1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/EHPersonalities.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/NoFolder.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <climits> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <set> 78 #include <tuple> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 using namespace PatternMatch; 84 85 #define DEBUG_TYPE "simplifycfg" 86 87 // Chosen as 2 so as to be cheap, but still to have enough power to fold 88 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 89 // To catch this, we need to fold a compare and a select, hence '2' being the 90 // minimum reasonable default. 91 static cl::opt<unsigned> PHINodeFoldingThreshold( 92 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 93 cl::desc( 94 "Control the amount of phi node folding to perform (default = 2)")); 95 96 static cl::opt<bool> DupRet( 97 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 98 cl::desc("Duplicate return instructions into unconditional branches")); 99 100 static cl::opt<bool> 101 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 102 cl::desc("Sink common instructions down to the end block")); 103 104 static cl::opt<bool> HoistCondStores( 105 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 106 cl::desc("Hoist conditional stores if an unconditional store precedes")); 107 108 static cl::opt<bool> MergeCondStores( 109 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 110 cl::desc("Hoist conditional stores even if an unconditional store does not " 111 "precede - hoist multiple conditional stores into a single " 112 "predicated store")); 113 114 static cl::opt<bool> MergeCondStoresAggressively( 115 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 116 cl::desc("When merging conditional stores, do so even if the resultant " 117 "basic blocks are unlikely to be if-converted as a result")); 118 119 static cl::opt<bool> SpeculateOneExpensiveInst( 120 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 121 cl::desc("Allow exactly one expensive instruction to be speculatively " 122 "executed")); 123 124 static cl::opt<unsigned> MaxSpeculationDepth( 125 "max-speculation-depth", cl::Hidden, cl::init(10), 126 cl::desc("Limit maximum recursion depth when calculating costs of " 127 "speculatively executed instructions")); 128 129 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 130 STATISTIC(NumLinearMaps, 131 "Number of switch instructions turned into linear mapping"); 132 STATISTIC(NumLookupTables, 133 "Number of switch instructions turned into lookup tables"); 134 STATISTIC( 135 NumLookupTablesHoles, 136 "Number of switch instructions turned into lookup tables (holes checked)"); 137 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 138 STATISTIC(NumSinkCommons, 139 "Number of common instructions sunk down to the end block"); 140 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 141 142 namespace { 143 144 // The first field contains the value that the switch produces when a certain 145 // case group is selected, and the second field is a vector containing the 146 // cases composing the case group. 147 using SwitchCaseResultVectorTy = 148 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 149 150 // The first field contains the phi node that generates a result of the switch 151 // and the second field contains the value generated for a certain case in the 152 // switch for that PHI. 153 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 154 155 /// ValueEqualityComparisonCase - Represents a case of a switch. 156 struct ValueEqualityComparisonCase { 157 ConstantInt *Value; 158 BasicBlock *Dest; 159 160 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 161 : Value(Value), Dest(Dest) {} 162 163 bool operator<(ValueEqualityComparisonCase RHS) const { 164 // Comparing pointers is ok as we only rely on the order for uniquing. 165 return Value < RHS.Value; 166 } 167 168 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 169 }; 170 171 class SimplifyCFGOpt { 172 const TargetTransformInfo &TTI; 173 const DataLayout &DL; 174 SmallPtrSetImpl<BasicBlock *> *LoopHeaders; 175 const SimplifyCFGOptions &Options; 176 bool Resimplify; 177 178 Value *isValueEqualityComparison(Instruction *TI); 179 BasicBlock *GetValueEqualityComparisonCases( 180 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 181 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 182 BasicBlock *Pred, 183 IRBuilder<> &Builder); 184 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 185 IRBuilder<> &Builder); 186 187 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 188 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 189 bool SimplifySingleResume(ResumeInst *RI); 190 bool SimplifyCommonResume(ResumeInst *RI); 191 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 192 bool SimplifyUnreachable(UnreachableInst *UI); 193 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 194 bool SimplifyIndirectBr(IndirectBrInst *IBI); 195 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 196 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 197 198 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 199 IRBuilder<> &Builder); 200 201 public: 202 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 203 SmallPtrSetImpl<BasicBlock *> *LoopHeaders, 204 const SimplifyCFGOptions &Opts) 205 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} 206 207 bool run(BasicBlock *BB); 208 bool simplifyOnce(BasicBlock *BB); 209 210 // Helper to set Resimplify and return change indication. 211 bool requestResimplify() { 212 Resimplify = true; 213 return true; 214 } 215 }; 216 217 } // end anonymous namespace 218 219 /// Return true if it is safe to merge these two 220 /// terminator instructions together. 221 static bool 222 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 223 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 224 if (SI1 == SI2) 225 return false; // Can't merge with self! 226 227 // It is not safe to merge these two switch instructions if they have a common 228 // successor, and if that successor has a PHI node, and if *that* PHI node has 229 // conflicting incoming values from the two switch blocks. 230 BasicBlock *SI1BB = SI1->getParent(); 231 BasicBlock *SI2BB = SI2->getParent(); 232 233 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 234 bool Fail = false; 235 for (BasicBlock *Succ : successors(SI2BB)) 236 if (SI1Succs.count(Succ)) 237 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 238 PHINode *PN = cast<PHINode>(BBI); 239 if (PN->getIncomingValueForBlock(SI1BB) != 240 PN->getIncomingValueForBlock(SI2BB)) { 241 if (FailBlocks) 242 FailBlocks->insert(Succ); 243 Fail = true; 244 } 245 } 246 247 return !Fail; 248 } 249 250 /// Return true if it is safe and profitable to merge these two terminator 251 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 252 /// store all PHI nodes in common successors. 253 static bool 254 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, 255 Instruction *Cond, 256 SmallVectorImpl<PHINode *> &PhiNodes) { 257 if (SI1 == SI2) 258 return false; // Can't merge with self! 259 assert(SI1->isUnconditional() && SI2->isConditional()); 260 261 // We fold the unconditional branch if we can easily update all PHI nodes in 262 // common successors: 263 // 1> We have a constant incoming value for the conditional branch; 264 // 2> We have "Cond" as the incoming value for the unconditional branch; 265 // 3> SI2->getCondition() and Cond have same operands. 266 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 267 if (!Ci2) 268 return false; 269 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 270 Cond->getOperand(1) == Ci2->getOperand(1)) && 271 !(Cond->getOperand(0) == Ci2->getOperand(1) && 272 Cond->getOperand(1) == Ci2->getOperand(0))) 273 return false; 274 275 BasicBlock *SI1BB = SI1->getParent(); 276 BasicBlock *SI2BB = SI2->getParent(); 277 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 278 for (BasicBlock *Succ : successors(SI2BB)) 279 if (SI1Succs.count(Succ)) 280 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 281 PHINode *PN = cast<PHINode>(BBI); 282 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 283 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 284 return false; 285 PhiNodes.push_back(PN); 286 } 287 return true; 288 } 289 290 /// Update PHI nodes in Succ to indicate that there will now be entries in it 291 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 292 /// will be the same as those coming in from ExistPred, an existing predecessor 293 /// of Succ. 294 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 295 BasicBlock *ExistPred) { 296 for (PHINode &PN : Succ->phis()) 297 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 298 } 299 300 /// Compute an abstract "cost" of speculating the given instruction, 301 /// which is assumed to be safe to speculate. TCC_Free means cheap, 302 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 303 /// expensive. 304 static unsigned ComputeSpeculationCost(const User *I, 305 const TargetTransformInfo &TTI) { 306 assert(isSafeToSpeculativelyExecute(I) && 307 "Instruction is not safe to speculatively execute!"); 308 return TTI.getUserCost(I); 309 } 310 311 /// If we have a merge point of an "if condition" as accepted above, 312 /// return true if the specified value dominates the block. We 313 /// don't handle the true generality of domination here, just a special case 314 /// which works well enough for us. 315 /// 316 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 317 /// see if V (which must be an instruction) and its recursive operands 318 /// that do not dominate BB have a combined cost lower than CostRemaining and 319 /// are non-trapping. If both are true, the instruction is inserted into the 320 /// set and true is returned. 321 /// 322 /// The cost for most non-trapping instructions is defined as 1 except for 323 /// Select whose cost is 2. 324 /// 325 /// After this function returns, CostRemaining is decreased by the cost of 326 /// V plus its non-dominating operands. If that cost is greater than 327 /// CostRemaining, false is returned and CostRemaining is undefined. 328 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 329 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 330 unsigned &CostRemaining, 331 const TargetTransformInfo &TTI, 332 unsigned Depth = 0) { 333 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 334 // so limit the recursion depth. 335 // TODO: While this recursion limit does prevent pathological behavior, it 336 // would be better to track visited instructions to avoid cycles. 337 if (Depth == MaxSpeculationDepth) 338 return false; 339 340 Instruction *I = dyn_cast<Instruction>(V); 341 if (!I) { 342 // Non-instructions all dominate instructions, but not all constantexprs 343 // can be executed unconditionally. 344 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 345 if (C->canTrap()) 346 return false; 347 return true; 348 } 349 BasicBlock *PBB = I->getParent(); 350 351 // We don't want to allow weird loops that might have the "if condition" in 352 // the bottom of this block. 353 if (PBB == BB) 354 return false; 355 356 // If this instruction is defined in a block that contains an unconditional 357 // branch to BB, then it must be in the 'conditional' part of the "if 358 // statement". If not, it definitely dominates the region. 359 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 360 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 361 return true; 362 363 // If we have seen this instruction before, don't count it again. 364 if (AggressiveInsts.count(I)) 365 return true; 366 367 // Okay, it looks like the instruction IS in the "condition". Check to 368 // see if it's a cheap instruction to unconditionally compute, and if it 369 // only uses stuff defined outside of the condition. If so, hoist it out. 370 if (!isSafeToSpeculativelyExecute(I)) 371 return false; 372 373 unsigned Cost = ComputeSpeculationCost(I, TTI); 374 375 // Allow exactly one instruction to be speculated regardless of its cost 376 // (as long as it is safe to do so). 377 // This is intended to flatten the CFG even if the instruction is a division 378 // or other expensive operation. The speculation of an expensive instruction 379 // is expected to be undone in CodeGenPrepare if the speculation has not 380 // enabled further IR optimizations. 381 if (Cost > CostRemaining && 382 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) 383 return false; 384 385 // Avoid unsigned wrap. 386 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 387 388 // Okay, we can only really hoist these out if their operands do 389 // not take us over the cost threshold. 390 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 391 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 392 Depth + 1)) 393 return false; 394 // Okay, it's safe to do this! Remember this instruction. 395 AggressiveInsts.insert(I); 396 return true; 397 } 398 399 /// Extract ConstantInt from value, looking through IntToPtr 400 /// and PointerNullValue. Return NULL if value is not a constant int. 401 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 402 // Normal constant int. 403 ConstantInt *CI = dyn_cast<ConstantInt>(V); 404 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 405 return CI; 406 407 // This is some kind of pointer constant. Turn it into a pointer-sized 408 // ConstantInt if possible. 409 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 410 411 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 412 if (isa<ConstantPointerNull>(V)) 413 return ConstantInt::get(PtrTy, 0); 414 415 // IntToPtr const int. 416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 417 if (CE->getOpcode() == Instruction::IntToPtr) 418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 419 // The constant is very likely to have the right type already. 420 if (CI->getType() == PtrTy) 421 return CI; 422 else 423 return cast<ConstantInt>( 424 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 425 } 426 return nullptr; 427 } 428 429 namespace { 430 431 /// Given a chain of or (||) or and (&&) comparison of a value against a 432 /// constant, this will try to recover the information required for a switch 433 /// structure. 434 /// It will depth-first traverse the chain of comparison, seeking for patterns 435 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 436 /// representing the different cases for the switch. 437 /// Note that if the chain is composed of '||' it will build the set of elements 438 /// that matches the comparisons (i.e. any of this value validate the chain) 439 /// while for a chain of '&&' it will build the set elements that make the test 440 /// fail. 441 struct ConstantComparesGatherer { 442 const DataLayout &DL; 443 444 /// Value found for the switch comparison 445 Value *CompValue = nullptr; 446 447 /// Extra clause to be checked before the switch 448 Value *Extra = nullptr; 449 450 /// Set of integers to match in switch 451 SmallVector<ConstantInt *, 8> Vals; 452 453 /// Number of comparisons matched in the and/or chain 454 unsigned UsedICmps = 0; 455 456 /// Construct and compute the result for the comparison instruction Cond 457 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 458 gather(Cond); 459 } 460 461 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 462 ConstantComparesGatherer & 463 operator=(const ConstantComparesGatherer &) = delete; 464 465 private: 466 /// Try to set the current value used for the comparison, it succeeds only if 467 /// it wasn't set before or if the new value is the same as the old one 468 bool setValueOnce(Value *NewVal) { 469 if (CompValue && CompValue != NewVal) 470 return false; 471 CompValue = NewVal; 472 return (CompValue != nullptr); 473 } 474 475 /// Try to match Instruction "I" as a comparison against a constant and 476 /// populates the array Vals with the set of values that match (or do not 477 /// match depending on isEQ). 478 /// Return false on failure. On success, the Value the comparison matched 479 /// against is placed in CompValue. 480 /// If CompValue is already set, the function is expected to fail if a match 481 /// is found but the value compared to is different. 482 bool matchInstruction(Instruction *I, bool isEQ) { 483 // If this is an icmp against a constant, handle this as one of the cases. 484 ICmpInst *ICI; 485 ConstantInt *C; 486 if (!((ICI = dyn_cast<ICmpInst>(I)) && 487 (C = GetConstantInt(I->getOperand(1), DL)))) { 488 return false; 489 } 490 491 Value *RHSVal; 492 const APInt *RHSC; 493 494 // Pattern match a special case 495 // (x & ~2^z) == y --> x == y || x == y|2^z 496 // This undoes a transformation done by instcombine to fuse 2 compares. 497 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 498 // It's a little bit hard to see why the following transformations are 499 // correct. Here is a CVC3 program to verify them for 64-bit values: 500 501 /* 502 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 503 x : BITVECTOR(64); 504 y : BITVECTOR(64); 505 z : BITVECTOR(64); 506 mask : BITVECTOR(64) = BVSHL(ONE, z); 507 QUERY( (y & ~mask = y) => 508 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 509 ); 510 QUERY( (y | mask = y) => 511 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 512 ); 513 */ 514 515 // Please note that each pattern must be a dual implication (<--> or 516 // iff). One directional implication can create spurious matches. If the 517 // implication is only one-way, an unsatisfiable condition on the left 518 // side can imply a satisfiable condition on the right side. Dual 519 // implication ensures that satisfiable conditions are transformed to 520 // other satisfiable conditions and unsatisfiable conditions are 521 // transformed to other unsatisfiable conditions. 522 523 // Here is a concrete example of a unsatisfiable condition on the left 524 // implying a satisfiable condition on the right: 525 // 526 // mask = (1 << z) 527 // (x & ~mask) == y --> (x == y || x == (y | mask)) 528 // 529 // Substituting y = 3, z = 0 yields: 530 // (x & -2) == 3 --> (x == 3 || x == 2) 531 532 // Pattern match a special case: 533 /* 534 QUERY( (y & ~mask = y) => 535 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 536 ); 537 */ 538 if (match(ICI->getOperand(0), 539 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 540 APInt Mask = ~*RHSC; 541 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 542 // If we already have a value for the switch, it has to match! 543 if (!setValueOnce(RHSVal)) 544 return false; 545 546 Vals.push_back(C); 547 Vals.push_back( 548 ConstantInt::get(C->getContext(), 549 C->getValue() | Mask)); 550 UsedICmps++; 551 return true; 552 } 553 } 554 555 // Pattern match a special case: 556 /* 557 QUERY( (y | mask = y) => 558 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 559 ); 560 */ 561 if (match(ICI->getOperand(0), 562 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 563 APInt Mask = *RHSC; 564 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 565 // If we already have a value for the switch, it has to match! 566 if (!setValueOnce(RHSVal)) 567 return false; 568 569 Vals.push_back(C); 570 Vals.push_back(ConstantInt::get(C->getContext(), 571 C->getValue() & ~Mask)); 572 UsedICmps++; 573 return true; 574 } 575 } 576 577 // If we already have a value for the switch, it has to match! 578 if (!setValueOnce(ICI->getOperand(0))) 579 return false; 580 581 UsedICmps++; 582 Vals.push_back(C); 583 return ICI->getOperand(0); 584 } 585 586 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 587 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 588 ICI->getPredicate(), C->getValue()); 589 590 // Shift the range if the compare is fed by an add. This is the range 591 // compare idiom as emitted by instcombine. 592 Value *CandidateVal = I->getOperand(0); 593 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 594 Span = Span.subtract(*RHSC); 595 CandidateVal = RHSVal; 596 } 597 598 // If this is an and/!= check, then we are looking to build the set of 599 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 600 // x != 0 && x != 1. 601 if (!isEQ) 602 Span = Span.inverse(); 603 604 // If there are a ton of values, we don't want to make a ginormous switch. 605 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 606 return false; 607 } 608 609 // If we already have a value for the switch, it has to match! 610 if (!setValueOnce(CandidateVal)) 611 return false; 612 613 // Add all values from the range to the set 614 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 615 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 616 617 UsedICmps++; 618 return true; 619 } 620 621 /// Given a potentially 'or'd or 'and'd together collection of icmp 622 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 623 /// the value being compared, and stick the list constants into the Vals 624 /// vector. 625 /// One "Extra" case is allowed to differ from the other. 626 void gather(Value *V) { 627 Instruction *I = dyn_cast<Instruction>(V); 628 bool isEQ = (I->getOpcode() == Instruction::Or); 629 630 // Keep a stack (SmallVector for efficiency) for depth-first traversal 631 SmallVector<Value *, 8> DFT; 632 SmallPtrSet<Value *, 8> Visited; 633 634 // Initialize 635 Visited.insert(V); 636 DFT.push_back(V); 637 638 while (!DFT.empty()) { 639 V = DFT.pop_back_val(); 640 641 if (Instruction *I = dyn_cast<Instruction>(V)) { 642 // If it is a || (or && depending on isEQ), process the operands. 643 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 644 if (Visited.insert(I->getOperand(1)).second) 645 DFT.push_back(I->getOperand(1)); 646 if (Visited.insert(I->getOperand(0)).second) 647 DFT.push_back(I->getOperand(0)); 648 continue; 649 } 650 651 // Try to match the current instruction 652 if (matchInstruction(I, isEQ)) 653 // Match succeed, continue the loop 654 continue; 655 } 656 657 // One element of the sequence of || (or &&) could not be match as a 658 // comparison against the same value as the others. 659 // We allow only one "Extra" case to be checked before the switch 660 if (!Extra) { 661 Extra = V; 662 continue; 663 } 664 // Failed to parse a proper sequence, abort now 665 CompValue = nullptr; 666 break; 667 } 668 } 669 }; 670 671 } // end anonymous namespace 672 673 static void EraseTerminatorAndDCECond(Instruction *TI) { 674 Instruction *Cond = nullptr; 675 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 676 Cond = dyn_cast<Instruction>(SI->getCondition()); 677 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 678 if (BI->isConditional()) 679 Cond = dyn_cast<Instruction>(BI->getCondition()); 680 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 681 Cond = dyn_cast<Instruction>(IBI->getAddress()); 682 } 683 684 TI->eraseFromParent(); 685 if (Cond) 686 RecursivelyDeleteTriviallyDeadInstructions(Cond); 687 } 688 689 /// Return true if the specified terminator checks 690 /// to see if a value is equal to constant integer value. 691 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 692 Value *CV = nullptr; 693 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 694 // Do not permit merging of large switch instructions into their 695 // predecessors unless there is only one predecessor. 696 if (SI->getNumSuccessors() * pred_size(SI->getParent()) <= 128) 697 CV = SI->getCondition(); 698 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 699 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 700 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 701 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 702 CV = ICI->getOperand(0); 703 } 704 705 // Unwrap any lossless ptrtoint cast. 706 if (CV) { 707 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 708 Value *Ptr = PTII->getPointerOperand(); 709 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 710 CV = Ptr; 711 } 712 } 713 return CV; 714 } 715 716 /// Given a value comparison instruction, 717 /// decode all of the 'cases' that it represents and return the 'default' block. 718 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 719 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 720 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 721 Cases.reserve(SI->getNumCases()); 722 for (auto Case : SI->cases()) 723 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 724 Case.getCaseSuccessor())); 725 return SI->getDefaultDest(); 726 } 727 728 BranchInst *BI = cast<BranchInst>(TI); 729 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 730 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 731 Cases.push_back(ValueEqualityComparisonCase( 732 GetConstantInt(ICI->getOperand(1), DL), Succ)); 733 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 734 } 735 736 /// Given a vector of bb/value pairs, remove any entries 737 /// in the list that match the specified block. 738 static void 739 EliminateBlockCases(BasicBlock *BB, 740 std::vector<ValueEqualityComparisonCase> &Cases) { 741 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 742 } 743 744 /// Return true if there are any keys in C1 that exist in C2 as well. 745 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 746 std::vector<ValueEqualityComparisonCase> &C2) { 747 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 748 749 // Make V1 be smaller than V2. 750 if (V1->size() > V2->size()) 751 std::swap(V1, V2); 752 753 if (V1->empty()) 754 return false; 755 if (V1->size() == 1) { 756 // Just scan V2. 757 ConstantInt *TheVal = (*V1)[0].Value; 758 for (unsigned i = 0, e = V2->size(); i != e; ++i) 759 if (TheVal == (*V2)[i].Value) 760 return true; 761 } 762 763 // Otherwise, just sort both lists and compare element by element. 764 array_pod_sort(V1->begin(), V1->end()); 765 array_pod_sort(V2->begin(), V2->end()); 766 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 767 while (i1 != e1 && i2 != e2) { 768 if ((*V1)[i1].Value == (*V2)[i2].Value) 769 return true; 770 if ((*V1)[i1].Value < (*V2)[i2].Value) 771 ++i1; 772 else 773 ++i2; 774 } 775 return false; 776 } 777 778 // Set branch weights on SwitchInst. This sets the metadata if there is at 779 // least one non-zero weight. 780 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 781 // Check that there is at least one non-zero weight. Otherwise, pass 782 // nullptr to setMetadata which will erase the existing metadata. 783 MDNode *N = nullptr; 784 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 785 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 786 SI->setMetadata(LLVMContext::MD_prof, N); 787 } 788 789 // Similar to the above, but for branch and select instructions that take 790 // exactly 2 weights. 791 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 792 uint32_t FalseWeight) { 793 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 794 // Check that there is at least one non-zero weight. Otherwise, pass 795 // nullptr to setMetadata which will erase the existing metadata. 796 MDNode *N = nullptr; 797 if (TrueWeight || FalseWeight) 798 N = MDBuilder(I->getParent()->getContext()) 799 .createBranchWeights(TrueWeight, FalseWeight); 800 I->setMetadata(LLVMContext::MD_prof, N); 801 } 802 803 /// If TI is known to be a terminator instruction and its block is known to 804 /// only have a single predecessor block, check to see if that predecessor is 805 /// also a value comparison with the same value, and if that comparison 806 /// determines the outcome of this comparison. If so, simplify TI. This does a 807 /// very limited form of jump threading. 808 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 809 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 810 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 811 if (!PredVal) 812 return false; // Not a value comparison in predecessor. 813 814 Value *ThisVal = isValueEqualityComparison(TI); 815 assert(ThisVal && "This isn't a value comparison!!"); 816 if (ThisVal != PredVal) 817 return false; // Different predicates. 818 819 // TODO: Preserve branch weight metadata, similarly to how 820 // FoldValueComparisonIntoPredecessors preserves it. 821 822 // Find out information about when control will move from Pred to TI's block. 823 std::vector<ValueEqualityComparisonCase> PredCases; 824 BasicBlock *PredDef = 825 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 826 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 827 828 // Find information about how control leaves this block. 