1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopeExit.h" 20 #include "llvm/ADT/Sequence.h" 21 #include "llvm/ADT/SetOperations.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/PseudoProbe.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/SSAUpdater.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore, 97 cl::init(false), 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> DupRet( 117 "simplifycfg-dup-ret", cl::Hidden, cl::init(false), 118 cl::desc("Duplicate return instructions into unconditional branches")); 119 120 static cl::opt<bool> 121 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 122 cl::desc("Hoist common instructions up to the parent block")); 123 124 static cl::opt<bool> 125 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 126 cl::desc("Sink common instructions down to the end block")); 127 128 static cl::opt<bool> HoistCondStores( 129 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 130 cl::desc("Hoist conditional stores if an unconditional store precedes")); 131 132 static cl::opt<bool> MergeCondStores( 133 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 134 cl::desc("Hoist conditional stores even if an unconditional store does not " 135 "precede - hoist multiple conditional stores into a single " 136 "predicated store")); 137 138 static cl::opt<bool> MergeCondStoresAggressively( 139 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 140 cl::desc("When merging conditional stores, do so even if the resultant " 141 "basic blocks are unlikely to be if-converted as a result")); 142 143 static cl::opt<bool> SpeculateOneExpensiveInst( 144 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 145 cl::desc("Allow exactly one expensive instruction to be speculatively " 146 "executed")); 147 148 static cl::opt<unsigned> MaxSpeculationDepth( 149 "max-speculation-depth", cl::Hidden, cl::init(10), 150 cl::desc("Limit maximum recursion depth when calculating costs of " 151 "speculatively executed instructions")); 152 153 static cl::opt<int> 154 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 155 cl::init(10), 156 cl::desc("Max size of a block which is still considered " 157 "small enough to thread through")); 158 159 // Two is chosen to allow one negation and a logical combine. 160 static cl::opt<unsigned> 161 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 162 cl::init(2), 163 cl::desc("Maximum cost of combining conditions when " 164 "folding branches")); 165 166 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 167 STATISTIC(NumLinearMaps, 168 "Number of switch instructions turned into linear mapping"); 169 STATISTIC(NumLookupTables, 170 "Number of switch instructions turned into lookup tables"); 171 STATISTIC( 172 NumLookupTablesHoles, 173 "Number of switch instructions turned into lookup tables (holes checked)"); 174 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 175 STATISTIC(NumFoldValueComparisonIntoPredecessors, 176 "Number of value comparisons folded into predecessor basic blocks"); 177 STATISTIC(NumFoldBranchToCommonDest, 178 "Number of branches folded into predecessor basic block"); 179 STATISTIC( 180 NumHoistCommonCode, 181 "Number of common instruction 'blocks' hoisted up to the begin block"); 182 STATISTIC(NumHoistCommonInstrs, 183 "Number of common instructions hoisted up to the begin block"); 184 STATISTIC(NumSinkCommonCode, 185 "Number of common instruction 'blocks' sunk down to the end block"); 186 STATISTIC(NumSinkCommonInstrs, 187 "Number of common instructions sunk down to the end block"); 188 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 189 STATISTIC(NumInvokes, 190 "Number of invokes with empty resume blocks simplified into calls"); 191 192 namespace { 193 194 // The first field contains the value that the switch produces when a certain 195 // case group is selected, and the second field is a vector containing the 196 // cases composing the case group. 197 using SwitchCaseResultVectorTy = 198 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 199 200 // The first field contains the phi node that generates a result of the switch 201 // and the second field contains the value generated for a certain case in the 202 // switch for that PHI. 203 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 204 205 /// ValueEqualityComparisonCase - Represents a case of a switch. 206 struct ValueEqualityComparisonCase { 207 ConstantInt *Value; 208 BasicBlock *Dest; 209 210 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 211 : Value(Value), Dest(Dest) {} 212 213 bool operator<(ValueEqualityComparisonCase RHS) const { 214 // Comparing pointers is ok as we only rely on the order for uniquing. 215 return Value < RHS.Value; 216 } 217 218 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 219 }; 220 221 class SimplifyCFGOpt { 222 const TargetTransformInfo &TTI; 223 DomTreeUpdater *DTU; 224 const DataLayout &DL; 225 ArrayRef<WeakVH> LoopHeaders; 226 const SimplifyCFGOptions &Options; 227 bool Resimplify; 228 229 Value *isValueEqualityComparison(Instruction *TI); 230 BasicBlock *GetValueEqualityComparisonCases( 231 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 232 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 233 BasicBlock *Pred, 234 IRBuilder<> &Builder); 235 bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 236 Instruction *PTI, 237 IRBuilder<> &Builder); 238 bool FoldValueComparisonIntoPredecessors(Instruction *TI, 239 IRBuilder<> &Builder); 240 241 bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); 242 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 243 bool simplifySingleResume(ResumeInst *RI); 244 bool simplifyCommonResume(ResumeInst *RI); 245 bool simplifyCleanupReturn(CleanupReturnInst *RI); 246 bool simplifyUnreachable(UnreachableInst *UI); 247 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 248 bool simplifyIndirectBr(IndirectBrInst *IBI); 249 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 250 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 251 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 252 bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder); 253 254 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 255 IRBuilder<> &Builder); 256 257 bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI, 258 bool EqTermsOnly); 259 bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 260 const TargetTransformInfo &TTI); 261 bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 262 BasicBlock *TrueBB, BasicBlock *FalseBB, 263 uint32_t TrueWeight, uint32_t FalseWeight); 264 bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 265 const DataLayout &DL); 266 bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 267 bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 268 bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 269 270 public: 271 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 272 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 273 const SimplifyCFGOptions &Opts) 274 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 275 assert((!DTU || !DTU->hasPostDomTree()) && 276 "SimplifyCFG is not yet capable of maintaining validity of a " 277 "PostDomTree, so don't ask for it."); 278 } 279 280 bool simplifyOnce(BasicBlock *BB); 281 bool simplifyOnceImpl(BasicBlock *BB); 282 bool run(BasicBlock *BB); 283 284 // Helper to set Resimplify and return change indication. 285 bool requestResimplify() { 286 Resimplify = true; 287 return true; 288 } 289 }; 290 291 } // end anonymous namespace 292 293 /// Return true if it is safe to merge these two 294 /// terminator instructions together. 295 static bool 296 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, 297 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 298 if (SI1 == SI2) 299 return false; // Can't merge with self! 300 301 // It is not safe to merge these two switch instructions if they have a common 302 // successor, and if that successor has a PHI node, and if *that* PHI node has 303 // conflicting incoming values from the two switch blocks. 304 BasicBlock *SI1BB = SI1->getParent(); 305 BasicBlock *SI2BB = SI2->getParent(); 306 307 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 308 bool Fail = false; 309 for (BasicBlock *Succ : successors(SI2BB)) 310 if (SI1Succs.count(Succ)) 311 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { 312 PHINode *PN = cast<PHINode>(BBI); 313 if (PN->getIncomingValueForBlock(SI1BB) != 314 PN->getIncomingValueForBlock(SI2BB)) { 315 if (FailBlocks) 316 FailBlocks->insert(Succ); 317 Fail = true; 318 } 319 } 320 321 return !Fail; 322 } 323 324 /// Update PHI nodes in Succ to indicate that there will now be entries in it 325 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 326 /// will be the same as those coming in from ExistPred, an existing predecessor 327 /// of Succ. 328 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 329 BasicBlock *ExistPred, 330 MemorySSAUpdater *MSSAU = nullptr) { 331 for (PHINode &PN : Succ->phis()) 332 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 333 if (MSSAU) 334 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 335 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 336 } 337 338 /// Compute an abstract "cost" of speculating the given instruction, 339 /// which is assumed to be safe to speculate. TCC_Free means cheap, 340 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 341 /// expensive. 342 static InstructionCost computeSpeculationCost(const User *I, 343 const TargetTransformInfo &TTI) { 344 assert(isSafeToSpeculativelyExecute(I) && 345 "Instruction is not safe to speculatively execute!"); 346 return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency); 347 } 348 349 /// If we have a merge point of an "if condition" as accepted above, 350 /// return true if the specified value dominates the block. We 351 /// don't handle the true generality of domination here, just a special case 352 /// which works well enough for us. 353 /// 354 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 355 /// see if V (which must be an instruction) and its recursive operands 356 /// that do not dominate BB have a combined cost lower than Budget and 357 /// are non-trapping. If both are true, the instruction is inserted into the 358 /// set and true is returned. 359 /// 360 /// The cost for most non-trapping instructions is defined as 1 except for 361 /// Select whose cost is 2. 362 /// 363 /// After this function returns, Cost is increased by the cost of 364 /// V plus its non-dominating operands. If that cost is greater than 365 /// Budget, false is returned and Cost is undefined. 366 static bool dominatesMergePoint(Value *V, BasicBlock *BB, 367 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 368 InstructionCost &Cost, 369 InstructionCost Budget, 370 const TargetTransformInfo &TTI, 371 unsigned Depth = 0) { 372 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 373 // so limit the recursion depth. 374 // TODO: While this recursion limit does prevent pathological behavior, it 375 // would be better to track visited instructions to avoid cycles. 376 if (Depth == MaxSpeculationDepth) 377 return false; 378 379 Instruction *I = dyn_cast<Instruction>(V); 380 if (!I) { 381 // Non-instructions all dominate instructions, but not all constantexprs 382 // can be executed unconditionally. 383 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) 384 if (C->canTrap()) 385 return false; 386 return true; 387 } 388 BasicBlock *PBB = I->getParent(); 389 390 // We don't want to allow weird loops that might have the "if condition" in 391 // the bottom of this block. 392 if (PBB == BB) 393 return false; 394 395 // If this instruction is defined in a block that contains an unconditional 396 // branch to BB, then it must be in the 'conditional' part of the "if 397 // statement". If not, it definitely dominates the region. 398 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 399 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 400 return true; 401 402 // If we have seen this instruction before, don't count it again. 403 if (AggressiveInsts.count(I)) 404 return true; 405 406 // Okay, it looks like the instruction IS in the "condition". Check to 407 // see if it's a cheap instruction to unconditionally compute, and if it 408 // only uses stuff defined outside of the condition. If so, hoist it out. 409 if (!isSafeToSpeculativelyExecute(I)) 410 return false; 411 412 Cost += computeSpeculationCost(I, TTI); 413 414 // Allow exactly one instruction to be speculated regardless of its cost 415 // (as long as it is safe to do so). 416 // This is intended to flatten the CFG even if the instruction is a division 417 // or other expensive operation. The speculation of an expensive instruction 418 // is expected to be undone in CodeGenPrepare if the speculation has not 419 // enabled further IR optimizations. 420 if (Cost > Budget && 421 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 422 !Cost.isValid())) 423 return false; 424 425 // Okay, we can only really hoist these out if their operands do 426 // not take us over the cost threshold. 427 for (Use &Op : I->operands()) 428 if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI, 429 Depth + 1)) 430 return false; 431 // Okay, it's safe to do this! Remember this instruction. 432 AggressiveInsts.insert(I); 433 return true; 434 } 435 436 /// Extract ConstantInt from value, looking through IntToPtr 437 /// and PointerNullValue. Return NULL if value is not a constant int. 438 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { 439 // Normal constant int. 440 ConstantInt *CI = dyn_cast<ConstantInt>(V); 441 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) 442 return CI; 443 444 // This is some kind of pointer constant. Turn it into a pointer-sized 445 // ConstantInt if possible. 