know* that the program avoids the infinite loop
1835   // (even though that seems likely).  If we do this xform naively, we'll end up
1836   // recursively unpeeling the loop.  Since we know that (after the xform is
1837   // done) that the block *is* infinite if reached, we just make it an obviously
1838   // infinite loop with no cond branch.
1839   if (OtherDest == BB) {
1840     // Insert it at the end of the function, because it's either code,
1841     // or it won't matter if it's hot. :)
1842     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1843                                                   "infloop", BB->getParent());
1844     BranchInst::Create(InfLoopBlock, InfLoopBlock);
1845     OtherDest = InfLoopBlock;
1846   }
1847 
1848   DEBUG(dbgs() << *PBI->getParent()->getParent());
1849 
1850   // BI may have other predecessors.  Because of this, we leave
1851   // it alone, but modify PBI.
1852 
1853   // Make sure we get to CommonDest on True&True directions.
1854   Value *PBICond = PBI->getCondition();
1855   IRBuilder<true, NoFolder> Builder(PBI);
1856   if (PBIOp)
1857     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1858 
1859   Value *BICond = BI->getCondition();
1860   if (BIOp)
1861     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1862 
1863   // Merge the conditions.
1864   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1865 
1866   // Modify PBI to branch on the new condition to the new dests.
1867   PBI->setCondition(Cond);
1868   PBI->setSuccessor(0, CommonDest);
1869   PBI->setSuccessor(1, OtherDest);
1870 
1871   // OtherDest may have phi nodes.  If so, add an entry from PBI's
1872   // block that are identical to the entries for BI's block.
1873   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1874 
1875   // We know that the CommonDest already had an edge from PBI to
1876   // it.  If it has PHIs though, the PHIs may have different
1877   // entries for BB and PBI's BB.  If so, insert a select to make
1878   // them agree.
1879   PHINode *PN;
1880   for (BasicBlock::iterator II = CommonDest->begin();
1881        (PN = dyn_cast<PHINode>(II)); ++II) {
1882     Value *BIV = PN->getIncomingValueForBlock(BB);
1883     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1884     Value *PBIV = PN->getIncomingValue(PBBIdx);
1885     if (BIV != PBIV) {
1886       // Insert a select in PBI to pick the right value.
1887       Value *NV = cast<SelectInst>
1888         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1889       PN->setIncomingValue(PBBIdx, NV);
1890     }
1891   }
1892 
1893   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1894   DEBUG(dbgs() << *PBI->getParent()->getParent());
1895 
1896   // This basic block is probably dead.  We know it has at least
1897   // one fewer predecessor.
1898   return true;
1899 }
1900 
1901 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1902 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1903 // Takes care of updating the successors and removing the old terminator.
1904 // Also makes sure not to introduce new successors by assuming that edges to
1905 // non-successor TrueBBs and FalseBBs aren't reachable.
1906 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1907                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
1908   // Remove any superfluous successor edges from the CFG.
1909   // First, figure out which successors to preserve.
1910   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1911   // successor.
1912   BasicBlock *KeepEdge1 = TrueBB;
1913   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1914 
1915   // Then remove the rest.
1916   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1917     BasicBlock *Succ = OldTerm->getSuccessor(I);
1918     // Make sure only to keep exactly one copy of each edge.
1919     if (Succ == KeepEdge1)
1920       KeepEdge1 = 0;
1921     else if (Succ == KeepEdge2)
1922       KeepEdge2 = 0;
1923     else
1924       Succ->removePredecessor(OldTerm->getParent());
1925   }
1926 
1927   IRBuilder<> Builder(OldTerm);
1928   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1929 
1930   // Insert an appropriate new terminator.
1931   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1932     if (TrueBB == FalseBB)
1933       // We were only looking for one successor, and it was present.
1934       // Create an unconditional branch to it.
1935       Builder.CreateBr(TrueBB);
1936     else
1937       // We found both of the successors we were looking for.
1938       // Create a conditional branch sharing the condition of the select.
1939       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1940   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1941     // Neither of the selected blocks were successors, so this
1942     // terminator must be unreachable.
1943     new UnreachableInst(OldTerm->getContext(), OldTerm);
1944   } else {
1945     // One of the selected values was a successor, but the other wasn't.
1946     // Insert an unconditional branch to the one that was found;
1947     // the edge to the one that wasn't must be unreachable.
1948     if (KeepEdge1 == 0)
1949       // Only TrueBB was found.
1950       Builder.CreateBr(TrueBB);
1951     else
1952       // Only FalseBB was found.
1953       Builder.CreateBr(FalseBB);
1954   }
1955 
1956   EraseTerminatorInstAndDCECond(OldTerm);
1957   return true;
1958 }
1959 
1960 // SimplifySwitchOnSelect - Replaces
1961 //   (switch (select cond, X, Y)) on constant X, Y
1962 // with a branch - conditional if X and Y lead to distinct BBs,
1963 // unconditional otherwise.