829 std::vector<ValueEqualityComparisonCase> ThisCases; 830 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 831 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 832 833 // If TI's block is the default block from Pred's comparison, potentially 834 // simplify TI based on this knowledge. 835 if (PredDef == TI->getParent()) { 836 // If we are here, we know that the value is none of those cases listed in 837 // PredCases. If there are any cases in ThisCases that are in PredCases, we 838 // can simplify TI. 839 if (!ValuesOverlap(PredCases, ThisCases)) 840 return false; 841 842 if (isa<BranchInst>(TI)) { 843 // Okay, one of the successors of this condbr is dead. Convert it to a 844 // uncond br. 845 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 846 // Insert the new branch. 847 Instruction *NI = Builder.CreateBr(ThisDef); 848 (void)NI; 849 850 // Remove PHI node entries for the dead edge. 851 ThisCases[0].Dest->removePredecessor(TI->getParent()); 852 853 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 854 << "Through successor TI: " << *TI << "Leaving: " << *NI 855 << "\n"); 856 857 EraseTerminatorAndDCECond(TI); 858 return true; 859 } 860 861 SwitchInst *SI = cast<SwitchInst>(TI); 862 // Okay, TI has cases that are statically dead, prune them away. 863 SmallPtrSet<Constant *, 16> DeadCases; 864 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 865 DeadCases.insert(PredCases[i].Value); 866 867 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 868 << "Through successor TI: " << *TI); 869 870 // Collect branch weights into a vector. 871 SmallVector<uint32_t, 8> Weights; 872 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 873 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 874 if (HasWeight) 875 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 876 ++MD_i) { 877 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 878 Weights.push_back(CI->getValue().getZExtValue()); 879 } 880 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 881 --i; 882 if (DeadCases.count(i->getCaseValue())) { 883 if (HasWeight) { 884 std::swap(Weights[i->getCaseIndex() + 1], Weights.back()); 885 Weights.pop_back(); 886 } 887 i->getCaseSuccessor()->removePredecessor(TI->getParent()); 888 SI->removeCase(i); 889 } 890 } 891 if (HasWeight && Weights.size() >= 2) 892 setBranchWeights(SI, Weights); 893 894 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 895 return true; 896 } 897 898 // Otherwise, TI's block must correspond to some matched value. Find out 899 // which value (or set of values) this is. 900 ConstantInt *TIV = nullptr; 901 BasicBlock *TIBB = TI->getParent(); 902 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 903 if (PredCases[i].Dest == TIBB) { 904 if (TIV) 905 return false; // Cannot handle multiple values coming to this block. 906 TIV = PredCases[i].Value; 907 } 908 assert(TIV && "No edge from pred to succ?"); 909 910 // Okay, we found the one constant that our value can be if we get into TI's 911 // BB. Find out which successor will unconditionally be branched to. 912 BasicBlock *TheRealDest = nullptr; 913 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 914 if (ThisCases[i].Value == TIV) { 915 TheRealDest = ThisCases[i].Dest; 916 break; 917 } 918 919 // If not handled by any explicit cases, it is handled by the default case. 920 if (!TheRealDest) 921 TheRealDest = ThisDef; 922 923 // Remove PHI node entries for dead edges. 924 BasicBlock *CheckEdge = TheRealDest; 925 for (BasicBlock *Succ : successors(TIBB)) 926 if (Succ != CheckEdge) 927 Succ->removePredecessor(TIBB); 928 else 929 CheckEdge = nullptr; 930 931 // Insert the new branch. 932 Instruction *NI = Builder.CreateBr(TheRealDest); 933 (void)NI; 934 935 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 936 << "Through successor TI: " << *TI << "Leaving: " << *NI 937 << "\n"); 938 939 EraseTerminatorAndDCECond(TI); 940 return true; 941 } 942 943 namespace { 944 945 /// This class implements a stable ordering of constant 946 /// integers that does not depend on their address. This is important for 947 /// applications that sort ConstantInt's to ensure uniqueness. 948 struct ConstantIntOrdering { 949 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 950 return LHS->getValue().ult(RHS->getValue()); 951 } 952 }; 953 954 } // end anonymous namespace 955 956 static int ConstantIntSortPredicate(ConstantInt *const *P1, 957 ConstantInt *const *P2) { 958 const ConstantInt *LHS = *P1; 959 const ConstantInt *RHS = *P2; 960 if (LHS == RHS) 961 return 0; 962 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 963 } 964 965 static inline bool HasBranchWeights(const Instruction *I) { 966 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 967 if (ProfMD && ProfMD->getOperand(0)) 968 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 969 return MDS->getString().equals("branch_weights"); 970 971 return false; 972 } 973 974 /// Get Weights of a given terminator, the default weight is at the front 975 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 976 /// metadata. 977 static void GetBranchWeights(Instruction *TI, 978 SmallVectorImpl<uint64_t> &Weights) { 979 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 980 assert(MD); 981 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 983 Weights.push_back(CI->getValue().getZExtValue()); 984 } 985 986 // If TI is a conditional eq, the default case is the false case, 987 // and the corresponding branch-weight data is at index 2. We swap the 988 // default weight to be the first entry. 989 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 990 assert(Weights.size() == 2); 991 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 992 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 993 std::swap(Weights.front(), Weights.back()); 994 } 995 } 996 997 /// Keep halving the weights until all can fit in uint32_t. 998 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 999 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1000 if (Max > UINT_MAX) { 1001 unsigned Offset = 32 - countLeadingZeros(Max); 1002 for (uint64_t &I : Weights) 1003 I >>= Offset; 1004 } 1005 } 1006 1007 /// The specified terminator is a value equality comparison instruction 1008 /// (either a switch or a branch on "X == c"). 1009 /// See if any of the predecessors of the terminator block are value comparisons 1010 /// on the same value. If so, and if safe to do so, fold them together. 1011 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1012 IRBuilder<> &Builder) { 1013 BasicBlock *BB = TI->getParent(); 1014 Value *CV = isValueEqualityComparison(TI); // CondVal 1015 assert(CV && "Not a comparison?"); 1016 bool Changed = false; 1017 1018 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1019 while (!Preds.empty()) { 1020 BasicBlock *Pred = Preds.pop_back_val(); 1021 1022 // See if the predecessor is a comparison with the same value. 1023 Instruction *PTI = Pred->getTerminator(); 1024 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1025 1026 if (PCV == CV && TI != PTI) { 1027 SmallSetVector<BasicBlock*, 4> FailBlocks; 1028 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1029 for (auto *Succ : FailBlocks) { 1030 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) 1031 return false; 1032 } 1033 } 1034 1035 // Figure out which 'cases' to copy from SI to PSI. 1036 std::vector<ValueEqualityComparisonCase> BBCases; 1037 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1038 1039 std::vector<ValueEqualityComparisonCase> PredCases; 1040 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1041 1042 // Based on whether the default edge from PTI goes to BB or not, fill in 1043 // PredCases and PredDefault with the new switch cases we would like to 1044 // build. 1045 SmallVector<BasicBlock *, 8> NewSuccessors; 1046 1047 // Update the branch weight metadata along the way 1048 SmallVector<uint64_t, 8> Weights; 1049 bool PredHasWeights = HasBranchWeights(PTI); 1050 bool SuccHasWeights = HasBranchWeights(TI); 1051 1052 if (PredHasWeights) { 1053 GetBranchWeights(PTI, Weights); 1054 // branch-weight metadata is inconsistent here. 1055 if (Weights.size() != 1 + PredCases.size()) 1056 PredHasWeights = SuccHasWeights = false; 1057 } else if (SuccHasWeights) 1058 // If there are no predecessor weights but there are successor weights, 1059 // populate Weights with 1, which will later be scaled to the sum of 1060 // successor's weights 1061 Weights.assign(1 + PredCases.size(), 1); 1062 1063 SmallVector<uint64_t, 8> SuccWeights; 1064 if (SuccHasWeights) { 1065 GetBranchWeights(TI, SuccWeights); 1066 // branch-weight metadata is inconsistent here. 1067 if (SuccWeights.size() != 1 + BBCases.size()) 1068 PredHasWeights = SuccHasWeights = false; 1069 } else if (PredHasWeights) 1070 SuccWeights.assign(1 + BBCases.size(), 1); 1071 1072 if (PredDefault == BB) { 1073 // If this is the default destination from PTI, only the edges in TI 1074 // that don't occur in PTI, or that branch to BB will be activated. 1075 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1076 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1077 if (PredCases[i].Dest != BB) 1078 PTIHandled.insert(PredCases[i].Value); 1079 else { 1080 // The default destination is BB, we don't need explicit targets. 1081 std::swap(PredCases[i], PredCases.back()); 1082 1083 if (PredHasWeights || SuccHasWeights) { 1084 // Increase weight for the default case. 1085 Weights[0] += Weights[i + 1]; 1086 std::swap(Weights[i + 1], Weights.back()); 1087 Weights.pop_back(); 1088 } 1089 1090 PredCases.pop_back(); 1091 --i; 1092 --e; 1093 } 1094 1095 // Reconstruct the new switch statement we will be building. 1096 if (PredDefault != BBDefault) { 1097 PredDefault->removePredecessor(Pred); 1098 PredDefault = BBDefault; 1099 NewSuccessors.push_back(BBDefault); 1100 } 1101 1102 unsigned CasesFromPred = Weights.size(); 1103 uint64_t ValidTotalSuccWeight = 0; 1104 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1105 if (!PTIHandled.count(BBCases[i].Value) && 1106 BBCases[i].Dest != BBDefault) { 1107 PredCases.push_back(BBCases[i]); 1108 NewSuccessors.push_back(BBCases[i].Dest); 1109 if (SuccHasWeights || PredHasWeights) { 1110 // The default weight is at index 0, so weight for the ith case 1111 // should be at index i+1. Scale the cases from successor by 1112 // PredDefaultWeight (Weights[0]). 1113 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1114 ValidTotalSuccWeight += SuccWeights[i + 1]; 1115 } 1116 } 1117 1118 if (SuccHasWeights || PredHasWeights) { 1119 ValidTotalSuccWeight += SuccWeights[0]; 1120 // Scale the cases from predecessor by ValidTotalSuccWeight. 1121 for (unsigned i = 1; i < CasesFromPred; ++i) 1122 Weights[i] *= ValidTotalSuccWeight; 1123 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1124 Weights[0] *= SuccWeights[0]; 1125 } 1126 } else { 1127 // If this is not the default destination from PSI, only the edges 1128 // in SI that occur in PSI with a destination of BB will be 1129 // activated. 1130 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1131 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1132 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1133 if (PredCases[i].Dest == BB) { 1134 PTIHandled.insert(PredCases[i].Value); 1135 1136 if (PredHasWeights || SuccHasWeights) { 1137 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1138 std::swap(Weights[i + 1], Weights.back()); 1139 Weights.pop_back(); 1140 } 1141 1142 std::swap(PredCases[i], PredCases.back()); 1143 PredCases.pop_back(); 1144 --i; 1145 --e; 1146 } 1147 1148 // Okay, now we know which constants were sent to BB from the 1149 // predecessor. Figure out where they will all go now. 1150 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1151 if (PTIHandled.count(BBCases[i].Value)) { 1152 // If this is one we are capable of getting... 1153 if (PredHasWeights || SuccHasWeights) 1154 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1155 PredCases.push_back(BBCases[i]); 1156 NewSuccessors.push_back(BBCases[i].Dest); 1157 PTIHandled.erase( 1158 BBCases[i].Value); // This constant is taken care of 1159 } 1160 1161 // If there are any constants vectored to BB that TI doesn't handle, 1162 // they must go to the default destination of TI. 1163 for (ConstantInt *I : PTIHandled) { 1164 if (PredHasWeights || SuccHasWeights) 1165 Weights.push_back(WeightsForHandled[I]); 1166 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1167 NewSuccessors.push_back(BBDefault); 1168 } 1169 } 1170 1171 // Okay, at this point, we know which new successor Pred will get. Make 1172 // sure we update the number of entries in the PHI nodes for these 1173 // successors. 1174 for (BasicBlock *NewSuccessor : NewSuccessors) 1175 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1176 1177 Builder.SetInsertPoint(PTI); 1178 // Convert pointer to int before we switch. 1179 if (CV->getType()->isPointerTy()) { 1180 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1181 "magicptr"); 1182 } 1183 1184 // Now that the successors are updated, create the new Switch instruction. 1185 SwitchInst *NewSI = 1186 Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1187 NewSI->setDebugLoc(PTI->getDebugLoc()); 1188 for (ValueEqualityComparisonCase &V : PredCases) 1189 NewSI->addCase(V.Value, V.Dest); 1190 1191 if (PredHasWeights || SuccHasWeights) { 1192 // Halve the weights if any of them cannot fit in an uint32_t 1193 FitWeights(Weights); 1194 1195 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1196 1197 setBranchWeights(NewSI, MDWeights); 1198 } 1199 1200 EraseTerminatorAndDCECond(PTI); 1201 1202 // Okay, last check. If BB is still a successor of PSI, then we must 1203 // have an infinite loop case. If so, add an infinitely looping block 1204 // to handle the case to preserve the behavior of the code. 1205 BasicBlock *InfLoopBlock = nullptr; 1206 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1207 if (NewSI->getSuccessor(i) == BB) { 1208 if (!InfLoopBlock) { 1209 // Insert it at the end of the function, because it's either code, 1210 // or it won't matter if it's hot. :) 1211 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", 1212 BB->getParent()); 1213 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1214 } 1215 NewSI->setSuccessor(i, InfLoopBlock); 1216 } 1217 1218 Changed = true; 1219 } 1220 } 1221 return Changed; 1222 } 1223 1224 // If we would need to insert a select that uses the value of this invoke 1225 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1226 // can't hoist the invoke, as there is nowhere to put the select in this case. 1227 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1228 Instruction *I1, Instruction *I2) { 1229 for (BasicBlock *Succ : successors(BB1)) { 1230 for (const PHINode &PN : Succ->phis()) { 1231 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1232 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1233 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1234 return false; 1235 } 1236 } 1237 } 1238 return true; 1239 } 1240 1241 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1242 1243 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1244 /// in the two blocks up into the branch block. The caller of this function 1245 /// guarantees that BI's block dominates BB1 and BB2. 1246 static bool HoistThenElseCodeToIf(BranchInst *BI, 1247 const TargetTransformInfo &TTI) { 1248 // This does very trivial matching, with limited scanning, to find identical 1249 // instructions in the two blocks. In particular, we don't want to get into 1250 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1251 // such, we currently just scan for obviously identical instructions in an 1252 // identical order. 1253 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1254 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1255 1256 BasicBlock::iterator BB1_Itr = BB1->begin(); 1257 BasicBlock::iterator BB2_Itr = BB2->begin(); 1258 1259 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1260 // Skip debug info if it is not identical. 1261 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1262 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1263 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1264 while (isa<DbgInfoIntrinsic>(I1)) 1265 I1 = &*BB1_Itr++; 1266 while (isa<DbgInfoIntrinsic>(I2)) 1267 I2 = &*BB2_Itr++; 1268 } 1269 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1270 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1271 return false; 1272 1273 BasicBlock *BIParent = BI->getParent(); 1274 1275 bool Changed = false; 1276 do { 1277 // If we are hoisting the terminator instruction, don't move one (making a 1278 // broken BB), instead clone it, and remove BI. 1279 if (I1->isTerminator()) 1280 goto HoistTerminator; 1281 1282 // If we're going to hoist a call, make sure that the two instructions we're 1283 // commoning/hoisting are both marked with musttail, or neither of them is 1284 // marked as such. Otherwise, we might end up in a situation where we hoist 1285 // from a block where the terminator is a `ret` to a block where the terminator 1286 // is a `br`, and `musttail` calls expect to be followed by a return. 1287 auto *C1 = dyn_cast<CallInst>(I1); 1288 auto *C2 = dyn_cast<CallInst>(I2); 1289 if (C1 && C2) 1290 if (C1->isMustTailCall() != C2->isMustTailCall()) 1291 return Changed; 1292 1293 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1294 return Changed; 1295 1296 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1297 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1298 // The debug location is an integral part of a debug info intrinsic 1299 // and can't be separated from it or replaced. Instead of attempting 1300 // to merge locations, simply hoist both copies of the intrinsic. 1301 BIParent->getInstList().splice(BI->getIterator(), 1302 BB1->getInstList(), I1); 1303 BIParent->getInstList().splice(BI->getIterator(), 1304 BB2->getInstList(), I2); 1305 Changed = true; 1306 } else { 1307 // For a normal instruction, we just move one to right before the branch, 1308 // then replace all uses of the other with the first. Finally, we remove 1309 // the now redundant second instruction. 1310 BIParent->getInstList().splice(BI->getIterator(), 1311 BB1->getInstList(), I1); 1312 if (!I2->use_empty()) 1313 I2->replaceAllUsesWith(I1); 1314 I1->andIRFlags(I2); 1315 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1316 LLVMContext::MD_range, 1317 LLVMContext::MD_fpmath, 1318 LLVMContext::MD_invariant_load, 1319 LLVMContext::MD_nonnull, 1320 LLVMContext::MD_invariant_group, 1321 LLVMContext::MD_align, 1322 LLVMContext::MD_dereferenceable, 1323 LLVMContext::MD_dereferenceable_or_null, 1324 LLVMContext::MD_mem_parallel_loop_access}; 1325 combineMetadata(I1, I2, KnownIDs, true); 1326 1327 // I1 and I2 are being combined into a single instruction. Its debug 1328 // location is the merged locations of the original instructions. 1329 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1330 1331 I2->eraseFromParent(); 1332 Changed = true; 1333 } 1334 1335 I1 = &*BB1_Itr++; 1336 I2 = &*BB2_Itr++; 1337 // Skip debug info if it is not identical. 1338 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1339 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1340 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1341 while (isa<DbgInfoIntrinsic>(I1)) 1342 I1 = &*BB1_Itr++; 1343 while (isa<DbgInfoIntrinsic>(I2)) 1344 I2 = &*BB2_Itr++; 1345 } 1346 } while (I1->isIdenticalToWhenDefined(I2)); 1347 1348 return true; 1349 1350 HoistTerminator: 1351 // It may not be possible to hoist an invoke. 1352 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1353 return Changed; 1354 1355 for (BasicBlock *Succ : successors(BB1)) { 1356 for (PHINode &PN : Succ->phis()) { 1357 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1358 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1359 if (BB1V == BB2V) 1360 continue; 1361 1362 // Check for passingValueIsAlwaysUndefined here because we would rather 1363 // eliminate undefined control flow then converting it to a select. 1364 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1365 passingValueIsAlwaysUndefined(BB2V, &PN)) 1366 return Changed; 1367 1368 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1369 return Changed; 1370 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1371 return Changed; 1372 } 1373 } 1374 1375 // Okay, it is safe to hoist the terminator. 1376 Instruction *NT = I1->clone(); 1377 BIParent->getInstList().insert(BI->getIterator(), NT); 1378 if (!NT->getType()->isVoidTy()) { 1379 I1->replaceAllUsesWith(NT); 1380 I2->replaceAllUsesWith(NT); 1381 NT->takeName(I1); 1382 } 1383 1384 IRBuilder<NoFolder> Builder(NT); 1385 // Hoisting one of the terminators from our successor is a great thing. 1386 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1387 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1388 // nodes, so we insert select instruction to compute the final result. 1389 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1390 for (BasicBlock *Succ : successors(BB1)) { 1391 for (PHINode &PN : Succ->phis()) { 1392 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1393 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1394 if (BB1V == BB2V) 1395 continue; 1396 1397 // These values do not agree. Insert a select instruction before NT 1398 // that determines the right value. 1399 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1400 if (!SI) 1401 SI = cast<SelectInst>( 1402 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1403 BB1V->getName() + "." + BB2V->getName(), BI)); 1404 1405 // Make the PHI node use the select for all incoming values for BB1/BB2 1406 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1407 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1408 PN.setIncomingValue(i, SI); 1409 } 1410 } 1411 1412 // Update any PHI nodes in our new successors. 1413 for (BasicBlock *Succ : successors(BB1)) 1414 AddPredecessorToBlock(Succ, BIParent, BB1); 1415 1416 EraseTerminatorAndDCECond(BI); 1417 return true; 1418 } 1419 1420 // All instructions in Insts belong to different blocks that all unconditionally 1421 // branch to a common successor. Analyze each instruction and return true if it 1422 // would be possible to sink them into their successor, creating one common 1423 // instruction instead. For every value that would be required to be provided by 1424 // PHI node (because an operand varies in each input block), add to PHIOperands. 1425 static bool canSinkInstructions( 1426 ArrayRef<Instruction *> Insts, 1427 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1428 // Prune out obviously bad instructions to move. Any non-store instruction 1429 // must have exactly one use, and we check later that use is by a single, 1430 // common PHI instruction in the successor. 1431 for (auto *I : Insts) { 1432 // These instructions may change or break semantics if moved. 1433 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1434 I->getType()->isTokenTy()) 1435 return false; 1436 1437 // Conservatively return false if I is an inline-asm instruction. Sinking 1438 // and merging inline-asm instructions can potentially create arguments 1439 // that cannot satisfy the inline-asm constraints. 1440 if (const auto *C = dyn_cast<CallInst>(I)) 1441 if (C->isInlineAsm()) 1442 return false; 1443 1444 // Everything must have only one use too, apart from stores which 1445 // have no uses. 1446 if (!isa<StoreInst>(I) && !I->hasOneUse()) 1447 return false; 1448 } 1449 1450 const Instruction *I0 = Insts.front(); 1451 for (auto *I : Insts) 1452 if (!I->isSameOperationAs(I0)) 1453 return false; 1454 1455 // All instructions in Insts are known to be the same opcode. If they aren't 1456 // stores, check the only user of each is a PHI or in the same block as the 1457 // instruction, because if a user is in the same block as an instruction 1458 // we're contemplating sinking, it must already be determined to be sinkable. 1459 if (!isa<StoreInst>(I0)) { 1460 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1461 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1462 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1463 auto *U = cast<Instruction>(*I->user_begin()); 1464 return (PNUse && 1465 PNUse->getParent() == Succ && 1466 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1467 U->getParent() == I->getParent(); 1468 })) 1469 return false; 1470 } 1471 1472 // Because SROA can't handle speculating stores of selects, try not 1473 // to sink loads or stores of allocas when we'd have to create a PHI for 1474 // the address operand. Also, because it is likely that loads or stores 1475 // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. 1476 // This can cause code churn which can have unintended consequences down 1477 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1478 // FIXME: This is a workaround for a deficiency in SROA - see 1479 // https://llvm.org/bugs/show_bug.cgi?id=30188 1480 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1481 return isa<AllocaInst>(I->getOperand(1)); 1482 })) 1483 return false; 1484 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1485 return isa<AllocaInst>(I->getOperand(0)); 1486 })) 1487 return false; 1488 1489 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1490 if (I0->getOperand(OI)->getType()->isTokenTy()) 1491 // Don't touch any operand of token type. 1492 return false; 1493 1494 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1495 assert(I->getNumOperands() == I0->getNumOperands()); 1496 return I->getOperand(OI) == I0->getOperand(OI); 1497 }; 1498 if (!all_of(Insts, SameAsI0)) { 1499 if (!canReplaceOperandWithVariable(I0, OI)) 1500 // We can't create a PHI from this GEP. 1501 return false; 1502 // Don't create indirect calls! The called value is the final operand. 1503 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) { 1504 // FIXME: if the call was *already* indirect, we should do this. 1505 return false; 1506 } 1507 for (auto *I : Insts) 1508 PHIOperands[I].push_back(I->getOperand(OI)); 1509 } 1510 } 1511 return true; 1512 } 1513 1514 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last 1515 // instruction of every block in Blocks to their common successor, commoning 1516 // into one instruction. 1517 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1518 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1519 1520 // canSinkLastInstruction returning true guarantees that every block has at 1521 // least one non-terminator instruction. 1522 SmallVector<Instruction*,4> Insts; 1523 for (auto *BB : Blocks) { 1524 Instruction *I = BB->getTerminator(); 1525 do { 1526 I = I->getPrevNode(); 1527 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1528 if (!isa<DbgInfoIntrinsic>(I)) 1529 Insts.push_back(I); 1530 } 1531 1532 // The only checking we need to do now is that all users of all instructions 1533 // are the same PHI node. canSinkLastInstruction should have checked this but 1534 // it is slightly over-aggressive - it gets confused by commutative instructions 1535 // so double-check it here. 1536 Instruction *I0 = Insts.front(); 1537 if (!isa<StoreInst>(I0)) { 1538 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1539 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1540 auto *U = cast<Instruction>(*I->user_begin()); 1541 return U == PNUse; 1542 })) 1543 return false; 1544 } 1545 1546 // We don't need to do any more checking here; canSinkLastInstruction should 1547 // have done it all for us. 1548 SmallVector<Value*, 4> NewOperands; 1549 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1550 // This check is different to that in canSinkLastInstruction. There, we 1551 // cared about the global view once simplifycfg (and instcombine) have 1552 // completed - it takes into account PHIs that become trivially 1553 // simplifiable. However here we need a more local view; if an operand 1554 // differs we create a PHI and rely on instcombine to clean up the very 1555 // small mess we may make. 1556 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1557 return I->getOperand(O) != I0->getOperand(O); 1558 }); 1559 if (!NeedPHI) { 1560 NewOperands.push_back(I0->getOperand(O)); 1561 continue; 1562 } 1563 1564 // Create a new PHI in the successor block and populate it. 1565 auto *Op = I0->getOperand(O); 1566 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1567 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1568 Op->getName() + ".sink", &BBEnd->front()); 1569 for (auto *I : Insts) 1570 PN->addIncoming(I->getOperand(O), I->getParent()); 1571 NewOperands.push_back(PN); 1572 } 1573 1574 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1575 // and move it to the start of the successor block. 