446 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 447 448 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 449 if (isa<ConstantPointerNull>(V)) 450 return ConstantInt::get(PtrTy, 0); 451 452 // IntToPtr const int. 453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 454 if (CE->getOpcode() == Instruction::IntToPtr) 455 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 456 // The constant is very likely to have the right type already. 457 if (CI->getType() == PtrTy) 458 return CI; 459 else 460 return cast<ConstantInt>( 461 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); 462 } 463 return nullptr; 464 } 465 466 namespace { 467 468 /// Given a chain of or (||) or and (&&) comparison of a value against a 469 /// constant, this will try to recover the information required for a switch 470 /// structure. 471 /// It will depth-first traverse the chain of comparison, seeking for patterns 472 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 473 /// representing the different cases for the switch. 474 /// Note that if the chain is composed of '||' it will build the set of elements 475 /// that matches the comparisons (i.e. any of this value validate the chain) 476 /// while for a chain of '&&' it will build the set elements that make the test 477 /// fail. 478 struct ConstantComparesGatherer { 479 const DataLayout &DL; 480 481 /// Value found for the switch comparison 482 Value *CompValue = nullptr; 483 484 /// Extra clause to be checked before the switch 485 Value *Extra = nullptr; 486 487 /// Set of integers to match in switch 488 SmallVector<ConstantInt *, 8> Vals; 489 490 /// Number of comparisons matched in the and/or chain 491 unsigned UsedICmps = 0; 492 493 /// Construct and compute the result for the comparison instruction Cond 494 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 495 gather(Cond); 496 } 497 498 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 499 ConstantComparesGatherer & 500 operator=(const ConstantComparesGatherer &) = delete; 501 502 private: 503 /// Try to set the current value used for the comparison, it succeeds only if 504 /// it wasn't set before or if the new value is the same as the old one 505 bool setValueOnce(Value *NewVal) { 506 if (CompValue && CompValue != NewVal) 507 return false; 508 CompValue = NewVal; 509 return (CompValue != nullptr); 510 } 511 512 /// Try to match Instruction "I" as a comparison against a constant and 513 /// populates the array Vals with the set of values that match (or do not 514 /// match depending on isEQ). 515 /// Return false on failure. On success, the Value the comparison matched 516 /// against is placed in CompValue. 517 /// If CompValue is already set, the function is expected to fail if a match 518 /// is found but the value compared to is different. 519 bool matchInstruction(Instruction *I, bool isEQ) { 520 // If this is an icmp against a constant, handle this as one of the cases. 521 ICmpInst *ICI; 522 ConstantInt *C; 523 if (!((ICI = dyn_cast<ICmpInst>(I)) && 524 (C = GetConstantInt(I->getOperand(1), DL)))) { 525 return false; 526 } 527 528 Value *RHSVal; 529 const APInt *RHSC; 530 531 // Pattern match a special case 532 // (x & ~2^z) == y --> x == y || x == y|2^z 533 // This undoes a transformation done by instcombine to fuse 2 compares. 534 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 535 // It's a little bit hard to see why the following transformations are 536 // correct. Here is a CVC3 program to verify them for 64-bit values: 537 538 /* 539 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 540 x : BITVECTOR(64); 541 y : BITVECTOR(64); 542 z : BITVECTOR(64); 543 mask : BITVECTOR(64) = BVSHL(ONE, z); 544 QUERY( (y & ~mask = y) => 545 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 546 ); 547 QUERY( (y | mask = y) => 548 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 549 ); 550 */ 551 552 // Please note that each pattern must be a dual implication (<--> or 553 // iff). One directional implication can create spurious matches. If the 554 // implication is only one-way, an unsatisfiable condition on the left 555 // side can imply a satisfiable condition on the right side. Dual 556 // implication ensures that satisfiable conditions are transformed to 557 // other satisfiable conditions and unsatisfiable conditions are 558 // transformed to other unsatisfiable conditions. 559 560 // Here is a concrete example of a unsatisfiable condition on the left 561 // implying a satisfiable condition on the right: 562 // 563 // mask = (1 << z) 564 // (x & ~mask) == y --> (x == y || x == (y | mask)) 565 // 566 // Substituting y = 3, z = 0 yields: 567 // (x & -2) == 3 --> (x == 3 || x == 2) 568 569 // Pattern match a special case: 570 /* 571 QUERY( (y & ~mask = y) => 572 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 573 ); 574 */ 575 if (match(ICI->getOperand(0), 576 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 577 APInt Mask = ~*RHSC; 578 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 579 // If we already have a value for the switch, it has to match! 580 if (!setValueOnce(RHSVal)) 581 return false; 582 583 Vals.push_back(C); 584 Vals.push_back( 585 ConstantInt::get(C->getContext(), 586 C->getValue() | Mask)); 587 UsedICmps++; 588 return true; 589 } 590 } 591 592 // Pattern match a special case: 593 /* 594 QUERY( (y | mask = y) => 595 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 596 ); 597 */ 598 if (match(ICI->getOperand(0), 599 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 600 APInt Mask = *RHSC; 601 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 602 // If we already have a value for the switch, it has to match! 603 if (!setValueOnce(RHSVal)) 604 return false; 605 606 Vals.push_back(C); 607 Vals.push_back(ConstantInt::get(C->getContext(), 608 C->getValue() & ~Mask)); 609 UsedICmps++; 610 return true; 611 } 612 } 613 614 // If we already have a value for the switch, it has to match! 615 if (!setValueOnce(ICI->getOperand(0))) 616 return false; 617 618 UsedICmps++; 619 Vals.push_back(C); 620 return ICI->getOperand(0); 621 } 622 623 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 624 ConstantRange Span = ConstantRange::makeAllowedICmpRegion( 625 ICI->getPredicate(), C->getValue()); 626 627 // Shift the range if the compare is fed by an add. This is the range 628 // compare idiom as emitted by instcombine. 629 Value *CandidateVal = I->getOperand(0); 630 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 631 Span = Span.subtract(*RHSC); 632 CandidateVal = RHSVal; 633 } 634 635 // If this is an and/!= check, then we are looking to build the set of 636 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 637 // x != 0 && x != 1. 638 if (!isEQ) 639 Span = Span.inverse(); 640 641 // If there are a ton of values, we don't want to make a ginormous switch. 642 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 643 return false; 644 } 645 646 // If we already have a value for the switch, it has to match! 647 if (!setValueOnce(CandidateVal)) 648 return false; 649 650 // Add all values from the range to the set 651 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 652 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 653 654 UsedICmps++; 655 return true; 656 } 657 658 /// Given a potentially 'or'd or 'and'd together collection of icmp 659 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 660 /// the value being compared, and stick the list constants into the Vals 661 /// vector. 662 /// One "Extra" case is allowed to differ from the other. 663 void gather(Value *V) { 664 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 665 666 // Keep a stack (SmallVector for efficiency) for depth-first traversal 667 SmallVector<Value *, 8> DFT; 668 SmallPtrSet<Value *, 8> Visited; 669 670 // Initialize 671 Visited.insert(V); 672 DFT.push_back(V); 673 674 while (!DFT.empty()) { 675 V = DFT.pop_back_val(); 676 677 if (Instruction *I = dyn_cast<Instruction>(V)) { 678 // If it is a || (or && depending on isEQ), process the operands. 679 Value *Op0, *Op1; 680 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 681 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 682 if (Visited.insert(Op1).second) 683 DFT.push_back(Op1); 684 if (Visited.insert(Op0).second) 685 DFT.push_back(Op0); 686 687 continue; 688 } 689 690 // Try to match the current instruction 691 if (matchInstruction(I, isEQ)) 692 // Match succeed, continue the loop 693 continue; 694 } 695 696 // One element of the sequence of || (or &&) could not be match as a 697 // comparison against the same value as the others. 698 // We allow only one "Extra" case to be checked before the switch 699 if (!Extra) { 700 Extra = V; 701 continue; 702 } 703 // Failed to parse a proper sequence, abort now 704 CompValue = nullptr; 705 break; 706 } 707 } 708 }; 709 710 } // end anonymous namespace 711 712 static void EraseTerminatorAndDCECond(Instruction *TI, 713 MemorySSAUpdater *MSSAU = nullptr) { 714 Instruction *Cond = nullptr; 715 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 716 Cond = dyn_cast<Instruction>(SI->getCondition()); 717 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 718 if (BI->isConditional()) 719 Cond = dyn_cast<Instruction>(BI->getCondition()); 720 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 721 Cond = dyn_cast<Instruction>(IBI->getAddress()); 722 } 723 724 TI->eraseFromParent(); 725 if (Cond) 726 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 727 } 728 729 /// Return true if the specified terminator checks 730 /// to see if a value is equal to constant integer value. 731 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 732 Value *CV = nullptr; 733 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 734 // Do not permit merging of large switch instructions into their 735 // predecessors unless there is only one predecessor. 736 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 737 CV = SI->getCondition(); 738 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 739 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 740 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 741 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) 742 CV = ICI->getOperand(0); 743 } 744 745 // Unwrap any lossless ptrtoint cast. 746 if (CV) { 747 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 748 Value *Ptr = PTII->getPointerOperand(); 749 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 750 CV = Ptr; 751 } 752 } 753 return CV; 754 } 755 756 /// Given a value comparison instruction, 757 /// decode all of the 'cases' that it represents and return the 'default' block. 758 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( 759 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 760 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 761 Cases.reserve(SI->getNumCases()); 762 for (auto Case : SI->cases()) 763 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 764 Case.getCaseSuccessor())); 765 return SI->getDefaultDest(); 766 } 767 768 BranchInst *BI = cast<BranchInst>(TI); 769 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 770 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 771 Cases.push_back(ValueEqualityComparisonCase( 772 GetConstantInt(ICI->getOperand(1), DL), Succ)); 773 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 774 } 775 776 /// Given a vector of bb/value pairs, remove any entries 777 /// in the list that match the specified block. 778 static void 779 EliminateBlockCases(BasicBlock *BB, 780 std::vector<ValueEqualityComparisonCase> &Cases) { 781 llvm::erase_value(Cases, BB); 782 } 783 784 /// Return true if there are any keys in C1 that exist in C2 as well. 785 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 786 std::vector<ValueEqualityComparisonCase> &C2) { 787 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 788 789 // Make V1 be smaller than V2. 790 if (V1->size() > V2->size()) 791 std::swap(V1, V2); 792 793 if (V1->empty()) 794 return false; 795 if (V1->size() == 1) { 796 // Just scan V2. 797 ConstantInt *TheVal = (*V1)[0].Value; 798 for (unsigned i = 0, e = V2->size(); i != e; ++i) 799 if (TheVal == (*V2)[i].Value) 800 return true; 801 } 802 803 // Otherwise, just sort both lists and compare element by element. 804 array_pod_sort(V1->begin(), V1->end()); 805 array_pod_sort(V2->begin(), V2->end()); 806 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 807 while (i1 != e1 && i2 != e2) { 808 if ((*V1)[i1].Value == (*V2)[i2].Value) 809 return true; 810 if ((*V1)[i1].Value < (*V2)[i2].Value) 811 ++i1; 812 else 813 ++i2; 814 } 815 return false; 816 } 817 818 // Set branch weights on SwitchInst. This sets the metadata if there is at 819 // least one non-zero weight. 820 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { 821 // Check that there is at least one non-zero weight. Otherwise, pass 822 // nullptr to setMetadata which will erase the existing metadata. 823 MDNode *N = nullptr; 824 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 825 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); 826 SI->setMetadata(LLVMContext::MD_prof, N); 827 } 828 829 // Similar to the above, but for branch and select instructions that take 830 // exactly 2 weights. 831 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 832 uint32_t FalseWeight) { 833 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 834 // Check that there is at least one non-zero weight. Otherwise, pass 835 // nullptr to setMetadata which will erase the existing metadata. 836 MDNode *N = nullptr; 837 if (TrueWeight || FalseWeight) 838 N = MDBuilder(I->getParent()->getContext()) 839 .createBranchWeights(TrueWeight, FalseWeight); 840 I->setMetadata(LLVMContext::MD_prof, N); 841 } 842 843 /// If TI is known to be a terminator instruction and its block is known to 844 /// only have a single predecessor block, check to see if that predecessor is 845 /// also a value comparison with the same value, and if that comparison 846 /// determines the outcome of this comparison. If so, simplify TI. This does a 847 /// very limited form of jump threading. 