1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Peephole optimize the CFG. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SetOperations.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/NoFolder.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/ValueMapper.h" 49 #include <algorithm> 50 #include <map> 51 #include <set> 52 using namespace llvm; 53 using namespace PatternMatch; 54 55 #define DEBUG_TYPE "simplifycfg" 56 57 // Chosen as 2 so as to be cheap, but still to have enough power to fold 58 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 59 // To catch this, we need to fold a compare and a select, hence '2' being the 60 // minimum reasonable default. 61 static cl::opt<unsigned> 62 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(2), 63 cl::desc("Control the amount of phi node folding to perform (default = 2)")); 64 65 static cl::opt<bool> 66 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), 67 cl::desc("Duplicate return instructions into unconditional branches")); 68 69 static cl::opt<bool> 70 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 71 cl::desc("Sink common instructions down to the end block")); 72 73 static cl::opt<bool> HoistCondStores( 74 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 75 cl::desc("Hoist conditional stores if an unconditional store precedes")); 76 77 static cl::opt<bool> MergeCondStores( 78 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 79 cl::desc("Hoist conditional stores even if an unconditional store does not " 80 "precede - hoist multiple conditional stores into a single " 81 "predicated store")); 82 83 static cl::opt<bool> MergeCondStoresAggressively( 84 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 85 cl::desc("When merging conditional stores, do so even if the resultant " 86 "basic blocks are unlikely to be if-converted as a result")); 87 88 static cl::opt<bool> SpeculateOneExpensiveInst( 89 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 90 cl::desc("Allow exactly one expensive instruction to be speculatively " 91 "executed")); 92 93 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 94 STATISTIC(NumLinearMaps, "Number of switch instructions turned into linear mapping"); 95 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables"); 96 STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)"); 97 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 98 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block"); 99 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 100 101 namespace { 102 // The first field contains the value that the switch produces when a certain 103 // case group is selected, and the second field is a vector containing the 104 // cases composing the case group. 105 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2> 106 SwitchCaseResultVectorTy; 107 // The first field contains the phi node that generates a result of the switch 108 // and the second field contains the value generated for a certain case in the 109 // switch for that PHI. 110 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy; 111 112 /// ValueEqualityComparisonCase - Represents a case of a switch. 113 struct ValueEqualityComparisonCase { 114 ConstantInt *Value; 115 BasicBlock *Dest; 116 117 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 118 : Value(Value), Dest(Dest) {} 119 120 bool operator<(ValueEqualityComparisonCase RHS) const { 121 // Comparing pointers is ok as we only rely on the order for uniquing. 122 return Value < RHS.Value; 123 } 124 125 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 126 }; 127 128 class SimplifyCFGOpt { 129 const TargetTransformInfo &TTI; 130 const DataLayout &DL; 131 unsigned BonusInstThreshold; 132 AssumptionCache *AC; 133 Value *isValueEqualityComparison(TerminatorInst *TI); 134 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI, 135 std::vector<ValueEqualityComparisonCase> &Cases); 136 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 137 BasicBlock *Pred, 138 IRBuilder<> &Builder); 139 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 140 IRBuilder<> &Builder); 141 142 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 143 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 144 bool SimplifySingleResume(ResumeInst *RI); 145 bool SimplifyCommonResume(ResumeInst *RI); 146 bool SimplifyCleanupReturn(CleanupReturnInst *RI); 147 bool SimplifyUnreachable(UnreachableInst *UI); 148 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 149 bool SimplifyIndirectBr(IndirectBrInst *IBI); 150 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder); 151 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder); 152 153 public: 154 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, 155 unsigned BonusInstThreshold, AssumptionCache *AC) 156 : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC) {} 157 bool run(BasicBlock *BB); 158 }; 159 } 160 161 /// Return true if it is safe to merge these two 162 /// terminator instructions together. 163 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) { 164 if (SI1 == SI2) return false; // Can't merge with self! 165 166 // It is not safe to merge these two switch instructions if they have a common 167 // successor, and if that successor has a PHI node, and if *that* PHI node has 168 // conflicting incoming values from the two switch blocks. 169 BasicBlock *SI1BB = SI1->getParent(); 170 BasicBlock *SI2BB = SI2->getParent(); 171 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 172 173 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 174 if (SI1Succs.count(*I)) 175 for (BasicBlock::iterator BBI = (*I)->begin(); 176 isa<PHINode>(BBI); ++BBI) { 177 PHINode *PN = cast<PHINode>(BBI); 178 if (PN->getIncomingValueForBlock(SI1BB) != 179 PN->getIncomingValueForBlock(SI2BB)) 180 return false; 181 } 182 183 return true; 184 } 185 186 /// Return true if it is safe and profitable to merge these two terminator 187 /// instructions together, where SI1 is an unconditional branch. PhiNodes will 188 /// store all PHI nodes in common successors. 189 static bool isProfitableToFoldUnconditional(BranchInst *SI1, 190 BranchInst *SI2, 191 Instruction *Cond, 192 SmallVectorImpl<PHINode*> &PhiNodes) { 193 if (SI1 == SI2) return false; // Can't merge with self! 194 assert(SI1->isUnconditional() && SI2->isConditional()); 195 196 // We fold the unconditional branch if we can easily update all PHI nodes in 197 // common successors: 198 // 1> We have a constant incoming value for the conditional branch; 199 // 2> We have "Cond" as the incoming value for the unconditional branch; 200 // 3> SI2->getCondition() and Cond have same operands. 201 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); 202 if (!Ci2) return false; 203 if (!(Cond->getOperand(0) == Ci2->getOperand(0) && 204 Cond->getOperand(1) == Ci2->getOperand(1)) && 205 !(Cond->getOperand(0) == Ci2->getOperand(1) && 206 Cond->getOperand(1) == Ci2->getOperand(0))) 207 return false; 208 209 BasicBlock *SI1BB = SI1->getParent(); 210 BasicBlock *SI2BB = SI2->getParent(); 211 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 212 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I) 213 if (SI1Succs.count(*I)) 214 for (BasicBlock::iterator BBI = (*I)->begin(); 215 isa<PHINode>(BBI); ++BBI) { 216 PHINode *PN = cast<PHINode>(BBI); 217 if (PN->getIncomingValueForBlock(SI1BB) != Cond || 218 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) 219 return false; 220 PhiNodes.push_back(PN); 221 } 222 return true; 223 } 224 225 /// Update PHI nodes in Succ to indicate that there will now be entries in it 226 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 227 /// will be the same as those coming in from ExistPred, an existing predecessor 228 /// of Succ. 229 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 230 BasicBlock *ExistPred) { 231 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do 232 233 PHINode *PN; 234 for (BasicBlock::iterator I = Succ->begin(); 235 (PN = dyn_cast<PHINode>(I)); ++I) 236 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred); 237 } 238 239 /// Compute an abstract "cost" of speculating the given instruction, 240 /// which is assumed to be safe to speculate. TCC_Free means cheap, 241 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 242 /// expensive. 243 static unsigned ComputeSpeculationCost(const User *I, 244 const TargetTransformInfo &TTI) { 245 assert(isSafeToSpeculativelyExecute(I) && 246 "Instruction is not safe to speculatively execute!"); 247 return TTI.getUserCost(I); 248 } 249 250 /// If we have a merge point of an "if condition" as accepted above, 251 /// return true if the specified value dominates the block. We 252 /// don't handle the true generality of domination here, just a special case 253 /// which works well enough for us. 254 /// 255 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 256 /// see if V (which must be an instruction) and its recursive operands 257 /// that do not dominate BB have a combined cost lower than CostRemaining and 258 /// are non-trapping. If both are true, the instruction is inserted into the 259 /// set and true is returned. 260 /// 261 /// The cost for most non-trapping instructions is defined as 1 except for 262 /// Select whose cost is 2. 263 /// 264 /// After this function returns, CostRemaining is decreased by the cost of 265 /// V plus its non-dominating operands. If that cost is greater than 266 /// CostRemaining, false is returned and CostRemaining is undefined. 267 static bool DominatesMergePoint(Value *V, BasicBlock *BB, 268 SmallPtrSetImpl<Instruction*> *AggressiveInsts, 269 unsigned &CostRemaining, 270 const TargetTransformInfo &TTI, 271 unsigned Depth = 0) { 272 Instruction *I = dyn_cast<Instruction>(V); 273 if (!I) { 274 // Non-instructions all dominate instructions, but not all constantexprs 275 // can be executed unconditionally. 276 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 277 if (C->canTrap()) 278 return false; 279 return true; 280 } 281 BasicBlock *PBB = I->getParent(); 282 283 // We don't want to allow weird loops that might have the "if condition" in 284 // the bottom of this block. 285 if (PBB == BB) return false; 286 287 // If this instruction is defined in a block that contains an unconditional 288 // branch to BB, then it must be in the 'conditional' part of the "if 289 // statement". If not, it definitely dominates the region. 290 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 291 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 292 return true; 293 294 // If we aren't allowing aggressive promotion anymore, then don't consider 295 // instructions in the 'if region'. 296 if (!AggressiveInsts) return false; 297 298 // If we have seen this instruction before, don't count it again. 299 if (AggressiveInsts->count(I)) return true; 300 301 // Okay, it looks like the instruction IS in the "condition". Check to 302 // see if it's a cheap instruction to unconditionally compute, and if it 303 // only uses stuff defined outside of the condition. If so, hoist it out. 304 if (!isSafeToSpeculativelyExecute(I)) 305 return false; 306 307 unsigned Cost = ComputeSpeculationCost(I, TTI); 308 309 // Allow exactly one instruction to be speculated regardless of its cost 310 // (as long as it is safe to do so). 311 // This is intended to flatten the CFG even if the instruction is a division 312 // or other expensive operation. The speculation of an expensive instruction 313 // is expected to be undone in CodeGenPrepare if the speculation has not 314 // enabled further IR optimizations. 315 if (Cost > CostRemaining && 316 (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0)) 317 return false; 318 319 // Avoid unsigned wrap. 320 CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; 321 322 // Okay, we can only really hoist these out if their operands do 323 // not take us over the cost threshold. 324 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) 325 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, 326 Depth + 1)) 327 return false; 328 // Okay, it's safe to do this! Remember this instruction. 329 AggressiveInsts->insert(I); 330 return true; 331 } 332 333 /// Extract ConstantInt from value, looking through IntToPtr 334 /// and PointerNullValue. Return NULL if value is not a constant int. 335 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 336 // Normal constant int. 337 ConstantInt *CI = dyn_cast<ConstantInt>(V); 338 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 339 return CI; 340 341 // This is some kind of pointer constant. Turn it into a pointer-sized 342 // ConstantInt if possible. 343 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 344 345 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 346 if (isa<ConstantPointerNull>(V)) 347 return ConstantInt::get(PtrTy, 0); 348 349 // IntToPtr const int. 350 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 351 if (CE->getOpcode() == Instruction::IntToPtr) 352 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 353 // The constant is very likely to have the right type already. 354 if (CI->getType() == PtrTy) 355 return CI; 356 else 357 return cast<ConstantInt> 358 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 359 } 360 return nullptr; 361 } 362 363 namespace { 364 365 /// Given a chain of or (||) or and (&&) comparison of a value against a 366 /// constant, this will try to recover the information required for a switch 367 /// structure. 368 /// It will depth-first traverse the chain of comparison, seeking for patterns 369 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 370 /// representing the different cases for the switch. 371 /// Note that if the chain is composed of '||' it will build the set of elements 372 /// that matches the comparisons (i.e. any of this value validate the chain) 373 /// while for a chain of '&&' it will build the set elements that make the test 374 /// fail. 375 struct ConstantComparesGatherer { 376 const DataLayout &DL; 377 Value *CompValue; /// Value found for the switch comparison 378 Value *Extra; /// Extra clause to be checked before the switch 379 SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch 380 unsigned UsedICmps; /// Number of comparisons matched in the and/or chain 381 382 /// Construct and compute the result for the comparison instruction Cond 383 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) 384 : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) { 385 gather(Cond); 386 } 387 388 /// Prevent copy 389 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 390 ConstantComparesGatherer & 391 operator=(const ConstantComparesGatherer &) = delete; 392 393 private: 394 395 /// Try to set the current value used for the comparison, it succeeds only if 396 /// it wasn't set before or if the new value is the same as the old one 397 bool setValueOnce(Value *NewVal) { 398 if(CompValue && CompValue != NewVal) return false; 399 CompValue = NewVal; 400 return (CompValue != nullptr); 401 } 402 403 /// Try to match Instruction "I" as a comparison against a constant and 404 /// populates the array Vals with the set of values that match (or do not 405 /// match depending on isEQ). 406 /// Return false on failure. On success, the Value the comparison matched 407 /// against is placed in CompValue. 408 /// If CompValue is already set, the function is expected to fail if a match 409 /// is found but the value compared to is different. 410 bool matchInstruction(Instruction *I, bool isEQ) { 411 // If this is an icmp against a constant, handle this as one of the cases. 412 ICmpInst *ICI; 413 ConstantInt *C; 414 if (!((ICI = dyn_cast<ICmpInst>(I)) && 415 (C = GetConstantInt(I->getOperand(1), DL)))) { 416 return false; 417 } 418 419 Value *RHSVal; 420 ConstantInt *RHSC; 421 422 // Pattern match a special case 423 // (x & ~2^x) == y --> x == y || x == y|2^x 424 // This undoes a transformation done by instcombine to fuse 2 compares. 425 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) { 426 if (match(ICI->getOperand(0), 427 m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 428 APInt Not = ~RHSC->getValue(); 429 if (Not.isPowerOf2()) { 430 // If we already have a value for the switch, it has to match! 431 if(!setValueOnce(RHSVal)) 432 return false; 433 434 Vals.push_back(C); 435 Vals.push_back(ConstantInt::get(C->getContext(), 436 C->getValue() | Not)); 437 UsedICmps++; 438 return true; 439 } 440 } 441 442 // If we already have a value for the switch, it has to match! 443 if(!setValueOnce(ICI->getOperand(0))) 444 return false; 445 446 UsedICmps++; 447 Vals.push_back(C); 448 return ICI->getOperand(0); 449 } 450 451 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 452 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 453 ICI->getPredicate(), C->getValue()); 454 455 // Shift the range if the compare is fed by an add. This is the range 456 // compare idiom as emitted by instcombine. 457 Value *CandidateVal = I->getOperand(0); 458 if(match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)))) { 459 Span = Span.subtract(RHSC->getValue()); 460 CandidateVal = RHSVal; 461 } 462 463 // If this is an and/!= check, then we are looking to build the set of 464 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 465 // x != 0 && x != 1. 466 if (!isEQ) 467 Span = Span.inverse(); 468 469 // If there are a ton of values, we don't want to make a ginormous switch. 470 if (Span.getSetSize().ugt(8) || Span.isEmptySet()) { 471 return false; 472 } 473 474 // If we already have a value for the switch, it has to match! 475 if(!setValueOnce(CandidateVal)) 476 return false; 477 478 // Add all values from the range to the set 479 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 480 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 481 482 UsedICmps++; 483 return true; 484 485 } 486 487 /// Given a potentially 'or'd or 'and'd together collection of icmp 488 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 489 /// the value being compared, and stick the list constants into the Vals 490 /// vector. 491 /// One "Extra" case is allowed to differ from the other. 492 void gather(Value *V) { 493 Instruction *I = dyn_cast<Instruction>(V); 494 bool isEQ = (I->getOpcode() == Instruction::Or); 495 496 // Keep a stack (SmallVector for efficiency) for depth-first traversal 497 SmallVector<Value *, 8> DFT; 498 499 // Initialize 500 DFT.push_back(V); 501 502 while(!DFT.empty()) { 503 V = DFT.pop_back_val(); 504 505 if (Instruction *I = dyn_cast<Instruction>(V)) { 506 // If it is a || (or && depending on isEQ), process the operands. 507 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { 508 DFT.push_back(I->getOperand(1)); 509 DFT.push_back(I->getOperand(0)); 510 continue; 511 } 512 513 // Try to match the current instruction 514 if (matchInstruction(I, isEQ)) 515 // Match succeed, continue the loop 516 continue; 517 } 518 519 // One element of the sequence of || (or &&) could not be match as a 520 // comparison against the same value as the others. 521 // We allow only one "Extra" case to be checked before the switch 522 if (!Extra) { 523 Extra = V; 524 continue; 525 } 526 // Failed to parse a proper sequence, abort now 527 CompValue = nullptr; 528 break; 529 } 530 } 531 }; 532 533 } 534 535 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) { 536 Instruction *Cond = nullptr; 537 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 538 Cond = dyn_cast<Instruction>(SI->getCondition()); 539 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 540 if (BI->isConditional()) 541 Cond = dyn_cast<Instruction>(BI->getCondition()); 542 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 543 Cond = dyn_cast<Instruction>(IBI->getAddress()); 544 } 545 546 TI->eraseFromParent(); 547 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond); 548 } 549 550 /// Return true if the specified terminator checks 551 /// to see if a value is equal to constant integer value. 552 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) { 553 Value *CV = nullptr; 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 555 // Do not permit merging of large switch instructions into their 556 // predecessors unless there is only one predecessor. 557 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()), 558 pred_end(SI->getParent())) <= 128) 559 CV = SI->getCondition(); 560 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 561 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 562 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 563 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 564 CV = ICI->getOperand(0); 565 } 566 567 // Unwrap any lossless ptrtoint cast. 568 if (CV) { 569 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 570 Value *Ptr = PTII->getPointerOperand(); 571 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 572 CV = Ptr; 573 } 574 } 575 return CV; 576 } 577 578 /// Given a value comparison instruction, 579 /// decode all of the 'cases' that it represents and return the 'default' block. 580 BasicBlock *SimplifyCFGOpt:: 581 GetValueEqualityComparisonCases(TerminatorInst *TI, 582 std::vector<ValueEqualityComparisonCase> 583 &Cases) { 584 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 585 Cases.reserve(SI->getNumCases()); 586 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) 587 Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(), 588 i.getCaseSuccessor())); 589 return SI->getDefaultDest(); 590 } 591 592 BranchInst *BI = cast<BranchInst>(TI); 593 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 594 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 595 Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1), 596 DL), 597 Succ)); 598 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 599 } 600 601 602 /// Given a vector of bb/value pairs, remove any entries 603 /// in the list that match the specified block. 604 static void EliminateBlockCases(BasicBlock *BB, 605 std::vector<ValueEqualityComparisonCase> &Cases) { 606 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); 607 } 608 609 /// Return true if there are any keys in C1 that exist in C2 as well. 610 static bool 611 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 612 std::vector<ValueEqualityComparisonCase > &C2) { 613 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 614 615 // Make V1 be smaller than V2. 616 if (V1->size() > V2->size()) 617 std::swap(V1, V2); 618 619 if (V1->size() == 0) return false; 620 if (V1->size() == 1) { 621 // Just scan V2. 622 ConstantInt *TheVal = (*V1)[0].Value; 623 for (unsigned i = 0, e = V2->size(); i != e; ++i) 624 if (TheVal == (*V2)[i].Value) 625 return true; 626 } 627 628 // Otherwise, just sort both lists and compare element by element. 629 array_pod_sort(V1->begin(), V1->end()); 630 array_pod_sort(V2->begin(), V2->end()); 631 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 632 while (i1 != e1 && i2 != e2) { 633 if ((*V1)[i1].Value == (*V2)[i2].Value) 634 return true; 635 if ((*V1)[i1].Value < (*V2)[i2].Value) 636 ++i1; 637 else 638 ++i2; 639 } 640 return false; 641 } 642 643 /// If TI is known to be a terminator instruction and its block is known to 644 /// only have a single predecessor block, check to see if that predecessor is 645 /// also a value comparison with the same value, and if that comparison 646 /// determines the outcome of this comparison. If so, simplify TI. This does a 647 /// very limited form of jump threading. 648 bool SimplifyCFGOpt:: 649 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI, 650 BasicBlock *Pred, 651 IRBuilder<> &Builder) { 652 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 653 if (!PredVal) return false; // Not a value comparison in predecessor. 654 655 Value *ThisVal = isValueEqualityComparison(TI); 656 assert(ThisVal && "This isn't a value comparison!!"); 657 if (ThisVal != PredVal) return false; // Different predicates. 658 659 // TODO: Preserve branch weight metadata, similarly to how 660 // FoldValueComparisonIntoPredecessors preserves it. 661 662 // Find out information about when control will move from Pred to TI's block. 663 std::vector<ValueEqualityComparisonCase> PredCases; 664 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(), 665 PredCases); 666 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 667 668 // Find information about how control leaves this block. 669 std::vector<ValueEqualityComparisonCase> ThisCases; 670 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 671 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 672 673 // If TI's block is the default block from Pred's comparison, potentially 674 // simplify TI based on this knowledge. 675 if (PredDef == TI->getParent()) { 676 // If we are here, we know that the value is none of those cases listed in 677 // PredCases. If there are any cases in ThisCases that are in PredCases, we 678 // can simplify TI. 679 if (!ValuesOverlap(PredCases, ThisCases)) 680 return false; 681 682 if (isa<BranchInst>(TI)) { 683 // Okay, one of the successors of this condbr is dead. Convert it to a 684 // uncond br. 685 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 686 // Insert the new branch. 