1576 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1577 I0->getOperandUse(O).set(NewOperands[O]); 1578 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1579 1580 // Update metadata and IR flags, and merge debug locations. 1581 for (auto *I : Insts) 1582 if (I != I0) { 1583 // The debug location for the "common" instruction is the merged locations 1584 // of all the commoned instructions. We start with the original location 1585 // of the "common" instruction and iteratively merge each location in the 1586 // loop below. 1587 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1588 // However, as N-way merge for CallInst is rare, so we use simplified API 1589 // instead of using complex API for N-way merge. 1590 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1591 combineMetadataForCSE(I0, I, true); 1592 I0->andIRFlags(I); 1593 } 1594 1595 if (!isa<StoreInst>(I0)) { 1596 // canSinkLastInstruction checked that all instructions were used by 1597 // one and only one PHI node. Find that now, RAUW it to our common 1598 // instruction and nuke it. 1599 assert(I0->hasOneUse()); 1600 auto *PN = cast<PHINode>(*I0->user_begin()); 1601 PN->replaceAllUsesWith(I0); 1602 PN->eraseFromParent(); 1603 } 1604 1605 // Finally nuke all instructions apart from the common instruction. 1606 for (auto *I : Insts) 1607 if (I != I0) 1608 I->eraseFromParent(); 1609 1610 return true; 1611 } 1612 1613 namespace { 1614 1615 // LockstepReverseIterator - Iterates through instructions 1616 // in a set of blocks in reverse order from the first non-terminator. 1617 // For example (assume all blocks have size n): 1618 // LockstepReverseIterator I([B1, B2, B3]); 1619 // *I-- = [B1[n], B2[n], B3[n]]; 1620 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1621 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1622 // ... 1623 class LockstepReverseIterator { 1624 ArrayRef<BasicBlock*> Blocks; 1625 SmallVector<Instruction*,4> Insts; 1626 bool Fail; 1627 1628 public: 1629 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1630 reset(); 1631 } 1632 1633 void reset() { 1634 Fail = false; 1635 Insts.clear(); 1636 for (auto *BB : Blocks) { 1637 Instruction *Inst = BB->getTerminator(); 1638 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1639 Inst = Inst->getPrevNode(); 1640 if (!Inst) { 1641 // Block wasn't big enough. 1642 Fail = true; 1643 return; 1644 } 1645 Insts.push_back(Inst); 1646 } 1647 } 1648 1649 bool isValid() const { 1650 return !Fail; 1651 } 1652 1653 void operator--() { 1654 if (Fail) 1655 return; 1656 for (auto *&Inst : Insts) { 1657 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1658 Inst = Inst->getPrevNode(); 1659 // Already at beginning of block. 1660 if (!Inst) { 1661 Fail = true; 1662 return; 1663 } 1664 } 1665 } 1666 1667 ArrayRef<Instruction*> operator * () const { 1668 return Insts; 1669 } 1670 }; 1671 1672 } // end anonymous namespace 1673 1674 /// Check whether BB's predecessors end with unconditional branches. If it is 1675 /// true, sink any common code from the predecessors to BB. 1676 /// We also allow one predecessor to end with conditional branch (but no more 1677 /// than one). 1678 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { 1679 // We support two situations: 1680 // (1) all incoming arcs are unconditional 1681 // (2) one incoming arc is conditional 1682 // 1683 // (2) is very common in switch defaults and 1684 // else-if patterns; 1685 // 1686 // if (a) f(1); 1687 // else if (b) f(2); 1688 // 1689 // produces: 1690 // 1691 // [if] 1692 // / \ 1693 // [f(1)] [if] 1694 // | | \ 1695 // | | | 1696 // | [f(2)]| 1697 // \ | / 1698 // [ end ] 1699 // 1700 // [end] has two unconditional predecessor arcs and one conditional. The 1701 // conditional refers to the implicit empty 'else' arc. This conditional 1702 // arc can also be caused by an empty default block in a switch. 1703 // 1704 // In this case, we attempt to sink code from all *unconditional* arcs. 1705 // If we can sink instructions from these arcs (determined during the scan 1706 // phase below) we insert a common successor for all unconditional arcs and 1707 // connect that to [end], to enable sinking: 1708 // 1709 // [if] 1710 // / \ 1711 // [x(1)] [if] 1712 // | | \ 1713 // | | \ 1714 // | [x(2)] | 1715 // \ / | 1716 // [sink.split] | 1717 // \ / 1718 // [ end ] 1719 // 1720 SmallVector<BasicBlock*,4> UnconditionalPreds; 1721 Instruction *Cond = nullptr; 1722 for (auto *B : predecessors(BB)) { 1723 auto *T = B->getTerminator(); 1724 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) 1725 UnconditionalPreds.push_back(B); 1726 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) 1727 Cond = T; 1728 else 1729 return false; 1730 } 1731 if (UnconditionalPreds.size() < 2) 1732 return false; 1733 1734 bool Changed = false; 1735 // We take a two-step approach to tail sinking. First we scan from the end of 1736 // each block upwards in lockstep. If the n'th instruction from the end of each 1737 // block can be sunk, those instructions are added to ValuesToSink and we 1738 // carry on. If we can sink an instruction but need to PHI-merge some operands 1739 // (because they're not identical in each instruction) we add these to 1740 // PHIOperands. 1741 unsigned ScanIdx = 0; 1742 SmallPtrSet<Value*,4> InstructionsToSink; 1743 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 1744 LockstepReverseIterator LRI(UnconditionalPreds); 1745 while (LRI.isValid() && 1746 canSinkInstructions(*LRI, PHIOperands)) { 1747 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 1748 << "\n"); 1749 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 1750 ++ScanIdx; 1751 --LRI; 1752 } 1753 1754 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 1755 unsigned NumPHIdValues = 0; 1756 for (auto *I : *LRI) 1757 for (auto *V : PHIOperands[I]) 1758 if (InstructionsToSink.count(V) == 0) 1759 ++NumPHIdValues; 1760 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 1761 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 1762 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 1763 NumPHIInsts++; 1764 1765 return NumPHIInsts <= 1; 1766 }; 1767 1768 if (ScanIdx > 0 && Cond) { 1769 // Check if we would actually sink anything first! This mutates the CFG and 1770 // adds an extra block. The goal in doing this is to allow instructions that 1771 // couldn't be sunk before to be sunk - obviously, speculatable instructions 1772 // (such as trunc, add) can be sunk and predicated already. So we check that 1773 // we're going to sink at least one non-speculatable instruction. 1774 LRI.reset(); 1775 unsigned Idx = 0; 1776 bool Profitable = false; 1777 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { 1778 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 1779 Profitable = true; 1780 break; 1781 } 1782 --LRI; 1783 ++Idx; 1784 } 1785 if (!Profitable) 1786 return false; 1787 1788 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 1789 // We have a conditional edge and we're going to sink some instructions. 1790 // Insert a new block postdominating all blocks we're going to sink from. 1791 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) 1792 // Edges couldn't be split. 1793 return false; 1794 Changed = true; 1795 } 1796 1797 // Now that we've analyzed all potential sinking candidates, perform the 1798 // actual sink. We iteratively sink the last non-terminator of the source 1799 // blocks into their common successor unless doing so would require too 1800 // many PHI instructions to be generated (currently only one PHI is allowed 1801 // per sunk instruction). 1802 // 1803 // We can use InstructionsToSink to discount values needing PHI-merging that will 1804 // actually be sunk in a later iteration. This allows us to be more 1805 // aggressive in what we sink. This does allow a false positive where we 1806 // sink presuming a later value will also be sunk, but stop half way through 1807 // and never actually sink it which means we produce more PHIs than intended. 1808 // This is unlikely in practice though. 1809 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { 1810 LLVM_DEBUG(dbgs() << "SINK: Sink: " 1811 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 1812 << "\n"); 1813 1814 // Because we've sunk every instruction in turn, the current instruction to 1815 // sink is always at index 0. 1816 LRI.reset(); 1817 if (!ProfitableToSinkInstruction(LRI)) { 1818 // Too many PHIs would be created. 1819 LLVM_DEBUG( 1820 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 1821 break; 1822 } 1823 1824 if (!sinkLastInstruction(UnconditionalPreds)) 1825 return Changed; 1826 NumSinkCommons++; 1827 Changed = true; 1828 } 1829 return Changed; 1830 } 1831 1832 /// Determine if we can hoist sink a sole store instruction out of a 1833 /// conditional block. 1834 /// 1835 /// We are looking for code like the following: 1836 /// BrBB: 1837 /// store i32 %add, i32* %arrayidx2 1838 /// ... // No other stores or function calls (we could be calling a memory 1839 /// ... // function). 1840 /// %cmp = icmp ult %x, %y 1841 /// br i1 %cmp, label %EndBB, label %ThenBB 1842 /// ThenBB: 1843 /// store i32 %add5, i32* %arrayidx2 1844 /// br label EndBB 1845 /// EndBB: 1846 /// ... 1847 /// We are going to transform this into: 1848 /// BrBB: 1849 /// store i32 %add, i32* %arrayidx2 1850 /// ... // 1851 /// %cmp = icmp ult %x, %y 1852 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1853 /// store i32 %add.add5, i32* %arrayidx2 1854 /// ... 1855 /// 1856 /// \return The pointer to the value of the previous store if the store can be 1857 /// hoisted into the predecessor block. 0 otherwise. 1858 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1859 BasicBlock *StoreBB, BasicBlock *EndBB) { 1860 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1861 if (!StoreToHoist) 1862 return nullptr; 1863 1864 // Volatile or atomic. 1865 if (!StoreToHoist->isSimple()) 1866 return nullptr; 1867 1868 Value *StorePtr = StoreToHoist->getPointerOperand(); 1869 1870 // Look for a store to the same pointer in BrBB. 1871 unsigned MaxNumInstToLookAt = 9; 1872 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { 1873 if (!MaxNumInstToLookAt) 1874 break; 1875 --MaxNumInstToLookAt; 1876 1877 // Could be calling an instruction that affects memory like free(). 1878 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1879 return nullptr; 1880 1881 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 1882 // Found the previous store make sure it stores to the same location. 1883 if (SI->getPointerOperand() == StorePtr) 1884 // Found the previous store, return its value operand. 1885 return SI->getValueOperand(); 1886 return nullptr; // Unknown store. 1887 } 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 /// Speculate a conditional basic block flattening the CFG. 1894 /// 1895 /// Note that this is a very risky transform currently. Speculating 1896 /// instructions like this is most often not desirable. Instead, there is an MI 1897 /// pass which can do it with full awareness of the resource constraints. 1898 /// However, some cases are "obvious" and we should do directly. An example of 1899 /// this is speculating a single, reasonably cheap instruction. 1900 /// 1901 /// There is only one distinct advantage to flattening the CFG at the IR level: 1902 /// it makes very common but simplistic optimizations such as are common in 1903 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1904 /// modeling their effects with easier to reason about SSA value graphs. 1905 /// 1906 /// 1907 /// An illustration of this transform is turning this IR: 1908 /// \code 1909 /// BB: 1910 /// %cmp = icmp ult %x, %y 1911 /// br i1 %cmp, label %EndBB, label %ThenBB 1912 /// ThenBB: 1913 /// %sub = sub %x, %y 1914 /// br label BB2 1915 /// EndBB: 1916 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1917 /// ... 1918 /// \endcode 1919 /// 1920 /// Into this IR: 1921 /// \code 1922 /// BB: 1923 /// %cmp = icmp ult %x, %y 1924 /// %sub = sub %x, %y 1925 /// %cond = select i1 %cmp, 0, %sub 1926 /// ... 1927 /// \endcode 1928 /// 1929 /// \returns true if the conditional block is removed. 1930 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1931 const TargetTransformInfo &TTI) { 1932 // Be conservative for now. FP select instruction can often be expensive. 1933 Value *BrCond = BI->getCondition(); 1934 if (isa<FCmpInst>(BrCond)) 1935 return false; 1936 1937 BasicBlock *BB = BI->getParent(); 1938 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1939 1940 // If ThenBB is actually on the false edge of the conditional branch, remember 1941 // to swap the select operands later. 1942 bool Invert = false; 1943 if (ThenBB != BI->getSuccessor(0)) { 1944 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1945 Invert = true; 1946 } 1947 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1948 1949 // Keep a count of how many times instructions are used within ThenBB when 1950 // they are candidates for sinking into ThenBB. Specifically: 1951 // - They are defined in BB, and 1952 // - They have no side effects, and 1953 // - All of their uses are in ThenBB. 1954 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1955 1956 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 1957 1958 unsigned SpeculationCost = 0; 1959 Value *SpeculatedStoreValue = nullptr; 1960 StoreInst *SpeculatedStore = nullptr; 1961 for (BasicBlock::iterator BBI = ThenBB->begin(), 1962 BBE = std::prev(ThenBB->end()); 1963 BBI != BBE; ++BBI) { 1964 Instruction *I = &*BBI; 1965 // Skip debug info. 1966 if (isa<DbgInfoIntrinsic>(I)) { 1967 SpeculatedDbgIntrinsics.push_back(I); 1968 continue; 1969 } 1970 1971 // Only speculatively execute a single instruction (not counting the 1972 // terminator) for now. 1973 ++SpeculationCost; 1974 if (SpeculationCost > 1) 1975 return false; 1976 1977 // Don't hoist the instruction if it's unsafe or expensive. 1978 if (!isSafeToSpeculativelyExecute(I) && 1979 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1980 I, BB, ThenBB, EndBB)))) 1981 return false; 1982 if (!SpeculatedStoreValue && 1983 ComputeSpeculationCost(I, TTI) > 1984 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1985 return false; 1986 1987 // Store the store speculation candidate. 1988 if (SpeculatedStoreValue) 1989 SpeculatedStore = cast<StoreInst>(I); 1990 1991 // Do not hoist the instruction if any of its operands are defined but not 1992 // used in BB. The transformation will prevent the operand from 1993 // being sunk into the use block. 1994 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { 1995 Instruction *OpI = dyn_cast<Instruction>(*i); 1996 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 1997 continue; // Not a candidate for sinking. 1998 1999 ++SinkCandidateUseCounts[OpI]; 2000 } 2001 } 2002 2003 // Consider any sink candidates which are only used in ThenBB as costs for 2004 // speculation. Note, while we iterate over a DenseMap here, we are summing 2005 // and so iteration order isn't significant. 2006 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2007 I = SinkCandidateUseCounts.begin(), 2008 E = SinkCandidateUseCounts.end(); 2009 I != E; ++I) 2010 if (I->first->hasNUses(I->second)) { 2011 ++SpeculationCost; 2012 if (SpeculationCost > 1) 2013 return false; 2014 } 2015 2016 // Check that the PHI nodes can be converted to selects. 2017 bool HaveRewritablePHIs = false; 2018 for (PHINode &PN : EndBB->phis()) { 2019 Value *OrigV = PN.getIncomingValueForBlock(BB); 2020 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2021 2022 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2023 // Skip PHIs which are trivial. 2024 if (ThenV == OrigV) 2025 continue; 2026 2027 // Don't convert to selects if we could remove undefined behavior instead. 2028 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2029 passingValueIsAlwaysUndefined(ThenV, &PN)) 2030 return false; 2031 2032 HaveRewritablePHIs = true; 2033 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2034 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2035 if (!OrigCE && !ThenCE) 2036 continue; // Known safe and cheap. 2037 2038 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2039 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2040 return false; 2041 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 2042 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 2043 unsigned MaxCost = 2044 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2045 if (OrigCost + ThenCost > MaxCost) 2046 return false; 2047 2048 // Account for the cost of an unfolded ConstantExpr which could end up 2049 // getting expanded into Instructions. 2050 // FIXME: This doesn't account for how many operations are combined in the 2051 // constant expression. 2052 ++SpeculationCost; 2053 if (SpeculationCost > 1) 2054 return false; 2055 } 2056 2057 // If there are no PHIs to process, bail early. This helps ensure idempotence 2058 // as well. 2059 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 2060 return false; 2061 2062 // If we get here, we can hoist the instruction and if-convert. 2063 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2064 2065 // Insert a select of the value of the speculated store. 2066 if (SpeculatedStoreValue) { 2067 IRBuilder<NoFolder> Builder(BI); 2068 Value *TrueV = SpeculatedStore->getValueOperand(); 2069 Value *FalseV = SpeculatedStoreValue; 2070 if (Invert) 2071 std::swap(TrueV, FalseV); 2072 Value *S = Builder.CreateSelect( 2073 BrCond, TrueV, FalseV, "spec.store.select", BI); 2074 SpeculatedStore->setOperand(0, S); 2075 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2076 SpeculatedStore->getDebugLoc()); 2077 } 2078 2079 // Metadata can be dependent on the condition we are hoisting above. 2080 // Conservatively strip all metadata on the instruction. 2081 for (auto &I : *ThenBB) 2082 I.dropUnknownNonDebugMetadata(); 2083 2084 // Hoist the instructions. 2085 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2086 ThenBB->begin(), std::prev(ThenBB->end())); 2087 2088 // Insert selects and rewrite the PHI operands. 2089 IRBuilder<NoFolder> Builder(BI); 2090 for (PHINode &PN : EndBB->phis()) { 2091 unsigned OrigI = PN.getBasicBlockIndex(BB); 2092 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2093 Value *OrigV = PN.getIncomingValue(OrigI); 2094 Value *ThenV = PN.getIncomingValue(ThenI); 2095 2096 // Skip PHIs which are trivial. 2097 if (OrigV == ThenV) 2098 continue; 2099 2100 // Create a select whose true value is the speculatively executed value and 2101 // false value is the preexisting value. Swap them if the branch 2102 // destinations were inverted. 2103 Value *TrueV = ThenV, *FalseV = OrigV; 2104 if (Invert) 2105 std::swap(TrueV, FalseV); 2106 Value *V = Builder.CreateSelect( 2107 BrCond, TrueV, FalseV, "spec.select", BI); 2108 PN.setIncomingValue(OrigI, V); 2109 PN.setIncomingValue(ThenI, V); 2110 } 2111 2112 // Remove speculated dbg intrinsics. 2113 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2114 // dbg value for the different flows and inserting it after the select. 2115 for (Instruction *I : SpeculatedDbgIntrinsics) 2116 I->eraseFromParent(); 2117 2118 ++NumSpeculations; 2119 return true; 2120 } 2121 2122 /// Return true if we can thread a branch across this block. 2123 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2124 unsigned Size = 0; 2125 2126 for (Instruction &I : BB->instructionsWithoutDebug()) { 2127 if (Size > 10) 2128 return false; // Don't clone large BB's. 2129 ++Size; 2130 2131 // We can only support instructions that do not define values that are 2132 // live outside of the current basic block. 2133 for (User *U : I.users()) { 2134 Instruction *UI = cast<Instruction>(U); 2135 if (UI->getParent() != BB || isa<PHINode>(UI)) 2136 return false; 2137 } 2138 2139 // Looks ok, continue checking. 2140 } 2141 2142 return true; 2143 } 2144 2145 /// If we have a conditional branch on a PHI node value that is defined in the 2146 /// same block as the branch and if any PHI entries are constants, thread edges 2147 /// corresponding to that entry to be branches to their ultimate destination. 2148 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, 2149 AssumptionCache *AC) { 2150 BasicBlock *BB = BI->getParent(); 2151 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2152 // NOTE: we currently cannot transform this case if the PHI node is used 2153 // outside of the block. 2154 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2155 return false; 2156 2157 // Degenerate case of a single entry PHI. 2158 if (PN->getNumIncomingValues() == 1) { 2159 FoldSingleEntryPHINodes(PN->getParent()); 2160 return true; 2161 } 2162 2163 // Now we know that this block has multiple preds and two succs. 2164 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2165 return false; 2166 2167 // Can't fold blocks that contain noduplicate or convergent calls. 2168 if (any_of(*BB, [](const Instruction &I) { 2169 const CallInst *CI = dyn_cast<CallInst>(&I); 2170 return CI && (CI->cannotDuplicate() || CI->isConvergent()); 2171 })) 2172 return false; 2173 2174 // Okay, this is a simple enough basic block. See if any phi values are 2175 // constants. 2176 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2177 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2178 if (!CB || !CB->getType()->isIntegerTy(1)) 2179 continue; 2180 2181 // Okay, we now know that all edges from PredBB should be revectored to 2182 // branch to RealDest. 2183 BasicBlock *PredBB = PN->getIncomingBlock(i); 2184 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2185 2186 if (RealDest == BB) 2187 continue; // Skip self loops. 2188 // Skip if the predecessor's terminator is an indirect branch. 2189 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2190 continue; 2191 2192 // The dest block might have PHI nodes, other predecessors and other 2193 // difficult cases. Instead of being smart about this, just insert a new 2194 // block that jumps to the destination block, effectively splitting 2195 // the edge we are about to create. 2196 BasicBlock *EdgeBB = 2197 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2198 RealDest->getParent(), RealDest); 2199 BranchInst::Create(RealDest, EdgeBB); 2200 2201 // Update PHI nodes. 2202 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2203 2204 // BB may have instructions that are being threaded over. Clone these 2205 // instructions into EdgeBB. We know that there will be no uses of the 2206 // cloned instructions outside of EdgeBB. 2207 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2208 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2209 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2210 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2211 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2212 continue; 2213 } 2214 // Clone the instruction. 2215 Instruction *N = BBI->clone(); 2216 if (BBI->hasName()) 2217 N->setName(BBI->getName() + ".c"); 2218 2219 // Update operands due to translation. 2220 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { 2221 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); 2222 if (PI != TranslateMap.end()) 2223 *i = PI->second; 2224 } 2225 2226 // Check for trivial simplification. 2227 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2228 if (!BBI->use_empty()) 2229 TranslateMap[&*BBI] = V; 2230 if (!N->mayHaveSideEffects()) { 2231 N->deleteValue(); // Instruction folded away, don't need actual inst 2232 N = nullptr; 2233 } 2234 } else { 2235 if (!BBI->use_empty()) 2236 TranslateMap[&*BBI] = N; 2237 } 2238 // Insert the new instruction into its new home. 2239 if (N) 2240 EdgeBB->getInstList().insert(InsertPt, N); 2241 2242 // Register the new instruction with the assumption cache if necessary. 2243 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) 2244 if (II->getIntrinsicID() == Intrinsic::assume) 2245 AC->registerAssumption(II); 2246 } 2247 2248 // Loop over all of the edges from PredBB to BB, changing them to branch 2249 // to EdgeBB instead. 2250 Instruction *PredBBTI = PredBB->getTerminator(); 2251 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2252 if (PredBBTI->getSuccessor(i) == BB) { 2253 BB->removePredecessor(PredBB); 2254 PredBBTI->setSuccessor(i, EdgeBB); 2255 } 2256 2257 // Recurse, simplifying any other constants. 2258 return FoldCondBranchOnPHI(BI, DL, AC) || true; 2259 } 2260 2261 return false; 2262 } 2263 2264 /// Given a BB that starts with the specified two-entry PHI node, 2265 /// see if we can eliminate it. 2266 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2267 const DataLayout &DL) { 2268 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2269 // statement", which has a very simple dominance structure. Basically, we 2270 // are trying to find the condition that is being branched on, which 2271 // subsequently causes this merge to happen. We really want control 2272 // dependence information for this check, but simplifycfg can't keep it up 2273 // to date, and this catches most of the cases we care about anyway. 2274 BasicBlock *BB = PN->getParent(); 2275 const Function *Fn = BB->getParent(); 2276 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 2277 return false; 2278 2279 BasicBlock *IfTrue, *IfFalse; 2280 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2281 if (!IfCond || 2282 // Don't bother if the branch will be constant folded trivially. 2283 isa<ConstantInt>(IfCond)) 2284 return false; 2285 2286 // Okay, we found that we can merge this two-entry phi node into a select. 2287 // Doing so would require us to fold *all* two entry phi nodes in this block. 2288 // At some point this becomes non-profitable (particularly if the target 2289 // doesn't support cmov's). Only do this transformation if there are two or 2290 // fewer PHI nodes in this block. 2291 unsigned NumPhis = 0; 2292 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2293 if (NumPhis > 2) 2294 return false; 2295 2296 // Loop over the PHI's seeing if we can promote them all to select 2297 // instructions. While we are at it, keep track of the instructions 2298 // that need to be moved to the dominating block. 2299 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2300 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 2301 MaxCostVal1 = PHINodeFoldingThreshold; 2302 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 2303 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 2304 2305 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2306 PHINode *PN = cast<PHINode>(II++); 2307 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2308 PN->replaceAllUsesWith(V); 2309 PN->eraseFromParent(); 2310 continue; 2311 } 2312 2313 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2314 MaxCostVal0, TTI) || 2315 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2316 MaxCostVal1, TTI)) 2317 return false; 2318 } 2319 2320 // If we folded the first phi, PN dangles at this point. Refresh it. If 2321 // we ran out of PHIs then we simplified them all. 2322 PN = dyn_cast<PHINode>(BB->begin()); 2323 if (!PN) 2324 return true; 2325 2326 // Don't fold i1 branches on PHIs which contain binary operators. These can 2327 // often be turned into switches and other things. 2328 if (PN->getType()->isIntegerTy(1) && 2329 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 2330 isa<BinaryOperator>(PN->getIncomingValue(1)) || 2331 isa<BinaryOperator>(IfCond))) 2332 return false; 2333 2334 // If all PHI nodes are promotable, check to make sure that all instructions 2335 // in the predecessor blocks can be promoted as well. If not, we won't be able 2336 // to get rid of the control flow, so it's not worth promoting to select 2337 // instructions. 