848 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( 849 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 850 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 851 if (!PredVal) 852 return false; // Not a value comparison in predecessor. 853 854 Value *ThisVal = isValueEqualityComparison(TI); 855 assert(ThisVal && "This isn't a value comparison!!"); 856 if (ThisVal != PredVal) 857 return false; // Different predicates. 858 859 // TODO: Preserve branch weight metadata, similarly to how 860 // FoldValueComparisonIntoPredecessors preserves it. 861 862 // Find out information about when control will move from Pred to TI's block. 863 std::vector<ValueEqualityComparisonCase> PredCases; 864 BasicBlock *PredDef = 865 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 866 EliminateBlockCases(PredDef, PredCases); // Remove default from cases. 867 868 // Find information about how control leaves this block. 869 std::vector<ValueEqualityComparisonCase> ThisCases; 870 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); 871 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 872 873 // If TI's block is the default block from Pred's comparison, potentially 874 // simplify TI based on this knowledge. 875 if (PredDef == TI->getParent()) { 876 // If we are here, we know that the value is none of those cases listed in 877 // PredCases. If there are any cases in ThisCases that are in PredCases, we 878 // can simplify TI. 879 if (!ValuesOverlap(PredCases, ThisCases)) 880 return false; 881 882 if (isa<BranchInst>(TI)) { 883 // Okay, one of the successors of this condbr is dead. Convert it to a 884 // uncond br. 885 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 886 // Insert the new branch. 887 Instruction *NI = Builder.CreateBr(ThisDef); 888 (void)NI; 889 890 // Remove PHI node entries for the dead edge. 891 ThisCases[0].Dest->removePredecessor(PredDef); 892 893 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 894 << "Through successor TI: " << *TI << "Leaving: " << *NI 895 << "\n"); 896 897 EraseTerminatorAndDCECond(TI); 898 899 if (DTU) 900 DTU->applyUpdates( 901 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 902 903 return true; 904 } 905 906 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 907 // Okay, TI has cases that are statically dead, prune them away. 908 SmallPtrSet<Constant *, 16> DeadCases; 909 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 910 DeadCases.insert(PredCases[i].Value); 911 912 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 913 << "Through successor TI: " << *TI); 914 915 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 916 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 917 --i; 918 auto *Successor = i->getCaseSuccessor(); 919 if (DTU) 920 ++NumPerSuccessorCases[Successor]; 921 if (DeadCases.count(i->getCaseValue())) { 922 Successor->removePredecessor(PredDef); 923 SI.removeCase(i); 924 if (DTU) 925 --NumPerSuccessorCases[Successor]; 926 } 927 } 928 929 if (DTU) { 930 std::vector<DominatorTree::UpdateType> Updates; 931 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 932 if (I.second == 0) 933 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 934 DTU->applyUpdates(Updates); 935 } 936 937 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 938 return true; 939 } 940 941 // Otherwise, TI's block must correspond to some matched value. Find out 942 // which value (or set of values) this is. 943 ConstantInt *TIV = nullptr; 944 BasicBlock *TIBB = TI->getParent(); 945 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 946 if (PredCases[i].Dest == TIBB) { 947 if (TIV) 948 return false; // Cannot handle multiple values coming to this block. 949 TIV = PredCases[i].Value; 950 } 951 assert(TIV && "No edge from pred to succ?"); 952 953 // Okay, we found the one constant that our value can be if we get into TI's 954 // BB. Find out which successor will unconditionally be branched to. 955 BasicBlock *TheRealDest = nullptr; 956 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) 957 if (ThisCases[i].Value == TIV) { 958 TheRealDest = ThisCases[i].Dest; 959 break; 960 } 961 962 // If not handled by any explicit cases, it is handled by the default case. 963 if (!TheRealDest) 964 TheRealDest = ThisDef; 965 966 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 967 968 // Remove PHI node entries for dead edges. 969 BasicBlock *CheckEdge = TheRealDest; 970 for (BasicBlock *Succ : successors(TIBB)) 971 if (Succ != CheckEdge) { 972 if (Succ != TheRealDest) 973 RemovedSuccs.insert(Succ); 974 Succ->removePredecessor(TIBB); 975 } else 976 CheckEdge = nullptr; 977 978 // Insert the new branch. 979 Instruction *NI = Builder.CreateBr(TheRealDest); 980 (void)NI; 981 982 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 983 << "Through successor TI: " << *TI << "Leaving: " << *NI 984 << "\n"); 985 986 EraseTerminatorAndDCECond(TI); 987 if (DTU) { 988 SmallVector<DominatorTree::UpdateType, 2> Updates; 989 Updates.reserve(RemovedSuccs.size()); 990 for (auto *RemovedSucc : RemovedSuccs) 991 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 992 DTU->applyUpdates(Updates); 993 } 994 return true; 995 } 996 997 namespace { 998 999 /// This class implements a stable ordering of constant 1000 /// integers that does not depend on their address. This is important for 1001 /// applications that sort ConstantInt's to ensure uniqueness. 1002 struct ConstantIntOrdering { 1003 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1004 return LHS->getValue().ult(RHS->getValue()); 1005 } 1006 }; 1007 1008 } // end anonymous namespace 1009 1010 static int ConstantIntSortPredicate(ConstantInt *const *P1, 1011 ConstantInt *const *P2) { 1012 const ConstantInt *LHS = *P1; 1013 const ConstantInt *RHS = *P2; 1014 if (LHS == RHS) 1015 return 0; 1016 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1017 } 1018 1019 static inline bool HasBranchWeights(const Instruction *I) { 1020 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); 1021 if (ProfMD && ProfMD->getOperand(0)) 1022 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) 1023 return MDS->getString().equals("branch_weights"); 1024 1025 return false; 1026 } 1027 1028 /// Get Weights of a given terminator, the default weight is at the front 1029 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1030 /// metadata. 1031 static void GetBranchWeights(Instruction *TI, 1032 SmallVectorImpl<uint64_t> &Weights) { 1033 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1034 assert(MD); 1035 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { 1036 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); 1037 Weights.push_back(CI->getValue().getZExtValue()); 1038 } 1039 1040 // If TI is a conditional eq, the default case is the false case, 1041 // and the corresponding branch-weight data is at index 2. We swap the 1042 // default weight to be the first entry. 1043 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1044 assert(Weights.size() == 2); 1045 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1046 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1047 std::swap(Weights.front(), Weights.back()); 1048 } 1049 } 1050 1051 /// Keep halving the weights until all can fit in uint32_t. 1052 static void FitWeights(MutableArrayRef<uint64_t> Weights) { 1053 uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); 1054 if (Max > UINT_MAX) { 1055 unsigned Offset = 32 - countLeadingZeros(Max); 1056 for (uint64_t &I : Weights) 1057 I >>= Offset; 1058 } 1059 } 1060 1061 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1062 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1063 Instruction *PTI = PredBlock->getTerminator(); 1064 1065 // If we have bonus instructions, clone them into the predecessor block. 1066 // Note that there may be multiple predecessor blocks, so we cannot move 1067 // bonus instructions to a predecessor block. 1068 for (Instruction &BonusInst : *BB) { 1069 if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator()) 1070 continue; 1071 1072 Instruction *NewBonusInst = BonusInst.clone(); 1073 1074 if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1075 // Unless the instruction has the same !dbg location as the original 1076 // branch, drop it. When we fold the bonus instructions we want to make 1077 // sure we reset their debug locations in order to avoid stepping on 1078 // dead code caused by folding dead branches. 1079 NewBonusInst->setDebugLoc(DebugLoc()); 1080 } 1081 1082 RemapInstruction(NewBonusInst, VMap, 1083 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1084 VMap[&BonusInst] = NewBonusInst; 1085 1086 // If we moved a load, we cannot any longer claim any knowledge about 1087 // its potential value. The previous information might have been valid 1088 // only given the branch precondition. 1089 // For an analogous reason, we must also drop all the metadata whose 1090 // semantics we don't understand. We *can* preserve !annotation, because 1091 // it is tied to the instruction itself, not the value or position. 1092 NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation); 1093 1094 PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst); 1095 NewBonusInst->takeName(&BonusInst); 1096 BonusInst.setName(NewBonusInst->getName() + ".old"); 1097 1098 // Update (liveout) uses of bonus instructions, 1099 // now that the bonus instruction has been cloned into predecessor. 1100 SSAUpdater SSAUpdate; 1101 SSAUpdate.Initialize(BonusInst.getType(), 1102 (NewBonusInst->getName() + ".merge").str()); 1103 SSAUpdate.AddAvailableValue(BB, &BonusInst); 1104 SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst); 1105 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1106 auto *UI = cast<Instruction>(U.getUser()); 1107 if (UI->getParent() != PredBlock) 1108 SSAUpdate.RewriteUseAfterInsertions(U); 1109 else // Use is in the same block as, and comes before, NewBonusInst. 1110 SSAUpdate.RewriteUse(U); 1111 } 1112 } 1113 } 1114 1115 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding( 1116 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1117 BasicBlock *BB = TI->getParent(); 1118 BasicBlock *Pred = PTI->getParent(); 1119 1120 SmallVector<DominatorTree::UpdateType, 32> Updates; 1121 1122 // Figure out which 'cases' to copy from SI to PSI. 1123 std::vector<ValueEqualityComparisonCase> BBCases; 1124 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); 1125 1126 std::vector<ValueEqualityComparisonCase> PredCases; 1127 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); 1128 1129 // Based on whether the default edge from PTI goes to BB or not, fill in 1130 // PredCases and PredDefault with the new switch cases we would like to 1131 // build. 1132 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1133 1134 // Update the branch weight metadata along the way 1135 SmallVector<uint64_t, 8> Weights; 1136 bool PredHasWeights = HasBranchWeights(PTI); 1137 bool SuccHasWeights = HasBranchWeights(TI); 1138 1139 if (PredHasWeights) { 1140 GetBranchWeights(PTI, Weights); 1141 // branch-weight metadata is inconsistent here. 1142 if (Weights.size() != 1 + PredCases.size()) 1143 PredHasWeights = SuccHasWeights = false; 1144 } else if (SuccHasWeights) 1145 // If there are no predecessor weights but there are successor weights, 1146 // populate Weights with 1, which will later be scaled to the sum of 1147 // successor's weights 1148 Weights.assign(1 + PredCases.size(), 1); 1149 1150 SmallVector<uint64_t, 8> SuccWeights; 1151 if (SuccHasWeights) { 1152 GetBranchWeights(TI, SuccWeights); 1153 // branch-weight metadata is inconsistent here. 1154 if (SuccWeights.size() != 1 + BBCases.size()) 1155 PredHasWeights = SuccHasWeights = false; 1156 } else if (PredHasWeights) 1157 SuccWeights.assign(1 + BBCases.size(), 1); 1158 1159 if (PredDefault == BB) { 1160 // If this is the default destination from PTI, only the edges in TI 1161 // that don't occur in PTI, or that branch to BB will be activated. 1162 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1163 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1164 if (PredCases[i].Dest != BB) 1165 PTIHandled.insert(PredCases[i].Value); 1166 else { 1167 // The default destination is BB, we don't need explicit targets. 1168 std::swap(PredCases[i], PredCases.back()); 1169 1170 if (PredHasWeights || SuccHasWeights) { 1171 // Increase weight for the default case. 1172 Weights[0] += Weights[i + 1]; 1173 std::swap(Weights[i + 1], Weights.back()); 1174 Weights.pop_back(); 1175 } 1176 1177 PredCases.pop_back(); 1178 --i; 1179 --e; 1180 } 1181 1182 // Reconstruct the new switch statement we will be building. 1183 if (PredDefault != BBDefault) { 1184 PredDefault->removePredecessor(Pred); 1185 if (DTU && PredDefault != BB) 1186 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1187 PredDefault = BBDefault; 1188 ++NewSuccessors[BBDefault]; 1189 } 1190 1191 unsigned CasesFromPred = Weights.size(); 1192 uint64_t ValidTotalSuccWeight = 0; 1193 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1194 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1195 PredCases.push_back(BBCases[i]); 1196 ++NewSuccessors[BBCases[i].Dest]; 1197 if (SuccHasWeights || PredHasWeights) { 1198 // The default weight is at index 0, so weight for the ith case 1199 // should be at index i+1. Scale the cases from successor by 1200 // PredDefaultWeight (Weights[0]). 1201 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1202 ValidTotalSuccWeight += SuccWeights[i + 1]; 1203 } 1204 } 1205 1206 if (SuccHasWeights || PredHasWeights) { 1207 ValidTotalSuccWeight += SuccWeights[0]; 1208 // Scale the cases from predecessor by ValidTotalSuccWeight. 