1964 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1965   // Check for constant integer values in the select.
1966   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1967   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1968   if (!TrueVal || !FalseVal)
1969     return false;
1970 
1971   // Find the relevant condition and destinations.
1972   Value *Condition = Select->getCondition();
1973   BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1974   BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1975 
1976   // Perform the actual simplification.
1977   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1978 }
1979 
1980 // SimplifyIndirectBrOnSelect - Replaces
1981 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
1982 //                             blockaddress(@fn, BlockB)))
1983 // with
1984 //   (br cond, BlockA, BlockB).
1985 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1986   // Check that both operands of the select are block addresses.
1987   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1988   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1989   if (!TBA || !FBA)
1990     return false;
1991 
1992   // Extract the actual blocks.
1993   BasicBlock *TrueBB = TBA->getBasicBlock();
1994   BasicBlock *FalseBB = FBA->getBasicBlock();
1995 
1996   // Perform the actual simplification.
1997   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1998 }
1999 
2000 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2001 /// instruction (a seteq/setne with a constant) as the only instruction in a
2002 /// block that ends with an uncond branch.  We are looking for a very specific
2003 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2004 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2005 /// default value goes to an uncond block with a seteq in it, we get something
2006 /// like:
2007 ///
2008 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2009 /// DEFAULT:
2010 ///   %tmp = icmp eq i8 %A, 92
2011 ///   br label %end
2012 /// end:
2013 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2014 ///
2015 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2016 /// the PHI, merging the third icmp into the switch.
2017 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2018                                                   const TargetData *TD,
2019                                                   IRBuilder<> &Builder) {
2020   BasicBlock *BB = ICI->getParent();
2021 
2022   // If the block has any PHIs in it or the icmp has multiple uses, it is too
2023   // complex.
2024   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2025 
2026   Value *V = ICI->getOperand(0);
2027   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2028 
2029   // The pattern we're looking for is where our only predecessor is a switch on
2030   // 'V' and this block is the default case for the switch.  In this case we can
2031   // fold the compared value into the switch to simplify things.
2032   BasicBlock *Pred = BB->getSinglePredecessor();
2033   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2034 
2035   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2036   if (SI->getCondition() != V)
2037     return false;
2038 
2039   // If BB is reachable on a non-default case, then we simply know the value of
2040   // V in this block.  Substitute it and constant fold the icmp instruction
2041   // away.
2042   if (SI->getDefaultDest() != BB) {
2043     ConstantInt *VVal = SI->findCaseDest(BB);
2044     assert(VVal && "Should have a unique destination value");
2045     ICI->setOperand(0, VVal);
2046 
2047     if (Value *V = SimplifyInstruction(ICI, TD)) {
2048       ICI->replaceAllUsesWith(V);
2049       ICI->eraseFromParent();
2050     }
2051     // BB is now empty, so it is likely to simplify away.
2052     return SimplifyCFG(BB) | true;
2053   }
2054 
2055   // Ok, the block is reachable from the default dest.  If the constant we're
2056   // comparing exists in one of the other edges, then we can constant fold ICI
2057   // and zap it.
2058   if (SI->findCaseValue(Cst) != 0) {
2059     Value *V;
2060     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2061       V = ConstantInt::getFalse(BB->getContext());
2062     else
2063       V = ConstantInt::getTrue(BB->getContext());
2064 
2065     ICI->replaceAllUsesWith(V);
2066     ICI->eraseFromParent();
2067     // BB is now empty, so it is likely to simplify away.
2068     return SimplifyCFG(BB) | true;
2069   }
2070 
2071   // The use of the icmp has to be in the 'end' block, by the only PHI node in
2072   // the block.
2073   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2074   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2075   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2076       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2077     return false;
2078 
2079   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2080   // true in the PHI.
2081   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2082   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2083 
2084   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2085     std::swap(DefaultCst, NewCst);
2086 
2087   // Replace ICI (which is used by the PHI for the default value) with true or
2088   // false depending on if it is EQ or NE.
2089   ICI->replaceAllUsesWith(DefaultCst);
2090   ICI->eraseFromParent();
2091 
2092   // Okay, the switch goes to this block on a default value.  Add an edge from
2093   // the switch to the merge point on the compared value.
2094   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2095                                          BB->getParent(), BB);
2096   SI->addCase(Cst, NewBB);
2097 
2098   // NewBB branches to the phi block, add the uncond branch and the phi entry.
2099   Builder.SetInsertPoint(NewBB);
2100   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2101   Builder.CreateBr(SuccBlock);
2102   PHIUse->addIncoming(NewCst, NewBB);
2103   return true;
2104 }
2105 
2106 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2107 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2108 /// fold it into a switch instruction if so.
2109 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2110                                       IRBuilder<> &Builder) {
2111   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2112   if (Cond == 0) return false;
2113 
2114 
2115   // Change br (X == 0 | X == 1), T, F into a switch instruction.