2338 BasicBlock *DomBlock = nullptr; 2339 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2340 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2341 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2342 IfBlock1 = nullptr; 2343 } else { 2344 DomBlock = *pred_begin(IfBlock1); 2345 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2346 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2347 // This is not an aggressive instruction that we can promote. 2348 // Because of this, we won't be able to get rid of the control flow, so 2349 // the xform is not worth it. 2350 return false; 2351 } 2352 } 2353 2354 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2355 IfBlock2 = nullptr; 2356 } else { 2357 DomBlock = *pred_begin(IfBlock2); 2358 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2359 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 2360 // This is not an aggressive instruction that we can promote. 2361 // Because of this, we won't be able to get rid of the control flow, so 2362 // the xform is not worth it. 2363 return false; 2364 } 2365 } 2366 2367 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2368 << " T: " << IfTrue->getName() 2369 << " F: " << IfFalse->getName() << "\n"); 2370 2371 // If we can still promote the PHI nodes after this gauntlet of tests, 2372 // do all of the PHI's now. 2373 Instruction *InsertPt = DomBlock->getTerminator(); 2374 IRBuilder<NoFolder> Builder(InsertPt); 2375 2376 // Move all 'aggressive' instructions, which are defined in the 2377 // conditional parts of the if's up to the dominating block. 2378 if (IfBlock1) 2379 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2380 if (IfBlock2) 2381 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2382 2383 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2384 // Change the PHI node into a select instruction. 2385 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2386 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2387 2388 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2389 PN->replaceAllUsesWith(Sel); 2390 Sel->takeName(PN); 2391 PN->eraseFromParent(); 2392 } 2393 2394 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2395 // has been flattened. Change DomBlock to jump directly to our new block to 2396 // avoid other simplifycfg's kicking in on the diamond. 2397 Instruction *OldTI = DomBlock->getTerminator(); 2398 Builder.SetInsertPoint(OldTI); 2399 Builder.CreateBr(BB); 2400 OldTI->eraseFromParent(); 2401 return true; 2402 } 2403 2404 /// If we found a conditional branch that goes to two returning blocks, 2405 /// try to merge them together into one return, 2406 /// introducing a select if the return values disagree. 2407 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 2408 IRBuilder<> &Builder) { 2409 assert(BI->isConditional() && "Must be a conditional branch"); 2410 BasicBlock *TrueSucc = BI->getSuccessor(0); 2411 BasicBlock *FalseSucc = BI->getSuccessor(1); 2412 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2413 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2414 2415 // Check to ensure both blocks are empty (just a return) or optionally empty 2416 // with PHI nodes. If there are other instructions, merging would cause extra 2417 // computation on one path or the other. 2418 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2419 return false; 2420 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2421 return false; 2422 2423 Builder.SetInsertPoint(BI); 2424 // Okay, we found a branch that is going to two return nodes. If 2425 // there is no return value for this function, just change the 2426 // branch into a return. 2427 if (FalseRet->getNumOperands() == 0) { 2428 TrueSucc->removePredecessor(BI->getParent()); 2429 FalseSucc->removePredecessor(BI->getParent()); 2430 Builder.CreateRetVoid(); 2431 EraseTerminatorAndDCECond(BI); 2432 return true; 2433 } 2434 2435 // Otherwise, figure out what the true and false return values are 2436 // so we can insert a new select instruction. 2437 Value *TrueValue = TrueRet->getReturnValue(); 2438 Value *FalseValue = FalseRet->getReturnValue(); 2439 2440 // Unwrap any PHI nodes in the return blocks. 2441 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2442 if (TVPN->getParent() == TrueSucc) 2443 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 2444 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2445 if (FVPN->getParent() == FalseSucc) 2446 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 2447 2448 // In order for this transformation to be safe, we must be able to 2449 // unconditionally execute both operands to the return. This is 2450 // normally the case, but we could have a potentially-trapping 2451 // constant expression that prevents this transformation from being 2452 // safe. 2453 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2454 if (TCV->canTrap()) 2455 return false; 2456 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2457 if (FCV->canTrap()) 2458 return false; 2459 2460 // Okay, we collected all the mapped values and checked them for sanity, and 2461 // defined to really do this transformation. First, update the CFG. 2462 TrueSucc->removePredecessor(BI->getParent()); 2463 FalseSucc->removePredecessor(BI->getParent()); 2464 2465 // Insert select instructions where needed. 2466 Value *BrCond = BI->getCondition(); 2467 if (TrueValue) { 2468 // Insert a select if the results differ. 2469 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2470 } else if (isa<UndefValue>(TrueValue)) { 2471 TrueValue = FalseValue; 2472 } else { 2473 TrueValue = 2474 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2475 } 2476 } 2477 2478 Value *RI = 2479 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2480 2481 (void)RI; 2482 2483 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2484 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " 2485 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); 2486 2487 EraseTerminatorAndDCECond(BI); 2488 2489 return true; 2490 } 2491 2492 /// Return true if the given instruction is available 2493 /// in its predecessor block. If yes, the instruction will be removed. 2494 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { 2495 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2496 return false; 2497 for (Instruction &I : *PB) { 2498 Instruction *PBI = &I; 2499 // Check whether Inst and PBI generate the same value. 2500 if (Inst->isIdenticalTo(PBI)) { 2501 Inst->replaceAllUsesWith(PBI); 2502 Inst->eraseFromParent(); 2503 return true; 2504 } 2505 } 2506 return false; 2507 } 2508 2509 /// Return true if either PBI or BI has branch weight available, and store 2510 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2511 /// not have branch weight, use 1:1 as its weight. 2512 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2513 uint64_t &PredTrueWeight, 2514 uint64_t &PredFalseWeight, 2515 uint64_t &SuccTrueWeight, 2516 uint64_t &SuccFalseWeight) { 2517 bool PredHasWeights = 2518 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2519 bool SuccHasWeights = 2520 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2521 if (PredHasWeights || SuccHasWeights) { 2522 if (!PredHasWeights) 2523 PredTrueWeight = PredFalseWeight = 1; 2524 if (!SuccHasWeights) 2525 SuccTrueWeight = SuccFalseWeight = 1; 2526 return true; 2527 } else { 2528 return false; 2529 } 2530 } 2531 2532 /// If this basic block is simple enough, and if a predecessor branches to us 2533 /// and one of our successors, fold the block into the predecessor and use 2534 /// logical operations to pick the right destination. 2535 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2536 BasicBlock *BB = BI->getParent(); 2537 2538 const unsigned PredCount = pred_size(BB); 2539 2540 Instruction *Cond = nullptr; 2541 if (BI->isConditional()) 2542 Cond = dyn_cast<Instruction>(BI->getCondition()); 2543 else { 2544 // For unconditional branch, check for a simple CFG pattern, where 2545 // BB has a single predecessor and BB's successor is also its predecessor's 2546 // successor. If such pattern exists, check for CSE between BB and its 2547 // predecessor. 2548 if (BasicBlock *PB = BB->getSinglePredecessor()) 2549 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2550 if (PBI->isConditional() && 2551 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2552 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2553 for (auto I = BB->instructionsWithoutDebug().begin(), 2554 E = BB->instructionsWithoutDebug().end(); 2555 I != E;) { 2556 Instruction *Curr = &*I++; 2557 if (isa<CmpInst>(Curr)) { 2558 Cond = Curr; 2559 break; 2560 } 2561 // Quit if we can't remove this instruction. 2562 if (!tryCSEWithPredecessor(Curr, PB)) 2563 return false; 2564 } 2565 } 2566 2567 if (!Cond) 2568 return false; 2569 } 2570 2571 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2572 Cond->getParent() != BB || !Cond->hasOneUse()) 2573 return false; 2574 2575 // Make sure the instruction after the condition is the cond branch. 2576 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2577 2578 // Ignore dbg intrinsics. 2579 while (isa<DbgInfoIntrinsic>(CondIt)) 2580 ++CondIt; 2581 2582 if (&*CondIt != BI) 2583 return false; 2584 2585 // Only allow this transformation if computing the condition doesn't involve 2586 // too many instructions and these involved instructions can be executed 2587 // unconditionally. We denote all involved instructions except the condition 2588 // as "bonus instructions", and only allow this transformation when the 2589 // number of the bonus instructions we'll need to create when cloning into 2590 // each predecessor does not exceed a certain threshold. 2591 unsigned NumBonusInsts = 0; 2592 for (auto I = BB->begin(); Cond != &*I; ++I) { 2593 // Ignore dbg intrinsics. 2594 if (isa<DbgInfoIntrinsic>(I)) 2595 continue; 2596 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2597 return false; 2598 // I has only one use and can be executed unconditionally. 2599 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2600 if (User == nullptr || User->getParent() != BB) 2601 return false; 2602 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2603 // to use any other instruction, User must be an instruction between next(I) 2604 // and Cond. 2605 2606 // Account for the cost of duplicating this instruction into each 2607 // predecessor. 2608 NumBonusInsts += PredCount; 2609 // Early exits once we reach the limit. 2610 if (NumBonusInsts > BonusInstThreshold) 2611 return false; 2612 } 2613 2614 // Cond is known to be a compare or binary operator. Check to make sure that 2615 // neither operand is a potentially-trapping constant expression. 2616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2617 if (CE->canTrap()) 2618 return false; 2619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2620 if (CE->canTrap()) 2621 return false; 2622 2623 // Finally, don't infinitely unroll conditional loops. 2624 BasicBlock *TrueDest = BI->getSuccessor(0); 2625 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2626 if (TrueDest == BB || FalseDest == BB) 2627 return false; 2628 2629 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2630 BasicBlock *PredBlock = *PI; 2631 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2632 2633 // Check that we have two conditional branches. If there is a PHI node in 2634 // the common successor, verify that the same value flows in from both 2635 // blocks. 2636 SmallVector<PHINode *, 4> PHIs; 2637 if (!PBI || PBI->isUnconditional() || 2638 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || 2639 (!BI->isConditional() && 2640 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2641 continue; 2642 2643 // Determine if the two branches share a common destination. 2644 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2645 bool InvertPredCond = false; 2646 2647 if (BI->isConditional()) { 2648 if (PBI->getSuccessor(0) == TrueDest) { 2649 Opc = Instruction::Or; 2650 } else if (PBI->getSuccessor(1) == FalseDest) { 2651 Opc = Instruction::And; 2652 } else if (PBI->getSuccessor(0) == FalseDest) { 2653 Opc = Instruction::And; 2654 InvertPredCond = true; 2655 } else if (PBI->getSuccessor(1) == TrueDest) { 2656 Opc = Instruction::Or; 2657 InvertPredCond = true; 2658 } else { 2659 continue; 2660 } 2661 } else { 2662 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2663 continue; 2664 } 2665 2666 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2667 IRBuilder<> Builder(PBI); 2668 2669 // If we need to invert the condition in the pred block to match, do so now. 2670 if (InvertPredCond) { 2671 Value *NewCond = PBI->getCondition(); 2672 2673 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2674 CmpInst *CI = cast<CmpInst>(NewCond); 2675 CI->setPredicate(CI->getInversePredicate()); 2676 } else { 2677 NewCond = 2678 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 2679 } 2680 2681 PBI->setCondition(NewCond); 2682 PBI->swapSuccessors(); 2683 } 2684 2685 // If we have bonus instructions, clone them into the predecessor block. 2686 // Note that there may be multiple predecessor blocks, so we cannot move 2687 // bonus instructions to a predecessor block. 2688 ValueToValueMapTy VMap; // maps original values to cloned values 2689 // We already make sure Cond is the last instruction before BI. Therefore, 2690 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2691 // instructions. 2692 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { 2693 if (isa<DbgInfoIntrinsic>(BonusInst)) 2694 continue; 2695 Instruction *NewBonusInst = BonusInst->clone(); 2696 RemapInstruction(NewBonusInst, VMap, 2697 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2698 VMap[&*BonusInst] = NewBonusInst; 2699 2700 // If we moved a load, we cannot any longer claim any knowledge about 2701 // its potential value. The previous information might have been valid 2702 // only given the branch precondition. 2703 // For an analogous reason, we must also drop all the metadata whose 2704 // semantics we don't understand. 2705 NewBonusInst->dropUnknownNonDebugMetadata(); 2706 2707 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2708 NewBonusInst->takeName(&*BonusInst); 2709 BonusInst->setName(BonusInst->getName() + ".old"); 2710 } 2711 2712 // Clone Cond into the predecessor basic block, and or/and the 2713 // two conditions together. 2714 Instruction *CondInPred = Cond->clone(); 2715 RemapInstruction(CondInPred, VMap, 2716 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 2717 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); 2718 CondInPred->takeName(Cond); 2719 Cond->setName(CondInPred->getName() + ".old"); 2720 2721 if (BI->isConditional()) { 2722 Instruction *NewCond = cast<Instruction>( 2723 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); 2724 PBI->setCondition(NewCond); 2725 2726 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2727 bool HasWeights = 2728 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 2729 SuccTrueWeight, SuccFalseWeight); 2730 SmallVector<uint64_t, 8> NewWeights; 2731 2732 if (PBI->getSuccessor(0) == BB) { 2733 if (HasWeights) { 2734 // PBI: br i1 %x, BB, FalseDest 2735 // BI: br i1 %y, TrueDest, FalseDest 2736 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2737 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2738 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2739 // TrueWeight for PBI * FalseWeight for BI. 2740 // We assume that total weights of a BranchInst can fit into 32 bits. 2741 // Therefore, we will not have overflow using 64-bit arithmetic. 2742 NewWeights.push_back(PredFalseWeight * 2743 (SuccFalseWeight + SuccTrueWeight) + 2744 PredTrueWeight * SuccFalseWeight); 2745 } 2746 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2747 PBI->setSuccessor(0, TrueDest); 2748 } 2749 if (PBI->getSuccessor(1) == BB) { 2750 if (HasWeights) { 2751 // PBI: br i1 %x, TrueDest, BB 2752 // BI: br i1 %y, TrueDest, FalseDest 2753 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2754 // FalseWeight for PBI * TrueWeight for BI. 2755 NewWeights.push_back(PredTrueWeight * 2756 (SuccFalseWeight + SuccTrueWeight) + 2757 PredFalseWeight * SuccTrueWeight); 2758 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2759 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2760 } 2761 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2762 PBI->setSuccessor(1, FalseDest); 2763 } 2764 if (NewWeights.size() == 2) { 2765 // Halve the weights if any of them cannot fit in an uint32_t 2766 FitWeights(NewWeights); 2767 2768 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), 2769 NewWeights.end()); 2770 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 2771 } else 2772 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2773 } else { 2774 // Update PHI nodes in the common successors. 2775 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2776 ConstantInt *PBI_C = cast<ConstantInt>( 2777 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2778 assert(PBI_C->getType()->isIntegerTy(1)); 2779 Instruction *MergedCond = nullptr; 2780 if (PBI->getSuccessor(0) == TrueDest) { 2781 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2782 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2783 // is false: !PBI_Cond and BI_Value 2784 Instruction *NotCond = cast<Instruction>( 2785 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2786 MergedCond = cast<Instruction>( 2787 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, 2788 "and.cond")); 2789 if (PBI_C->isOne()) 2790 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2791 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); 2792 } else { 2793 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2794 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2795 // is false: PBI_Cond and BI_Value 2796 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2797 Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); 2798 if (PBI_C->isOne()) { 2799 Instruction *NotCond = cast<Instruction>( 2800 Builder.CreateNot(PBI->getCondition(), "not.cond")); 2801 MergedCond = cast<Instruction>(Builder.CreateBinOp( 2802 Instruction::Or, NotCond, MergedCond, "or.cond")); 2803 } 2804 } 2805 // Update PHI Node. 2806 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2807 MergedCond); 2808 } 2809 // Change PBI from Conditional to Unconditional. 2810 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2811 EraseTerminatorAndDCECond(PBI); 2812 PBI = New_PBI; 2813 } 2814 2815 // If BI was a loop latch, it may have had associated loop metadata. 2816 // We need to copy it to the new latch, that is, PBI. 2817 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 2818 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 2819 2820 // TODO: If BB is reachable from all paths through PredBlock, then we 2821 // could replace PBI's branch probabilities with BI's. 2822 2823 // Copy any debug value intrinsics into the end of PredBlock. 2824 for (Instruction &I : *BB) 2825 if (isa<DbgInfoIntrinsic>(I)) 2826 I.clone()->insertBefore(PBI); 2827 2828 return true; 2829 } 2830 return false; 2831 } 2832 2833 // If there is only one store in BB1 and BB2, return it, otherwise return 2834 // nullptr. 2835 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2836 StoreInst *S = nullptr; 2837 for (auto *BB : {BB1, BB2}) { 2838 if (!BB) 2839 continue; 2840 for (auto &I : *BB) 2841 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2842 if (S) 2843 // Multiple stores seen. 2844 return nullptr; 2845 else 2846 S = SI; 2847 } 2848 } 2849 return S; 2850 } 2851 2852 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2853 Value *AlternativeV = nullptr) { 2854 // PHI is going to be a PHI node that allows the value V that is defined in 2855 // BB to be referenced in BB's only successor. 2856 // 2857 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2858 // doesn't matter to us what the other operand is (it'll never get used). We 2859 // could just create a new PHI with an undef incoming value, but that could 2860 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2861 // other PHI. So here we directly look for some PHI in BB's successor with V 2862 // as an incoming operand. If we find one, we use it, else we create a new 2863 // one. 2864 // 2865 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2866 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2867 // where OtherBB is the single other predecessor of BB's only successor. 2868 PHINode *PHI = nullptr; 2869 BasicBlock *Succ = BB->getSingleSuccessor(); 2870 2871 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2872 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2873 PHI = cast<PHINode>(I); 2874 if (!AlternativeV) 2875 break; 2876 2877 assert(pred_size(Succ) == 2); 2878 auto PredI = pred_begin(Succ); 2879 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2880 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2881 break; 2882 PHI = nullptr; 2883 } 2884 if (PHI) 2885 return PHI; 2886 2887 // If V is not an instruction defined in BB, just return it. 2888 if (!AlternativeV && 2889 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2890 return V; 2891 2892 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2893 PHI->addIncoming(V, BB); 2894 for (BasicBlock *PredBB : predecessors(Succ)) 2895 if (PredBB != BB) 2896 PHI->addIncoming( 2897 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 2898 return PHI; 2899 } 2900 2901 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2902 BasicBlock *QTB, BasicBlock *QFB, 2903 BasicBlock *PostBB, Value *Address, 2904 bool InvertPCond, bool InvertQCond, 2905 const DataLayout &DL) { 2906 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2907 return Operator::getOpcode(&I) == Instruction::BitCast && 2908 I.getType()->isPointerTy(); 2909 }; 2910 2911 // If we're not in aggressive mode, we only optimize if we have some 2912 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2913 auto IsWorthwhile = [&](BasicBlock *BB) { 2914 if (!BB) 2915 return true; 2916 // Heuristic: if the block can be if-converted/phi-folded and the 2917 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2918 // thread this store. 2919 unsigned N = 0; 2920 for (auto &I : BB->instructionsWithoutDebug()) { 2921 // Cheap instructions viable for folding. 2922 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2923 isa<StoreInst>(I)) 2924 ++N; 2925 // Free instructions. 2926 else if (I.isTerminator() || IsaBitcastOfPointerType(I)) 2927 continue; 2928 else 2929 return false; 2930 } 2931 // The store we want to merge is counted in N, so add 1 to make sure 2932 // we're counting the instructions that would be left. 2933 return N <= (PHINodeFoldingThreshold + 1); 2934 }; 2935 2936 if (!MergeCondStoresAggressively && 2937 (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || 2938 !IsWorthwhile(QFB))) 2939 return false; 2940 2941 // For every pointer, there must be exactly two stores, one coming from 2942 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2943 // store (to any address) in PTB,PFB or QTB,QFB. 2944 // FIXME: We could relax this restriction with a bit more work and performance 2945 // testing. 2946 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2947 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2948 if (!PStore || !QStore) 2949 return false; 2950 2951 // Now check the stores are compatible. 2952 if (!QStore->isUnordered() || !PStore->isUnordered()) 2953 return false; 2954 2955 // Check that sinking the store won't cause program behavior changes. Sinking 2956 // the store out of the Q blocks won't change any behavior as we're sinking 2957 // from a block to its unconditional successor. But we're moving a store from 2958 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2959 // So we need to check that there are no aliasing loads or stores in 2960 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2961 // operations between PStore and the end of its parent block. 2962 // 2963 // The ideal way to do this is to query AliasAnalysis, but we don't 2964 // preserve AA currently so that is dangerous. Be super safe and just 2965 // check there are no other memory operations at all. 2966 for (auto &I : *QFB->getSinglePredecessor()) 2967 if (I.mayReadOrWriteMemory()) 2968 return false; 2969 for (auto &I : *QFB) 2970 if (&I != QStore && I.mayReadOrWriteMemory()) 2971 return false; 2972 if (QTB) 2973 for (auto &I : *QTB) 2974 if (&I != QStore && I.mayReadOrWriteMemory()) 2975 return false; 2976 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2977 I != E; ++I) 2978 if (&*I != PStore && I->mayReadOrWriteMemory()) 2979 return false; 2980 2981 // If PostBB has more than two predecessors, we need to split it so we can 2982 // sink the store. 2983 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 2984 // We know that QFB's only successor is PostBB. And QFB has a single 2985 // predecessor. If QTB exists, then its only successor is also PostBB. 2986 // If QTB does not exist, then QFB's only predecessor has a conditional 2987 // branch to QFB and PostBB. 2988 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 2989 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, 2990 "condstore.split"); 2991 if (!NewBB) 2992 return false; 2993 PostBB = NewBB; 2994 } 2995 2996 // OK, we're going to sink the stores to PostBB. The store has to be 2997 // conditional though, so first create the predicate. 2998 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2999 ->getCondition(); 3000 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3001 ->getCondition(); 3002 3003 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3004 PStore->getParent()); 3005 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3006 QStore->getParent(), PPHI); 3007 3008 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3009 3010 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3011 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3012 3013 if (InvertPCond) 3014 PPred = QB.CreateNot(PPred); 3015 if (InvertQCond) 3016 QPred = QB.CreateNot(QPred); 3017 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3018 3019 auto *T = 3020 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 3021 QB.SetInsertPoint(T); 3022 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3023 AAMDNodes AAMD; 3024 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3025 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3026 SI->setAAMetadata(AAMD); 3027 unsigned PAlignment = PStore->getAlignment(); 3028 unsigned QAlignment = QStore->getAlignment(); 3029 unsigned TypeAlignment = 3030 DL.getABITypeAlignment(SI->getValueOperand()->getType()); 3031 unsigned MinAlignment; 3032 unsigned MaxAlignment; 3033 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); 3034 // Choose the minimum alignment. If we could prove both stores execute, we 3035 // could use biggest one. In this case, though, we only know that one of the 3036 // stores executes. And we don't know it's safe to take the alignment from a 3037 // store that doesn't execute. 3038 if (MinAlignment != 0) { 3039 // Choose the minimum of all non-zero alignments. 3040 SI->setAlignment(MinAlignment); 3041 } else if (MaxAlignment != 0) { 3042 // Choose the minimal alignment between the non-zero alignment and the ABI 3043 // default alignment for the type of the stored value. 3044 SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); 3045 } else { 3046 // If both alignments are zero, use ABI default alignment for the type of 3047 // the stored value. 3048 SI->setAlignment(TypeAlignment); 3049 } 3050 3051 QStore->eraseFromParent(); 3052 PStore->eraseFromParent(); 3053 3054 return true; 3055 } 3056 3057 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3058 const DataLayout &DL) { 3059 // The intention here is to find diamonds or triangles (see below) where each 3060 // conditional block contains a store to the same address. Both of these 3061 // stores are conditional, so they can't be unconditionally sunk. But it may 3062 // be profitable to speculatively sink the stores into one merged store at the 3063 // end, and predicate the merged store on the union of the two conditions of 3064 // PBI and QBI. 3065 // 3066 // This can reduce the number of stores executed if both of the conditions are 3067 // true, and can allow the blocks to become small enough to be if-converted. 