687 Instruction *NI = Builder.CreateBr(ThisDef); 688 (void) NI; 689 690 // Remove PHI node entries for the dead edge. 691 ThisCases[0].Dest->removePredecessor(TI->getParent()); 692 693 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 694 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 695 696 EraseTerminatorInstAndDCECond(TI); 697 return true; 698 } 699 700 SwitchInst *SI = cast<SwitchInst>(TI); 701 // Okay, TI has cases that are statically dead, prune them away. 702 SmallPtrSet<Constant*, 16> DeadCases; 703 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 704 DeadCases.insert(PredCases[i].Value); 705 706 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 707 << "Through successor TI: " << *TI); 708 709 // Collect branch weights into a vector. 710 SmallVector<uint32_t, 8> Weights; 711 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 712 bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases()); 713 if (HasWeight) 714 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 715 ++MD_i) { 716 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 717 Weights.push_back(CI->getValue().getZExtValue()); 718 } 719 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 720 --i; 721 if (DeadCases.count(i.getCaseValue())) { 722 if (HasWeight) { 723 std::swap(Weights[i.getCaseIndex()+1], Weights.back()); 724 Weights.pop_back(); 725 } 726 i.getCaseSuccessor()->removePredecessor(TI->getParent()); 727 SI->removeCase(i); 728 } 729 } 730 if (HasWeight && Weights.size() >= 2) 731 SI->setMetadata(LLVMContext::MD_prof, 732 MDBuilder(SI->getParent()->getContext()). 733 createBranchWeights(Weights)); 734 735 DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 736 return true; 737 } 738 739 // Otherwise, TI's block must correspond to some matched value. Find out 740 // which value (or set of values) this is. 741 ConstantInt *TIV = nullptr; 742 BasicBlock *TIBB = TI->getParent(); 743 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 744 if (PredCases[i].Dest == TIBB) { 745 if (TIV) 746 return false; // Cannot handle multiple values coming to this block. 747 TIV = PredCases[i].Value; 748 } 749 assert(TIV && "No edge from pred to succ?"); 750 751 // Okay, we found the one constant that our value can be if we get into TI's 752 // BB. Find out which successor will unconditionally be branched to. 753 BasicBlock *TheRealDest = nullptr; 754 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 755 if (ThisCases[i].Value == TIV) { 756 TheRealDest = ThisCases[i].Dest; 757 break; 758 } 759 760 // If not handled by any explicit cases, it is handled by the default case. 761 if (!TheRealDest) TheRealDest = ThisDef; 762 763 // Remove PHI node entries for dead edges. 764 BasicBlock *CheckEdge = TheRealDest; 765 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI) 766 if (*SI != CheckEdge) 767 (*SI)->removePredecessor(TIBB); 768 else 769 CheckEdge = nullptr; 770 771 // Insert the new branch. 772 Instruction *NI = Builder.CreateBr(TheRealDest); 773 (void) NI; 774 775 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 776 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n"); 777 778 EraseTerminatorInstAndDCECond(TI); 779 return true; 780 } 781 782 namespace { 783 /// This class implements a stable ordering of constant 784 /// integers that does not depend on their address. This is important for 785 /// applications that sort ConstantInt's to ensure uniqueness. 786 struct ConstantIntOrdering { 787 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 788 return LHS->getValue().ult(RHS->getValue()); 789 } 790 }; 791 } 792 793 static int ConstantIntSortPredicate(ConstantInt *const *P1, 794 ConstantInt *const *P2) { 795 const ConstantInt *LHS = *P1; 796 const ConstantInt *RHS = *P2; 797 if (LHS->getValue().ult(RHS->getValue())) 798 return 1; 799 if (LHS->getValue() == RHS->getValue()) 800 return 0; 801 return -1; 802 } 803 804 static inline bool HasBranchWeights(const Instruction* I) { 805 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 806 if (ProfMD && ProfMD->getOperand(0)) 807 if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 808 return MDS->getString().equals("branch_weights"); 809 810 return false; 811 } 812 813 /// Get Weights of a given TerminatorInst, the default weight is at the front 814 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 815 /// metadata. 816 static void GetBranchWeights(TerminatorInst *TI, 817 SmallVectorImpl<uint64_t> &Weights) { 818 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 819 assert(MD); 820 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 821 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 822 Weights.push_back(CI->getValue().getZExtValue()); 823 } 824 825 // If TI is a conditional eq, the default case is the false case, 826 // and the corresponding branch-weight data is at index 2. We swap the 827 // default weight to be the first entry. 828 if (BranchInst* BI = dyn_cast<BranchInst>(TI)) { 829 assert(Weights.size() == 2); 830 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 831 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 832 std::swap(Weights.front(), Weights.back()); 833 } 834 } 835 836 /// Keep halving the weights until all can fit in uint32_t. 837 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 838 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 839 if (Max > UINT_MAX) { 840 unsigned Offset = 32 - countLeadingZeros(Max); 841 for (uint64_t &I : Weights) 842 I >>= Offset; 843 } 844 } 845 846 /// The specified terminator is a value equality comparison instruction 847 /// (either a switch or a branch on "X == c"). 848 /// See if any of the predecessors of the terminator block are value comparisons 849 /// on the same value. If so, and if safe to do so, fold them together. 850 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI, 851 IRBuilder<> &Builder) { 852 BasicBlock *BB = TI->getParent(); 853 Value *CV = isValueEqualityComparison(TI); // CondVal 854 assert(CV && "Not a comparison?"); 855 bool Changed = false; 856 857 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB)); 858 while (!Preds.empty()) { 859 BasicBlock *Pred = Preds.pop_back_val(); 860 861 // See if the predecessor is a comparison with the same value. 862 TerminatorInst *PTI = Pred->getTerminator(); 863 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 864 865 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) { 866 // Figure out which 'cases' to copy from SI to PSI. 867 std::vector<ValueEqualityComparisonCase> BBCases; 868 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 869 870 std::vector<ValueEqualityComparisonCase> PredCases; 871 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 872 873 // Based on whether the default edge from PTI goes to BB or not, fill in 874 // PredCases and PredDefault with the new switch cases we would like to 875 // build. 876 SmallVector<BasicBlock*, 8> NewSuccessors; 877 878 // Update the branch weight metadata along the way 879 SmallVector<uint64_t, 8> Weights; 880 bool PredHasWeights = HasBranchWeights(PTI); 881 bool SuccHasWeights = HasBranchWeights(TI); 882 883 if (PredHasWeights) { 884 GetBranchWeights(PTI, Weights); 885 // branch-weight metadata is inconsistent here. 886 if (Weights.size() != 1 + PredCases.size()) 887 PredHasWeights = SuccHasWeights = false; 888 } else if (SuccHasWeights) 889 // If there are no predecessor weights but there are successor weights, 890 // populate Weights with 1, which will later be scaled to the sum of 891 // successor's weights 892 Weights.assign(1 + PredCases.size(), 1); 893 894 SmallVector<uint64_t, 8> SuccWeights; 895 if (SuccHasWeights) { 896 GetBranchWeights(TI, SuccWeights); 897 // branch-weight metadata is inconsistent here. 898 if (SuccWeights.size() != 1 + BBCases.size()) 899 PredHasWeights = SuccHasWeights = false; 900 } else if (PredHasWeights) 901 SuccWeights.assign(1 + BBCases.size(), 1); 902 903 if (PredDefault == BB) { 904 // If this is the default destination from PTI, only the edges in TI 905 // that don't occur in PTI, or that branch to BB will be activated. 906 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 907 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 908 if (PredCases[i].Dest != BB) 909 PTIHandled.insert(PredCases[i].Value); 910 else { 911 // The default destination is BB, we don't need explicit targets. 912 std::swap(PredCases[i], PredCases.back()); 913 914 if (PredHasWeights || SuccHasWeights) { 915 // Increase weight for the default case. 916 Weights[0] += Weights[i+1]; 917 std::swap(Weights[i+1], Weights.back()); 918 Weights.pop_back(); 919 } 920 921 PredCases.pop_back(); 922 --i; --e; 923 } 924 925 // Reconstruct the new switch statement we will be building. 926 if (PredDefault != BBDefault) { 927 PredDefault->removePredecessor(Pred); 928 PredDefault = BBDefault; 929 NewSuccessors.push_back(BBDefault); 930 } 931 932 unsigned CasesFromPred = Weights.size(); 933 uint64_t ValidTotalSuccWeight = 0; 934 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 935 if (!PTIHandled.count(BBCases[i].Value) && 936 BBCases[i].Dest != BBDefault) { 937 PredCases.push_back(BBCases[i]); 938 NewSuccessors.push_back(BBCases[i].Dest); 939 if (SuccHasWeights || PredHasWeights) { 940 // The default weight is at index 0, so weight for the ith case 941 // should be at index i+1. Scale the cases from successor by 942 // PredDefaultWeight (Weights[0]). 943 Weights.push_back(Weights[0] * SuccWeights[i+1]); 944 ValidTotalSuccWeight += SuccWeights[i+1]; 945 } 946 } 947 948 if (SuccHasWeights || PredHasWeights) { 949 ValidTotalSuccWeight += SuccWeights[0]; 950 // Scale the cases from predecessor by ValidTotalSuccWeight. 951 for (unsigned i = 1; i < CasesFromPred; ++i) 952 Weights[i] *= ValidTotalSuccWeight; 953 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 954 Weights[0] *= SuccWeights[0]; 955 } 956 } else { 957 // If this is not the default destination from PSI, only the edges 958 // in SI that occur in PSI with a destination of BB will be 959 // activated. 960 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled; 961 std::map<ConstantInt*, uint64_t> WeightsForHandled; 962 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 963 if (PredCases[i].Dest == BB) { 964 PTIHandled.insert(PredCases[i].Value); 965 966 if (PredHasWeights || SuccHasWeights) { 967 WeightsForHandled[PredCases[i].Value] = Weights[i+1]; 968 std::swap(Weights[i+1], Weights.back()); 969 Weights.pop_back(); 970 } 971 972 std::swap(PredCases[i], PredCases.back()); 973 PredCases.pop_back(); 974 --i; --e; 975 } 976 977 // Okay, now we know which constants were sent to BB from the 978 // predecessor. Figure out where they will all go now. 979 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 980 if (PTIHandled.count(BBCases[i].Value)) { 981 // If this is one we are capable of getting... 982 if (PredHasWeights || SuccHasWeights) 983 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 984 PredCases.push_back(BBCases[i]); 985 NewSuccessors.push_back(BBCases[i].Dest); 986 PTIHandled.erase(BBCases[i].Value);// This constant is taken care of 987 } 988 989 // If there are any constants vectored to BB that TI doesn't handle, 990 // they must go to the default destination of TI. 991 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 992 PTIHandled.begin(), 993 E = PTIHandled.end(); I != E; ++I) { 994 if (PredHasWeights || SuccHasWeights) 995 Weights.push_back(WeightsForHandled[*I]); 996 PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault)); 997 NewSuccessors.push_back(BBDefault); 998 } 999 } 1000 1001 // Okay, at this point, we know which new successor Pred will get. Make 1002 // sure we update the number of entries in the PHI nodes for these 1003 // successors. 1004 for (BasicBlock *NewSuccessor : NewSuccessors) 1005 AddPredecessorToBlock(NewSuccessor, Pred, BB); 1006 1007 Builder.SetInsertPoint(PTI); 1008 // Convert pointer to int before we switch. 1009 if (CV->getType()->isPointerTy()) { 1010 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), 1011 "magicptr"); 1012 } 1013 1014 // Now that the successors are updated, create the new Switch instruction. 1015 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, 1016 PredCases.size()); 1017 NewSI->setDebugLoc(PTI->getDebugLoc()); 1018 for (ValueEqualityComparisonCase &V : PredCases) 1019 NewSI->addCase(V.Value, V.Dest); 1020 1021 if (PredHasWeights || SuccHasWeights) { 1022 // Halve the weights if any of them cannot fit in an uint32_t 1023 FitWeights(Weights); 1024 1025 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1026 1027 NewSI->setMetadata(LLVMContext::MD_prof, 1028 MDBuilder(BB->getContext()). 1029 createBranchWeights(MDWeights)); 1030 } 1031 1032 EraseTerminatorInstAndDCECond(PTI); 1033 1034 // Okay, last check. If BB is still a successor of PSI, then we must 1035 // have an infinite loop case. If so, add an infinitely looping block 1036 // to handle the case to preserve the behavior of the code. 1037 BasicBlock *InfLoopBlock = nullptr; 1038 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1039 if (NewSI->getSuccessor(i) == BB) { 1040 if (!InfLoopBlock) { 1041 // Insert it at the end of the function, because it's either code, 1042 // or it won't matter if it's hot. :) 1043 InfLoopBlock = BasicBlock::Create(BB->getContext(), 1044 "infloop", BB->getParent()); 1045 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1046 } 1047 NewSI->setSuccessor(i, InfLoopBlock); 1048 } 1049 1050 Changed = true; 1051 } 1052 } 1053 return Changed; 1054 } 1055 1056 // If we would need to insert a select that uses the value of this invoke 1057 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1058 // can't hoist the invoke, as there is nowhere to put the select in this case. 1059 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1060 Instruction *I1, Instruction *I2) { 1061 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1062 PHINode *PN; 1063 for (BasicBlock::iterator BBI = SI->begin(); 1064 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1065 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1066 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1067 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) { 1068 return false; 1069 } 1070 } 1071 } 1072 return true; 1073 } 1074 1075 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); 1076 1077 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1078 /// in the two blocks up into the branch block. The caller of this function 1079 /// guarantees that BI's block dominates BB1 and BB2. 1080 static bool HoistThenElseCodeToIf(BranchInst *BI, 1081 const TargetTransformInfo &TTI) { 1082 // This does very trivial matching, with limited scanning, to find identical 1083 // instructions in the two blocks. In particular, we don't want to get into 1084 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1085 // such, we currently just scan for obviously identical instructions in an 1086 // identical order. 1087 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1088 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1089 1090 BasicBlock::iterator BB1_Itr = BB1->begin(); 1091 BasicBlock::iterator BB2_Itr = BB2->begin(); 1092 1093 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1094 // Skip debug info if it is not identical. 1095 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1096 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1097 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1098 while (isa<DbgInfoIntrinsic>(I1)) 1099 I1 = &*BB1_Itr++; 1100 while (isa<DbgInfoIntrinsic>(I2)) 1101 I2 = &*BB2_Itr++; 1102 } 1103 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1104 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1105 return false; 1106 1107 BasicBlock *BIParent = BI->getParent(); 1108 1109 bool Changed = false; 1110 do { 1111 // If we are hoisting the terminator instruction, don't move one (making a 1112 // broken BB), instead clone it, and remove BI. 1113 if (isa<TerminatorInst>(I1)) 1114 goto HoistTerminator; 1115 1116 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1117 return Changed; 1118 1119 // For a normal instruction, we just move one to right before the branch, 1120 // then replace all uses of the other with the first. Finally, we remove 1121 // the now redundant second instruction. 1122 BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1); 1123 if (!I2->use_empty()) 1124 I2->replaceAllUsesWith(I1); 1125 I1->intersectOptionalDataWith(I2); 1126 unsigned KnownIDs[] = { 1127 LLVMContext::MD_tbaa, LLVMContext::MD_range, 1128 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 1129 LLVMContext::MD_nonnull, LLVMContext::MD_invariant_group, 1130 LLVMContext::MD_align, LLVMContext::MD_dereferenceable, 1131 LLVMContext::MD_dereferenceable_or_null}; 1132 combineMetadata(I1, I2, KnownIDs); 1133 I2->eraseFromParent(); 1134 Changed = true; 1135 1136 I1 = &*BB1_Itr++; 1137 I2 = &*BB2_Itr++; 1138 // Skip debug info if it is not identical. 1139 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1140 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1141 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1142 while (isa<DbgInfoIntrinsic>(I1)) 1143 I1 = &*BB1_Itr++; 1144 while (isa<DbgInfoIntrinsic>(I2)) 1145 I2 = &*BB2_Itr++; 1146 } 1147 } while (I1->isIdenticalToWhenDefined(I2)); 1148 1149 return true; 1150 1151 HoistTerminator: 1152 // It may not be possible to hoist an invoke. 1153 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1154 return Changed; 1155 1156 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1157 PHINode *PN; 1158 for (BasicBlock::iterator BBI = SI->begin(); 1159 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1160 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1161 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1162 if (BB1V == BB2V) 1163 continue; 1164 1165 // Check for passingValueIsAlwaysUndefined here because we would rather 1166 // eliminate undefined control flow then converting it to a select. 1167 if (passingValueIsAlwaysUndefined(BB1V, PN) || 1168 passingValueIsAlwaysUndefined(BB2V, PN)) 1169 return Changed; 1170 1171 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1172 return Changed; 1173 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1174 return Changed; 1175 } 1176 } 1177 1178 // Okay, it is safe to hoist the terminator. 1179 Instruction *NT = I1->clone(); 1180 BIParent->getInstList().insert(BI->getIterator(), NT); 1181 if (!NT->getType()->isVoidTy()) { 1182 I1->replaceAllUsesWith(NT); 1183 I2->replaceAllUsesWith(NT); 1184 NT->takeName(I1); 1185 } 1186 1187 IRBuilder<true, NoFolder> Builder(NT); 1188 // Hoisting one of the terminators from our successor is a great thing. 1189 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1190 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1191 // nodes, so we insert select instruction to compute the final result. 1192 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects; 1193 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) { 1194 PHINode *PN; 1195 for (BasicBlock::iterator BBI = SI->begin(); 1196 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 1197 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1198 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1199 if (BB1V == BB2V) continue; 1200 1201 // These values do not agree. Insert a select instruction before NT 1202 // that determines the right value. 1203 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1204 if (!SI) 1205 SI = cast<SelectInst> 1206 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1207 BB1V->getName()+"."+BB2V->getName())); 1208 1209 // Make the PHI node use the select for all incoming values for BB1/BB2 1210 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1211 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2) 1212 PN->setIncomingValue(i, SI); 1213 } 1214 } 1215 1216 // Update any PHI nodes in our new successors. 1217 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) 1218 AddPredecessorToBlock(*SI, BIParent, BB1); 1219 1220 EraseTerminatorInstAndDCECond(BI); 1221 return true; 1222 } 1223 1224 /// Given an unconditional branch that goes to BBEnd, 1225 /// check whether BBEnd has only two predecessors and the other predecessor 1226 /// ends with an unconditional branch. If it is true, sink any common code 1227 /// in the two predecessors to BBEnd. 1228 static bool SinkThenElseCodeToEnd(BranchInst *BI1) { 1229 assert(BI1->isUnconditional()); 1230 BasicBlock *BB1 = BI1->getParent(); 1231 BasicBlock *BBEnd = BI1->getSuccessor(0); 1232 1233 // Check that BBEnd has two predecessors and the other predecessor ends with 1234 // an unconditional branch. 1235 pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd); 1236 BasicBlock *Pred0 = *PI++; 1237 if (PI == PE) // Only one predecessor. 1238 return false; 1239 BasicBlock *Pred1 = *PI++; 1240 if (PI != PE) // More than two predecessors. 1241 return false; 1242 BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0; 1243 BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator()); 1244 if (!BI2 || !BI2->isUnconditional()) 1245 return false; 1246 1247 // Gather the PHI nodes in BBEnd. 1248 SmallDenseMap<std::pair<Value *, Value *>, PHINode *> JointValueMap; 1249 Instruction *FirstNonPhiInBBEnd = nullptr; 1250 for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end(); I != E; ++I) { 1251 if (PHINode *PN = dyn_cast<PHINode>(I)) { 1252 Value *BB1V = PN->getIncomingValueForBlock(BB1); 1253 Value *BB2V = PN->getIncomingValueForBlock(BB2); 1254 JointValueMap[std::make_pair(BB1V, BB2V)] = PN; 1255 } else { 1256 FirstNonPhiInBBEnd = &*I; 1257 break; 1258 } 1259 } 1260 if (!FirstNonPhiInBBEnd) 1261 return false; 1262 1263 // This does very trivial matching, with limited scanning, to find identical 1264 // instructions in the two blocks. We scan backward for obviously identical 1265 // instructions in an identical order. 1266 BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(), 1267 RE1 = BB1->getInstList().rend(), 1268 RI2 = BB2->getInstList().rbegin(), 1269 RE2 = BB2->getInstList().rend(); 1270 // Skip debug info. 1271 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1272 if (RI1 == RE1) 1273 return false; 1274 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1275 if (RI2 == RE2) 1276 return false; 1277 // Skip the unconditional branches. 1278 ++RI1; 1279 ++RI2; 1280 1281 bool Changed = false; 1282 while (RI1 != RE1 && RI2 != RE2) { 1283 // Skip debug info. 1284 while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1; 1285 if (RI1 == RE1) 1286 return Changed; 1287 while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2; 1288 if (RI2 == RE2) 1289 return Changed; 1290 1291 Instruction *I1 = &*RI1, *I2 = &*RI2; 1292 auto InstPair = std::make_pair(I1, I2); 1293 // I1 and I2 should have a single use in the same PHI node, and they 1294 // perform the same operation. 1295 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 1296 if (isa<PHINode>(I1) || isa<PHINode>(I2) || 1297 isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) || 1298 I1->isEHPad() || I2->isEHPad() || 1299 isa<AllocaInst>(I1) || isa<AllocaInst>(I2) || 1300 I1->mayHaveSideEffects() || I2->mayHaveSideEffects() || 1301 I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() || 1302 !I1->hasOneUse() || !I2->hasOneUse() || 1303 !JointValueMap.count(InstPair)) 1304 return Changed; 1305 1306 // Check whether we should swap the operands of ICmpInst. 1307 // TODO: Add support of communativity. 1308 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2); 1309 bool SwapOpnds = false; 1310 if (ICmp1 && ICmp2 && 1311 ICmp1->getOperand(0) != ICmp2->getOperand(0) && 1312 ICmp1->getOperand(1) != ICmp2->getOperand(1) && 1313 (ICmp1->getOperand(0) == ICmp2->getOperand(1) || 1314 ICmp1->getOperand(1) == ICmp2->getOperand(0))) { 1315 ICmp2->swapOperands(); 1316 SwapOpnds = true; 1317 } 1318 if (!I1->isSameOperationAs(I2)) { 1319 if (SwapOpnds) 1320 ICmp2->swapOperands(); 1321 return Changed; 1322 } 1323 1324 // The operands should be either the same or they need to be generated 1325 // with a PHI node after sinking. We only handle the case where there is 1326 // a single pair of different operands. 1327 Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr; 1328 unsigned Op1Idx = ~0U; 1329 for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) { 1330 if (I1->getOperand(I) == I2->getOperand(I)) 1331 continue; 1332 // Early exit if we have more-than one pair of different operands or if 1333 // we need a PHI node to replace a constant. 1334 if (Op1Idx != ~0U || 1335 isa<Constant>(I1->getOperand(I)) || 1336 isa<Constant>(I2->getOperand(I))) { 1337 // If we can't sink the instructions, undo the swapping. 1338 if (SwapOpnds) 1339 ICmp2->swapOperands(); 1340 return Changed; 1341 } 1342 DifferentOp1 = I1->getOperand(I); 1343 Op1Idx = I; 1344 DifferentOp2 = I2->getOperand(I); 1345 } 1346 1347 DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n"); 1348 DEBUG(dbgs() << " " << *I2 << "\n"); 1349 1350 // We insert the pair of different operands to JointValueMap and 1351 // remove (I1, I2) from JointValueMap. 