2116   // If this is a bunch of seteq's or'd together, or if it's a bunch of
2117   // 'setne's and'ed together, collect them.
2118   Value *CompVal = 0;
2119   std::vector<ConstantInt*> Values;
2120   bool TrueWhenEqual = true;
2121   Value *ExtraCase = 0;
2122   unsigned UsedICmps = 0;
2123 
2124   if (Cond->getOpcode() == Instruction::Or) {
2125     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2126                                      UsedICmps);
2127   } else if (Cond->getOpcode() == Instruction::And) {
2128     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2129                                      UsedICmps);
2130     TrueWhenEqual = false;
2131   }
2132 
2133   // If we didn't have a multiply compared value, fail.
2134   if (CompVal == 0) return false;
2135 
2136   // Avoid turning single icmps into a switch.
2137   if (UsedICmps <= 1)
2138     return false;
2139 
2140   // There might be duplicate constants in the list, which the switch
2141   // instruction can't handle, remove them now.
2142   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2143   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2144 
2145   // If Extra was used, we require at least two switch values to do the
2146   // transformation.  A switch with one value is just an cond branch.
2147   if (ExtraCase && Values.size() < 2) return false;
2148 
2149   // Figure out which block is which destination.
2150   BasicBlock *DefaultBB = BI->getSuccessor(1);
2151   BasicBlock *EdgeBB    = BI->getSuccessor(0);
2152   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2153 
2154   BasicBlock *BB = BI->getParent();
2155 
2156   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2157                << " cases into SWITCH.  BB is:\n" << *BB);
2158 
2159   // If there are any extra values that couldn't be folded into the switch
2160   // then we evaluate them with an explicit branch first.  Split the block
2161   // right before the condbr to handle it.
2162   if (ExtraCase) {
2163     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2164     // Remove the uncond branch added to the old block.
2165     TerminatorInst *OldTI = BB->getTerminator();
2166     Builder.SetInsertPoint(OldTI);
2167 
2168     if (TrueWhenEqual)
2169       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2170     else
2171       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2172 
2173     OldTI->eraseFromParent();
2174 
2175     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2176     // for the edge we just added.
2177     AddPredecessorToBlock(EdgeBB, BB, NewBB);
2178 
2179     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2180           << "\nEXTRABB = " << *BB);
2181     BB = NewBB;
2182   }
2183 
2184   Builder.SetInsertPoint(BI);
2185   // Convert pointer to int before we switch.
2186   if (CompVal->getType()->isPointerTy()) {
2187     assert(TD && "Cannot switch on pointer without TargetData");
2188     CompVal = Builder.CreatePtrToInt(CompVal,
2189                                      TD->getIntPtrType(CompVal->getContext()),
2190                                      "magicptr");
2191   }
2192 
2193   // Create the new switch instruction now.
2194   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2195 
2196   // Add all of the 'cases' to the switch instruction.
2197   for (unsigned i = 0, e = Values.size(); i != e; ++i)
2198     New->addCase(Values[i], EdgeBB);
2199 
2200   // We added edges from PI to the EdgeBB.  As such, if there were any
2201   // PHI nodes in EdgeBB, they need entries to be added corresponding to
2202   // the number of edges added.
2203   for (BasicBlock::iterator BBI = EdgeBB->begin();
2204        isa<PHINode>(BBI); ++BBI) {
2205     PHINode *PN = cast<PHINode>(BBI);
2206     Value *InVal = PN->getIncomingValueForBlock(BB);
2207     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2208       PN->addIncoming(InVal, BB);
2209   }
2210 
2211   // Erase the old branch instruction.
2212   EraseTerminatorInstAndDCECond(BI);
2213 
2214   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2215   return true;
2216 }
2217 
2218 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2219   // If this is a trivial landing pad that just continues unwinding the caught
2220   // exception then zap the landing pad, turning its invokes into calls.
2221   BasicBlock *BB = RI->getParent();
2222   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2223   if (RI->getValue() != LPInst)
2224     // Not a landing pad, or the resume is not unwinding the exception that
2225     // caused control to branch here.
2226     return false;
2227 
2228   // Check that there are no other instructions except for debug intrinsics.
2229   BasicBlock::iterator I = LPInst, E = RI;
2230   while (++I != E)
2231     if (!isa<DbgInfoIntrinsic>(I))
2232       return false;
2233 
2234   // Turn all invokes that unwind here into calls and delete the basic block.
2235   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2236     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2237     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2238     // Insert a call instruction before the invoke.
2239     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2240     Call->takeName(II);
2241     Call->setCallingConv(II->getCallingConv());
2242     Call->setAttributes(II->getAttributes());
2243     Call->setDebugLoc(II->getDebugLoc());
2244 
2245     // Anything that used the value produced by the invoke instruction now uses
2246     // the value produced by the call instruction.  Note that we do this even
2247     // for void functions and calls with no uses so that the callgraph edge is
2248     // updated.