1209 for (unsigned i = 1; i < CasesFromPred; ++i) 1210 Weights[i] *= ValidTotalSuccWeight; 1211 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1212 Weights[0] *= SuccWeights[0]; 1213 } 1214 } else { 1215 // If this is not the default destination from PSI, only the edges 1216 // in SI that occur in PSI with a destination of BB will be 1217 // activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1220 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1221 if (PredCases[i].Dest == BB) { 1222 PTIHandled.insert(PredCases[i].Value); 1223 1224 if (PredHasWeights || SuccHasWeights) { 1225 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1226 std::swap(Weights[i + 1], Weights.back()); 1227 Weights.pop_back(); 1228 } 1229 1230 std::swap(PredCases[i], PredCases.back()); 1231 PredCases.pop_back(); 1232 --i; 1233 --e; 1234 } 1235 1236 // Okay, now we know which constants were sent to BB from the 1237 // predecessor. Figure out where they will all go now. 1238 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1239 if (PTIHandled.count(BBCases[i].Value)) { 1240 // If this is one we are capable of getting... 1241 if (PredHasWeights || SuccHasWeights) 1242 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1243 PredCases.push_back(BBCases[i]); 1244 ++NewSuccessors[BBCases[i].Dest]; 1245 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1246 } 1247 1248 // If there are any constants vectored to BB that TI doesn't handle, 1249 // they must go to the default destination of TI. 1250 for (ConstantInt *I : PTIHandled) { 1251 if (PredHasWeights || SuccHasWeights) 1252 Weights.push_back(WeightsForHandled[I]); 1253 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1254 ++NewSuccessors[BBDefault]; 1255 } 1256 } 1257 1258 // Okay, at this point, we know which new successor Pred will get. Make 1259 // sure we update the number of entries in the PHI nodes for these 1260 // successors. 1261 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1262 if (DTU) { 1263 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1264 Updates.reserve(Updates.size() + NewSuccessors.size()); 1265 } 1266 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1267 NewSuccessors) { 1268 for (auto I : seq(0, NewSuccessor.second)) { 1269 (void)I; 1270 AddPredecessorToBlock(NewSuccessor.first, Pred, BB); 1271 } 1272 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1273 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1274 } 1275 1276 Builder.SetInsertPoint(PTI); 1277 // Convert pointer to int before we switch. 1278 if (CV->getType()->isPointerTy()) { 1279 CV = 1280 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1281 } 1282 1283 // Now that the successors are updated, create the new Switch instruction. 1284 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1285 NewSI->setDebugLoc(PTI->getDebugLoc()); 1286 for (ValueEqualityComparisonCase &V : PredCases) 1287 NewSI->addCase(V.Value, V.Dest); 1288 1289 if (PredHasWeights || SuccHasWeights) { 1290 // Halve the weights if any of them cannot fit in an uint32_t 1291 FitWeights(Weights); 1292 1293 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1294 1295 setBranchWeights(NewSI, MDWeights); 1296 } 1297 1298 EraseTerminatorAndDCECond(PTI); 1299 1300 // Okay, last check. If BB is still a successor of PSI, then we must 1301 // have an infinite loop case. If so, add an infinitely looping block 1302 // to handle the case to preserve the behavior of the code. 1303 BasicBlock *InfLoopBlock = nullptr; 1304 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1305 if (NewSI->getSuccessor(i) == BB) { 1306 if (!InfLoopBlock) { 1307 // Insert it at the end of the function, because it's either code, 1308 // or it won't matter if it's hot. :) 1309 InfLoopBlock = 1310 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1311 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1312 if (DTU) 1313 Updates.push_back( 1314 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1315 } 1316 NewSI->setSuccessor(i, InfLoopBlock); 1317 } 1318 1319 if (DTU) { 1320 if (InfLoopBlock) 1321 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1322 1323 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1324 1325 DTU->applyUpdates(Updates); 1326 } 1327 1328 ++NumFoldValueComparisonIntoPredecessors; 1329 return true; 1330 } 1331 1332 /// The specified terminator is a value equality comparison instruction 1333 /// (either a switch or a branch on "X == c"). 1334 /// See if any of the predecessors of the terminator block are value comparisons 1335 /// on the same value. If so, and if safe to do so, fold them together. 1336 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, 1337 IRBuilder<> &Builder) { 1338 BasicBlock *BB = TI->getParent(); 1339 Value *CV = isValueEqualityComparison(TI); // CondVal 1340 assert(CV && "Not a comparison?"); 1341 1342 bool Changed = false; 1343 1344 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1345 while (!Preds.empty()) { 1346 BasicBlock *Pred = Preds.pop_back_val(); 1347 Instruction *PTI = Pred->getTerminator(); 1348 1349 // Don't try to fold into itself. 1350 if (Pred == BB) 1351 continue; 1352 1353 // See if the predecessor is a comparison with the same value. 1354 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1355 if (PCV != CV) 1356 continue; 1357 1358 SmallSetVector<BasicBlock *, 4> FailBlocks; 1359 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { 1360 for (auto *Succ : FailBlocks) { 1361 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1362 return false; 1363 } 1364 } 1365 1366 PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1367 Changed = true; 1368 } 1369 return Changed; 1370 } 1371 1372 // If we would need to insert a select that uses the value of this invoke 1373 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we 1374 // can't hoist the invoke, as there is nowhere to put the select in this case. 1375 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1376 Instruction *I1, Instruction *I2) { 1377 for (BasicBlock *Succ : successors(BB1)) { 1378 for (const PHINode &PN : Succ->phis()) { 1379 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1380 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1381 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1382 return false; 1383 } 1384 } 1385 } 1386 return true; 1387 } 1388 1389 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1390 1391 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code 1392 /// in the two blocks up into the branch block. The caller of this function 1393 /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given, 1394 /// only perform hoisting in case both blocks only contain a terminator. In that 1395 /// case, only the original BI will be replaced and selects for PHIs are added. 1396 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI, 1397 const TargetTransformInfo &TTI, 1398 bool EqTermsOnly) { 1399 // This does very trivial matching, with limited scanning, to find identical 1400 // instructions in the two blocks. In particular, we don't want to get into 1401 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As 1402 // such, we currently just scan for obviously identical instructions in an 1403 // identical order. 1404 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. 1405 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination 1406 1407 BasicBlock::iterator BB1_Itr = BB1->begin(); 1408 BasicBlock::iterator BB2_Itr = BB2->begin(); 1409 1410 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; 1411 // Skip debug info if it is not identical. 1412 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1413 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1414 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1415 while (isa<DbgInfoIntrinsic>(I1)) 1416 I1 = &*BB1_Itr++; 1417 while (isa<DbgInfoIntrinsic>(I2)) 1418 I2 = &*BB2_Itr++; 1419 } 1420 // FIXME: Can we define a safety predicate for CallBr? 1421 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || 1422 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || 1423 isa<CallBrInst>(I1)) 1424 return false; 1425 1426 BasicBlock *BIParent = BI->getParent(); 1427 1428 bool Changed = false; 1429 1430 auto _ = make_scope_exit([&]() { 1431 if (Changed) 1432 ++NumHoistCommonCode; 1433 }); 1434 1435 // Check if only hoisting terminators is allowed. This does not add new 1436 // instructions to the hoist location. 1437 if (EqTermsOnly) { 1438 // Skip any debug intrinsics, as they are free to hoist. 1439 auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator()); 1440 auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator()); 1441 if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg)) 1442 return false; 1443 if (!I1NonDbg->isTerminator()) 1444 return false; 1445 // Now we know that we only need to hoist debug instrinsics and the 1446 // terminator. Let the loop below handle those 2 cases. 1447 } 1448 1449 do { 1450 // If we are hoisting the terminator instruction, don't move one (making a 1451 // broken BB), instead clone it, and remove BI. 1452 if (I1->isTerminator()) 1453 goto HoistTerminator; 1454 1455 // If we're going to hoist a call, make sure that the two instructions we're 1456 // commoning/hoisting are both marked with musttail, or neither of them is 1457 // marked as such. Otherwise, we might end up in a situation where we hoist 1458 // from a block where the terminator is a `ret` to a block where the terminator 1459 // is a `br`, and `musttail` calls expect to be followed by a return. 1460 auto *C1 = dyn_cast<CallInst>(I1); 1461 auto *C2 = dyn_cast<CallInst>(I2); 1462 if (C1 && C2) 1463 if (C1->isMustTailCall() != C2->isMustTailCall()) 1464 return Changed; 1465 1466 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1467 return Changed; 1468 1469 // If any of the two call sites has nomerge attribute, stop hoisting. 1470 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1471 if (CB1->cannotMerge()) 1472 return Changed; 1473 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1474 if (CB2->cannotMerge()) 1475 return Changed; 1476 1477 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { 1478 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); 1479 // The debug location is an integral part of a debug info intrinsic 1480 // and can't be separated from it or replaced. Instead of attempting 1481 // to merge locations, simply hoist both copies of the intrinsic. 1482 BIParent->getInstList().splice(BI->getIterator(), 1483 BB1->getInstList(), I1); 1484 BIParent->getInstList().splice(BI->getIterator(), 1485 BB2->getInstList(), I2); 1486 Changed = true; 1487 } else { 1488 // For a normal instruction, we just move one to right before the branch, 1489 // then replace all uses of the other with the first. Finally, we remove 1490 // the now redundant second instruction. 1491 BIParent->getInstList().splice(BI->getIterator(), 1492 BB1->getInstList(), I1); 1493 if (!I2->use_empty()) 1494 I2->replaceAllUsesWith(I1); 1495 I1->andIRFlags(I2); 1496 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 1497 LLVMContext::MD_range, 1498 LLVMContext::MD_fpmath, 1499 LLVMContext::MD_invariant_load, 1500 LLVMContext::MD_nonnull, 1501 LLVMContext::MD_invariant_group, 1502 LLVMContext::MD_align, 1503 LLVMContext::MD_dereferenceable, 1504 LLVMContext::MD_dereferenceable_or_null, 1505 LLVMContext::MD_mem_parallel_loop_access, 1506 LLVMContext::MD_access_group, 1507 LLVMContext::MD_preserve_access_index}; 1508 combineMetadata(I1, I2, KnownIDs, true); 1509 1510 // I1 and I2 are being combined into a single instruction. Its debug 1511 // location is the merged locations of the original instructions. 1512 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1513 1514 I2->eraseFromParent(); 1515 Changed = true; 1516 } 1517 ++NumHoistCommonInstrs; 1518 1519 I1 = &*BB1_Itr++; 1520 I2 = &*BB2_Itr++; 1521 // Skip debug info if it is not identical. 1522 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); 1523 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); 1524 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { 1525 while (isa<DbgInfoIntrinsic>(I1)) 1526 I1 = &*BB1_Itr++; 1527 while (isa<DbgInfoIntrinsic>(I2)) 1528 I2 = &*BB2_Itr++; 1529 } 1530 } while (I1->isIdenticalToWhenDefined(I2)); 1531 1532 return true; 1533 1534 HoistTerminator: 1535 // It may not be possible to hoist an invoke. 1536 // FIXME: Can we define a safety predicate for CallBr? 1537 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) 1538 return Changed; 1539 1540 // TODO: callbr hoisting currently disabled pending further study. 1541 if (isa<CallBrInst>(I1)) 1542 return Changed; 1543 1544 for (BasicBlock *Succ : successors(BB1)) { 1545 for (PHINode &PN : Succ->phis()) { 1546 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1547 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1548 if (BB1V == BB2V) 1549 continue; 1550 1551 // Check for passingValueIsAlwaysUndefined here because we would rather 1552 // eliminate undefined control flow then converting it to a select. 1553 if (passingValueIsAlwaysUndefined(BB1V, &PN) || 1554 passingValueIsAlwaysUndefined(BB2V, &PN)) 1555 return Changed; 1556 1557 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) 1558 return Changed; 1559 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) 1560 return Changed; 1561 } 1562 } 1563 1564 // Okay, it is safe to hoist the terminator. 1565 Instruction *NT = I1->clone(); 1566 BIParent->getInstList().insert(BI->getIterator(), NT); 1567 if (!NT->getType()->isVoidTy()) { 1568 I1->replaceAllUsesWith(NT); 1569 I2->replaceAllUsesWith(NT); 1570 NT->takeName(I1); 1571 } 1572 Changed = true; 1573 ++NumHoistCommonInstrs; 1574 1575 // Ensure terminator gets a debug location, even an unknown one, in case 1576 // it involves inlinable calls. 1577 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1578 1579 // PHIs created below will adopt NT's merged DebugLoc. 1580 IRBuilder<NoFolder> Builder(NT); 1581 1582 // Hoisting one of the terminators from our successor is a great thing. 