1352 if (Op1Idx != ~0U) { 1353 auto &NewPN = JointValueMap[std::make_pair(DifferentOp1, DifferentOp2)]; 1354 if (!NewPN) { 1355 NewPN = 1356 PHINode::Create(DifferentOp1->getType(), 2, 1357 DifferentOp1->getName() + ".sink", &BBEnd->front()); 1358 NewPN->addIncoming(DifferentOp1, BB1); 1359 NewPN->addIncoming(DifferentOp2, BB2); 1360 DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";); 1361 } 1362 // I1 should use NewPN instead of DifferentOp1. 1363 I1->setOperand(Op1Idx, NewPN); 1364 } 1365 PHINode *OldPN = JointValueMap[InstPair]; 1366 JointValueMap.erase(InstPair); 1367 1368 // We need to update RE1 and RE2 if we are going to sink the first 1369 // instruction in the basic block down. 1370 bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin()); 1371 // Sink the instruction. 1372 BBEnd->getInstList().splice(FirstNonPhiInBBEnd->getIterator(), 1373 BB1->getInstList(), I1); 1374 if (!OldPN->use_empty()) 1375 OldPN->replaceAllUsesWith(I1); 1376 OldPN->eraseFromParent(); 1377 1378 if (!I2->use_empty()) 1379 I2->replaceAllUsesWith(I1); 1380 I1->intersectOptionalDataWith(I2); 1381 // TODO: Use combineMetadata here to preserve what metadata we can 1382 // (analogous to the hoisting case above). 1383 I2->eraseFromParent(); 1384 1385 if (UpdateRE1) 1386 RE1 = BB1->getInstList().rend(); 1387 if (UpdateRE2) 1388 RE2 = BB2->getInstList().rend(); 1389 FirstNonPhiInBBEnd = &*I1; 1390 NumSinkCommons++; 1391 Changed = true; 1392 } 1393 return Changed; 1394 } 1395 1396 /// \brief Determine if we can hoist sink a sole store instruction out of a 1397 /// conditional block. 1398 /// 1399 /// We are looking for code like the following: 1400 /// BrBB: 1401 /// store i32 %add, i32* %arrayidx2 1402 /// ... // No other stores or function calls (we could be calling a memory 1403 /// ... // function). 1404 /// %cmp = icmp ult %x, %y 1405 /// br i1 %cmp, label %EndBB, label %ThenBB 1406 /// ThenBB: 1407 /// store i32 %add5, i32* %arrayidx2 1408 /// br label EndBB 1409 /// EndBB: 1410 /// ... 1411 /// We are going to transform this into: 1412 /// BrBB: 1413 /// store i32 %add, i32* %arrayidx2 1414 /// ... // 1415 /// %cmp = icmp ult %x, %y 1416 /// %add.add5 = select i1 %cmp, i32 %add, %add5 1417 /// store i32 %add.add5, i32* %arrayidx2 1418 /// ... 1419 /// 1420 /// \return The pointer to the value of the previous store if the store can be 1421 /// hoisted into the predecessor block. 0 otherwise. 1422 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 1423 BasicBlock *StoreBB, BasicBlock *EndBB) { 1424 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 1425 if (!StoreToHoist) 1426 return nullptr; 1427 1428 // Volatile or atomic. 1429 if (!StoreToHoist->isSimple()) 1430 return nullptr; 1431 1432 Value *StorePtr = StoreToHoist->getPointerOperand(); 1433 1434 // Look for a store to the same pointer in BrBB. 1435 unsigned MaxNumInstToLookAt = 10; 1436 for (BasicBlock::reverse_iterator RI = BrBB->rbegin(), 1437 RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) { 1438 Instruction *CurI = &*RI; 1439 1440 // Could be calling an instruction that effects memory like free(). 1441 if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI)) 1442 return nullptr; 1443 1444 StoreInst *SI = dyn_cast<StoreInst>(CurI); 1445 // Found the previous store make sure it stores to the same location. 1446 if (SI && SI->getPointerOperand() == StorePtr) 1447 // Found the previous store, return its value operand. 1448 return SI->getValueOperand(); 1449 else if (SI) 1450 return nullptr; // Unknown store. 1451 } 1452 1453 return nullptr; 1454 } 1455 1456 /// \brief Speculate a conditional basic block flattening the CFG. 1457 /// 1458 /// Note that this is a very risky transform currently. Speculating 1459 /// instructions like this is most often not desirable. Instead, there is an MI 1460 /// pass which can do it with full awareness of the resource constraints. 1461 /// However, some cases are "obvious" and we should do directly. An example of 1462 /// this is speculating a single, reasonably cheap instruction. 1463 /// 1464 /// There is only one distinct advantage to flattening the CFG at the IR level: 1465 /// it makes very common but simplistic optimizations such as are common in 1466 /// instcombine and the DAG combiner more powerful by removing CFG edges and 1467 /// modeling their effects with easier to reason about SSA value graphs. 1468 /// 1469 /// 1470 /// An illustration of this transform is turning this IR: 1471 /// \code 1472 /// BB: 1473 /// %cmp = icmp ult %x, %y 1474 /// br i1 %cmp, label %EndBB, label %ThenBB 1475 /// ThenBB: 1476 /// %sub = sub %x, %y 1477 /// br label BB2 1478 /// EndBB: 1479 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 1480 /// ... 1481 /// \endcode 1482 /// 1483 /// Into this IR: 1484 /// \code 1485 /// BB: 1486 /// %cmp = icmp ult %x, %y 1487 /// %sub = sub %x, %y 1488 /// %cond = select i1 %cmp, 0, %sub 1489 /// ... 1490 /// \endcode 1491 /// 1492 /// \returns true if the conditional block is removed. 1493 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 1494 const TargetTransformInfo &TTI) { 1495 // Be conservative for now. FP select instruction can often be expensive. 1496 Value *BrCond = BI->getCondition(); 1497 if (isa<FCmpInst>(BrCond)) 1498 return false; 1499 1500 BasicBlock *BB = BI->getParent(); 1501 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 1502 1503 // If ThenBB is actually on the false edge of the conditional branch, remember 1504 // to swap the select operands later. 1505 bool Invert = false; 1506 if (ThenBB != BI->getSuccessor(0)) { 1507 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 1508 Invert = true; 1509 } 1510 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 1511 1512 // Keep a count of how many times instructions are used within CondBB when 1513 // they are candidates for sinking into CondBB. Specifically: 1514 // - They are defined in BB, and 1515 // - They have no side effects, and 1516 // - All of their uses are in CondBB. 1517 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 1518 1519 unsigned SpeculationCost = 0; 1520 Value *SpeculatedStoreValue = nullptr; 1521 StoreInst *SpeculatedStore = nullptr; 1522 for (BasicBlock::iterator BBI = ThenBB->begin(), 1523 BBE = std::prev(ThenBB->end()); 1524 BBI != BBE; ++BBI) { 1525 Instruction *I = &*BBI; 1526 // Skip debug info. 1527 if (isa<DbgInfoIntrinsic>(I)) 1528 continue; 1529 1530 // Only speculatively execute a single instruction (not counting the 1531 // terminator) for now. 1532 ++SpeculationCost; 1533 if (SpeculationCost > 1) 1534 return false; 1535 1536 // Don't hoist the instruction if it's unsafe or expensive. 1537 if (!isSafeToSpeculativelyExecute(I) && 1538 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 1539 I, BB, ThenBB, EndBB)))) 1540 return false; 1541 if (!SpeculatedStoreValue && 1542 ComputeSpeculationCost(I, TTI) > 1543 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 1544 return false; 1545 1546 // Store the store speculation candidate. 1547 if (SpeculatedStoreValue) 1548 SpeculatedStore = cast<StoreInst>(I); 1549 1550 // Do not hoist the instruction if any of its operands are defined but not 1551 // used in BB. The transformation will prevent the operand from 1552 // being sunk into the use block. 1553 for (User::op_iterator i = I->op_begin(), e = I->op_end(); 1554 i != e; ++i) { 1555 Instruction *OpI = dyn_cast<Instruction>(*i); 1556 if (!OpI || OpI->getParent() != BB || 1557 OpI->mayHaveSideEffects()) 1558 continue; // Not a candidate for sinking. 1559 1560 ++SinkCandidateUseCounts[OpI]; 1561 } 1562 } 1563 1564 // Consider any sink candidates which are only used in CondBB as costs for 1565 // speculation. Note, while we iterate over a DenseMap here, we are summing 1566 // and so iteration order isn't significant. 1567 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I = 1568 SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end(); 1569 I != E; ++I) 1570 if (I->first->getNumUses() == I->second) { 1571 ++SpeculationCost; 1572 if (SpeculationCost > 1) 1573 return false; 1574 } 1575 1576 // Check that the PHI nodes can be converted to selects. 1577 bool HaveRewritablePHIs = false; 1578 for (BasicBlock::iterator I = EndBB->begin(); 1579 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1580 Value *OrigV = PN->getIncomingValueForBlock(BB); 1581 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 1582 1583 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 1584 // Skip PHIs which are trivial. 1585 if (ThenV == OrigV) 1586 continue; 1587 1588 // Don't convert to selects if we could remove undefined behavior instead. 1589 if (passingValueIsAlwaysUndefined(OrigV, PN) || 1590 passingValueIsAlwaysUndefined(ThenV, PN)) 1591 return false; 1592 1593 HaveRewritablePHIs = true; 1594 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 1595 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 1596 if (!OrigCE && !ThenCE) 1597 continue; // Known safe and cheap. 1598 1599 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 1600 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 1601 return false; 1602 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; 1603 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; 1604 unsigned MaxCost = 2 * PHINodeFoldingThreshold * 1605 TargetTransformInfo::TCC_Basic; 1606 if (OrigCost + ThenCost > MaxCost) 1607 return false; 1608 1609 // Account for the cost of an unfolded ConstantExpr which could end up 1610 // getting expanded into Instructions. 1611 // FIXME: This doesn't account for how many operations are combined in the 1612 // constant expression. 1613 ++SpeculationCost; 1614 if (SpeculationCost > 1) 1615 return false; 1616 } 1617 1618 // If there are no PHIs to process, bail early. This helps ensure idempotence 1619 // as well. 1620 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) 1621 return false; 1622 1623 // If we get here, we can hoist the instruction and if-convert. 1624 DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 1625 1626 // Insert a select of the value of the speculated store. 1627 if (SpeculatedStoreValue) { 1628 IRBuilder<true, NoFolder> Builder(BI); 1629 Value *TrueV = SpeculatedStore->getValueOperand(); 1630 Value *FalseV = SpeculatedStoreValue; 1631 if (Invert) 1632 std::swap(TrueV, FalseV); 1633 Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() + 1634 "." + FalseV->getName()); 1635 SpeculatedStore->setOperand(0, S); 1636 } 1637 1638 // Metadata can be dependent on the condition we are hoisting above. 1639 // Conservatively strip all metadata on the instruction. 1640 for (auto &I: *ThenBB) 1641 I.dropUnknownNonDebugMetadata(); 1642 1643 // Hoist the instructions. 1644 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 1645 ThenBB->begin(), std::prev(ThenBB->end())); 1646 1647 // Insert selects and rewrite the PHI operands. 1648 IRBuilder<true, NoFolder> Builder(BI); 1649 for (BasicBlock::iterator I = EndBB->begin(); 1650 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1651 unsigned OrigI = PN->getBasicBlockIndex(BB); 1652 unsigned ThenI = PN->getBasicBlockIndex(ThenBB); 1653 Value *OrigV = PN->getIncomingValue(OrigI); 1654 Value *ThenV = PN->getIncomingValue(ThenI); 1655 1656 // Skip PHIs which are trivial. 1657 if (OrigV == ThenV) 1658 continue; 1659 1660 // Create a select whose true value is the speculatively executed value and 1661 // false value is the preexisting value. Swap them if the branch 1662 // destinations were inverted. 1663 Value *TrueV = ThenV, *FalseV = OrigV; 1664 if (Invert) 1665 std::swap(TrueV, FalseV); 1666 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, 1667 TrueV->getName() + "." + FalseV->getName()); 1668 PN->setIncomingValue(OrigI, V); 1669 PN->setIncomingValue(ThenI, V); 1670 } 1671 1672 ++NumSpeculations; 1673 return true; 1674 } 1675 1676 /// \returns True if this block contains a CallInst with the NoDuplicate 1677 /// attribute. 1678 static bool HasNoDuplicateCall(const BasicBlock *BB) { 1679 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 1680 const CallInst *CI = dyn_cast<CallInst>(I); 1681 if (!CI) 1682 continue; 1683 if (CI->cannotDuplicate()) 1684 return true; 1685 } 1686 return false; 1687 } 1688 1689 /// Return true if we can thread a branch across this block. 1690 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 1691 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 1692 unsigned Size = 0; 1693 1694 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1695 if (isa<DbgInfoIntrinsic>(BBI)) 1696 continue; 1697 if (Size > 10) return false; // Don't clone large BB's. 1698 ++Size; 1699 1700 // We can only support instructions that do not define values that are 1701 // live outside of the current basic block. 1702 for (User *U : BBI->users()) { 1703 Instruction *UI = cast<Instruction>(U); 1704 if (UI->getParent() != BB || isa<PHINode>(UI)) return false; 1705 } 1706 1707 // Looks ok, continue checking. 1708 } 1709 1710 return true; 1711 } 1712 1713 /// If we have a conditional branch on a PHI node value that is defined in the 1714 /// same block as the branch and if any PHI entries are constants, thread edges 1715 /// corresponding to that entry to be branches to their ultimate destination. 1716 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) { 1717 BasicBlock *BB = BI->getParent(); 1718 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 1719 // NOTE: we currently cannot transform this case if the PHI node is used 1720 // outside of the block. 1721 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 1722 return false; 1723 1724 // Degenerate case of a single entry PHI. 1725 if (PN->getNumIncomingValues() == 1) { 1726 FoldSingleEntryPHINodes(PN->getParent()); 1727 return true; 1728 } 1729 1730 // Now we know that this block has multiple preds and two succs. 1731 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false; 1732 1733 if (HasNoDuplicateCall(BB)) return false; 1734 1735 // Okay, this is a simple enough basic block. See if any phi values are 1736 // constants. 1737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1738 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 1739 if (!CB || !CB->getType()->isIntegerTy(1)) continue; 1740 1741 // Okay, we now know that all edges from PredBB should be revectored to 1742 // branch to RealDest. 1743 BasicBlock *PredBB = PN->getIncomingBlock(i); 1744 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 1745 1746 if (RealDest == BB) continue; // Skip self loops. 1747 // Skip if the predecessor's terminator is an indirect branch. 1748 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue; 1749 1750 // The dest block might have PHI nodes, other predecessors and other 1751 // difficult cases. Instead of being smart about this, just insert a new 1752 // block that jumps to the destination block, effectively splitting 1753 // the edge we are about to create. 1754 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(), 1755 RealDest->getName()+".critedge", 1756 RealDest->getParent(), RealDest); 1757 BranchInst::Create(RealDest, EdgeBB); 1758 1759 // Update PHI nodes. 1760 AddPredecessorToBlock(RealDest, EdgeBB, BB); 1761 1762 // BB may have instructions that are being threaded over. Clone these 1763 // instructions into EdgeBB. We know that there will be no uses of the 1764 // cloned instructions outside of EdgeBB. 1765 BasicBlock::iterator InsertPt = EdgeBB->begin(); 1766 DenseMap<Value*, Value*> TranslateMap; // Track translated values. 1767 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 1768 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 1769 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 1770 continue; 1771 } 1772 // Clone the instruction. 1773 Instruction *N = BBI->clone(); 1774 if (BBI->hasName()) N->setName(BBI->getName()+".c"); 1775 1776 // Update operands due to translation. 1777 for (User::op_iterator i = N->op_begin(), e = N->op_end(); 1778 i != e; ++i) { 1779 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i); 1780 if (PI != TranslateMap.end()) 1781 *i = PI->second; 1782 } 1783 1784 // Check for trivial simplification. 1785 if (Value *V = SimplifyInstruction(N, DL)) { 1786 TranslateMap[&*BBI] = V; 1787 delete N; // Instruction folded away, don't need actual inst 1788 } else { 1789 // Insert the new instruction into its new home. 1790 EdgeBB->getInstList().insert(InsertPt, N); 1791 if (!BBI->use_empty()) 1792 TranslateMap[&*BBI] = N; 1793 } 1794 } 1795 1796 // Loop over all of the edges from PredBB to BB, changing them to branch 1797 // to EdgeBB instead. 1798 TerminatorInst *PredBBTI = PredBB->getTerminator(); 1799 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 1800 if (PredBBTI->getSuccessor(i) == BB) { 1801 BB->removePredecessor(PredBB); 1802 PredBBTI->setSuccessor(i, EdgeBB); 1803 } 1804 1805 // Recurse, simplifying any other constants. 1806 return FoldCondBranchOnPHI(BI, DL) | true; 1807 } 1808 1809 return false; 1810 } 1811 1812 /// Given a BB that starts with the specified two-entry PHI node, 1813 /// see if we can eliminate it. 1814 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 1815 const DataLayout &DL) { 1816 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 1817 // statement", which has a very simple dominance structure. Basically, we 1818 // are trying to find the condition that is being branched on, which 1819 // subsequently causes this merge to happen. We really want control 1820 // dependence information for this check, but simplifycfg can't keep it up 1821 // to date, and this catches most of the cases we care about anyway. 1822 BasicBlock *BB = PN->getParent(); 1823 BasicBlock *IfTrue, *IfFalse; 1824 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 1825 if (!IfCond || 1826 // Don't bother if the branch will be constant folded trivially. 1827 isa<ConstantInt>(IfCond)) 1828 return false; 1829 1830 // Okay, we found that we can merge this two-entry phi node into a select. 1831 // Doing so would require us to fold *all* two entry phi nodes in this block. 1832 // At some point this becomes non-profitable (particularly if the target 1833 // doesn't support cmov's). Only do this transformation if there are two or 1834 // fewer PHI nodes in this block. 1835 unsigned NumPhis = 0; 1836 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 1837 if (NumPhis > 2) 1838 return false; 1839 1840 // Loop over the PHI's seeing if we can promote them all to select 1841 // instructions. While we are at it, keep track of the instructions 1842 // that need to be moved to the dominating block. 1843 SmallPtrSet<Instruction*, 4> AggressiveInsts; 1844 unsigned MaxCostVal0 = PHINodeFoldingThreshold, 1845 MaxCostVal1 = PHINodeFoldingThreshold; 1846 MaxCostVal0 *= TargetTransformInfo::TCC_Basic; 1847 MaxCostVal1 *= TargetTransformInfo::TCC_Basic; 1848 1849 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 1850 PHINode *PN = cast<PHINode>(II++); 1851 if (Value *V = SimplifyInstruction(PN, DL)) { 1852 PN->replaceAllUsesWith(V); 1853 PN->eraseFromParent(); 1854 continue; 1855 } 1856 1857 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts, 1858 MaxCostVal0, TTI) || 1859 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts, 1860 MaxCostVal1, TTI)) 1861 return false; 1862 } 1863 1864 // If we folded the first phi, PN dangles at this point. Refresh it. If 1865 // we ran out of PHIs then we simplified them all. 1866 PN = dyn_cast<PHINode>(BB->begin()); 1867 if (!PN) return true; 1868 1869 // Don't fold i1 branches on PHIs which contain binary operators. These can 1870 // often be turned into switches and other things. 1871 if (PN->getType()->isIntegerTy(1) && 1872 (isa<BinaryOperator>(PN->getIncomingValue(0)) || 1873 isa<BinaryOperator>(PN->getIncomingValue(1)) || 1874 isa<BinaryOperator>(IfCond))) 1875 return false; 1876 1877 // If we all PHI nodes are promotable, check to make sure that all 1878 // instructions in the predecessor blocks can be promoted as well. If 1879 // not, we won't be able to get rid of the control flow, so it's not 1880 // worth promoting to select instructions. 1881 BasicBlock *DomBlock = nullptr; 1882 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 1883 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 1884 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 1885 IfBlock1 = nullptr; 1886 } else { 1887 DomBlock = *pred_begin(IfBlock1); 1888 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I) 1889 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1890 // This is not an aggressive instruction that we can promote. 1891 // Because of this, we won't be able to get rid of the control 1892 // flow, so the xform is not worth it. 1893 return false; 1894 } 1895 } 1896 1897 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 1898 IfBlock2 = nullptr; 1899 } else { 1900 DomBlock = *pred_begin(IfBlock2); 1901 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I) 1902 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { 1903 // This is not an aggressive instruction that we can promote. 1904 // Because of this, we won't be able to get rid of the control 1905 // flow, so the xform is not worth it. 1906 return false; 1907 } 1908 } 1909 1910 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: " 1911 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n"); 1912 1913 // If we can still promote the PHI nodes after this gauntlet of tests, 1914 // do all of the PHI's now. 1915 Instruction *InsertPt = DomBlock->getTerminator(); 1916 IRBuilder<true, NoFolder> Builder(InsertPt); 1917 1918 // Move all 'aggressive' instructions, which are defined in the 1919 // conditional parts of the if's up to the dominating block. 1920 if (IfBlock1) 1921 DomBlock->getInstList().splice(InsertPt->getIterator(), 1922 IfBlock1->getInstList(), IfBlock1->begin(), 1923 IfBlock1->getTerminator()->getIterator()); 1924 if (IfBlock2) 1925 DomBlock->getInstList().splice(InsertPt->getIterator(), 1926 IfBlock2->getInstList(), IfBlock2->begin(), 1927 IfBlock2->getTerminator()->getIterator()); 1928 1929 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 1930 // Change the PHI node into a select instruction. 1931 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 1932 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 1933 1934 SelectInst *NV = 1935 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, "")); 1936 PN->replaceAllUsesWith(NV); 1937 NV->takeName(PN); 1938 PN->eraseFromParent(); 1939 } 1940 1941 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 1942 // has been flattened. Change DomBlock to jump directly to our new block to 1943 // avoid other simplifycfg's kicking in on the diamond. 1944 TerminatorInst *OldTI = DomBlock->getTerminator(); 1945 Builder.SetInsertPoint(OldTI); 1946 Builder.CreateBr(BB); 1947 OldTI->eraseFromParent(); 1948 return true; 1949 } 1950 1951 /// If we found a conditional branch that goes to two returning blocks, 1952 /// try to merge them together into one return, 1953 /// introducing a select if the return values disagree. 1954 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 1955 IRBuilder<> &Builder) { 1956 assert(BI->isConditional() && "Must be a conditional branch"); 1957 BasicBlock *TrueSucc = BI->getSuccessor(0); 1958 BasicBlock *FalseSucc = BI->getSuccessor(1); 1959 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 1960 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 1961 1962 // Check to ensure both blocks are empty (just a return) or optionally empty 1963 // with PHI nodes. If there are other instructions, merging would cause extra 1964 // computation on one path or the other. 1965 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 1966 return false; 1967 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 1968 return false; 1969 1970 Builder.SetInsertPoint(BI); 1971 // Okay, we found a branch that is going to two return nodes. If 1972 // there is no return value for this function, just change the 1973 // branch into a return. 1974 if (FalseRet->getNumOperands() == 0) { 1975 TrueSucc->removePredecessor(BI->getParent()); 1976 FalseSucc->removePredecessor(BI->getParent()); 1977 Builder.CreateRetVoid(); 1978 EraseTerminatorInstAndDCECond(BI); 1979 return true; 1980 } 1981 1982 // Otherwise, figure out what the true and false return values are 1983 // so we can insert a new select instruction. 1984 Value *TrueValue = TrueRet->getReturnValue(); 1985 Value *FalseValue = FalseRet->getReturnValue(); 1986 1987 // Unwrap any PHI nodes in the return blocks. 