2249     II->replaceAllUsesWith(Call);
2250     BB->removePredecessor(II->getParent());
2251 
2252     // Insert a branch to the normal destination right before the invoke.
2253     BranchInst::Create(II->getNormalDest(), II);
2254 
2255     // Finally, delete the invoke instruction!
2256     II->eraseFromParent();
2257   }
2258 
2259   // The landingpad is now unreachable.  Zap it.
2260   BB->eraseFromParent();
2261   return true;
2262 }
2263 
2264 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2265   BasicBlock *BB = RI->getParent();
2266   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2267 
2268   // Find predecessors that end with branches.
2269   SmallVector<BasicBlock*, 8> UncondBranchPreds;
2270   SmallVector<BranchInst*, 8> CondBranchPreds;
2271   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2272     BasicBlock *P = *PI;
2273     TerminatorInst *PTI = P->getTerminator();
2274     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2275       if (BI->isUnconditional())
2276         UncondBranchPreds.push_back(P);
2277       else
2278         CondBranchPreds.push_back(BI);
2279     }
2280   }
2281 
2282   // If we found some, do the transformation!
2283   if (!UncondBranchPreds.empty() && DupRet) {
2284     while (!UncondBranchPreds.empty()) {
2285       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2286       DEBUG(dbgs() << "FOLDING: " << *BB
2287             << "INTO UNCOND BRANCH PRED: " << *Pred);
2288       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2289     }
2290 
2291     // If we eliminated all predecessors of the block, delete the block now.
2292     if (pred_begin(BB) == pred_end(BB))
2293       // We know there are no successors, so just nuke the block.
2294       BB->eraseFromParent();
2295 
2296     return true;
2297   }
2298 
2299   // Check out all of the conditional branches going to this return
2300   // instruction.  If any of them just select between returns, change the
2301   // branch itself into a select/return pair.
2302   while (!CondBranchPreds.empty()) {
2303     BranchInst *BI = CondBranchPreds.pop_back_val();
2304 
2305     // Check to see if the non-BB successor is also a return block.
2306     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2307         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2308         SimplifyCondBranchToTwoReturns(BI, Builder))
2309       return true;
2310   }
2311   return false;
2312 }
2313 
2314 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2315   // Check to see if the first instruction in this block is just an unwind.
2316   // If so, replace any invoke instructions which use this as an exception
2317   // destination with call instructions.
2318   BasicBlock *BB = UI->getParent();
2319   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2320 
2321   bool Changed = false;
2322   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2323   while (!Preds.empty()) {
2324     BasicBlock *Pred = Preds.back();
2325     InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2326     if (II && II->getUnwindDest() == BB) {
2327       // Insert a new branch instruction before the invoke, because this
2328       // is now a fall through.
2329       Builder.SetInsertPoint(II);
2330       BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2331       Pred->getInstList().remove(II);   // Take out of symbol table
2332 
2333       // Insert the call now.
2334       SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2335       Builder.SetInsertPoint(BI);
2336       CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2337                                         Args, II->getName());
2338       CI->setCallingConv(II->getCallingConv());
2339       CI->setAttributes(II->getAttributes());
2340       // If the invoke produced a value, the Call now does instead.
2341       II->replaceAllUsesWith(CI);
2342       delete II;
2343       Changed = true;
2344     }
2345 
2346     Preds.pop_back();
2347   }
2348 
2349   // If this block is now dead (and isn't the entry block), remove it.
2350   if (pred_begin(BB) == pred_end(BB) &&
2351       BB != &BB->getParent()->getEntryBlock()) {
2352     // We know there are no successors, so just nuke the block.
2353     BB->eraseFromParent();
2354     return true;
2355   }
2356 
2357   return Changed;
2358 }
2359 
2360 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2361   BasicBlock *BB = UI->getParent();
2362 
2363   bool Changed = false;
2364 
2365   // If there are any instructions immediately before the unreachable that can
2366   // be removed, do so.
2367   while (UI != BB->begin()) {
2368     BasicBlock::iterator BBI = UI;
2369     --BBI;
2370     // Do not delete instructions that can have side effects which might cause
2371     // the unreachable to not be reachable; specifically, calls and volatile
2372     // operations may have this effect.
2373     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2374 
2375     if (BBI->mayHaveSideEffects()) {
2376       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2377         if (SI->isVolatile())
2378           break;
2379       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2380         if (LI->isVolatile())
2381           break;
2382       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2383         if (RMWI->isVolatile())
2384           break;
2385       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2386         if (CXI->isVolatile())
2387           break;
2388       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2389                  !isa<LandingPadInst>(BBI)) {
2390         break;
2391       }
2392       // Note that deleting LandingPad's here is in fact okay, although it
2393       // involves a bit of subtle reasoning. If this inst is a LandingPad,
2394       // all the predecessors of this block will be the unwind edges of Invokes,
2395       // and we can therefore guarantee this block will be erased.