1583 // Unfortunately, the successors of the if/else blocks may have PHI nodes in 1584 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI 1585 // nodes, so we insert select instruction to compute the final result. 1586 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 1587 for (BasicBlock *Succ : successors(BB1)) { 1588 for (PHINode &PN : Succ->phis()) { 1589 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1590 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1591 if (BB1V == BB2V) 1592 continue; 1593 1594 // These values do not agree. Insert a select instruction before NT 1595 // that determines the right value. 1596 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 1597 if (!SI) { 1598 // Propagate fast-math-flags from phi node to its replacement select. 1599 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 1600 if (isa<FPMathOperator>(PN)) 1601 Builder.setFastMathFlags(PN.getFastMathFlags()); 1602 1603 SI = cast<SelectInst>( 1604 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, 1605 BB1V->getName() + "." + BB2V->getName(), BI)); 1606 } 1607 1608 // Make the PHI node use the select for all incoming values for BB1/BB2 1609 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1610 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 1611 PN.setIncomingValue(i, SI); 1612 } 1613 } 1614 1615 SmallVector<DominatorTree::UpdateType, 4> Updates; 1616 1617 // Update any PHI nodes in our new successors. 1618 for (BasicBlock *Succ : successors(BB1)) { 1619 AddPredecessorToBlock(Succ, BIParent, BB1); 1620 if (DTU) 1621 Updates.push_back({DominatorTree::Insert, BIParent, Succ}); 1622 } 1623 1624 if (DTU) 1625 for (BasicBlock *Succ : successors(BI)) 1626 Updates.push_back({DominatorTree::Delete, BIParent, Succ}); 1627 1628 EraseTerminatorAndDCECond(BI); 1629 if (DTU) 1630 DTU->applyUpdates(Updates); 1631 return Changed; 1632 } 1633 1634 // Check lifetime markers. 1635 static bool isLifeTimeMarker(const Instruction *I) { 1636 if (auto II = dyn_cast<IntrinsicInst>(I)) { 1637 switch (II->getIntrinsicID()) { 1638 default: 1639 break; 1640 case Intrinsic::lifetime_start: 1641 case Intrinsic::lifetime_end: 1642 return true; 1643 } 1644 } 1645 return false; 1646 } 1647 1648 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 1649 // into variables. 1650 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 1651 int OpIdx) { 1652 return !isa<IntrinsicInst>(I); 1653 } 1654 1655 // All instructions in Insts belong to different blocks that all unconditionally 1656 // branch to a common successor. Analyze each instruction and return true if it 1657 // would be possible to sink them into their successor, creating one common 1658 // instruction instead. For every value that would be required to be provided by 1659 // PHI node (because an operand varies in each input block), add to PHIOperands. 1660 static bool canSinkInstructions( 1661 ArrayRef<Instruction *> Insts, 1662 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { 1663 // Prune out obviously bad instructions to move. Each instruction must have 1664 // exactly zero or one use, and we check later that use is by a single, common 1665 // PHI instruction in the successor. 1666 bool HasUse = !Insts.front()->user_empty(); 1667 for (auto *I : Insts) { 1668 // These instructions may change or break semantics if moved. 1669 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 1670 I->getType()->isTokenTy()) 1671 return false; 1672 1673 // Do not try to sink an instruction in an infinite loop - it can cause 1674 // this algorithm to infinite loop. 1675 if (I->getParent()->getSingleSuccessor() == I->getParent()) 1676 return false; 1677 1678 // Conservatively return false if I is an inline-asm instruction. Sinking 1679 // and merging inline-asm instructions can potentially create arguments 1680 // that cannot satisfy the inline-asm constraints. 1681 // If the instruction has nomerge attribute, return false. 1682 if (const auto *C = dyn_cast<CallBase>(I)) 1683 if (C->isInlineAsm() || C->cannotMerge()) 1684 return false; 1685 1686 // Each instruction must have zero or one use. 1687 if (HasUse && !I->hasOneUse()) 1688 return false; 1689 if (!HasUse && !I->user_empty()) 1690 return false; 1691 } 1692 1693 const Instruction *I0 = Insts.front(); 1694 for (auto *I : Insts) 1695 if (!I->isSameOperationAs(I0)) 1696 return false; 1697 1698 // All instructions in Insts are known to be the same opcode. If they have a 1699 // use, check that the only user is a PHI or in the same block as the 1700 // instruction, because if a user is in the same block as an instruction we're 1701 // contemplating sinking, it must already be determined to be sinkable. 1702 if (HasUse) { 1703 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1704 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); 1705 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { 1706 auto *U = cast<Instruction>(*I->user_begin()); 1707 return (PNUse && 1708 PNUse->getParent() == Succ && 1709 PNUse->getIncomingValueForBlock(I->getParent()) == I) || 1710 U->getParent() == I->getParent(); 1711 })) 1712 return false; 1713 } 1714 1715 // Because SROA can't handle speculating stores of selects, try not to sink 1716 // loads, stores or lifetime markers of allocas when we'd have to create a 1717 // PHI for the address operand. Also, because it is likely that loads or 1718 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink 1719 // them. 1720 // This can cause code churn which can have unintended consequences down 1721 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. 1722 // FIXME: This is a workaround for a deficiency in SROA - see 1723 // https://llvm.org/bugs/show_bug.cgi?id=30188 1724 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { 1725 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1726 })) 1727 return false; 1728 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { 1729 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts()); 1730 })) 1731 return false; 1732 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) { 1733 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 1734 })) 1735 return false; 1736 1737 // For calls to be sinkable, they must all be indirect, or have same callee. 1738 // I.e. if we have two direct calls to different callees, we don't want to 1739 // turn that into an indirect call. Likewise, if we have an indirect call, 1740 // and a direct call, we don't actually want to have a single indirect call. 1741 if (isa<CallBase>(I0)) { 1742 auto IsIndirectCall = [](const Instruction *I) { 1743 return cast<CallBase>(I)->isIndirectCall(); 1744 }; 1745 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 1746 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 1747 if (HaveIndirectCalls) { 1748 if (!AllCallsAreIndirect) 1749 return false; 1750 } else { 1751 // All callees must be identical. 1752 Value *Callee = nullptr; 1753 for (const Instruction *I : Insts) { 1754 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 1755 if (!Callee) 1756 Callee = CurrCallee; 1757 else if (Callee != CurrCallee) 1758 return false; 1759 } 1760 } 1761 } 1762 1763 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 1764 Value *Op = I0->getOperand(OI); 1765 if (Op->getType()->isTokenTy()) 1766 // Don't touch any operand of token type. 1767 return false; 1768 1769 auto SameAsI0 = [&I0, OI](const Instruction *I) { 1770 assert(I->getNumOperands() == I0->getNumOperands()); 1771 return I->getOperand(OI) == I0->getOperand(OI); 1772 }; 1773 if (!all_of(Insts, SameAsI0)) { 1774 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 1775 !canReplaceOperandWithVariable(I0, OI)) 1776 // We can't create a PHI from this GEP. 1777 return false; 1778 for (auto *I : Insts) 1779 PHIOperands[I].push_back(I->getOperand(OI)); 1780 } 1781 } 1782 return true; 1783 } 1784 1785 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 1786 // instruction of every block in Blocks to their common successor, commoning 1787 // into one instruction. 1788 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 1789 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 1790 1791 // canSinkInstructions returning true guarantees that every block has at 1792 // least one non-terminator instruction. 1793 SmallVector<Instruction*,4> Insts; 1794 for (auto *BB : Blocks) { 1795 Instruction *I = BB->getTerminator(); 1796 do { 1797 I = I->getPrevNode(); 1798 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 1799 if (!isa<DbgInfoIntrinsic>(I)) 1800 Insts.push_back(I); 1801 } 1802 1803 // The only checking we need to do now is that all users of all instructions 1804 // are the same PHI node. canSinkInstructions should have checked this but 1805 // it is slightly over-aggressive - it gets confused by commutative 1806 // instructions so double-check it here. 1807 Instruction *I0 = Insts.front(); 1808 if (!I0->user_empty()) { 1809 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); 1810 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { 1811 auto *U = cast<Instruction>(*I->user_begin()); 1812 return U == PNUse; 1813 })) 1814 return false; 1815 } 1816 1817 // We don't need to do any more checking here; canSinkInstructions should 1818 // have done it all for us. 1819 SmallVector<Value*, 4> NewOperands; 1820 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 1821 // This check is different to that in canSinkInstructions. There, we 1822 // cared about the global view once simplifycfg (and instcombine) have 1823 // completed - it takes into account PHIs that become trivially 1824 // simplifiable. However here we need a more local view; if an operand 1825 // differs we create a PHI and rely on instcombine to clean up the very 1826 // small mess we may make. 1827 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 1828 return I->getOperand(O) != I0->getOperand(O); 1829 }); 1830 if (!NeedPHI) { 1831 NewOperands.push_back(I0->getOperand(O)); 1832 continue; 1833 } 1834 1835 // Create a new PHI in the successor block and populate it. 1836 auto *Op = I0->getOperand(O); 1837 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 1838 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 1839 Op->getName() + ".sink", &BBEnd->front()); 1840 for (auto *I : Insts) 1841 PN->addIncoming(I->getOperand(O), I->getParent()); 1842 NewOperands.push_back(PN); 1843 } 1844 1845 // Arbitrarily use I0 as the new "common" instruction; remap its operands 1846 // and move it to the start of the successor block. 1847 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 1848 I0->getOperandUse(O).set(NewOperands[O]); 1849 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 1850 1851 // Update metadata and IR flags, and merge debug locations. 1852 for (auto *I : Insts) 1853 if (I != I0) { 1854 // The debug location for the "common" instruction is the merged locations 1855 // of all the commoned instructions. We start with the original location 1856 // of the "common" instruction and iteratively merge each location in the 1857 // loop below. 1858 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 1859 // However, as N-way merge for CallInst is rare, so we use simplified API 1860 // instead of using complex API for N-way merge. 1861 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 1862 combineMetadataForCSE(I0, I, true); 1863 I0->andIRFlags(I); 1864 } 1865 1866 if (!I0->user_empty()) { 1867 // canSinkLastInstruction checked that all instructions were used by 1868 // one and only one PHI node. Find that now, RAUW it to our common 1869 // instruction and nuke it. 1870 auto *PN = cast<PHINode>(*I0->user_begin()); 1871 PN->replaceAllUsesWith(I0); 1872 PN->eraseFromParent(); 1873 } 1874 1875 // Finally nuke all instructions apart from the common instruction. 1876 for (auto *I : Insts) 1877 if (I != I0) 1878 I->eraseFromParent(); 1879 1880 return true; 1881 } 1882 1883 namespace { 1884 1885 // LockstepReverseIterator - Iterates through instructions 1886 // in a set of blocks in reverse order from the first non-terminator. 1887 // For example (assume all blocks have size n): 1888 // LockstepReverseIterator I([B1, B2, B3]); 1889 // *I-- = [B1[n], B2[n], B3[n]]; 1890 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1891 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1892 // ... 1893 class LockstepReverseIterator { 1894 ArrayRef<BasicBlock*> Blocks; 1895 SmallVector<Instruction*,4> Insts; 1896 bool Fail; 1897 1898 public: 1899 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 1900 reset(); 1901 } 1902 1903 void reset() { 1904 Fail = false; 1905 Insts.clear(); 1906 for (auto *BB : Blocks) { 1907 Instruction *Inst = BB->getTerminator(); 1908 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1909 Inst = Inst->getPrevNode(); 1910 if (!Inst) { 1911 // Block wasn't big enough. 1912 Fail = true; 1913 return; 1914 } 1915 Insts.push_back(Inst); 1916 } 1917 } 1918 1919 bool isValid() const { 1920 return !Fail; 1921 } 1922 1923 void operator--() { 1924 if (Fail) 1925 return; 1926 for (auto *&Inst : Insts) { 1927 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1928 Inst = Inst->getPrevNode(); 1929 // Already at beginning of block. 1930 if (!Inst) { 1931 Fail = true; 1932 return; 1933 } 1934 } 1935 } 1936 1937 void operator++() { 1938 if (Fail) 1939 return; 1940 for (auto *&Inst : Insts) { 1941 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1942 Inst = Inst->getNextNode(); 1943 // Already at end of block. 