1988 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 1989 if (TVPN->getParent() == TrueSucc) 1990 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); 1991 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 1992 if (FVPN->getParent() == FalseSucc) 1993 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); 1994 1995 // In order for this transformation to be safe, we must be able to 1996 // unconditionally execute both operands to the return. This is 1997 // normally the case, but we could have a potentially-trapping 1998 // constant expression that prevents this transformation from being 1999 // safe. 2000 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2001 if (TCV->canTrap()) 2002 return false; 2003 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2004 if (FCV->canTrap()) 2005 return false; 2006 2007 // Okay, we collected all the mapped values and checked them for sanity, and 2008 // defined to really do this transformation. First, update the CFG. 2009 TrueSucc->removePredecessor(BI->getParent()); 2010 FalseSucc->removePredecessor(BI->getParent()); 2011 2012 // Insert select instructions where needed. 2013 Value *BrCond = BI->getCondition(); 2014 if (TrueValue) { 2015 // Insert a select if the results differ. 2016 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2017 } else if (isa<UndefValue>(TrueValue)) { 2018 TrueValue = FalseValue; 2019 } else { 2020 TrueValue = Builder.CreateSelect(BrCond, TrueValue, 2021 FalseValue, "retval"); 2022 } 2023 } 2024 2025 Value *RI = !TrueValue ? 2026 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2027 2028 (void) RI; 2029 2030 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2031 << "\n " << *BI << "NewRet = " << *RI 2032 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc); 2033 2034 EraseTerminatorInstAndDCECond(BI); 2035 2036 return true; 2037 } 2038 2039 /// Given a conditional BranchInstruction, retrieve the probabilities of the 2040 /// branch taking each edge. Fills in the two APInt parameters and returns true, 2041 /// or returns false if no or invalid metadata was found. 2042 static bool ExtractBranchMetadata(BranchInst *BI, 2043 uint64_t &ProbTrue, uint64_t &ProbFalse) { 2044 assert(BI->isConditional() && 2045 "Looking for probabilities on unconditional branch?"); 2046 MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 2047 if (!ProfileData || ProfileData->getNumOperands() != 3) return false; 2048 ConstantInt *CITrue = 2049 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 2050 ConstantInt *CIFalse = 2051 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 2052 if (!CITrue || !CIFalse) return false; 2053 ProbTrue = CITrue->getValue().getZExtValue(); 2054 ProbFalse = CIFalse->getValue().getZExtValue(); 2055 return true; 2056 } 2057 2058 /// Return true if the given instruction is available 2059 /// in its predecessor block. If yes, the instruction will be removed. 2060 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) { 2061 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) 2062 return false; 2063 for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) { 2064 Instruction *PBI = &*I; 2065 // Check whether Inst and PBI generate the same value. 2066 if (Inst->isIdenticalTo(PBI)) { 2067 Inst->replaceAllUsesWith(PBI); 2068 Inst->eraseFromParent(); 2069 return true; 2070 } 2071 } 2072 return false; 2073 } 2074 2075 /// If this basic block is simple enough, and if a predecessor branches to us 2076 /// and one of our successors, fold the block into the predecessor and use 2077 /// logical operations to pick the right destination. 2078 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) { 2079 BasicBlock *BB = BI->getParent(); 2080 2081 Instruction *Cond = nullptr; 2082 if (BI->isConditional()) 2083 Cond = dyn_cast<Instruction>(BI->getCondition()); 2084 else { 2085 // For unconditional branch, check for a simple CFG pattern, where 2086 // BB has a single predecessor and BB's successor is also its predecessor's 2087 // successor. If such pattern exisits, check for CSE between BB and its 2088 // predecessor. 2089 if (BasicBlock *PB = BB->getSinglePredecessor()) 2090 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) 2091 if (PBI->isConditional() && 2092 (BI->getSuccessor(0) == PBI->getSuccessor(0) || 2093 BI->getSuccessor(0) == PBI->getSuccessor(1))) { 2094 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); 2095 I != E; ) { 2096 Instruction *Curr = &*I++; 2097 if (isa<CmpInst>(Curr)) { 2098 Cond = Curr; 2099 break; 2100 } 2101 // Quit if we can't remove this instruction. 2102 if (!checkCSEInPredecessor(Curr, PB)) 2103 return false; 2104 } 2105 } 2106 2107 if (!Cond) 2108 return false; 2109 } 2110 2111 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 2112 Cond->getParent() != BB || !Cond->hasOneUse()) 2113 return false; 2114 2115 // Make sure the instruction after the condition is the cond branch. 2116 BasicBlock::iterator CondIt = ++Cond->getIterator(); 2117 2118 // Ignore dbg intrinsics. 2119 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt; 2120 2121 if (&*CondIt != BI) 2122 return false; 2123 2124 // Only allow this transformation if computing the condition doesn't involve 2125 // too many instructions and these involved instructions can be executed 2126 // unconditionally. We denote all involved instructions except the condition 2127 // as "bonus instructions", and only allow this transformation when the 2128 // number of the bonus instructions does not exceed a certain threshold. 2129 unsigned NumBonusInsts = 0; 2130 for (auto I = BB->begin(); Cond != I; ++I) { 2131 // Ignore dbg intrinsics. 2132 if (isa<DbgInfoIntrinsic>(I)) 2133 continue; 2134 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) 2135 return false; 2136 // I has only one use and can be executed unconditionally. 2137 Instruction *User = dyn_cast<Instruction>(I->user_back()); 2138 if (User == nullptr || User->getParent() != BB) 2139 return false; 2140 // I is used in the same BB. Since BI uses Cond and doesn't have more slots 2141 // to use any other instruction, User must be an instruction between next(I) 2142 // and Cond. 2143 ++NumBonusInsts; 2144 // Early exits once we reach the limit. 2145 if (NumBonusInsts > BonusInstThreshold) 2146 return false; 2147 } 2148 2149 // Cond is known to be a compare or binary operator. Check to make sure that 2150 // neither operand is a potentially-trapping constant expression. 2151 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 2152 if (CE->canTrap()) 2153 return false; 2154 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 2155 if (CE->canTrap()) 2156 return false; 2157 2158 // Finally, don't infinitely unroll conditional loops. 2159 BasicBlock *TrueDest = BI->getSuccessor(0); 2160 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; 2161 if (TrueDest == BB || FalseDest == BB) 2162 return false; 2163 2164 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 2165 BasicBlock *PredBlock = *PI; 2166 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 2167 2168 // Check that we have two conditional branches. If there is a PHI node in 2169 // the common successor, verify that the same value flows in from both 2170 // blocks. 2171 SmallVector<PHINode*, 4> PHIs; 2172 if (!PBI || PBI->isUnconditional() || 2173 (BI->isConditional() && 2174 !SafeToMergeTerminators(BI, PBI)) || 2175 (!BI->isConditional() && 2176 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) 2177 continue; 2178 2179 // Determine if the two branches share a common destination. 2180 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; 2181 bool InvertPredCond = false; 2182 2183 if (BI->isConditional()) { 2184 if (PBI->getSuccessor(0) == TrueDest) 2185 Opc = Instruction::Or; 2186 else if (PBI->getSuccessor(1) == FalseDest) 2187 Opc = Instruction::And; 2188 else if (PBI->getSuccessor(0) == FalseDest) 2189 Opc = Instruction::And, InvertPredCond = true; 2190 else if (PBI->getSuccessor(1) == TrueDest) 2191 Opc = Instruction::Or, InvertPredCond = true; 2192 else 2193 continue; 2194 } else { 2195 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) 2196 continue; 2197 } 2198 2199 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 2200 IRBuilder<> Builder(PBI); 2201 2202 // If we need to invert the condition in the pred block to match, do so now. 2203 if (InvertPredCond) { 2204 Value *NewCond = PBI->getCondition(); 2205 2206 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 2207 CmpInst *CI = cast<CmpInst>(NewCond); 2208 CI->setPredicate(CI->getInversePredicate()); 2209 } else { 2210 NewCond = Builder.CreateNot(NewCond, 2211 PBI->getCondition()->getName()+".not"); 2212 } 2213 2214 PBI->setCondition(NewCond); 2215 PBI->swapSuccessors(); 2216 } 2217 2218 // If we have bonus instructions, clone them into the predecessor block. 2219 // Note that there may be multiple predecessor blocks, so we cannot move 2220 // bonus instructions to a predecessor block. 2221 ValueToValueMapTy VMap; // maps original values to cloned values 2222 // We already make sure Cond is the last instruction before BI. Therefore, 2223 // all instructions before Cond other than DbgInfoIntrinsic are bonus 2224 // instructions. 2225 for (auto BonusInst = BB->begin(); Cond != BonusInst; ++BonusInst) { 2226 if (isa<DbgInfoIntrinsic>(BonusInst)) 2227 continue; 2228 Instruction *NewBonusInst = BonusInst->clone(); 2229 RemapInstruction(NewBonusInst, VMap, 2230 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2231 VMap[&*BonusInst] = NewBonusInst; 2232 2233 // If we moved a load, we cannot any longer claim any knowledge about 2234 // its potential value. The previous information might have been valid 2235 // only given the branch precondition. 2236 // For an analogous reason, we must also drop all the metadata whose 2237 // semantics we don't understand. 2238 NewBonusInst->dropUnknownNonDebugMetadata(); 2239 2240 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); 2241 NewBonusInst->takeName(&*BonusInst); 2242 BonusInst->setName(BonusInst->getName() + ".old"); 2243 } 2244 2245 // Clone Cond into the predecessor basic block, and or/and the 2246 // two conditions together. 2247 Instruction *New = Cond->clone(); 2248 RemapInstruction(New, VMap, 2249 RF_NoModuleLevelChanges | RF_IgnoreMissingEntries); 2250 PredBlock->getInstList().insert(PBI->getIterator(), New); 2251 New->takeName(Cond); 2252 Cond->setName(New->getName() + ".old"); 2253 2254 if (BI->isConditional()) { 2255 Instruction *NewCond = 2256 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(), 2257 New, "or.cond")); 2258 PBI->setCondition(NewCond); 2259 2260 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2261 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2262 PredFalseWeight); 2263 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2264 SuccFalseWeight); 2265 SmallVector<uint64_t, 8> NewWeights; 2266 2267 if (PBI->getSuccessor(0) == BB) { 2268 if (PredHasWeights && SuccHasWeights) { 2269 // PBI: br i1 %x, BB, FalseDest 2270 // BI: br i1 %y, TrueDest, FalseDest 2271 //TrueWeight is TrueWeight for PBI * TrueWeight for BI. 2272 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 2273 //FalseWeight is FalseWeight for PBI * TotalWeight for BI + 2274 // TrueWeight for PBI * FalseWeight for BI. 2275 // We assume that total weights of a BranchInst can fit into 32 bits. 2276 // Therefore, we will not have overflow using 64-bit arithmetic. 2277 NewWeights.push_back(PredFalseWeight * (SuccFalseWeight + 2278 SuccTrueWeight) + PredTrueWeight * SuccFalseWeight); 2279 } 2280 AddPredecessorToBlock(TrueDest, PredBlock, BB); 2281 PBI->setSuccessor(0, TrueDest); 2282 } 2283 if (PBI->getSuccessor(1) == BB) { 2284 if (PredHasWeights && SuccHasWeights) { 2285 // PBI: br i1 %x, TrueDest, BB 2286 // BI: br i1 %y, TrueDest, FalseDest 2287 //TrueWeight is TrueWeight for PBI * TotalWeight for BI + 2288 // FalseWeight for PBI * TrueWeight for BI. 2289 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + 2290 SuccTrueWeight) + PredFalseWeight * SuccTrueWeight); 2291 //FalseWeight is FalseWeight for PBI * FalseWeight for BI. 2292 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 2293 } 2294 AddPredecessorToBlock(FalseDest, PredBlock, BB); 2295 PBI->setSuccessor(1, FalseDest); 2296 } 2297 if (NewWeights.size() == 2) { 2298 // Halve the weights if any of them cannot fit in an uint32_t 2299 FitWeights(NewWeights); 2300 2301 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end()); 2302 PBI->setMetadata(LLVMContext::MD_prof, 2303 MDBuilder(BI->getContext()). 2304 createBranchWeights(MDWeights)); 2305 } else 2306 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 2307 } else { 2308 // Update PHI nodes in the common successors. 2309 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { 2310 ConstantInt *PBI_C = cast<ConstantInt>( 2311 PHIs[i]->getIncomingValueForBlock(PBI->getParent())); 2312 assert(PBI_C->getType()->isIntegerTy(1)); 2313 Instruction *MergedCond = nullptr; 2314 if (PBI->getSuccessor(0) == TrueDest) { 2315 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) 2316 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) 2317 // is false: !PBI_Cond and BI_Value 2318 Instruction *NotCond = 2319 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2320 "not.cond")); 2321 MergedCond = 2322 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2323 NotCond, New, 2324 "and.cond")); 2325 if (PBI_C->isOne()) 2326 MergedCond = 2327 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2328 PBI->getCondition(), MergedCond, 2329 "or.cond")); 2330 } else { 2331 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) 2332 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) 2333 // is false: PBI_Cond and BI_Value 2334 MergedCond = 2335 cast<Instruction>(Builder.CreateBinOp(Instruction::And, 2336 PBI->getCondition(), New, 2337 "and.cond")); 2338 if (PBI_C->isOne()) { 2339 Instruction *NotCond = 2340 cast<Instruction>(Builder.CreateNot(PBI->getCondition(), 2341 "not.cond")); 2342 MergedCond = 2343 cast<Instruction>(Builder.CreateBinOp(Instruction::Or, 2344 NotCond, MergedCond, 2345 "or.cond")); 2346 } 2347 } 2348 // Update PHI Node. 2349 PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()), 2350 MergedCond); 2351 } 2352 // Change PBI from Conditional to Unconditional. 2353 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); 2354 EraseTerminatorInstAndDCECond(PBI); 2355 PBI = New_PBI; 2356 } 2357 2358 // TODO: If BB is reachable from all paths through PredBlock, then we 2359 // could replace PBI's branch probabilities with BI's. 2360 2361 // Copy any debug value intrinsics into the end of PredBlock. 2362 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 2363 if (isa<DbgInfoIntrinsic>(*I)) 2364 I->clone()->insertBefore(PBI); 2365 2366 return true; 2367 } 2368 return false; 2369 } 2370 2371 // If there is only one store in BB1 and BB2, return it, otherwise return 2372 // nullptr. 2373 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 2374 StoreInst *S = nullptr; 2375 for (auto *BB : {BB1, BB2}) { 2376 if (!BB) 2377 continue; 2378 for (auto &I : *BB) 2379 if (auto *SI = dyn_cast<StoreInst>(&I)) { 2380 if (S) 2381 // Multiple stores seen. 2382 return nullptr; 2383 else 2384 S = SI; 2385 } 2386 } 2387 return S; 2388 } 2389 2390 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 2391 Value *AlternativeV = nullptr) { 2392 // PHI is going to be a PHI node that allows the value V that is defined in 2393 // BB to be referenced in BB's only successor. 2394 // 2395 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 2396 // doesn't matter to us what the other operand is (it'll never get used). We 2397 // could just create a new PHI with an undef incoming value, but that could 2398 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 2399 // other PHI. So here we directly look for some PHI in BB's successor with V 2400 // as an incoming operand. If we find one, we use it, else we create a new 2401 // one. 2402 // 2403 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 2404 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 2405 // where OtherBB is the single other predecessor of BB's only successor. 2406 PHINode *PHI = nullptr; 2407 BasicBlock *Succ = BB->getSingleSuccessor(); 2408 2409 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 2410 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 2411 PHI = cast<PHINode>(I); 2412 if (!AlternativeV) 2413 break; 2414 2415 assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2); 2416 auto PredI = pred_begin(Succ); 2417 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 2418 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 2419 break; 2420 PHI = nullptr; 2421 } 2422 if (PHI) 2423 return PHI; 2424 2425 // If V is not an instruction defined in BB, just return it. 2426 if (!AlternativeV && 2427 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 2428 return V; 2429 2430 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 2431 PHI->addIncoming(V, BB); 2432 for (BasicBlock *PredBB : predecessors(Succ)) 2433 if (PredBB != BB) 2434 PHI->addIncoming(AlternativeV ? AlternativeV : UndefValue::get(V->getType()), 2435 PredBB); 2436 return PHI; 2437 } 2438 2439 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, 2440 BasicBlock *QTB, BasicBlock *QFB, 2441 BasicBlock *PostBB, Value *Address, 2442 bool InvertPCond, bool InvertQCond) { 2443 auto IsaBitcastOfPointerType = [](const Instruction &I) { 2444 return Operator::getOpcode(&I) == Instruction::BitCast && 2445 I.getType()->isPointerTy(); 2446 }; 2447 2448 // If we're not in aggressive mode, we only optimize if we have some 2449 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 2450 auto IsWorthwhile = [&](BasicBlock *BB) { 2451 if (!BB) 2452 return true; 2453 // Heuristic: if the block can be if-converted/phi-folded and the 2454 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 2455 // thread this store. 2456 unsigned N = 0; 2457 for (auto &I : *BB) { 2458 // Cheap instructions viable for folding. 2459 if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || 2460 isa<StoreInst>(I)) 2461 ++N; 2462 // Free instructions. 2463 else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 2464 IsaBitcastOfPointerType(I)) 2465 continue; 2466 else 2467 return false; 2468 } 2469 return N <= PHINodeFoldingThreshold; 2470 }; 2471 2472 if (!MergeCondStoresAggressively && (!IsWorthwhile(PTB) || 2473 !IsWorthwhile(PFB) || 2474 !IsWorthwhile(QTB) || 2475 !IsWorthwhile(QFB))) 2476 return false; 2477 2478 // For every pointer, there must be exactly two stores, one coming from 2479 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 2480 // store (to any address) in PTB,PFB or QTB,QFB. 2481 // FIXME: We could relax this restriction with a bit more work and performance 2482 // testing. 2483 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 2484 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 2485 if (!PStore || !QStore) 2486 return false; 2487 2488 // Now check the stores are compatible. 2489 if (!QStore->isUnordered() || !PStore->isUnordered()) 2490 return false; 2491 2492 // Check that sinking the store won't cause program behavior changes. Sinking 2493 // the store out of the Q blocks won't change any behavior as we're sinking 2494 // from a block to its unconditional successor. But we're moving a store from 2495 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 2496 // So we need to check that there are no aliasing loads or stores in 2497 // QBI, QTB and QFB. We also need to check there are no conflicting memory 2498 // operations between PStore and the end of its parent block. 2499 // 2500 // The ideal way to do this is to query AliasAnalysis, but we don't 2501 // preserve AA currently so that is dangerous. Be super safe and just 2502 // check there are no other memory operations at all. 2503 for (auto &I : *QFB->getSinglePredecessor()) 2504 if (I.mayReadOrWriteMemory()) 2505 return false; 2506 for (auto &I : *QFB) 2507 if (&I != QStore && I.mayReadOrWriteMemory()) 2508 return false; 2509 if (QTB) 2510 for (auto &I : *QTB) 2511 if (&I != QStore && I.mayReadOrWriteMemory()) 2512 return false; 2513 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 2514 I != E; ++I) 2515 if (&*I != PStore && I->mayReadOrWriteMemory()) 2516 return false; 2517 2518 // OK, we're going to sink the stores to PostBB. The store has to be 2519 // conditional though, so first create the predicate. 2520 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 2521 ->getCondition(); 2522 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 2523 ->getCondition(); 2524 2525 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 2526 PStore->getParent()); 2527 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 2528 QStore->getParent(), PPHI); 2529 2530 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 2531 2532 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 2533 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 2534 2535 if (InvertPCond) 2536 PPred = QB.CreateNot(PPred); 2537 if (InvertQCond) 2538 QPred = QB.CreateNot(QPred); 2539 Value *CombinedPred = QB.CreateOr(PPred, QPred); 2540 2541 auto *T = 2542 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); 2543 QB.SetInsertPoint(T); 2544 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 2545 AAMDNodes AAMD; 2546 PStore->getAAMetadata(AAMD, /*Merge=*/false); 2547 PStore->getAAMetadata(AAMD, /*Merge=*/true); 2548 SI->setAAMetadata(AAMD); 2549 2550 QStore->eraseFromParent(); 2551 PStore->eraseFromParent(); 2552 2553 return true; 2554 } 2555 2556 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) { 2557 // The intention here is to find diamonds or triangles (see below) where each 2558 // conditional block contains a store to the same address. Both of these 2559 // stores are conditional, so they can't be unconditionally sunk. But it may 2560 // be profitable to speculatively sink the stores into one merged store at the 2561 // end, and predicate the merged store on the union of the two conditions of 2562 // PBI and QBI. 2563 // 2564 // This can reduce the number of stores executed if both of the conditions are 2565 // true, and can allow the blocks to become small enough to be if-converted. 2566 // This optimization will also chain, so that ladders of test-and-set 2567 // sequences can be if-converted away. 2568 // 2569 // We only deal with simple diamonds or triangles: 2570 // 2571 // PBI or PBI or a combination of the two 2572 // / \ | \ 2573 // PTB PFB | PFB 2574 // \ / | / 2575 // QBI QBI 2576 // / \ | \ 2577 // QTB QFB | QFB 2578 // \ / | / 2579 // PostBB PostBB 2580 // 2581 // We model triangles as a type of diamond with a nullptr "true" block. 2582 // Triangles are canonicalized so that the fallthrough edge is represented by 2583 // a true condition, as in the diagram above. 2584 // 2585 BasicBlock *PTB = PBI->getSuccessor(0); 2586 BasicBlock *PFB = PBI->getSuccessor(1); 2587 BasicBlock *QTB = QBI->getSuccessor(0); 2588 BasicBlock *QFB = QBI->getSuccessor(1); 2589 BasicBlock *PostBB = QFB->getSingleSuccessor(); 2590 2591 bool InvertPCond = false, InvertQCond = false; 2592 // Canonicalize fallthroughs to the true branches. 2593 if (PFB == QBI->getParent()) { 2594 std::swap(PFB, PTB); 2595 InvertPCond = true; 2596 } 2597 if (QFB == PostBB) { 2598 std::swap(QFB, QTB); 2599 InvertQCond = true; 2600 } 2601 2602 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 2603 // and QFB may not. Model fallthroughs as a nullptr block. 2604 if (PTB == QBI->getParent()) 2605 PTB = nullptr; 2606 if (QTB == PostBB) 2607 QTB = nullptr; 2608 2609 // Legality bailouts. We must have at least the non-fallthrough blocks and 2610 // the post-dominating block, and the non-fallthroughs must only have one 2611 // predecessor. 2612 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 2613 return BB->getSinglePredecessor() == P && 2614 BB->getSingleSuccessor() == S; 2615 }; 2616 if (!PostBB || 2617 !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 2618 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 2619 return false; 2620 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 2621 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 2622 return false; 2623 if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2) 2624 return false; 2625 2626 // OK, this is a sequence of two diamonds or triangles. 2627 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 2628 SmallPtrSet<Value *,4> PStoreAddresses, QStoreAddresses; 2629 for (auto *BB : {PTB, PFB}) { 2630 if (!BB) 2631 continue; 2632 for (auto &I : *BB) 2633 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2634 PStoreAddresses.insert(SI->getPointerOperand()); 2635 } 2636 for (auto *BB : {QTB, QFB}) { 2637 if (!BB) 2638 continue; 2639 for (auto &I : *BB) 2640 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 2641 QStoreAddresses.insert(SI->getPointerOperand()); 2642 } 2643 2644 set_intersect(PStoreAddresses, QStoreAddresses); 2645 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 2646 // clear what it contains. 2647 auto &CommonAddresses = PStoreAddresses; 2648 2649 bool Changed = false; 2650 for (auto *Address : CommonAddresses) 2651 Changed |= mergeConditionalStoreToAddress( 2652 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond); 2653 return Changed; 2654 } 2655 2656 /// If we have a conditional branch as a predecessor of another block, 2657 /// this function tries to simplify it. We know 2658 /// that PBI and BI are both conditional branches, and BI is in one of the 2659 /// successor blocks of PBI - PBI branches to BI. 2660 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 2661 const DataLayout &DL) { 2662 assert(PBI->isConditional() && BI->isConditional()); 2663 BasicBlock *BB = BI->getParent(); 2664 2665 // If this block ends with a branch instruction, and if there is a 2666 // predecessor that ends on a branch of the same condition, make 2667 // this conditional branch redundant. 