3068 // This optimization will also chain, so that ladders of test-and-set 3069 // sequences can be if-converted away. 3070 // 3071 // We only deal with simple diamonds or triangles: 3072 // 3073 // PBI or PBI or a combination of the two 3074 // / \ | \ 3075 // PTB PFB | PFB 3076 // \ / | / 3077 // QBI QBI 3078 // / \ | \ 3079 // QTB QFB | QFB 3080 // \ / | / 3081 // PostBB PostBB 3082 // 3083 // We model triangles as a type of diamond with a nullptr "true" block. 3084 // Triangles are canonicalized so that the fallthrough edge is represented by 3085 // a true condition, as in the diagram above. 3086 BasicBlock *PTB = PBI->getSuccessor(0); 3087 BasicBlock *PFB = PBI->getSuccessor(1); 3088 BasicBlock *QTB = QBI->getSuccessor(0); 3089 BasicBlock *QFB = QBI->getSuccessor(1); 3090 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3091 3092 // Make sure we have a good guess for PostBB. If QTB's only successor is 3093 // QFB, then QFB is a better PostBB. 3094 if (QTB->getSingleSuccessor() == QFB) 3095 PostBB = QFB; 3096 3097 // If we couldn't find a good PostBB, stop. 3098 if (!PostBB) 3099 return false; 3100 3101 bool InvertPCond = false, InvertQCond = false; 3102 // Canonicalize fallthroughs to the true branches. 3103 if (PFB == QBI->getParent()) { 3104 std::swap(PFB, PTB); 3105 InvertPCond = true; 3106 } 3107 if (QFB == PostBB) { 3108 std::swap(QFB, QTB); 3109 InvertQCond = true; 3110 } 3111 3112 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3113 // and QFB may not. Model fallthroughs as a nullptr block. 3114 if (PTB == QBI->getParent()) 3115 PTB = nullptr; 3116 if (QTB == PostBB) 3117 QTB = nullptr; 3118 3119 // Legality bailouts. We must have at least the non-fallthrough blocks and 3120 // the post-dominating block, and the non-fallthroughs must only have one 3121 // predecessor. 3122 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3123 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3124 }; 3125 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3126 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3127 return false; 3128 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3129 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3130 return false; 3131 if (!QBI->getParent()->hasNUses(2)) 3132 return false; 3133 3134 // OK, this is a sequence of two diamonds or triangles. 3135 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3136 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3137 for (auto *BB : {PTB, PFB}) { 3138 if (!BB) 3139 continue; 3140 for (auto &I : *BB) 3141 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3142 PStoreAddresses.insert(SI->getPointerOperand()); 3143 } 3144 for (auto *BB : {QTB, QFB}) { 3145 if (!BB) 3146 continue; 3147 for (auto &I : *BB) 3148 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3149 QStoreAddresses.insert(SI->getPointerOperand()); 3150 } 3151 3152 set_intersect(PStoreAddresses, QStoreAddresses); 3153 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3154 // clear what it contains. 3155 auto &CommonAddresses = PStoreAddresses; 3156 3157 bool Changed = false; 3158 for (auto *Address : CommonAddresses) 3159 Changed |= mergeConditionalStoreToAddress( 3160 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); 3161 return Changed; 3162 } 3163 3164 /// If we have a conditional branch as a predecessor of another block, 3165 /// this function tries to simplify it. We know 3166 /// that PBI and BI are both conditional branches, and BI is in one of the 3167 /// successor blocks of PBI - PBI branches to BI. 3168 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3169 const DataLayout &DL) { 3170 assert(PBI->isConditional() && BI->isConditional()); 3171 BasicBlock *BB = BI->getParent(); 3172 3173 // If this block ends with a branch instruction, and if there is a 3174 // predecessor that ends on a branch of the same condition, make 3175 // this conditional branch redundant. 3176 if (PBI->getCondition() == BI->getCondition() && 3177 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3178 // Okay, the outcome of this conditional branch is statically 3179 // knowable. If this block had a single pred, handle specially. 3180 if (BB->getSinglePredecessor()) { 3181 // Turn this into a branch on constant. 3182 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3183 BI->setCondition( 3184 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3185 return true; // Nuke the branch on constant. 3186 } 3187 3188 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3189 // in the constant and simplify the block result. Subsequent passes of 3190 // simplifycfg will thread the block. 3191 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3192 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3193 PHINode *NewPN = PHINode::Create( 3194 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3195 BI->getCondition()->getName() + ".pr", &BB->front()); 3196 // Okay, we're going to insert the PHI node. Since PBI is not the only 3197 // predecessor, compute the PHI'd conditional value for all of the preds. 3198 // Any predecessor where the condition is not computable we keep symbolic. 3199 for (pred_iterator PI = PB; PI != PE; ++PI) { 3200 BasicBlock *P = *PI; 3201 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3202 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3203 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3204 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3205 NewPN->addIncoming( 3206 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3207 P); 3208 } else { 3209 NewPN->addIncoming(BI->getCondition(), P); 3210 } 3211 } 3212 3213 BI->setCondition(NewPN); 3214 return true; 3215 } 3216 } 3217 3218 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3219 if (CE->canTrap()) 3220 return false; 3221 3222 // If both branches are conditional and both contain stores to the same 3223 // address, remove the stores from the conditionals and create a conditional 3224 // merged store at the end. 3225 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) 3226 return true; 3227 3228 // If this is a conditional branch in an empty block, and if any 3229 // predecessors are a conditional branch to one of our destinations, 3230 // fold the conditions into logical ops and one cond br. 3231 3232 // Ignore dbg intrinsics. 3233 if (&*BB->instructionsWithoutDebug().begin() != BI) 3234 return false; 3235 3236 int PBIOp, BIOp; 3237 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3238 PBIOp = 0; 3239 BIOp = 0; 3240 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3241 PBIOp = 0; 3242 BIOp = 1; 3243 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3244 PBIOp = 1; 3245 BIOp = 0; 3246 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3247 PBIOp = 1; 3248 BIOp = 1; 3249 } else { 3250 return false; 3251 } 3252 3253 // Check to make sure that the other destination of this branch 3254 // isn't BB itself. If so, this is an infinite loop that will 3255 // keep getting unwound. 3256 if (PBI->getSuccessor(PBIOp) == BB) 3257 return false; 3258 3259 // Do not perform this transformation if it would require 3260 // insertion of a large number of select instructions. For targets 3261 // without predication/cmovs, this is a big pessimization. 3262 3263 // Also do not perform this transformation if any phi node in the common 3264 // destination block can trap when reached by BB or PBB (PR17073). In that 3265 // case, it would be unsafe to hoist the operation into a select instruction. 3266 3267 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3268 unsigned NumPhis = 0; 3269 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3270 ++II, ++NumPhis) { 3271 if (NumPhis > 2) // Disable this xform. 3272 return false; 3273 3274 PHINode *PN = cast<PHINode>(II); 3275 Value *BIV = PN->getIncomingValueForBlock(BB); 3276 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3277 if (CE->canTrap()) 3278 return false; 3279 3280 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3281 Value *PBIV = PN->getIncomingValue(PBBIdx); 3282 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3283 if (CE->canTrap()) 3284 return false; 3285 } 3286 3287 // Finally, if everything is ok, fold the branches to logical ops. 3288 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3289 3290 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3291 << "AND: " << *BI->getParent()); 3292 3293 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3294 // branch in it, where one edge (OtherDest) goes back to itself but the other 3295 // exits. We don't *know* that the program avoids the infinite loop 3296 // (even though that seems likely). If we do this xform naively, we'll end up 3297 // recursively unpeeling the loop. Since we know that (after the xform is 3298 // done) that the block *is* infinite if reached, we just make it an obviously 3299 // infinite loop with no cond branch. 3300 if (OtherDest == BB) { 3301 // Insert it at the end of the function, because it's either code, 3302 // or it won't matter if it's hot. :) 3303 BasicBlock *InfLoopBlock = 3304 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3305 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3306 OtherDest = InfLoopBlock; 3307 } 3308 3309 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3310 3311 // BI may have other predecessors. Because of this, we leave 3312 // it alone, but modify PBI. 3313 3314 // Make sure we get to CommonDest on True&True directions. 3315 Value *PBICond = PBI->getCondition(); 3316 IRBuilder<NoFolder> Builder(PBI); 3317 if (PBIOp) 3318 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3319 3320 Value *BICond = BI->getCondition(); 3321 if (BIOp) 3322 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3323 3324 // Merge the conditions. 3325 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 3326 3327 // Modify PBI to branch on the new condition to the new dests. 3328 PBI->setCondition(Cond); 3329 PBI->setSuccessor(0, CommonDest); 3330 PBI->setSuccessor(1, OtherDest); 3331 3332 // Update branch weight for PBI. 3333 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3334 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3335 bool HasWeights = 3336 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3337 SuccTrueWeight, SuccFalseWeight); 3338 if (HasWeights) { 3339 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3340 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3341 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3342 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3343 // The weight to CommonDest should be PredCommon * SuccTotal + 3344 // PredOther * SuccCommon. 3345 // The weight to OtherDest should be PredOther * SuccOther. 3346 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3347 PredOther * SuccCommon, 3348 PredOther * SuccOther}; 3349 // Halve the weights if any of them cannot fit in an uint32_t 3350 FitWeights(NewWeights); 3351 3352 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3353 } 3354 3355 // OtherDest may have phi nodes. If so, add an entry from PBI's 3356 // block that are identical to the entries for BI's block. 3357 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3358 3359 // We know that the CommonDest already had an edge from PBI to 3360 // it. If it has PHIs though, the PHIs may have different 3361 // entries for BB and PBI's BB. If so, insert a select to make 3362 // them agree. 3363 for (PHINode &PN : CommonDest->phis()) { 3364 Value *BIV = PN.getIncomingValueForBlock(BB); 3365 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3366 Value *PBIV = PN.getIncomingValue(PBBIdx); 3367 if (BIV != PBIV) { 3368 // Insert a select in PBI to pick the right value. 3369 SelectInst *NV = cast<SelectInst>( 3370 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3371 PN.setIncomingValue(PBBIdx, NV); 3372 // Although the select has the same condition as PBI, the original branch 3373 // weights for PBI do not apply to the new select because the select's 3374 // 'logical' edges are incoming edges of the phi that is eliminated, not 3375 // the outgoing edges of PBI. 3376 if (HasWeights) { 3377 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3378 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3379 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3380 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3381 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3382 // The weight to PredOtherDest should be PredOther * SuccCommon. 3383 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3384 PredOther * SuccCommon}; 3385 3386 FitWeights(NewWeights); 3387 3388 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3389 } 3390 } 3391 } 3392 3393 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3394 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3395 3396 // This basic block is probably dead. We know it has at least 3397 // one fewer predecessor. 3398 return true; 3399 } 3400 3401 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3402 // true or to FalseBB if Cond is false. 3403 // Takes care of updating the successors and removing the old terminator. 3404 // Also makes sure not to introduce new successors by assuming that edges to 3405 // non-successor TrueBBs and FalseBBs aren't reachable. 3406 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 3407 BasicBlock *TrueBB, BasicBlock *FalseBB, 3408 uint32_t TrueWeight, 3409 uint32_t FalseWeight) { 3410 // Remove any superfluous successor edges from the CFG. 3411 // First, figure out which successors to preserve. 3412 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3413 // successor. 3414 BasicBlock *KeepEdge1 = TrueBB; 3415 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3416 3417 // Then remove the rest. 3418 for (BasicBlock *Succ : successors(OldTerm)) { 3419 // Make sure only to keep exactly one copy of each edge. 3420 if (Succ == KeepEdge1) 3421 KeepEdge1 = nullptr; 3422 else if (Succ == KeepEdge2) 3423 KeepEdge2 = nullptr; 3424 else 3425 Succ->removePredecessor(OldTerm->getParent(), 3426 /*DontDeleteUselessPHIs=*/true); 3427 } 3428 3429 IRBuilder<> Builder(OldTerm); 3430 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3431 3432 // Insert an appropriate new terminator. 3433 if (!KeepEdge1 && !KeepEdge2) { 3434 if (TrueBB == FalseBB) 3435 // We were only looking for one successor, and it was present. 3436 // Create an unconditional branch to it. 3437 Builder.CreateBr(TrueBB); 3438 else { 3439 // We found both of the successors we were looking for. 3440 // Create a conditional branch sharing the condition of the select. 3441 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3442 if (TrueWeight != FalseWeight) 3443 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3444 } 3445 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3446 // Neither of the selected blocks were successors, so this 3447 // terminator must be unreachable. 3448 new UnreachableInst(OldTerm->getContext(), OldTerm); 3449 } else { 3450 // One of the selected values was a successor, but the other wasn't. 3451 // Insert an unconditional branch to the one that was found; 3452 // the edge to the one that wasn't must be unreachable. 3453 if (!KeepEdge1) 3454 // Only TrueBB was found. 3455 Builder.CreateBr(TrueBB); 3456 else 3457 // Only FalseBB was found. 3458 Builder.CreateBr(FalseBB); 3459 } 3460 3461 EraseTerminatorAndDCECond(OldTerm); 3462 return true; 3463 } 3464 3465 // Replaces 3466 // (switch (select cond, X, Y)) on constant X, Y 3467 // with a branch - conditional if X and Y lead to distinct BBs, 3468 // unconditional otherwise. 3469 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 3470 // Check for constant integer values in the select. 3471 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 3472 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 3473 if (!TrueVal || !FalseVal) 3474 return false; 3475 3476 // Find the relevant condition and destinations. 3477 Value *Condition = Select->getCondition(); 3478 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 3479 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 3480 3481 // Get weight for TrueBB and FalseBB. 3482 uint32_t TrueWeight = 0, FalseWeight = 0; 3483 SmallVector<uint64_t, 8> Weights; 3484 bool HasWeights = HasBranchWeights(SI); 3485 if (HasWeights) { 3486 GetBranchWeights(SI, Weights); 3487 if (Weights.size() == 1 + SI->getNumCases()) { 3488 TrueWeight = 3489 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 3490 FalseWeight = 3491 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 3492 } 3493 } 3494 3495 // Perform the actual simplification. 3496 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 3497 FalseWeight); 3498 } 3499 3500 // Replaces 3501 // (indirectbr (select cond, blockaddress(@fn, BlockA), 3502 // blockaddress(@fn, BlockB))) 3503 // with 3504 // (br cond, BlockA, BlockB). 3505 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 3506 // Check that both operands of the select are block addresses. 3507 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 3508 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3509 if (!TBA || !FBA) 3510 return false; 3511 3512 // Extract the actual blocks. 3513 BasicBlock *TrueBB = TBA->getBasicBlock(); 3514 BasicBlock *FalseBB = FBA->getBasicBlock(); 3515 3516 // Perform the actual simplification. 3517 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 3518 0); 3519 } 3520 3521 /// This is called when we find an icmp instruction 3522 /// (a seteq/setne with a constant) as the only instruction in a 3523 /// block that ends with an uncond branch. We are looking for a very specific 3524 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3525 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3526 /// default value goes to an uncond block with a seteq in it, we get something 3527 /// like: 3528 /// 3529 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3530 /// DEFAULT: 3531 /// %tmp = icmp eq i8 %A, 92 3532 /// br label %end 3533 /// end: 3534 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3535 /// 3536 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3537 /// the PHI, merging the third icmp into the switch. 3538 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 3539 ICmpInst *ICI, IRBuilder<> &Builder) { 3540 BasicBlock *BB = ICI->getParent(); 3541 3542 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3543 // complex. 3544 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 3545 return false; 3546 3547 Value *V = ICI->getOperand(0); 3548 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3549 3550 // The pattern we're looking for is where our only predecessor is a switch on 3551 // 'V' and this block is the default case for the switch. In this case we can 3552 // fold the compared value into the switch to simplify things. 3553 BasicBlock *Pred = BB->getSinglePredecessor(); 3554 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 3555 return false; 3556 3557 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3558 if (SI->getCondition() != V) 3559 return false; 3560 3561 // If BB is reachable on a non-default case, then we simply know the value of 3562 // V in this block. Substitute it and constant fold the icmp instruction 3563 // away. 3564 if (SI->getDefaultDest() != BB) { 3565 ConstantInt *VVal = SI->findCaseDest(BB); 3566 assert(VVal && "Should have a unique destination value"); 3567 ICI->setOperand(0, VVal); 3568 3569 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 3570 ICI->replaceAllUsesWith(V); 3571 ICI->eraseFromParent(); 3572 } 3573 // BB is now empty, so it is likely to simplify away. 3574 return requestResimplify(); 3575 } 3576 3577 // Ok, the block is reachable from the default dest. If the constant we're 3578 // comparing exists in one of the other edges, then we can constant fold ICI 3579 // and zap it. 3580 if (SI->findCaseValue(Cst) != SI->case_default()) { 3581 Value *V; 3582 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3583 V = ConstantInt::getFalse(BB->getContext()); 3584 else 3585 V = ConstantInt::getTrue(BB->getContext()); 3586 3587 ICI->replaceAllUsesWith(V); 3588 ICI->eraseFromParent(); 3589 // BB is now empty, so it is likely to simplify away. 3590 return requestResimplify(); 3591 } 3592 3593 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3594 // the block. 3595 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3596 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3597 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3598 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3599 return false; 3600 3601 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3602 // true in the PHI. 3603 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3604 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3605 3606 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3607 std::swap(DefaultCst, NewCst); 3608 3609 // Replace ICI (which is used by the PHI for the default value) with true or 3610 // false depending on if it is EQ or NE. 3611 ICI->replaceAllUsesWith(DefaultCst); 3612 ICI->eraseFromParent(); 3613 3614 // Okay, the switch goes to this block on a default value. Add an edge from 3615 // the switch to the merge point on the compared value. 3616 BasicBlock *NewBB = 3617 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 3618 SmallVector<uint64_t, 8> Weights; 3619 bool HasWeights = HasBranchWeights(SI); 3620 if (HasWeights) { 3621 GetBranchWeights(SI, Weights); 3622 if (Weights.size() == 1 + SI->getNumCases()) { 3623 // Split weight for default case to case for "Cst". 3624 Weights[0] = (Weights[0] + 1) >> 1; 3625 Weights.push_back(Weights[0]); 3626 3627 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3628 setBranchWeights(SI, MDWeights); 3629 } 3630 } 3631 SI->addCase(Cst, NewBB); 3632 3633 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3634 Builder.SetInsertPoint(NewBB); 3635 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3636 Builder.CreateBr(SuccBlock); 3637 PHIUse->addIncoming(NewCst, NewBB); 3638 return true; 3639 } 3640 3641 /// The specified branch is a conditional branch. 3642 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3643 /// fold it into a switch instruction if so. 3644 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3645 const DataLayout &DL) { 3646 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3647 if (!Cond) 3648 return false; 3649 3650 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3651 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3652 // 'setne's and'ed together, collect them. 3653 3654 // Try to gather values from a chain of and/or to be turned into a switch 3655 ConstantComparesGatherer ConstantCompare(Cond, DL); 3656 // Unpack the result 3657 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 3658 Value *CompVal = ConstantCompare.CompValue; 3659 unsigned UsedICmps = ConstantCompare.UsedICmps; 3660 Value *ExtraCase = ConstantCompare.Extra; 3661 3662 // If we didn't have a multiply compared value, fail. 3663 if (!CompVal) 3664 return false; 3665 3666 // Avoid turning single icmps into a switch. 3667 if (UsedICmps <= 1) 3668 return false; 3669 3670 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3671 3672 // There might be duplicate constants in the list, which the switch 3673 // instruction can't handle, remove them now. 3674 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3675 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3676 3677 // If Extra was used, we require at least two switch values to do the 3678 // transformation. A switch with one value is just a conditional branch. 3679 if (ExtraCase && Values.size() < 2) 3680 return false; 3681 3682 // TODO: Preserve branch weight metadata, similarly to how 3683 // FoldValueComparisonIntoPredecessors preserves it. 3684 3685 // Figure out which block is which destination. 3686 BasicBlock *DefaultBB = BI->getSuccessor(1); 3687 BasicBlock *EdgeBB = BI->getSuccessor(0); 3688 if (!TrueWhenEqual) 3689 std::swap(DefaultBB, EdgeBB); 3690 3691 BasicBlock *BB = BI->getParent(); 3692 3693 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3694 << " cases into SWITCH. BB is:\n" 3695 << *BB); 3696 3697 // If there are any extra values that couldn't be folded into the switch 3698 // then we evaluate them with an explicit branch first. Split the block 3699 // right before the condbr to handle it. 3700 if (ExtraCase) { 3701 BasicBlock *NewBB = 3702 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3703 // Remove the uncond branch added to the old block. 3704 Instruction *OldTI = BB->getTerminator(); 3705 Builder.SetInsertPoint(OldTI); 3706 3707 if (TrueWhenEqual) 3708 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3709 else 3710 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3711 3712 OldTI->eraseFromParent(); 3713 3714 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3715 // for the edge we just added. 3716 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3717 3718 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3719 << "\nEXTRABB = " << *BB); 3720 BB = NewBB; 3721 } 3722 3723 Builder.SetInsertPoint(BI); 3724 // Convert pointer to int before we switch. 3725 if (CompVal->getType()->isPointerTy()) { 3726 CompVal = Builder.CreatePtrToInt( 3727 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3728 } 3729 3730 // Create the new switch instruction now. 3731 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3732 3733 // Add all of the 'cases' to the switch instruction. 3734 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3735 New->addCase(Values[i], EdgeBB); 3736 3737 // We added edges from PI to the EdgeBB. As such, if there were any 3738 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3739 // the number of edges added. 3740 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 3741 PHINode *PN = cast<PHINode>(BBI); 3742 Value *InVal = PN->getIncomingValueForBlock(BB); 3743 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 3744 PN->addIncoming(InVal, BB); 3745 } 3746 3747 // Erase the old branch instruction. 3748 EraseTerminatorAndDCECond(BI); 3749 3750 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3751 return true; 3752 } 3753 3754 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3755 if (isa<PHINode>(RI->getValue())) 3756 return SimplifyCommonResume(RI); 3757 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3758 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3759 // The resume must unwind the exception that caused control to branch here. 3760 return SimplifySingleResume(RI); 3761 3762 return false; 3763 } 3764 3765 // Simplify resume that is shared by several landing pads (phi of landing pad). 3766 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3767 BasicBlock *BB = RI->getParent(); 3768 3769 // Check that there are no other instructions except for debug intrinsics 3770 // between the phi of landing pads (RI->getValue()) and resume instruction. 3771 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3772 E = RI->getIterator(); 3773 while (++I != E) 3774 if (!isa<DbgInfoIntrinsic>(I)) 3775 return false; 3776 3777 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 3778 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3779 3780 // Check incoming blocks to see if any of them are trivial. 3781 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 3782 Idx++) { 3783 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3784 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3785 3786 // If the block has other successors, we can not delete it because 3787 // it has other dependents. 3788 if (IncomingBB->getUniqueSuccessor() != BB) 3789 continue; 3790 3791 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3792 // Not the landing pad that caused the control to branch here. 3793 if (IncomingValue != LandingPad) 3794 continue; 3795 3796 bool isTrivial = true; 3797 3798 I = IncomingBB->getFirstNonPHI()->getIterator(); 3799 E = IncomingBB->getTerminator()->getIterator(); 3800 while (++I != E) 3801 if (!isa<DbgInfoIntrinsic>(I)) { 3802 isTrivial = false; 3803 break; 3804 } 3805 3806 if (isTrivial) 3807 TrivialUnwindBlocks.insert(IncomingBB); 3808 } 3809 3810 // If no trivial unwind blocks, don't do any simplifications. 3811 if (TrivialUnwindBlocks.empty()) 3812 return false; 3813 3814 // Turn all invokes that unwind here into calls. 