1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <climits>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
81 
82 using namespace llvm;
83 using namespace PatternMatch;
84 
85 #define DEBUG_TYPE "simplifycfg"
86 
87 // Chosen as 2 so as to be cheap, but still to have enough power to fold
88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
89 // To catch this, we need to fold a compare and a select, hence '2' being the
90 // minimum reasonable default.
91 static cl::opt<unsigned> PHINodeFoldingThreshold(
92     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
93     cl::desc(
94         "Control the amount of phi node folding to perform (default = 2)"));
95 
96 static cl::opt<bool> DupRet(
97     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
98     cl::desc("Duplicate return instructions into unconditional branches"));
99 
100 static cl::opt<bool>
101     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
102                cl::desc("Sink common instructions down to the end block"));
103 
104 static cl::opt<bool> HoistCondStores(
105     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores if an unconditional store precedes"));
107 
108 static cl::opt<bool> MergeCondStores(
109     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
110     cl::desc("Hoist conditional stores even if an unconditional store does not "
111              "precede - hoist multiple conditional stores into a single "
112              "predicated store"));
113 
114 static cl::opt<bool> MergeCondStoresAggressively(
115     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
116     cl::desc("When merging conditional stores, do so even if the resultant "
117              "basic blocks are unlikely to be if-converted as a result"));
118 
119 static cl::opt<bool> SpeculateOneExpensiveInst(
120     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
121     cl::desc("Allow exactly one expensive instruction to be speculatively "
122              "executed"));
123 
124 static cl::opt<unsigned> MaxSpeculationDepth(
125     "max-speculation-depth", cl::Hidden, cl::init(10),
126     cl::desc("Limit maximum recursion depth when calculating costs of "
127              "speculatively executed instructions"));
128 
129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
130 STATISTIC(NumLinearMaps,
131           "Number of switch instructions turned into linear mapping");
132 STATISTIC(NumLookupTables,
133           "Number of switch instructions turned into lookup tables");
134 STATISTIC(
135     NumLookupTablesHoles,
136     "Number of switch instructions turned into lookup tables (holes checked)");
137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
138 STATISTIC(NumSinkCommons,
139           "Number of common instructions sunk down to the end block");
140 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
141 
142 namespace {
143 
144 // The first field contains the value that the switch produces when a certain
145 // case group is selected, and the second field is a vector containing the
146 // cases composing the case group.
147 using SwitchCaseResultVectorTy =
148     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
149 
150 // The first field contains the phi node that generates a result of the switch
151 // and the second field contains the value generated for a certain case in the
152 // switch for that PHI.
153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
154 
155 /// ValueEqualityComparisonCase - Represents a case of a switch.
156 struct ValueEqualityComparisonCase {
157   ConstantInt *Value;
158   BasicBlock *Dest;
159 
160   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
161       : Value(Value), Dest(Dest) {}
162 
163   bool operator<(ValueEqualityComparisonCase RHS) const {
164     // Comparing pointers is ok as we only rely on the order for uniquing.
165     return Value < RHS.Value;
166   }
167 
168   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
169 };
170 
171 class SimplifyCFGOpt {
172   const TargetTransformInfo &TTI;
173   const DataLayout &DL;
174   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
175   const SimplifyCFGOptions &Options;
176   bool Resimplify;
177 
178   Value *isValueEqualityComparison(Instruction *TI);
179   BasicBlock *GetValueEqualityComparisonCases(
180       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
181   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
182                                                      BasicBlock *Pred,
183                                                      IRBuilder<> &Builder);
184   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
185                                            IRBuilder<> &Builder);
186 
187   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
188   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
189   bool SimplifySingleResume(ResumeInst *RI);
190   bool SimplifyCommonResume(ResumeInst *RI);
191   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
192   bool SimplifyUnreachable(UnreachableInst *UI);
193   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
194   bool SimplifyIndirectBr(IndirectBrInst *IBI);
195   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
196   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
197 
198   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
199                                              IRBuilder<> &Builder);
200 
201 public:
202   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
203                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
204                  const SimplifyCFGOptions &Opts)
205       : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
206 
207   bool run(BasicBlock *BB);
208   bool simplifyOnce(BasicBlock *BB);
209 
210   // Helper to set Resimplify and return change indication.
211   bool requestResimplify() {
212     Resimplify = true;
213     return true;
214   }
215 };
216 
217 } // end anonymous namespace
218 
219 /// Return true if it is safe to merge these two
220 /// terminator instructions together.
221 static bool
222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
223                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
224   if (SI1 == SI2)
225     return false; // Can't merge with self!
226 
227   // It is not safe to merge these two switch instructions if they have a common
228   // successor, and if that successor has a PHI node, and if *that* PHI node has
229   // conflicting incoming values from the two switch blocks.
230   BasicBlock *SI1BB = SI1->getParent();
231   BasicBlock *SI2BB = SI2->getParent();
232 
233   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
234   bool Fail = false;
235   for (BasicBlock *Succ : successors(SI2BB))
236     if (SI1Succs.count(Succ))
237       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
238         PHINode *PN = cast<PHINode>(BBI);
239         if (PN->getIncomingValueForBlock(SI1BB) !=
240             PN->getIncomingValueForBlock(SI2BB)) {
241           if (FailBlocks)
242             FailBlocks->insert(Succ);
243           Fail = true;
244         }
245       }
246 
247   return !Fail;
248 }
249 
250 /// Return true if it is safe and profitable to merge these two terminator
251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
252 /// store all PHI nodes in common successors.
253 static bool
254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
255                                 Instruction *Cond,
256                                 SmallVectorImpl<PHINode *> &PhiNodes) {
257   if (SI1 == SI2)
258     return false; // Can't merge with self!
259   assert(SI1->isUnconditional() && SI2->isConditional());
260 
261   // We fold the unconditional branch if we can easily update all PHI nodes in
262   // common successors:
263   // 1> We have a constant incoming value for the conditional branch;
264   // 2> We have "Cond" as the incoming value for the unconditional branch;
265   // 3> SI2->getCondition() and Cond have same operands.
266   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
267   if (!Ci2)
268     return false;
269   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
270         Cond->getOperand(1) == Ci2->getOperand(1)) &&
271       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
272         Cond->getOperand(1) == Ci2->getOperand(0)))
273     return false;
274 
275   BasicBlock *SI1BB = SI1->getParent();
276   BasicBlock *SI2BB = SI2->getParent();
277   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
278   for (BasicBlock *Succ : successors(SI2BB))
279     if (SI1Succs.count(Succ))
280       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
281         PHINode *PN = cast<PHINode>(BBI);
282         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
283             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
284           return false;
285         PhiNodes.push_back(PN);
286       }
287   return true;
288 }
289 
290 /// Update PHI nodes in Succ to indicate that there will now be entries in it
291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
292 /// will be the same as those coming in from ExistPred, an existing predecessor
293 /// of Succ.
294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
295                                   BasicBlock *ExistPred) {
296   for (PHINode &PN : Succ->phis())
297     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
298 }
299 
300 /// Compute an abstract "cost" of speculating the given instruction,
301 /// which is assumed to be safe to speculate. TCC_Free means cheap,
302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
303 /// expensive.
304 static unsigned ComputeSpeculationCost(const User *I,
305                                        const TargetTransformInfo &TTI) {
306   assert(isSafeToSpeculativelyExecute(I) &&
307          "Instruction is not safe to speculatively execute!");
308   return TTI.getUserCost(I);
309 }
310 
311 /// If we have a merge point of an "if condition" as accepted above,
312 /// return true if the specified value dominates the block.  We
313 /// don't handle the true generality of domination here, just a special case
314 /// which works well enough for us.
315 ///
316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
317 /// see if V (which must be an instruction) and its recursive operands
318 /// that do not dominate BB have a combined cost lower than CostRemaining and
319 /// are non-trapping.  If both are true, the instruction is inserted into the
320 /// set and true is returned.
321 ///
322 /// The cost for most non-trapping instructions is defined as 1 except for
323 /// Select whose cost is 2.
324 ///
325 /// After this function returns, CostRemaining is decreased by the cost of
326 /// V plus its non-dominating operands.  If that cost is greater than
327 /// CostRemaining, false is returned and CostRemaining is undefined.
328 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
329                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
330                                 unsigned &CostRemaining,
331                                 const TargetTransformInfo &TTI,
332                                 unsigned Depth = 0) {
333   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
334   // so limit the recursion depth.
335   // TODO: While this recursion limit does prevent pathological behavior, it
336   // would be better to track visited instructions to avoid cycles.
337   if (Depth == MaxSpeculationDepth)
338     return false;
339 
340   Instruction *I = dyn_cast<Instruction>(V);
341   if (!I) {
342     // Non-instructions all dominate instructions, but not all constantexprs
343     // can be executed unconditionally.
344     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345       if (C->canTrap())
346         return false;
347     return true;
348   }
349   BasicBlock *PBB = I->getParent();
350 
351   // We don't want to allow weird loops that might have the "if condition" in
352   // the bottom of this block.
353   if (PBB == BB)
354     return false;
355 
356   // If this instruction is defined in a block that contains an unconditional
357   // branch to BB, then it must be in the 'conditional' part of the "if
358   // statement".  If not, it definitely dominates the region.
359   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
360   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
361     return true;
362 
363   // If we have seen this instruction before, don't count it again.
364   if (AggressiveInsts.count(I))
365     return true;
366 
367   // Okay, it looks like the instruction IS in the "condition".  Check to
368   // see if it's a cheap instruction to unconditionally compute, and if it
369   // only uses stuff defined outside of the condition.  If so, hoist it out.
370   if (!isSafeToSpeculativelyExecute(I))
371     return false;
372 
373   unsigned Cost = ComputeSpeculationCost(I, TTI);
374 
375   // Allow exactly one instruction to be speculated regardless of its cost
376   // (as long as it is safe to do so).
377   // This is intended to flatten the CFG even if the instruction is a division
378   // or other expensive operation. The speculation of an expensive instruction
379   // is expected to be undone in CodeGenPrepare if the speculation has not
380   // enabled further IR optimizations.
381   if (Cost > CostRemaining &&
382       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
383     return false;
384 
385   // Avoid unsigned wrap.
386   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
387 
388   // Okay, we can only really hoist these out if their operands do
389   // not take us over the cost threshold.
390   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
391     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
392                              Depth + 1))
393       return false;
394   // Okay, it's safe to do this!  Remember this instruction.
395   AggressiveInsts.insert(I);
396   return true;
397 }
398 
399 /// Extract ConstantInt from value, looking through IntToPtr
400 /// and PointerNullValue. Return NULL if value is not a constant int.
401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
402   // Normal constant int.
403   ConstantInt *CI = dyn_cast<ConstantInt>(V);
404   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
405     return CI;
406 
407   // This is some kind of pointer constant. Turn it into a pointer-sized
408   // ConstantInt if possible.
409   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
410 
411   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
412   if (isa<ConstantPointerNull>(V))
413     return ConstantInt::get(PtrTy, 0);
414 
415   // IntToPtr const int.
416   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
417     if (CE->getOpcode() == Instruction::IntToPtr)
418       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
419         // The constant is very likely to have the right type already.
420         if (CI->getType() == PtrTy)
421           return CI;
422         else
423           return cast<ConstantInt>(
424               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
425       }
426   return nullptr;
427 }
428 
429 namespace {
430 
431 /// Given a chain of or (||) or and (&&) comparison of a value against a
432 /// constant, this will try to recover the information required for a switch
433 /// structure.
434 /// It will depth-first traverse the chain of comparison, seeking for patterns
435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
436 /// representing the different cases for the switch.
437 /// Note that if the chain is composed of '||' it will build the set of elements
438 /// that matches the comparisons (i.e. any of this value validate the chain)
439 /// while for a chain of '&&' it will build the set elements that make the test
440 /// fail.
441 struct ConstantComparesGatherer {
442   const DataLayout &DL;
443 
444   /// Value found for the switch comparison
445   Value *CompValue = nullptr;
446 
447   /// Extra clause to be checked before the switch
448   Value *Extra = nullptr;
449 
450   /// Set of integers to match in switch
451   SmallVector<ConstantInt *, 8> Vals;
452 
453   /// Number of comparisons matched in the and/or chain
454   unsigned UsedICmps = 0;
455 
456   /// Construct and compute the result for the comparison instruction Cond
457   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
458     gather(Cond);
459   }
460 
461   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
462   ConstantComparesGatherer &
463   operator=(const ConstantComparesGatherer &) = delete;
464 
465 private:
466   /// Try to set the current value used for the comparison, it succeeds only if
467   /// it wasn't set before or if the new value is the same as the old one
468   bool setValueOnce(Value *NewVal) {
469     if (CompValue && CompValue != NewVal)
470       return false;
471     CompValue = NewVal;
472     return (CompValue != nullptr);
473   }
474 
475   /// Try to match Instruction "I" as a comparison against a constant and
476   /// populates the array Vals with the set of values that match (or do not
477   /// match depending on isEQ).
478   /// Return false on failure. On success, the Value the comparison matched
479   /// against is placed in CompValue.
480   /// If CompValue is already set, the function is expected to fail if a match
481   /// is found but the value compared to is different.
482   bool matchInstruction(Instruction *I, bool isEQ) {
483     // If this is an icmp against a constant, handle this as one of the cases.
484     ICmpInst *ICI;
485     ConstantInt *C;
486     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
487           (C = GetConstantInt(I->getOperand(1), DL)))) {
488       return false;
489     }
490 
491     Value *RHSVal;
492     const APInt *RHSC;
493 
494     // Pattern match a special case
495     // (x & ~2^z) == y --> x == y || x == y|2^z
496     // This undoes a transformation done by instcombine to fuse 2 compares.
497     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
498       // It's a little bit hard to see why the following transformations are
499       // correct. Here is a CVC3 program to verify them for 64-bit values:
500 
501       /*
502          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
503          x    : BITVECTOR(64);
504          y    : BITVECTOR(64);
505          z    : BITVECTOR(64);
506          mask : BITVECTOR(64) = BVSHL(ONE, z);
507          QUERY( (y & ~mask = y) =>
508                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
509          );
510          QUERY( (y |  mask = y) =>
511                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
512          );
513       */
514 
515       // Please note that each pattern must be a dual implication (<--> or
516       // iff). One directional implication can create spurious matches. If the
517       // implication is only one-way, an unsatisfiable condition on the left
518       // side can imply a satisfiable condition on the right side. Dual
519       // implication ensures that satisfiable conditions are transformed to
520       // other satisfiable conditions and unsatisfiable conditions are
521       // transformed to other unsatisfiable conditions.
522 
523       // Here is a concrete example of a unsatisfiable condition on the left
524       // implying a satisfiable condition on the right:
525       //
526       // mask = (1 << z)
527       // (x & ~mask) == y  --> (x == y || x == (y | mask))
528       //
529       // Substituting y = 3, z = 0 yields:
530       // (x & -2) == 3 --> (x == 3 || x == 2)
531 
532       // Pattern match a special case:
533       /*
534         QUERY( (y & ~mask = y) =>
535                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
536         );
537       */
538       if (match(ICI->getOperand(0),
539                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
540         APInt Mask = ~*RHSC;
541         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
542           // If we already have a value for the switch, it has to match!
543           if (!setValueOnce(RHSVal))
544             return false;
545 
546           Vals.push_back(C);
547           Vals.push_back(
548               ConstantInt::get(C->getContext(),
549                                C->getValue() | Mask));
550           UsedICmps++;
551           return true;
552         }
553       }
554 
555       // Pattern match a special case:
556       /*
557         QUERY( (y |  mask = y) =>
558                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
559         );
560       */
561       if (match(ICI->getOperand(0),
562                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
563         APInt Mask = *RHSC;
564         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
565           // If we already have a value for the switch, it has to match!
566           if (!setValueOnce(RHSVal))
567             return false;
568 
569           Vals.push_back(C);
570           Vals.push_back(ConstantInt::get(C->getContext(),
571                                           C->getValue() & ~Mask));
572           UsedICmps++;
573           return true;
574         }
575       }
576 
577       // If we already have a value for the switch, it has to match!
578       if (!setValueOnce(ICI->getOperand(0)))
579         return false;
580 
581       UsedICmps++;
582       Vals.push_back(C);
583       return ICI->getOperand(0);
584     }
585 
586     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
587     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
588         ICI->getPredicate(), C->getValue());
589 
590     // Shift the range if the compare is fed by an add. This is the range
591     // compare idiom as emitted by instcombine.
592     Value *CandidateVal = I->getOperand(0);
593     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
594       Span = Span.subtract(*RHSC);
595       CandidateVal = RHSVal;
596     }
597 
598     // If this is an and/!= check, then we are looking to build the set of
599     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
600     // x != 0 && x != 1.
601     if (!isEQ)
602       Span = Span.inverse();
603 
604     // If there are a ton of values, we don't want to make a ginormous switch.
605     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
606       return false;
607     }
608 
609     // If we already have a value for the switch, it has to match!
610     if (!setValueOnce(CandidateVal))
611       return false;
612 
613     // Add all values from the range to the set
614     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
615       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
616 
617     UsedICmps++;
618     return true;
619   }
620 
621   /// Given a potentially 'or'd or 'and'd together collection of icmp
622   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
623   /// the value being compared, and stick the list constants into the Vals
624   /// vector.
625   /// One "Extra" case is allowed to differ from the other.
626   void gather(Value *V) {
627     Instruction *I = dyn_cast<Instruction>(V);
628     bool isEQ = (I->getOpcode() == Instruction::Or);
629 
630     // Keep a stack (SmallVector for efficiency) for depth-first traversal
631     SmallVector<Value *, 8> DFT;
632     SmallPtrSet<Value *, 8> Visited;
633 
634     // Initialize
635     Visited.insert(V);
636     DFT.push_back(V);
637 
638     while (!DFT.empty()) {
639       V = DFT.pop_back_val();
640 
641       if (Instruction *I = dyn_cast<Instruction>(V)) {
642         // If it is a || (or && depending on isEQ), process the operands.
643         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
644           if (Visited.insert(I->getOperand(1)).second)
645             DFT.push_back(I->getOperand(1));
646           if (Visited.insert(I->getOperand(0)).second)
647             DFT.push_back(I->getOperand(0));
648           continue;
649         }
650 
651         // Try to match the current instruction
652         if (matchInstruction(I, isEQ))
653           // Match succeed, continue the loop
654           continue;
655       }
656 
657       // One element of the sequence of || (or &&) could not be match as a
658       // comparison against the same value as the others.
659       // We allow only one "Extra" case to be checked before the switch
660       if (!Extra) {
661         Extra = V;
662         continue;
663       }
664       // Failed to parse a proper sequence, abort now
665       CompValue = nullptr;
666       break;
667     }
668   }
669 };
670 
671 } // end anonymous namespace
672 
673 static void EraseTerminatorAndDCECond(Instruction *TI) {
674   Instruction *Cond = nullptr;
675   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
676     Cond = dyn_cast<Instruction>(SI->getCondition());
677   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
678     if (BI->isConditional())
679       Cond = dyn_cast<Instruction>(BI->getCondition());
680   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
681     Cond = dyn_cast<Instruction>(IBI->getAddress());
682   }
683 
684   TI->eraseFromParent();
685   if (Cond)
686     RecursivelyDeleteTriviallyDeadInstructions(Cond);
687 }
688 
689 /// Return true if the specified terminator checks
690 /// to see if a value is equal to constant integer value.
691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
692   Value *CV = nullptr;
693   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
694     // Do not permit merging of large switch instructions into their
695     // predecessors unless there is only one predecessor.
696     if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128)
697       CV = SI->getCondition();
698   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
699     if (BI->isConditional() && BI->getCondition()->hasOneUse())
700       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
701         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
702           CV = ICI->getOperand(0);
703       }
704 
705   // Unwrap any lossless ptrtoint cast.
706   if (CV) {
707     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
708       Value *Ptr = PTII->getPointerOperand();
709       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
710         CV = Ptr;
711     }
712   }
713   return CV;
714 }
715 
716 /// Given a value comparison instruction,
717 /// decode all of the 'cases' that it represents and return the 'default' block.
718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
719     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
720   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
721     Cases.reserve(SI->getNumCases());
722     for (auto Case : SI->cases())
723       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
724                                                   Case.getCaseSuccessor()));
725     return SI->getDefaultDest();
726   }
727 
728   BranchInst *BI = cast<BranchInst>(TI);
729   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
730   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
731   Cases.push_back(ValueEqualityComparisonCase(
732       GetConstantInt(ICI->getOperand(1), DL), Succ));
733   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
734 }
735 
736 /// Given a vector of bb/value pairs, remove any entries
737 /// in the list that match the specified block.
738 static void
739 EliminateBlockCases(BasicBlock *BB,
740                     std::vector<ValueEqualityComparisonCase> &Cases) {
741   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
742 }
743 
744 /// Return true if there are any keys in C1 that exist in C2 as well.
745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
746                           std::vector<ValueEqualityComparisonCase> &C2) {
747   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
748 
749   // Make V1 be smaller than V2.
750   if (V1->size() > V2->size())
751     std::swap(V1, V2);
752 
753   if (V1->empty())
754     return false;
755   if (V1->size() == 1) {
756     // Just scan V2.
757     ConstantInt *TheVal = (*V1)[0].Value;
758     for (unsigned i = 0, e = V2->size(); i != e; ++i)
759       if (TheVal == (*V2)[i].Value)
760         return true;
761   }
762 
763   // Otherwise, just sort both lists and compare element by element.
764   array_pod_sort(V1->begin(), V1->end());
765   array_pod_sort(V2->begin(), V2->end());
766   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
767   while (i1 != e1 && i2 != e2) {
768     if ((*V1)[i1].Value == (*V2)[i2].Value)
769       return true;
770     if ((*V1)[i1].Value < (*V2)[i2].Value)
771       ++i1;
772     else
773       ++i2;
774   }
775   return false;
776 }
777 
778 // Set branch weights on SwitchInst. This sets the metadata if there is at
779 // least one non-zero weight.
780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
781   // Check that there is at least one non-zero weight. Otherwise, pass
782   // nullptr to setMetadata which will erase the existing metadata.
783   MDNode *N = nullptr;
784   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
785     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
786   SI->setMetadata(LLVMContext::MD_prof, N);
787 }
788 
789 // Similar to the above, but for branch and select instructions that take
790 // exactly 2 weights.
791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
792                              uint32_t FalseWeight) {
793   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
794   // Check that there is at least one non-zero weight. Otherwise, pass
795   // nullptr to setMetadata which will erase the existing metadata.
796   MDNode *N = nullptr;
797   if (TrueWeight || FalseWeight)
798     N = MDBuilder(I->getParent()->getContext())
799             .createBranchWeights(TrueWeight, FalseWeight);
800   I->setMetadata(LLVMContext::MD_prof, N);
801 }
802 
803 /// If TI is known to be a terminator instruction and its block is known to
804 /// only have a single predecessor block, check to see if that predecessor is
805 /// also a value comparison with the same value, and if that comparison
806 /// determines the outcome of this comparison. If so, simplify TI. This does a
807 /// very limited form of jump threading.
808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
809     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
810   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
811   if (!PredVal)
812     return false; // Not a value comparison in predecessor.
813 
814   Value *ThisVal = isValueEqualityComparison(TI);
815   assert(ThisVal && "This isn't a value comparison!!");
816   if (ThisVal != PredVal)
817     return false; // Different predicates.
818 
819   // TODO: Preserve branch weight metadata, similarly to how
820   // FoldValueComparisonIntoPredecessors preserves it.
821 
822   // Find out information about when control will move from Pred to TI's block.
823   std::vector<ValueEqualityComparisonCase> PredCases;
824   BasicBlock *PredDef =
825       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
826   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
827 
828   // Find information about how control leaves this block.
829   std::vector<ValueEqualityComparisonCase> ThisCases;
830   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
831   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
832 
833   // If TI's block is the default block from Pred's comparison, potentially
834   // simplify TI based on this knowledge.
835   if (PredDef == TI->getParent()) {
836     // If we are here, we know that the value is none of those cases listed in
837     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
838     // can simplify TI.
839     if (!ValuesOverlap(PredCases, ThisCases))
840       return false;
841 
842     if (isa<BranchInst>(TI)) {
843       // Okay, one of the successors of this condbr is dead.  Convert it to a
844       // uncond br.
845       assert(ThisCases.size() == 1 && "Branch can only have one case!");
846       // Insert the new branch.
847       Instruction *NI = Builder.CreateBr(ThisDef);
848       (void)NI;
849 
850       // Remove PHI node entries for the dead edge.