2668 if (PBI->getCondition() == BI->getCondition() && 2669 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2670 // Okay, the outcome of this conditional branch is statically 2671 // knowable. If this block had a single pred, handle specially. 2672 if (BB->getSinglePredecessor()) { 2673 // Turn this into a branch on constant. 2674 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2675 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2676 CondIsTrue)); 2677 return true; // Nuke the branch on constant. 2678 } 2679 2680 // Otherwise, if there are multiple predecessors, insert a PHI that merges 2681 // in the constant and simplify the block result. Subsequent passes of 2682 // simplifycfg will thread the block. 2683 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 2684 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 2685 PHINode *NewPN = PHINode::Create( 2686 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 2687 BI->getCondition()->getName() + ".pr", &BB->front()); 2688 // Okay, we're going to insert the PHI node. Since PBI is not the only 2689 // predecessor, compute the PHI'd conditional value for all of the preds. 2690 // Any predecessor where the condition is not computable we keep symbolic. 2691 for (pred_iterator PI = PB; PI != PE; ++PI) { 2692 BasicBlock *P = *PI; 2693 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && 2694 PBI != BI && PBI->isConditional() && 2695 PBI->getCondition() == BI->getCondition() && 2696 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 2697 bool CondIsTrue = PBI->getSuccessor(0) == BB; 2698 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 2699 CondIsTrue), P); 2700 } else { 2701 NewPN->addIncoming(BI->getCondition(), P); 2702 } 2703 } 2704 2705 BI->setCondition(NewPN); 2706 return true; 2707 } 2708 } 2709 2710 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 2711 if (CE->canTrap()) 2712 return false; 2713 2714 // If BI is reached from the true path of PBI and PBI's condition implies 2715 // BI's condition, we know the direction of the BI branch. 2716 if (PBI->getSuccessor(0) == BI->getParent() && 2717 isImpliedCondition(PBI->getCondition(), BI->getCondition(), DL) && 2718 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 2719 BB->getSinglePredecessor()) { 2720 // Turn this into a branch on constant. 2721 auto *OldCond = BI->getCondition(); 2722 BI->setCondition(ConstantInt::getTrue(BB->getContext())); 2723 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 2724 return true; // Nuke the branch on constant. 2725 } 2726 2727 // If both branches are conditional and both contain stores to the same 2728 // address, remove the stores from the conditionals and create a conditional 2729 // merged store at the end. 2730 if (MergeCondStores && mergeConditionalStores(PBI, BI)) 2731 return true; 2732 2733 // If this is a conditional branch in an empty block, and if any 2734 // predecessors are a conditional branch to one of our destinations, 2735 // fold the conditions into logical ops and one cond br. 2736 BasicBlock::iterator BBI = BB->begin(); 2737 // Ignore dbg intrinsics. 2738 while (isa<DbgInfoIntrinsic>(BBI)) 2739 ++BBI; 2740 if (&*BBI != BI) 2741 return false; 2742 2743 int PBIOp, BIOp; 2744 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) 2745 PBIOp = BIOp = 0; 2746 else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) 2747 PBIOp = 0, BIOp = 1; 2748 else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) 2749 PBIOp = 1, BIOp = 0; 2750 else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) 2751 PBIOp = BIOp = 1; 2752 else 2753 return false; 2754 2755 // Check to make sure that the other destination of this branch 2756 // isn't BB itself. If so, this is an infinite loop that will 2757 // keep getting unwound. 2758 if (PBI->getSuccessor(PBIOp) == BB) 2759 return false; 2760 2761 // Do not perform this transformation if it would require 2762 // insertion of a large number of select instructions. For targets 2763 // without predication/cmovs, this is a big pessimization. 2764 2765 // Also do not perform this transformation if any phi node in the common 2766 // destination block can trap when reached by BB or PBB (PR17073). In that 2767 // case, it would be unsafe to hoist the operation into a select instruction. 2768 2769 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 2770 unsigned NumPhis = 0; 2771 for (BasicBlock::iterator II = CommonDest->begin(); 2772 isa<PHINode>(II); ++II, ++NumPhis) { 2773 if (NumPhis > 2) // Disable this xform. 2774 return false; 2775 2776 PHINode *PN = cast<PHINode>(II); 2777 Value *BIV = PN->getIncomingValueForBlock(BB); 2778 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 2779 if (CE->canTrap()) 2780 return false; 2781 2782 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2783 Value *PBIV = PN->getIncomingValue(PBBIdx); 2784 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 2785 if (CE->canTrap()) 2786 return false; 2787 } 2788 2789 // Finally, if everything is ok, fold the branches to logical ops. 2790 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 2791 2792 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 2793 << "AND: " << *BI->getParent()); 2794 2795 2796 // If OtherDest *is* BB, then BB is a basic block with a single conditional 2797 // branch in it, where one edge (OtherDest) goes back to itself but the other 2798 // exits. We don't *know* that the program avoids the infinite loop 2799 // (even though that seems likely). If we do this xform naively, we'll end up 2800 // recursively unpeeling the loop. Since we know that (after the xform is 2801 // done) that the block *is* infinite if reached, we just make it an obviously 2802 // infinite loop with no cond branch. 2803 if (OtherDest == BB) { 2804 // Insert it at the end of the function, because it's either code, 2805 // or it won't matter if it's hot. :) 2806 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(), 2807 "infloop", BB->getParent()); 2808 BranchInst::Create(InfLoopBlock, InfLoopBlock); 2809 OtherDest = InfLoopBlock; 2810 } 2811 2812 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2813 2814 // BI may have other predecessors. Because of this, we leave 2815 // it alone, but modify PBI. 2816 2817 // Make sure we get to CommonDest on True&True directions. 2818 Value *PBICond = PBI->getCondition(); 2819 IRBuilder<true, NoFolder> Builder(PBI); 2820 if (PBIOp) 2821 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not"); 2822 2823 Value *BICond = BI->getCondition(); 2824 if (BIOp) 2825 BICond = Builder.CreateNot(BICond, BICond->getName()+".not"); 2826 2827 // Merge the conditions. 2828 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); 2829 2830 // Modify PBI to branch on the new condition to the new dests. 2831 PBI->setCondition(Cond); 2832 PBI->setSuccessor(0, CommonDest); 2833 PBI->setSuccessor(1, OtherDest); 2834 2835 // Update branch weight for PBI. 2836 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 2837 bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight, 2838 PredFalseWeight); 2839 bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight, 2840 SuccFalseWeight); 2841 if (PredHasWeights && SuccHasWeights) { 2842 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 2843 uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight; 2844 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 2845 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 2846 // The weight to CommonDest should be PredCommon * SuccTotal + 2847 // PredOther * SuccCommon. 2848 // The weight to OtherDest should be PredOther * SuccOther. 2849 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 2850 PredOther * SuccCommon, 2851 PredOther * SuccOther}; 2852 // Halve the weights if any of them cannot fit in an uint32_t 2853 FitWeights(NewWeights); 2854 2855 PBI->setMetadata(LLVMContext::MD_prof, 2856 MDBuilder(BI->getContext()) 2857 .createBranchWeights(NewWeights[0], NewWeights[1])); 2858 } 2859 2860 // OtherDest may have phi nodes. If so, add an entry from PBI's 2861 // block that are identical to the entries for BI's block. 2862 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 2863 2864 // We know that the CommonDest already had an edge from PBI to 2865 // it. If it has PHIs though, the PHIs may have different 2866 // entries for BB and PBI's BB. If so, insert a select to make 2867 // them agree. 2868 PHINode *PN; 2869 for (BasicBlock::iterator II = CommonDest->begin(); 2870 (PN = dyn_cast<PHINode>(II)); ++II) { 2871 Value *BIV = PN->getIncomingValueForBlock(BB); 2872 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 2873 Value *PBIV = PN->getIncomingValue(PBBIdx); 2874 if (BIV != PBIV) { 2875 // Insert a select in PBI to pick the right value. 2876 Value *NV = cast<SelectInst> 2877 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux")); 2878 PN->setIncomingValue(PBBIdx, NV); 2879 } 2880 } 2881 2882 DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 2883 DEBUG(dbgs() << *PBI->getParent()->getParent()); 2884 2885 // This basic block is probably dead. We know it has at least 2886 // one fewer predecessor. 2887 return true; 2888 } 2889 2890 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 2891 // true or to FalseBB if Cond is false. 2892 // Takes care of updating the successors and removing the old terminator. 2893 // Also makes sure not to introduce new successors by assuming that edges to 2894 // non-successor TrueBBs and FalseBBs aren't reachable. 2895 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, 2896 BasicBlock *TrueBB, BasicBlock *FalseBB, 2897 uint32_t TrueWeight, 2898 uint32_t FalseWeight){ 2899 // Remove any superfluous successor edges from the CFG. 2900 // First, figure out which successors to preserve. 2901 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 2902 // successor. 2903 BasicBlock *KeepEdge1 = TrueBB; 2904 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 2905 2906 // Then remove the rest. 2907 for (BasicBlock *Succ : OldTerm->successors()) { 2908 // Make sure only to keep exactly one copy of each edge. 2909 if (Succ == KeepEdge1) 2910 KeepEdge1 = nullptr; 2911 else if (Succ == KeepEdge2) 2912 KeepEdge2 = nullptr; 2913 else 2914 Succ->removePredecessor(OldTerm->getParent(), 2915 /*DontDeleteUselessPHIs=*/true); 2916 } 2917 2918 IRBuilder<> Builder(OldTerm); 2919 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 2920 2921 // Insert an appropriate new terminator. 2922 if (!KeepEdge1 && !KeepEdge2) { 2923 if (TrueBB == FalseBB) 2924 // We were only looking for one successor, and it was present. 2925 // Create an unconditional branch to it. 2926 Builder.CreateBr(TrueBB); 2927 else { 2928 // We found both of the successors we were looking for. 2929 // Create a conditional branch sharing the condition of the select. 2930 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 2931 if (TrueWeight != FalseWeight) 2932 NewBI->setMetadata(LLVMContext::MD_prof, 2933 MDBuilder(OldTerm->getContext()). 2934 createBranchWeights(TrueWeight, FalseWeight)); 2935 } 2936 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 2937 // Neither of the selected blocks were successors, so this 2938 // terminator must be unreachable. 2939 new UnreachableInst(OldTerm->getContext(), OldTerm); 2940 } else { 2941 // One of the selected values was a successor, but the other wasn't. 2942 // Insert an unconditional branch to the one that was found; 2943 // the edge to the one that wasn't must be unreachable. 2944 if (!KeepEdge1) 2945 // Only TrueBB was found. 2946 Builder.CreateBr(TrueBB); 2947 else 2948 // Only FalseBB was found. 2949 Builder.CreateBr(FalseBB); 2950 } 2951 2952 EraseTerminatorInstAndDCECond(OldTerm); 2953 return true; 2954 } 2955 2956 // Replaces 2957 // (switch (select cond, X, Y)) on constant X, Y 2958 // with a branch - conditional if X and Y lead to distinct BBs, 2959 // unconditional otherwise. 2960 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { 2961 // Check for constant integer values in the select. 2962 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 2963 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 2964 if (!TrueVal || !FalseVal) 2965 return false; 2966 2967 // Find the relevant condition and destinations. 2968 Value *Condition = Select->getCondition(); 2969 BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor(); 2970 BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor(); 2971 2972 // Get weight for TrueBB and FalseBB. 2973 uint32_t TrueWeight = 0, FalseWeight = 0; 2974 SmallVector<uint64_t, 8> Weights; 2975 bool HasWeights = HasBranchWeights(SI); 2976 if (HasWeights) { 2977 GetBranchWeights(SI, Weights); 2978 if (Weights.size() == 1 + SI->getNumCases()) { 2979 TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal). 2980 getSuccessorIndex()]; 2981 FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal). 2982 getSuccessorIndex()]; 2983 } 2984 } 2985 2986 // Perform the actual simplification. 2987 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, 2988 TrueWeight, FalseWeight); 2989 } 2990 2991 // Replaces 2992 // (indirectbr (select cond, blockaddress(@fn, BlockA), 2993 // blockaddress(@fn, BlockB))) 2994 // with 2995 // (br cond, BlockA, BlockB). 2996 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { 2997 // Check that both operands of the select are block addresses. 2998 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 2999 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 3000 if (!TBA || !FBA) 3001 return false; 3002 3003 // Extract the actual blocks. 3004 BasicBlock *TrueBB = TBA->getBasicBlock(); 3005 BasicBlock *FalseBB = FBA->getBasicBlock(); 3006 3007 // Perform the actual simplification. 3008 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 3009 0, 0); 3010 } 3011 3012 /// This is called when we find an icmp instruction 3013 /// (a seteq/setne with a constant) as the only instruction in a 3014 /// block that ends with an uncond branch. We are looking for a very specific 3015 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 3016 /// this case, we merge the first two "or's of icmp" into a switch, but then the 3017 /// default value goes to an uncond block with a seteq in it, we get something 3018 /// like: 3019 /// 3020 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 3021 /// DEFAULT: 3022 /// %tmp = icmp eq i8 %A, 92 3023 /// br label %end 3024 /// end: 3025 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 3026 /// 3027 /// We prefer to split the edge to 'end' so that there is a true/false entry to 3028 /// the PHI, merging the third icmp into the switch. 3029 static bool TryToSimplifyUncondBranchWithICmpInIt( 3030 ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL, 3031 const TargetTransformInfo &TTI, unsigned BonusInstThreshold, 3032 AssumptionCache *AC) { 3033 BasicBlock *BB = ICI->getParent(); 3034 3035 // If the block has any PHIs in it or the icmp has multiple uses, it is too 3036 // complex. 3037 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false; 3038 3039 Value *V = ICI->getOperand(0); 3040 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 3041 3042 // The pattern we're looking for is where our only predecessor is a switch on 3043 // 'V' and this block is the default case for the switch. In this case we can 3044 // fold the compared value into the switch to simplify things. 3045 BasicBlock *Pred = BB->getSinglePredecessor(); 3046 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false; 3047 3048 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 3049 if (SI->getCondition() != V) 3050 return false; 3051 3052 // If BB is reachable on a non-default case, then we simply know the value of 3053 // V in this block. Substitute it and constant fold the icmp instruction 3054 // away. 3055 if (SI->getDefaultDest() != BB) { 3056 ConstantInt *VVal = SI->findCaseDest(BB); 3057 assert(VVal && "Should have a unique destination value"); 3058 ICI->setOperand(0, VVal); 3059 3060 if (Value *V = SimplifyInstruction(ICI, DL)) { 3061 ICI->replaceAllUsesWith(V); 3062 ICI->eraseFromParent(); 3063 } 3064 // BB is now empty, so it is likely to simplify away. 3065 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3066 } 3067 3068 // Ok, the block is reachable from the default dest. If the constant we're 3069 // comparing exists in one of the other edges, then we can constant fold ICI 3070 // and zap it. 3071 if (SI->findCaseValue(Cst) != SI->case_default()) { 3072 Value *V; 3073 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3074 V = ConstantInt::getFalse(BB->getContext()); 3075 else 3076 V = ConstantInt::getTrue(BB->getContext()); 3077 3078 ICI->replaceAllUsesWith(V); 3079 ICI->eraseFromParent(); 3080 // BB is now empty, so it is likely to simplify away. 3081 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 3082 } 3083 3084 // The use of the icmp has to be in the 'end' block, by the only PHI node in 3085 // the block. 3086 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 3087 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 3088 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 3089 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 3090 return false; 3091 3092 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 3093 // true in the PHI. 3094 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 3095 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 3096 3097 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 3098 std::swap(DefaultCst, NewCst); 3099 3100 // Replace ICI (which is used by the PHI for the default value) with true or 3101 // false depending on if it is EQ or NE. 3102 ICI->replaceAllUsesWith(DefaultCst); 3103 ICI->eraseFromParent(); 3104 3105 // Okay, the switch goes to this block on a default value. Add an edge from 3106 // the switch to the merge point on the compared value. 3107 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge", 3108 BB->getParent(), BB); 3109 SmallVector<uint64_t, 8> Weights; 3110 bool HasWeights = HasBranchWeights(SI); 3111 if (HasWeights) { 3112 GetBranchWeights(SI, Weights); 3113 if (Weights.size() == 1 + SI->getNumCases()) { 3114 // Split weight for default case to case for "Cst". 3115 Weights[0] = (Weights[0]+1) >> 1; 3116 Weights.push_back(Weights[0]); 3117 3118 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3119 SI->setMetadata(LLVMContext::MD_prof, 3120 MDBuilder(SI->getContext()). 3121 createBranchWeights(MDWeights)); 3122 } 3123 } 3124 SI->addCase(Cst, NewBB); 3125 3126 // NewBB branches to the phi block, add the uncond branch and the phi entry. 3127 Builder.SetInsertPoint(NewBB); 3128 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 3129 Builder.CreateBr(SuccBlock); 3130 PHIUse->addIncoming(NewCst, NewBB); 3131 return true; 3132 } 3133 3134 /// The specified branch is a conditional branch. 3135 /// Check to see if it is branching on an or/and chain of icmp instructions, and 3136 /// fold it into a switch instruction if so. 3137 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 3138 const DataLayout &DL) { 3139 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3140 if (!Cond) return false; 3141 3142 // Change br (X == 0 | X == 1), T, F into a switch instruction. 3143 // If this is a bunch of seteq's or'd together, or if it's a bunch of 3144 // 'setne's and'ed together, collect them. 3145 3146 // Try to gather values from a chain of and/or to be turned into a switch 3147 ConstantComparesGatherer ConstantCompare(Cond, DL); 3148 // Unpack the result 3149 SmallVectorImpl<ConstantInt*> &Values = ConstantCompare.Vals; 3150 Value *CompVal = ConstantCompare.CompValue; 3151 unsigned UsedICmps = ConstantCompare.UsedICmps; 3152 Value *ExtraCase = ConstantCompare.Extra; 3153 3154 // If we didn't have a multiply compared value, fail. 3155 if (!CompVal) return false; 3156 3157 // Avoid turning single icmps into a switch. 3158 if (UsedICmps <= 1) 3159 return false; 3160 3161 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); 3162 3163 // There might be duplicate constants in the list, which the switch 3164 // instruction can't handle, remove them now. 3165 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 3166 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 3167 3168 // If Extra was used, we require at least two switch values to do the 3169 // transformation. A switch with one value is just a conditional branch. 3170 if (ExtraCase && Values.size() < 2) return false; 3171 3172 // TODO: Preserve branch weight metadata, similarly to how 3173 // FoldValueComparisonIntoPredecessors preserves it. 3174 3175 // Figure out which block is which destination. 3176 BasicBlock *DefaultBB = BI->getSuccessor(1); 3177 BasicBlock *EdgeBB = BI->getSuccessor(0); 3178 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB); 3179 3180 BasicBlock *BB = BI->getParent(); 3181 3182 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 3183 << " cases into SWITCH. BB is:\n" << *BB); 3184 3185 // If there are any extra values that couldn't be folded into the switch 3186 // then we evaluate them with an explicit branch first. Split the block 3187 // right before the condbr to handle it. 3188 if (ExtraCase) { 3189 BasicBlock *NewBB = 3190 BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); 3191 // Remove the uncond branch added to the old block. 3192 TerminatorInst *OldTI = BB->getTerminator(); 3193 Builder.SetInsertPoint(OldTI); 3194 3195 if (TrueWhenEqual) 3196 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 3197 else 3198 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 3199 3200 OldTI->eraseFromParent(); 3201 3202 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 3203 // for the edge we just added. 3204 AddPredecessorToBlock(EdgeBB, BB, NewBB); 3205 3206 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 3207 << "\nEXTRABB = " << *BB); 3208 BB = NewBB; 3209 } 3210 3211 Builder.SetInsertPoint(BI); 3212 // Convert pointer to int before we switch. 3213 if (CompVal->getType()->isPointerTy()) { 3214 CompVal = Builder.CreatePtrToInt( 3215 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 3216 } 3217 3218 // Create the new switch instruction now. 3219 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 3220 3221 // Add all of the 'cases' to the switch instruction. 3222 for (unsigned i = 0, e = Values.size(); i != e; ++i) 3223 New->addCase(Values[i], EdgeBB); 3224 3225 // We added edges from PI to the EdgeBB. As such, if there were any 3226 // PHI nodes in EdgeBB, they need entries to be added corresponding to 3227 // the number of edges added. 3228 for (BasicBlock::iterator BBI = EdgeBB->begin(); 3229 isa<PHINode>(BBI); ++BBI) { 3230 PHINode *PN = cast<PHINode>(BBI); 3231 Value *InVal = PN->getIncomingValueForBlock(BB); 3232 for (unsigned i = 0, e = Values.size()-1; i != e; ++i) 3233 PN->addIncoming(InVal, BB); 3234 } 3235 3236 // Erase the old branch instruction. 3237 EraseTerminatorInstAndDCECond(BI); 3238 3239 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 3240 return true; 3241 } 3242 3243 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 3244 if (isa<PHINode>(RI->getValue())) 3245 return SimplifyCommonResume(RI); 3246 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 3247 RI->getValue() == RI->getParent()->getFirstNonPHI()) 3248 // The resume must unwind the exception that caused control to branch here. 3249 return SimplifySingleResume(RI); 3250 3251 return false; 3252 } 3253 3254 // Simplify resume that is shared by several landing pads (phi of landing pad). 3255 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { 3256 BasicBlock *BB = RI->getParent(); 3257 3258 // Check that there are no other instructions except for debug intrinsics 3259 // between the phi of landing pads (RI->getValue()) and resume instruction. 3260 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), 3261 E = RI->getIterator(); 3262 while (++I != E) 3263 if (!isa<DbgInfoIntrinsic>(I)) 3264 return false; 3265 3266 SmallSet<BasicBlock *, 4> TrivialUnwindBlocks; 3267 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 3268 3269 // Check incoming blocks to see if any of them are trivial. 3270 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); 3271 Idx != End; Idx++) { 3272 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 3273 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 3274 3275 // If the block has other successors, we can not delete it because 3276 // it has other dependents. 