1944 if (!Inst) { 1945 Fail = true; 1946 return; 1947 } 1948 } 1949 } 1950 1951 ArrayRef<Instruction*> operator * () const { 1952 return Insts; 1953 } 1954 }; 1955 1956 } // end anonymous namespace 1957 1958 /// Check whether BB's predecessors end with unconditional branches. If it is 1959 /// true, sink any common code from the predecessors to BB. 1960 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB, 1961 DomTreeUpdater *DTU) { 1962 // We support two situations: 1963 // (1) all incoming arcs are unconditional 1964 // (2) there are non-unconditional incoming arcs 1965 // 1966 // (2) is very common in switch defaults and 1967 // else-if patterns; 1968 // 1969 // if (a) f(1); 1970 // else if (b) f(2); 1971 // 1972 // produces: 1973 // 1974 // [if] 1975 // / \ 1976 // [f(1)] [if] 1977 // | | \ 1978 // | | | 1979 // | [f(2)]| 1980 // \ | / 1981 // [ end ] 1982 // 1983 // [end] has two unconditional predecessor arcs and one conditional. The 1984 // conditional refers to the implicit empty 'else' arc. This conditional 1985 // arc can also be caused by an empty default block in a switch. 1986 // 1987 // In this case, we attempt to sink code from all *unconditional* arcs. 1988 // If we can sink instructions from these arcs (determined during the scan 1989 // phase below) we insert a common successor for all unconditional arcs and 1990 // connect that to [end], to enable sinking: 1991 // 1992 // [if] 1993 // / \ 1994 // [x(1)] [if] 1995 // | | \ 1996 // | | \ 1997 // | [x(2)] | 1998 // \ / | 1999 // [sink.split] | 2000 // \ / 2001 // [ end ] 2002 // 2003 SmallVector<BasicBlock*,4> UnconditionalPreds; 2004 bool HaveNonUnconditionalPredecessors = false; 2005 for (auto *PredBB : predecessors(BB)) { 2006 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2007 if (PredBr && PredBr->isUnconditional()) 2008 UnconditionalPreds.push_back(PredBB); 2009 else 2010 HaveNonUnconditionalPredecessors = true; 2011 } 2012 if (UnconditionalPreds.size() < 2) 2013 return false; 2014 2015 // We take a two-step approach to tail sinking. First we scan from the end of 2016 // each block upwards in lockstep. If the n'th instruction from the end of each 2017 // block can be sunk, those instructions are added to ValuesToSink and we 2018 // carry on. If we can sink an instruction but need to PHI-merge some operands 2019 // (because they're not identical in each instruction) we add these to 2020 // PHIOperands. 2021 int ScanIdx = 0; 2022 SmallPtrSet<Value*,4> InstructionsToSink; 2023 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; 2024 LockstepReverseIterator LRI(UnconditionalPreds); 2025 while (LRI.isValid() && 2026 canSinkInstructions(*LRI, PHIOperands)) { 2027 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2028 << "\n"); 2029 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2030 ++ScanIdx; 2031 --LRI; 2032 } 2033 2034 // If no instructions can be sunk, early-return. 2035 if (ScanIdx == 0) 2036 return false; 2037 2038 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2039 // actually sink before encountering instruction that is unprofitable to sink? 2040 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2041 unsigned NumPHIdValues = 0; 2042 for (auto *I : *LRI) 2043 for (auto *V : PHIOperands[I]) { 2044 if (InstructionsToSink.count(V) == 0) 2045 ++NumPHIdValues; 2046 // FIXME: this check is overly optimistic. We may end up not sinking 2047 // said instruction, due to the very same profitability check. 2048 // See @creating_too_many_phis in sink-common-code.ll. 2049 } 2050 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); 2051 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); 2052 if ((NumPHIdValues % UnconditionalPreds.size()) != 0) 2053 NumPHIInsts++; 2054 2055 return NumPHIInsts <= 1; 2056 }; 2057 2058 // We've determined that we are going to sink last ScanIdx instructions, 2059 // and recorded them in InstructionsToSink. Now, some instructions may be 2060 // unprofitable to sink. But that determination depends on the instructions 2061 // that we are going to sink. 2062 2063 // First, forward scan: find the first instruction unprofitable to sink, 2064 // recording all the ones that are profitable to sink. 2065 // FIXME: would it be better, after we detect that not all are profitable. 2066 // to either record the profitable ones, or erase the unprofitable ones? 2067 // Maybe we need to choose (at runtime) the one that will touch least instrs? 2068 LRI.reset(); 2069 int Idx = 0; 2070 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2071 while (Idx < ScanIdx) { 2072 if (!ProfitableToSinkInstruction(LRI)) { 2073 // Too many PHIs would be created. 2074 LLVM_DEBUG( 2075 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2076 break; 2077 } 2078 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2079 --LRI; 2080 ++Idx; 2081 } 2082 2083 // If no instructions can be sunk, early-return. 2084 if (Idx == 0) 2085 return false; 2086 2087 // Did we determine that (only) some instructions are unprofitable to sink? 2088 if (Idx < ScanIdx) { 2089 // Okay, some instructions are unprofitable. 2090 ScanIdx = Idx; 2091 InstructionsToSink = InstructionsProfitableToSink; 2092 2093 // But, that may make other instructions unprofitable, too. 2094 // So, do a backward scan, do any earlier instructions become unprofitable? 2095 assert(!ProfitableToSinkInstruction(LRI) && 2096 "We already know that the last instruction is unprofitable to sink"); 2097 ++LRI; 2098 --Idx; 2099 while (Idx >= 0) { 2100 // If we detect that an instruction becomes unprofitable to sink, 2101 // all earlier instructions won't be sunk either, 2102 // so preemptively keep InstructionsProfitableToSink in sync. 2103 // FIXME: is this the most performant approach? 2104 for (auto *I : *LRI) 2105 InstructionsProfitableToSink.erase(I); 2106 if (!ProfitableToSinkInstruction(LRI)) { 2107 // Everything starting with this instruction won't be sunk. 2108 ScanIdx = Idx; 2109 InstructionsToSink = InstructionsProfitableToSink; 2110 } 2111 ++LRI; 2112 --Idx; 2113 } 2114 } 2115 2116 // If no instructions can be sunk, early-return. 2117 if (ScanIdx == 0) 2118 return false; 2119 2120 bool Changed = false; 2121 2122 if (HaveNonUnconditionalPredecessors) { 2123 // It is always legal to sink common instructions from unconditional 2124 // predecessors. However, if not all predecessors are unconditional, 2125 // this transformation might be pessimizing. So as a rule of thumb, 2126 // don't do it unless we'd sink at least one non-speculatable instruction. 2127 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2128 LRI.reset(); 2129 int Idx = 0; 2130 bool Profitable = false; 2131 while (Idx < ScanIdx) { 2132 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2133 Profitable = true; 2134 break; 2135 } 2136 --LRI; 2137 ++Idx; 2138 } 2139 if (!Profitable) 2140 return false; 2141 2142 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2143 // We have a conditional edge and we're going to sink some instructions. 2144 // Insert a new block postdominating all blocks we're going to sink from. 2145 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2146 // Edges couldn't be split. 2147 return false; 2148 Changed = true; 2149 } 2150 2151 // Now that we've analyzed all potential sinking candidates, perform the 2152 // actual sink. We iteratively sink the last non-terminator of the source 2153 // blocks into their common successor unless doing so would require too 2154 // many PHI instructions to be generated (currently only one PHI is allowed 2155 // per sunk instruction). 2156 // 2157 // We can use InstructionsToSink to discount values needing PHI-merging that will 2158 // actually be sunk in a later iteration. This allows us to be more 2159 // aggressive in what we sink. This does allow a false positive where we 2160 // sink presuming a later value will also be sunk, but stop half way through 2161 // and never actually sink it which means we produce more PHIs than intended. 2162 // This is unlikely in practice though. 2163 int SinkIdx = 0; 2164 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2165 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2166 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2167 << "\n"); 2168 2169 // Because we've sunk every instruction in turn, the current instruction to 2170 // sink is always at index 0. 2171 LRI.reset(); 2172 2173 if (!sinkLastInstruction(UnconditionalPreds)) { 2174 LLVM_DEBUG( 2175 dbgs() 2176 << "SINK: stopping here, failed to actually sink instruction!\n"); 2177 break; 2178 } 2179 2180 NumSinkCommonInstrs++; 2181 Changed = true; 2182 } 2183 if (SinkIdx != 0) 2184 ++NumSinkCommonCode; 2185 return Changed; 2186 } 2187 2188 /// Determine if we can hoist sink a sole store instruction out of a 2189 /// conditional block. 2190 /// 2191 /// We are looking for code like the following: 2192 /// BrBB: 2193 /// store i32 %add, i32* %arrayidx2 2194 /// ... // No other stores or function calls (we could be calling a memory 2195 /// ... // function). 2196 /// %cmp = icmp ult %x, %y 2197 /// br i1 %cmp, label %EndBB, label %ThenBB 2198 /// ThenBB: 2199 /// store i32 %add5, i32* %arrayidx2 2200 /// br label EndBB 2201 /// EndBB: 2202 /// ... 2203 /// We are going to transform this into: 2204 /// BrBB: 2205 /// store i32 %add, i32* %arrayidx2 2206 /// ... // 2207 /// %cmp = icmp ult %x, %y 2208 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2209 /// store i32 %add.add5, i32* %arrayidx2 2210 /// ... 2211 /// 2212 /// \return The pointer to the value of the previous store if the store can be 2213 /// hoisted into the predecessor block. 0 otherwise. 2214 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 2215 BasicBlock *StoreBB, BasicBlock *EndBB) { 2216 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 2217 if (!StoreToHoist) 2218 return nullptr; 2219 2220 // Volatile or atomic. 2221 if (!StoreToHoist->isSimple()) 2222 return nullptr; 2223 2224 Value *StorePtr = StoreToHoist->getPointerOperand(); 2225 2226 // Look for a store to the same pointer in BrBB. 2227 unsigned MaxNumInstToLookAt = 9; 2228 // Skip pseudo probe intrinsic calls which are not really killing any memory 2229 // accesses. 2230 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 2231 if (!MaxNumInstToLookAt) 2232 break; 2233 --MaxNumInstToLookAt; 2234 2235 // Could be calling an instruction that affects memory like free(). 2236 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) 2237 return nullptr; 2238 2239 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 2240 // Found the previous store make sure it stores to the same location. 2241 if (SI->getPointerOperand() == StorePtr) 2242 // Found the previous store, return its value operand. 2243 return SI->getValueOperand(); 2244 return nullptr; // Unknown store. 2245 } 2246 } 2247 2248 return nullptr; 2249 } 2250 2251 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 2252 /// converted to selects. 2253 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 2254 BasicBlock *EndBB, 2255 unsigned &SpeculatedInstructions, 2256 InstructionCost &Cost, 2257 const TargetTransformInfo &TTI) { 2258 TargetTransformInfo::TargetCostKind CostKind = 2259 BB->getParent()->hasMinSize() 2260 ? TargetTransformInfo::TCK_CodeSize 2261 : TargetTransformInfo::TCK_SizeAndLatency; 2262 2263 bool HaveRewritablePHIs = false; 2264 for (PHINode &PN : EndBB->phis()) { 2265 Value *OrigV = PN.getIncomingValueForBlock(BB); 2266 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 2267 2268 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. 2269 // Skip PHIs which are trivial. 2270 if (ThenV == OrigV) 2271 continue; 2272 2273 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 2274 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2275 2276 // Don't convert to selects if we could remove undefined behavior instead. 2277 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 2278 passingValueIsAlwaysUndefined(ThenV, &PN)) 2279 return false; 2280 2281 HaveRewritablePHIs = true; 2282 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 2283 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 2284 if (!OrigCE && !ThenCE) 2285 continue; // Known safe and cheap. 2286 2287 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || 2288 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) 2289 return false; 2290 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 2291 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 2292 InstructionCost MaxCost = 2293 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2294 if (OrigCost + ThenCost > MaxCost) 2295 return false; 2296 2297 // Account for the cost of an unfolded ConstantExpr which could end up 2298 // getting expanded into Instructions. 2299 // FIXME: This doesn't account for how many operations are combined in the 2300 // constant expression. 2301 ++SpeculatedInstructions; 2302 if (SpeculatedInstructions > 1) 2303 return false; 2304 } 2305 2306 return HaveRewritablePHIs; 2307 } 2308 2309 /// Speculate a conditional basic block flattening the CFG. 2310 /// 2311 /// Note that this is a very risky transform currently. Speculating 2312 /// instructions like this is most often not desirable. Instead, there is an MI 2313 /// pass which can do it with full awareness of the resource constraints. 2314 /// However, some cases are "obvious" and we should do directly. An example of 2315 /// this is speculating a single, reasonably cheap instruction. 2316 /// 2317 /// There is only one distinct advantage to flattening the CFG at the IR level: 2318 /// it makes very common but simplistic optimizations such as are common in 2319 /// instcombine and the DAG combiner more powerful by removing CFG edges and 2320 /// modeling their effects with easier to reason about SSA value graphs. 2321 /// 2322 /// 2323 /// An illustration of this transform is turning this IR: 2324 /// \code 2325 /// BB: 2326 /// %cmp = icmp ult %x, %y 2327 /// br i1 %cmp, label %EndBB, label %ThenBB 2328 /// ThenBB: 2329 /// %sub = sub %x, %y 2330 /// br label BB2 2331 /// EndBB: 2332 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] 2333 /// ... 2334 /// \endcode 2335 /// 2336 /// Into this IR: 2337 /// \code 2338 /// BB: 2339 /// %cmp = icmp ult %x, %y 2340 /// %sub = sub %x, %y 2341 /// %cond = select i1 %cmp, 0, %sub 2342 /// ... 2343 /// \endcode 2344 /// 2345 /// \returns true if the conditional block is removed. 