851       ThisCases[0].Dest->removePredecessor(TI->getParent());
852 
853       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
854                         << "Through successor TI: " << *TI << "Leaving: " << *NI
855                         << "\n");
856 
857       EraseTerminatorAndDCECond(TI);
858       return true;
859     }
860 
861     SwitchInst *SI = cast<SwitchInst>(TI);
862     // Okay, TI has cases that are statically dead, prune them away.
863     SmallPtrSet<Constant *, 16> DeadCases;
864     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
865       DeadCases.insert(PredCases[i].Value);
866 
867     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
868                       << "Through successor TI: " << *TI);
869 
870     // Collect branch weights into a vector.
871     SmallVector<uint32_t, 8> Weights;
872     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
873     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
874     if (HasWeight)
875       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
876            ++MD_i) {
877         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
878         Weights.push_back(CI->getValue().getZExtValue());
879       }
880     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
881       --i;
882       if (DeadCases.count(i->getCaseValue())) {
883         if (HasWeight) {
884           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
885           Weights.pop_back();
886         }
887         i->getCaseSuccessor()->removePredecessor(TI->getParent());
888         SI->removeCase(i);
889       }
890     }
891     if (HasWeight && Weights.size() >= 2)
892       setBranchWeights(SI, Weights);
893 
894     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
895     return true;
896   }
897 
898   // Otherwise, TI's block must correspond to some matched value.  Find out
899   // which value (or set of values) this is.
900   ConstantInt *TIV = nullptr;
901   BasicBlock *TIBB = TI->getParent();
902   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
903     if (PredCases[i].Dest == TIBB) {
904       if (TIV)
905         return false; // Cannot handle multiple values coming to this block.
906       TIV = PredCases[i].Value;
907     }
908   assert(TIV && "No edge from pred to succ?");
909 
910   // Okay, we found the one constant that our value can be if we get into TI's
911   // BB.  Find out which successor will unconditionally be branched to.
912   BasicBlock *TheRealDest = nullptr;
913   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
914     if (ThisCases[i].Value == TIV) {
915       TheRealDest = ThisCases[i].Dest;
916       break;
917     }
918 
919   // If not handled by any explicit cases, it is handled by the default case.
920   if (!TheRealDest)
921     TheRealDest = ThisDef;
922 
923   // Remove PHI node entries for dead edges.
924   BasicBlock *CheckEdge = TheRealDest;
925   for (BasicBlock *Succ : successors(TIBB))
926     if (Succ != CheckEdge)
927       Succ->removePredecessor(TIBB);
928     else
929       CheckEdge = nullptr;
930 
931   // Insert the new branch.
932   Instruction *NI = Builder.CreateBr(TheRealDest);
933   (void)NI;
934 
935   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
936                     << "Through successor TI: " << *TI << "Leaving: " << *NI
937                     << "\n");
938 
939   EraseTerminatorAndDCECond(TI);
940   return true;
941 }
942 
943 namespace {
944 
945 /// This class implements a stable ordering of constant
946 /// integers that does not depend on their address.  This is important for
947 /// applications that sort ConstantInt's to ensure uniqueness.
948 struct ConstantIntOrdering {
949   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
950     return LHS->getValue().ult(RHS->getValue());
951   }
952 };
953 
954 } // end anonymous namespace
955 
956 static int ConstantIntSortPredicate(ConstantInt *const *P1,
957                                     ConstantInt *const *P2) {
958   const ConstantInt *LHS = *P1;
959   const ConstantInt *RHS = *P2;
960   if (LHS == RHS)
961     return 0;
962   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
963 }
964 
965 static inline bool HasBranchWeights(const Instruction *I) {
966   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
967   if (ProfMD && ProfMD->getOperand(0))
968     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
969       return MDS->getString().equals("branch_weights");
970 
971   return false;
972 }
973 
974 /// Get Weights of a given terminator, the default weight is at the front
975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
976 /// metadata.
977 static void GetBranchWeights(Instruction *TI,
978                              SmallVectorImpl<uint64_t> &Weights) {
979   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
980   assert(MD);
981   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
982     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
983     Weights.push_back(CI->getValue().getZExtValue());
984   }
985 
986   // If TI is a conditional eq, the default case is the false case,
987   // and the corresponding branch-weight data is at index 2. We swap the
988   // default weight to be the first entry.
989   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
990     assert(Weights.size() == 2);
991     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
992     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
993       std::swap(Weights.front(), Weights.back());
994   }
995 }
996 
997 /// Keep halving the weights until all can fit in uint32_t.
998 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
999   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1000   if (Max > UINT_MAX) {
1001     unsigned Offset = 32 - countLeadingZeros(Max);
1002     for (uint64_t &I : Weights)
1003       I >>= Offset;
1004   }
1005 }
1006 
1007 /// The specified terminator is a value equality comparison instruction
1008 /// (either a switch or a branch on "X == c").
1009 /// See if any of the predecessors of the terminator block are value comparisons
1010 /// on the same value.  If so, and if safe to do so, fold them together.
1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1012                                                          IRBuilder<> &Builder) {
1013   BasicBlock *BB = TI->getParent();
1014   Value *CV = isValueEqualityComparison(TI); // CondVal
1015   assert(CV && "Not a comparison?");
1016   bool Changed = false;
1017 
1018   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1019   while (!Preds.empty()) {
1020     BasicBlock *Pred = Preds.pop_back_val();
1021 
1022     // See if the predecessor is a comparison with the same value.
1023     Instruction *PTI = Pred->getTerminator();
1024     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1025 
1026     if (PCV == CV && TI != PTI) {
1027       SmallSetVector<BasicBlock*, 4> FailBlocks;
1028       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1029         for (auto *Succ : FailBlocks) {
1030           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1031             return false;
1032         }
1033       }
1034 
1035       // Figure out which 'cases' to copy from SI to PSI.
1036       std::vector<ValueEqualityComparisonCase> BBCases;
1037       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1038 
1039       std::vector<ValueEqualityComparisonCase> PredCases;
1040       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1041 
1042       // Based on whether the default edge from PTI goes to BB or not, fill in
1043       // PredCases and PredDefault with the new switch cases we would like to
1044       // build.
1045       SmallVector<BasicBlock *, 8> NewSuccessors;
1046 
1047       // Update the branch weight metadata along the way
1048       SmallVector<uint64_t, 8> Weights;
1049       bool PredHasWeights = HasBranchWeights(PTI);
1050       bool SuccHasWeights = HasBranchWeights(TI);
1051 
1052       if (PredHasWeights) {
1053         GetBranchWeights(PTI, Weights);
1054         // branch-weight metadata is inconsistent here.
1055         if (Weights.size() != 1 + PredCases.size())
1056           PredHasWeights = SuccHasWeights = false;
1057       } else if (SuccHasWeights)
1058         // If there are no predecessor weights but there are successor weights,
1059         // populate Weights with 1, which will later be scaled to the sum of
1060         // successor's weights
1061         Weights.assign(1 + PredCases.size(), 1);
1062 
1063       SmallVector<uint64_t, 8> SuccWeights;
1064       if (SuccHasWeights) {
1065         GetBranchWeights(TI, SuccWeights);
1066         // branch-weight metadata is inconsistent here.
1067         if (SuccWeights.size() != 1 + BBCases.size())
1068           PredHasWeights = SuccHasWeights = false;
1069       } else if (PredHasWeights)
1070         SuccWeights.assign(1 + BBCases.size(), 1);
1071 
1072       if (PredDefault == BB) {
1073         // If this is the default destination from PTI, only the edges in TI
1074         // that don't occur in PTI, or that branch to BB will be activated.
1075         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1076         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1077           if (PredCases[i].Dest != BB)
1078             PTIHandled.insert(PredCases[i].Value);
1079           else {
1080             // The default destination is BB, we don't need explicit targets.
1081             std::swap(PredCases[i], PredCases.back());
1082 
1083             if (PredHasWeights || SuccHasWeights) {
1084               // Increase weight for the default case.
1085               Weights[0] += Weights[i + 1];
1086               std::swap(Weights[i + 1], Weights.back());
1087               Weights.pop_back();
1088             }
1089 
1090             PredCases.pop_back();
1091             --i;
1092             --e;
1093           }
1094 
1095         // Reconstruct the new switch statement we will be building.
1096         if (PredDefault != BBDefault) {
1097           PredDefault->removePredecessor(Pred);
1098           PredDefault = BBDefault;
1099           NewSuccessors.push_back(BBDefault);
1100         }
1101 
1102         unsigned CasesFromPred = Weights.size();
1103         uint64_t ValidTotalSuccWeight = 0;
1104         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1105           if (!PTIHandled.count(BBCases[i].Value) &&
1106               BBCases[i].Dest != BBDefault) {
1107             PredCases.push_back(BBCases[i]);
1108             NewSuccessors.push_back(BBCases[i].Dest);
1109             if (SuccHasWeights || PredHasWeights) {
1110               // The default weight is at index 0, so weight for the ith case
1111               // should be at index i+1. Scale the cases from successor by
1112               // PredDefaultWeight (Weights[0]).
1113               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1114               ValidTotalSuccWeight += SuccWeights[i + 1];
1115             }
1116           }
1117 
1118         if (SuccHasWeights || PredHasWeights) {
1119           ValidTotalSuccWeight += SuccWeights[0];
1120           // Scale the cases from predecessor by ValidTotalSuccWeight.
1121           for (unsigned i = 1; i < CasesFromPred; ++i)
1122             Weights[i] *= ValidTotalSuccWeight;
1123           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1124           Weights[0] *= SuccWeights[0];
1125         }
1126       } else {
1127         // If this is not the default destination from PSI, only the edges
1128         // in SI that occur in PSI with a destination of BB will be
1129         // activated.
1130         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1131         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1132         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1133           if (PredCases[i].Dest == BB) {
1134             PTIHandled.insert(PredCases[i].Value);
1135 
1136             if (PredHasWeights || SuccHasWeights) {
1137               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1138               std::swap(Weights[i + 1], Weights.back());
1139               Weights.pop_back();
1140             }
1141 
1142             std::swap(PredCases[i], PredCases.back());
1143             PredCases.pop_back();
1144             --i;
1145             --e;
1146           }
1147 
1148         // Okay, now we know which constants were sent to BB from the
1149         // predecessor.  Figure out where they will all go now.
1150         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1151           if (PTIHandled.count(BBCases[i].Value)) {
1152             // If this is one we are capable of getting...
1153             if (PredHasWeights || SuccHasWeights)
1154               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1155             PredCases.push_back(BBCases[i]);
1156             NewSuccessors.push_back(BBCases[i].Dest);
1157             PTIHandled.erase(
1158                 BBCases[i].Value); // This constant is taken care of
1159           }
1160 
1161         // If there are any constants vectored to BB that TI doesn't handle,
1162         // they must go to the default destination of TI.
1163         for (ConstantInt *I : PTIHandled) {
1164           if (PredHasWeights || SuccHasWeights)
1165             Weights.push_back(WeightsForHandled[I]);
1166           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1167           NewSuccessors.push_back(BBDefault);
1168         }
1169       }
1170 
1171       // Okay, at this point, we know which new successor Pred will get.  Make
1172       // sure we update the number of entries in the PHI nodes for these
1173       // successors.
1174       for (BasicBlock *NewSuccessor : NewSuccessors)
1175         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1176 
1177       Builder.SetInsertPoint(PTI);
1178       // Convert pointer to int before we switch.
1179       if (CV->getType()->isPointerTy()) {
1180         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1181                                     "magicptr");
1182       }
1183 
1184       // Now that the successors are updated, create the new Switch instruction.
1185       SwitchInst *NewSI =
1186           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1187       NewSI->setDebugLoc(PTI->getDebugLoc());
1188       for (ValueEqualityComparisonCase &V : PredCases)
1189         NewSI->addCase(V.Value, V.Dest);
1190 
1191       if (PredHasWeights || SuccHasWeights) {
1192         // Halve the weights if any of them cannot fit in an uint32_t
1193         FitWeights(Weights);
1194 
1195         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1196 
1197         setBranchWeights(NewSI, MDWeights);
1198       }
1199 
1200       EraseTerminatorAndDCECond(PTI);
1201 
1202       // Okay, last check.  If BB is still a successor of PSI, then we must
1203       // have an infinite loop case.  If so, add an infinitely looping block
1204       // to handle the case to preserve the behavior of the code.
1205       BasicBlock *InfLoopBlock = nullptr;
1206       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1207         if (NewSI->getSuccessor(i) == BB) {
1208           if (!InfLoopBlock) {
1209             // Insert it at the end of the function, because it's either code,
1210             // or it won't matter if it's hot. :)
1211             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1212                                               BB->getParent());
1213             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1214           }
1215           NewSI->setSuccessor(i, InfLoopBlock);
1216         }
1217 
1218       Changed = true;
1219     }
1220   }
1221   return Changed;
1222 }
1223 
1224 // If we would need to insert a select that uses the value of this invoke
1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1226 // can't hoist the invoke, as there is nowhere to put the select in this case.
1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1228                                 Instruction *I1, Instruction *I2) {
1229   for (BasicBlock *Succ : successors(BB1)) {
1230     for (const PHINode &PN : Succ->phis()) {
1231       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1232       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1233       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1234         return false;
1235       }
1236     }
1237   }
1238   return true;
1239 }
1240 
1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1242 
1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1244 /// in the two blocks up into the branch block. The caller of this function
1245 /// guarantees that BI's block dominates BB1 and BB2.
1246 static bool HoistThenElseCodeToIf(BranchInst *BI,
1247                                   const TargetTransformInfo &TTI) {
1248   // This does very trivial matching, with limited scanning, to find identical
1249   // instructions in the two blocks.  In particular, we don't want to get into
1250   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1251   // such, we currently just scan for obviously identical instructions in an
1252   // identical order.
1253   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1254   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1255 
1256   BasicBlock::iterator BB1_Itr = BB1->begin();
1257   BasicBlock::iterator BB2_Itr = BB2->begin();
1258 
1259   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1260   // Skip debug info if it is not identical.
1261   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1262   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1263   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1264     while (isa<DbgInfoIntrinsic>(I1))
1265       I1 = &*BB1_Itr++;
1266     while (isa<DbgInfoIntrinsic>(I2))
1267       I2 = &*BB2_Itr++;
1268   }
1269   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1270       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1271     return false;
1272 
1273   BasicBlock *BIParent = BI->getParent();
1274 
1275   bool Changed = false;
1276   do {
1277     // If we are hoisting the terminator instruction, don't move one (making a
1278     // broken BB), instead clone it, and remove BI.
1279     if (I1->isTerminator())
1280       goto HoistTerminator;
1281 
1282     // If we're going to hoist a call, make sure that the two instructions we're
1283     // commoning/hoisting are both marked with musttail, or neither of them is
1284     // marked as such. Otherwise, we might end up in a situation where we hoist
1285     // from a block where the terminator is a `ret` to a block where the terminator
1286     // is a `br`, and `musttail` calls expect to be followed by a return.
1287     auto *C1 = dyn_cast<CallInst>(I1);
1288     auto *C2 = dyn_cast<CallInst>(I2);
1289     if (C1 && C2)
1290       if (C1->isMustTailCall() != C2->isMustTailCall())
1291         return Changed;
1292 
1293     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1294       return Changed;
1295 
1296     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1297       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1298       // The debug location is an integral part of a debug info intrinsic
1299       // and can't be separated from it or replaced.  Instead of attempting
1300       // to merge locations, simply hoist both copies of the intrinsic.
1301       BIParent->getInstList().splice(BI->getIterator(),
1302                                      BB1->getInstList(), I1);
1303       BIParent->getInstList().splice(BI->getIterator(),
1304                                      BB2->getInstList(), I2);
1305       Changed = true;
1306     } else {
1307       // For a normal instruction, we just move one to right before the branch,
1308       // then replace all uses of the other with the first.  Finally, we remove
1309       // the now redundant second instruction.
1310       BIParent->getInstList().splice(BI->getIterator(),
1311                                      BB1->getInstList(), I1);
1312       if (!I2->use_empty())
1313         I2->replaceAllUsesWith(I1);
1314       I1->andIRFlags(I2);
1315       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1316                              LLVMContext::MD_range,
1317                              LLVMContext::MD_fpmath,
1318                              LLVMContext::MD_invariant_load,
1319                              LLVMContext::MD_nonnull,
1320                              LLVMContext::MD_invariant_group,
1321                              LLVMContext::MD_align,
1322                              LLVMContext::MD_dereferenceable,
1323                              LLVMContext::MD_dereferenceable_or_null,
1324                              LLVMContext::MD_mem_parallel_loop_access};
1325       combineMetadata(I1, I2, KnownIDs, true);
1326 
1327       // I1 and I2 are being combined into a single instruction.  Its debug
1328       // location is the merged locations of the original instructions.
1329       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1330 
1331       I2->eraseFromParent();
1332       Changed = true;
1333     }
1334 
1335     I1 = &*BB1_Itr++;
1336     I2 = &*BB2_Itr++;
1337     // Skip debug info if it is not identical.
1338     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1339     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1340     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1341       while (isa<DbgInfoIntrinsic>(I1))
1342         I1 = &*BB1_Itr++;
1343       while (isa<DbgInfoIntrinsic>(I2))
1344         I2 = &*BB2_Itr++;
1345     }
1346   } while (I1->isIdenticalToWhenDefined(I2));
1347 
1348   return true;
1349 
1350 HoistTerminator:
1351   // It may not be possible to hoist an invoke.
1352   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1353     return Changed;
1354 
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V == BB2V)
1360         continue;
1361 
1362       // Check for passingValueIsAlwaysUndefined here because we would rather
1363       // eliminate undefined control flow then converting it to a select.
1364       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1365           passingValueIsAlwaysUndefined(BB2V, &PN))
1366         return Changed;
1367 
1368       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1369         return Changed;
1370       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1371         return Changed;
1372     }
1373   }
1374 
1375   // Okay, it is safe to hoist the terminator.
1376   Instruction *NT = I1->clone();
1377   BIParent->getInstList().insert(BI->getIterator(), NT);
1378   if (!NT->getType()->isVoidTy()) {
1379     I1->replaceAllUsesWith(NT);
1380     I2->replaceAllUsesWith(NT);
1381     NT->takeName(I1);
1382   }
1383 
1384   IRBuilder<NoFolder> Builder(NT);
1385   // Hoisting one of the terminators from our successor is a great thing.
1386   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1387   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1388   // nodes, so we insert select instruction to compute the final result.
1389   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1390   for (BasicBlock *Succ : successors(BB1)) {
1391     for (PHINode &PN : Succ->phis()) {
1392       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1393       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1394       if (BB1V == BB2V)
1395         continue;
1396 
1397       // These values do not agree.  Insert a select instruction before NT
1398       // that determines the right value.
1399       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1400       if (!SI)
1401         SI = cast<SelectInst>(
1402             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1403                                  BB1V->getName() + "." + BB2V->getName(), BI));
1404 
1405       // Make the PHI node use the select for all incoming values for BB1/BB2
1406       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1407         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1408           PN.setIncomingValue(i, SI);
1409     }
1410   }
1411 
1412   // Update any PHI nodes in our new successors.
1413   for (BasicBlock *Succ : successors(BB1))
1414     AddPredecessorToBlock(Succ, BIParent, BB1);
1415 
1416   EraseTerminatorAndDCECond(BI);
1417   return true;
1418 }
1419 
1420 // All instructions in Insts belong to different blocks that all unconditionally
1421 // branch to a common successor. Analyze each instruction and return true if it
1422 // would be possible to sink them into their successor, creating one common
1423 // instruction instead. For every value that would be required to be provided by
1424 // PHI node (because an operand varies in each input block), add to PHIOperands.
1425 static bool canSinkInstructions(
1426     ArrayRef<Instruction *> Insts,
1427     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1428   // Prune out obviously bad instructions to move. Any non-store instruction
1429   // must have exactly one use, and we check later that use is by a single,
1430   // common PHI instruction in the successor.
1431   for (auto *I : Insts) {
1432     // These instructions may change or break semantics if moved.
1433     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1434         I->getType()->isTokenTy())
1435       return false;
1436 
1437     // Conservatively return false if I is an inline-asm instruction. Sinking
1438     // and merging inline-asm instructions can potentially create arguments
1439     // that cannot satisfy the inline-asm constraints.
1440     if (const auto *C = dyn_cast<CallInst>(I))
1441       if (C->isInlineAsm())
1442         return false;
1443 
1444     // Everything must have only one use too, apart from stores which
1445     // have no uses.
1446     if (!isa<StoreInst>(I) && !I->hasOneUse())
1447       return false;
1448   }
1449 
1450   const Instruction *I0 = Insts.front();
1451   for (auto *I : Insts)
1452     if (!I->isSameOperationAs(I0))
1453       return false;
1454 
1455   // All instructions in Insts are known to be the same opcode. If they aren't
1456   // stores, check the only user of each is a PHI or in the same block as the
1457   // instruction, because if a user is in the same block as an instruction
1458   // we're contemplating sinking, it must already be determined to be sinkable.
1459   if (!isa<StoreInst>(I0)) {
1460     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1461     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1462     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1463           auto *U = cast<Instruction>(*I->user_begin());
1464           return (PNUse &&
1465                   PNUse->getParent() == Succ &&
1466                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1467                  U->getParent() == I->getParent();
1468         }))
1469       return false;
1470   }
1471 
1472   // Because SROA can't handle speculating stores of selects, try not
1473   // to sink loads or stores of allocas when we'd have to create a PHI for
1474   // the address operand. Also, because it is likely that loads or stores
1475   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1476   // This can cause code churn which can have unintended consequences down
1477   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1478   // FIXME: This is a workaround for a deficiency in SROA - see
1479   // https://llvm.org/bugs/show_bug.cgi?id=30188
1480   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1481         return isa<AllocaInst>(I->getOperand(1));
1482       }))
1483     return false;
1484   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1485         return isa<AllocaInst>(I->getOperand(0));
1486       }))
1487     return false;
1488 
1489   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1490     if (I0->getOperand(OI)->getType()->isTokenTy())
1491       // Don't touch any operand of token type.
1492       return false;
1493 
1494     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1495       assert(I->getNumOperands() == I0->getNumOperands());
1496       return I->getOperand(OI) == I0->getOperand(OI);
1497     };
1498     if (!all_of(Insts, SameAsI0)) {
1499       if (!canReplaceOperandWithVariable(I0, OI))
1500         // We can't create a PHI from this GEP.
1501         return false;
1502       // Don't create indirect calls! The called value is the final operand.
1503       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1504         // FIXME: if the call was *already* indirect, we should do this.
1505         return false;
1506       }
1507       for (auto *I : Insts)
1508         PHIOperands[I].push_back(I->getOperand(OI));
1509     }
1510   }
1511   return true;
1512 }
1513 
1514 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1515 // instruction of every block in Blocks to their common successor, commoning
1516 // into one instruction.
1517 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1518   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1519 
1520   // canSinkLastInstruction returning true guarantees that every block has at
1521   // least one non-terminator instruction.
1522   SmallVector<Instruction*,4> Insts;
1523   for (auto *BB : Blocks) {
1524     Instruction *I = BB->getTerminator();
1525     do {
1526       I = I->getPrevNode();
1527     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1528     if (!isa<DbgInfoIntrinsic>(I))
1529       Insts.push_back(I);
1530   }
1531 
1532   // The only checking we need to do now is that all users of all instructions
1533   // are the same PHI node. canSinkLastInstruction should have checked this but
1534   // it is slightly over-aggressive - it gets confused by commutative instructions
1535   // so double-check it here.
1536   Instruction *I0 = Insts.front();
1537   if (!isa<StoreInst>(I0)) {
1538     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1539     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1540           auto *U = cast<Instruction>(*I->user_begin());
1541           return U == PNUse;
1542         }))
1543       return false;
1544   }
1545 
1546   // We don't need to do any more checking here; canSinkLastInstruction should
1547   // have done it all for us.
1548   SmallVector<Value*, 4> NewOperands;
1549   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1550     // This check is different to that in canSinkLastInstruction. There, we
1551     // cared about the global view once simplifycfg (and instcombine) have
1552     // completed - it takes into account PHIs that become trivially
1553     // simplifiable.  However here we need a more local view; if an operand
1554     // differs we create a PHI and rely on instcombine to clean up the very
1555     // small mess we may make.
1556     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1557       return I->getOperand(O) != I0->getOperand(O);
1558     });
1559     if (!NeedPHI) {
1560       NewOperands.push_back(I0->getOperand(O));
1561       continue;
1562     }
1563 
1564     // Create a new PHI in the successor block and populate it.