3277 if (IncomingBB->getUniqueSuccessor() != BB) 3278 continue; 3279 3280 auto *LandingPad = 3281 dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 3282 // Not the landing pad that caused the control to branch here. 3283 if (IncomingValue != LandingPad) 3284 continue; 3285 3286 bool isTrivial = true; 3287 3288 I = IncomingBB->getFirstNonPHI()->getIterator(); 3289 E = IncomingBB->getTerminator()->getIterator(); 3290 while (++I != E) 3291 if (!isa<DbgInfoIntrinsic>(I)) { 3292 isTrivial = false; 3293 break; 3294 } 3295 3296 if (isTrivial) 3297 TrivialUnwindBlocks.insert(IncomingBB); 3298 } 3299 3300 // If no trivial unwind blocks, don't do any simplifications. 3301 if (TrivialUnwindBlocks.empty()) return false; 3302 3303 // Turn all invokes that unwind here into calls. 3304 for (auto *TrivialBB : TrivialUnwindBlocks) { 3305 // Blocks that will be simplified should be removed from the phi node. 3306 // Note there could be multiple edges to the resume block, and we need 3307 // to remove them all. 3308 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 3309 BB->removePredecessor(TrivialBB, true); 3310 3311 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); 3312 PI != PE;) { 3313 BasicBlock *Pred = *PI++; 3314 removeUnwindEdge(Pred); 3315 } 3316 3317 // In each SimplifyCFG run, only the current processed block can be erased. 3318 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 3319 // of erasing TrivialBB, we only remove the branch to the common resume 3320 // block so that we can later erase the resume block since it has no 3321 // predecessors. 3322 TrivialBB->getTerminator()->eraseFromParent(); 3323 new UnreachableInst(RI->getContext(), TrivialBB); 3324 } 3325 3326 // Delete the resume block if all its predecessors have been removed. 3327 if (pred_empty(BB)) 3328 BB->eraseFromParent(); 3329 3330 return !TrivialUnwindBlocks.empty(); 3331 } 3332 3333 // Simplify resume that is only used by a single (non-phi) landing pad. 3334 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { 3335 BasicBlock *BB = RI->getParent(); 3336 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); 3337 assert (RI->getValue() == LPInst && 3338 "Resume must unwind the exception that caused control to here"); 3339 3340 // Check that there are no other instructions except for debug intrinsics. 3341 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); 3342 while (++I != E) 3343 if (!isa<DbgInfoIntrinsic>(I)) 3344 return false; 3345 3346 // Turn all invokes that unwind here into calls and delete the basic block. 3347 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3348 BasicBlock *Pred = *PI++; 3349 removeUnwindEdge(Pred); 3350 } 3351 3352 // The landingpad is now unreachable. Zap it. 3353 BB->eraseFromParent(); 3354 return true; 3355 } 3356 3357 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { 3358 // If this is a trivial cleanup pad that executes no instructions, it can be 3359 // eliminated. If the cleanup pad continues to the caller, any predecessor 3360 // that is an EH pad will be updated to continue to the caller and any 3361 // predecessor that terminates with an invoke instruction will have its invoke 3362 // instruction converted to a call instruction. If the cleanup pad being 3363 // simplified does not continue to the caller, each predecessor will be 3364 // updated to continue to the unwind destination of the cleanup pad being 3365 // simplified. 3366 BasicBlock *BB = RI->getParent(); 3367 CleanupPadInst *CPInst = RI->getCleanupPad(); 3368 if (CPInst->getParent() != BB) 3369 // This isn't an empty cleanup. 3370 return false; 3371 3372 // Check that there are no other instructions except for debug intrinsics. 3373 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); 3374 while (++I != E) 3375 if (!isa<DbgInfoIntrinsic>(I)) 3376 return false; 3377 3378 // If the cleanup return we are simplifying unwinds to the caller, this will 3379 // set UnwindDest to nullptr. 3380 BasicBlock *UnwindDest = RI->getUnwindDest(); 3381 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 3382 3383 // We're about to remove BB from the control flow. Before we do, sink any 3384 // PHINodes into the unwind destination. Doing this before changing the 3385 // control flow avoids some potentially slow checks, since we can currently 3386 // be certain that UnwindDest and BB have no common predecessors (since they 3387 // are both EH pads). 3388 if (UnwindDest) { 3389 // First, go through the PHI nodes in UnwindDest and update any nodes that 3390 // reference the block we are removing 3391 for (BasicBlock::iterator I = UnwindDest->begin(), 3392 IE = DestEHPad->getIterator(); 3393 I != IE; ++I) { 3394 PHINode *DestPN = cast<PHINode>(I); 3395 3396 int Idx = DestPN->getBasicBlockIndex(BB); 3397 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 3398 assert(Idx != -1); 3399 // This PHI node has an incoming value that corresponds to a control 3400 // path through the cleanup pad we are removing. If the incoming 3401 // value is in the cleanup pad, it must be a PHINode (because we 3402 // verified above that the block is otherwise empty). Otherwise, the 3403 // value is either a constant or a value that dominates the cleanup 3404 // pad being removed. 3405 // 3406 // Because BB and UnwindDest are both EH pads, all of their 3407 // predecessors must unwind to these blocks, and since no instruction 3408 // can have multiple unwind destinations, there will be no overlap in 3409 // incoming blocks between SrcPN and DestPN. 3410 Value *SrcVal = DestPN->getIncomingValue(Idx); 3411 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 3412 3413 // Remove the entry for the block we are deleting. 3414 DestPN->removeIncomingValue(Idx, false); 3415 3416 if (SrcPN && SrcPN->getParent() == BB) { 3417 // If the incoming value was a PHI node in the cleanup pad we are 3418 // removing, we need to merge that PHI node's incoming values into 3419 // DestPN. 3420 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); 3421 SrcIdx != SrcE; ++SrcIdx) { 3422 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), 3423 SrcPN->getIncomingBlock(SrcIdx)); 3424 } 3425 } else { 3426 // Otherwise, the incoming value came from above BB and 3427 // so we can just reuse it. We must associate all of BB's 3428 // predecessors with this value. 3429 for (auto *pred : predecessors(BB)) { 3430 DestPN->addIncoming(SrcVal, pred); 3431 } 3432 } 3433 } 3434 3435 // Sink any remaining PHI nodes directly into UnwindDest. 3436 Instruction *InsertPt = DestEHPad; 3437 for (BasicBlock::iterator I = BB->begin(), 3438 IE = BB->getFirstNonPHI()->getIterator(); 3439 I != IE;) { 3440 // The iterator must be incremented here because the instructions are 3441 // being moved to another block. 3442 PHINode *PN = cast<PHINode>(I++); 3443 if (PN->use_empty()) 3444 // If the PHI node has no uses, just leave it. It will be erased 3445 // when we erase BB below. 3446 continue; 3447 3448 // Otherwise, sink this PHI node into UnwindDest. 3449 // Any predecessors to UnwindDest which are not already represented 3450 // must be back edges which inherit the value from the path through 3451 // BB. In this case, the PHI value must reference itself. 3452 for (auto *pred : predecessors(UnwindDest)) 3453 if (pred != BB) 3454 PN->addIncoming(PN, pred); 3455 PN->moveBefore(InsertPt); 3456 } 3457 } 3458 3459 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { 3460 // The iterator must be updated here because we are removing this pred. 3461 BasicBlock *PredBB = *PI++; 3462 if (UnwindDest == nullptr) { 3463 removeUnwindEdge(PredBB); 3464 } else { 3465 TerminatorInst *TI = PredBB->getTerminator(); 3466 TI->replaceUsesOfWith(BB, UnwindDest); 3467 } 3468 } 3469 3470 // The cleanup pad is now unreachable. Zap it. 3471 BB->eraseFromParent(); 3472 return true; 3473 } 3474 3475 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 3476 BasicBlock *BB = RI->getParent(); 3477 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false; 3478 3479 // Find predecessors that end with branches. 3480 SmallVector<BasicBlock*, 8> UncondBranchPreds; 3481 SmallVector<BranchInst*, 8> CondBranchPreds; 3482 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 3483 BasicBlock *P = *PI; 3484 TerminatorInst *PTI = P->getTerminator(); 3485 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 3486 if (BI->isUnconditional()) 3487 UncondBranchPreds.push_back(P); 3488 else 3489 CondBranchPreds.push_back(BI); 3490 } 3491 } 3492 3493 // If we found some, do the transformation! 3494 if (!UncondBranchPreds.empty() && DupRet) { 3495 while (!UncondBranchPreds.empty()) { 3496 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 3497 DEBUG(dbgs() << "FOLDING: " << *BB 3498 << "INTO UNCOND BRANCH PRED: " << *Pred); 3499 (void)FoldReturnIntoUncondBranch(RI, BB, Pred); 3500 } 3501 3502 // If we eliminated all predecessors of the block, delete the block now. 3503 if (pred_empty(BB)) 3504 // We know there are no successors, so just nuke the block. 3505 BB->eraseFromParent(); 3506 3507 return true; 3508 } 3509 3510 // Check out all of the conditional branches going to this return 3511 // instruction. If any of them just select between returns, change the 3512 // branch itself into a select/return pair. 3513 while (!CondBranchPreds.empty()) { 3514 BranchInst *BI = CondBranchPreds.pop_back_val(); 3515 3516 // Check to see if the non-BB successor is also a return block. 3517 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 3518 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 3519 SimplifyCondBranchToTwoReturns(BI, Builder)) 3520 return true; 3521 } 3522 return false; 3523 } 3524 3525 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { 3526 BasicBlock *BB = UI->getParent(); 3527 3528 bool Changed = false; 3529 3530 // If there are any instructions immediately before the unreachable that can 3531 // be removed, do so. 3532 while (UI->getIterator() != BB->begin()) { 3533 BasicBlock::iterator BBI = UI->getIterator(); 3534 --BBI; 3535 // Do not delete instructions that can have side effects which might cause 3536 // the unreachable to not be reachable; specifically, calls and volatile 3537 // operations may have this effect. 3538 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break; 3539 3540 if (BBI->mayHaveSideEffects()) { 3541 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 3542 if (SI->isVolatile()) 3543 break; 3544 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 3545 if (LI->isVolatile()) 3546 break; 3547 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 3548 if (RMWI->isVolatile()) 3549 break; 3550 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 3551 if (CXI->isVolatile()) 3552 break; 3553 } else if (isa<CatchPadInst>(BBI)) { 3554 // A catchpad may invoke exception object constructors and such, which 3555 // in some languages can be arbitrary code, so be conservative by 3556 // default. 3557 // For CoreCLR, it just involves a type test, so can be removed. 3558 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 3559 EHPersonality::CoreCLR) 3560 break; 3561 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 3562 !isa<LandingPadInst>(BBI)) { 3563 break; 3564 } 3565 // Note that deleting LandingPad's here is in fact okay, although it 3566 // involves a bit of subtle reasoning. If this inst is a LandingPad, 3567 // all the predecessors of this block will be the unwind edges of Invokes, 3568 // and we can therefore guarantee this block will be erased. 3569 } 3570 3571 // Delete this instruction (any uses are guaranteed to be dead) 3572 if (!BBI->use_empty()) 3573 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 3574 BBI->eraseFromParent(); 3575 Changed = true; 3576 } 3577 3578 // If the unreachable instruction is the first in the block, take a gander 3579 // at all of the predecessors of this instruction, and simplify them. 3580 if (&BB->front() != UI) return Changed; 3581 3582 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB)); 3583 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 3584 TerminatorInst *TI = Preds[i]->getTerminator(); 3585 IRBuilder<> Builder(TI); 3586 if (auto *BI = dyn_cast<BranchInst>(TI)) { 3587 if (BI->isUnconditional()) { 3588 if (BI->getSuccessor(0) == BB) { 3589 new UnreachableInst(TI->getContext(), TI); 3590 TI->eraseFromParent(); 3591 Changed = true; 3592 } 3593 } else { 3594 if (BI->getSuccessor(0) == BB) { 3595 Builder.CreateBr(BI->getSuccessor(1)); 3596 EraseTerminatorInstAndDCECond(BI); 3597 } else if (BI->getSuccessor(1) == BB) { 3598 Builder.CreateBr(BI->getSuccessor(0)); 3599 EraseTerminatorInstAndDCECond(BI); 3600 Changed = true; 3601 } 3602 } 3603 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 3604 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 3605 i != e; ++i) 3606 if (i.getCaseSuccessor() == BB) { 3607 BB->removePredecessor(SI->getParent()); 3608 SI->removeCase(i); 3609 --i; --e; 3610 Changed = true; 3611 } 3612 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 3613 if (II->getUnwindDest() == BB) { 3614 removeUnwindEdge(TI->getParent()); 3615 Changed = true; 3616 } 3617 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 3618 if (CSI->getUnwindDest() == BB) { 3619 removeUnwindEdge(TI->getParent()); 3620 Changed = true; 3621 continue; 3622 } 3623 3624 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 3625 E = CSI->handler_end(); 3626 I != E; ++I) { 3627 if (*I == BB) { 3628 CSI->removeHandler(I); 3629 --I; 3630 --E; 3631 Changed = true; 3632 } 3633 } 3634 if (CSI->getNumHandlers() == 0) { 3635 BasicBlock *CatchSwitchBB = CSI->getParent(); 3636 if (CSI->hasUnwindDest()) { 3637 // Redirect preds to the unwind dest 3638 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); 3639 } else { 3640 // Rewrite all preds to unwind to caller (or from invoke to call). 3641 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); 3642 for (BasicBlock *EHPred : EHPreds) 3643 removeUnwindEdge(EHPred); 3644 } 3645 // The catchswitch is no longer reachable. 3646 new UnreachableInst(CSI->getContext(), CSI); 3647 CSI->eraseFromParent(); 3648 Changed = true; 3649 } 3650 } else if (isa<CleanupReturnInst>(TI)) { 3651 new UnreachableInst(TI->getContext(), TI); 3652 TI->eraseFromParent(); 3653 Changed = true; 3654 } 3655 } 3656 3657 // If this block is now dead, remove it. 3658 if (pred_empty(BB) && 3659 BB != &BB->getParent()->getEntryBlock()) { 3660 // We know there are no successors, so just nuke the block. 3661 BB->eraseFromParent(); 3662 return true; 3663 } 3664 3665 return Changed; 3666 } 3667 3668 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 3669 assert(Cases.size() >= 1); 3670 3671 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 3672 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 3673 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 3674 return false; 3675 } 3676 return true; 3677 } 3678 3679 /// Turn a switch with two reachable destinations into an integer range 3680 /// comparison and branch. 3681 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { 3682 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 3683 3684 bool HasDefault = 3685 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3686 3687 // Partition the cases into two sets with different destinations. 3688 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 3689 BasicBlock *DestB = nullptr; 3690 SmallVector <ConstantInt *, 16> CasesA; 3691 SmallVector <ConstantInt *, 16> CasesB; 3692 3693 for (SwitchInst::CaseIt I : SI->cases()) { 3694 BasicBlock *Dest = I.getCaseSuccessor(); 3695 if (!DestA) DestA = Dest; 3696 if (Dest == DestA) { 3697 CasesA.push_back(I.getCaseValue()); 3698 continue; 3699 } 3700 if (!DestB) DestB = Dest; 3701 if (Dest == DestB) { 3702 CasesB.push_back(I.getCaseValue()); 3703 continue; 3704 } 3705 return false; // More than two destinations. 3706 } 3707 3708 assert(DestA && DestB && "Single-destination switch should have been folded."); 3709 assert(DestA != DestB); 3710 assert(DestB != SI->getDefaultDest()); 3711 assert(!CasesB.empty() && "There must be non-default cases."); 3712 assert(!CasesA.empty() || HasDefault); 3713 3714 // Figure out if one of the sets of cases form a contiguous range. 3715 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 3716 BasicBlock *ContiguousDest = nullptr; 3717 BasicBlock *OtherDest = nullptr; 3718 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 3719 ContiguousCases = &CasesA; 3720 ContiguousDest = DestA; 3721 OtherDest = DestB; 3722 } else if (CasesAreContiguous(CasesB)) { 3723 ContiguousCases = &CasesB; 3724 ContiguousDest = DestB; 3725 OtherDest = DestA; 3726 } else 3727 return false; 3728 3729 // Start building the compare and branch. 3730 3731 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 3732 Constant *NumCases = ConstantInt::get(Offset->getType(), ContiguousCases->size()); 3733 3734 Value *Sub = SI->getCondition(); 3735 if (!Offset->isNullValue()) 3736 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 3737 3738 Value *Cmp; 3739 // If NumCases overflowed, then all possible values jump to the successor. 3740 if (NumCases->isNullValue() && !ContiguousCases->empty()) 3741 Cmp = ConstantInt::getTrue(SI->getContext()); 3742 else 3743 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 3744 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 3745 3746 // Update weight for the newly-created conditional branch. 3747 if (HasBranchWeights(SI)) { 3748 SmallVector<uint64_t, 8> Weights; 3749 GetBranchWeights(SI, Weights); 3750 if (Weights.size() == 1 + SI->getNumCases()) { 3751 uint64_t TrueWeight = 0; 3752 uint64_t FalseWeight = 0; 3753 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 3754 if (SI->getSuccessor(I) == ContiguousDest) 3755 TrueWeight += Weights[I]; 3756 else 3757 FalseWeight += Weights[I]; 3758 } 3759 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 3760 TrueWeight /= 2; 3761 FalseWeight /= 2; 3762 } 3763 NewBI->setMetadata(LLVMContext::MD_prof, 3764 MDBuilder(SI->getContext()).createBranchWeights( 3765 (uint32_t)TrueWeight, (uint32_t)FalseWeight)); 3766 } 3767 } 3768 3769 // Prune obsolete incoming values off the successors' PHI nodes. 3770 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 3771 unsigned PreviousEdges = ContiguousCases->size(); 3772 if (ContiguousDest == SI->getDefaultDest()) ++PreviousEdges; 3773 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3774 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3775 } 3776 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 3777 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 3778 if (OtherDest == SI->getDefaultDest()) ++PreviousEdges; 3779 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 3780 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 3781 } 3782 3783 // Drop the switch. 3784 SI->eraseFromParent(); 3785 3786 return true; 3787 } 3788 3789 /// Compute masked bits for the condition of a switch 3790 /// and use it to remove dead cases. 3791 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, 3792 const DataLayout &DL) { 3793 Value *Cond = SI->getCondition(); 3794 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 3795 APInt KnownZero(Bits, 0), KnownOne(Bits, 0); 3796 computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI); 3797 3798 // Gather dead cases. 3799 SmallVector<ConstantInt*, 8> DeadCases; 3800 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3801 if ((I.getCaseValue()->getValue() & KnownZero) != 0 || 3802 (I.getCaseValue()->getValue() & KnownOne) != KnownOne) { 3803 DeadCases.push_back(I.getCaseValue()); 3804 DEBUG(dbgs() << "SimplifyCFG: switch case '" 3805 << I.getCaseValue() << "' is dead.\n"); 3806 } 3807 } 3808 3809 // If we can prove that the cases must cover all possible values, the 3810 // default destination becomes dead and we can remove it. If we know some 3811 // of the bits in the value, we can use that to more precisely compute the 3812 // number of possible unique case values. 3813 bool HasDefault = 3814 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 3815 const unsigned NumUnknownBits = Bits - 3816 (KnownZero.Or(KnownOne)).countPopulation(); 3817 assert(NumUnknownBits <= Bits); 3818 if (HasDefault && DeadCases.empty() && 3819 NumUnknownBits < 64 /* avoid overflow */ && 3820 SI->getNumCases() == (1ULL << NumUnknownBits)) { 3821 DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 3822 BasicBlock *NewDefault = SplitBlockPredecessors(SI->getDefaultDest(), 3823 SI->getParent(), ""); 3824 SI->setDefaultDest(&*NewDefault); 3825 SplitBlock(&*NewDefault, &NewDefault->front()); 3826 auto *OldTI = NewDefault->getTerminator(); 3827 new UnreachableInst(SI->getContext(), OldTI); 3828 EraseTerminatorInstAndDCECond(OldTI); 3829 return true; 3830 } 3831 3832 SmallVector<uint64_t, 8> Weights; 3833 bool HasWeight = HasBranchWeights(SI); 3834 if (HasWeight) { 3835 GetBranchWeights(SI, Weights); 3836 HasWeight = (Weights.size() == 1 + SI->getNumCases()); 3837 } 3838 3839 // Remove dead cases from the switch. 3840 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) { 3841 SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]); 3842 assert(Case != SI->case_default() && 3843 "Case was not found. Probably mistake in DeadCases forming."); 3844 if (HasWeight) { 3845 std::swap(Weights[Case.getCaseIndex()+1], Weights.back()); 3846 Weights.pop_back(); 3847 } 3848 3849 // Prune unused values from PHI nodes. 3850 Case.getCaseSuccessor()->removePredecessor(SI->getParent()); 3851 SI->removeCase(Case); 3852 } 3853 if (HasWeight && Weights.size() >= 2) { 3854 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 3855 SI->setMetadata(LLVMContext::MD_prof, 3856 MDBuilder(SI->getParent()->getContext()). 3857 createBranchWeights(MDWeights)); 3858 } 3859 3860 return !DeadCases.empty(); 3861 } 3862 3863 /// If BB would be eligible for simplification by 3864 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 3865 /// by an unconditional branch), look at the phi node for BB in the successor 3866 /// block and see if the incoming value is equal to CaseValue. If so, return 3867 /// the phi node, and set PhiIndex to BB's index in the phi node. 3868 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 3869 BasicBlock *BB, 3870 int *PhiIndex) { 3871 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 3872 return nullptr; // BB must be empty to be a candidate for simplification. 3873 if (!BB->getSinglePredecessor()) 3874 return nullptr; // BB must be dominated by the switch. 3875 3876 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 3877 if (!Branch || !Branch->isUnconditional()) 3878 return nullptr; // Terminator must be unconditional branch. 3879 3880 BasicBlock *Succ = Branch->getSuccessor(0); 3881 3882 BasicBlock::iterator I = Succ->begin(); 3883 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 3884 int Idx = PHI->getBasicBlockIndex(BB); 3885 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 3886 3887 Value *InValue = PHI->getIncomingValue(Idx); 3888 if (InValue != CaseValue) continue; 3889 3890 *PhiIndex = Idx; 3891 return PHI; 3892 } 3893 3894 return nullptr; 3895 } 3896 3897 /// Try to forward the condition of a switch instruction to a phi node 3898 /// dominated by the switch, if that would mean that some of the destination 3899 /// blocks of the switch can be folded away. 3900 /// Returns true if a change is made. 3901 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 3902 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap; 3903 ForwardingNodesMap ForwardingNodes; 3904 3905 for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) { 3906 ConstantInt *CaseValue = I.getCaseValue(); 3907 BasicBlock *CaseDest = I.getCaseSuccessor(); 3908 3909 int PhiIndex; 3910 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest, 3911 &PhiIndex); 3912 if (!PHI) continue; 3913 3914 ForwardingNodes[PHI].push_back(PhiIndex); 3915 } 3916 3917 bool Changed = false; 3918 3919 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(), 3920 E = ForwardingNodes.end(); I != E; ++I) { 3921 PHINode *Phi = I->first; 3922 SmallVectorImpl<int> &Indexes = I->second; 3923 3924 if (Indexes.size() < 2) continue; 3925 3926 for (size_t I = 0, E = Indexes.size(); I != E; ++I) 3927 Phi->setIncomingValue(Indexes[I], SI->getCondition()); 3928 Changed = true; 3929 } 3930 3931 return Changed; 3932 } 3933 3934 /// Return true if the backend will be able to handle 3935 /// initializing an array of constants like C. 3936 static bool ValidLookupTableConstant(Constant *C) { 3937 if (C->isThreadDependent()) 3938 return false; 3939 if (C->isDLLImportDependent()) 3940 return false; 3941 3942 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 3943 return CE->isGEPWithNoNotionalOverIndexing(); 3944 3945 return isa<ConstantFP>(C) || 3946 isa<ConstantInt>(C) || 3947 isa<ConstantPointerNull>(C) || 3948 isa<GlobalValue>(C) || 3949 isa<UndefValue>(C); 3950 } 3951 3952 /// If V is a Constant, return it. Otherwise, try to look up 3953 /// its constant value in ConstantPool, returning 0 if it's not there. 3954 static Constant *LookupConstant(Value *V, 3955 const SmallDenseMap<Value*, Constant*>& ConstantPool) { 3956 if (Constant *C = dyn_cast<Constant>(V)) 3957 return C; 3958 return ConstantPool.lookup(V); 3959 } 3960 3961 /// Try to fold instruction I into a constant. This works for 3962 /// simple instructions such as binary operations where both operands are 3963 /// constant or can be replaced by constants from the ConstantPool. Returns the 3964 /// resulting constant on success, 0 otherwise. 