2396     }
2397 
2398     // Delete this instruction (any uses are guaranteed to be dead)
2399     if (!BBI->use_empty())
2400       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2401     BBI->eraseFromParent();
2402     Changed = true;
2403   }
2404 
2405   // If the unreachable instruction is the first in the block, take a gander
2406   // at all of the predecessors of this instruction, and simplify them.
2407   if (&BB->front() != UI) return Changed;
2408 
2409   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2410   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2411     TerminatorInst *TI = Preds[i]->getTerminator();
2412     IRBuilder<> Builder(TI);
2413     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2414       if (BI->isUnconditional()) {
2415         if (BI->getSuccessor(0) == BB) {
2416           new UnreachableInst(TI->getContext(), TI);
2417           TI->eraseFromParent();
2418           Changed = true;
2419         }
2420       } else {
2421         if (BI->getSuccessor(0) == BB) {
2422           Builder.CreateBr(BI->getSuccessor(1));
2423           EraseTerminatorInstAndDCECond(BI);
2424         } else if (BI->getSuccessor(1) == BB) {
2425           Builder.CreateBr(BI->getSuccessor(0));
2426           EraseTerminatorInstAndDCECond(BI);
2427           Changed = true;
2428         }
2429       }
2430     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2431       for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2432         if (SI->getSuccessor(i) == BB) {
2433           BB->removePredecessor(SI->getParent());
2434           SI->removeCase(i);
2435           --i; --e;
2436           Changed = true;
2437         }
2438       // If the default value is unreachable, figure out the most popular
2439       // destination and make it the default.
2440       if (SI->getSuccessor(0) == BB) {
2441         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2442         for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2443           std::pair<unsigned, unsigned> &entry =
2444               Popularity[SI->getSuccessor(i)];
2445           if (entry.first == 0) {
2446             entry.first = 1;
2447             entry.second = i;
2448           } else {
2449             entry.first++;
2450           }
2451         }
2452 
2453         // Find the most popular block.
2454         unsigned MaxPop = 0;
2455         unsigned MaxIndex = 0;
2456         BasicBlock *MaxBlock = 0;
2457         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2458              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2459           if (I->second.first > MaxPop ||
2460               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2461             MaxPop = I->second.first;
2462             MaxIndex = I->second.second;
2463             MaxBlock = I->first;
2464           }
2465         }
2466         if (MaxBlock) {
2467           // Make this the new default, allowing us to delete any explicit
2468           // edges to it.
2469           SI->setSuccessor(0, MaxBlock);
2470           Changed = true;
2471 
2472           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2473           // it.
2474           if (isa<PHINode>(MaxBlock->begin()))
2475             for (unsigned i = 0; i != MaxPop-1; ++i)
2476               MaxBlock->removePredecessor(SI->getParent());
2477 
2478           for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2479             if (SI->getSuccessor(i) == MaxBlock) {
2480               SI->removeCase(i);
2481               --i; --e;
2482             }
2483         }
2484       }
2485     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2486       if (II->getUnwindDest() == BB) {
2487         // Convert the invoke to a call instruction.  This would be a good
2488         // place to note that the call does not throw though.
2489         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2490         II->removeFromParent();   // Take out of symbol table
2491 
2492         // Insert the call now...
2493         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2494         Builder.SetInsertPoint(BI);
2495         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2496                                           Args, II->getName());
2497         CI->setCallingConv(II->getCallingConv());
2498         CI->setAttributes(II->getAttributes());
2499         // If the invoke produced a value, the call does now instead.
2500         II->replaceAllUsesWith(CI);
2501         delete II;
2502         Changed = true;
2503       }
2504     }
2505   }
2506 
2507   // If this block is now dead, remove it.
2508   if (pred_begin(BB) == pred_end(BB) &&
2509       BB != &BB->getParent()->getEntryBlock()) {
2510     // We know there are no successors, so just nuke the block.
2511     BB->eraseFromParent();
2512     return true;
2513   }
2514 
2515   return Changed;
2516 }
2517 
2518 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2519 /// integer range comparison into a sub, an icmp and a branch.
2520 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2521   assert(SI->getNumCases() > 2 && "Degenerate switch?");
2522 
2523   // Make sure all cases point to the same destination and gather the values.
2524   SmallVector<ConstantInt *, 16> Cases;
2525   Cases.push_back(SI->getCaseValue(1));
2526   for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2527     if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2528       return false;
2529     Cases.push_back(SI->getCaseValue(I));
2530   }
2531   assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2532 
2533   // Sort the case values, then check if they form a range we can transform.
2534   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2535   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2536     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2537       return false;
2538   }
2539 
2540   Constant *Offset = ConstantExpr::getNeg(Cases.back());
2541   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2542 
2543   Value *Sub = SI->getCondition();
2544   if (!Offset->isNullValue())
2545     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2546   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2547   Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2548 
2549   // Prune obsolete incoming values off the successor's PHI nodes.