2346 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, 2347 const TargetTransformInfo &TTI) { 2348 // Be conservative for now. FP select instruction can often be expensive. 2349 Value *BrCond = BI->getCondition(); 2350 if (isa<FCmpInst>(BrCond)) 2351 return false; 2352 2353 BasicBlock *BB = BI->getParent(); 2354 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 2355 InstructionCost Budget = 2356 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2357 2358 // If ThenBB is actually on the false edge of the conditional branch, remember 2359 // to swap the select operands later. 2360 bool Invert = false; 2361 if (ThenBB != BI->getSuccessor(0)) { 2362 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 2363 Invert = true; 2364 } 2365 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 2366 2367 // Keep a count of how many times instructions are used within ThenBB when 2368 // they are candidates for sinking into ThenBB. Specifically: 2369 // - They are defined in BB, and 2370 // - They have no side effects, and 2371 // - All of their uses are in ThenBB. 2372 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 2373 2374 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 2375 2376 unsigned SpeculatedInstructions = 0; 2377 Value *SpeculatedStoreValue = nullptr; 2378 StoreInst *SpeculatedStore = nullptr; 2379 for (BasicBlock::iterator BBI = ThenBB->begin(), 2380 BBE = std::prev(ThenBB->end()); 2381 BBI != BBE; ++BBI) { 2382 Instruction *I = &*BBI; 2383 // Skip debug info. 2384 if (isa<DbgInfoIntrinsic>(I)) { 2385 SpeculatedDbgIntrinsics.push_back(I); 2386 continue; 2387 } 2388 2389 // Skip pseudo probes. The consequence is we lose track of the branch 2390 // probability for ThenBB, which is fine since the optimization here takes 2391 // place regardless of the branch probability. 2392 if (isa<PseudoProbeInst>(I)) { 2393 // The probe should be deleted so that it will not be over-counted when 2394 // the samples collected on the non-conditional path are counted towards 2395 // the conditional path. We leave it for the counts inference algorithm to 2396 // figure out a proper count for an unknown probe. 2397 SpeculatedDbgIntrinsics.push_back(I); 2398 continue; 2399 } 2400 2401 // Only speculatively execute a single instruction (not counting the 2402 // terminator) for now. 2403 ++SpeculatedInstructions; 2404 if (SpeculatedInstructions > 1) 2405 return false; 2406 2407 // Don't hoist the instruction if it's unsafe or expensive. 2408 if (!isSafeToSpeculativelyExecute(I) && 2409 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( 2410 I, BB, ThenBB, EndBB)))) 2411 return false; 2412 if (!SpeculatedStoreValue && 2413 computeSpeculationCost(I, TTI) > 2414 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 2415 return false; 2416 2417 // Store the store speculation candidate. 2418 if (SpeculatedStoreValue) 2419 SpeculatedStore = cast<StoreInst>(I); 2420 2421 // Do not hoist the instruction if any of its operands are defined but not 2422 // used in BB. The transformation will prevent the operand from 2423 // being sunk into the use block. 2424 for (Use &Op : I->operands()) { 2425 Instruction *OpI = dyn_cast<Instruction>(Op); 2426 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 2427 continue; // Not a candidate for sinking. 2428 2429 ++SinkCandidateUseCounts[OpI]; 2430 } 2431 } 2432 2433 // Consider any sink candidates which are only used in ThenBB as costs for 2434 // speculation. Note, while we iterate over a DenseMap here, we are summing 2435 // and so iteration order isn't significant. 2436 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator 2437 I = SinkCandidateUseCounts.begin(), 2438 E = SinkCandidateUseCounts.end(); 2439 I != E; ++I) 2440 if (I->first->hasNUses(I->second)) { 2441 ++SpeculatedInstructions; 2442 if (SpeculatedInstructions > 1) 2443 return false; 2444 } 2445 2446 // Check that we can insert the selects and that it's not too expensive to do 2447 // so. 2448 bool Convert = SpeculatedStore != nullptr; 2449 InstructionCost Cost = 0; 2450 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 2451 SpeculatedInstructions, 2452 Cost, TTI); 2453 if (!Convert || Cost > Budget) 2454 return false; 2455 2456 // If we get here, we can hoist the instruction and if-convert. 2457 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 2458 2459 // Insert a select of the value of the speculated store. 2460 if (SpeculatedStoreValue) { 2461 IRBuilder<NoFolder> Builder(BI); 2462 Value *TrueV = SpeculatedStore->getValueOperand(); 2463 Value *FalseV = SpeculatedStoreValue; 2464 if (Invert) 2465 std::swap(TrueV, FalseV); 2466 Value *S = Builder.CreateSelect( 2467 BrCond, TrueV, FalseV, "spec.store.select", BI); 2468 SpeculatedStore->setOperand(0, S); 2469 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 2470 SpeculatedStore->getDebugLoc()); 2471 } 2472 2473 // Metadata can be dependent on the condition we are hoisting above. 2474 // Conservatively strip all metadata on the instruction. Drop the debug loc 2475 // to avoid making it appear as if the condition is a constant, which would 2476 // be misleading while debugging. 2477 for (auto &I : *ThenBB) { 2478 if (!SpeculatedStoreValue || &I != SpeculatedStore) 2479 I.setDebugLoc(DebugLoc()); 2480 I.dropUnknownNonDebugMetadata(); 2481 } 2482 2483 // Hoist the instructions. 2484 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), 2485 ThenBB->begin(), std::prev(ThenBB->end())); 2486 2487 // Insert selects and rewrite the PHI operands. 2488 IRBuilder<NoFolder> Builder(BI); 2489 for (PHINode &PN : EndBB->phis()) { 2490 unsigned OrigI = PN.getBasicBlockIndex(BB); 2491 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 2492 Value *OrigV = PN.getIncomingValue(OrigI); 2493 Value *ThenV = PN.getIncomingValue(ThenI); 2494 2495 // Skip PHIs which are trivial. 2496 if (OrigV == ThenV) 2497 continue; 2498 2499 // Create a select whose true value is the speculatively executed value and 2500 // false value is the pre-existing value. Swap them if the branch 2501 // destinations were inverted. 2502 Value *TrueV = ThenV, *FalseV = OrigV; 2503 if (Invert) 2504 std::swap(TrueV, FalseV); 2505 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 2506 PN.setIncomingValue(OrigI, V); 2507 PN.setIncomingValue(ThenI, V); 2508 } 2509 2510 // Remove speculated dbg intrinsics. 2511 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 2512 // dbg value for the different flows and inserting it after the select. 2513 for (Instruction *I : SpeculatedDbgIntrinsics) 2514 I->eraseFromParent(); 2515 2516 ++NumSpeculations; 2517 return true; 2518 } 2519 2520 /// Return true if we can thread a branch across this block. 2521 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 2522 int Size = 0; 2523 2524 SmallPtrSet<const Value *, 32> EphValues; 2525 auto IsEphemeral = [&](const Value *V) { 2526 if (isa<AssumeInst>(V)) 2527 return true; 2528 return isSafeToSpeculativelyExecute(V) && 2529 all_of(V->users(), 2530 [&](const User *U) { return EphValues.count(U); }); 2531 }; 2532 2533 // Walk the loop in reverse so that we can identify ephemeral values properly 2534 // (values only feeding assumes). 2535 for (Instruction &I : reverse(BB->instructionsWithoutDebug())) { 2536 // Can't fold blocks that contain noduplicate or convergent calls. 2537 if (CallInst *CI = dyn_cast<CallInst>(&I)) 2538 if (CI->cannotDuplicate() || CI->isConvergent()) 2539 return false; 2540 2541 // Ignore ephemeral values which are deleted during codegen. 2542 if (IsEphemeral(&I)) 2543 EphValues.insert(&I); 2544 // We will delete Phis while threading, so Phis should not be accounted in 2545 // block's size. 2546 else if (!isa<PHINode>(I)) { 2547 if (Size++ > MaxSmallBlockSize) 2548 return false; // Don't clone large BB's. 2549 } 2550 2551 // We can only support instructions that do not define values that are 2552 // live outside of the current basic block. 2553 for (User *U : I.users()) { 2554 Instruction *UI = cast<Instruction>(U); 2555 if (UI->getParent() != BB || isa<PHINode>(UI)) 2556 return false; 2557 } 2558 2559 // Looks ok, continue checking. 2560 } 2561 2562 return true; 2563 } 2564 2565 /// If we have a conditional branch on a PHI node value that is defined in the 2566 /// same block as the branch and if any PHI entries are constants, thread edges 2567 /// corresponding to that entry to be branches to their ultimate destination. 2568 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU, 2569 const DataLayout &DL, AssumptionCache *AC) { 2570 BasicBlock *BB = BI->getParent(); 2571 PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); 2572 // NOTE: we currently cannot transform this case if the PHI node is used 2573 // outside of the block. 2574 if (!PN || PN->getParent() != BB || !PN->hasOneUse()) 2575 return false; 2576 2577 // Degenerate case of a single entry PHI. 2578 if (PN->getNumIncomingValues() == 1) { 2579 FoldSingleEntryPHINodes(PN->getParent()); 2580 return true; 2581 } 2582 2583 // Now we know that this block has multiple preds and two succs. 2584 if (!BlockIsSimpleEnoughToThreadThrough(BB)) 2585 return false; 2586 2587 // Okay, this is a simple enough basic block. See if any phi values are 2588 // constants. 2589 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2590 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); 2591 if (!CB || !CB->getType()->isIntegerTy(1)) 2592 continue; 2593 2594 // Okay, we now know that all edges from PredBB should be revectored to 2595 // branch to RealDest. 2596 BasicBlock *PredBB = PN->getIncomingBlock(i); 2597 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 2598 2599 if (RealDest == BB) 2600 continue; // Skip self loops. 2601 // Skip if the predecessor's terminator is an indirect branch. 2602 if (isa<IndirectBrInst>(PredBB->getTerminator())) 2603 continue; 2604 2605 SmallVector<DominatorTree::UpdateType, 3> Updates; 2606 2607 // The dest block might have PHI nodes, other predecessors and other 2608 // difficult cases. Instead of being smart about this, just insert a new 2609 // block that jumps to the destination block, effectively splitting 2610 // the edge we are about to create. 2611 BasicBlock *EdgeBB = 2612 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", 2613 RealDest->getParent(), RealDest); 2614 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); 2615 if (DTU) 2616 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 2617 CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); 2618 2619 // Update PHI nodes. 2620 AddPredecessorToBlock(RealDest, EdgeBB, BB); 2621 2622 // BB may have instructions that are being threaded over. Clone these 2623 // instructions into EdgeBB. We know that there will be no uses of the 2624 // cloned instructions outside of EdgeBB. 2625 BasicBlock::iterator InsertPt = EdgeBB->begin(); 2626 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 2627 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 2628 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 2629 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); 2630 continue; 2631 } 2632 // Clone the instruction. 2633 Instruction *N = BBI->clone(); 2634 if (BBI->hasName()) 2635 N->setName(BBI->getName() + ".c"); 2636 2637 // Update operands due to translation. 2638 for (Use &Op : N->operands()) { 2639 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 2640 if (PI != TranslateMap.end()) 2641 Op = PI->second; 2642 } 2643 2644 // Check for trivial simplification. 2645 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 2646 if (!BBI->use_empty()) 2647 TranslateMap[&*BBI] = V; 2648 if (!N->mayHaveSideEffects()) { 2649 N->deleteValue(); // Instruction folded away, don't need actual inst 2650 N = nullptr; 2651 } 2652 } else { 2653 if (!BBI->use_empty()) 2654 TranslateMap[&*BBI] = N; 2655 } 2656 if (N) { 2657 // Insert the new instruction into its new home. 2658 EdgeBB->getInstList().insert(InsertPt, N); 2659 2660 // Register the new instruction with the assumption cache if necessary. 2661 if (auto *Assume = dyn_cast<AssumeInst>(N)) 2662 if (AC) 2663 AC->registerAssumption(Assume); 2664 } 2665 } 2666 2667 // Loop over all of the edges from PredBB to BB, changing them to branch 2668 // to EdgeBB instead. 2669 Instruction *PredBBTI = PredBB->getTerminator(); 2670 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) 2671 if (PredBBTI->getSuccessor(i) == BB) { 2672 BB->removePredecessor(PredBB); 2673 PredBBTI->setSuccessor(i, EdgeBB); 2674 } 2675 2676 if (DTU) { 2677 Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB}); 2678 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2679 2680 DTU->applyUpdates(Updates); 2681 } 2682 2683 // Recurse, simplifying any other constants. 2684 return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true; 2685 } 2686 2687 return false; 2688 } 2689 2690 /// Given a BB that starts with the specified two-entry PHI node, 2691 /// see if we can eliminate it. 2692 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 2693 DomTreeUpdater *DTU, const DataLayout &DL) { 2694 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 2695 // statement", which has a very simple dominance structure. Basically, we 2696 // are trying to find the condition that is being branched on, which 2697 // subsequently causes this merge to happen. We really want control 2698 // dependence information for this check, but simplifycfg can't keep it up 2699 // to date, and this catches most of the cases we care about anyway. 2700 BasicBlock *BB = PN->getParent(); 2701 2702 BasicBlock *IfTrue, *IfFalse; 2703 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); 2704 if (!IfCond || 2705 // Don't bother if the branch will be constant folded trivially. 