1565     auto *Op = I0->getOperand(O);
1566     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1567     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1568                                Op->getName() + ".sink", &BBEnd->front());
1569     for (auto *I : Insts)
1570       PN->addIncoming(I->getOperand(O), I->getParent());
1571     NewOperands.push_back(PN);
1572   }
1573 
1574   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1575   // and move it to the start of the successor block.
1576   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1577     I0->getOperandUse(O).set(NewOperands[O]);
1578   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1579 
1580   // Update metadata and IR flags, and merge debug locations.
1581   for (auto *I : Insts)
1582     if (I != I0) {
1583       // The debug location for the "common" instruction is the merged locations
1584       // of all the commoned instructions.  We start with the original location
1585       // of the "common" instruction and iteratively merge each location in the
1586       // loop below.
1587       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1588       // However, as N-way merge for CallInst is rare, so we use simplified API
1589       // instead of using complex API for N-way merge.
1590       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1591       combineMetadataForCSE(I0, I, true);
1592       I0->andIRFlags(I);
1593     }
1594 
1595   if (!isa<StoreInst>(I0)) {
1596     // canSinkLastInstruction checked that all instructions were used by
1597     // one and only one PHI node. Find that now, RAUW it to our common
1598     // instruction and nuke it.
1599     assert(I0->hasOneUse());
1600     auto *PN = cast<PHINode>(*I0->user_begin());
1601     PN->replaceAllUsesWith(I0);
1602     PN->eraseFromParent();
1603   }
1604 
1605   // Finally nuke all instructions apart from the common instruction.
1606   for (auto *I : Insts)
1607     if (I != I0)
1608       I->eraseFromParent();
1609 
1610   return true;
1611 }
1612 
1613 namespace {
1614 
1615   // LockstepReverseIterator - Iterates through instructions
1616   // in a set of blocks in reverse order from the first non-terminator.
1617   // For example (assume all blocks have size n):
1618   //   LockstepReverseIterator I([B1, B2, B3]);
1619   //   *I-- = [B1[n], B2[n], B3[n]];
1620   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1621   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1622   //   ...
1623   class LockstepReverseIterator {
1624     ArrayRef<BasicBlock*> Blocks;
1625     SmallVector<Instruction*,4> Insts;
1626     bool Fail;
1627 
1628   public:
1629     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1630       reset();
1631     }
1632 
1633     void reset() {
1634       Fail = false;
1635       Insts.clear();
1636       for (auto *BB : Blocks) {
1637         Instruction *Inst = BB->getTerminator();
1638         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1639           Inst = Inst->getPrevNode();
1640         if (!Inst) {
1641           // Block wasn't big enough.
1642           Fail = true;
1643           return;
1644         }
1645         Insts.push_back(Inst);
1646       }
1647     }
1648 
1649     bool isValid() const {
1650       return !Fail;
1651     }
1652 
1653     void operator--() {
1654       if (Fail)
1655         return;
1656       for (auto *&Inst : Insts) {
1657         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1658           Inst = Inst->getPrevNode();
1659         // Already at beginning of block.
1660         if (!Inst) {
1661           Fail = true;
1662           return;
1663         }
1664       }
1665     }
1666 
1667     ArrayRef<Instruction*> operator * () const {
1668       return Insts;
1669     }
1670   };
1671 
1672 } // end anonymous namespace
1673 
1674 /// Check whether BB's predecessors end with unconditional branches. If it is
1675 /// true, sink any common code from the predecessors to BB.
1676 /// We also allow one predecessor to end with conditional branch (but no more
1677 /// than one).
1678 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1679   // We support two situations:
1680   //   (1) all incoming arcs are unconditional
1681   //   (2) one incoming arc is conditional
1682   //
1683   // (2) is very common in switch defaults and
1684   // else-if patterns;
1685   //
1686   //   if (a) f(1);
1687   //   else if (b) f(2);
1688   //
1689   // produces:
1690   //
1691   //       [if]
1692   //      /    \
1693   //    [f(1)] [if]
1694   //      |     | \
1695   //      |     |  |
1696   //      |  [f(2)]|
1697   //       \    | /
1698   //        [ end ]
1699   //
1700   // [end] has two unconditional predecessor arcs and one conditional. The
1701   // conditional refers to the implicit empty 'else' arc. This conditional
1702   // arc can also be caused by an empty default block in a switch.
1703   //
1704   // In this case, we attempt to sink code from all *unconditional* arcs.
1705   // If we can sink instructions from these arcs (determined during the scan
1706   // phase below) we insert a common successor for all unconditional arcs and
1707   // connect that to [end], to enable sinking:
1708   //
1709   //       [if]
1710   //      /    \
1711   //    [x(1)] [if]
1712   //      |     | \
1713   //      |     |  \
1714   //      |  [x(2)] |
1715   //       \   /    |
1716   //   [sink.split] |
1717   //         \     /
1718   //         [ end ]
1719   //
1720   SmallVector<BasicBlock*,4> UnconditionalPreds;
1721   Instruction *Cond = nullptr;
1722   for (auto *B : predecessors(BB)) {
1723     auto *T = B->getTerminator();
1724     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1725       UnconditionalPreds.push_back(B);
1726     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1727       Cond = T;
1728     else
1729       return false;
1730   }
1731   if (UnconditionalPreds.size() < 2)
1732     return false;
1733 
1734   bool Changed = false;
1735   // We take a two-step approach to tail sinking. First we scan from the end of
1736   // each block upwards in lockstep. If the n'th instruction from the end of each
1737   // block can be sunk, those instructions are added to ValuesToSink and we
1738   // carry on. If we can sink an instruction but need to PHI-merge some operands
1739   // (because they're not identical in each instruction) we add these to
1740   // PHIOperands.
1741   unsigned ScanIdx = 0;
1742   SmallPtrSet<Value*,4> InstructionsToSink;
1743   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1744   LockstepReverseIterator LRI(UnconditionalPreds);
1745   while (LRI.isValid() &&
1746          canSinkInstructions(*LRI, PHIOperands)) {
1747     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1748                       << "\n");
1749     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1750     ++ScanIdx;
1751     --LRI;
1752   }
1753 
1754   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1755     unsigned NumPHIdValues = 0;
1756     for (auto *I : *LRI)
1757       for (auto *V : PHIOperands[I])
1758         if (InstructionsToSink.count(V) == 0)
1759           ++NumPHIdValues;
1760     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1761     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1762     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1763         NumPHIInsts++;
1764 
1765     return NumPHIInsts <= 1;
1766   };
1767 
1768   if (ScanIdx > 0 && Cond) {
1769     // Check if we would actually sink anything first! This mutates the CFG and
1770     // adds an extra block. The goal in doing this is to allow instructions that
1771     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1772     // (such as trunc, add) can be sunk and predicated already. So we check that
1773     // we're going to sink at least one non-speculatable instruction.
1774     LRI.reset();
1775     unsigned Idx = 0;
1776     bool Profitable = false;
1777     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1778       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1779         Profitable = true;
1780         break;
1781       }
1782       --LRI;
1783       ++Idx;
1784     }
1785     if (!Profitable)
1786       return false;
1787 
1788     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1789     // We have a conditional edge and we're going to sink some instructions.
1790     // Insert a new block postdominating all blocks we're going to sink from.
1791     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1792       // Edges couldn't be split.
1793       return false;
1794     Changed = true;
1795   }
1796 
1797   // Now that we've analyzed all potential sinking candidates, perform the
1798   // actual sink. We iteratively sink the last non-terminator of the source
1799   // blocks into their common successor unless doing so would require too
1800   // many PHI instructions to be generated (currently only one PHI is allowed
1801   // per sunk instruction).
1802   //
1803   // We can use InstructionsToSink to discount values needing PHI-merging that will
1804   // actually be sunk in a later iteration. This allows us to be more
1805   // aggressive in what we sink. This does allow a false positive where we
1806   // sink presuming a later value will also be sunk, but stop half way through
1807   // and never actually sink it which means we produce more PHIs than intended.
1808   // This is unlikely in practice though.
1809   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1810     LLVM_DEBUG(dbgs() << "SINK: Sink: "
1811                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1812                       << "\n");
1813 
1814     // Because we've sunk every instruction in turn, the current instruction to
1815     // sink is always at index 0.
1816     LRI.reset();
1817     if (!ProfitableToSinkInstruction(LRI)) {
1818       // Too many PHIs would be created.
1819       LLVM_DEBUG(
1820           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1821       break;
1822     }
1823 
1824     if (!sinkLastInstruction(UnconditionalPreds))
1825       return Changed;
1826     NumSinkCommons++;
1827     Changed = true;
1828   }
1829   return Changed;
1830 }
1831 
1832 /// Determine if we can hoist sink a sole store instruction out of a
1833 /// conditional block.
1834 ///
1835 /// We are looking for code like the following:
1836 ///   BrBB:
1837 ///     store i32 %add, i32* %arrayidx2
1838 ///     ... // No other stores or function calls (we could be calling a memory
1839 ///     ... // function).
1840 ///     %cmp = icmp ult %x, %y
1841 ///     br i1 %cmp, label %EndBB, label %ThenBB
1842 ///   ThenBB:
1843 ///     store i32 %add5, i32* %arrayidx2
1844 ///     br label EndBB
1845 ///   EndBB:
1846 ///     ...
1847 ///   We are going to transform this into:
1848 ///   BrBB:
1849 ///     store i32 %add, i32* %arrayidx2
1850 ///     ... //
1851 ///     %cmp = icmp ult %x, %y
1852 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1853 ///     store i32 %add.add5, i32* %arrayidx2
1854 ///     ...
1855 ///
1856 /// \return The pointer to the value of the previous store if the store can be
1857 ///         hoisted into the predecessor block. 0 otherwise.
1858 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1859                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1860   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1861   if (!StoreToHoist)
1862     return nullptr;
1863 
1864   // Volatile or atomic.
1865   if (!StoreToHoist->isSimple())
1866     return nullptr;
1867 
1868   Value *StorePtr = StoreToHoist->getPointerOperand();
1869 
1870   // Look for a store to the same pointer in BrBB.
1871   unsigned MaxNumInstToLookAt = 9;
1872   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1873     if (!MaxNumInstToLookAt)
1874       break;
1875     --MaxNumInstToLookAt;
1876 
1877     // Could be calling an instruction that affects memory like free().
1878     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1879       return nullptr;
1880 
1881     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1882       // Found the previous store make sure it stores to the same location.
1883       if (SI->getPointerOperand() == StorePtr)
1884         // Found the previous store, return its value operand.
1885         return SI->getValueOperand();
1886       return nullptr; // Unknown store.
1887     }
1888   }
1889 
1890   return nullptr;
1891 }
1892 
1893 /// Speculate a conditional basic block flattening the CFG.
1894 ///
1895 /// Note that this is a very risky transform currently. Speculating
1896 /// instructions like this is most often not desirable. Instead, there is an MI
1897 /// pass which can do it with full awareness of the resource constraints.
1898 /// However, some cases are "obvious" and we should do directly. An example of
1899 /// this is speculating a single, reasonably cheap instruction.
1900 ///
1901 /// There is only one distinct advantage to flattening the CFG at the IR level:
1902 /// it makes very common but simplistic optimizations such as are common in
1903 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1904 /// modeling their effects with easier to reason about SSA value graphs.
1905 ///
1906 ///
1907 /// An illustration of this transform is turning this IR:
1908 /// \code
1909 ///   BB:
1910 ///     %cmp = icmp ult %x, %y
1911 ///     br i1 %cmp, label %EndBB, label %ThenBB
1912 ///   ThenBB:
1913 ///     %sub = sub %x, %y
1914 ///     br label BB2
1915 ///   EndBB:
1916 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1917 ///     ...
1918 /// \endcode
1919 ///
1920 /// Into this IR:
1921 /// \code
1922 ///   BB:
1923 ///     %cmp = icmp ult %x, %y
1924 ///     %sub = sub %x, %y
1925 ///     %cond = select i1 %cmp, 0, %sub
1926 ///     ...
1927 /// \endcode
1928 ///
1929 /// \returns true if the conditional block is removed.
1930 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1931                                    const TargetTransformInfo &TTI) {
1932   // Be conservative for now. FP select instruction can often be expensive.
1933   Value *BrCond = BI->getCondition();
1934   if (isa<FCmpInst>(BrCond))
1935     return false;
1936 
1937   BasicBlock *BB = BI->getParent();
1938   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1939 
1940   // If ThenBB is actually on the false edge of the conditional branch, remember
1941   // to swap the select operands later.
1942   bool Invert = false;
1943   if (ThenBB != BI->getSuccessor(0)) {
1944     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1945     Invert = true;
1946   }
1947   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1948 
1949   // Keep a count of how many times instructions are used within ThenBB when
1950   // they are candidates for sinking into ThenBB. Specifically:
1951   // - They are defined in BB, and
1952   // - They have no side effects, and
1953   // - All of their uses are in ThenBB.
1954   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1955 
1956   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1957 
1958   unsigned SpeculationCost = 0;
1959   Value *SpeculatedStoreValue = nullptr;
1960   StoreInst *SpeculatedStore = nullptr;
1961   for (BasicBlock::iterator BBI = ThenBB->begin(),
1962                             BBE = std::prev(ThenBB->end());
1963        BBI != BBE; ++BBI) {
1964     Instruction *I = &*BBI;
1965     // Skip debug info.
1966     if (isa<DbgInfoIntrinsic>(I)) {
1967       SpeculatedDbgIntrinsics.push_back(I);
1968       continue;
1969     }
1970 
1971     // Only speculatively execute a single instruction (not counting the
1972     // terminator) for now.
1973     ++SpeculationCost;
1974     if (SpeculationCost > 1)
1975       return false;
1976 
1977     // Don't hoist the instruction if it's unsafe or expensive.
1978     if (!isSafeToSpeculativelyExecute(I) &&
1979         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1980                                   I, BB, ThenBB, EndBB))))
1981       return false;
1982     if (!SpeculatedStoreValue &&
1983         ComputeSpeculationCost(I, TTI) >
1984             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1985       return false;
1986 
1987     // Store the store speculation candidate.
1988     if (SpeculatedStoreValue)
1989       SpeculatedStore = cast<StoreInst>(I);
1990 
1991     // Do not hoist the instruction if any of its operands are defined but not
1992     // used in BB. The transformation will prevent the operand from
1993     // being sunk into the use block.
1994     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1995       Instruction *OpI = dyn_cast<Instruction>(*i);
1996       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
1997         continue; // Not a candidate for sinking.
1998 
1999       ++SinkCandidateUseCounts[OpI];
2000     }
2001   }
2002 
2003   // Consider any sink candidates which are only used in ThenBB as costs for
2004   // speculation. Note, while we iterate over a DenseMap here, we are summing
2005   // and so iteration order isn't significant.
2006   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2007            I = SinkCandidateUseCounts.begin(),
2008            E = SinkCandidateUseCounts.end();
2009        I != E; ++I)
2010     if (I->first->hasNUses(I->second)) {
2011       ++SpeculationCost;
2012       if (SpeculationCost > 1)
2013         return false;
2014     }
2015 
2016   // Check that the PHI nodes can be converted to selects.
2017   bool HaveRewritablePHIs = false;
2018   for (PHINode &PN : EndBB->phis()) {
2019     Value *OrigV = PN.getIncomingValueForBlock(BB);
2020     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2021 
2022     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2023     // Skip PHIs which are trivial.
2024     if (ThenV == OrigV)
2025       continue;
2026 
2027     // Don't convert to selects if we could remove undefined behavior instead.
2028     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2029         passingValueIsAlwaysUndefined(ThenV, &PN))
2030       return false;
2031 
2032     HaveRewritablePHIs = true;
2033     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2034     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2035     if (!OrigCE && !ThenCE)
2036       continue; // Known safe and cheap.
2037 
2038     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2039         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2040       return false;
2041     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2042     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2043     unsigned MaxCost =
2044         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2045     if (OrigCost + ThenCost > MaxCost)
2046       return false;
2047 
2048     // Account for the cost of an unfolded ConstantExpr which could end up
2049     // getting expanded into Instructions.
2050     // FIXME: This doesn't account for how many operations are combined in the
2051     // constant expression.
2052     ++SpeculationCost;
2053     if (SpeculationCost > 1)
2054       return false;
2055   }
2056 
2057   // If there are no PHIs to process, bail early. This helps ensure idempotence
2058   // as well.
2059   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2060     return false;
2061 
2062   // If we get here, we can hoist the instruction and if-convert.
2063   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2064 
2065   // Insert a select of the value of the speculated store.
2066   if (SpeculatedStoreValue) {
2067     IRBuilder<NoFolder> Builder(BI);
2068     Value *TrueV = SpeculatedStore->getValueOperand();
2069     Value *FalseV = SpeculatedStoreValue;
2070     if (Invert)
2071       std::swap(TrueV, FalseV);
2072     Value *S = Builder.CreateSelect(
2073         BrCond, TrueV, FalseV, "spec.store.select", BI);
2074     SpeculatedStore->setOperand(0, S);
2075     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2076                                          SpeculatedStore->getDebugLoc());
2077   }
2078 
2079   // Metadata can be dependent on the condition we are hoisting above.
2080   // Conservatively strip all metadata on the instruction.
2081   for (auto &I : *ThenBB)
2082     I.dropUnknownNonDebugMetadata();
2083 
2084   // Hoist the instructions.
2085   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2086                            ThenBB->begin(), std::prev(ThenBB->end()));
2087 
2088   // Insert selects and rewrite the PHI operands.
2089   IRBuilder<NoFolder> Builder(BI);
2090   for (PHINode &PN : EndBB->phis()) {
2091     unsigned OrigI = PN.getBasicBlockIndex(BB);
2092     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2093     Value *OrigV = PN.getIncomingValue(OrigI);
2094     Value *ThenV = PN.getIncomingValue(ThenI);
2095 
2096     // Skip PHIs which are trivial.
2097     if (OrigV == ThenV)
2098       continue;
2099 
2100     // Create a select whose true value is the speculatively executed value and
2101     // false value is the preexisting value. Swap them if the branch
2102     // destinations were inverted.
2103     Value *TrueV = ThenV, *FalseV = OrigV;
2104     if (Invert)
2105       std::swap(TrueV, FalseV);
2106     Value *V = Builder.CreateSelect(
2107         BrCond, TrueV, FalseV, "spec.select", BI);
2108     PN.setIncomingValue(OrigI, V);
2109     PN.setIncomingValue(ThenI, V);
2110   }
2111 
2112   // Remove speculated dbg intrinsics.
2113   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2114   // dbg value for the different flows and inserting it after the select.
2115   for (Instruction *I : SpeculatedDbgIntrinsics)
2116     I->eraseFromParent();
2117 
2118   ++NumSpeculations;
2119   return true;
2120 }
2121 
2122 /// Return true if we can thread a branch across this block.
2123 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2124   unsigned Size = 0;
2125 
2126   for (Instruction &I : BB->instructionsWithoutDebug()) {
2127     if (Size > 10)
2128       return false; // Don't clone large BB's.
2129     ++Size;
2130 
2131     // We can only support instructions that do not define values that are
2132     // live outside of the current basic block.
2133     for (User *U : I.users()) {
2134       Instruction *UI = cast<Instruction>(U);
2135       if (UI->getParent() != BB || isa<PHINode>(UI))
2136         return false;
2137     }
2138 
2139     // Looks ok, continue checking.
2140   }
2141 
2142   return true;
2143 }
2144 
2145 /// If we have a conditional branch on a PHI node value that is defined in the
2146 /// same block as the branch and if any PHI entries are constants, thread edges
2147 /// corresponding to that entry to be branches to their ultimate destination.
2148 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2149                                 AssumptionCache *AC) {
2150   BasicBlock *BB = BI->getParent();
2151   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2152   // NOTE: we currently cannot transform this case if the PHI node is used
2153   // outside of the block.
2154   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2155     return false;
2156 
2157   // Degenerate case of a single entry PHI.
2158   if (PN->getNumIncomingValues() == 1) {
2159     FoldSingleEntryPHINodes(PN->getParent());
2160     return true;
2161   }
2162 
2163   // Now we know that this block has multiple preds and two succs.
2164   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2165     return false;
2166 
2167   // Can't fold blocks that contain noduplicate or convergent calls.
2168   if (any_of(*BB, [](const Instruction &I) {
2169         const CallInst *CI = dyn_cast<CallInst>(&I);
2170         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2171       }))
2172     return false;
2173 
2174   // Okay, this is a simple enough basic block.  See if any phi values are
2175   // constants.
2176   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2177     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2178     if (!CB || !CB->getType()->isIntegerTy(1))
2179       continue;
2180 
2181     // Okay, we now know that all edges from PredBB should be revectored to
2182     // branch to RealDest.
2183     BasicBlock *PredBB = PN->getIncomingBlock(i);
2184     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2185 
2186     if (RealDest == BB)
2187       continue; // Skip self loops.
2188     // Skip if the predecessor's terminator is an indirect branch.
2189     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2190       continue;
2191 
2192     // The dest block might have PHI nodes, other predecessors and other
2193     // difficult cases.  Instead of being smart about this, just insert a new
2194     // block that jumps to the destination block, effectively splitting
2195     // the edge we are about to create.
2196     BasicBlock *EdgeBB =
2197         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2198                            RealDest->getParent(), RealDest);
2199     BranchInst::Create(RealDest, EdgeBB);
2200 
2201     // Update PHI nodes.
2202     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2203 
2204     // BB may have instructions that are being threaded over.  Clone these
2205     // instructions into EdgeBB.  We know that there will be no uses of the
2206     // cloned instructions outside of EdgeBB.
2207     BasicBlock::iterator InsertPt = EdgeBB->begin();
2208     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2209     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2210       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2211         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2212         continue;
2213       }
2214       // Clone the instruction.
2215       Instruction *N = BBI->clone();
2216       if (BBI->hasName())
2217         N->setName(BBI->getName() + ".c");
2218 
2219       // Update operands due to translation.
2220       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2221         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2222         if (PI != TranslateMap.end())
2223           *i = PI->second;
2224       }
2225 
2226       // Check for trivial simplification.
2227       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2228         if (!BBI->use_empty())
2229           TranslateMap[&*BBI] = V;
2230         if (!N->mayHaveSideEffects()) {
2231           N->deleteValue(); // Instruction folded away, don't need actual inst
2232           N = nullptr;
2233         }
2234       } else {
2235         if (!BBI->use_empty())
2236           TranslateMap[&*BBI] = N;
2237       }
2238       // Insert the new instruction into its new home.
2239       if (N)
2240         EdgeBB->getInstList().insert(InsertPt, N);
2241 
2242       // Register the new instruction with the assumption cache if necessary.
2243       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2244         if (II->getIntrinsicID() == Intrinsic::assume)
2245           AC->registerAssumption(II);
2246     }
2247 
2248     // Loop over all of the edges from PredBB to BB, changing them to branch
2249     // to EdgeBB instead.
2250     Instruction *PredBBTI = PredBB->getTerminator();
2251     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2252       if (PredBBTI->getSuccessor(i) == BB) {
2253         BB->removePredecessor(PredBB);
2254         PredBBTI->setSuccessor(i, EdgeBB);
2255       }
2256 
2257     // Recurse, simplifying any other constants.
2258     return FoldCondBranchOnPHI(BI, DL, AC) || true;
2259   }
2260 
2261   return false;
2262 }
2263 
2264 /// Given a BB that starts with the specified two-entry PHI node,
2265 /// see if we can eliminate it.
2266 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2267                                 const DataLayout &DL) {
2268   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2269   // statement", which has a very simple dominance structure.  Basically, we
2270   // are trying to find the condition that is being branched on, which
2271   // subsequently causes this merge to happen.  We really want control
2272   // dependence information for this check, but simplifycfg can't keep it up
2273   // to date, and this catches most of the cases we care about anyway.
2274   BasicBlock *BB = PN->getParent();
2275   const Function *Fn = BB->getParent();
2276   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2277     return false;
2278 
2279   BasicBlock *IfTrue, *IfFalse;
2280   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2281   if (!IfCond ||
2282       // Don't bother if the branch will be constant folded trivially.
2283       isa<ConstantInt>(IfCond))
2284     return false;
2285 
2286   // Okay, we found that we can merge this two-entry phi node into a select.
2287   // Doing so would require us to fold *all* two entry phi nodes in this block.
2288   // At some point this becomes non-profitable (particularly if the target
2289   // doesn't support cmov's).  Only do this transformation if there are two or
2290   // fewer PHI nodes in this block.