3815 for (auto *TrivialBB : TrivialUnwindBlocks) { 3816 // Blocks that will be simplified should be removed from the phi node. 3817 // Note there could be multiple edges to the resume block, and we need 3818 // to remove them all. 3819 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3820 BB->removePredecessor(TrivialBB, true); 3821 3822 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3823 PI != PE;) { 3824 BasicBlock *Pred = *PI++; 3825 removeUnwindEdge(Pred); 3826 } 3827 3828 // In each SimplifyCFG run, only the current processed block can be erased. 3829 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3830 // of erasing TrivialBB, we only remove the branch to the common resume 3831 // block so that we can later erase the resume block since it has no 3832 // predecessors. 3833 TrivialBB->getTerminator()->eraseFromParent(); 3834 new UnreachableInst(RI->getContext(), TrivialBB); 3835 } 3836 3837 // Delete the resume block if all its predecessors have been removed. 3838 if (pred_empty(BB)) 3839 BB->eraseFromParent(); 3840 3841 return !TrivialUnwindBlocks.empty(); 3842 } 3843 3844 // Simplify resume that is only used by a single (non-phi) landing pad. 3845 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3846 BasicBlock *BB = RI->getParent(); 3847 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3848 assert(RI->getValue() == LPInst && 3849 "Resume must unwind the exception that caused control to here"); 3850 3851 // Check that there are no other instructions except for debug intrinsics. 3852 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3853 while (++I != E) 3854 if (!isa<DbgInfoIntrinsic>(I)) 3855 return false; 3856 3857 // Turn all invokes that unwind here into calls and delete the basic block. 3858 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3859 BasicBlock *Pred = *PI++; 3860 removeUnwindEdge(Pred); 3861 } 3862 3863 // The landingpad is now unreachable. Zap it. 3864 if (LoopHeaders) 3865 LoopHeaders->erase(BB); 3866 BB->eraseFromParent(); 3867 return true; 3868 } 3869 3870 static bool removeEmptyCleanup(CleanupReturnInst *RI) { 3871 // If this is a trivial cleanup pad that executes no instructions, it can be 3872 // eliminated. If the cleanup pad continues to the caller, any predecessor 3873 // that is an EH pad will be updated to continue to the caller and any 3874 // predecessor that terminates with an invoke instruction will have its invoke 3875 // instruction converted to a call instruction. If the cleanup pad being 3876 // simplified does not continue to the caller, each predecessor will be 3877 // updated to continue to the unwind destination of the cleanup pad being 3878 // simplified. 3879 BasicBlock *BB = RI->getParent(); 3880 CleanupPadInst *CPInst = RI->getCleanupPad(); 3881 if (CPInst->getParent() != BB) 3882 // This isn't an empty cleanup. 3883 return false; 3884 3885 // We cannot kill the pad if it has multiple uses. This typically arises 3886 // from unreachable basic blocks. 3887 if (!CPInst->hasOneUse()) 3888 return false; 3889 3890 // Check that there are no other instructions except for benign intrinsics. 3891 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3892 while (++I != E) { 3893 auto *II = dyn_cast<IntrinsicInst>(I); 3894 if (!II) 3895 return false; 3896 3897 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 3898 switch (IntrinsicID) { 3899 case Intrinsic::dbg_declare: 3900 case Intrinsic::dbg_value: 3901 case Intrinsic::dbg_label: 3902 case Intrinsic::lifetime_end: 3903 break; 3904 default: 3905 return false; 3906 } 3907 } 3908 3909 // If the cleanup return we are simplifying unwinds to the caller, this will 3910 // set UnwindDest to nullptr. 3911 BasicBlock *UnwindDest = RI->getUnwindDest(); 3912 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3913 3914 // We're about to remove BB from the control flow. Before we do, sink any 3915 // PHINodes into the unwind destination. Doing this before changing the 3916 // control flow avoids some potentially slow checks, since we can currently 3917 // be certain that UnwindDest and BB have no common predecessors (since they 3918 // are both EH pads). 3919 if (UnwindDest) { 3920 // First, go through the PHI nodes in UnwindDest and update any nodes that 3921 // reference the block we are removing 3922 for (BasicBlock::iterator I = UnwindDest->begin(), 3923 IE = DestEHPad->getIterator(); 3924 I != IE; ++I) { 3925 PHINode *DestPN = cast<PHINode>(I); 3926 3927 int Idx = DestPN->getBasicBlockIndex(BB); 3928 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3929 assert(Idx != -1); 3930 // This PHI node has an incoming value that corresponds to a control 3931 // path through the cleanup pad we are removing. If the incoming 3932 // value is in the cleanup pad, it must be a PHINode (because we 3933 // verified above that the block is otherwise empty). Otherwise, the 3934 // value is either a constant or a value that dominates the cleanup 3935 // pad being removed. 3936 // 3937 // Because BB and UnwindDest are both EH pads, all of their 3938 // predecessors must unwind to these blocks, and since no instruction 3939 // can have multiple unwind destinations, there will be no overlap in 3940 // incoming blocks between SrcPN and DestPN. 3941 Value *SrcVal = DestPN->getIncomingValue(Idx); 3942 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3943 3944 // Remove the entry for the block we are deleting. 3945 DestPN->removeIncomingValue(Idx, false); 3946 3947 if (SrcPN && SrcPN->getParent() == BB) { 3948 // If the incoming value was a PHI node in the cleanup pad we are 3949 // removing, we need to merge that PHI node's incoming values into 3950 // DestPN. 3951 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3952 SrcIdx != SrcE; ++SrcIdx) { 3953 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3954 SrcPN->getIncomingBlock(SrcIdx)); 3955 } 3956 } else { 3957 // Otherwise, the incoming value came from above BB and 3958 // so we can just reuse it. We must associate all of BB's 3959 // predecessors with this value. 3960 for (auto *pred : predecessors(BB)) { 3961 DestPN->addIncoming(SrcVal, pred); 3962 } 3963 } 3964 } 3965 3966 // Sink any remaining PHI nodes directly into UnwindDest. 3967 Instruction *InsertPt = DestEHPad; 3968 for (BasicBlock::iterator I = BB->begin(), 3969 IE = BB->getFirstNonPHI()->getIterator(); 3970 I != IE;) { 3971 // The iterator must be incremented here because the instructions are 3972 // being moved to another block. 3973 PHINode *PN = cast<PHINode>(I++); 3974 if (PN->use_empty()) 3975 // If the PHI node has no uses, just leave it. It will be erased 3976 // when we erase BB below. 3977 continue; 3978 3979 // Otherwise, sink this PHI node into UnwindDest. 3980 // Any predecessors to UnwindDest which are not already represented 3981 // must be back edges which inherit the value from the path through 3982 // BB. In this case, the PHI value must reference itself. 3983 for (auto *pred : predecessors(UnwindDest)) 3984 if (pred != BB) 3985 PN->addIncoming(PN, pred); 3986 PN->moveBefore(InsertPt); 3987 } 3988 } 3989 3990 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3991 // The iterator must be updated here because we are removing this pred. 3992 BasicBlock *PredBB = *PI++; 3993 if (UnwindDest == nullptr) { 3994 removeUnwindEdge(PredBB); 3995 } else { 3996 Instruction *TI = PredBB->getTerminator(); 3997 TI->replaceUsesOfWith(BB, UnwindDest); 3998 } 3999 } 4000 4001 // The cleanup pad is now unreachable. Zap it. 4002 BB->eraseFromParent(); 4003 return true; 4004 } 4005 4006 // Try to merge two cleanuppads together. 4007 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4008 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4009 // with. 4010 BasicBlock *UnwindDest = RI->getUnwindDest(); 4011 if (!UnwindDest) 4012 return false; 4013 4014 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4015 // be safe to merge without code duplication. 4016 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4017 return false; 4018 4019 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4020 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4021 if (!SuccessorCleanupPad) 4022 return false; 4023 4024 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4025 // Replace any uses of the successor cleanupad with the predecessor pad 4026 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4027 // funclet bundle operands. 4028 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4029 // Remove the old cleanuppad. 4030 SuccessorCleanupPad->eraseFromParent(); 4031 // Now, we simply replace the cleanupret with a branch to the unwind 4032 // destination. 4033 BranchInst::Create(UnwindDest, RI->getParent()); 4034 RI->eraseFromParent(); 4035 4036 return true; 4037 } 4038 4039 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 4040 // It is possible to transiantly have an undef cleanuppad operand because we 4041 // have deleted some, but not all, dead blocks. 4042 // Eventually, this block will be deleted. 4043 if (isa<UndefValue>(RI->getOperand(0))) 4044 return false; 4045 4046 if (mergeCleanupPad(RI)) 4047 return true; 4048 4049 if (removeEmptyCleanup(RI)) 4050 return true; 4051 4052 return false; 4053 } 4054 4055 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4056 BasicBlock *BB = RI->getParent(); 4057 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4058 return false; 4059 4060 // Find predecessors that end with branches. 4061 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4062 SmallVector<BranchInst *, 8> CondBranchPreds; 4063 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 4064 BasicBlock *P = *PI; 4065 Instruction *PTI = P->getTerminator(); 4066 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4067 if (BI->isUnconditional()) 4068 UncondBranchPreds.push_back(P); 4069 else 4070 CondBranchPreds.push_back(BI); 4071 } 4072 } 4073 4074 // If we found some, do the transformation! 4075 if (!UncondBranchPreds.empty() && DupRet) { 4076 while (!UncondBranchPreds.empty()) { 4077 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4078 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4079 << "INTO UNCOND BRANCH PRED: " << *Pred); 4080 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 4081 } 4082 4083 // If we eliminated all predecessors of the block, delete the block now. 4084 if (pred_empty(BB)) { 4085 // We know there are no successors, so just nuke the block. 4086 if (LoopHeaders) 4087 LoopHeaders->erase(BB); 4088 BB->eraseFromParent(); 4089 } 4090 4091 return true; 4092 } 4093 4094 // Check out all of the conditional branches going to this return 4095 // instruction. If any of them just select between returns, change the 4096 // branch itself into a select/return pair. 4097 while (!CondBranchPreds.empty()) { 4098 BranchInst *BI = CondBranchPreds.pop_back_val(); 4099 4100 // Check to see if the non-BB successor is also a return block. 4101 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4102 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4103 SimplifyCondBranchToTwoReturns(BI, Builder)) 4104 return true; 4105 } 4106 return false; 4107 } 4108 4109 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 4110 BasicBlock *BB = UI->getParent(); 4111 4112 bool Changed = false; 4113 4114 // If there are any instructions immediately before the unreachable that can 4115 // be removed, do so. 4116 while (UI->getIterator() != BB->begin()) { 4117 BasicBlock::iterator BBI = UI->getIterator(); 4118 --BBI; 4119 // Do not delete instructions that can have side effects which might cause 4120 // the unreachable to not be reachable; specifically, calls and volatile 4121 // operations may have this effect. 4122 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4123 break; 4124 4125 if (BBI->mayHaveSideEffects()) { 4126 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4127 if (SI->isVolatile()) 4128 break; 4129 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4130 if (LI->isVolatile()) 4131 break; 4132 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4133 if (RMWI->isVolatile()) 4134 break; 4135 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4136 if (CXI->isVolatile()) 4137 break; 4138 } else if (isa<CatchPadInst>(BBI)) { 4139 // A catchpad may invoke exception object constructors and such, which 4140 // in some languages can be arbitrary code, so be conservative by 4141 // default. 4142 // For CoreCLR, it just involves a type test, so can be removed. 4143 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4144 EHPersonality::CoreCLR) 4145 break; 4146 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4147 !isa<LandingPadInst>(BBI)) { 4148 break; 4149 } 4150 // Note that deleting LandingPad's here is in fact okay, although it 4151 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4152 // all the predecessors of this block will be the unwind edges of Invokes, 4153 // and we can therefore guarantee this block will be erased. 4154 } 4155 4156 // Delete this instruction (any uses are guaranteed to be dead) 4157 if (!BBI->use_empty()) 4158 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4159 BBI->eraseFromParent(); 4160 Changed = true; 4161 } 4162 4163 // If the unreachable instruction is the first in the block, take a gander 4164 // at all of the predecessors of this instruction, and simplify them. 4165 if (&BB->front() != UI) 4166 return Changed; 4167 4168 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4169 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4170 Instruction *TI = Preds[i]->getTerminator(); 4171 IRBuilder<> Builder(TI); 4172 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4173 if (BI->isUnconditional()) { 4174 if (BI->getSuccessor(0) == BB) { 4175 new UnreachableInst(TI->getContext(), TI); 4176 TI->eraseFromParent(); 4177 Changed = true; 4178 } 4179 } else { 4180 if (BI->getSuccessor(0) == BB) { 4181 Builder.CreateBr(BI->getSuccessor(1)); 4182 EraseTerminatorAndDCECond(BI); 4183 } else if (BI->getSuccessor(1) == BB) { 4184 Builder.CreateBr(BI->getSuccessor(0)); 4185 EraseTerminatorAndDCECond(BI); 4186 Changed = true; 4187 } 4188 } 4189 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4190 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 4191 if (i->getCaseSuccessor() != BB) { 4192 ++i; 4193 continue; 4194 } 4195 BB->removePredecessor(SI->getParent()); 4196 i = SI->removeCase(i); 4197 e = SI->case_end(); 4198 Changed = true; 4199 } 4200 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4201 if (II->getUnwindDest() == BB) { 4202 removeUnwindEdge(TI->getParent()); 4203 Changed = true; 4204 } 4205 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4206 if (CSI->getUnwindDest() == BB) { 4207 removeUnwindEdge(TI->getParent()); 4208 Changed = true; 4209 continue; 4210 } 4211 4212 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4213 E = CSI->handler_end(); 4214 I != E; ++I) { 4215 if (*I == BB) { 4216 CSI->removeHandler(I); 4217 --I; 4218 --E; 4219 Changed = true; 4220 } 4221 } 4222 if (CSI->getNumHandlers() == 0) { 4223 BasicBlock *CatchSwitchBB = CSI->getParent(); 4224 if (CSI->hasUnwindDest()) { 4225 // Redirect preds to the unwind dest 4226 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 4227 } else { 4228 // Rewrite all preds to unwind to caller (or from invoke to call). 4229 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 4230 for (BasicBlock *EHPred : EHPreds) 4231 removeUnwindEdge(EHPred); 4232 } 4233 // The catchswitch is no longer reachable. 4234 new UnreachableInst(CSI->getContext(), CSI); 4235 CSI->eraseFromParent(); 4236 Changed = true; 4237 } 4238 } else if (isa<CleanupReturnInst>(TI)) { 4239 new UnreachableInst(TI->getContext(), TI); 4240 TI->eraseFromParent(); 4241 Changed = true; 4242 } 4243 } 4244 4245 // If this block is now dead, remove it. 4246 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4247 // We know there are no successors, so just nuke the block. 4248 if (LoopHeaders) 4249 LoopHeaders->erase(BB); 4250 BB->eraseFromParent(); 4251 return true; 4252 } 4253 4254 return Changed; 4255 } 4256 4257 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4258 assert(Cases.size() >= 1); 4259 4260 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4261 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4262 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4263 return false; 4264 } 4265 return true; 4266 } 4267 4268 /// Turn a switch with two reachable destinations into an integer range 4269 /// comparison and branch. 4270 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 4271 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4272 4273 bool HasDefault = 4274 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4275 4276 // Partition the cases into two sets with different destinations. 4277 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4278 BasicBlock *DestB = nullptr; 4279 SmallVector<ConstantInt *, 16> CasesA; 4280 SmallVector<ConstantInt *, 16> CasesB; 4281 4282 for (auto Case : SI->cases()) { 4283 BasicBlock *Dest = Case.getCaseSuccessor(); 4284 if (!DestA) 4285 DestA = Dest; 4286 if (Dest == DestA) { 4287 CasesA.push_back(Case.getCaseValue()); 4288 continue; 4289 } 4290 if (!DestB) 4291 DestB = Dest; 4292 if (Dest == DestB) { 4293 CasesB.push_back(Case.getCaseValue()); 4294 continue; 4295 } 4296 return false; // More than two destinations. 4297 } 4298 4299 assert(DestA && DestB && 4300 "Single-destination switch should have been folded."); 4301 assert(DestA != DestB); 4302 assert(DestB != SI->getDefaultDest()); 4303 assert(!CasesB.empty() && "There must be non-default cases."); 4304 assert(!CasesA.empty() || HasDefault); 4305 4306 // Figure out if one of the sets of cases form a contiguous range. 4307 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4308 BasicBlock *ContiguousDest = nullptr; 4309 BasicBlock *OtherDest = nullptr; 4310 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4311 ContiguousCases = &CasesA; 4312 ContiguousDest = DestA; 4313 OtherDest = DestB; 4314 } else if (CasesAreContiguous(CasesB)) { 4315 ContiguousCases = &CasesB; 4316 ContiguousDest = DestB; 4317 OtherDest = DestA; 4318 } else 4319 return false; 4320 4321 // Start building the compare and branch. 4322 4323 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4324 Constant *NumCases = 4325 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4326 4327 Value *Sub = SI->getCondition(); 4328 if (!Offset->isNullValue()) 4329 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4330 4331 Value *Cmp; 4332 // If NumCases overflowed, then all possible values jump to the successor. 4333 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4334 Cmp = ConstantInt::getTrue(SI->getContext()); 4335 else 4336 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4337 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4338 4339 // Update weight for the newly-created conditional branch. 4340 if (HasBranchWeights(SI)) { 4341 SmallVector<uint64_t, 8> Weights; 4342 GetBranchWeights(SI, Weights); 4343 if (Weights.size() == 1 + SI->getNumCases()) { 4344 uint64_t TrueWeight = 0; 4345 uint64_t FalseWeight = 0; 4346 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4347 if (SI->getSuccessor(I) == ContiguousDest) 4348 TrueWeight += Weights[I]; 4349 else 4350 FalseWeight += Weights[I]; 4351 } 4352 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4353 TrueWeight /= 2; 4354 FalseWeight /= 2; 4355 } 4356 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4357 } 4358 } 4359 4360 // Prune obsolete incoming values off the successors' PHI nodes. 4361 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4362 unsigned PreviousEdges = ContiguousCases->size(); 4363 if (ContiguousDest == SI->getDefaultDest()) 4364 ++PreviousEdges; 4365 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4366 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4367 } 4368 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4369 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4370 if (OtherDest == SI->getDefaultDest()) 4371 ++PreviousEdges; 4372 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4373 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4374 } 4375 4376 // Drop the switch. 4377 SI->eraseFromParent(); 4378 4379 return true; 4380 } 4381 4382 /// Compute masked bits for the condition of a switch 4383 /// and use it to remove dead cases. 4384 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 4385 const DataLayout &DL) { 4386 Value *Cond = SI->getCondition(); 4387 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 4388 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 4389 4390 // We can also eliminate cases by determining that their values are outside of 4391 // the limited range of the condition based on how many significant (non-sign) 4392 // bits are in the condition value. 4393 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 4394 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 4395 4396 // Gather dead cases. 4397 SmallVector<ConstantInt *, 8> DeadCases; 4398 for (auto &Case : SI->cases()) { 4399 const APInt &CaseVal = Case.getCaseValue()->getValue(); 4400 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 4401 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 4402 DeadCases.push_back(Case.getCaseValue()); 4403 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 4404 << " is dead.\n"); 4405 } 4406 } 4407 4408 // If we can prove that the cases must cover all possible values, the 4409 // default destination becomes dead and we can remove it. If we know some 4410 // of the bits in the value, we can use that to more precisely compute the 4411 // number of possible unique case values. 4412 bool HasDefault = 4413 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4414 const unsigned NumUnknownBits = 4415 Bits - (Known.Zero | Known.One).countPopulation(); 4416 assert(NumUnknownBits <= Bits); 4417 if (HasDefault && DeadCases.empty() && 4418 NumUnknownBits < 64 /* avoid overflow */ && 4419 SI->getNumCases() == (1ULL << NumUnknownBits)) { 4420 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4421 BasicBlock *NewDefault = 4422 SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); 4423 SI->setDefaultDest(&*NewDefault); 4424 SplitBlock(&*NewDefault, &NewDefault->front()); 4425 auto *OldTI = NewDefault->getTerminator(); 4426 new UnreachableInst(SI->getContext(), OldTI); 4427 EraseTerminatorAndDCECond(OldTI); 4428 return true; 4429 } 4430 4431 SmallVector<uint64_t, 8> Weights; 4432 bool HasWeight = HasBranchWeights(SI); 4433 if (HasWeight) { 4434 GetBranchWeights(SI, Weights); 4435 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 4436 } 4437 4438 // Remove dead cases from the switch. 4439 for (ConstantInt *DeadCase : DeadCases) { 4440 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 4441 assert(CaseI != SI->case_default() && 4442 "Case was not found. Probably mistake in DeadCases forming."); 4443 if (HasWeight) { 4444 std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back()); 4445 Weights.pop_back(); 4446 } 4447 4448 // Prune unused values from PHI nodes. 4449 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 4450 SI->removeCase(CaseI); 4451 } 4452 if (HasWeight && Weights.size() >= 2) { 4453 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 4454 setBranchWeights(SI, MDWeights); 4455 } 4456 4457 return !DeadCases.empty(); 4458 } 4459 4460 /// If BB would be eligible for simplification by 4461 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 4462 /// by an unconditional branch), look at the phi node for BB in the successor 4463 /// block and see if the incoming value is equal to CaseValue. If so, return 4464 /// the phi node, and set PhiIndex to BB's index in the phi node. 4465 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 4466 BasicBlock *BB, int *PhiIndex) { 4467 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 4468 return nullptr; // BB must be empty to be a candidate for simplification. 4469 if (!BB->getSinglePredecessor()) 4470 return nullptr; // BB must be dominated by the switch. 4471 4472 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 4473 if (!Branch || !Branch->isUnconditional()) 4474 return nullptr; // Terminator must be unconditional branch. 4475 4476 BasicBlock *Succ = Branch->getSuccessor(0); 4477 4478 for (PHINode &PHI : Succ->phis()) { 4479 int Idx = PHI.getBasicBlockIndex(BB); 4480 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 4481 4482 Value *InValue = PHI.getIncomingValue(Idx); 4483 if (InValue != CaseValue) 4484 continue; 4485 4486 *PhiIndex = Idx; 4487 return &PHI; 4488 } 4489 4490 return nullptr; 4491 } 4492 4493 /// Try to forward the condition of a switch instruction to a phi node 4494 /// dominated by the switch, if that would mean that some of the destination 4495 /// blocks of the switch can be folded away. Return true if a change is made. 4496 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 4497 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 4498 4499 ForwardingNodesMap ForwardingNodes; 4500 BasicBlock *SwitchBlock = SI->getParent(); 4501 bool Changed = false; 4502 for (auto &Case : SI->cases()) { 4503 ConstantInt *CaseValue = Case.getCaseValue(); 4504 BasicBlock *CaseDest = Case.getCaseSuccessor(); 4505 4506 // Replace phi operands in successor blocks that are using the constant case 4507 // value rather than the switch condition variable: 4508 // switchbb: 4509 // switch i32 %x, label %default [ 4510 // i32 17, label %succ 4511 // ... 4512 // succ: 4513 // %r = phi i32 ... [ 17, %switchbb ] ... 4514 // --> 4515 // %r = phi i32 ... [ %x, %switchbb ] ... 4516 4517 for (PHINode &Phi : CaseDest->phis()) { 4518 // This only works if there is exactly 1 incoming edge from the switch to 4519 // a phi. If there is >1, that means multiple cases of the switch map to 1 4520 // value in the phi, and that phi value is not the switch condition. Thus, 4521 // this transform would not make sense (the phi would be invalid because 4522 // a phi can't have different incoming values from the same block). 4523 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 4524 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 4525 count(Phi.blocks(), SwitchBlock) == 1) { 4526 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 4527 Changed = true; 4528 } 4529 } 4530 4531 // Collect phi nodes that are indirectly using this switch's case constants. 4532 int PhiIdx; 4533 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 4534 ForwardingNodes[Phi].push_back(PhiIdx); 4535 } 4536 4537 for (auto &ForwardingNode : ForwardingNodes) { 4538 PHINode *Phi = ForwardingNode.first; 4539 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 4540 if (Indexes.size() < 2) 4541 continue; 4542 4543 for (int Index : Indexes) 4544 Phi->setIncomingValue(Index, SI->getCondition()); 4545 Changed = true; 4546 } 4547 4548 return Changed; 4549 } 4550 4551 /// Return true if the backend will be able to handle 4552 /// initializing an array of constants like C. 4553 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 4554 if (C->isThreadDependent()) 4555 return false; 4556 if (C->isDLLImportDependent()) 4557 return false; 4558 4559 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 4560 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 4561 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 4562 return false; 4563 4564 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 4565 if (!CE->isGEPWithNoNotionalOverIndexing()) 4566 return false; 4567 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 4568 return false; 4569 } 4570 4571 if (!TTI.shouldBuildLookupTablesForConstant(C)) 4572 return false; 4573 4574 return true; 4575 } 4576 4577 /// If V is a Constant, return it. Otherwise, try to look up 4578 /// its constant value in ConstantPool, returning 0 if it's not there. 4579 static Constant * 4580 LookupConstant(Value *V, 4581 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4582 if (Constant *C = dyn_cast<Constant>(V)) 4583 return C; 4584 return ConstantPool.lookup(V); 4585 } 4586 4587 /// Try to fold instruction I into a constant. This works for 4588 /// simple instructions such as binary operations where both operands are 4589 /// constant or can be replaced by constants from the ConstantPool. Returns the 4590 /// resulting constant on success, 0 otherwise. 