3965 static Constant * 3966 ConstantFold(Instruction *I, const DataLayout &DL, 3967 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 3968 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 3969 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 3970 if (!A) 3971 return nullptr; 3972 if (A->isAllOnesValue()) 3973 return LookupConstant(Select->getTrueValue(), ConstantPool); 3974 if (A->isNullValue()) 3975 return LookupConstant(Select->getFalseValue(), ConstantPool); 3976 return nullptr; 3977 } 3978 3979 SmallVector<Constant *, 4> COps; 3980 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 3981 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 3982 COps.push_back(A); 3983 else 3984 return nullptr; 3985 } 3986 3987 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 3988 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 3989 COps[1], DL); 3990 } 3991 3992 return ConstantFoldInstOperands(I, COps, DL); 3993 } 3994 3995 /// Try to determine the resulting constant values in phi nodes 3996 /// at the common destination basic block, *CommonDest, for one of the case 3997 /// destionations CaseDest corresponding to value CaseVal (0 for the default 3998 /// case), of a switch instruction SI. 3999 static bool 4000 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 4001 BasicBlock **CommonDest, 4002 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 4003 const DataLayout &DL) { 4004 // The block from which we enter the common destination. 4005 BasicBlock *Pred = SI->getParent(); 4006 4007 // If CaseDest is empty except for some side-effect free instructions through 4008 // which we can constant-propagate the CaseVal, continue to its successor. 4009 SmallDenseMap<Value*, Constant*> ConstantPool; 4010 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 4011 for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E; 4012 ++I) { 4013 if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) { 4014 // If the terminator is a simple branch, continue to the next block. 4015 if (T->getNumSuccessors() != 1) 4016 return false; 4017 Pred = CaseDest; 4018 CaseDest = T->getSuccessor(0); 4019 } else if (isa<DbgInfoIntrinsic>(I)) { 4020 // Skip debug intrinsic. 4021 continue; 4022 } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) { 4023 // Instruction is side-effect free and constant. 4024 4025 // If the instruction has uses outside this block or a phi node slot for 4026 // the block, it is not safe to bypass the instruction since it would then 4027 // no longer dominate all its uses. 4028 for (auto &Use : I->uses()) { 4029 User *User = Use.getUser(); 4030 if (Instruction *I = dyn_cast<Instruction>(User)) 4031 if (I->getParent() == CaseDest) 4032 continue; 4033 if (PHINode *Phi = dyn_cast<PHINode>(User)) 4034 if (Phi->getIncomingBlock(Use) == CaseDest) 4035 continue; 4036 return false; 4037 } 4038 4039 ConstantPool.insert(std::make_pair(&*I, C)); 4040 } else { 4041 break; 4042 } 4043 } 4044 4045 // If we did not have a CommonDest before, use the current one. 4046 if (!*CommonDest) 4047 *CommonDest = CaseDest; 4048 // If the destination isn't the common one, abort. 4049 if (CaseDest != *CommonDest) 4050 return false; 4051 4052 // Get the values for this case from phi nodes in the destination block. 4053 BasicBlock::iterator I = (*CommonDest)->begin(); 4054 while (PHINode *PHI = dyn_cast<PHINode>(I++)) { 4055 int Idx = PHI->getBasicBlockIndex(Pred); 4056 if (Idx == -1) 4057 continue; 4058 4059 Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx), 4060 ConstantPool); 4061 if (!ConstVal) 4062 return false; 4063 4064 // Be conservative about which kinds of constants we support. 4065 if (!ValidLookupTableConstant(ConstVal)) 4066 return false; 4067 4068 Res.push_back(std::make_pair(PHI, ConstVal)); 4069 } 4070 4071 return Res.size() > 0; 4072 } 4073 4074 // Helper function used to add CaseVal to the list of cases that generate 4075 // Result. 4076 static void MapCaseToResult(ConstantInt *CaseVal, 4077 SwitchCaseResultVectorTy &UniqueResults, 4078 Constant *Result) { 4079 for (auto &I : UniqueResults) { 4080 if (I.first == Result) { 4081 I.second.push_back(CaseVal); 4082 return; 4083 } 4084 } 4085 UniqueResults.push_back(std::make_pair(Result, 4086 SmallVector<ConstantInt*, 4>(1, CaseVal))); 4087 } 4088 4089 // Helper function that initializes a map containing 4090 // results for the PHI node of the common destination block for a switch 4091 // instruction. Returns false if multiple PHI nodes have been found or if 4092 // there is not a common destination block for the switch. 4093 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 4094 BasicBlock *&CommonDest, 4095 SwitchCaseResultVectorTy &UniqueResults, 4096 Constant *&DefaultResult, 4097 const DataLayout &DL) { 4098 for (auto &I : SI->cases()) { 4099 ConstantInt *CaseVal = I.getCaseValue(); 4100 4101 // Resulting value at phi nodes for this case value. 4102 SwitchCaseResultsTy Results; 4103 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 4104 DL)) 4105 return false; 4106 4107 // Only one value per case is permitted 4108 if (Results.size() > 1) 4109 return false; 4110 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 4111 4112 // Check the PHI consistency. 4113 if (!PHI) 4114 PHI = Results[0].first; 4115 else if (PHI != Results[0].first) 4116 return false; 4117 } 4118 // Find the default result value. 4119 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 4120 BasicBlock *DefaultDest = SI->getDefaultDest(); 4121 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 4122 DL); 4123 // If the default value is not found abort unless the default destination 4124 // is unreachable. 4125 DefaultResult = 4126 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 4127 if ((!DefaultResult && 4128 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 4129 return false; 4130 4131 return true; 4132 } 4133 4134 // Helper function that checks if it is possible to transform a switch with only 4135 // two cases (or two cases + default) that produces a result into a select. 4136 // Example: 4137 // switch (a) { 4138 // case 10: %0 = icmp eq i32 %a, 10 4139 // return 10; %1 = select i1 %0, i32 10, i32 4 4140 // case 20: ----> %2 = icmp eq i32 %a, 20 4141 // return 2; %3 = select i1 %2, i32 2, i32 %1 4142 // default: 4143 // return 4; 4144 // } 4145 static Value * 4146 ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 4147 Constant *DefaultResult, Value *Condition, 4148 IRBuilder<> &Builder) { 4149 assert(ResultVector.size() == 2 && 4150 "We should have exactly two unique results at this point"); 4151 // If we are selecting between only two cases transform into a simple 4152 // select or a two-way select if default is possible. 4153 if (ResultVector[0].second.size() == 1 && 4154 ResultVector[1].second.size() == 1) { 4155 ConstantInt *const FirstCase = ResultVector[0].second[0]; 4156 ConstantInt *const SecondCase = ResultVector[1].second[0]; 4157 4158 bool DefaultCanTrigger = DefaultResult; 4159 Value *SelectValue = ResultVector[1].first; 4160 if (DefaultCanTrigger) { 4161 Value *const ValueCompare = 4162 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 4163 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 4164 DefaultResult, "switch.select"); 4165 } 4166 Value *const ValueCompare = 4167 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 4168 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, SelectValue, 4169 "switch.select"); 4170 } 4171 4172 return nullptr; 4173 } 4174 4175 // Helper function to cleanup a switch instruction that has been converted into 4176 // a select, fixing up PHI nodes and basic blocks. 4177 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 4178 Value *SelectValue, 4179 IRBuilder<> &Builder) { 4180 BasicBlock *SelectBB = SI->getParent(); 4181 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 4182 PHI->removeIncomingValue(SelectBB); 4183 PHI->addIncoming(SelectValue, SelectBB); 4184 4185 Builder.CreateBr(PHI->getParent()); 4186 4187 // Remove the switch. 4188 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4189 BasicBlock *Succ = SI->getSuccessor(i); 4190 4191 if (Succ == PHI->getParent()) 4192 continue; 4193 Succ->removePredecessor(SelectBB); 4194 } 4195 SI->eraseFromParent(); 4196 } 4197 4198 /// If the switch is only used to initialize one or more 4199 /// phi nodes in a common successor block with only two different 4200 /// constant values, replace the switch with select. 4201 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 4202 AssumptionCache *AC, const DataLayout &DL) { 4203 Value *const Cond = SI->getCondition(); 4204 PHINode *PHI = nullptr; 4205 BasicBlock *CommonDest = nullptr; 4206 Constant *DefaultResult; 4207 SwitchCaseResultVectorTy UniqueResults; 4208 // Collect all the cases that will deliver the same value from the switch. 4209 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 4210 DL)) 4211 return false; 4212 // Selects choose between maximum two values. 4213 if (UniqueResults.size() != 2) 4214 return false; 4215 assert(PHI != nullptr && "PHI for value select not found"); 4216 4217 Builder.SetInsertPoint(SI); 4218 Value *SelectValue = ConvertTwoCaseSwitch( 4219 UniqueResults, 4220 DefaultResult, Cond, Builder); 4221 if (SelectValue) { 4222 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); 4223 return true; 4224 } 4225 // The switch couldn't be converted into a select. 4226 return false; 4227 } 4228 4229 namespace { 4230 /// This class represents a lookup table that can be used to replace a switch. 4231 class SwitchLookupTable { 4232 public: 4233 /// Create a lookup table to use as a switch replacement with the contents 4234 /// of Values, using DefaultValue to fill any holes in the table. 4235 SwitchLookupTable( 4236 Module &M, uint64_t TableSize, ConstantInt *Offset, 4237 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4238 Constant *DefaultValue, const DataLayout &DL); 4239 4240 /// Build instructions with Builder to retrieve the value at 4241 /// the position given by Index in the lookup table. 4242 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 4243 4244 /// Return true if a table with TableSize elements of 4245 /// type ElementType would fit in a target-legal register. 4246 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 4247 Type *ElementType); 4248 4249 private: 4250 // Depending on the contents of the table, it can be represented in 4251 // different ways. 4252 enum { 4253 // For tables where each element contains the same value, we just have to 4254 // store that single value and return it for each lookup. 4255 SingleValueKind, 4256 4257 // For tables where there is a linear relationship between table index 4258 // and values. We calculate the result with a simple multiplication 4259 // and addition instead of a table lookup. 4260 LinearMapKind, 4261 4262 // For small tables with integer elements, we can pack them into a bitmap 4263 // that fits into a target-legal register. Values are retrieved by 4264 // shift and mask operations. 4265 BitMapKind, 4266 4267 // The table is stored as an array of values. Values are retrieved by load 4268 // instructions from the table. 4269 ArrayKind 4270 } Kind; 4271 4272 // For SingleValueKind, this is the single value. 4273 Constant *SingleValue; 4274 4275 // For BitMapKind, this is the bitmap. 4276 ConstantInt *BitMap; 4277 IntegerType *BitMapElementTy; 4278 4279 // For LinearMapKind, these are the constants used to derive the value. 4280 ConstantInt *LinearOffset; 4281 ConstantInt *LinearMultiplier; 4282 4283 // For ArrayKind, this is the array. 4284 GlobalVariable *Array; 4285 }; 4286 } 4287 4288 SwitchLookupTable::SwitchLookupTable( 4289 Module &M, uint64_t TableSize, ConstantInt *Offset, 4290 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 4291 Constant *DefaultValue, const DataLayout &DL) 4292 : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr), 4293 LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) { 4294 assert(Values.size() && "Can't build lookup table without values!"); 4295 assert(TableSize >= Values.size() && "Can't fit values in table!"); 4296 4297 // If all values in the table are equal, this is that value. 4298 SingleValue = Values.begin()->second; 4299 4300 Type *ValueType = Values.begin()->second->getType(); 4301 4302 // Build up the table contents. 4303 SmallVector<Constant*, 64> TableContents(TableSize); 4304 for (size_t I = 0, E = Values.size(); I != E; ++I) { 4305 ConstantInt *CaseVal = Values[I].first; 4306 Constant *CaseRes = Values[I].second; 4307 assert(CaseRes->getType() == ValueType); 4308 4309 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()) 4310 .getLimitedValue(); 4311 TableContents[Idx] = CaseRes; 4312 4313 if (CaseRes != SingleValue) 4314 SingleValue = nullptr; 4315 } 4316 4317 // Fill in any holes in the table with the default result. 4318 if (Values.size() < TableSize) { 4319 assert(DefaultValue && 4320 "Need a default value to fill the lookup table holes."); 4321 assert(DefaultValue->getType() == ValueType); 4322 for (uint64_t I = 0; I < TableSize; ++I) { 4323 if (!TableContents[I]) 4324 TableContents[I] = DefaultValue; 4325 } 4326 4327 if (DefaultValue != SingleValue) 4328 SingleValue = nullptr; 4329 } 4330 4331 // If each element in the table contains the same value, we only need to store 4332 // that single value. 4333 if (SingleValue) { 4334 Kind = SingleValueKind; 4335 return; 4336 } 4337 4338 // Check if we can derive the value with a linear transformation from the 4339 // table index. 4340 if (isa<IntegerType>(ValueType)) { 4341 bool LinearMappingPossible = true; 4342 APInt PrevVal; 4343 APInt DistToPrev; 4344 assert(TableSize >= 2 && "Should be a SingleValue table."); 4345 // Check if there is the same distance between two consecutive values. 4346 for (uint64_t I = 0; I < TableSize; ++I) { 4347 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 4348 if (!ConstVal) { 4349 // This is an undef. We could deal with it, but undefs in lookup tables 4350 // are very seldom. It's probably not worth the additional complexity. 4351 LinearMappingPossible = false; 4352 break; 4353 } 4354 APInt Val = ConstVal->getValue(); 4355 if (I != 0) { 4356 APInt Dist = Val - PrevVal; 4357 if (I == 1) { 4358 DistToPrev = Dist; 4359 } else if (Dist != DistToPrev) { 4360 LinearMappingPossible = false; 4361 break; 4362 } 4363 } 4364 PrevVal = Val; 4365 } 4366 if (LinearMappingPossible) { 4367 LinearOffset = cast<ConstantInt>(TableContents[0]); 4368 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 4369 Kind = LinearMapKind; 4370 ++NumLinearMaps; 4371 return; 4372 } 4373 } 4374 4375 // If the type is integer and the table fits in a register, build a bitmap. 4376 if (WouldFitInRegister(DL, TableSize, ValueType)) { 4377 IntegerType *IT = cast<IntegerType>(ValueType); 4378 APInt TableInt(TableSize * IT->getBitWidth(), 0); 4379 for (uint64_t I = TableSize; I > 0; --I) { 4380 TableInt <<= IT->getBitWidth(); 4381 // Insert values into the bitmap. Undef values are set to zero. 4382 if (!isa<UndefValue>(TableContents[I - 1])) { 4383 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 4384 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 4385 } 4386 } 4387 BitMap = ConstantInt::get(M.getContext(), TableInt); 4388 BitMapElementTy = IT; 4389 Kind = BitMapKind; 4390 ++NumBitMaps; 4391 return; 4392 } 4393 4394 // Store the table in an array. 4395 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 4396 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 4397 4398 Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true, 4399 GlobalVariable::PrivateLinkage, 4400 Initializer, 4401 "switch.table"); 4402 Array->setUnnamedAddr(true); 4403 Kind = ArrayKind; 4404 } 4405 4406 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 4407 switch (Kind) { 4408 case SingleValueKind: 4409 return SingleValue; 4410 case LinearMapKind: { 4411 // Derive the result value from the input value. 4412 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 4413 false, "switch.idx.cast"); 4414 if (!LinearMultiplier->isOne()) 4415 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 4416 if (!LinearOffset->isZero()) 4417 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 4418 return Result; 4419 } 4420 case BitMapKind: { 4421 // Type of the bitmap (e.g. i59). 4422 IntegerType *MapTy = BitMap->getType(); 4423 4424 // Cast Index to the same type as the bitmap. 4425 // Note: The Index is <= the number of elements in the table, so 4426 // truncating it to the width of the bitmask is safe. 4427 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 4428 4429 // Multiply the shift amount by the element width. 4430 ShiftAmt = Builder.CreateMul(ShiftAmt, 4431 ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 4432 "switch.shiftamt"); 4433 4434 // Shift down. 4435 Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt, 4436 "switch.downshift"); 4437 // Mask off. 4438 return Builder.CreateTrunc(DownShifted, BitMapElementTy, 4439 "switch.masked"); 4440 } 4441 case ArrayKind: { 4442 // Make sure the table index will not overflow when treated as signed. 4443 IntegerType *IT = cast<IntegerType>(Index->getType()); 4444 uint64_t TableSize = Array->getInitializer()->getType() 4445 ->getArrayNumElements(); 4446 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 4447 Index = Builder.CreateZExt(Index, 4448 IntegerType::get(IT->getContext(), 4449 IT->getBitWidth() + 1), 4450 "switch.tableidx.zext"); 4451 4452 Value *GEPIndices[] = { Builder.getInt32(0), Index }; 4453 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 4454 GEPIndices, "switch.gep"); 4455 return Builder.CreateLoad(GEP, "switch.load"); 4456 } 4457 } 4458 llvm_unreachable("Unknown lookup table kind!"); 4459 } 4460 4461 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 4462 uint64_t TableSize, 4463 Type *ElementType) { 4464 auto *IT = dyn_cast<IntegerType>(ElementType); 4465 if (!IT) 4466 return false; 4467 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 4468 // are <= 15, we could try to narrow the type. 4469 4470 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 4471 if (TableSize >= UINT_MAX/IT->getBitWidth()) 4472 return false; 4473 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 4474 } 4475 4476 /// Determine whether a lookup table should be built for this switch, based on 4477 /// the number of cases, size of the table, and the types of the results. 4478 static bool 4479 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 4480 const TargetTransformInfo &TTI, const DataLayout &DL, 4481 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 4482 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 4483 return false; // TableSize overflowed, or mul below might overflow. 4484 4485 bool AllTablesFitInRegister = true; 4486 bool HasIllegalType = false; 4487 for (const auto &I : ResultTypes) { 4488 Type *Ty = I.second; 4489 4490 // Saturate this flag to true. 4491 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 4492 4493 // Saturate this flag to false. 4494 AllTablesFitInRegister = AllTablesFitInRegister && 4495 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 4496 4497 // If both flags saturate, we're done. NOTE: This *only* works with 4498 // saturating flags, and all flags have to saturate first due to the 4499 // non-deterministic behavior of iterating over a dense map. 4500 if (HasIllegalType && !AllTablesFitInRegister) 4501 break; 4502 } 4503 4504 // If each table would fit in a register, we should build it anyway. 4505 if (AllTablesFitInRegister) 4506 return true; 4507 4508 // Don't build a table that doesn't fit in-register if it has illegal types. 4509 if (HasIllegalType) 4510 return false; 4511 4512 // The table density should be at least 40%. This is the same criterion as for 4513 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 4514 // FIXME: Find the best cut-off. 4515 return SI->getNumCases() * 10 >= TableSize * 4; 4516 } 4517 4518 /// Try to reuse the switch table index compare. Following pattern: 4519 /// \code 4520 /// if (idx < tablesize) 4521 /// r = table[idx]; // table does not contain default_value 4522 /// else 4523 /// r = default_value; 4524 /// if (r != default_value) 4525 /// ... 4526 /// \endcode 4527 /// Is optimized to: 4528 /// \code 4529 /// cond = idx < tablesize; 4530 /// if (cond) 4531 /// r = table[idx]; 4532 /// else 4533 /// r = default_value; 4534 /// if (cond) 4535 /// ... 4536 /// \endcode 4537 /// Jump threading will then eliminate the second if(cond). 4538 static void reuseTableCompare(User *PhiUser, BasicBlock *PhiBlock, 4539 BranchInst *RangeCheckBranch, Constant *DefaultValue, 4540 const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values) { 4541 4542 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 4543 if (!CmpInst) 4544 return; 4545 4546 // We require that the compare is in the same block as the phi so that jump 4547 // threading can do its work afterwards. 4548 if (CmpInst->getParent() != PhiBlock) 4549 return; 4550 4551 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 4552 if (!CmpOp1) 4553 return; 4554 4555 Value *RangeCmp = RangeCheckBranch->getCondition(); 4556 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 4557 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 4558 4559 // Check if the compare with the default value is constant true or false. 4560 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4561 DefaultValue, CmpOp1, true); 4562 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 4563 return; 4564 4565 // Check if the compare with the case values is distinct from the default 4566 // compare result. 4567 for (auto ValuePair : Values) { 4568 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 4569 ValuePair.second, CmpOp1, true); 4570 if (!CaseConst || CaseConst == DefaultConst) 4571 return; 4572 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 4573 "Expect true or false as compare result."); 4574 } 4575 4576 // Check if the branch instruction dominates the phi node. It's a simple 4577 // dominance check, but sufficient for our needs. 4578 // Although this check is invariant in the calling loops, it's better to do it 4579 // at this late stage. Practically we do it at most once for a switch. 4580 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 4581 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { 4582 BasicBlock *Pred = *PI; 4583 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 4584 return; 4585 } 4586 4587 if (DefaultConst == FalseConst) { 4588 // The compare yields the same result. We can replace it. 4589 CmpInst->replaceAllUsesWith(RangeCmp); 4590 ++NumTableCmpReuses; 4591 } else { 4592 // The compare yields the same result, just inverted. We can replace it. 4593 Value *InvertedTableCmp = BinaryOperator::CreateXor(RangeCmp, 4594 ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 4595 RangeCheckBranch); 4596 CmpInst->replaceAllUsesWith(InvertedTableCmp); 4597 ++NumTableCmpReuses; 4598 } 4599 } 4600 4601 /// If the switch is only used to initialize one or more phi nodes in a common 4602 /// successor block with different constant values, replace the switch with 4603 /// lookup tables. 4604 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 4605 const DataLayout &DL, 4606 const TargetTransformInfo &TTI) { 4607 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4608 4609 // Only build lookup table when we have a target that supports it. 4610 if (!TTI.shouldBuildLookupTables()) 4611 return false; 4612 4613 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 4614 // split off a dense part and build a lookup table for that. 4615 4616 // FIXME: This creates arrays of GEPs to constant strings, which means each 4617 // GEP needs a runtime relocation in PIC code. We should just build one big 4618 // string and lookup indices into that. 4619 4620 // Ignore switches with less than three cases. Lookup tables will not make them 4621 // faster, so we don't analyze them. 4622 if (SI->getNumCases() < 3) 4623 return false; 4624 4625 // Figure out the corresponding result for each case value and phi node in the 4626 // common destination, as well as the min and max case values. 4627 assert(SI->case_begin() != SI->case_end()); 4628 SwitchInst::CaseIt CI = SI->case_begin(); 4629 ConstantInt *MinCaseVal = CI.getCaseValue(); 4630 ConstantInt *MaxCaseVal = CI.getCaseValue(); 4631 4632 BasicBlock *CommonDest = nullptr; 4633 typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy; 4634 SmallDenseMap<PHINode*, ResultListTy> ResultLists; 4635 SmallDenseMap<PHINode*, Constant*> DefaultResults; 4636 SmallDenseMap<PHINode*, Type*> ResultTypes; 4637 SmallVector<PHINode*, 4> PHIs; 4638 4639 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 4640 ConstantInt *CaseVal = CI.getCaseValue(); 4641 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 4642 MinCaseVal = CaseVal; 4643 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 4644 MaxCaseVal = CaseVal; 4645 4646 // Resulting value at phi nodes for this case value. 