2291   unsigned NumPhis = 0;
2292   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2293     if (NumPhis > 2)
2294       return false;
2295 
2296   // Loop over the PHI's seeing if we can promote them all to select
2297   // instructions.  While we are at it, keep track of the instructions
2298   // that need to be moved to the dominating block.
2299   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2300   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2301            MaxCostVal1 = PHINodeFoldingThreshold;
2302   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2303   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2304 
2305   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2306     PHINode *PN = cast<PHINode>(II++);
2307     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2308       PN->replaceAllUsesWith(V);
2309       PN->eraseFromParent();
2310       continue;
2311     }
2312 
2313     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2314                              MaxCostVal0, TTI) ||
2315         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2316                              MaxCostVal1, TTI))
2317       return false;
2318   }
2319 
2320   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2321   // we ran out of PHIs then we simplified them all.
2322   PN = dyn_cast<PHINode>(BB->begin());
2323   if (!PN)
2324     return true;
2325 
2326   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2327   // often be turned into switches and other things.
2328   if (PN->getType()->isIntegerTy(1) &&
2329       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2330        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2331        isa<BinaryOperator>(IfCond)))
2332     return false;
2333 
2334   // If all PHI nodes are promotable, check to make sure that all instructions
2335   // in the predecessor blocks can be promoted as well. If not, we won't be able
2336   // to get rid of the control flow, so it's not worth promoting to select
2337   // instructions.
2338   BasicBlock *DomBlock = nullptr;
2339   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2340   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2341   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2342     IfBlock1 = nullptr;
2343   } else {
2344     DomBlock = *pred_begin(IfBlock1);
2345     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2346       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2347         // This is not an aggressive instruction that we can promote.
2348         // Because of this, we won't be able to get rid of the control flow, so
2349         // the xform is not worth it.
2350         return false;
2351       }
2352   }
2353 
2354   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2355     IfBlock2 = nullptr;
2356   } else {
2357     DomBlock = *pred_begin(IfBlock2);
2358     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2359       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2360         // This is not an aggressive instruction that we can promote.
2361         // Because of this, we won't be able to get rid of the control flow, so
2362         // the xform is not worth it.
2363         return false;
2364       }
2365   }
2366 
2367   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2368                     << "  T: " << IfTrue->getName()
2369                     << "  F: " << IfFalse->getName() << "\n");
2370 
2371   // If we can still promote the PHI nodes after this gauntlet of tests,
2372   // do all of the PHI's now.
2373   Instruction *InsertPt = DomBlock->getTerminator();
2374   IRBuilder<NoFolder> Builder(InsertPt);
2375 
2376   // Move all 'aggressive' instructions, which are defined in the
2377   // conditional parts of the if's up to the dominating block.
2378   if (IfBlock1)
2379     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2380   if (IfBlock2)
2381     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2382 
2383   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2384     // Change the PHI node into a select instruction.
2385     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2386     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2387 
2388     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2389     PN->replaceAllUsesWith(Sel);
2390     Sel->takeName(PN);
2391     PN->eraseFromParent();
2392   }
2393 
2394   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2395   // has been flattened.  Change DomBlock to jump directly to our new block to
2396   // avoid other simplifycfg's kicking in on the diamond.
2397   Instruction *OldTI = DomBlock->getTerminator();
2398   Builder.SetInsertPoint(OldTI);
2399   Builder.CreateBr(BB);
2400   OldTI->eraseFromParent();
2401   return true;
2402 }
2403 
2404 /// If we found a conditional branch that goes to two returning blocks,
2405 /// try to merge them together into one return,
2406 /// introducing a select if the return values disagree.
2407 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2408                                            IRBuilder<> &Builder) {
2409   assert(BI->isConditional() && "Must be a conditional branch");
2410   BasicBlock *TrueSucc = BI->getSuccessor(0);
2411   BasicBlock *FalseSucc = BI->getSuccessor(1);
2412   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2413   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2414 
2415   // Check to ensure both blocks are empty (just a return) or optionally empty
2416   // with PHI nodes.  If there are other instructions, merging would cause extra
2417   // computation on one path or the other.
2418   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2419     return false;
2420   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2421     return false;
2422 
2423   Builder.SetInsertPoint(BI);
2424   // Okay, we found a branch that is going to two return nodes.  If
2425   // there is no return value for this function, just change the
2426   // branch into a return.
2427   if (FalseRet->getNumOperands() == 0) {
2428     TrueSucc->removePredecessor(BI->getParent());
2429     FalseSucc->removePredecessor(BI->getParent());
2430     Builder.CreateRetVoid();
2431     EraseTerminatorAndDCECond(BI);
2432     return true;
2433   }
2434 
2435   // Otherwise, figure out what the true and false return values are
2436   // so we can insert a new select instruction.
2437   Value *TrueValue = TrueRet->getReturnValue();
2438   Value *FalseValue = FalseRet->getReturnValue();
2439 
2440   // Unwrap any PHI nodes in the return blocks.
2441   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2442     if (TVPN->getParent() == TrueSucc)
2443       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2444   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2445     if (FVPN->getParent() == FalseSucc)
2446       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2447 
2448   // In order for this transformation to be safe, we must be able to
2449   // unconditionally execute both operands to the return.  This is
2450   // normally the case, but we could have a potentially-trapping
2451   // constant expression that prevents this transformation from being
2452   // safe.
2453   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2454     if (TCV->canTrap())
2455       return false;
2456   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2457     if (FCV->canTrap())
2458       return false;
2459 
2460   // Okay, we collected all the mapped values and checked them for sanity, and
2461   // defined to really do this transformation.  First, update the CFG.
2462   TrueSucc->removePredecessor(BI->getParent());
2463   FalseSucc->removePredecessor(BI->getParent());
2464 
2465   // Insert select instructions where needed.
2466   Value *BrCond = BI->getCondition();
2467   if (TrueValue) {
2468     // Insert a select if the results differ.
2469     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2470     } else if (isa<UndefValue>(TrueValue)) {
2471       TrueValue = FalseValue;
2472     } else {
2473       TrueValue =
2474           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2475     }
2476   }
2477 
2478   Value *RI =
2479       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2480 
2481   (void)RI;
2482 
2483   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2484                     << "\n  " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2485                     << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2486 
2487   EraseTerminatorAndDCECond(BI);
2488 
2489   return true;
2490 }
2491 
2492 /// Return true if the given instruction is available
2493 /// in its predecessor block. If yes, the instruction will be removed.
2494 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2495   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2496     return false;
2497   for (Instruction &I : *PB) {
2498     Instruction *PBI = &I;
2499     // Check whether Inst and PBI generate the same value.
2500     if (Inst->isIdenticalTo(PBI)) {
2501       Inst->replaceAllUsesWith(PBI);
2502       Inst->eraseFromParent();
2503       return true;
2504     }
2505   }
2506   return false;
2507 }
2508 
2509 /// Return true if either PBI or BI has branch weight available, and store
2510 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2511 /// not have branch weight, use 1:1 as its weight.
2512 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2513                                    uint64_t &PredTrueWeight,
2514                                    uint64_t &PredFalseWeight,
2515                                    uint64_t &SuccTrueWeight,
2516                                    uint64_t &SuccFalseWeight) {
2517   bool PredHasWeights =
2518       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2519   bool SuccHasWeights =
2520       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2521   if (PredHasWeights || SuccHasWeights) {
2522     if (!PredHasWeights)
2523       PredTrueWeight = PredFalseWeight = 1;
2524     if (!SuccHasWeights)
2525       SuccTrueWeight = SuccFalseWeight = 1;
2526     return true;
2527   } else {
2528     return false;
2529   }
2530 }
2531 
2532 /// If this basic block is simple enough, and if a predecessor branches to us
2533 /// and one of our successors, fold the block into the predecessor and use
2534 /// logical operations to pick the right destination.
2535 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2536   BasicBlock *BB = BI->getParent();
2537 
2538   const unsigned PredCount = pred_size(BB);
2539 
2540   Instruction *Cond = nullptr;
2541   if (BI->isConditional())
2542     Cond = dyn_cast<Instruction>(BI->getCondition());
2543   else {
2544     // For unconditional branch, check for a simple CFG pattern, where
2545     // BB has a single predecessor and BB's successor is also its predecessor's
2546     // successor. If such pattern exists, check for CSE between BB and its
2547     // predecessor.
2548     if (BasicBlock *PB = BB->getSinglePredecessor())
2549       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2550         if (PBI->isConditional() &&
2551             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2552              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2553           for (auto I = BB->instructionsWithoutDebug().begin(),
2554                     E = BB->instructionsWithoutDebug().end();
2555                I != E;) {
2556             Instruction *Curr = &*I++;
2557             if (isa<CmpInst>(Curr)) {
2558               Cond = Curr;
2559               break;
2560             }
2561             // Quit if we can't remove this instruction.
2562             if (!tryCSEWithPredecessor(Curr, PB))
2563               return false;
2564           }
2565         }
2566 
2567     if (!Cond)
2568       return false;
2569   }
2570 
2571   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2572       Cond->getParent() != BB || !Cond->hasOneUse())
2573     return false;
2574 
2575   // Make sure the instruction after the condition is the cond branch.
2576   BasicBlock::iterator CondIt = ++Cond->getIterator();
2577 
2578   // Ignore dbg intrinsics.
2579   while (isa<DbgInfoIntrinsic>(CondIt))
2580     ++CondIt;
2581 
2582   if (&*CondIt != BI)
2583     return false;
2584 
2585   // Only allow this transformation if computing the condition doesn't involve
2586   // too many instructions and these involved instructions can be executed
2587   // unconditionally. We denote all involved instructions except the condition
2588   // as "bonus instructions", and only allow this transformation when the
2589   // number of the bonus instructions we'll need to create when cloning into
2590   // each predecessor does not exceed a certain threshold.
2591   unsigned NumBonusInsts = 0;
2592   for (auto I = BB->begin(); Cond != &*I; ++I) {
2593     // Ignore dbg intrinsics.
2594     if (isa<DbgInfoIntrinsic>(I))
2595       continue;
2596     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2597       return false;
2598     // I has only one use and can be executed unconditionally.
2599     Instruction *User = dyn_cast<Instruction>(I->user_back());
2600     if (User == nullptr || User->getParent() != BB)
2601       return false;
2602     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2603     // to use any other instruction, User must be an instruction between next(I)
2604     // and Cond.
2605 
2606     // Account for the cost of duplicating this instruction into each
2607     // predecessor.
2608     NumBonusInsts += PredCount;
2609     // Early exits once we reach the limit.
2610     if (NumBonusInsts > BonusInstThreshold)
2611       return false;
2612   }
2613 
2614   // Cond is known to be a compare or binary operator.  Check to make sure that
2615   // neither operand is a potentially-trapping constant expression.
2616   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2617     if (CE->canTrap())
2618       return false;
2619   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2620     if (CE->canTrap())
2621       return false;
2622 
2623   // Finally, don't infinitely unroll conditional loops.
2624   BasicBlock *TrueDest = BI->getSuccessor(0);
2625   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2626   if (TrueDest == BB || FalseDest == BB)
2627     return false;
2628 
2629   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2630     BasicBlock *PredBlock = *PI;
2631     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2632 
2633     // Check that we have two conditional branches.  If there is a PHI node in
2634     // the common successor, verify that the same value flows in from both
2635     // blocks.
2636     SmallVector<PHINode *, 4> PHIs;
2637     if (!PBI || PBI->isUnconditional() ||
2638         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2639         (!BI->isConditional() &&
2640          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2641       continue;
2642 
2643     // Determine if the two branches share a common destination.
2644     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2645     bool InvertPredCond = false;
2646 
2647     if (BI->isConditional()) {
2648       if (PBI->getSuccessor(0) == TrueDest) {
2649         Opc = Instruction::Or;
2650       } else if (PBI->getSuccessor(1) == FalseDest) {
2651         Opc = Instruction::And;
2652       } else if (PBI->getSuccessor(0) == FalseDest) {
2653         Opc = Instruction::And;
2654         InvertPredCond = true;
2655       } else if (PBI->getSuccessor(1) == TrueDest) {
2656         Opc = Instruction::Or;
2657         InvertPredCond = true;
2658       } else {
2659         continue;
2660       }
2661     } else {
2662       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2663         continue;
2664     }
2665 
2666     LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2667     IRBuilder<> Builder(PBI);
2668 
2669     // If we need to invert the condition in the pred block to match, do so now.
2670     if (InvertPredCond) {
2671       Value *NewCond = PBI->getCondition();
2672 
2673       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2674         CmpInst *CI = cast<CmpInst>(NewCond);
2675         CI->setPredicate(CI->getInversePredicate());
2676       } else {
2677         NewCond =
2678             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2679       }
2680 
2681       PBI->setCondition(NewCond);
2682       PBI->swapSuccessors();
2683     }
2684 
2685     // If we have bonus instructions, clone them into the predecessor block.
2686     // Note that there may be multiple predecessor blocks, so we cannot move
2687     // bonus instructions to a predecessor block.
2688     ValueToValueMapTy VMap; // maps original values to cloned values
2689     // We already make sure Cond is the last instruction before BI. Therefore,
2690     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2691     // instructions.
2692     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2693       if (isa<DbgInfoIntrinsic>(BonusInst))
2694         continue;
2695       Instruction *NewBonusInst = BonusInst->clone();
2696       RemapInstruction(NewBonusInst, VMap,
2697                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2698       VMap[&*BonusInst] = NewBonusInst;
2699 
2700       // If we moved a load, we cannot any longer claim any knowledge about
2701       // its potential value. The previous information might have been valid
2702       // only given the branch precondition.
2703       // For an analogous reason, we must also drop all the metadata whose
2704       // semantics we don't understand.
2705       NewBonusInst->dropUnknownNonDebugMetadata();
2706 
2707       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2708       NewBonusInst->takeName(&*BonusInst);
2709       BonusInst->setName(BonusInst->getName() + ".old");
2710     }
2711 
2712     // Clone Cond into the predecessor basic block, and or/and the
2713     // two conditions together.
2714     Instruction *CondInPred = Cond->clone();
2715     RemapInstruction(CondInPred, VMap,
2716                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2717     PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2718     CondInPred->takeName(Cond);
2719     Cond->setName(CondInPred->getName() + ".old");
2720 
2721     if (BI->isConditional()) {
2722       Instruction *NewCond = cast<Instruction>(
2723           Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2724       PBI->setCondition(NewCond);
2725 
2726       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2727       bool HasWeights =
2728           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2729                                  SuccTrueWeight, SuccFalseWeight);
2730       SmallVector<uint64_t, 8> NewWeights;
2731 
2732       if (PBI->getSuccessor(0) == BB) {
2733         if (HasWeights) {
2734           // PBI: br i1 %x, BB, FalseDest
2735           // BI:  br i1 %y, TrueDest, FalseDest
2736           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2737           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2738           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2739           //               TrueWeight for PBI * FalseWeight for BI.
2740           // We assume that total weights of a BranchInst can fit into 32 bits.
2741           // Therefore, we will not have overflow using 64-bit arithmetic.
2742           NewWeights.push_back(PredFalseWeight *
2743                                    (SuccFalseWeight + SuccTrueWeight) +
2744                                PredTrueWeight * SuccFalseWeight);
2745         }
2746         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2747         PBI->setSuccessor(0, TrueDest);
2748       }
2749       if (PBI->getSuccessor(1) == BB) {
2750         if (HasWeights) {
2751           // PBI: br i1 %x, TrueDest, BB
2752           // BI:  br i1 %y, TrueDest, FalseDest
2753           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2754           //              FalseWeight for PBI * TrueWeight for BI.
2755           NewWeights.push_back(PredTrueWeight *
2756                                    (SuccFalseWeight + SuccTrueWeight) +
2757                                PredFalseWeight * SuccTrueWeight);
2758           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2759           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2760         }
2761         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2762         PBI->setSuccessor(1, FalseDest);
2763       }
2764       if (NewWeights.size() == 2) {
2765         // Halve the weights if any of them cannot fit in an uint32_t
2766         FitWeights(NewWeights);
2767 
2768         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2769                                            NewWeights.end());
2770         setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2771       } else
2772         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2773     } else {
2774       // Update PHI nodes in the common successors.
2775       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2776         ConstantInt *PBI_C = cast<ConstantInt>(
2777             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2778         assert(PBI_C->getType()->isIntegerTy(1));
2779         Instruction *MergedCond = nullptr;
2780         if (PBI->getSuccessor(0) == TrueDest) {
2781           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2782           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2783           //       is false: !PBI_Cond and BI_Value
2784           Instruction *NotCond = cast<Instruction>(
2785               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2786           MergedCond = cast<Instruction>(
2787                Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2788                                    "and.cond"));
2789           if (PBI_C->isOne())
2790             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2791                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2792         } else {
2793           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2794           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2795           //       is false: PBI_Cond and BI_Value
2796           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2797               Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2798           if (PBI_C->isOne()) {
2799             Instruction *NotCond = cast<Instruction>(
2800                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2801             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2802                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2803           }
2804         }
2805         // Update PHI Node.
2806         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2807                                   MergedCond);
2808       }
2809       // Change PBI from Conditional to Unconditional.
2810       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2811       EraseTerminatorAndDCECond(PBI);
2812       PBI = New_PBI;
2813     }
2814 
2815     // If BI was a loop latch, it may have had associated loop metadata.
2816     // We need to copy it to the new latch, that is, PBI.
2817     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2818       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2819 
2820     // TODO: If BB is reachable from all paths through PredBlock, then we
2821     // could replace PBI's branch probabilities with BI's.
2822 
2823     // Copy any debug value intrinsics into the end of PredBlock.
2824     for (Instruction &I : *BB)
2825       if (isa<DbgInfoIntrinsic>(I))
2826         I.clone()->insertBefore(PBI);
2827 
2828     return true;
2829   }
2830   return false;
2831 }
2832 
2833 // If there is only one store in BB1 and BB2, return it, otherwise return
2834 // nullptr.
2835 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2836   StoreInst *S = nullptr;
2837   for (auto *BB : {BB1, BB2}) {
2838     if (!BB)
2839       continue;
2840     for (auto &I : *BB)
2841       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2842         if (S)
2843           // Multiple stores seen.
2844           return nullptr;
2845         else
2846           S = SI;
2847       }
2848   }
2849   return S;
2850 }
2851 
2852 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2853                                               Value *AlternativeV = nullptr) {
2854   // PHI is going to be a PHI node that allows the value V that is defined in
2855   // BB to be referenced in BB's only successor.
2856   //
2857   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2858   // doesn't matter to us what the other operand is (it'll never get used). We
2859   // could just create a new PHI with an undef incoming value, but that could
2860   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2861   // other PHI. So here we directly look for some PHI in BB's successor with V
2862   // as an incoming operand. If we find one, we use it, else we create a new
2863   // one.
2864   //
2865   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2866   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2867   // where OtherBB is the single other predecessor of BB's only successor.
2868   PHINode *PHI = nullptr;
2869   BasicBlock *Succ = BB->getSingleSuccessor();
2870 
2871   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2872     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2873       PHI = cast<PHINode>(I);
2874       if (!AlternativeV)
2875         break;
2876 
2877       assert(pred_size(Succ) == 2);
2878       auto PredI = pred_begin(Succ);
2879       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2880       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2881         break;
2882       PHI = nullptr;
2883     }
2884   if (PHI)
2885     return PHI;
2886 
2887   // If V is not an instruction defined in BB, just return it.
2888   if (!AlternativeV &&
2889       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2890     return V;
2891 
2892   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2893   PHI->addIncoming(V, BB);
2894   for (BasicBlock *PredBB : predecessors(Succ))
2895     if (PredBB != BB)
2896       PHI->addIncoming(
2897           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2898   return PHI;
2899 }
2900 
2901 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2902                                            BasicBlock *QTB, BasicBlock *QFB,
2903                                            BasicBlock *PostBB, Value *Address,
2904                                            bool InvertPCond, bool InvertQCond,
2905                                            const DataLayout &DL) {
2906   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2907     return Operator::getOpcode(&I) == Instruction::BitCast &&
2908            I.getType()->isPointerTy();
2909   };
2910 
2911   // If we're not in aggressive mode, we only optimize if we have some
2912   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2913   auto IsWorthwhile = [&](BasicBlock *BB) {
2914     if (!BB)
2915       return true;
2916     // Heuristic: if the block can be if-converted/phi-folded and the
2917     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2918     // thread this store.
2919     unsigned N = 0;
2920     for (auto &I : BB->instructionsWithoutDebug()) {
2921       // Cheap instructions viable for folding.
2922       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2923           isa<StoreInst>(I))
2924         ++N;
2925       // Free instructions.
2926       else if (I.isTerminator() || IsaBitcastOfPointerType(I))
2927         continue;
2928       else
2929         return false;
2930     }
2931     // The store we want to merge is counted in N, so add 1 to make sure
2932     // we're counting the instructions that would be left.
2933     return N <= (PHINodeFoldingThreshold + 1);
2934   };
2935 
2936   if (!MergeCondStoresAggressively &&
2937       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2938        !IsWorthwhile(QFB)))
2939     return false;
2940 
2941   // For every pointer, there must be exactly two stores, one coming from
2942   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2943   // store (to any address) in PTB,PFB or QTB,QFB.
2944   // FIXME: We could relax this restriction with a bit more work and performance
2945   // testing.
2946   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2947   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2948   if (!PStore || !QStore)
2949     return false;
2950 
2951   // Now check the stores are compatible.
2952   if (!QStore->isUnordered() || !PStore->isUnordered())
2953     return false;
2954 
2955   // Check that sinking the store won't cause program behavior changes. Sinking
2956   // the store out of the Q blocks won't change any behavior as we're sinking
2957   // from a block to its unconditional successor. But we're moving a store from
2958   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2959   // So we need to check that there are no aliasing loads or stores in
2960   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2961   // operations between PStore and the end of its parent block.
2962   //
2963   // The ideal way to do this is to query AliasAnalysis, but we don't
2964   // preserve AA currently so that is dangerous. Be super safe and just
2965   // check there are no other memory operations at all.
2966   for (auto &I : *QFB->getSinglePredecessor())
2967     if (I.mayReadOrWriteMemory())
2968       return false;
2969   for (auto &I : *QFB)
2970     if (&I != QStore && I.mayReadOrWriteMemory())
2971       return false;
2972   if (QTB)
2973     for (auto &I : *QTB)
2974       if (&I != QStore && I.mayReadOrWriteMemory())
2975         return false;
2976   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2977        I != E; ++I)
2978     if (&*I != PStore && I->mayReadOrWriteMemory())
2979       return false;
2980 
2981   // If PostBB has more than two predecessors, we need to split it so we can
2982   // sink the store.
2983   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
2984     // We know that QFB's only successor is PostBB. And QFB has a single
2985     // predecessor. If QTB exists, then its only successor is also PostBB.
2986     // If QTB does not exist, then QFB's only predecessor has a conditional
2987     // branch to QFB and PostBB.
2988     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
2989     BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
2990                                                "condstore.split");
2991     if (!NewBB)
2992       return false;
2993     PostBB = NewBB;
2994   }
2995 
2996   // OK, we're going to sink the stores to PostBB. The store has to be
2997   // conditional though, so first create the predicate.
2998   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2999                      ->getCondition();
3000   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3001                      ->getCondition();
3002 
3003   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3004                                                 PStore->getParent());
3005   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3006                                                 QStore->getParent(), PPHI);
3007 
3008   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3009 
3010   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3011   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3012 
3013   if (InvertPCond)
3014     PPred = QB.CreateNot(PPred);
3015   if (InvertQCond)
3016     QPred = QB.CreateNot(QPred);
3017   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3018 
3019   auto *T =
3020       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3021   QB.SetInsertPoint(T);
3022   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3023   AAMDNodes AAMD;
3024   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3025   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3026   SI->setAAMetadata(AAMD);
3027   unsigned PAlignment = PStore->getAlignment();
3028   unsigned QAlignment = QStore->getAlignment();
3029   unsigned TypeAlignment =
3030       DL.getABITypeAlignment(SI->getValueOperand()->getType());
3031   unsigned MinAlignment;
3032   unsigned MaxAlignment;
3033   std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3034   // Choose the minimum alignment. If we could prove both stores execute, we
3035   // could use biggest one.  In this case, though, we only know that one of the
3036   // stores executes.  And we don't know it's safe to take the alignment from a
3037   // store that doesn't execute.
3038   if (MinAlignment != 0) {
3039     // Choose the minimum of all non-zero alignments.
3040     SI->setAlignment(MinAlignment);
3041   } else if (MaxAlignment != 0) {
3042     // Choose the minimal alignment between the non-zero alignment and the ABI
3043     // default alignment for the type of the stored value.