4591 static Constant * 4592 ConstantFold(Instruction *I, const DataLayout &DL, 4593 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 4594 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 4595 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 4596 if (!A) 4597 return nullptr; 4598 if (A->isAllOnesValue()) 4599 return LookupConstant(Select->getTrueValue(), ConstantPool); 4600 if (A->isNullValue()) 4601 return LookupConstant(Select->getFalseValue(), ConstantPool); 4602 return nullptr; 4603 } 4604 4605 SmallVector<Constant *, 4> COps; 4606 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 4607 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 4608 COps.push_back(A); 4609 else 4610 return nullptr; 4611 } 4612 4613 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 4614 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 4615 COps[1], DL); 4616 } 4617 4618 return ConstantFoldInstOperands(I, COps, DL); 4619 } 4620 4621 /// Try to determine the resulting constant values in phi nodes 4622 /// at the common destination basic block, *CommonDest, for one of the case 4623 /// destionations CaseDest corresponding to value CaseVal (0 for the default 4624 /// case), of a switch instruction SI. 4625 static bool 4626 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4627 BasicBlock **CommonDest, 4628 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4629 const DataLayout &DL, const TargetTransformInfo &TTI) { 4630 // The block from which we enter the common destination. 4631 BasicBlock *Pred = SI->getParent(); 4632 4633 // If CaseDest is empty except for some side-effect free instructions through 4634 // which we can constant-propagate the CaseVal, continue to its successor. 4635 SmallDenseMap<Value *, Constant *> ConstantPool; 4636 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4637 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 4638 if (I.isTerminator()) { 4639 // If the terminator is a simple branch, continue to the next block. 4640 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 4641 return false; 4642 Pred = CaseDest; 4643 CaseDest = I.getSuccessor(0); 4644 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 4645 // Instruction is side-effect free and constant. 4646 4647 // If the instruction has uses outside this block or a phi node slot for 4648 // the block, it is not safe to bypass the instruction since it would then 4649 // no longer dominate all its uses. 4650 for (auto &Use : I.uses()) { 4651 User *User = Use.getUser(); 4652 if (Instruction *I = dyn_cast<Instruction>(User)) 4653 if (I->getParent() == CaseDest) 4654 continue; 4655 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4656 if (Phi->getIncomingBlock(Use) == CaseDest) 4657 continue; 4658 return false; 4659 } 4660 4661 ConstantPool.insert(std::make_pair(&I, C)); 4662 } else { 4663 break; 4664 } 4665 } 4666 4667 // If we did not have a CommonDest before, use the current one. 4668 if (!*CommonDest) 4669 *CommonDest = CaseDest; 4670 // If the destination isn't the common one, abort. 4671 if (CaseDest != *CommonDest) 4672 return false; 4673 4674 // Get the values for this case from phi nodes in the destination block. 4675 for (PHINode &PHI : (*CommonDest)->phis()) { 4676 int Idx = PHI.getBasicBlockIndex(Pred); 4677 if (Idx == -1) 4678 continue; 4679 4680 Constant *ConstVal = 4681 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 4682 if (!ConstVal) 4683 return false; 4684 4685 // Be conservative about which kinds of constants we support. 4686 if (!ValidLookupTableConstant(ConstVal, TTI)) 4687 return false; 4688 4689 Res.push_back(std::make_pair(&PHI, ConstVal)); 4690 } 4691 4692 return Res.size() > 0; 4693 } 4694 4695 // Helper function used to add CaseVal to the list of cases that generate 4696 // Result. Returns the updated number of cases that generate this result. 4697 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 4698 SwitchCaseResultVectorTy &UniqueResults, 4699 Constant *Result) { 4700 for (auto &I : UniqueResults) { 4701 if (I.first == Result) { 4702 I.second.push_back(CaseVal); 4703 return I.second.size(); 4704 } 4705 } 4706 UniqueResults.push_back( 4707 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 4708 return 1; 4709 } 4710 4711 // Helper function that initializes a map containing 4712 // results for the PHI node of the common destination block for a switch 4713 // instruction. Returns false if multiple PHI nodes have been found or if 4714 // there is not a common destination block for the switch. 4715 static bool 4716 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 4717 SwitchCaseResultVectorTy &UniqueResults, 4718 Constant *&DefaultResult, const DataLayout &DL, 4719 const TargetTransformInfo &TTI, 4720 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 4721 for (auto &I : SI->cases()) { 4722 ConstantInt *CaseVal = I.getCaseValue(); 4723 4724 // Resulting value at phi nodes for this case value. 4725 SwitchCaseResultsTy Results; 4726 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4727 DL, TTI)) 4728 return false; 4729 4730 // Only one value per case is permitted. 4731 if (Results.size() > 1) 4732 return false; 4733 4734 // Add the case->result mapping to UniqueResults. 4735 const uintptr_t NumCasesForResult = 4736 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4737 4738 // Early out if there are too many cases for this result. 4739 if (NumCasesForResult > MaxCasesPerResult) 4740 return false; 4741 4742 // Early out if there are too many unique results. 4743 if (UniqueResults.size() > MaxUniqueResults) 4744 return false; 4745 4746 // Check the PHI consistency. 4747 if (!PHI) 4748 PHI = Results[0].first; 4749 else if (PHI != Results[0].first) 4750 return false; 4751 } 4752 // Find the default result value. 4753 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4754 BasicBlock *DefaultDest = SI->getDefaultDest(); 4755 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4756 DL, TTI); 4757 // If the default value is not found abort unless the default destination 4758 // is unreachable. 4759 DefaultResult = 4760 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4761 if ((!DefaultResult && 4762 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4763 return false; 4764 4765 return true; 4766 } 4767 4768 // Helper function that checks if it is possible to transform a switch with only 4769 // two cases (or two cases + default) that produces a result into a select. 4770 // Example: 4771 // switch (a) { 4772 // case 10: %0 = icmp eq i32 %a, 10 4773 // return 10; %1 = select i1 %0, i32 10, i32 4 4774 // case 20: ----> %2 = icmp eq i32 %a, 20 4775 // return 2; %3 = select i1 %2, i32 2, i32 %1 4776 // default: 4777 // return 4; 4778 // } 4779 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4780 Constant *DefaultResult, Value *Condition, 4781 IRBuilder<> &Builder) { 4782 assert(ResultVector.size() == 2 && 4783 "We should have exactly two unique results at this point"); 4784 // If we are selecting between only two cases transform into a simple 4785 // select or a two-way select if default is possible. 4786 if (ResultVector[0].second.size() == 1 && 4787 ResultVector[1].second.size() == 1) { 4788 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4789 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4790 4791 bool DefaultCanTrigger = DefaultResult; 4792 Value *SelectValue = ResultVector[1].first; 4793 if (DefaultCanTrigger) { 4794 Value *const ValueCompare = 4795 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4796 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4797 DefaultResult, "switch.select"); 4798 } 4799 Value *const ValueCompare = 4800 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4801 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 4802 SelectValue, "switch.select"); 4803 } 4804 4805 return nullptr; 4806 } 4807 4808 // Helper function to cleanup a switch instruction that has been converted into 4809 // a select, fixing up PHI nodes and basic blocks. 4810 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4811 Value *SelectValue, 4812 IRBuilder<> &Builder) { 4813 BasicBlock *SelectBB = SI->getParent(); 4814 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4815 PHI->removeIncomingValue(SelectBB); 4816 PHI->addIncoming(SelectValue, SelectBB); 4817 4818 Builder.CreateBr(PHI->getParent()); 4819 4820 // Remove the switch. 4821 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4822 BasicBlock *Succ = SI->getSuccessor(i); 4823 4824 if (Succ == PHI->getParent()) 4825 continue; 4826 Succ->removePredecessor(SelectBB); 4827 } 4828 SI->eraseFromParent(); 4829 } 4830 4831 /// If the switch is only used to initialize one or more 4832 /// phi nodes in a common successor block with only two different 4833 /// constant values, replace the switch with select. 4834 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4835 const DataLayout &DL, 4836 const TargetTransformInfo &TTI) { 4837 Value *const Cond = SI->getCondition(); 4838 PHINode *PHI = nullptr; 4839 BasicBlock *CommonDest = nullptr; 4840 Constant *DefaultResult; 4841 SwitchCaseResultVectorTy UniqueResults; 4842 // Collect all the cases that will deliver the same value from the switch. 4843 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4844 DL, TTI, 2, 1)) 4845 return false; 4846 // Selects choose between maximum two values. 4847 if (UniqueResults.size() != 2) 4848 return false; 4849 assert(PHI != nullptr && "PHI for value select not found"); 4850 4851 Builder.SetInsertPoint(SI); 4852 Value *SelectValue = 4853 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 4854 if (SelectValue) { 4855 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4856 return true; 4857 } 4858 // The switch couldn't be converted into a select. 4859 return false; 4860 } 4861 4862 namespace { 4863 4864 /// This class represents a lookup table that can be used to replace a switch. 4865 class SwitchLookupTable { 4866 public: 4867 /// Create a lookup table to use as a switch replacement with the contents 4868 /// of Values, using DefaultValue to fill any holes in the table. 4869 SwitchLookupTable( 4870 Module &M, uint64_t TableSize, ConstantInt *Offset, 4871 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4872 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 4873 4874 /// Build instructions with Builder to retrieve the value at 4875 /// the position given by Index in the lookup table. 4876 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4877 4878 /// Return true if a table with TableSize elements of 4879 /// type ElementType would fit in a target-legal register. 4880 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4881 Type *ElementType); 4882 4883 private: 4884 // Depending on the contents of the table, it can be represented in 4885 // different ways. 4886 enum { 4887 // For tables where each element contains the same value, we just have to 4888 // store that single value and return it for each lookup. 4889 SingleValueKind, 4890 4891 // For tables where there is a linear relationship between table index 4892 // and values. We calculate the result with a simple multiplication 4893 // and addition instead of a table lookup. 4894 LinearMapKind, 4895 4896 // For small tables with integer elements, we can pack them into a bitmap 4897 // that fits into a target-legal register. Values are retrieved by 4898 // shift and mask operations. 4899 BitMapKind, 4900 4901 // The table is stored as an array of values. Values are retrieved by load 4902 // instructions from the table. 4903 ArrayKind 4904 } Kind; 4905 4906 // For SingleValueKind, this is the single value. 4907 Constant *SingleValue = nullptr; 4908 4909 // For BitMapKind, this is the bitmap. 4910 ConstantInt *BitMap = nullptr; 4911 IntegerType *BitMapElementTy = nullptr; 4912 4913 // For LinearMapKind, these are the constants used to derive the value. 4914 ConstantInt *LinearOffset = nullptr; 4915 ConstantInt *LinearMultiplier = nullptr; 4916 4917 // For ArrayKind, this is the array. 4918 GlobalVariable *Array = nullptr; 4919 }; 4920 4921 } // end anonymous namespace 4922 4923 SwitchLookupTable::SwitchLookupTable( 4924 Module &M, uint64_t TableSize, ConstantInt *Offset, 4925 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4926 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 4927 assert(Values.size() && "Can't build lookup table without values!"); 4928 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4929 4930 // If all values in the table are equal, this is that value. 4931 SingleValue = Values.begin()->second; 4932 4933 Type *ValueType = Values.begin()->second->getType(); 4934 4935 // Build up the table contents. 4936 SmallVector<Constant *, 64> TableContents(TableSize); 4937 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4938 ConstantInt *CaseVal = Values[I].first; 4939 Constant *CaseRes = Values[I].second; 4940 assert(CaseRes->getType() == ValueType); 4941 4942 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 4943 TableContents[Idx] = CaseRes; 4944 4945 if (CaseRes != SingleValue) 4946 SingleValue = nullptr; 4947 } 4948 4949 // Fill in any holes in the table with the default result. 4950 if (Values.size() < TableSize) { 4951 assert(DefaultValue && 4952 "Need a default value to fill the lookup table holes."); 4953 assert(DefaultValue->getType() == ValueType); 4954 for (uint64_t I = 0; I < TableSize; ++I) { 4955 if (!TableContents[I]) 4956 TableContents[I] = DefaultValue; 4957 } 4958 4959 if (DefaultValue != SingleValue) 4960 SingleValue = nullptr; 4961 } 4962 4963 // If each element in the table contains the same value, we only need to store 4964 // that single value. 4965 if (SingleValue) { 4966 Kind = SingleValueKind; 4967 return; 4968 } 4969 4970 // Check if we can derive the value with a linear transformation from the 4971 // table index. 4972 if (isa<IntegerType>(ValueType)) { 4973 bool LinearMappingPossible = true; 4974 APInt PrevVal; 4975 APInt DistToPrev; 4976 assert(TableSize >= 2 && "Should be a SingleValue table."); 4977 // Check if there is the same distance between two consecutive values. 4978 for (uint64_t I = 0; I < TableSize; ++I) { 4979 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4980 if (!ConstVal) { 4981 // This is an undef. We could deal with it, but undefs in lookup tables 4982 // are very seldom. It's probably not worth the additional complexity. 4983 LinearMappingPossible = false; 4984 break; 4985 } 4986 const APInt &Val = ConstVal->getValue(); 4987 if (I != 0) { 4988 APInt Dist = Val - PrevVal; 4989 if (I == 1) { 4990 DistToPrev = Dist; 4991 } else if (Dist != DistToPrev) { 4992 LinearMappingPossible = false; 4993 break; 4994 } 4995 } 4996 PrevVal = Val; 4997 } 4998 if (LinearMappingPossible) { 4999 LinearOffset = cast<ConstantInt>(TableContents[0]); 5000 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5001 Kind = LinearMapKind; 5002 ++NumLinearMaps; 5003 return; 5004 } 5005 } 5006 5007 // If the type is integer and the table fits in a register, build a bitmap. 5008 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5009 IntegerType *IT = cast<IntegerType>(ValueType); 5010 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5011 for (uint64_t I = TableSize; I > 0; --I) { 5012 TableInt <<= IT->getBitWidth(); 5013 // Insert values into the bitmap. Undef values are set to zero. 5014 if (!isa<UndefValue>(TableContents[I - 1])) { 5015 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5016 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5017 } 5018 } 5019 BitMap = ConstantInt::get(M.getContext(), TableInt); 5020 BitMapElementTy = IT; 5021 Kind = BitMapKind; 5022 ++NumBitMaps; 5023 return; 5024 } 5025 5026 // Store the table in an array. 5027 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5028 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5029 5030 Array = new GlobalVariable(M, ArrayTy, /*constant=*/true, 5031 GlobalVariable::PrivateLinkage, Initializer, 5032 "switch.table." + FuncName); 5033 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5034 // Set the alignment to that of an array items. We will be only loading one 5035 // value out of it. 5036 Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); 5037 Kind = ArrayKind; 5038 } 5039 5040 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5041 switch (Kind) { 5042 case SingleValueKind: 5043 return SingleValue; 5044 case LinearMapKind: { 5045 // Derive the result value from the input value. 5046 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5047 false, "switch.idx.cast"); 5048 if (!LinearMultiplier->isOne()) 5049 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5050 if (!LinearOffset->isZero()) 5051 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5052 return Result; 5053 } 5054 case BitMapKind: { 5055 // Type of the bitmap (e.g. i59). 5056 IntegerType *MapTy = BitMap->getType(); 5057 5058 // Cast Index to the same type as the bitmap. 5059 // Note: The Index is <= the number of elements in the table, so 5060 // truncating it to the width of the bitmask is safe. 5061 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5062 5063 // Multiply the shift amount by the element width. 5064 ShiftAmt = Builder.CreateMul( 5065 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5066 "switch.shiftamt"); 5067 5068 // Shift down. 5069 Value *DownShifted = 5070 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5071 // Mask off. 5072 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5073 } 5074 case ArrayKind: { 5075 // Make sure the table index will not overflow when treated as signed. 5076 IntegerType *IT = cast<IntegerType>(Index->getType()); 5077 uint64_t TableSize = 5078 Array->getInitializer()->getType()->getArrayNumElements(); 5079 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5080 Index = Builder.CreateZExt( 5081 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5082 "switch.tableidx.zext"); 5083 5084 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5085 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5086 GEPIndices, "switch.gep"); 5087 return Builder.CreateLoad(GEP, "switch.load"); 5088 } 5089 } 5090 llvm_unreachable("Unknown lookup table kind!"); 5091 } 5092 5093 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5094 uint64_t TableSize, 5095 Type *ElementType) { 5096 auto *IT = dyn_cast<IntegerType>(ElementType); 5097 if (!IT) 5098 return false; 5099 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5100 // are <= 15, we could try to narrow the type. 5101 5102 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5103 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5104 return false; 5105 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5106 } 5107 5108 /// Determine whether a lookup table should be built for this switch, based on 5109 /// the number of cases, size of the table, and the types of the results. 5110 static bool 5111 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5112 const TargetTransformInfo &TTI, const DataLayout &DL, 5113 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5114 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5115 return false; // TableSize overflowed, or mul below might overflow. 5116 5117 bool AllTablesFitInRegister = true; 5118 bool HasIllegalType = false; 5119 for (const auto &I : ResultTypes) { 5120 Type *Ty = I.second; 5121 5122 // Saturate this flag to true. 5123 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5124 5125 // Saturate this flag to false. 5126 AllTablesFitInRegister = 5127 AllTablesFitInRegister && 5128 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5129 5130 // If both flags saturate, we're done. NOTE: This *only* works with 5131 // saturating flags, and all flags have to saturate first due to the 5132 // non-deterministic behavior of iterating over a dense map. 5133 if (HasIllegalType && !AllTablesFitInRegister) 5134 break; 5135 } 5136 5137 // If each table would fit in a register, we should build it anyway. 5138 if (AllTablesFitInRegister) 5139 return true; 5140 5141 // Don't build a table that doesn't fit in-register if it has illegal types. 5142 if (HasIllegalType) 5143 return false; 5144 5145 // The table density should be at least 40%. This is the same criterion as for 5146 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5147 // FIXME: Find the best cut-off. 5148 return SI->getNumCases() * 10 >= TableSize * 4; 5149 } 5150 5151 /// Try to reuse the switch table index compare. Following pattern: 5152 /// \code 5153 /// if (idx < tablesize) 5154 /// r = table[idx]; // table does not contain default_value 5155 /// else 5156 /// r = default_value; 5157 /// if (r != default_value) 5158 /// ... 5159 /// \endcode 5160 /// Is optimized to: 5161 /// \code 5162 /// cond = idx < tablesize; 5163 /// if (cond) 5164 /// r = table[idx]; 5165 /// else 5166 /// r = default_value; 5167 /// if (cond) 5168 /// ... 5169 /// \endcode 5170 /// Jump threading will then eliminate the second if(cond). 5171 static void reuseTableCompare( 5172 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5173 Constant *DefaultValue, 5174 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5175 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5176 if (!CmpInst) 5177 return; 5178 5179 // We require that the compare is in the same block as the phi so that jump 5180 // threading can do its work afterwards. 5181 if (CmpInst->getParent() != PhiBlock) 5182 return; 5183 5184 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5185 if (!CmpOp1) 5186 return; 5187 5188 Value *RangeCmp = RangeCheckBranch->getCondition(); 5189 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5190 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5191 5192 // Check if the compare with the default value is constant true or false. 5193 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5194 DefaultValue, CmpOp1, true); 5195 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5196 return; 5197 5198 // Check if the compare with the case values is distinct from the default 5199 // compare result. 5200 for (auto ValuePair : Values) { 5201 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5202 ValuePair.second, CmpOp1, true); 5203 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5204 return; 5205 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5206 "Expect true or false as compare result."); 5207 } 5208 5209 // Check if the branch instruction dominates the phi node. It's a simple 5210 // dominance check, but sufficient for our needs. 5211 // Although this check is invariant in the calling loops, it's better to do it 5212 // at this late stage. Practically we do it at most once for a switch. 5213 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5214 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 5215 BasicBlock *Pred = *PI; 5216 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5217 return; 5218 } 5219 5220 if (DefaultConst == FalseConst) { 5221 // The compare yields the same result. We can replace it. 5222 CmpInst->replaceAllUsesWith(RangeCmp); 5223 ++NumTableCmpReuses; 5224 } else { 5225 // The compare yields the same result, just inverted. We can replace it. 5226 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5227 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5228 RangeCheckBranch); 5229 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5230 ++NumTableCmpReuses; 5231 } 5232 } 5233 5234 /// If the switch is only used to initialize one or more phi nodes in a common 5235 /// successor block with different constant values, replace the switch with 5236 /// lookup tables. 5237 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5238 const DataLayout &DL, 5239 const TargetTransformInfo &TTI) { 5240 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5241 5242 Function *Fn = SI->getParent()->getParent(); 5243 // Only build lookup table when we have a target that supports it or the 5244 // attribute is not set. 5245 if (!TTI.shouldBuildLookupTables() || 5246 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) 5247 return false; 5248 5249 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5250 // split off a dense part and build a lookup table for that. 5251 5252 // FIXME: This creates arrays of GEPs to constant strings, which means each 5253 // GEP needs a runtime relocation in PIC code. We should just build one big 5254 // string and lookup indices into that. 5255 5256 // Ignore switches with less than three cases. Lookup tables will not make 5257 // them faster, so we don't analyze them. 5258 if (SI->getNumCases() < 3) 5259 return false; 5260 5261 // Figure out the corresponding result for each case value and phi node in the 5262 // common destination, as well as the min and max case values. 5263 assert(!empty(SI->cases())); 5264 SwitchInst::CaseIt CI = SI->case_begin(); 5265 ConstantInt *MinCaseVal = CI->getCaseValue(); 5266 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5267 5268 BasicBlock *CommonDest = nullptr; 5269 5270 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5271 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5272 5273 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5274 SmallDenseMap<PHINode *, Type *> ResultTypes; 5275 SmallVector<PHINode *, 4> PHIs; 5276 5277 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5278 ConstantInt *CaseVal = CI->getCaseValue(); 5279 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5280 MinCaseVal = CaseVal; 5281 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5282 MaxCaseVal = CaseVal; 5283 5284 // Resulting value at phi nodes for this case value. 5285 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5286 ResultsTy Results; 5287 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5288 Results, DL, TTI)) 5289 return false; 5290 5291 // Append the result from this case to the list for each phi. 5292 for (const auto &I : Results) { 5293 PHINode *PHI = I.first; 5294 Constant *Value = I.second; 5295 if (!ResultLists.count(PHI)) 5296 PHIs.push_back(PHI); 5297 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5298 } 5299 } 5300 5301 // Keep track of the result types. 5302 for (PHINode *PHI : PHIs) { 5303 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5304 } 5305 5306 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5307 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5308 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5309 bool TableHasHoles = (NumResults < TableSize); 5310 5311 // If the table has holes, we need a constant result for the default case 5312 // or a bitmask that fits in a register. 5313 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5314 bool HasDefaultResults = 5315 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5316 DefaultResultsList, DL, TTI); 5317 5318 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5319 if (NeedMask) { 5320 // As an extra penalty for the validity test we require more cases. 5321 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5322 return false; 5323 if (!DL.fitsInLegalInteger(TableSize)) 5324 return false; 5325 } 5326 5327 for (const auto &I : DefaultResultsList) { 5328 PHINode *PHI = I.first; 5329 Constant *Result = I.second; 5330 DefaultResults[PHI] = Result; 5331 } 5332 5333 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5334 return false; 5335 5336 // Create the BB that does the lookups. 5337 Module &Mod = *CommonDest->getParent()->getParent(); 5338 BasicBlock *LookupBB = BasicBlock::Create( 5339 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5340 5341 // Compute the table index value. 5342 Builder.SetInsertPoint(SI); 5343 Value *TableIndex; 5344 if (MinCaseVal->isNullValue()) 5345 TableIndex = SI->getCondition(); 5346 else 5347 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5348 "switch.tableidx"); 5349 5350 // Compute the maximum table size representable by the integer type we are 5351 // switching upon. 5352 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5353 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5354 assert(MaxTableSize >= TableSize && 5355 "It is impossible for a switch to have more entries than the max " 5356 "representable value of its input integer type's size."); 5357 5358 // If the default destination is unreachable, or if the lookup table covers 5359 // all values of the conditional variable, branch directly to the lookup table 5360 // BB. Otherwise, check that the condition is within the case range. 