4647 typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy; 4648 ResultsTy Results; 4649 if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest, 4650 Results, DL)) 4651 return false; 4652 4653 // Append the result from this case to the list for each phi. 4654 for (const auto &I : Results) { 4655 PHINode *PHI = I.first; 4656 Constant *Value = I.second; 4657 if (!ResultLists.count(PHI)) 4658 PHIs.push_back(PHI); 4659 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 4660 } 4661 } 4662 4663 // Keep track of the result types. 4664 for (PHINode *PHI : PHIs) { 4665 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 4666 } 4667 4668 uint64_t NumResults = ResultLists[PHIs[0]].size(); 4669 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 4670 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 4671 bool TableHasHoles = (NumResults < TableSize); 4672 4673 // If the table has holes, we need a constant result for the default case 4674 // or a bitmask that fits in a register. 4675 SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList; 4676 bool HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(), 4677 &CommonDest, DefaultResultsList, DL); 4678 4679 bool NeedMask = (TableHasHoles && !HasDefaultResults); 4680 if (NeedMask) { 4681 // As an extra penalty for the validity test we require more cases. 4682 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 4683 return false; 4684 if (!DL.fitsInLegalInteger(TableSize)) 4685 return false; 4686 } 4687 4688 for (const auto &I : DefaultResultsList) { 4689 PHINode *PHI = I.first; 4690 Constant *Result = I.second; 4691 DefaultResults[PHI] = Result; 4692 } 4693 4694 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 4695 return false; 4696 4697 // Create the BB that does the lookups. 4698 Module &Mod = *CommonDest->getParent()->getParent(); 4699 BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(), 4700 "switch.lookup", 4701 CommonDest->getParent(), 4702 CommonDest); 4703 4704 // Compute the table index value. 4705 Builder.SetInsertPoint(SI); 4706 Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 4707 "switch.tableidx"); 4708 4709 // Compute the maximum table size representable by the integer type we are 4710 // switching upon. 4711 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 4712 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 4713 assert(MaxTableSize >= TableSize && 4714 "It is impossible for a switch to have more entries than the max " 4715 "representable value of its input integer type's size."); 4716 4717 // If the default destination is unreachable, or if the lookup table covers 4718 // all values of the conditional variable, branch directly to the lookup table 4719 // BB. Otherwise, check that the condition is within the case range. 4720 const bool DefaultIsReachable = 4721 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4722 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 4723 BranchInst *RangeCheckBranch = nullptr; 4724 4725 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4726 Builder.CreateBr(LookupBB); 4727 // Note: We call removeProdecessor later since we need to be able to get the 4728 // PHI value for the default case in case we're using a bit mask. 4729 } else { 4730 Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get( 4731 MinCaseVal->getType(), TableSize)); 4732 RangeCheckBranch = Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 4733 } 4734 4735 // Populate the BB that does the lookups. 4736 Builder.SetInsertPoint(LookupBB); 4737 4738 if (NeedMask) { 4739 // Before doing the lookup we do the hole check. 4740 // The LookupBB is therefore re-purposed to do the hole check 4741 // and we create a new LookupBB. 4742 BasicBlock *MaskBB = LookupBB; 4743 MaskBB->setName("switch.hole_check"); 4744 LookupBB = BasicBlock::Create(Mod.getContext(), 4745 "switch.lookup", 4746 CommonDest->getParent(), 4747 CommonDest); 4748 4749 // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid 4750 // unnecessary illegal types. 4751 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 4752 APInt MaskInt(TableSizePowOf2, 0); 4753 APInt One(TableSizePowOf2, 1); 4754 // Build bitmask; fill in a 1 bit for every case. 4755 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 4756 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 4757 uint64_t Idx = (ResultList[I].first->getValue() - 4758 MinCaseVal->getValue()).getLimitedValue(); 4759 MaskInt |= One << Idx; 4760 } 4761 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 4762 4763 // Get the TableIndex'th bit of the bitmask. 4764 // If this bit is 0 (meaning hole) jump to the default destination, 4765 // else continue with table lookup. 4766 IntegerType *MapTy = TableMask->getType(); 4767 Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy, 4768 "switch.maskindex"); 4769 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, 4770 "switch.shifted"); 4771 Value *LoBit = Builder.CreateTrunc(Shifted, 4772 Type::getInt1Ty(Mod.getContext()), 4773 "switch.lobit"); 4774 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 4775 4776 Builder.SetInsertPoint(LookupBB); 4777 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); 4778 } 4779 4780 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 4781 // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later, 4782 // do not delete PHINodes here. 4783 SI->getDefaultDest()->removePredecessor(SI->getParent(), 4784 /*DontDeleteUselessPHIs=*/true); 4785 } 4786 4787 bool ReturnedEarly = false; 4788 for (size_t I = 0, E = PHIs.size(); I != E; ++I) { 4789 PHINode *PHI = PHIs[I]; 4790 const ResultListTy &ResultList = ResultLists[PHI]; 4791 4792 // If using a bitmask, use any value to fill the lookup table holes. 4793 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 4794 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL); 4795 4796 Value *Result = Table.BuildLookup(TableIndex, Builder); 4797 4798 // If the result is used to return immediately from the function, we want to 4799 // do that right here. 4800 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 4801 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 4802 Builder.CreateRet(Result); 4803 ReturnedEarly = true; 4804 break; 4805 } 4806 4807 // Do a small peephole optimization: re-use the switch table compare if 4808 // possible. 4809 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 4810 BasicBlock *PhiBlock = PHI->getParent(); 4811 // Search for compare instructions which use the phi. 4812 for (auto *User : PHI->users()) { 4813 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 4814 } 4815 } 4816 4817 PHI->addIncoming(Result, LookupBB); 4818 } 4819 4820 if (!ReturnedEarly) 4821 Builder.CreateBr(CommonDest); 4822 4823 // Remove the switch. 4824 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 4825 BasicBlock *Succ = SI->getSuccessor(i); 4826 4827 if (Succ == SI->getDefaultDest()) 4828 continue; 4829 Succ->removePredecessor(SI->getParent()); 4830 } 4831 SI->eraseFromParent(); 4832 4833 ++NumLookupTables; 4834 if (NeedMask) 4835 ++NumLookupTablesHoles; 4836 return true; 4837 } 4838 4839 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 4840 BasicBlock *BB = SI->getParent(); 4841 4842 if (isValueEqualityComparison(SI)) { 4843 // If we only have one predecessor, and if it is a branch on this value, 4844 // see if that predecessor totally determines the outcome of this switch. 4845 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 4846 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 4847 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4848 4849 Value *Cond = SI->getCondition(); 4850 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 4851 if (SimplifySwitchOnSelect(SI, Select)) 4852 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4853 4854 // If the block only contains the switch, see if we can fold the block 4855 // away into any preds. 4856 BasicBlock::iterator BBI = BB->begin(); 4857 // Ignore dbg intrinsics. 4858 while (isa<DbgInfoIntrinsic>(BBI)) 4859 ++BBI; 4860 if (SI == &*BBI) 4861 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 4862 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4863 } 4864 4865 // Try to transform the switch into an icmp and a branch. 4866 if (TurnSwitchRangeIntoICmp(SI, Builder)) 4867 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4868 4869 // Remove unreachable cases. 4870 if (EliminateDeadSwitchCases(SI, AC, DL)) 4871 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4872 4873 if (SwitchToSelect(SI, Builder, AC, DL)) 4874 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4875 4876 if (ForwardSwitchConditionToPHI(SI)) 4877 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4878 4879 if (SwitchToLookupTable(SI, Builder, DL, TTI)) 4880 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4881 4882 return false; 4883 } 4884 4885 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { 4886 BasicBlock *BB = IBI->getParent(); 4887 bool Changed = false; 4888 4889 // Eliminate redundant destinations. 4890 SmallPtrSet<Value *, 8> Succs; 4891 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 4892 BasicBlock *Dest = IBI->getDestination(i); 4893 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 4894 Dest->removePredecessor(BB); 4895 IBI->removeDestination(i); 4896 --i; --e; 4897 Changed = true; 4898 } 4899 } 4900 4901 if (IBI->getNumDestinations() == 0) { 4902 // If the indirectbr has no successors, change it to unreachable. 4903 new UnreachableInst(IBI->getContext(), IBI); 4904 EraseTerminatorInstAndDCECond(IBI); 4905 return true; 4906 } 4907 4908 if (IBI->getNumDestinations() == 1) { 4909 // If the indirectbr has one successor, change it to a direct branch. 4910 BranchInst::Create(IBI->getDestination(0), IBI); 4911 EraseTerminatorInstAndDCECond(IBI); 4912 return true; 4913 } 4914 4915 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 4916 if (SimplifyIndirectBrOnSelect(IBI, SI)) 4917 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 4918 } 4919 return Changed; 4920 } 4921 4922 /// Given an block with only a single landing pad and a unconditional branch 4923 /// try to find another basic block which this one can be merged with. This 4924 /// handles cases where we have multiple invokes with unique landing pads, but 4925 /// a shared handler. 4926 /// 4927 /// We specifically choose to not worry about merging non-empty blocks 4928 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 4929 /// practice, the optimizer produces empty landing pad blocks quite frequently 4930 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 4931 /// sinking in this file) 4932 /// 4933 /// This is primarily a code size optimization. We need to avoid performing 4934 /// any transform which might inhibit optimization (such as our ability to 4935 /// specialize a particular handler via tail commoning). We do this by not 4936 /// merging any blocks which require us to introduce a phi. Since the same 4937 /// values are flowing through both blocks, we don't loose any ability to 4938 /// specialize. If anything, we make such specialization more likely. 4939 /// 4940 /// TODO - This transformation could remove entries from a phi in the target 4941 /// block when the inputs in the phi are the same for the two blocks being 4942 /// merged. In some cases, this could result in removal of the PHI entirely. 4943 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 4944 BasicBlock *BB) { 4945 auto Succ = BB->getUniqueSuccessor(); 4946 assert(Succ); 4947 // If there's a phi in the successor block, we'd likely have to introduce 4948 // a phi into the merged landing pad block. 4949 if (isa<PHINode>(*Succ->begin())) 4950 return false; 4951 4952 for (BasicBlock *OtherPred : predecessors(Succ)) { 4953 if (BB == OtherPred) 4954 continue; 4955 BasicBlock::iterator I = OtherPred->begin(); 4956 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 4957 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 4958 continue; 4959 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 4960 BranchInst *BI2 = dyn_cast<BranchInst>(I); 4961 if (!BI2 || !BI2->isIdenticalTo(BI)) 4962 continue; 4963 4964 // We've found an identical block. Update our predeccessors to take that 4965 // path instead and make ourselves dead. 4966 SmallSet<BasicBlock *, 16> Preds; 4967 Preds.insert(pred_begin(BB), pred_end(BB)); 4968 for (BasicBlock *Pred : Preds) { 4969 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 4970 assert(II->getNormalDest() != BB && 4971 II->getUnwindDest() == BB && "unexpected successor"); 4972 II->setUnwindDest(OtherPred); 4973 } 4974 4975 // The debug info in OtherPred doesn't cover the merged control flow that 4976 // used to go through BB. We need to delete it or update it. 4977 for (auto I = OtherPred->begin(), E = OtherPred->end(); 4978 I != E;) { 4979 Instruction &Inst = *I; I++; 4980 if (isa<DbgInfoIntrinsic>(Inst)) 4981 Inst.eraseFromParent(); 4982 } 4983 4984 SmallSet<BasicBlock *, 16> Succs; 4985 Succs.insert(succ_begin(BB), succ_end(BB)); 4986 for (BasicBlock *Succ : Succs) { 4987 Succ->removePredecessor(BB); 4988 } 4989 4990 IRBuilder<> Builder(BI); 4991 Builder.CreateUnreachable(); 4992 BI->eraseFromParent(); 4993 return true; 4994 } 4995 return false; 4996 } 4997 4998 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){ 4999 BasicBlock *BB = BI->getParent(); 5000 5001 if (SinkCommon && SinkThenElseCodeToEnd(BI)) 5002 return true; 5003 5004 // If the Terminator is the only non-phi instruction, simplify the block. 5005 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); 5006 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 5007 TryToSimplifyUncondBranchFromEmptyBlock(BB)) 5008 return true; 5009 5010 // If the only instruction in the block is a seteq/setne comparison 5011 // against a constant, try to simplify the block. 5012 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 5013 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 5014 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 5015 ; 5016 if (I->isTerminator() && 5017 TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI, 5018 BonusInstThreshold, AC)) 5019 return true; 5020 } 5021 5022 // See if we can merge an empty landing pad block with another which is 5023 // equivalent. 5024 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 5025 for (++I; isa<DbgInfoIntrinsic>(I); ++I) {} 5026 if (I->isTerminator() && 5027 TryToMergeLandingPad(LPad, BI, BB)) 5028 return true; 5029 } 5030 5031 // If this basic block is ONLY a compare and a branch, and if a predecessor 5032 // branches to us and our successor, fold the comparison into the 5033 // predecessor and use logical operations to update the incoming value 5034 // for PHI nodes in common successor. 5035 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5036 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5037 return false; 5038 } 5039 5040 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 5041 BasicBlock *PredPred = nullptr; 5042 for (auto *P : predecessors(BB)) { 5043 BasicBlock *PPred = P->getSinglePredecessor(); 5044 if (!PPred || (PredPred && PredPred != PPred)) 5045 return nullptr; 5046 PredPred = PPred; 5047 } 5048 return PredPred; 5049 } 5050 5051 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 5052 BasicBlock *BB = BI->getParent(); 5053 5054 // Conditional branch 5055 if (isValueEqualityComparison(BI)) { 5056 // If we only have one predecessor, and if it is a branch on this value, 5057 // see if that predecessor totally determines the outcome of this 5058 // switch. 5059 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 5060 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 5061 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5062 5063 // This block must be empty, except for the setcond inst, if it exists. 5064 // Ignore dbg intrinsics. 5065 BasicBlock::iterator I = BB->begin(); 5066 // Ignore dbg intrinsics. 5067 while (isa<DbgInfoIntrinsic>(I)) 5068 ++I; 5069 if (&*I == BI) { 5070 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 5071 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5072 } else if (&*I == cast<Instruction>(BI->getCondition())){ 5073 ++I; 5074 // Ignore dbg intrinsics. 5075 while (isa<DbgInfoIntrinsic>(I)) 5076 ++I; 5077 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 5078 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5079 } 5080 } 5081 5082 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 5083 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 5084 return true; 5085 5086 // If this basic block is ONLY a compare and a branch, and if a predecessor 5087 // branches to us and one of our successors, fold the comparison into the 5088 // predecessor and use logical operations to pick the right destination. 5089 if (FoldBranchToCommonDest(BI, BonusInstThreshold)) 5090 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5091 5092 // We have a conditional branch to two blocks that are only reachable 5093 // from BI. We know that the condbr dominates the two blocks, so see if 5094 // there is any identical code in the "then" and "else" blocks. If so, we 5095 // can hoist it up to the branching block. 5096 if (BI->getSuccessor(0)->getSinglePredecessor()) { 5097 if (BI->getSuccessor(1)->getSinglePredecessor()) { 5098 if (HoistThenElseCodeToIf(BI, TTI)) 5099 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5100 } else { 5101 // If Successor #1 has multiple preds, we may be able to conditionally 5102 // execute Successor #0 if it branches to Successor #1. 5103 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator(); 5104 if (Succ0TI->getNumSuccessors() == 1 && 5105 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 5106 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 5107 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5108 } 5109 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 5110 // If Successor #0 has multiple preds, we may be able to conditionally 5111 // execute Successor #1 if it branches to Successor #0. 5112 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator(); 5113 if (Succ1TI->getNumSuccessors() == 1 && 5114 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 5115 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 5116 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5117 } 5118 5119 // If this is a branch on a phi node in the current block, thread control 5120 // through this block if any PHI node entries are constants. 5121 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 5122 if (PN->getParent() == BI->getParent()) 5123 if (FoldCondBranchOnPHI(BI, DL)) 5124 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5125 5126 // Scan predecessor blocks for conditional branches. 5127 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 5128 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) 5129 if (PBI != BI && PBI->isConditional()) 5130 if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) 5131 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5132 5133 // Look for diamond patterns. 5134 if (MergeCondStores) 5135 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 5136 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 5137 if (PBI != BI && PBI->isConditional()) 5138 if (mergeConditionalStores(PBI, BI)) 5139 return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true; 5140 5141 return false; 5142 } 5143 5144 /// Check if passing a value to an instruction will cause undefined behavior. 5145 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { 5146 Constant *C = dyn_cast<Constant>(V); 5147 if (!C) 5148 return false; 5149 5150 if (I->use_empty()) 5151 return false; 5152 5153 if (C->isNullValue()) { 5154 // Only look at the first use, avoid hurting compile time with long uselists 5155 User *Use = *I->user_begin(); 5156 5157 // Now make sure that there are no instructions in between that can alter 5158 // control flow (eg. calls) 5159 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i) 5160 if (i == I->getParent()->end() || i->mayHaveSideEffects()) 5161 return false; 5162 5163 // Look through GEPs. A load from a GEP derived from NULL is still undefined 5164 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 5165 if (GEP->getPointerOperand() == I) 5166 return passingValueIsAlwaysUndefined(V, GEP); 5167 5168 // Look through bitcasts. 5169 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 5170 return passingValueIsAlwaysUndefined(V, BC); 5171 5172 // Load from null is undefined. 5173 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 5174 if (!LI->isVolatile()) 5175 return LI->getPointerAddressSpace() == 0; 5176 5177 // Store to null is undefined. 5178 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 5179 if (!SI->isVolatile()) 5180 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I; 5181 } 5182 return false; 5183 } 5184 5185 /// If BB has an incoming value that will always trigger undefined behavior 5186 /// (eg. null pointer dereference), remove the branch leading here. 5187 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { 5188 for (BasicBlock::iterator i = BB->begin(); 5189 PHINode *PHI = dyn_cast<PHINode>(i); ++i) 5190 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 5191 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) { 5192 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator(); 5193 IRBuilder<> Builder(T); 5194 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 5195 BB->removePredecessor(PHI->getIncomingBlock(i)); 5196 // Turn uncoditional branches into unreachables and remove the dead 5197 // destination from conditional branches. 5198 if (BI->isUnconditional()) 5199 Builder.CreateUnreachable(); 5200 else 5201 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) : 5202 BI->getSuccessor(0)); 5203 BI->eraseFromParent(); 5204 return true; 5205 } 5206 // TODO: SwitchInst. 5207 } 5208 5209 return false; 5210 } 5211 5212 bool SimplifyCFGOpt::run(BasicBlock *BB) { 5213 bool Changed = false; 5214 5215 assert(BB && BB->getParent() && "Block not embedded in function!"); 5216 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 5217 5218 // Remove basic blocks that have no predecessors (except the entry block)... 5219 // or that just have themself as a predecessor. These are unreachable. 5220 if ((pred_empty(BB) && 5221 BB != &BB->getParent()->getEntryBlock()) || 5222 BB->getSinglePredecessor() == BB) { 5223 DEBUG(dbgs() << "Removing BB: \n" << *BB); 5224 DeleteDeadBlock(BB); 5225 return true; 5226 } 5227 5228 // Check to see if we can constant propagate this terminator instruction 5229 // away... 5230 Changed |= ConstantFoldTerminator(BB, true); 5231 5232 // Check for and eliminate duplicate PHI nodes in this block. 5233 Changed |= EliminateDuplicatePHINodes(BB); 5234 5235 // Check for and remove branches that will always cause undefined behavior. 5236 Changed |= removeUndefIntroducingPredecessor(BB); 5237 5238 // Merge basic blocks into their predecessor if there is only one distinct 5239 // pred, and if there is only one distinct successor of the predecessor, and 5240 // if there are no PHI nodes. 5241 // 5242 if (MergeBlockIntoPredecessor(BB)) 5243 return true; 5244 5245 IRBuilder<> Builder(BB); 5246 5247 // If there is a trivial two-entry PHI node in this basic block, and we can 5248 // eliminate it, do so now. 5249 if (PHINode *PN = dyn_cast<PHINode>(BB->begin())) 5250 if (PN->getNumIncomingValues() == 2) 5251 Changed |= FoldTwoEntryPHINode(PN, TTI, DL); 5252 5253 Builder.SetInsertPoint(BB->getTerminator()); 5254 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 5255 if (BI->isUnconditional()) { 5256 if (SimplifyUncondBranch(BI, Builder)) return true; 5257 } else { 5258 if (SimplifyCondBranch(BI, Builder)) return true; 5259 } 5260 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { 5261 if (SimplifyReturn(RI, Builder)) return true; 5262 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { 5263 if (SimplifyResume(RI, Builder)) return true; 5264 } else if (CleanupReturnInst *RI = 5265 dyn_cast<CleanupReturnInst>(BB->getTerminator())) { 5266 if (SimplifyCleanupReturn(RI)) return true; 5267 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 5268 if (SimplifySwitch(SI, Builder)) return true; 5269 } else if (UnreachableInst *UI = 5270 dyn_cast<UnreachableInst>(BB->getTerminator())) { 5271 if (SimplifyUnreachable(UI)) return true; 5272 } else if (IndirectBrInst *IBI = 5273 dyn_cast<IndirectBrInst>(BB->getTerminator())) { 5274 if (SimplifyIndirectBr(IBI)) return true; 5275 } 5276 5277 return Changed; 5278 } 5279 5280 /// This function is used to do simplification of a CFG. 5281 /// For example, it adjusts branches to branches to eliminate the extra hop, 5282 /// eliminates unreachable basic blocks, and does other "peephole" optimization 5283 /// of the CFG. It returns true if a modification was made. 5284 /// 5285 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 5286 unsigned BonusInstThreshold, AssumptionCache *AC) { 5287 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), 5288 BonusInstThreshold, AC).run(BB); 5289 } 5290