3044     SI->setAlignment(std::min(MaxAlignment, TypeAlignment));
3045   } else {
3046     // If both alignments are zero, use ABI default alignment for the type of
3047     // the stored value.
3048     SI->setAlignment(TypeAlignment);
3049   }
3050 
3051   QStore->eraseFromParent();
3052   PStore->eraseFromParent();
3053 
3054   return true;
3055 }
3056 
3057 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3058                                    const DataLayout &DL) {
3059   // The intention here is to find diamonds or triangles (see below) where each
3060   // conditional block contains a store to the same address. Both of these
3061   // stores are conditional, so they can't be unconditionally sunk. But it may
3062   // be profitable to speculatively sink the stores into one merged store at the
3063   // end, and predicate the merged store on the union of the two conditions of
3064   // PBI and QBI.
3065   //
3066   // This can reduce the number of stores executed if both of the conditions are
3067   // true, and can allow the blocks to become small enough to be if-converted.
3068   // This optimization will also chain, so that ladders of test-and-set
3069   // sequences can be if-converted away.
3070   //
3071   // We only deal with simple diamonds or triangles:
3072   //
3073   //     PBI       or      PBI        or a combination of the two
3074   //    /   \               | \
3075   //   PTB  PFB             |  PFB
3076   //    \   /               | /
3077   //     QBI                QBI
3078   //    /  \                | \
3079   //   QTB  QFB             |  QFB
3080   //    \  /                | /
3081   //    PostBB            PostBB
3082   //
3083   // We model triangles as a type of diamond with a nullptr "true" block.
3084   // Triangles are canonicalized so that the fallthrough edge is represented by
3085   // a true condition, as in the diagram above.
3086   BasicBlock *PTB = PBI->getSuccessor(0);
3087   BasicBlock *PFB = PBI->getSuccessor(1);
3088   BasicBlock *QTB = QBI->getSuccessor(0);
3089   BasicBlock *QFB = QBI->getSuccessor(1);
3090   BasicBlock *PostBB = QFB->getSingleSuccessor();
3091 
3092   // Make sure we have a good guess for PostBB. If QTB's only successor is
3093   // QFB, then QFB is a better PostBB.
3094   if (QTB->getSingleSuccessor() == QFB)
3095     PostBB = QFB;
3096 
3097   // If we couldn't find a good PostBB, stop.
3098   if (!PostBB)
3099     return false;
3100 
3101   bool InvertPCond = false, InvertQCond = false;
3102   // Canonicalize fallthroughs to the true branches.
3103   if (PFB == QBI->getParent()) {
3104     std::swap(PFB, PTB);
3105     InvertPCond = true;
3106   }
3107   if (QFB == PostBB) {
3108     std::swap(QFB, QTB);
3109     InvertQCond = true;
3110   }
3111 
3112   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3113   // and QFB may not. Model fallthroughs as a nullptr block.
3114   if (PTB == QBI->getParent())
3115     PTB = nullptr;
3116   if (QTB == PostBB)
3117     QTB = nullptr;
3118 
3119   // Legality bailouts. We must have at least the non-fallthrough blocks and
3120   // the post-dominating block, and the non-fallthroughs must only have one
3121   // predecessor.
3122   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3123     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3124   };
3125   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3126       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3127     return false;
3128   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3129       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3130     return false;
3131   if (!QBI->getParent()->hasNUses(2))
3132     return false;
3133 
3134   // OK, this is a sequence of two diamonds or triangles.
3135   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3136   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3137   for (auto *BB : {PTB, PFB}) {
3138     if (!BB)
3139       continue;
3140     for (auto &I : *BB)
3141       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3142         PStoreAddresses.insert(SI->getPointerOperand());
3143   }
3144   for (auto *BB : {QTB, QFB}) {
3145     if (!BB)
3146       continue;
3147     for (auto &I : *BB)
3148       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3149         QStoreAddresses.insert(SI->getPointerOperand());
3150   }
3151 
3152   set_intersect(PStoreAddresses, QStoreAddresses);
3153   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3154   // clear what it contains.
3155   auto &CommonAddresses = PStoreAddresses;
3156 
3157   bool Changed = false;
3158   for (auto *Address : CommonAddresses)
3159     Changed |= mergeConditionalStoreToAddress(
3160         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL);
3161   return Changed;
3162 }
3163 
3164 /// If we have a conditional branch as a predecessor of another block,
3165 /// this function tries to simplify it.  We know
3166 /// that PBI and BI are both conditional branches, and BI is in one of the
3167 /// successor blocks of PBI - PBI branches to BI.
3168 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3169                                            const DataLayout &DL) {
3170   assert(PBI->isConditional() && BI->isConditional());
3171   BasicBlock *BB = BI->getParent();
3172 
3173   // If this block ends with a branch instruction, and if there is a
3174   // predecessor that ends on a branch of the same condition, make
3175   // this conditional branch redundant.
3176   if (PBI->getCondition() == BI->getCondition() &&
3177       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3178     // Okay, the outcome of this conditional branch is statically
3179     // knowable.  If this block had a single pred, handle specially.
3180     if (BB->getSinglePredecessor()) {
3181       // Turn this into a branch on constant.
3182       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3183       BI->setCondition(
3184           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3185       return true; // Nuke the branch on constant.
3186     }
3187 
3188     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3189     // in the constant and simplify the block result.  Subsequent passes of
3190     // simplifycfg will thread the block.
3191     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3192       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3193       PHINode *NewPN = PHINode::Create(
3194           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3195           BI->getCondition()->getName() + ".pr", &BB->front());
3196       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3197       // predecessor, compute the PHI'd conditional value for all of the preds.
3198       // Any predecessor where the condition is not computable we keep symbolic.
3199       for (pred_iterator PI = PB; PI != PE; ++PI) {
3200         BasicBlock *P = *PI;
3201         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3202             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3203             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3204           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3205           NewPN->addIncoming(
3206               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3207               P);
3208         } else {
3209           NewPN->addIncoming(BI->getCondition(), P);
3210         }
3211       }
3212 
3213       BI->setCondition(NewPN);
3214       return true;
3215     }
3216   }
3217 
3218   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3219     if (CE->canTrap())
3220       return false;
3221 
3222   // If both branches are conditional and both contain stores to the same
3223   // address, remove the stores from the conditionals and create a conditional
3224   // merged store at the end.
3225   if (MergeCondStores && mergeConditionalStores(PBI, BI, DL))
3226     return true;
3227 
3228   // If this is a conditional branch in an empty block, and if any
3229   // predecessors are a conditional branch to one of our destinations,
3230   // fold the conditions into logical ops and one cond br.
3231 
3232   // Ignore dbg intrinsics.
3233   if (&*BB->instructionsWithoutDebug().begin() != BI)
3234     return false;
3235 
3236   int PBIOp, BIOp;
3237   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3238     PBIOp = 0;
3239     BIOp = 0;
3240   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3241     PBIOp = 0;
3242     BIOp = 1;
3243   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3244     PBIOp = 1;
3245     BIOp = 0;
3246   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3247     PBIOp = 1;
3248     BIOp = 1;
3249   } else {
3250     return false;
3251   }
3252 
3253   // Check to make sure that the other destination of this branch
3254   // isn't BB itself.  If so, this is an infinite loop that will
3255   // keep getting unwound.
3256   if (PBI->getSuccessor(PBIOp) == BB)
3257     return false;
3258 
3259   // Do not perform this transformation if it would require
3260   // insertion of a large number of select instructions. For targets
3261   // without predication/cmovs, this is a big pessimization.
3262 
3263   // Also do not perform this transformation if any phi node in the common
3264   // destination block can trap when reached by BB or PBB (PR17073). In that
3265   // case, it would be unsafe to hoist the operation into a select instruction.
3266 
3267   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3268   unsigned NumPhis = 0;
3269   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3270        ++II, ++NumPhis) {
3271     if (NumPhis > 2) // Disable this xform.
3272       return false;
3273 
3274     PHINode *PN = cast<PHINode>(II);
3275     Value *BIV = PN->getIncomingValueForBlock(BB);
3276     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3277       if (CE->canTrap())
3278         return false;
3279 
3280     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3281     Value *PBIV = PN->getIncomingValue(PBBIdx);
3282     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3283       if (CE->canTrap())
3284         return false;
3285   }
3286 
3287   // Finally, if everything is ok, fold the branches to logical ops.
3288   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3289 
3290   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3291                     << "AND: " << *BI->getParent());
3292 
3293   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3294   // branch in it, where one edge (OtherDest) goes back to itself but the other
3295   // exits.  We don't *know* that the program avoids the infinite loop
3296   // (even though that seems likely).  If we do this xform naively, we'll end up
3297   // recursively unpeeling the loop.  Since we know that (after the xform is
3298   // done) that the block *is* infinite if reached, we just make it an obviously
3299   // infinite loop with no cond branch.
3300   if (OtherDest == BB) {
3301     // Insert it at the end of the function, because it's either code,
3302     // or it won't matter if it's hot. :)
3303     BasicBlock *InfLoopBlock =
3304         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3305     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3306     OtherDest = InfLoopBlock;
3307   }
3308 
3309   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3310 
3311   // BI may have other predecessors.  Because of this, we leave
3312   // it alone, but modify PBI.
3313 
3314   // Make sure we get to CommonDest on True&True directions.
3315   Value *PBICond = PBI->getCondition();
3316   IRBuilder<NoFolder> Builder(PBI);
3317   if (PBIOp)
3318     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3319 
3320   Value *BICond = BI->getCondition();
3321   if (BIOp)
3322     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3323 
3324   // Merge the conditions.
3325   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3326 
3327   // Modify PBI to branch on the new condition to the new dests.
3328   PBI->setCondition(Cond);
3329   PBI->setSuccessor(0, CommonDest);
3330   PBI->setSuccessor(1, OtherDest);
3331 
3332   // Update branch weight for PBI.
3333   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3334   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3335   bool HasWeights =
3336       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3337                              SuccTrueWeight, SuccFalseWeight);
3338   if (HasWeights) {
3339     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3340     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3341     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3342     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3343     // The weight to CommonDest should be PredCommon * SuccTotal +
3344     //                                    PredOther * SuccCommon.
3345     // The weight to OtherDest should be PredOther * SuccOther.
3346     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3347                                   PredOther * SuccCommon,
3348                               PredOther * SuccOther};
3349     // Halve the weights if any of them cannot fit in an uint32_t
3350     FitWeights(NewWeights);
3351 
3352     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3353   }
3354 
3355   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3356   // block that are identical to the entries for BI's block.
3357   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3358 
3359   // We know that the CommonDest already had an edge from PBI to
3360   // it.  If it has PHIs though, the PHIs may have different
3361   // entries for BB and PBI's BB.  If so, insert a select to make
3362   // them agree.
3363   for (PHINode &PN : CommonDest->phis()) {
3364     Value *BIV = PN.getIncomingValueForBlock(BB);
3365     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3366     Value *PBIV = PN.getIncomingValue(PBBIdx);
3367     if (BIV != PBIV) {
3368       // Insert a select in PBI to pick the right value.
3369       SelectInst *NV = cast<SelectInst>(
3370           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3371       PN.setIncomingValue(PBBIdx, NV);
3372       // Although the select has the same condition as PBI, the original branch
3373       // weights for PBI do not apply to the new select because the select's
3374       // 'logical' edges are incoming edges of the phi that is eliminated, not
3375       // the outgoing edges of PBI.
3376       if (HasWeights) {
3377         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3378         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3379         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3380         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3381         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3382         // The weight to PredOtherDest should be PredOther * SuccCommon.
3383         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3384                                   PredOther * SuccCommon};
3385 
3386         FitWeights(NewWeights);
3387 
3388         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3389       }
3390     }
3391   }
3392 
3393   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3394   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3395 
3396   // This basic block is probably dead.  We know it has at least
3397   // one fewer predecessor.
3398   return true;
3399 }
3400 
3401 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3402 // true or to FalseBB if Cond is false.
3403 // Takes care of updating the successors and removing the old terminator.
3404 // Also makes sure not to introduce new successors by assuming that edges to
3405 // non-successor TrueBBs and FalseBBs aren't reachable.
3406 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3407                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3408                                        uint32_t TrueWeight,
3409                                        uint32_t FalseWeight) {
3410   // Remove any superfluous successor edges from the CFG.
3411   // First, figure out which successors to preserve.
3412   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3413   // successor.
3414   BasicBlock *KeepEdge1 = TrueBB;
3415   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3416 
3417   // Then remove the rest.
3418   for (BasicBlock *Succ : successors(OldTerm)) {
3419     // Make sure only to keep exactly one copy of each edge.
3420     if (Succ == KeepEdge1)
3421       KeepEdge1 = nullptr;
3422     else if (Succ == KeepEdge2)
3423       KeepEdge2 = nullptr;
3424     else
3425       Succ->removePredecessor(OldTerm->getParent(),
3426                               /*DontDeleteUselessPHIs=*/true);
3427   }
3428 
3429   IRBuilder<> Builder(OldTerm);
3430   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3431 
3432   // Insert an appropriate new terminator.
3433   if (!KeepEdge1 && !KeepEdge2) {
3434     if (TrueBB == FalseBB)
3435       // We were only looking for one successor, and it was present.
3436       // Create an unconditional branch to it.
3437       Builder.CreateBr(TrueBB);
3438     else {
3439       // We found both of the successors we were looking for.
3440       // Create a conditional branch sharing the condition of the select.
3441       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3442       if (TrueWeight != FalseWeight)
3443         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3444     }
3445   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3446     // Neither of the selected blocks were successors, so this
3447     // terminator must be unreachable.
3448     new UnreachableInst(OldTerm->getContext(), OldTerm);
3449   } else {
3450     // One of the selected values was a successor, but the other wasn't.
3451     // Insert an unconditional branch to the one that was found;
3452     // the edge to the one that wasn't must be unreachable.
3453     if (!KeepEdge1)
3454       // Only TrueBB was found.
3455       Builder.CreateBr(TrueBB);
3456     else
3457       // Only FalseBB was found.
3458       Builder.CreateBr(FalseBB);
3459   }
3460 
3461   EraseTerminatorAndDCECond(OldTerm);
3462   return true;
3463 }
3464 
3465 // Replaces
3466 //   (switch (select cond, X, Y)) on constant X, Y
3467 // with a branch - conditional if X and Y lead to distinct BBs,
3468 // unconditional otherwise.
3469 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3470   // Check for constant integer values in the select.
3471   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3472   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3473   if (!TrueVal || !FalseVal)
3474     return false;
3475 
3476   // Find the relevant condition and destinations.
3477   Value *Condition = Select->getCondition();
3478   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3479   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3480 
3481   // Get weight for TrueBB and FalseBB.
3482   uint32_t TrueWeight = 0, FalseWeight = 0;
3483   SmallVector<uint64_t, 8> Weights;
3484   bool HasWeights = HasBranchWeights(SI);
3485   if (HasWeights) {
3486     GetBranchWeights(SI, Weights);
3487     if (Weights.size() == 1 + SI->getNumCases()) {
3488       TrueWeight =
3489           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3490       FalseWeight =
3491           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3492     }
3493   }
3494 
3495   // Perform the actual simplification.
3496   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3497                                     FalseWeight);
3498 }
3499 
3500 // Replaces
3501 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3502 //                             blockaddress(@fn, BlockB)))
3503 // with
3504 //   (br cond, BlockA, BlockB).
3505 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3506   // Check that both operands of the select are block addresses.
3507   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3508   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3509   if (!TBA || !FBA)
3510     return false;
3511 
3512   // Extract the actual blocks.
3513   BasicBlock *TrueBB = TBA->getBasicBlock();
3514   BasicBlock *FalseBB = FBA->getBasicBlock();
3515 
3516   // Perform the actual simplification.
3517   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3518                                     0);
3519 }
3520 
3521 /// This is called when we find an icmp instruction
3522 /// (a seteq/setne with a constant) as the only instruction in a
3523 /// block that ends with an uncond branch.  We are looking for a very specific
3524 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3525 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3526 /// default value goes to an uncond block with a seteq in it, we get something
3527 /// like:
3528 ///
3529 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3530 /// DEFAULT:
3531 ///   %tmp = icmp eq i8 %A, 92
3532 ///   br label %end
3533 /// end:
3534 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3535 ///
3536 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3537 /// the PHI, merging the third icmp into the switch.
3538 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3539     ICmpInst *ICI, IRBuilder<> &Builder) {
3540   BasicBlock *BB = ICI->getParent();
3541 
3542   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3543   // complex.
3544   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3545     return false;
3546 
3547   Value *V = ICI->getOperand(0);
3548   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3549 
3550   // The pattern we're looking for is where our only predecessor is a switch on
3551   // 'V' and this block is the default case for the switch.  In this case we can
3552   // fold the compared value into the switch to simplify things.
3553   BasicBlock *Pred = BB->getSinglePredecessor();
3554   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3555     return false;
3556 
3557   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3558   if (SI->getCondition() != V)
3559     return false;
3560 
3561   // If BB is reachable on a non-default case, then we simply know the value of
3562   // V in this block.  Substitute it and constant fold the icmp instruction
3563   // away.
3564   if (SI->getDefaultDest() != BB) {
3565     ConstantInt *VVal = SI->findCaseDest(BB);
3566     assert(VVal && "Should have a unique destination value");
3567     ICI->setOperand(0, VVal);
3568 
3569     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3570       ICI->replaceAllUsesWith(V);
3571       ICI->eraseFromParent();
3572     }
3573     // BB is now empty, so it is likely to simplify away.
3574     return requestResimplify();
3575   }
3576 
3577   // Ok, the block is reachable from the default dest.  If the constant we're
3578   // comparing exists in one of the other edges, then we can constant fold ICI
3579   // and zap it.
3580   if (SI->findCaseValue(Cst) != SI->case_default()) {
3581     Value *V;
3582     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3583       V = ConstantInt::getFalse(BB->getContext());
3584     else
3585       V = ConstantInt::getTrue(BB->getContext());
3586 
3587     ICI->replaceAllUsesWith(V);
3588     ICI->eraseFromParent();
3589     // BB is now empty, so it is likely to simplify away.
3590     return requestResimplify();
3591   }
3592 
3593   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3594   // the block.
3595   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3596   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3597   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3598       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3599     return false;
3600 
3601   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3602   // true in the PHI.
3603   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3604   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3605 
3606   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3607     std::swap(DefaultCst, NewCst);
3608 
3609   // Replace ICI (which is used by the PHI for the default value) with true or
3610   // false depending on if it is EQ or NE.
3611   ICI->replaceAllUsesWith(DefaultCst);
3612   ICI->eraseFromParent();
3613 
3614   // Okay, the switch goes to this block on a default value.  Add an edge from
3615   // the switch to the merge point on the compared value.
3616   BasicBlock *NewBB =
3617       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3618   SmallVector<uint64_t, 8> Weights;
3619   bool HasWeights = HasBranchWeights(SI);
3620   if (HasWeights) {
3621     GetBranchWeights(SI, Weights);
3622     if (Weights.size() == 1 + SI->getNumCases()) {
3623       // Split weight for default case to case for "Cst".
3624       Weights[0] = (Weights[0] + 1) >> 1;
3625       Weights.push_back(Weights[0]);
3626 
3627       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3628       setBranchWeights(SI, MDWeights);
3629     }
3630   }
3631   SI->addCase(Cst, NewBB);
3632 
3633   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3634   Builder.SetInsertPoint(NewBB);
3635   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3636   Builder.CreateBr(SuccBlock);
3637   PHIUse->addIncoming(NewCst, NewBB);
3638   return true;
3639 }
3640 
3641 /// The specified branch is a conditional branch.
3642 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3643 /// fold it into a switch instruction if so.
3644 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3645                                       const DataLayout &DL) {
3646   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3647   if (!Cond)
3648     return false;
3649 
3650   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3651   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3652   // 'setne's and'ed together, collect them.
3653 
3654   // Try to gather values from a chain of and/or to be turned into a switch
3655   ConstantComparesGatherer ConstantCompare(Cond, DL);
3656   // Unpack the result
3657   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3658   Value *CompVal = ConstantCompare.CompValue;
3659   unsigned UsedICmps = ConstantCompare.UsedICmps;
3660   Value *ExtraCase = ConstantCompare.Extra;
3661 
3662   // If we didn't have a multiply compared value, fail.
3663   if (!CompVal)
3664     return false;
3665 
3666   // Avoid turning single icmps into a switch.
3667   if (UsedICmps <= 1)
3668     return false;
3669 
3670   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3671 
3672   // There might be duplicate constants in the list, which the switch
3673   // instruction can't handle, remove them now.
3674   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3675   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3676 
3677   // If Extra was used, we require at least two switch values to do the
3678   // transformation.  A switch with one value is just a conditional branch.
3679   if (ExtraCase && Values.size() < 2)
3680     return false;
3681 
3682   // TODO: Preserve branch weight metadata, similarly to how
3683   // FoldValueComparisonIntoPredecessors preserves it.
3684 
3685   // Figure out which block is which destination.
3686   BasicBlock *DefaultBB = BI->getSuccessor(1);
3687   BasicBlock *EdgeBB = BI->getSuccessor(0);
3688   if (!TrueWhenEqual)
3689     std::swap(DefaultBB, EdgeBB);
3690 
3691   BasicBlock *BB = BI->getParent();
3692 
3693   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3694                     << " cases into SWITCH.  BB is:\n"
3695                     << *BB);
3696 
3697   // If there are any extra values that couldn't be folded into the switch
3698   // then we evaluate them with an explicit branch first.  Split the block
3699   // right before the condbr to handle it.
3700   if (ExtraCase) {
3701     BasicBlock *NewBB =
3702         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3703     // Remove the uncond branch added to the old block.
3704     Instruction *OldTI = BB->getTerminator();
3705     Builder.SetInsertPoint(OldTI);
3706 
3707     if (TrueWhenEqual)
3708       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3709     else
3710       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3711 
3712     OldTI->eraseFromParent();
3713 
3714     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3715     // for the edge we just added.
3716     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3717 
3718     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3719                       << "\nEXTRABB = " << *BB);
3720     BB = NewBB;
3721   }
3722 
3723   Builder.SetInsertPoint(BI);
3724   // Convert pointer to int before we switch.
3725   if (CompVal->getType()->isPointerTy()) {
3726     CompVal = Builder.CreatePtrToInt(
3727         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3728   }
3729 
3730   // Create the new switch instruction now.
3731   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3732 
3733   // Add all of the 'cases' to the switch instruction.
3734   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3735     New->addCase(Values[i], EdgeBB);
3736 
3737   // We added edges from PI to the EdgeBB.  As such, if there were any
3738   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3739   // the number of edges added.
3740   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3741     PHINode *PN = cast<PHINode>(BBI);
3742     Value *InVal = PN->getIncomingValueForBlock(BB);
3743     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3744       PN->addIncoming(InVal, BB);
3745   }
3746 
3747   // Erase the old branch instruction.
3748   EraseTerminatorAndDCECond(BI);
3749 
3750   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3751   return true;
3752 }
3753 
3754 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3755   if (isa<PHINode>(RI->getValue()))
3756     return SimplifyCommonResume(RI);
3757   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3758            RI->getValue() == RI->getParent()->getFirstNonPHI())
3759     // The resume must unwind the exception that caused control to branch here.
3760     return SimplifySingleResume(RI);
3761 
3762   return false;
3763 }
3764 
3765 // Simplify resume that is shared by several landing pads (phi of landing pad).
3766 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3767   BasicBlock *BB = RI->getParent();
3768 
3769   // Check that there are no other instructions except for debug intrinsics
3770   // between the phi of landing pads (RI->getValue()) and resume instruction.
3771   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3772                        E = RI->getIterator();
3773   while (++I != E)
3774     if (!isa<DbgInfoIntrinsic>(I))
3775       return false;
3776 
3777   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3778   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3779 
3780   // Check incoming blocks to see if any of them are trivial.
3781   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3782        Idx++) {
3783     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3784     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3785 
3786     // If the block has other successors, we can not delete it because
3787     // it has other dependents.
3788     if (IncomingBB->getUniqueSuccessor() != BB)
3789       continue;
3790 
3791     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3792     // Not the landing pad that caused the control to branch here.
3793     if (IncomingValue != LandingPad)
3794       continue;
3795 
3796     bool isTrivial = true;
3797 
3798     I = IncomingBB->getFirstNonPHI()->getIterator();
3799     E = IncomingBB->getTerminator()->getIterator();
3800     while (++I != E)
3801       if (!isa<DbgInfoIntrinsic>(I)) {
3802         isTrivial = false;
3803         break;
3804       }
3805 
3806     if (isTrivial)
3807       TrivialUnwindBlocks.insert(IncomingBB);
3808   }
3809 
3810   // If no trivial unwind blocks, don't do any simplifications.