2550   for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2551        isa<PHINode>(BBI); ++BBI) {
2552     for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2553       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2554   }
2555   SI->eraseFromParent();
2556 
2557   return true;
2558 }
2559 
2560 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2561 /// and use it to remove dead cases.
2562 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2563   Value *Cond = SI->getCondition();
2564   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2565   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2566   ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2567 
2568   // Gather dead cases.
2569   SmallVector<ConstantInt*, 8> DeadCases;
2570   for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2571     if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2572         (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2573       DeadCases.push_back(SI->getCaseValue(I));
2574       DEBUG(dbgs() << "SimplifyCFG: switch case '"
2575                    << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2576     }
2577   }
2578 
2579   // Remove dead cases from the switch.
2580   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2581     unsigned Case = SI->findCaseValue(DeadCases[I]);
2582     // Prune unused values from PHI nodes.
2583     SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2584     SI->removeCase(Case);
2585   }
2586 
2587   return !DeadCases.empty();
2588 }
2589 
2590 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2591 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2592 /// by an unconditional branch), look at the phi node for BB in the successor
2593 /// block and see if the incoming value is equal to CaseValue. If so, return
2594 /// the phi node, and set PhiIndex to BB's index in the phi node.
2595 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2596                                               BasicBlock *BB,
2597                                               int *PhiIndex) {
2598   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2599     return NULL; // BB must be empty to be a candidate for simplification.
2600   if (!BB->getSinglePredecessor())
2601     return NULL; // BB must be dominated by the switch.
2602 
2603   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2604   if (!Branch || !Branch->isUnconditional())
2605     return NULL; // Terminator must be unconditional branch.
2606 
2607   BasicBlock *Succ = Branch->getSuccessor(0);
2608 
2609   BasicBlock::iterator I = Succ->begin();
2610   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2611     int Idx = PHI->getBasicBlockIndex(BB);
2612     assert(Idx >= 0 && "PHI has no entry for predecessor?");
2613 
2614     Value *InValue = PHI->getIncomingValue(Idx);
2615     if (InValue != CaseValue) continue;
2616 
2617     *PhiIndex = Idx;
2618     return PHI;
2619   }
2620 
2621   return NULL;
2622 }
2623 
2624 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2625 /// instruction to a phi node dominated by the switch, if that would mean that
2626 /// some of the destination blocks of the switch can be folded away.
2627 /// Returns true if a change is made.
2628 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2629   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2630   ForwardingNodesMap ForwardingNodes;
2631 
2632   for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
2633     ConstantInt *CaseValue = SI->getCaseValue(I);
2634     BasicBlock *CaseDest = SI->getSuccessor(I);
2635 
2636     int PhiIndex;
2637     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2638                                                  &PhiIndex);
2639     if (!PHI) continue;
2640 
2641     ForwardingNodes[PHI].push_back(PhiIndex);
2642   }
2643 
2644   bool Changed = false;
2645 
2646   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2647        E = ForwardingNodes.end(); I != E; ++I) {
2648     PHINode *Phi = I->first;
2649     SmallVector<int,4> &Indexes = I->second;
2650 
2651     if (Indexes.size() < 2) continue;
2652 
2653     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2654       Phi->setIncomingValue(Indexes[I], SI->getCondition());
2655     Changed = true;
2656   }
2657 
2658   return Changed;
2659 }
2660 
2661 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2662   // If this switch is too complex to want to look at, ignore it.
2663   if (!isValueEqualityComparison(SI))
2664     return false;
2665 
2666   BasicBlock *BB = SI->getParent();
2667 
2668   // If we only have one predecessor, and if it is a branch on this value,
2669   // see if that predecessor totally determines the outcome of this switch.
2670   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2671     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2672       return SimplifyCFG(BB) | true;
2673 
2674   Value *Cond = SI->getCondition();
2675   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2676     if (SimplifySwitchOnSelect(SI, Select))
2677       return SimplifyCFG(BB) | true;
2678 
2679   // If the block only contains the switch, see if we can fold the block
2680   // away into any preds.
2681   BasicBlock::iterator BBI = BB->begin();
2682   // Ignore dbg intrinsics.
2683   while (isa<DbgInfoIntrinsic>(BBI))
2684     ++BBI;
2685   if (SI == &*BBI)
2686     if (FoldValueComparisonIntoPredecessors(SI, Builder))
2687       return SimplifyCFG(BB) | true;
2688 
2689   // Try to transform the switch into an icmp and a branch.
2690   if (TurnSwitchRangeIntoICmp(SI, Builder))
2691     return SimplifyCFG(BB) | true;
2692 
2693   // Remove unreachable cases.
2694   if (EliminateDeadSwitchCases(SI))
2695     return SimplifyCFG(BB) | true;
2696 
2697   if (ForwardSwitchConditionToPHI(SI))
2698     return SimplifyCFG(BB) | true;
2699 
2700   return false;
2701 }
2702 
2703 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2704   BasicBlock *BB = IBI->getParent();
2705   bool Changed = false;
2706 
2707   // Eliminate redundant destinations.