5361 const bool DefaultIsReachable = 5362 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5363 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 5364 BranchInst *RangeCheckBranch = nullptr; 5365 5366 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5367 Builder.CreateBr(LookupBB); 5368 // Note: We call removeProdecessor later since we need to be able to get the 5369 // PHI value for the default case in case we're using a bit mask. 5370 } else { 5371 Value *Cmp = Builder.CreateICmpULT( 5372 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 5373 RangeCheckBranch = 5374 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 5375 } 5376 5377 // Populate the BB that does the lookups. 5378 Builder.SetInsertPoint(LookupBB); 5379 5380 if (NeedMask) { 5381 // Before doing the lookup, we do the hole check. The LookupBB is therefore 5382 // re-purposed to do the hole check, and we create a new LookupBB. 5383 BasicBlock *MaskBB = LookupBB; 5384 MaskBB->setName("switch.hole_check"); 5385 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 5386 CommonDest->getParent(), CommonDest); 5387 5388 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 5389 // unnecessary illegal types. 5390 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 5391 APInt MaskInt(TableSizePowOf2, 0); 5392 APInt One(TableSizePowOf2, 1); 5393 // Build bitmask; fill in a 1 bit for every case. 5394 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 5395 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 5396 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 5397 .getLimitedValue(); 5398 MaskInt |= One << Idx; 5399 } 5400 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 5401 5402 // Get the TableIndex'th bit of the bitmask. 5403 // If this bit is 0 (meaning hole) jump to the default destination, 5404 // else continue with table lookup. 5405 IntegerType *MapTy = TableMask->getType(); 5406 Value *MaskIndex = 5407 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 5408 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 5409 Value *LoBit = Builder.CreateTrunc( 5410 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 5411 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 5412 5413 Builder.SetInsertPoint(LookupBB); 5414 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 5415 } 5416 5417 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 5418 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 5419 // do not delete PHINodes here. 5420 SI->getDefaultDest()->removePredecessor(SI->getParent(), 5421 /*DontDeleteUselessPHIs=*/true); 5422 } 5423 5424 bool ReturnedEarly = false; 5425 for (PHINode *PHI : PHIs) { 5426 const ResultListTy &ResultList = ResultLists[PHI]; 5427 5428 // If using a bitmask, use any value to fill the lookup table holes. 5429 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 5430 StringRef FuncName = Fn->getName(); 5431 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 5432 FuncName); 5433 5434 Value *Result = Table.BuildLookup(TableIndex, Builder); 5435 5436 // If the result is used to return immediately from the function, we want to 5437 // do that right here. 5438 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 5439 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 5440 Builder.CreateRet(Result); 5441 ReturnedEarly = true; 5442 break; 5443 } 5444 5445 // Do a small peephole optimization: re-use the switch table compare if 5446 // possible. 5447 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 5448 BasicBlock *PhiBlock = PHI->getParent(); 5449 // Search for compare instructions which use the phi. 5450 for (auto *User : PHI->users()) { 5451 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 5452 } 5453 } 5454 5455 PHI->addIncoming(Result, LookupBB); 5456 } 5457 5458 if (!ReturnedEarly) 5459 Builder.CreateBr(CommonDest); 5460 5461 // Remove the switch. 5462 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5463 BasicBlock *Succ = SI->getSuccessor(i); 5464 5465 if (Succ == SI->getDefaultDest()) 5466 continue; 5467 Succ->removePredecessor(SI->getParent()); 5468 } 5469 SI->eraseFromParent(); 5470 5471 ++NumLookupTables; 5472 if (NeedMask) 5473 ++NumLookupTablesHoles; 5474 return true; 5475 } 5476 5477 static bool isSwitchDense(ArrayRef<int64_t> Values) { 5478 // See also SelectionDAGBuilder::isDense(), which this function was based on. 5479 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 5480 uint64_t Range = Diff + 1; 5481 uint64_t NumCases = Values.size(); 5482 // 40% is the default density for building a jump table in optsize/minsize mode. 5483 uint64_t MinDensity = 40; 5484 5485 return NumCases * 100 >= Range * MinDensity; 5486 } 5487 5488 /// Try to transform a switch that has "holes" in it to a contiguous sequence 5489 /// of cases. 5490 /// 5491 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 5492 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 5493 /// 5494 /// This converts a sparse switch into a dense switch which allows better 5495 /// lowering and could also allow transforming into a lookup table. 5496 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 5497 const DataLayout &DL, 5498 const TargetTransformInfo &TTI) { 5499 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 5500 if (CondTy->getIntegerBitWidth() > 64 || 5501 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5502 return false; 5503 // Only bother with this optimization if there are more than 3 switch cases; 5504 // SDAG will only bother creating jump tables for 4 or more cases. 5505 if (SI->getNumCases() < 4) 5506 return false; 5507 5508 // This transform is agnostic to the signedness of the input or case values. We 5509 // can treat the case values as signed or unsigned. We can optimize more common 5510 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 5511 // as signed. 5512 SmallVector<int64_t,4> Values; 5513 for (auto &C : SI->cases()) 5514 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 5515 llvm::sort(Values); 5516 5517 // If the switch is already dense, there's nothing useful to do here. 5518 if (isSwitchDense(Values)) 5519 return false; 5520 5521 // First, transform the values such that they start at zero and ascend. 5522 int64_t Base = Values[0]; 5523 for (auto &V : Values) 5524 V -= (uint64_t)(Base); 5525 5526 // Now we have signed numbers that have been shifted so that, given enough 5527 // precision, there are no negative values. Since the rest of the transform 5528 // is bitwise only, we switch now to an unsigned representation. 5529 uint64_t GCD = 0; 5530 for (auto &V : Values) 5531 GCD = GreatestCommonDivisor64(GCD, (uint64_t)V); 5532 5533 // This transform can be done speculatively because it is so cheap - it results 5534 // in a single rotate operation being inserted. This can only happen if the 5535 // factor extracted is a power of 2. 5536 // FIXME: If the GCD is an odd number we can multiply by the multiplicative 5537 // inverse of GCD and then perform this transform. 5538 // FIXME: It's possible that optimizing a switch on powers of two might also 5539 // be beneficial - flag values are often powers of two and we could use a CLZ 5540 // as the key function. 5541 if (GCD <= 1 || !isPowerOf2_64(GCD)) 5542 // No common divisor found or too expensive to compute key function. 5543 return false; 5544 5545 unsigned Shift = Log2_64(GCD); 5546 for (auto &V : Values) 5547 V = (int64_t)((uint64_t)V >> Shift); 5548 5549 if (!isSwitchDense(Values)) 5550 // Transform didn't create a dense switch. 5551 return false; 5552 5553 // The obvious transform is to shift the switch condition right and emit a 5554 // check that the condition actually cleanly divided by GCD, i.e. 5555 // C & (1 << Shift - 1) == 0 5556 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 5557 // 5558 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 5559 // shift and puts the shifted-off bits in the uppermost bits. If any of these 5560 // are nonzero then the switch condition will be very large and will hit the 5561 // default case. 5562 5563 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 5564 Builder.SetInsertPoint(SI); 5565 auto *ShiftC = ConstantInt::get(Ty, Shift); 5566 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 5567 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 5568 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 5569 auto *Rot = Builder.CreateOr(LShr, Shl); 5570 SI->replaceUsesOfWith(SI->getCondition(), Rot); 5571 5572 for (auto Case : SI->cases()) { 5573 auto *Orig = Case.getCaseValue(); 5574 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 5575 Case.setValue( 5576 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 5577 } 5578 return true; 5579 } 5580 5581 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 5582 BasicBlock *BB = SI->getParent(); 5583 5584 if (isValueEqualityComparison(SI)) { 5585 // If we only have one predecessor, and if it is a branch on this value, 5586 // see if that predecessor totally determines the outcome of this switch. 5587 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5588 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 5589 return requestResimplify(); 5590 5591 Value *Cond = SI->getCondition(); 5592 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 5593 if (SimplifySwitchOnSelect(SI, Select)) 5594 return requestResimplify(); 5595 5596 // If the block only contains the switch, see if we can fold the block 5597 // away into any preds. 5598 if (SI == &*BB->instructionsWithoutDebug().begin()) 5599 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 5600 return requestResimplify(); 5601 } 5602 5603 // Try to transform the switch into an icmp and a branch. 5604 if (TurnSwitchRangeIntoICmp(SI, Builder)) 5605 return requestResimplify(); 5606 5607 // Remove unreachable cases. 5608 if (eliminateDeadSwitchCases(SI, Options.AC, DL)) 5609 return requestResimplify(); 5610 5611 if (switchToSelect(SI, Builder, DL, TTI)) 5612 return requestResimplify(); 5613 5614 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 5615 return requestResimplify(); 5616 5617 // The conversion from switch to lookup tables results in difficult-to-analyze 5618 // code and makes pruning branches much harder. This is a problem if the 5619 // switch expression itself can still be restricted as a result of inlining or 5620 // CVP. Therefore, only apply this transformation during late stages of the 5621 // optimisation pipeline. 5622 if (Options.ConvertSwitchToLookupTable && 5623 SwitchToLookupTable(SI, Builder, DL, TTI)) 5624 return requestResimplify(); 5625 5626 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 5627 return requestResimplify(); 5628 5629 return false; 5630 } 5631 5632 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 5633 BasicBlock *BB = IBI->getParent(); 5634 bool Changed = false; 5635 5636 // Eliminate redundant destinations. 5637 SmallPtrSet<Value *, 8> Succs; 5638 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 5639 BasicBlock *Dest = IBI->getDestination(i); 5640 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 5641 Dest->removePredecessor(BB); 5642 IBI->removeDestination(i); 5643 --i; 5644 --e; 5645 Changed = true; 5646 } 5647 } 5648 5649 if (IBI->getNumDestinations() == 0) { 5650 // If the indirectbr has no successors, change it to unreachable. 5651 new UnreachableInst(IBI->getContext(), IBI); 5652 EraseTerminatorAndDCECond(IBI); 5653 return true; 5654 } 5655 5656 if (IBI->getNumDestinations() == 1) { 5657 // If the indirectbr has one successor, change it to a direct branch. 5658 BranchInst::Create(IBI->getDestination(0), IBI); 5659 EraseTerminatorAndDCECond(IBI); 5660 return true; 5661 } 5662 5663 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 5664 if (SimplifyIndirectBrOnSelect(IBI, SI)) 5665 return requestResimplify(); 5666 } 5667 return Changed; 5668 } 5669 5670 /// Given an block with only a single landing pad and a unconditional branch 5671 /// try to find another basic block which this one can be merged with. This 5672 /// handles cases where we have multiple invokes with unique landing pads, but 5673 /// a shared handler. 5674 /// 5675 /// We specifically choose to not worry about merging non-empty blocks 5676 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 5677 /// practice, the optimizer produces empty landing pad blocks quite frequently 5678 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 5679 /// sinking in this file) 5680 /// 5681 /// This is primarily a code size optimization. We need to avoid performing 5682 /// any transform which might inhibit optimization (such as our ability to 5683 /// specialize a particular handler via tail commoning). We do this by not 5684 /// merging any blocks which require us to introduce a phi. Since the same 5685 /// values are flowing through both blocks, we don't lose any ability to 5686 /// specialize. If anything, we make such specialization more likely. 5687 /// 5688 /// TODO - This transformation could remove entries from a phi in the target 5689 /// block when the inputs in the phi are the same for the two blocks being 5690 /// merged. In some cases, this could result in removal of the PHI entirely. 5691 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 5692 BasicBlock *BB) { 5693 auto Succ = BB->getUniqueSuccessor(); 5694 assert(Succ); 5695 // If there's a phi in the successor block, we'd likely have to introduce 5696 // a phi into the merged landing pad block. 5697 if (isa<PHINode>(*Succ->begin())) 5698 return false; 5699 5700 for (BasicBlock *OtherPred : predecessors(Succ)) { 5701 if (BB == OtherPred) 5702 continue; 5703 BasicBlock::iterator I = OtherPred->begin(); 5704 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 5705 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 5706 continue; 5707 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5708 ; 5709 BranchInst *BI2 = dyn_cast<BranchInst>(I); 5710 if (!BI2 || !BI2->isIdenticalTo(BI)) 5711 continue; 5712 5713 // We've found an identical block. Update our predecessors to take that 5714 // path instead and make ourselves dead. 5715 SmallPtrSet<BasicBlock *, 16> Preds; 5716 Preds.insert(pred_begin(BB), pred_end(BB)); 5717 for (BasicBlock *Pred : Preds) { 5718 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 5719 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 5720 "unexpected successor"); 5721 II->setUnwindDest(OtherPred); 5722 } 5723 5724 // The debug info in OtherPred doesn't cover the merged control flow that 5725 // used to go through BB. We need to delete it or update it. 5726 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 5727 Instruction &Inst = *I; 5728 I++; 5729 if (isa<DbgInfoIntrinsic>(Inst)) 5730 Inst.eraseFromParent(); 5731 } 5732 5733 SmallPtrSet<BasicBlock *, 16> Succs; 5734 Succs.insert(succ_begin(BB), succ_end(BB)); 5735 for (BasicBlock *Succ : Succs) { 5736 Succ->removePredecessor(BB); 5737 } 5738 5739 IRBuilder<> Builder(BI); 5740 Builder.CreateUnreachable(); 5741 BI->eraseFromParent(); 5742 return true; 5743 } 5744 return false; 5745 } 5746 5747 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, 5748 IRBuilder<> &Builder) { 5749 BasicBlock *BB = BI->getParent(); 5750 BasicBlock *Succ = BI->getSuccessor(0); 5751 5752 // If the Terminator is the only non-phi instruction, simplify the block. 5753 // If LoopHeader is provided, check if the block or its successor is a loop 5754 // header. (This is for early invocations before loop simplify and 5755 // vectorization to keep canonical loop forms for nested loops. These blocks 5756 // can be eliminated when the pass is invoked later in the back-end.) 5757 // Note that if BB has only one predecessor then we do not introduce new 5758 // backedge, so we can eliminate BB. 5759 bool NeedCanonicalLoop = 5760 Options.NeedCanonicalLoop && 5761 (LoopHeaders && pred_size(BB) > 1 && 5762 (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); 5763 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5764 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5765 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5766 return true; 5767 5768 // If the only instruction in the block is a seteq/setne comparison against a 5769 // constant, try to simplify the block. 5770 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5771 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5772 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5773 ; 5774 if (I->isTerminator() && 5775 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 5776 return true; 5777 } 5778 5779 // See if we can merge an empty landing pad block with another which is 5780 // equivalent. 5781 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5782 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5783 ; 5784 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) 5785 return true; 5786 } 5787 5788 // If this basic block is ONLY a compare and a branch, and if a predecessor 5789 // branches to us and our successor, fold the comparison into the 5790 // predecessor and use logical operations to update the incoming value 5791 // for PHI nodes in common successor. 5792 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5793 return requestResimplify(); 5794 return false; 5795 } 5796 5797 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5798 BasicBlock *PredPred = nullptr; 5799 for (auto *P : predecessors(BB)) { 5800 BasicBlock *PPred = P->getSinglePredecessor(); 5801 if (!PPred || (PredPred && PredPred != PPred)) 5802 return nullptr; 5803 PredPred = PPred; 5804 } 5805 return PredPred; 5806 } 5807 5808 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5809 BasicBlock *BB = BI->getParent(); 5810 const Function *Fn = BB->getParent(); 5811 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) 5812 return false; 5813 5814 // Conditional branch 5815 if (isValueEqualityComparison(BI)) { 5816 // If we only have one predecessor, and if it is a branch on this value, 5817 // see if that predecessor totally determines the outcome of this 5818 // switch. 5819 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5820 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5821 return requestResimplify(); 5822 5823 // This block must be empty, except for the setcond inst, if it exists. 5824 // Ignore dbg intrinsics. 5825 auto I = BB->instructionsWithoutDebug().begin(); 5826 if (&*I == BI) { 5827 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5828 return requestResimplify(); 5829 } else if (&*I == cast<Instruction>(BI->getCondition())) { 5830 ++I; 5831 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5832 return requestResimplify(); 5833 } 5834 } 5835 5836 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5837 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5838 return true; 5839 5840 // If this basic block has a single dominating predecessor block and the 5841 // dominating block's condition implies BI's condition, we know the direction 5842 // of the BI branch. 5843 if (BasicBlock *Dom = BB->getSinglePredecessor()) { 5844 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 5845 if (PBI && PBI->isConditional() && 5846 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 5847 assert(PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB); 5848 bool CondIsTrue = PBI->getSuccessor(0) == BB; 5849 Optional<bool> Implication = isImpliedCondition( 5850 PBI->getCondition(), BI->getCondition(), DL, CondIsTrue); 5851 if (Implication) { 5852 // Turn this into a branch on constant. 5853 auto *OldCond = BI->getCondition(); 5854 ConstantInt *CI = *Implication 5855 ? ConstantInt::getTrue(BB->getContext()) 5856 : ConstantInt::getFalse(BB->getContext()); 5857 BI->setCondition(CI); 5858 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 5859 return requestResimplify(); 5860 } 5861 } 5862 } 5863 5864 // If this basic block is ONLY a compare and a branch, and if a predecessor 5865 // branches to us and one of our successors, fold the comparison into the 5866 // predecessor and use logical operations to pick the right destination. 5867 if (FoldBranchToCommonDest(BI, Options.BonusInstThreshold)) 5868 return requestResimplify(); 5869 5870 // We have a conditional branch to two blocks that are only reachable 5871 // from BI. We know that the condbr dominates the two blocks, so see if 5872 // there is any identical code in the "then" and "else" blocks. If so, we 5873 // can hoist it up to the branching block. 5874 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5875 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5876 if (HoistThenElseCodeToIf(BI, TTI)) 5877 return requestResimplify(); 5878 } else { 5879 // If Successor #1 has multiple preds, we may be able to conditionally 5880 // execute Successor #0 if it branches to Successor #1. 5881 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5882 if (Succ0TI->getNumSuccessors() == 1 && 5883 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5884 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5885 return requestResimplify(); 5886 } 5887 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5888 // If Successor #0 has multiple preds, we may be able to conditionally 5889 // execute Successor #1 if it branches to Successor #0. 5890 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5891 if (Succ1TI->getNumSuccessors() == 1 && 5892 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5893 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5894 return requestResimplify(); 5895 } 5896 5897 // If this is a branch on a phi node in the current block, thread control 5898 // through this block if any PHI node entries are constants. 5899 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5900 if (PN->getParent() == BI->getParent()) 5901 if (FoldCondBranchOnPHI(BI, DL, Options.AC)) 5902 return requestResimplify(); 5903 5904 // Scan predecessor blocks for conditional branches. 5905 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5906 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5907 if (PBI != BI && PBI->isConditional()) 5908 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5909 return requestResimplify(); 5910 5911 // Look for diamond patterns. 5912 if (MergeCondStores) 5913 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5914 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5915 if (PBI != BI && PBI->isConditional()) 5916 if (mergeConditionalStores(PBI, BI, DL)) 5917 return requestResimplify(); 5918 5919 return false; 5920 } 5921 5922 /// Check if passing a value to an instruction will cause undefined behavior. 5923 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5924 Constant *C = dyn_cast<Constant>(V); 5925 if (!C) 5926 return false; 5927 5928 if (I->use_empty()) 5929 return false; 5930 5931 if (C->isNullValue() || isa<UndefValue>(C)) { 5932 // Only look at the first use, avoid hurting compile time with long uselists 5933 User *Use = *I->user_begin(); 5934 5935 // Now make sure that there are no instructions in between that can alter 5936 // control flow (eg. calls) 5937 for (BasicBlock::iterator 5938 i = ++BasicBlock::iterator(I), 5939 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 5940 i != UI; ++i) 5941 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5942 return false; 5943 5944 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5945 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5946 if (GEP->getPointerOperand() == I) 5947 return passingValueIsAlwaysUndefined(V, GEP); 5948 5949 // Look through bitcasts. 5950 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5951 return passingValueIsAlwaysUndefined(V, BC); 5952 5953 // Load from null is undefined. 5954 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5955 if (!LI->isVolatile()) 5956 return !NullPointerIsDefined(LI->getFunction(), 5957 LI->getPointerAddressSpace()); 5958 5959 // Store to null is undefined. 5960 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5961 if (!SI->isVolatile()) 5962 return (!NullPointerIsDefined(SI->getFunction(), 5963 SI->getPointerAddressSpace())) && 5964 SI->getPointerOperand() == I; 5965 5966 // A call to null is undefined. 5967 if (auto CS = CallSite(Use)) 5968 return !NullPointerIsDefined(CS->getFunction()) && 5969 CS.getCalledValue() == I; 5970 } 5971 return false; 5972 } 5973 5974 /// If BB has an incoming value that will always trigger undefined behavior 5975 /// (eg. null pointer dereference), remove the branch leading here. 5976 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5977 for (PHINode &PHI : BB->phis()) 5978 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 5979 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 5980 Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); 5981 IRBuilder<> Builder(T); 5982 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5983 BB->removePredecessor(PHI.getIncomingBlock(i)); 5984 // Turn uncoditional branches into unreachables and remove the dead 5985 // destination from conditional branches. 5986 if (BI->isUnconditional()) 5987 Builder.CreateUnreachable(); 5988 else 5989 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 5990 : BI->getSuccessor(0)); 5991 BI->eraseFromParent(); 5992 return true; 5993 } 5994 // TODO: SwitchInst. 5995 } 5996 5997 return false; 5998 } 5999 6000 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6001 bool Changed = false; 6002 6003 assert(BB && BB->getParent() && "Block not embedded in function!"); 6004 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6005 6006 // Remove basic blocks that have no predecessors (except the entry block)... 6007 // or that just have themself as a predecessor. These are unreachable. 6008 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6009 BB->getSinglePredecessor() == BB) { 6010 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6011 DeleteDeadBlock(BB); 6012 return true; 6013 } 6014 6015 // Check to see if we can constant propagate this terminator instruction 6016 // away... 6017 Changed |= ConstantFoldTerminator(BB, true); 6018 6019 // Check for and eliminate duplicate PHI nodes in this block. 6020 Changed |= EliminateDuplicatePHINodes(BB); 6021 6022 // Check for and remove branches that will always cause undefined behavior. 6023 Changed |= removeUndefIntroducingPredecessor(BB); 6024 6025 // Merge basic blocks into their predecessor if there is only one distinct 6026 // pred, and if there is only one distinct successor of the predecessor, and 6027 // if there are no PHI nodes. 6028 if (MergeBlockIntoPredecessor(BB)) 6029 return true; 6030 6031 if (SinkCommon && Options.SinkCommonInsts) 6032 Changed |= SinkCommonCodeFromPredecessors(BB); 6033 6034 IRBuilder<> Builder(BB); 6035 6036 // If there is a trivial two-entry PHI node in this basic block, and we can 6037 // eliminate it, do so now. 6038 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6039 if (PN->getNumIncomingValues() == 2) 6040 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 6041 6042 Builder.SetInsertPoint(BB->getTerminator()); 6043 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 6044 if (BI->isUnconditional()) { 6045 if (SimplifyUncondBranch(BI, Builder)) 6046 return true; 6047 } else { 6048 if (SimplifyCondBranch(BI, Builder)) 6049 return true; 6050 } 6051 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 6052 if (SimplifyReturn(RI, Builder)) 6053 return true; 6054 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 6055 if (SimplifyResume(RI, Builder)) 6056 return true; 6057 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 6058 if (SimplifyCleanupReturn(RI)) 6059 return true; 6060 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 6061 if (SimplifySwitch(SI, Builder)) 6062 return true; 6063 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { 6064 if (SimplifyUnreachable(UI)) 6065 return true; 6066 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { 6067 if (SimplifyIndirectBr(IBI)) 6068 return true; 6069 } 6070 6071 return Changed; 6072 } 6073 6074 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6075 bool Changed = false; 6076 6077 // Repeated simplify BB as long as resimplification is requested. 6078 do { 6079 Resimplify = false; 6080 6081 // Perform one round of simplifcation. Resimplify flag will be set if 6082 // another iteration is requested. 6083 Changed |= simplifyOnce(BB); 6084 } while (Resimplify); 6085 6086 return Changed; 6087 } 6088 6089 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6090 const SimplifyCFGOptions &Options, 6091 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { 6092 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, 6093 Options) 6094 .run(BB); 6095 } 6096