3811   if (TrivialUnwindBlocks.empty())
3812     return false;
3813 
3814   // Turn all invokes that unwind here into calls.
3815   for (auto *TrivialBB : TrivialUnwindBlocks) {
3816     // Blocks that will be simplified should be removed from the phi node.
3817     // Note there could be multiple edges to the resume block, and we need
3818     // to remove them all.
3819     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3820       BB->removePredecessor(TrivialBB, true);
3821 
3822     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3823          PI != PE;) {
3824       BasicBlock *Pred = *PI++;
3825       removeUnwindEdge(Pred);
3826     }
3827 
3828     // In each SimplifyCFG run, only the current processed block can be erased.
3829     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3830     // of erasing TrivialBB, we only remove the branch to the common resume
3831     // block so that we can later erase the resume block since it has no
3832     // predecessors.
3833     TrivialBB->getTerminator()->eraseFromParent();
3834     new UnreachableInst(RI->getContext(), TrivialBB);
3835   }
3836 
3837   // Delete the resume block if all its predecessors have been removed.
3838   if (pred_empty(BB))
3839     BB->eraseFromParent();
3840 
3841   return !TrivialUnwindBlocks.empty();
3842 }
3843 
3844 // Simplify resume that is only used by a single (non-phi) landing pad.
3845 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3846   BasicBlock *BB = RI->getParent();
3847   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3848   assert(RI->getValue() == LPInst &&
3849          "Resume must unwind the exception that caused control to here");
3850 
3851   // Check that there are no other instructions except for debug intrinsics.
3852   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3853   while (++I != E)
3854     if (!isa<DbgInfoIntrinsic>(I))
3855       return false;
3856 
3857   // Turn all invokes that unwind here into calls and delete the basic block.
3858   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3859     BasicBlock *Pred = *PI++;
3860     removeUnwindEdge(Pred);
3861   }
3862 
3863   // The landingpad is now unreachable.  Zap it.
3864   if (LoopHeaders)
3865     LoopHeaders->erase(BB);
3866   BB->eraseFromParent();
3867   return true;
3868 }
3869 
3870 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3871   // If this is a trivial cleanup pad that executes no instructions, it can be
3872   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3873   // that is an EH pad will be updated to continue to the caller and any
3874   // predecessor that terminates with an invoke instruction will have its invoke
3875   // instruction converted to a call instruction.  If the cleanup pad being
3876   // simplified does not continue to the caller, each predecessor will be
3877   // updated to continue to the unwind destination of the cleanup pad being
3878   // simplified.
3879   BasicBlock *BB = RI->getParent();
3880   CleanupPadInst *CPInst = RI->getCleanupPad();
3881   if (CPInst->getParent() != BB)
3882     // This isn't an empty cleanup.
3883     return false;
3884 
3885   // We cannot kill the pad if it has multiple uses.  This typically arises
3886   // from unreachable basic blocks.
3887   if (!CPInst->hasOneUse())
3888     return false;
3889 
3890   // Check that there are no other instructions except for benign intrinsics.
3891   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3892   while (++I != E) {
3893     auto *II = dyn_cast<IntrinsicInst>(I);
3894     if (!II)
3895       return false;
3896 
3897     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3898     switch (IntrinsicID) {
3899     case Intrinsic::dbg_declare:
3900     case Intrinsic::dbg_value:
3901     case Intrinsic::dbg_label:
3902     case Intrinsic::lifetime_end:
3903       break;
3904     default:
3905       return false;
3906     }
3907   }
3908 
3909   // If the cleanup return we are simplifying unwinds to the caller, this will
3910   // set UnwindDest to nullptr.
3911   BasicBlock *UnwindDest = RI->getUnwindDest();
3912   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3913 
3914   // We're about to remove BB from the control flow.  Before we do, sink any
3915   // PHINodes into the unwind destination.  Doing this before changing the
3916   // control flow avoids some potentially slow checks, since we can currently
3917   // be certain that UnwindDest and BB have no common predecessors (since they
3918   // are both EH pads).
3919   if (UnwindDest) {
3920     // First, go through the PHI nodes in UnwindDest and update any nodes that
3921     // reference the block we are removing
3922     for (BasicBlock::iterator I = UnwindDest->begin(),
3923                               IE = DestEHPad->getIterator();
3924          I != IE; ++I) {
3925       PHINode *DestPN = cast<PHINode>(I);
3926 
3927       int Idx = DestPN->getBasicBlockIndex(BB);
3928       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3929       assert(Idx != -1);
3930       // This PHI node has an incoming value that corresponds to a control
3931       // path through the cleanup pad we are removing.  If the incoming
3932       // value is in the cleanup pad, it must be a PHINode (because we
3933       // verified above that the block is otherwise empty).  Otherwise, the
3934       // value is either a constant or a value that dominates the cleanup
3935       // pad being removed.
3936       //
3937       // Because BB and UnwindDest are both EH pads, all of their
3938       // predecessors must unwind to these blocks, and since no instruction
3939       // can have multiple unwind destinations, there will be no overlap in
3940       // incoming blocks between SrcPN and DestPN.
3941       Value *SrcVal = DestPN->getIncomingValue(Idx);
3942       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3943 
3944       // Remove the entry for the block we are deleting.
3945       DestPN->removeIncomingValue(Idx, false);
3946 
3947       if (SrcPN && SrcPN->getParent() == BB) {
3948         // If the incoming value was a PHI node in the cleanup pad we are
3949         // removing, we need to merge that PHI node's incoming values into
3950         // DestPN.
3951         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3952              SrcIdx != SrcE; ++SrcIdx) {
3953           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3954                               SrcPN->getIncomingBlock(SrcIdx));
3955         }
3956       } else {
3957         // Otherwise, the incoming value came from above BB and
3958         // so we can just reuse it.  We must associate all of BB's
3959         // predecessors with this value.
3960         for (auto *pred : predecessors(BB)) {
3961           DestPN->addIncoming(SrcVal, pred);
3962         }
3963       }
3964     }
3965 
3966     // Sink any remaining PHI nodes directly into UnwindDest.
3967     Instruction *InsertPt = DestEHPad;
3968     for (BasicBlock::iterator I = BB->begin(),
3969                               IE = BB->getFirstNonPHI()->getIterator();
3970          I != IE;) {
3971       // The iterator must be incremented here because the instructions are
3972       // being moved to another block.
3973       PHINode *PN = cast<PHINode>(I++);
3974       if (PN->use_empty())
3975         // If the PHI node has no uses, just leave it.  It will be erased
3976         // when we erase BB below.
3977         continue;
3978 
3979       // Otherwise, sink this PHI node into UnwindDest.
3980       // Any predecessors to UnwindDest which are not already represented
3981       // must be back edges which inherit the value from the path through
3982       // BB.  In this case, the PHI value must reference itself.
3983       for (auto *pred : predecessors(UnwindDest))
3984         if (pred != BB)
3985           PN->addIncoming(PN, pred);
3986       PN->moveBefore(InsertPt);
3987     }
3988   }
3989 
3990   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3991     // The iterator must be updated here because we are removing this pred.
3992     BasicBlock *PredBB = *PI++;
3993     if (UnwindDest == nullptr) {
3994       removeUnwindEdge(PredBB);
3995     } else {
3996       Instruction *TI = PredBB->getTerminator();
3997       TI->replaceUsesOfWith(BB, UnwindDest);
3998     }
3999   }
4000 
4001   // The cleanup pad is now unreachable.  Zap it.
4002   BB->eraseFromParent();
4003   return true;
4004 }
4005 
4006 // Try to merge two cleanuppads together.
4007 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4008   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4009   // with.
4010   BasicBlock *UnwindDest = RI->getUnwindDest();
4011   if (!UnwindDest)
4012     return false;
4013 
4014   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4015   // be safe to merge without code duplication.
4016   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4017     return false;
4018 
4019   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4020   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4021   if (!SuccessorCleanupPad)
4022     return false;
4023 
4024   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4025   // Replace any uses of the successor cleanupad with the predecessor pad
4026   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4027   // funclet bundle operands.
4028   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4029   // Remove the old cleanuppad.
4030   SuccessorCleanupPad->eraseFromParent();
4031   // Now, we simply replace the cleanupret with a branch to the unwind
4032   // destination.
4033   BranchInst::Create(UnwindDest, RI->getParent());
4034   RI->eraseFromParent();
4035 
4036   return true;
4037 }
4038 
4039 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4040   // It is possible to transiantly have an undef cleanuppad operand because we
4041   // have deleted some, but not all, dead blocks.
4042   // Eventually, this block will be deleted.
4043   if (isa<UndefValue>(RI->getOperand(0)))
4044     return false;
4045 
4046   if (mergeCleanupPad(RI))
4047     return true;
4048 
4049   if (removeEmptyCleanup(RI))
4050     return true;
4051 
4052   return false;
4053 }
4054 
4055 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4056   BasicBlock *BB = RI->getParent();
4057   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4058     return false;
4059 
4060   // Find predecessors that end with branches.
4061   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4062   SmallVector<BranchInst *, 8> CondBranchPreds;
4063   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4064     BasicBlock *P = *PI;
4065     Instruction *PTI = P->getTerminator();
4066     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4067       if (BI->isUnconditional())
4068         UncondBranchPreds.push_back(P);
4069       else
4070         CondBranchPreds.push_back(BI);
4071     }
4072   }
4073 
4074   // If we found some, do the transformation!
4075   if (!UncondBranchPreds.empty() && DupRet) {
4076     while (!UncondBranchPreds.empty()) {
4077       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4078       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4079                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4080       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4081     }
4082 
4083     // If we eliminated all predecessors of the block, delete the block now.
4084     if (pred_empty(BB)) {
4085       // We know there are no successors, so just nuke the block.
4086       if (LoopHeaders)
4087         LoopHeaders->erase(BB);
4088       BB->eraseFromParent();
4089     }
4090 
4091     return true;
4092   }
4093 
4094   // Check out all of the conditional branches going to this return
4095   // instruction.  If any of them just select between returns, change the
4096   // branch itself into a select/return pair.
4097   while (!CondBranchPreds.empty()) {
4098     BranchInst *BI = CondBranchPreds.pop_back_val();
4099 
4100     // Check to see if the non-BB successor is also a return block.
4101     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4102         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4103         SimplifyCondBranchToTwoReturns(BI, Builder))
4104       return true;
4105   }
4106   return false;
4107 }
4108 
4109 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4110   BasicBlock *BB = UI->getParent();
4111 
4112   bool Changed = false;
4113 
4114   // If there are any instructions immediately before the unreachable that can
4115   // be removed, do so.
4116   while (UI->getIterator() != BB->begin()) {
4117     BasicBlock::iterator BBI = UI->getIterator();
4118     --BBI;
4119     // Do not delete instructions that can have side effects which might cause
4120     // the unreachable to not be reachable; specifically, calls and volatile
4121     // operations may have this effect.
4122     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4123       break;
4124 
4125     if (BBI->mayHaveSideEffects()) {
4126       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4127         if (SI->isVolatile())
4128           break;
4129       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4130         if (LI->isVolatile())
4131           break;
4132       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4133         if (RMWI->isVolatile())
4134           break;
4135       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4136         if (CXI->isVolatile())
4137           break;
4138       } else if (isa<CatchPadInst>(BBI)) {
4139         // A catchpad may invoke exception object constructors and such, which
4140         // in some languages can be arbitrary code, so be conservative by
4141         // default.
4142         // For CoreCLR, it just involves a type test, so can be removed.
4143         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4144             EHPersonality::CoreCLR)
4145           break;
4146       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4147                  !isa<LandingPadInst>(BBI)) {
4148         break;
4149       }
4150       // Note that deleting LandingPad's here is in fact okay, although it
4151       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4152       // all the predecessors of this block will be the unwind edges of Invokes,
4153       // and we can therefore guarantee this block will be erased.
4154     }
4155 
4156     // Delete this instruction (any uses are guaranteed to be dead)
4157     if (!BBI->use_empty())
4158       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4159     BBI->eraseFromParent();
4160     Changed = true;
4161   }
4162 
4163   // If the unreachable instruction is the first in the block, take a gander
4164   // at all of the predecessors of this instruction, and simplify them.
4165   if (&BB->front() != UI)
4166     return Changed;
4167 
4168   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4169   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4170     Instruction *TI = Preds[i]->getTerminator();
4171     IRBuilder<> Builder(TI);
4172     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4173       if (BI->isUnconditional()) {
4174         if (BI->getSuccessor(0) == BB) {
4175           new UnreachableInst(TI->getContext(), TI);
4176           TI->eraseFromParent();
4177           Changed = true;
4178         }
4179       } else {
4180         if (BI->getSuccessor(0) == BB) {
4181           Builder.CreateBr(BI->getSuccessor(1));
4182           EraseTerminatorAndDCECond(BI);
4183         } else if (BI->getSuccessor(1) == BB) {
4184           Builder.CreateBr(BI->getSuccessor(0));
4185           EraseTerminatorAndDCECond(BI);
4186           Changed = true;
4187         }
4188       }
4189     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4190       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4191         if (i->getCaseSuccessor() != BB) {
4192           ++i;
4193           continue;
4194         }
4195         BB->removePredecessor(SI->getParent());
4196         i = SI->removeCase(i);
4197         e = SI->case_end();
4198         Changed = true;
4199       }
4200     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4201       if (II->getUnwindDest() == BB) {
4202         removeUnwindEdge(TI->getParent());
4203         Changed = true;
4204       }
4205     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4206       if (CSI->getUnwindDest() == BB) {
4207         removeUnwindEdge(TI->getParent());
4208         Changed = true;
4209         continue;
4210       }
4211 
4212       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4213                                              E = CSI->handler_end();
4214            I != E; ++I) {
4215         if (*I == BB) {
4216           CSI->removeHandler(I);
4217           --I;
4218           --E;
4219           Changed = true;
4220         }
4221       }
4222       if (CSI->getNumHandlers() == 0) {
4223         BasicBlock *CatchSwitchBB = CSI->getParent();
4224         if (CSI->hasUnwindDest()) {
4225           // Redirect preds to the unwind dest
4226           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4227         } else {
4228           // Rewrite all preds to unwind to caller (or from invoke to call).
4229           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4230           for (BasicBlock *EHPred : EHPreds)
4231             removeUnwindEdge(EHPred);
4232         }
4233         // The catchswitch is no longer reachable.
4234         new UnreachableInst(CSI->getContext(), CSI);
4235         CSI->eraseFromParent();
4236         Changed = true;
4237       }
4238     } else if (isa<CleanupReturnInst>(TI)) {
4239       new UnreachableInst(TI->getContext(), TI);
4240       TI->eraseFromParent();
4241       Changed = true;
4242     }
4243   }
4244 
4245   // If this block is now dead, remove it.
4246   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4247     // We know there are no successors, so just nuke the block.
4248     if (LoopHeaders)
4249       LoopHeaders->erase(BB);
4250     BB->eraseFromParent();
4251     return true;
4252   }
4253 
4254   return Changed;
4255 }
4256 
4257 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4258   assert(Cases.size() >= 1);
4259 
4260   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4261   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4262     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4263       return false;
4264   }
4265   return true;
4266 }
4267 
4268 /// Turn a switch with two reachable destinations into an integer range
4269 /// comparison and branch.
4270 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4271   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4272 
4273   bool HasDefault =
4274       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4275 
4276   // Partition the cases into two sets with different destinations.
4277   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4278   BasicBlock *DestB = nullptr;
4279   SmallVector<ConstantInt *, 16> CasesA;
4280   SmallVector<ConstantInt *, 16> CasesB;
4281 
4282   for (auto Case : SI->cases()) {
4283     BasicBlock *Dest = Case.getCaseSuccessor();
4284     if (!DestA)
4285       DestA = Dest;
4286     if (Dest == DestA) {
4287       CasesA.push_back(Case.getCaseValue());
4288       continue;
4289     }
4290     if (!DestB)
4291       DestB = Dest;
4292     if (Dest == DestB) {
4293       CasesB.push_back(Case.getCaseValue());
4294       continue;
4295     }
4296     return false; // More than two destinations.
4297   }
4298 
4299   assert(DestA && DestB &&
4300          "Single-destination switch should have been folded.");
4301   assert(DestA != DestB);
4302   assert(DestB != SI->getDefaultDest());
4303   assert(!CasesB.empty() && "There must be non-default cases.");
4304   assert(!CasesA.empty() || HasDefault);
4305 
4306   // Figure out if one of the sets of cases form a contiguous range.
4307   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4308   BasicBlock *ContiguousDest = nullptr;
4309   BasicBlock *OtherDest = nullptr;
4310   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4311     ContiguousCases = &CasesA;
4312     ContiguousDest = DestA;
4313     OtherDest = DestB;
4314   } else if (CasesAreContiguous(CasesB)) {
4315     ContiguousCases = &CasesB;
4316     ContiguousDest = DestB;
4317     OtherDest = DestA;
4318   } else
4319     return false;
4320 
4321   // Start building the compare and branch.
4322 
4323   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4324   Constant *NumCases =
4325       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4326 
4327   Value *Sub = SI->getCondition();
4328   if (!Offset->isNullValue())
4329     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4330 
4331   Value *Cmp;
4332   // If NumCases overflowed, then all possible values jump to the successor.
4333   if (NumCases->isNullValue() && !ContiguousCases->empty())
4334     Cmp = ConstantInt::getTrue(SI->getContext());
4335   else
4336     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4337   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4338 
4339   // Update weight for the newly-created conditional branch.
4340   if (HasBranchWeights(SI)) {
4341     SmallVector<uint64_t, 8> Weights;
4342     GetBranchWeights(SI, Weights);
4343     if (Weights.size() == 1 + SI->getNumCases()) {
4344       uint64_t TrueWeight = 0;
4345       uint64_t FalseWeight = 0;
4346       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4347         if (SI->getSuccessor(I) == ContiguousDest)
4348           TrueWeight += Weights[I];
4349         else
4350           FalseWeight += Weights[I];
4351       }
4352       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4353         TrueWeight /= 2;
4354         FalseWeight /= 2;
4355       }
4356       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4357     }
4358   }
4359 
4360   // Prune obsolete incoming values off the successors' PHI nodes.
4361   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4362     unsigned PreviousEdges = ContiguousCases->size();
4363     if (ContiguousDest == SI->getDefaultDest())
4364       ++PreviousEdges;
4365     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4366       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4367   }
4368   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4369     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4370     if (OtherDest == SI->getDefaultDest())
4371       ++PreviousEdges;
4372     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4373       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4374   }
4375 
4376   // Drop the switch.
4377   SI->eraseFromParent();
4378 
4379   return true;
4380 }
4381 
4382 /// Compute masked bits for the condition of a switch
4383 /// and use it to remove dead cases.
4384 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4385                                      const DataLayout &DL) {
4386   Value *Cond = SI->getCondition();
4387   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4388   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4389 
4390   // We can also eliminate cases by determining that their values are outside of
4391   // the limited range of the condition based on how many significant (non-sign)
4392   // bits are in the condition value.
4393   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4394   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4395 
4396   // Gather dead cases.
4397   SmallVector<ConstantInt *, 8> DeadCases;
4398   for (auto &Case : SI->cases()) {
4399     const APInt &CaseVal = Case.getCaseValue()->getValue();
4400     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4401         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4402       DeadCases.push_back(Case.getCaseValue());
4403       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4404                         << " is dead.\n");
4405     }
4406   }
4407 
4408   // If we can prove that the cases must cover all possible values, the
4409   // default destination becomes dead and we can remove it.  If we know some
4410   // of the bits in the value, we can use that to more precisely compute the
4411   // number of possible unique case values.
4412   bool HasDefault =
4413       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4414   const unsigned NumUnknownBits =
4415       Bits - (Known.Zero | Known.One).countPopulation();
4416   assert(NumUnknownBits <= Bits);
4417   if (HasDefault && DeadCases.empty() &&
4418       NumUnknownBits < 64 /* avoid overflow */ &&
4419       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4420     LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4421     BasicBlock *NewDefault =
4422         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4423     SI->setDefaultDest(&*NewDefault);
4424     SplitBlock(&*NewDefault, &NewDefault->front());
4425     auto *OldTI = NewDefault->getTerminator();
4426     new UnreachableInst(SI->getContext(), OldTI);
4427     EraseTerminatorAndDCECond(OldTI);
4428     return true;
4429   }
4430 
4431   SmallVector<uint64_t, 8> Weights;
4432   bool HasWeight = HasBranchWeights(SI);
4433   if (HasWeight) {
4434     GetBranchWeights(SI, Weights);
4435     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4436   }
4437 
4438   // Remove dead cases from the switch.
4439   for (ConstantInt *DeadCase : DeadCases) {
4440     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4441     assert(CaseI != SI->case_default() &&
4442            "Case was not found. Probably mistake in DeadCases forming.");
4443     if (HasWeight) {
4444       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4445       Weights.pop_back();
4446     }
4447 
4448     // Prune unused values from PHI nodes.
4449     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4450     SI->removeCase(CaseI);
4451   }
4452   if (HasWeight && Weights.size() >= 2) {
4453     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4454     setBranchWeights(SI, MDWeights);
4455   }
4456 
4457   return !DeadCases.empty();
4458 }
4459 
4460 /// If BB would be eligible for simplification by
4461 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4462 /// by an unconditional branch), look at the phi node for BB in the successor
4463 /// block and see if the incoming value is equal to CaseValue. If so, return
4464 /// the phi node, and set PhiIndex to BB's index in the phi node.
4465 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4466                                               BasicBlock *BB, int *PhiIndex) {
4467   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4468     return nullptr; // BB must be empty to be a candidate for simplification.
4469   if (!BB->getSinglePredecessor())
4470     return nullptr; // BB must be dominated by the switch.
4471 
4472   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4473   if (!Branch || !Branch->isUnconditional())
4474     return nullptr; // Terminator must be unconditional branch.
4475 
4476   BasicBlock *Succ = Branch->getSuccessor(0);
4477 
4478   for (PHINode &PHI : Succ->phis()) {
4479     int Idx = PHI.getBasicBlockIndex(BB);
4480     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4481 
4482     Value *InValue = PHI.getIncomingValue(Idx);
4483     if (InValue != CaseValue)
4484       continue;
4485 
4486     *PhiIndex = Idx;
4487     return &PHI;
4488   }
4489 
4490   return nullptr;
4491 }
4492 
4493 /// Try to forward the condition of a switch instruction to a phi node
4494 /// dominated by the switch, if that would mean that some of the destination
4495 /// blocks of the switch can be folded away. Return true if a change is made.
4496 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4497   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4498 
4499   ForwardingNodesMap ForwardingNodes;
4500   BasicBlock *SwitchBlock = SI->getParent();
4501   bool Changed = false;
4502   for (auto &Case : SI->cases()) {
4503     ConstantInt *CaseValue = Case.getCaseValue();
4504     BasicBlock *CaseDest = Case.getCaseSuccessor();
4505 
4506     // Replace phi operands in successor blocks that are using the constant case
4507     // value rather than the switch condition variable:
4508     //   switchbb:
4509     //   switch i32 %x, label %default [
4510     //     i32 17, label %succ
4511     //   ...
4512     //   succ:
4513     //     %r = phi i32 ... [ 17, %switchbb ] ...
4514     // -->
4515     //     %r = phi i32 ... [ %x, %switchbb ] ...
4516 
4517     for (PHINode &Phi : CaseDest->phis()) {
4518       // This only works if there is exactly 1 incoming edge from the switch to
4519       // a phi. If there is >1, that means multiple cases of the switch map to 1
4520       // value in the phi, and that phi value is not the switch condition. Thus,
4521       // this transform would not make sense (the phi would be invalid because
4522       // a phi can't have different incoming values from the same block).
4523       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4524       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4525           count(Phi.blocks(), SwitchBlock) == 1) {
4526         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4527         Changed = true;
4528       }
4529     }
4530 
4531     // Collect phi nodes that are indirectly using this switch's case constants.
4532     int PhiIdx;
4533     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4534       ForwardingNodes[Phi].push_back(PhiIdx);
4535   }
4536 
4537   for (auto &ForwardingNode : ForwardingNodes) {
4538     PHINode *Phi = ForwardingNode.first;
4539     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4540     if (Indexes.size() < 2)
4541       continue;
4542 
4543     for (int Index : Indexes)
4544       Phi->setIncomingValue(Index, SI->getCondition());
4545     Changed = true;
4546   }
4547 
4548   return Changed;
4549 }
4550 
4551 /// Return true if the backend will be able to handle
4552 /// initializing an array of constants like C.