2708   SmallPtrSet<Value *, 8> Succs;
2709   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2710     BasicBlock *Dest = IBI->getDestination(i);
2711     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2712       Dest->removePredecessor(BB);
2713       IBI->removeDestination(i);
2714       --i; --e;
2715       Changed = true;
2716     }
2717   }
2718 
2719   if (IBI->getNumDestinations() == 0) {
2720     // If the indirectbr has no successors, change it to unreachable.
2721     new UnreachableInst(IBI->getContext(), IBI);
2722     EraseTerminatorInstAndDCECond(IBI);
2723     return true;
2724   }
2725 
2726   if (IBI->getNumDestinations() == 1) {
2727     // If the indirectbr has one successor, change it to a direct branch.
2728     BranchInst::Create(IBI->getDestination(0), IBI);
2729     EraseTerminatorInstAndDCECond(IBI);
2730     return true;
2731   }
2732 
2733   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2734     if (SimplifyIndirectBrOnSelect(IBI, SI))
2735       return SimplifyCFG(BB) | true;
2736   }
2737   return Changed;
2738 }
2739 
2740 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2741   BasicBlock *BB = BI->getParent();
2742 
2743   // If the Terminator is the only non-phi instruction, simplify the block.
2744   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2745   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2746       TryToSimplifyUncondBranchFromEmptyBlock(BB))
2747     return true;
2748 
2749   // If the only instruction in the block is a seteq/setne comparison
2750   // against a constant, try to simplify the block.
2751   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2752     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2753       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2754         ;
2755       if (I->isTerminator() &&
2756           TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2757         return true;
2758     }
2759 
2760   return false;
2761 }
2762 
2763 
2764 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2765   BasicBlock *BB = BI->getParent();
2766 
2767   // Conditional branch
2768   if (isValueEqualityComparison(BI)) {
2769     // If we only have one predecessor, and if it is a branch on this value,
2770     // see if that predecessor totally determines the outcome of this
2771     // switch.
2772     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2773       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2774         return SimplifyCFG(BB) | true;
2775 
2776     // This block must be empty, except for the setcond inst, if it exists.
2777     // Ignore dbg intrinsics.
2778     BasicBlock::iterator I = BB->begin();
2779     // Ignore dbg intrinsics.
2780     while (isa<DbgInfoIntrinsic>(I))
2781       ++I;
2782     if (&*I == BI) {
2783       if (FoldValueComparisonIntoPredecessors(BI, Builder))
2784         return SimplifyCFG(BB) | true;
2785     } else if (&*I == cast<Instruction>(BI->getCondition())){
2786       ++I;
2787       // Ignore dbg intrinsics.
2788       while (isa<DbgInfoIntrinsic>(I))
2789         ++I;
2790       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2791         return SimplifyCFG(BB) | true;
2792     }
2793   }
2794 
2795   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2796   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2797     return true;
2798 
2799   // We have a conditional branch to two blocks that are only reachable
2800   // from BI.  We know that the condbr dominates the two blocks, so see if
2801   // there is any identical code in the "then" and "else" blocks.  If so, we
2802   // can hoist it up to the branching block.
2803   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2804     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2805       if (HoistThenElseCodeToIf(BI))
2806         return SimplifyCFG(BB) | true;
2807     } else {
2808       // If Successor #1 has multiple preds, we may be able to conditionally
2809       // execute Successor #0 if it branches to successor #1.
2810       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2811       if (Succ0TI->getNumSuccessors() == 1 &&
2812           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2813         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2814           return SimplifyCFG(BB) | true;
2815     }
2816   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2817     // If Successor #0 has multiple preds, we may be able to conditionally
2818     // execute Successor #1 if it branches to successor #0.
2819     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2820     if (Succ1TI->getNumSuccessors() == 1 &&
2821         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2822       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2823         return SimplifyCFG(BB) | true;
2824   }
2825 
2826   // If this is a branch on a phi node in the current block, thread control
2827   // through this block if any PHI node entries are constants.
2828   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2829     if (PN->getParent() == BI->getParent())
2830       if (FoldCondBranchOnPHI(BI, TD))
2831         return SimplifyCFG(BB) | true;
2832 
2833   // If this basic block is ONLY a compare and a branch, and if a predecessor
2834   // branches to us and one of our successors, fold the comparison into the
2835   // predecessor and use logical operations to pick the right destination.
2836   if (FoldBranchToCommonDest(BI))
2837     return SimplifyCFG(BB) | true;
2838 
2839   // Scan predecessor blocks for conditional branches.
2840   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2841     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2842       if (PBI != BI && PBI->isConditional())
2843         if (SimplifyCondBranchToCondBranch(PBI, BI))
2844           return SimplifyCFG(BB) | true;
2845 
2846   return false;
2847 }
2848 
2849 /// Check if passing a value to an instruction will cause undefined behavior.