4553 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4554   if (C->isThreadDependent())
4555     return false;
4556   if (C->isDLLImportDependent())
4557     return false;
4558 
4559   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4560       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4561       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4562     return false;
4563 
4564   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4565     if (!CE->isGEPWithNoNotionalOverIndexing())
4566       return false;
4567     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4568       return false;
4569   }
4570 
4571   if (!TTI.shouldBuildLookupTablesForConstant(C))
4572     return false;
4573 
4574   return true;
4575 }
4576 
4577 /// If V is a Constant, return it. Otherwise, try to look up
4578 /// its constant value in ConstantPool, returning 0 if it's not there.
4579 static Constant *
4580 LookupConstant(Value *V,
4581                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4582   if (Constant *C = dyn_cast<Constant>(V))
4583     return C;
4584   return ConstantPool.lookup(V);
4585 }
4586 
4587 /// Try to fold instruction I into a constant. This works for
4588 /// simple instructions such as binary operations where both operands are
4589 /// constant or can be replaced by constants from the ConstantPool. Returns the
4590 /// resulting constant on success, 0 otherwise.
4591 static Constant *
4592 ConstantFold(Instruction *I, const DataLayout &DL,
4593              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4594   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4595     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4596     if (!A)
4597       return nullptr;
4598     if (A->isAllOnesValue())
4599       return LookupConstant(Select->getTrueValue(), ConstantPool);
4600     if (A->isNullValue())
4601       return LookupConstant(Select->getFalseValue(), ConstantPool);
4602     return nullptr;
4603   }
4604 
4605   SmallVector<Constant *, 4> COps;
4606   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4607     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4608       COps.push_back(A);
4609     else
4610       return nullptr;
4611   }
4612 
4613   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4614     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4615                                            COps[1], DL);
4616   }
4617 
4618   return ConstantFoldInstOperands(I, COps, DL);
4619 }
4620 
4621 /// Try to determine the resulting constant values in phi nodes
4622 /// at the common destination basic block, *CommonDest, for one of the case
4623 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4624 /// case), of a switch instruction SI.
4625 static bool
4626 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4627                BasicBlock **CommonDest,
4628                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4629                const DataLayout &DL, const TargetTransformInfo &TTI) {
4630   // The block from which we enter the common destination.
4631   BasicBlock *Pred = SI->getParent();
4632 
4633   // If CaseDest is empty except for some side-effect free instructions through
4634   // which we can constant-propagate the CaseVal, continue to its successor.
4635   SmallDenseMap<Value *, Constant *> ConstantPool;
4636   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4637   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4638     if (I.isTerminator()) {
4639       // If the terminator is a simple branch, continue to the next block.
4640       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4641         return false;
4642       Pred = CaseDest;
4643       CaseDest = I.getSuccessor(0);
4644     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4645       // Instruction is side-effect free and constant.
4646 
4647       // If the instruction has uses outside this block or a phi node slot for
4648       // the block, it is not safe to bypass the instruction since it would then
4649       // no longer dominate all its uses.
4650       for (auto &Use : I.uses()) {
4651         User *User = Use.getUser();
4652         if (Instruction *I = dyn_cast<Instruction>(User))
4653           if (I->getParent() == CaseDest)
4654             continue;
4655         if (PHINode *Phi = dyn_cast<PHINode>(User))
4656           if (Phi->getIncomingBlock(Use) == CaseDest)
4657             continue;
4658         return false;
4659       }
4660 
4661       ConstantPool.insert(std::make_pair(&I, C));
4662     } else {
4663       break;
4664     }
4665   }
4666 
4667   // If we did not have a CommonDest before, use the current one.
4668   if (!*CommonDest)
4669     *CommonDest = CaseDest;
4670   // If the destination isn't the common one, abort.
4671   if (CaseDest != *CommonDest)
4672     return false;
4673 
4674   // Get the values for this case from phi nodes in the destination block.
4675   for (PHINode &PHI : (*CommonDest)->phis()) {
4676     int Idx = PHI.getBasicBlockIndex(Pred);
4677     if (Idx == -1)
4678       continue;
4679 
4680     Constant *ConstVal =
4681         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4682     if (!ConstVal)
4683       return false;
4684 
4685     // Be conservative about which kinds of constants we support.
4686     if (!ValidLookupTableConstant(ConstVal, TTI))
4687       return false;
4688 
4689     Res.push_back(std::make_pair(&PHI, ConstVal));
4690   }
4691 
4692   return Res.size() > 0;
4693 }
4694 
4695 // Helper function used to add CaseVal to the list of cases that generate
4696 // Result. Returns the updated number of cases that generate this result.
4697 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4698                                  SwitchCaseResultVectorTy &UniqueResults,
4699                                  Constant *Result) {
4700   for (auto &I : UniqueResults) {
4701     if (I.first == Result) {
4702       I.second.push_back(CaseVal);
4703       return I.second.size();
4704     }
4705   }
4706   UniqueResults.push_back(
4707       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4708   return 1;
4709 }
4710 
4711 // Helper function that initializes a map containing
4712 // results for the PHI node of the common destination block for a switch
4713 // instruction. Returns false if multiple PHI nodes have been found or if
4714 // there is not a common destination block for the switch.
4715 static bool
4716 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4717                       SwitchCaseResultVectorTy &UniqueResults,
4718                       Constant *&DefaultResult, const DataLayout &DL,
4719                       const TargetTransformInfo &TTI,
4720                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4721   for (auto &I : SI->cases()) {
4722     ConstantInt *CaseVal = I.getCaseValue();
4723 
4724     // Resulting value at phi nodes for this case value.
4725     SwitchCaseResultsTy Results;
4726     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4727                         DL, TTI))
4728       return false;
4729 
4730     // Only one value per case is permitted.
4731     if (Results.size() > 1)
4732       return false;
4733 
4734     // Add the case->result mapping to UniqueResults.
4735     const uintptr_t NumCasesForResult =
4736         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4737 
4738     // Early out if there are too many cases for this result.
4739     if (NumCasesForResult > MaxCasesPerResult)
4740       return false;
4741 
4742     // Early out if there are too many unique results.
4743     if (UniqueResults.size() > MaxUniqueResults)
4744       return false;
4745 
4746     // Check the PHI consistency.
4747     if (!PHI)
4748       PHI = Results[0].first;
4749     else if (PHI != Results[0].first)
4750       return false;
4751   }
4752   // Find the default result value.
4753   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4754   BasicBlock *DefaultDest = SI->getDefaultDest();
4755   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4756                  DL, TTI);
4757   // If the default value is not found abort unless the default destination
4758   // is unreachable.
4759   DefaultResult =
4760       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4761   if ((!DefaultResult &&
4762        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4763     return false;
4764 
4765   return true;
4766 }
4767 
4768 // Helper function that checks if it is possible to transform a switch with only
4769 // two cases (or two cases + default) that produces a result into a select.
4770 // Example:
4771 // switch (a) {
4772 //   case 10:                %0 = icmp eq i32 %a, 10
4773 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4774 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4775 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4776 //   default:
4777 //     return 4;
4778 // }
4779 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4780                                    Constant *DefaultResult, Value *Condition,
4781                                    IRBuilder<> &Builder) {
4782   assert(ResultVector.size() == 2 &&
4783          "We should have exactly two unique results at this point");
4784   // If we are selecting between only two cases transform into a simple
4785   // select or a two-way select if default is possible.
4786   if (ResultVector[0].second.size() == 1 &&
4787       ResultVector[1].second.size() == 1) {
4788     ConstantInt *const FirstCase = ResultVector[0].second[0];
4789     ConstantInt *const SecondCase = ResultVector[1].second[0];
4790 
4791     bool DefaultCanTrigger = DefaultResult;
4792     Value *SelectValue = ResultVector[1].first;
4793     if (DefaultCanTrigger) {
4794       Value *const ValueCompare =
4795           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4796       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4797                                          DefaultResult, "switch.select");
4798     }
4799     Value *const ValueCompare =
4800         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4801     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4802                                 SelectValue, "switch.select");
4803   }
4804 
4805   return nullptr;
4806 }
4807 
4808 // Helper function to cleanup a switch instruction that has been converted into
4809 // a select, fixing up PHI nodes and basic blocks.
4810 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4811                                               Value *SelectValue,
4812                                               IRBuilder<> &Builder) {
4813   BasicBlock *SelectBB = SI->getParent();
4814   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4815     PHI->removeIncomingValue(SelectBB);
4816   PHI->addIncoming(SelectValue, SelectBB);
4817 
4818   Builder.CreateBr(PHI->getParent());
4819 
4820   // Remove the switch.
4821   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4822     BasicBlock *Succ = SI->getSuccessor(i);
4823 
4824     if (Succ == PHI->getParent())
4825       continue;
4826     Succ->removePredecessor(SelectBB);
4827   }
4828   SI->eraseFromParent();
4829 }
4830 
4831 /// If the switch is only used to initialize one or more
4832 /// phi nodes in a common successor block with only two different
4833 /// constant values, replace the switch with select.
4834 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4835                            const DataLayout &DL,
4836                            const TargetTransformInfo &TTI) {
4837   Value *const Cond = SI->getCondition();
4838   PHINode *PHI = nullptr;
4839   BasicBlock *CommonDest = nullptr;
4840   Constant *DefaultResult;
4841   SwitchCaseResultVectorTy UniqueResults;
4842   // Collect all the cases that will deliver the same value from the switch.
4843   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4844                              DL, TTI, 2, 1))
4845     return false;
4846   // Selects choose between maximum two values.
4847   if (UniqueResults.size() != 2)
4848     return false;
4849   assert(PHI != nullptr && "PHI for value select not found");
4850 
4851   Builder.SetInsertPoint(SI);
4852   Value *SelectValue =
4853       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4854   if (SelectValue) {
4855     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4856     return true;
4857   }
4858   // The switch couldn't be converted into a select.
4859   return false;
4860 }
4861 
4862 namespace {
4863 
4864 /// This class represents a lookup table that can be used to replace a switch.
4865 class SwitchLookupTable {
4866 public:
4867   /// Create a lookup table to use as a switch replacement with the contents
4868   /// of Values, using DefaultValue to fill any holes in the table.
4869   SwitchLookupTable(
4870       Module &M, uint64_t TableSize, ConstantInt *Offset,
4871       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4872       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4873 
4874   /// Build instructions with Builder to retrieve the value at
4875   /// the position given by Index in the lookup table.
4876   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4877 
4878   /// Return true if a table with TableSize elements of
4879   /// type ElementType would fit in a target-legal register.
4880   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4881                                  Type *ElementType);
4882 
4883 private:
4884   // Depending on the contents of the table, it can be represented in
4885   // different ways.
4886   enum {
4887     // For tables where each element contains the same value, we just have to
4888     // store that single value and return it for each lookup.
4889     SingleValueKind,
4890 
4891     // For tables where there is a linear relationship between table index
4892     // and values. We calculate the result with a simple multiplication
4893     // and addition instead of a table lookup.
4894     LinearMapKind,
4895 
4896     // For small tables with integer elements, we can pack them into a bitmap
4897     // that fits into a target-legal register. Values are retrieved by
4898     // shift and mask operations.
4899     BitMapKind,
4900 
4901     // The table is stored as an array of values. Values are retrieved by load
4902     // instructions from the table.
4903     ArrayKind
4904   } Kind;
4905 
4906   // For SingleValueKind, this is the single value.
4907   Constant *SingleValue = nullptr;
4908 
4909   // For BitMapKind, this is the bitmap.
4910   ConstantInt *BitMap = nullptr;
4911   IntegerType *BitMapElementTy = nullptr;
4912 
4913   // For LinearMapKind, these are the constants used to derive the value.
4914   ConstantInt *LinearOffset = nullptr;
4915   ConstantInt *LinearMultiplier = nullptr;
4916 
4917   // For ArrayKind, this is the array.
4918   GlobalVariable *Array = nullptr;
4919 };
4920 
4921 } // end anonymous namespace
4922 
4923 SwitchLookupTable::SwitchLookupTable(
4924     Module &M, uint64_t TableSize, ConstantInt *Offset,
4925     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4926     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4927   assert(Values.size() && "Can't build lookup table without values!");
4928   assert(TableSize >= Values.size() && "Can't fit values in table!");
4929 
4930   // If all values in the table are equal, this is that value.
4931   SingleValue = Values.begin()->second;
4932 
4933   Type *ValueType = Values.begin()->second->getType();
4934 
4935   // Build up the table contents.
4936   SmallVector<Constant *, 64> TableContents(TableSize);
4937   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4938     ConstantInt *CaseVal = Values[I].first;
4939     Constant *CaseRes = Values[I].second;
4940     assert(CaseRes->getType() == ValueType);
4941 
4942     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4943     TableContents[Idx] = CaseRes;
4944 
4945     if (CaseRes != SingleValue)
4946       SingleValue = nullptr;
4947   }
4948 
4949   // Fill in any holes in the table with the default result.
4950   if (Values.size() < TableSize) {
4951     assert(DefaultValue &&
4952            "Need a default value to fill the lookup table holes.");
4953     assert(DefaultValue->getType() == ValueType);
4954     for (uint64_t I = 0; I < TableSize; ++I) {
4955       if (!TableContents[I])
4956         TableContents[I] = DefaultValue;
4957     }
4958 
4959     if (DefaultValue != SingleValue)
4960       SingleValue = nullptr;
4961   }
4962 
4963   // If each element in the table contains the same value, we only need to store
4964   // that single value.
4965   if (SingleValue) {
4966     Kind = SingleValueKind;
4967     return;
4968   }
4969 
4970   // Check if we can derive the value with a linear transformation from the
4971   // table index.
4972   if (isa<IntegerType>(ValueType)) {
4973     bool LinearMappingPossible = true;
4974     APInt PrevVal;
4975     APInt DistToPrev;
4976     assert(TableSize >= 2 && "Should be a SingleValue table.");
4977     // Check if there is the same distance between two consecutive values.
4978     for (uint64_t I = 0; I < TableSize; ++I) {
4979       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4980       if (!ConstVal) {
4981         // This is an undef. We could deal with it, but undefs in lookup tables
4982         // are very seldom. It's probably not worth the additional complexity.
4983         LinearMappingPossible = false;
4984         break;
4985       }
4986       const APInt &Val = ConstVal->getValue();
4987       if (I != 0) {
4988         APInt Dist = Val - PrevVal;
4989         if (I == 1) {
4990           DistToPrev = Dist;
4991         } else if (Dist != DistToPrev) {
4992           LinearMappingPossible = false;
4993           break;
4994         }
4995       }
4996       PrevVal = Val;
4997     }
4998     if (LinearMappingPossible) {
4999       LinearOffset = cast<ConstantInt>(TableContents[0]);
5000       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5001       Kind = LinearMapKind;
5002       ++NumLinearMaps;
5003       return;
5004     }
5005   }
5006 
5007   // If the type is integer and the table fits in a register, build a bitmap.
5008   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5009     IntegerType *IT = cast<IntegerType>(ValueType);
5010     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5011     for (uint64_t I = TableSize; I > 0; --I) {
5012       TableInt <<= IT->getBitWidth();
5013       // Insert values into the bitmap. Undef values are set to zero.
5014       if (!isa<UndefValue>(TableContents[I - 1])) {
5015         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5016         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5017       }
5018     }
5019     BitMap = ConstantInt::get(M.getContext(), TableInt);
5020     BitMapElementTy = IT;
5021     Kind = BitMapKind;
5022     ++NumBitMaps;
5023     return;
5024   }
5025 
5026   // Store the table in an array.
5027   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5028   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5029 
5030   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
5031                              GlobalVariable::PrivateLinkage, Initializer,
5032                              "switch.table." + FuncName);
5033   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5034   // Set the alignment to that of an array items. We will be only loading one
5035   // value out of it.
5036   Array->setAlignment(DL.getPrefTypeAlignment(ValueType));
5037   Kind = ArrayKind;
5038 }
5039 
5040 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5041   switch (Kind) {
5042   case SingleValueKind:
5043     return SingleValue;
5044   case LinearMapKind: {
5045     // Derive the result value from the input value.
5046     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5047                                           false, "switch.idx.cast");
5048     if (!LinearMultiplier->isOne())
5049       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5050     if (!LinearOffset->isZero())
5051       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5052     return Result;
5053   }
5054   case BitMapKind: {
5055     // Type of the bitmap (e.g. i59).
5056     IntegerType *MapTy = BitMap->getType();
5057 
5058     // Cast Index to the same type as the bitmap.
5059     // Note: The Index is <= the number of elements in the table, so
5060     // truncating it to the width of the bitmask is safe.
5061     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5062 
5063     // Multiply the shift amount by the element width.
5064     ShiftAmt = Builder.CreateMul(
5065         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5066         "switch.shiftamt");
5067 
5068     // Shift down.
5069     Value *DownShifted =
5070         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5071     // Mask off.
5072     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5073   }
5074   case ArrayKind: {
5075     // Make sure the table index will not overflow when treated as signed.
5076     IntegerType *IT = cast<IntegerType>(Index->getType());
5077     uint64_t TableSize =
5078         Array->getInitializer()->getType()->getArrayNumElements();
5079     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5080       Index = Builder.CreateZExt(
5081           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5082           "switch.tableidx.zext");
5083 
5084     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5085     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5086                                            GEPIndices, "switch.gep");
5087     return Builder.CreateLoad(GEP, "switch.load");
5088   }
5089   }
5090   llvm_unreachable("Unknown lookup table kind!");
5091 }
5092 
5093 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5094                                            uint64_t TableSize,
5095                                            Type *ElementType) {
5096   auto *IT = dyn_cast<IntegerType>(ElementType);
5097   if (!IT)
5098     return false;
5099   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5100   // are <= 15, we could try to narrow the type.
5101 
5102   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5103   if (TableSize >= UINT_MAX / IT->getBitWidth())
5104     return false;
5105   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5106 }
5107 
5108 /// Determine whether a lookup table should be built for this switch, based on
5109 /// the number of cases, size of the table, and the types of the results.
5110 static bool
5111 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5112                        const TargetTransformInfo &TTI, const DataLayout &DL,
5113                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5114   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5115     return false; // TableSize overflowed, or mul below might overflow.
5116 
5117   bool AllTablesFitInRegister = true;
5118   bool HasIllegalType = false;
5119   for (const auto &I : ResultTypes) {
5120     Type *Ty = I.second;
5121 
5122     // Saturate this flag to true.
5123     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5124 
5125     // Saturate this flag to false.
5126     AllTablesFitInRegister =
5127         AllTablesFitInRegister &&
5128         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5129 
5130     // If both flags saturate, we're done. NOTE: This *only* works with
5131     // saturating flags, and all flags have to saturate first due to the
5132     // non-deterministic behavior of iterating over a dense map.
5133     if (HasIllegalType && !AllTablesFitInRegister)
5134       break;
5135   }
5136 
5137   // If each table would fit in a register, we should build it anyway.
5138   if (AllTablesFitInRegister)
5139     return true;
5140 
5141   // Don't build a table that doesn't fit in-register if it has illegal types.
5142   if (HasIllegalType)
5143     return false;
5144 
5145   // The table density should be at least 40%. This is the same criterion as for
5146   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5147   // FIXME: Find the best cut-off.
5148   return SI->getNumCases() * 10 >= TableSize * 4;
5149 }
5150 
5151 /// Try to reuse the switch table index compare. Following pattern:
5152 /// \code
5153 ///     if (idx < tablesize)
5154 ///        r = table[idx]; // table does not contain default_value
5155 ///     else
5156 ///        r = default_value;
5157 ///     if (r != default_value)
5158 ///        ...
5159 /// \endcode
5160 /// Is optimized to:
5161 /// \code
5162 ///     cond = idx < tablesize;
5163 ///     if (cond)
5164 ///        r = table[idx];
5165 ///     else
5166 ///        r = default_value;
5167 ///     if (cond)
5168 ///        ...
5169 /// \endcode
5170 /// Jump threading will then eliminate the second if(cond).
5171 static void reuseTableCompare(
5172     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5173     Constant *DefaultValue,
5174     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5175   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5176   if (!CmpInst)
5177     return;
5178 
5179   // We require that the compare is in the same block as the phi so that jump
5180   // threading can do its work afterwards.
5181   if (CmpInst->getParent() != PhiBlock)
5182     return;
5183 
5184   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5185   if (!CmpOp1)
5186     return;
5187 
5188   Value *RangeCmp = RangeCheckBranch->getCondition();
5189   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5190   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5191 
5192   // Check if the compare with the default value is constant true or false.
5193   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5194                                                  DefaultValue, CmpOp1, true);
5195   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5196     return;
5197 
5198   // Check if the compare with the case values is distinct from the default
5199   // compare result.
5200   for (auto ValuePair : Values) {
5201     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5202                                                 ValuePair.second, CmpOp1, true);
5203     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5204       return;
5205     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5206            "Expect true or false as compare result.");
5207   }
5208 
5209   // Check if the branch instruction dominates the phi node. It's a simple
5210   // dominance check, but sufficient for our needs.
5211   // Although this check is invariant in the calling loops, it's better to do it
5212   // at this late stage. Practically we do it at most once for a switch.
5213   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5214   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5215     BasicBlock *Pred = *PI;
5216     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5217       return;
5218   }
5219 
5220   if (DefaultConst == FalseConst) {
5221     // The compare yields the same result. We can replace it.
5222     CmpInst->replaceAllUsesWith(RangeCmp);
5223     ++NumTableCmpReuses;
5224   } else {
5225     // The compare yields the same result, just inverted. We can replace it.
5226     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5227         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5228         RangeCheckBranch);
5229     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5230     ++NumTableCmpReuses;
5231   }
5232 }
5233 
5234 /// If the switch is only used to initialize one or more phi nodes in a common
5235 /// successor block with different constant values, replace the switch with
5236 /// lookup tables.
5237 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5238                                 const DataLayout &DL,
5239                                 const TargetTransformInfo &TTI) {
5240   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5241 
5242   Function *Fn = SI->getParent()->getParent();
5243   // Only build lookup table when we have a target that supports it or the
5244   // attribute is not set.
5245   if (!TTI.shouldBuildLookupTables() ||
5246       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5247     return false;
5248 
5249   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5250   // split off a dense part and build a lookup table for that.
5251 
5252   // FIXME: This creates arrays of GEPs to constant strings, which means each
5253   // GEP needs a runtime relocation in PIC code. We should just build one big
5254   // string and lookup indices into that.
5255 
5256   // Ignore switches with less than three cases. Lookup tables will not make
5257   // them faster, so we don't analyze them.
5258   if (SI->getNumCases() < 3)
5259     return false;
5260 
5261   // Figure out the corresponding result for each case value and phi node in the
5262   // common destination, as well as the min and max case values.
5263   assert(!empty(SI->cases()));
5264   SwitchInst::CaseIt CI = SI->case_begin();
5265   ConstantInt *MinCaseVal = CI->getCaseValue();
5266   ConstantInt *MaxCaseVal = CI->getCaseValue();
5267 
5268   BasicBlock *CommonDest = nullptr;
5269 
5270   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5271   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5272 
5273   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5274   SmallDenseMap<PHINode *, Type *> ResultTypes;
5275   SmallVector<PHINode *, 4> PHIs;
5276 
5277   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5278     ConstantInt *CaseVal = CI->getCaseValue();
5279     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5280       MinCaseVal = CaseVal;
5281     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5282       MaxCaseVal = CaseVal;
5283 
5284     // Resulting value at phi nodes for this case value.
5285     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5286     ResultsTy Results;
5287     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5288                         Results, DL, TTI))
5289       return false;
5290 
5291     // Append the result from this case to the list for each phi.
5292     for (const auto &I : Results) {
5293       PHINode *PHI = I.first;
5294       Constant *Value = I.second;
5295       if (!ResultLists.count(PHI))
5296         PHIs.push_back(PHI);
5297       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5298     }
5299   }
5300 
5301   // Keep track of the result types.
5302   for (PHINode *PHI : PHIs) {
5303     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5304   }
5305 
5306   uint64_t NumResults = ResultLists[PHIs[0]].size();
5307   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5308   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5309   bool TableHasHoles = (NumResults < TableSize);
5310 
5311   // If the table has holes, we need a constant result for the default case
5312   // or a bitmask that fits in a register.
5313   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5314   bool HasDefaultResults =
5315       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5316                      DefaultResultsList, DL, TTI);
5317 
5318   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5319   if (NeedMask) {
5320     // As an extra penalty for the validity test we require more cases.