2850 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
2851   Constant *C = dyn_cast<Constant>(V);
2852   if (!C)
2853     return false;
2854 
2855   if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
2856     return false;
2857 
2858   if (C->isNullValue()) {
2859     Instruction *Use = I->use_back();
2860 
2861     // Now make sure that there are no instructions in between that can alter
2862     // control flow (eg. calls)
2863     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
2864       if (i == I->getParent()->end() || i->mayHaveSideEffects())
2865         return false;
2866 
2867     // Look through GEPs. A load from a GEP derived from NULL is still undefined
2868     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
2869       if (GEP->getPointerOperand() == I)
2870         return passingValueIsAlwaysUndefined(V, GEP);
2871 
2872     // Look through bitcasts.
2873     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
2874       return passingValueIsAlwaysUndefined(V, BC);
2875 
2876     // Load from null is undefined.
2877     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
2878       return LI->getPointerAddressSpace() == 0;
2879 
2880     // Store to null is undefined.
2881     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
2882       return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
2883   }
2884   return false;
2885 }
2886 
2887 /// If BB has an incoming value that will always trigger undefined behavior
2888 /// (eg. null pointer dereference), remove the branch leading here.
2889 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
2890   for (BasicBlock::iterator i = BB->begin();
2891        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
2892     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
2893       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
2894         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
2895         IRBuilder<> Builder(T);
2896         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
2897           BB->removePredecessor(PHI->getIncomingBlock(i));
2898           // Turn uncoditional branches into unreachables and remove the dead
2899           // destination from conditional branches.
2900           if (BI->isUnconditional())
2901             Builder.CreateUnreachable();
2902           else
2903             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
2904                                                          BI->getSuccessor(0));
2905           BI->eraseFromParent();
2906           return true;
2907         }
2908         // TODO: SwitchInst.
2909       }
2910 
2911   return false;
2912 }
2913 
2914 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2915   bool Changed = false;
2916 
2917   assert(BB && BB->getParent() && "Block not embedded in function!");
2918   assert(BB->getTerminator() && "Degenerate basic block encountered!");
2919 
2920   // Remove basic blocks that have no predecessors (except the entry block)...
2921   // or that just have themself as a predecessor.  These are unreachable.
2922   if ((pred_begin(BB) == pred_end(BB) &&
2923        BB != &BB->getParent()->getEntryBlock()) ||
2924       BB->getSinglePredecessor() == BB) {
2925     DEBUG(dbgs() << "Removing BB: \n" << *BB);
2926     DeleteDeadBlock(BB);
2927     return true;
2928   }
2929 
2930   // Check to see if we can constant propagate this terminator instruction
2931   // away...
2932   Changed |= ConstantFoldTerminator(BB, true);
2933 
2934   // Check for and eliminate duplicate PHI nodes in this block.
2935   Changed |= EliminateDuplicatePHINodes(BB);
2936 
2937   // Check for and remove branches that will always cause undefined behavior.
2938   Changed |= removeUndefIntroducingPredecessor(BB);
2939 
2940   // Merge basic blocks into their predecessor if there is only one distinct
2941   // pred, and if there is only one distinct successor of the predecessor, and
2942   // if there are no PHI nodes.
2943   //
2944   if (MergeBlockIntoPredecessor(BB))
2945     return true;
2946 
2947   IRBuilder<> Builder(BB);
2948 
2949   // If there is a trivial two-entry PHI node in this basic block, and we can
2950   // eliminate it, do so now.
2951   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2952     if (PN->getNumIncomingValues() == 2)
2953       Changed |= FoldTwoEntryPHINode(PN, TD);
2954 
2955   Builder.SetInsertPoint(BB->getTerminator());
2956   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2957     if (BI->isUnconditional()) {
2958       if (SimplifyUncondBranch(BI, Builder)) return true;
2959     } else {
2960       if (SimplifyCondBranch(BI, Builder)) return true;
2961     }
2962   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
2963     if (SimplifyResume(RI, Builder)) return true;
2964   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2965     if (SimplifyReturn(RI, Builder)) return true;
2966   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2967     if (SimplifySwitch(SI, Builder)) return true;
2968   } else if (UnreachableInst *UI =
2969                dyn_cast<UnreachableInst>(BB->getTerminator())) {
2970     if (SimplifyUnreachable(UI)) return true;
2971   } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2972     if (SimplifyUnwind(UI, Builder)) return true;
2973   } else if (IndirectBrInst *IBI =
2974                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2975     if (SimplifyIndirectBr(IBI)) return true;
2976   }
2977 
2978   return Changed;
2979 }
2980 
2981 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
2982 /// example, it adjusts branches to branches to eliminate the extra hop, it
2983 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2984 /// of the CFG.  It returns true if a modification was made.
2985 ///
2986 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2987   return SimplifyCFGOpt(TD).run(BB);
2988 }
2989