5321     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5322       return false;
5323     if (!DL.fitsInLegalInteger(TableSize))
5324       return false;
5325   }
5326 
5327   for (const auto &I : DefaultResultsList) {
5328     PHINode *PHI = I.first;
5329     Constant *Result = I.second;
5330     DefaultResults[PHI] = Result;
5331   }
5332 
5333   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5334     return false;
5335 
5336   // Create the BB that does the lookups.
5337   Module &Mod = *CommonDest->getParent()->getParent();
5338   BasicBlock *LookupBB = BasicBlock::Create(
5339       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5340 
5341   // Compute the table index value.
5342   Builder.SetInsertPoint(SI);
5343   Value *TableIndex;
5344   if (MinCaseVal->isNullValue())
5345     TableIndex = SI->getCondition();
5346   else
5347     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5348                                    "switch.tableidx");
5349 
5350   // Compute the maximum table size representable by the integer type we are
5351   // switching upon.
5352   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5353   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5354   assert(MaxTableSize >= TableSize &&
5355          "It is impossible for a switch to have more entries than the max "
5356          "representable value of its input integer type's size.");
5357 
5358   // If the default destination is unreachable, or if the lookup table covers
5359   // all values of the conditional variable, branch directly to the lookup table
5360   // BB. Otherwise, check that the condition is within the case range.
5361   const bool DefaultIsReachable =
5362       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5363   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5364   BranchInst *RangeCheckBranch = nullptr;
5365 
5366   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5367     Builder.CreateBr(LookupBB);
5368     // Note: We call removeProdecessor later since we need to be able to get the
5369     // PHI value for the default case in case we're using a bit mask.
5370   } else {
5371     Value *Cmp = Builder.CreateICmpULT(
5372         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5373     RangeCheckBranch =
5374         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5375   }
5376 
5377   // Populate the BB that does the lookups.
5378   Builder.SetInsertPoint(LookupBB);
5379 
5380   if (NeedMask) {
5381     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5382     // re-purposed to do the hole check, and we create a new LookupBB.
5383     BasicBlock *MaskBB = LookupBB;
5384     MaskBB->setName("switch.hole_check");
5385     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5386                                   CommonDest->getParent(), CommonDest);
5387 
5388     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5389     // unnecessary illegal types.
5390     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5391     APInt MaskInt(TableSizePowOf2, 0);
5392     APInt One(TableSizePowOf2, 1);
5393     // Build bitmask; fill in a 1 bit for every case.
5394     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5395     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5396       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5397                          .getLimitedValue();
5398       MaskInt |= One << Idx;
5399     }
5400     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5401 
5402     // Get the TableIndex'th bit of the bitmask.
5403     // If this bit is 0 (meaning hole) jump to the default destination,
5404     // else continue with table lookup.
5405     IntegerType *MapTy = TableMask->getType();
5406     Value *MaskIndex =
5407         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5408     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5409     Value *LoBit = Builder.CreateTrunc(
5410         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5411     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5412 
5413     Builder.SetInsertPoint(LookupBB);
5414     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5415   }
5416 
5417   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5418     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5419     // do not delete PHINodes here.
5420     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5421                                             /*DontDeleteUselessPHIs=*/true);
5422   }
5423 
5424   bool ReturnedEarly = false;
5425   for (PHINode *PHI : PHIs) {
5426     const ResultListTy &ResultList = ResultLists[PHI];
5427 
5428     // If using a bitmask, use any value to fill the lookup table holes.
5429     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5430     StringRef FuncName = Fn->getName();
5431     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5432                             FuncName);
5433 
5434     Value *Result = Table.BuildLookup(TableIndex, Builder);
5435 
5436     // If the result is used to return immediately from the function, we want to
5437     // do that right here.
5438     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5439         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5440       Builder.CreateRet(Result);
5441       ReturnedEarly = true;
5442       break;
5443     }
5444 
5445     // Do a small peephole optimization: re-use the switch table compare if
5446     // possible.
5447     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5448       BasicBlock *PhiBlock = PHI->getParent();
5449       // Search for compare instructions which use the phi.
5450       for (auto *User : PHI->users()) {
5451         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5452       }
5453     }
5454 
5455     PHI->addIncoming(Result, LookupBB);
5456   }
5457 
5458   if (!ReturnedEarly)
5459     Builder.CreateBr(CommonDest);
5460 
5461   // Remove the switch.
5462   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5463     BasicBlock *Succ = SI->getSuccessor(i);
5464 
5465     if (Succ == SI->getDefaultDest())
5466       continue;
5467     Succ->removePredecessor(SI->getParent());
5468   }
5469   SI->eraseFromParent();
5470 
5471   ++NumLookupTables;
5472   if (NeedMask)
5473     ++NumLookupTablesHoles;
5474   return true;
5475 }
5476 
5477 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5478   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5479   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5480   uint64_t Range = Diff + 1;
5481   uint64_t NumCases = Values.size();
5482   // 40% is the default density for building a jump table in optsize/minsize mode.
5483   uint64_t MinDensity = 40;
5484 
5485   return NumCases * 100 >= Range * MinDensity;
5486 }
5487 
5488 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5489 /// of cases.
5490 ///
5491 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5492 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5493 ///
5494 /// This converts a sparse switch into a dense switch which allows better
5495 /// lowering and could also allow transforming into a lookup table.
5496 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5497                               const DataLayout &DL,
5498                               const TargetTransformInfo &TTI) {
5499   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5500   if (CondTy->getIntegerBitWidth() > 64 ||
5501       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5502     return false;
5503   // Only bother with this optimization if there are more than 3 switch cases;
5504   // SDAG will only bother creating jump tables for 4 or more cases.
5505   if (SI->getNumCases() < 4)
5506     return false;
5507 
5508   // This transform is agnostic to the signedness of the input or case values. We
5509   // can treat the case values as signed or unsigned. We can optimize more common
5510   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5511   // as signed.
5512   SmallVector<int64_t,4> Values;
5513   for (auto &C : SI->cases())
5514     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5515   llvm::sort(Values);
5516 
5517   // If the switch is already dense, there's nothing useful to do here.
5518   if (isSwitchDense(Values))
5519     return false;
5520 
5521   // First, transform the values such that they start at zero and ascend.
5522   int64_t Base = Values[0];
5523   for (auto &V : Values)
5524     V -= (uint64_t)(Base);
5525 
5526   // Now we have signed numbers that have been shifted so that, given enough
5527   // precision, there are no negative values. Since the rest of the transform
5528   // is bitwise only, we switch now to an unsigned representation.
5529   uint64_t GCD = 0;
5530   for (auto &V : Values)
5531     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5532 
5533   // This transform can be done speculatively because it is so cheap - it results
5534   // in a single rotate operation being inserted. This can only happen if the
5535   // factor extracted is a power of 2.
5536   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5537   // inverse of GCD and then perform this transform.
5538   // FIXME: It's possible that optimizing a switch on powers of two might also
5539   // be beneficial - flag values are often powers of two and we could use a CLZ
5540   // as the key function.
5541   if (GCD <= 1 || !isPowerOf2_64(GCD))
5542     // No common divisor found or too expensive to compute key function.
5543     return false;
5544 
5545   unsigned Shift = Log2_64(GCD);
5546   for (auto &V : Values)
5547     V = (int64_t)((uint64_t)V >> Shift);
5548 
5549   if (!isSwitchDense(Values))
5550     // Transform didn't create a dense switch.
5551     return false;
5552 
5553   // The obvious transform is to shift the switch condition right and emit a
5554   // check that the condition actually cleanly divided by GCD, i.e.
5555   //   C & (1 << Shift - 1) == 0
5556   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5557   //
5558   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5559   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5560   // are nonzero then the switch condition will be very large and will hit the
5561   // default case.
5562 
5563   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5564   Builder.SetInsertPoint(SI);
5565   auto *ShiftC = ConstantInt::get(Ty, Shift);
5566   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5567   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5568   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5569   auto *Rot = Builder.CreateOr(LShr, Shl);
5570   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5571 
5572   for (auto Case : SI->cases()) {
5573     auto *Orig = Case.getCaseValue();
5574     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5575     Case.setValue(
5576         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5577   }
5578   return true;
5579 }
5580 
5581 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5582   BasicBlock *BB = SI->getParent();
5583 
5584   if (isValueEqualityComparison(SI)) {
5585     // If we only have one predecessor, and if it is a branch on this value,
5586     // see if that predecessor totally determines the outcome of this switch.
5587     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5588       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5589         return requestResimplify();
5590 
5591     Value *Cond = SI->getCondition();
5592     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5593       if (SimplifySwitchOnSelect(SI, Select))
5594         return requestResimplify();
5595 
5596     // If the block only contains the switch, see if we can fold the block
5597     // away into any preds.
5598     if (SI == &*BB->instructionsWithoutDebug().begin())
5599       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5600         return requestResimplify();
5601   }
5602 
5603   // Try to transform the switch into an icmp and a branch.
5604   if (TurnSwitchRangeIntoICmp(SI, Builder))
5605     return requestResimplify();
5606 
5607   // Remove unreachable cases.
5608   if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5609     return requestResimplify();
5610 
5611   if (switchToSelect(SI, Builder, DL, TTI))
5612     return requestResimplify();
5613 
5614   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5615     return requestResimplify();
5616 
5617   // The conversion from switch to lookup tables results in difficult-to-analyze
5618   // code and makes pruning branches much harder. This is a problem if the
5619   // switch expression itself can still be restricted as a result of inlining or
5620   // CVP. Therefore, only apply this transformation during late stages of the
5621   // optimisation pipeline.
5622   if (Options.ConvertSwitchToLookupTable &&
5623       SwitchToLookupTable(SI, Builder, DL, TTI))
5624     return requestResimplify();
5625 
5626   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5627     return requestResimplify();
5628 
5629   return false;
5630 }
5631 
5632 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5633   BasicBlock *BB = IBI->getParent();
5634   bool Changed = false;
5635 
5636   // Eliminate redundant destinations.
5637   SmallPtrSet<Value *, 8> Succs;
5638   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5639     BasicBlock *Dest = IBI->getDestination(i);
5640     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5641       Dest->removePredecessor(BB);
5642       IBI->removeDestination(i);
5643       --i;
5644       --e;
5645       Changed = true;
5646     }
5647   }
5648 
5649   if (IBI->getNumDestinations() == 0) {
5650     // If the indirectbr has no successors, change it to unreachable.
5651     new UnreachableInst(IBI->getContext(), IBI);
5652     EraseTerminatorAndDCECond(IBI);
5653     return true;
5654   }
5655 
5656   if (IBI->getNumDestinations() == 1) {
5657     // If the indirectbr has one successor, change it to a direct branch.
5658     BranchInst::Create(IBI->getDestination(0), IBI);
5659     EraseTerminatorAndDCECond(IBI);
5660     return true;
5661   }
5662 
5663   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5664     if (SimplifyIndirectBrOnSelect(IBI, SI))
5665       return requestResimplify();
5666   }
5667   return Changed;
5668 }
5669 
5670 /// Given an block with only a single landing pad and a unconditional branch
5671 /// try to find another basic block which this one can be merged with.  This
5672 /// handles cases where we have multiple invokes with unique landing pads, but
5673 /// a shared handler.
5674 ///
5675 /// We specifically choose to not worry about merging non-empty blocks
5676 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5677 /// practice, the optimizer produces empty landing pad blocks quite frequently
5678 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5679 /// sinking in this file)
5680 ///
5681 /// This is primarily a code size optimization.  We need to avoid performing
5682 /// any transform which might inhibit optimization (such as our ability to
5683 /// specialize a particular handler via tail commoning).  We do this by not
5684 /// merging any blocks which require us to introduce a phi.  Since the same
5685 /// values are flowing through both blocks, we don't lose any ability to
5686 /// specialize.  If anything, we make such specialization more likely.
5687 ///
5688 /// TODO - This transformation could remove entries from a phi in the target
5689 /// block when the inputs in the phi are the same for the two blocks being
5690 /// merged.  In some cases, this could result in removal of the PHI entirely.
5691 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5692                                  BasicBlock *BB) {
5693   auto Succ = BB->getUniqueSuccessor();
5694   assert(Succ);
5695   // If there's a phi in the successor block, we'd likely have to introduce
5696   // a phi into the merged landing pad block.
5697   if (isa<PHINode>(*Succ->begin()))
5698     return false;
5699 
5700   for (BasicBlock *OtherPred : predecessors(Succ)) {
5701     if (BB == OtherPred)
5702       continue;
5703     BasicBlock::iterator I = OtherPred->begin();
5704     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5705     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5706       continue;
5707     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5708       ;
5709     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5710     if (!BI2 || !BI2->isIdenticalTo(BI))
5711       continue;
5712 
5713     // We've found an identical block.  Update our predecessors to take that
5714     // path instead and make ourselves dead.
5715     SmallPtrSet<BasicBlock *, 16> Preds;
5716     Preds.insert(pred_begin(BB), pred_end(BB));
5717     for (BasicBlock *Pred : Preds) {
5718       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5719       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5720              "unexpected successor");
5721       II->setUnwindDest(OtherPred);
5722     }
5723 
5724     // The debug info in OtherPred doesn't cover the merged control flow that
5725     // used to go through BB.  We need to delete it or update it.
5726     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5727       Instruction &Inst = *I;
5728       I++;
5729       if (isa<DbgInfoIntrinsic>(Inst))
5730         Inst.eraseFromParent();
5731     }
5732 
5733     SmallPtrSet<BasicBlock *, 16> Succs;
5734     Succs.insert(succ_begin(BB), succ_end(BB));
5735     for (BasicBlock *Succ : Succs) {
5736       Succ->removePredecessor(BB);
5737     }
5738 
5739     IRBuilder<> Builder(BI);
5740     Builder.CreateUnreachable();
5741     BI->eraseFromParent();
5742     return true;
5743   }
5744   return false;
5745 }
5746 
5747 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5748                                           IRBuilder<> &Builder) {
5749   BasicBlock *BB = BI->getParent();
5750   BasicBlock *Succ = BI->getSuccessor(0);
5751 
5752   // If the Terminator is the only non-phi instruction, simplify the block.
5753   // If LoopHeader is provided, check if the block or its successor is a loop
5754   // header. (This is for early invocations before loop simplify and
5755   // vectorization to keep canonical loop forms for nested loops. These blocks
5756   // can be eliminated when the pass is invoked later in the back-end.)
5757   // Note that if BB has only one predecessor then we do not introduce new
5758   // backedge, so we can eliminate BB.
5759   bool NeedCanonicalLoop =
5760       Options.NeedCanonicalLoop &&
5761       (LoopHeaders && pred_size(BB) > 1 &&
5762        (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5763   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5764   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5765       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5766     return true;
5767 
5768   // If the only instruction in the block is a seteq/setne comparison against a
5769   // constant, try to simplify the block.
5770   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5771     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5772       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5773         ;
5774       if (I->isTerminator() &&
5775           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5776         return true;
5777     }
5778 
5779   // See if we can merge an empty landing pad block with another which is
5780   // equivalent.
5781   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5782     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5783       ;
5784     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5785       return true;
5786   }
5787 
5788   // If this basic block is ONLY a compare and a branch, and if a predecessor
5789   // branches to us and our successor, fold the comparison into the
5790   // predecessor and use logical operations to update the incoming value
5791   // for PHI nodes in common successor.
5792   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5793     return requestResimplify();
5794   return false;
5795 }
5796 
5797 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5798   BasicBlock *PredPred = nullptr;
5799   for (auto *P : predecessors(BB)) {
5800     BasicBlock *PPred = P->getSinglePredecessor();
5801     if (!PPred || (PredPred && PredPred != PPred))
5802       return nullptr;
5803     PredPred = PPred;
5804   }
5805   return PredPred;
5806 }
5807 
5808 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5809   BasicBlock *BB = BI->getParent();
5810   const Function *Fn = BB->getParent();
5811   if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5812     return false;
5813 
5814   // Conditional branch
5815   if (isValueEqualityComparison(BI)) {
5816     // If we only have one predecessor, and if it is a branch on this value,
5817     // see if that predecessor totally determines the outcome of this
5818     // switch.
5819     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5820       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5821         return requestResimplify();
5822 
5823     // This block must be empty, except for the setcond inst, if it exists.
5824     // Ignore dbg intrinsics.
5825     auto I = BB->instructionsWithoutDebug().begin();
5826     if (&*I == BI) {
5827       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5828         return requestResimplify();
5829     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5830       ++I;
5831       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5832         return requestResimplify();
5833     }
5834   }
5835 
5836   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5837   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5838     return true;
5839 
5840   // If this basic block has a single dominating predecessor block and the
5841   // dominating block's condition implies BI's condition, we know the direction
5842   // of the BI branch.
5843   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5844     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5845     if (PBI && PBI->isConditional() &&
5846         PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
5847       assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB);
5848       bool CondIsTrue = PBI->getSuccessor(0) == BB;
5849       Optional<bool> Implication = isImpliedCondition(
5850           PBI->getCondition(), BI->getCondition(), DL, CondIsTrue);
5851       if (Implication) {
5852         // Turn this into a branch on constant.
5853         auto *OldCond = BI->getCondition();
5854         ConstantInt *CI = *Implication
5855                               ? ConstantInt::getTrue(BB->getContext())
5856                               : ConstantInt::getFalse(BB->getContext());
5857         BI->setCondition(CI);
5858         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5859         return requestResimplify();
5860       }
5861     }
5862   }
5863 
5864   // If this basic block is ONLY a compare and a branch, and if a predecessor
5865   // branches to us and one of our successors, fold the comparison into the
5866   // predecessor and use logical operations to pick the right destination.
5867   if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold))
5868     return requestResimplify();
5869 
5870   // We have a conditional branch to two blocks that are only reachable
5871   // from BI.  We know that the condbr dominates the two blocks, so see if
5872   // there is any identical code in the "then" and "else" blocks.  If so, we
5873   // can hoist it up to the branching block.
5874   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5875     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5876       if (HoistThenElseCodeToIf(BI, TTI))
5877         return requestResimplify();
5878     } else {
5879       // If Successor #1 has multiple preds, we may be able to conditionally
5880       // execute Successor #0 if it branches to Successor #1.
5881       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5882       if (Succ0TI->getNumSuccessors() == 1 &&
5883           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5884         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5885           return requestResimplify();
5886     }
5887   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5888     // If Successor #0 has multiple preds, we may be able to conditionally
5889     // execute Successor #1 if it branches to Successor #0.
5890     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5891     if (Succ1TI->getNumSuccessors() == 1 &&
5892         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5893       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5894         return requestResimplify();
5895   }
5896 
5897   // If this is a branch on a phi node in the current block, thread control
5898   // through this block if any PHI node entries are constants.
5899   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5900     if (PN->getParent() == BI->getParent())
5901       if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5902         return requestResimplify();
5903 
5904   // Scan predecessor blocks for conditional branches.
5905   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5906     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5907       if (PBI != BI && PBI->isConditional())
5908         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5909           return requestResimplify();
5910 
5911   // Look for diamond patterns.
5912   if (MergeCondStores)
5913     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5914       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5915         if (PBI != BI && PBI->isConditional())
5916           if (mergeConditionalStores(PBI, BI, DL))
5917             return requestResimplify();
5918 
5919   return false;
5920 }
5921 
5922 /// Check if passing a value to an instruction will cause undefined behavior.
5923 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5924   Constant *C = dyn_cast<Constant>(V);
5925   if (!C)
5926     return false;
5927 
5928   if (I->use_empty())
5929     return false;
5930 
5931   if (C->isNullValue() || isa<UndefValue>(C)) {
5932     // Only look at the first use, avoid hurting compile time with long uselists
5933     User *Use = *I->user_begin();
5934 
5935     // Now make sure that there are no instructions in between that can alter
5936     // control flow (eg. calls)
5937     for (BasicBlock::iterator
5938              i = ++BasicBlock::iterator(I),
5939              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5940          i != UI; ++i)
5941       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5942         return false;
5943 
5944     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5945     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5946       if (GEP->getPointerOperand() == I)
5947         return passingValueIsAlwaysUndefined(V, GEP);
5948 
5949     // Look through bitcasts.
5950     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5951       return passingValueIsAlwaysUndefined(V, BC);
5952 
5953     // Load from null is undefined.
5954     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5955       if (!LI->isVolatile())
5956         return !NullPointerIsDefined(LI->getFunction(),
5957                                      LI->getPointerAddressSpace());
5958 
5959     // Store to null is undefined.
5960     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5961       if (!SI->isVolatile())
5962         return (!NullPointerIsDefined(SI->getFunction(),
5963                                       SI->getPointerAddressSpace())) &&
5964                SI->getPointerOperand() == I;
5965 
5966     // A call to null is undefined.
5967     if (auto CS = CallSite(Use))
5968       return !NullPointerIsDefined(CS->getFunction()) &&
5969              CS.getCalledValue() == I;
5970   }
5971   return false;
5972 }
5973 
5974 /// If BB has an incoming value that will always trigger undefined behavior
5975 /// (eg. null pointer dereference), remove the branch leading here.
5976 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5977   for (PHINode &PHI : BB->phis())
5978     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
5979       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
5980         Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
5981         IRBuilder<> Builder(T);
5982         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5983           BB->removePredecessor(PHI.getIncomingBlock(i));
5984           // Turn uncoditional branches into unreachables and remove the dead
5985           // destination from conditional branches.
5986           if (BI->isUnconditional())
5987             Builder.CreateUnreachable();
5988           else
5989             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5990                                                        : BI->getSuccessor(0));
5991           BI->eraseFromParent();
5992           return true;
5993         }
5994         // TODO: SwitchInst.
5995       }
5996 
5997   return false;
5998 }
5999 
6000 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6001   bool Changed = false;
6002 
6003   assert(BB && BB->getParent() && "Block not embedded in function!");
6004   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6005 
6006   // Remove basic blocks that have no predecessors (except the entry block)...
6007   // or that just have themself as a predecessor.  These are unreachable.
6008   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6009       BB->getSinglePredecessor() == BB) {
6010     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6011     DeleteDeadBlock(BB);
6012     return true;
6013   }
6014 
6015   // Check to see if we can constant propagate this terminator instruction
6016   // away...
6017   Changed |= ConstantFoldTerminator(BB, true);
6018 
6019   // Check for and eliminate duplicate PHI nodes in this block.
6020   Changed |= EliminateDuplicatePHINodes(BB);
6021 
6022   // Check for and remove branches that will always cause undefined behavior.
6023   Changed |= removeUndefIntroducingPredecessor(BB);
6024 
6025   // Merge basic blocks into their predecessor if there is only one distinct
6026   // pred, and if there is only one distinct successor of the predecessor, and
6027   // if there are no PHI nodes.
6028   if (MergeBlockIntoPredecessor(BB))
6029     return true;
6030 
6031   if (SinkCommon && Options.SinkCommonInsts)
6032     Changed |= SinkCommonCodeFromPredecessors(BB);
6033 
6034   IRBuilder<> Builder(BB);
6035 
6036   // If there is a trivial two-entry PHI node in this basic block, and we can
6037   // eliminate it, do so now.
6038   if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6039     if (PN->getNumIncomingValues() == 2)
6040       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6041 
6042   Builder.SetInsertPoint(BB->getTerminator());
6043   if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6044     if (BI->isUnconditional()) {
6045       if (SimplifyUncondBranch(BI, Builder))
6046         return true;
6047     } else {
6048       if (SimplifyCondBranch(BI, Builder))
6049         return true;
6050     }
6051   } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6052     if (SimplifyReturn(RI, Builder))
6053       return true;
6054   } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6055     if (SimplifyResume(RI, Builder))
6056       return true;
6057   } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6058     if (SimplifyCleanupReturn(RI))
6059       return true;
6060   } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6061     if (SimplifySwitch(SI, Builder))
6062       return true;
6063   } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6064     if (SimplifyUnreachable(UI))
6065       return true;
6066   } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6067     if (SimplifyIndirectBr(IBI))
6068       return true;
6069   }
6070 
6071   return Changed;
6072 }
6073 
6074 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6075   bool Changed = false;
6076 
6077   // Repeated simplify BB as long as resimplification is requested.
6078   do {
6079     Resimplify = false;
6080 
6081     // Perform one round of simplifcation. Resimplify flag will be set if
6082     // another iteration is requested.
6083     Changed |= simplifyOnce(BB);
6084   } while (Resimplify);
6085 
6086   return Changed;
6087 }
6088 
6089 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6090                        const SimplifyCFGOptions &Options,
6091                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6092   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6093                         Options)
6094       .run(BB);
6095 }
6096