2706 isa<ConstantInt>(IfCond)) 2707 return false; 2708 2709 // Don't try to fold an unreachable block. For example, the phi node itself 2710 // can't be the candidate if-condition for a select that we want to form. 2711 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 2712 if (IfCondPhiInst->getParent() == BB) 2713 return false; 2714 2715 // Okay, we found that we can merge this two-entry phi node into a select. 2716 // Doing so would require us to fold *all* two entry phi nodes in this block. 2717 // At some point this becomes non-profitable (particularly if the target 2718 // doesn't support cmov's). Only do this transformation if there are two or 2719 // fewer PHI nodes in this block. 2720 unsigned NumPhis = 0; 2721 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 2722 if (NumPhis > 2) 2723 return false; 2724 2725 // Loop over the PHI's seeing if we can promote them all to select 2726 // instructions. While we are at it, keep track of the instructions 2727 // that need to be moved to the dominating block. 2728 SmallPtrSet<Instruction *, 4> AggressiveInsts; 2729 InstructionCost Cost = 0; 2730 InstructionCost Budget = 2731 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 2732 2733 bool Changed = false; 2734 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 2735 PHINode *PN = cast<PHINode>(II++); 2736 if (Value *V = SimplifyInstruction(PN, {DL, PN})) { 2737 PN->replaceAllUsesWith(V); 2738 PN->eraseFromParent(); 2739 Changed = true; 2740 continue; 2741 } 2742 2743 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, 2744 Cost, Budget, TTI) || 2745 !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, 2746 Cost, Budget, TTI)) 2747 return Changed; 2748 } 2749 2750 // If we folded the first phi, PN dangles at this point. Refresh it. If 2751 // we ran out of PHIs then we simplified them all. 2752 PN = dyn_cast<PHINode>(BB->begin()); 2753 if (!PN) 2754 return true; 2755 2756 // Return true if at least one of these is a 'not', and another is either 2757 // a 'not' too, or a constant. 2758 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 2759 if (!match(V0, m_Not(m_Value()))) 2760 std::swap(V0, V1); 2761 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 2762 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 2763 }; 2764 2765 // Don't fold i1 branches on PHIs which contain binary operators or 2766 // select form of or/ands, unless one of the incoming values is an 'not' and 2767 // another one is freely invertible. 2768 // These can often be turned into switches and other things. 2769 auto IsBinOpOrAnd = [](Value *V) { 2770 return match( 2771 V, m_CombineOr(m_BinOp(), m_CombineOr(m_LogicalAnd(), m_LogicalOr()))); 2772 }; 2773 if (PN->getType()->isIntegerTy(1) && 2774 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 2775 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 2776 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 2777 PN->getIncomingValue(1))) 2778 return Changed; 2779 2780 // If all PHI nodes are promotable, check to make sure that all instructions 2781 // in the predecessor blocks can be promoted as well. If not, we won't be able 2782 // to get rid of the control flow, so it's not worth promoting to select 2783 // instructions. 2784 BasicBlock *DomBlock = nullptr; 2785 BasicBlock *IfBlock1 = PN->getIncomingBlock(0); 2786 BasicBlock *IfBlock2 = PN->getIncomingBlock(1); 2787 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { 2788 IfBlock1 = nullptr; 2789 } else { 2790 DomBlock = *pred_begin(IfBlock1); 2791 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) 2792 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2793 !isa<PseudoProbeInst>(I)) { 2794 // This is not an aggressive instruction that we can promote. 2795 // Because of this, we won't be able to get rid of the control flow, so 2796 // the xform is not worth it. 2797 return Changed; 2798 } 2799 } 2800 2801 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { 2802 IfBlock2 = nullptr; 2803 } else { 2804 DomBlock = *pred_begin(IfBlock2); 2805 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) 2806 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) && 2807 !isa<PseudoProbeInst>(I)) { 2808 // This is not an aggressive instruction that we can promote. 2809 // Because of this, we won't be able to get rid of the control flow, so 2810 // the xform is not worth it. 2811 return Changed; 2812 } 2813 } 2814 assert(DomBlock && "Failed to find root DomBlock"); 2815 2816 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond 2817 << " T: " << IfTrue->getName() 2818 << " F: " << IfFalse->getName() << "\n"); 2819 2820 // If we can still promote the PHI nodes after this gauntlet of tests, 2821 // do all of the PHI's now. 2822 Instruction *InsertPt = DomBlock->getTerminator(); 2823 IRBuilder<NoFolder> Builder(InsertPt); 2824 2825 // Move all 'aggressive' instructions, which are defined in the 2826 // conditional parts of the if's up to the dominating block. 2827 if (IfBlock1) 2828 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); 2829 if (IfBlock2) 2830 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); 2831 2832 // Propagate fast-math-flags from phi nodes to replacement selects. 2833 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2834 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 2835 if (isa<FPMathOperator>(PN)) 2836 Builder.setFastMathFlags(PN->getFastMathFlags()); 2837 2838 // Change the PHI node into a select instruction. 2839 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); 2840 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); 2841 2842 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); 2843 PN->replaceAllUsesWith(Sel); 2844 Sel->takeName(PN); 2845 PN->eraseFromParent(); 2846 } 2847 2848 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement 2849 // has been flattened. Change DomBlock to jump directly to our new block to 2850 // avoid other simplifycfg's kicking in on the diamond. 2851 Instruction *OldTI = DomBlock->getTerminator(); 2852 Builder.SetInsertPoint(OldTI); 2853 Builder.CreateBr(BB); 2854 2855 SmallVector<DominatorTree::UpdateType, 3> Updates; 2856 if (DTU) { 2857 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 2858 for (auto *Successor : successors(DomBlock)) 2859 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 2860 } 2861 2862 OldTI->eraseFromParent(); 2863 if (DTU) 2864 DTU->applyUpdates(Updates); 2865 2866 return true; 2867 } 2868 2869 /// If we found a conditional branch that goes to two returning blocks, 2870 /// try to merge them together into one return, 2871 /// introducing a select if the return values disagree. 2872 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI, 2873 IRBuilder<> &Builder) { 2874 auto *BB = BI->getParent(); 2875 assert(BI->isConditional() && "Must be a conditional branch"); 2876 BasicBlock *TrueSucc = BI->getSuccessor(0); 2877 BasicBlock *FalseSucc = BI->getSuccessor(1); 2878 // NOTE: destinations may match, this could be degenerate uncond branch. 2879 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); 2880 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); 2881 2882 // Check to ensure both blocks are empty (just a return) or optionally empty 2883 // with PHI nodes. If there are other instructions, merging would cause extra 2884 // computation on one path or the other. 2885 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) 2886 return false; 2887 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) 2888 return false; 2889 2890 Builder.SetInsertPoint(BI); 2891 // Okay, we found a branch that is going to two return nodes. If 2892 // there is no return value for this function, just change the 2893 // branch into a return. 2894 if (FalseRet->getNumOperands() == 0) { 2895 TrueSucc->removePredecessor(BB); 2896 FalseSucc->removePredecessor(BB); 2897 Builder.CreateRetVoid(); 2898 EraseTerminatorAndDCECond(BI); 2899 if (DTU) { 2900 SmallVector<DominatorTree::UpdateType, 2> Updates; 2901 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2902 if (TrueSucc != FalseSucc) 2903 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2904 DTU->applyUpdates(Updates); 2905 } 2906 return true; 2907 } 2908 2909 // Otherwise, figure out what the true and false return values are 2910 // so we can insert a new select instruction. 2911 Value *TrueValue = TrueRet->getReturnValue(); 2912 Value *FalseValue = FalseRet->getReturnValue(); 2913 2914 // Unwrap any PHI nodes in the return blocks. 2915 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) 2916 if (TVPN->getParent() == TrueSucc) 2917 TrueValue = TVPN->getIncomingValueForBlock(BB); 2918 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) 2919 if (FVPN->getParent() == FalseSucc) 2920 FalseValue = FVPN->getIncomingValueForBlock(BB); 2921 2922 // In order for this transformation to be safe, we must be able to 2923 // unconditionally execute both operands to the return. This is 2924 // normally the case, but we could have a potentially-trapping 2925 // constant expression that prevents this transformation from being 2926 // safe. 2927 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) 2928 if (TCV->canTrap()) 2929 return false; 2930 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) 2931 if (FCV->canTrap()) 2932 return false; 2933 2934 // Okay, we collected all the mapped values and checked them for sanity, and 2935 // defined to really do this transformation. First, update the CFG. 2936 TrueSucc->removePredecessor(BB); 2937 FalseSucc->removePredecessor(BB); 2938 2939 // Insert select instructions where needed. 2940 Value *BrCond = BI->getCondition(); 2941 if (TrueValue) { 2942 // Insert a select if the results differ. 2943 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { 2944 } else if (isa<UndefValue>(TrueValue)) { 2945 TrueValue = FalseValue; 2946 } else { 2947 TrueValue = 2948 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); 2949 } 2950 } 2951 2952 Value *RI = 2953 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); 2954 2955 (void)RI; 2956 2957 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" 2958 << "\n " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: " 2959 << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc); 2960 2961 EraseTerminatorAndDCECond(BI); 2962 if (DTU) { 2963 SmallVector<DominatorTree::UpdateType, 2> Updates; 2964 Updates.push_back({DominatorTree::Delete, BB, TrueSucc}); 2965 if (TrueSucc != FalseSucc) 2966 Updates.push_back({DominatorTree::Delete, BB, FalseSucc}); 2967 DTU->applyUpdates(Updates); 2968 } 2969 2970 return true; 2971 } 2972 2973 static Value *createLogicalOp(IRBuilderBase &Builder, 2974 Instruction::BinaryOps Opc, Value *LHS, 2975 Value *RHS, const Twine &Name = "") { 2976 // Try to relax logical op to binary op. 2977 if (impliesPoison(RHS, LHS)) 2978 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 2979 if (Opc == Instruction::And) 2980 return Builder.CreateLogicalAnd(LHS, RHS, Name); 2981 if (Opc == Instruction::Or) 2982 return Builder.CreateLogicalOr(LHS, RHS, Name); 2983 llvm_unreachable("Invalid logical opcode"); 2984 } 2985 2986 /// Return true if either PBI or BI has branch weight available, and store 2987 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 2988 /// not have branch weight, use 1:1 as its weight. 2989 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 2990 uint64_t &PredTrueWeight, 2991 uint64_t &PredFalseWeight, 2992 uint64_t &SuccTrueWeight, 2993 uint64_t &SuccFalseWeight) { 2994 bool PredHasWeights = 2995 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); 2996 bool SuccHasWeights = 2997 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); 2998 if (PredHasWeights || SuccHasWeights) { 2999 if (!PredHasWeights) 3000 PredTrueWeight = PredFalseWeight = 1; 3001 if (!SuccHasWeights) 3002 SuccTrueWeight = SuccFalseWeight = 1; 3003 return true; 3004 } else { 3005 return false; 3006 } 3007 } 3008 3009 /// Determine if the two branches share a common destination and deduce a glue 3010 /// that joins the branches' conditions to arrive at the common destination if 3011 /// that would be profitable. 3012 static Optional<std::pair<Instruction::BinaryOps, bool>> 3013 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3014 const TargetTransformInfo *TTI) { 3015 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3016 "Both blocks must end with a conditional branches."); 3017 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3018 "PredBB must be a predecessor of BB."); 3019 3020 // We have the potential to fold the conditions together, but if the 3021 // predecessor branch is predictable, we may not want to merge them. 3022 uint64_t PTWeight, PFWeight; 3023 BranchProbability PBITrueProb, Likely; 3024 if (TTI && PBI->extractProfMetadata(PTWeight, PFWeight) && 3025 (PTWeight + PFWeight) != 0) { 3026 PBITrueProb = 3027 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3028 Likely = TTI->getPredictableBranchThreshold(); 3029 } 3030 3031 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3032 // Speculate the 2nd condition unless the 1st is probably true. 3033 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3034 return {{Instruction::Or, false}}; 3035 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3036 // Speculate the 2nd condition unless the 1st is probably false. 3037 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3038 return {{Instruction::And, false}}; 3039 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3040 // Speculate the 2nd condition unless the 1st is probably true. 3041 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3042 return {{Instruction::And, true}}; 3043 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3044 // Speculate the 2nd condition unless the 1st is probably false. 3045 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3046 return {{Instruction::Or, true}}; 3047 } 3048 return None; 3049 } 3050 3051 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3052 DomTreeUpdater *DTU, 3053 MemorySSAUpdater *MSSAU, 3054 const TargetTransformInfo *TTI) { 3055 BasicBlock *BB = BI->getParent(); 3056 BasicBlock *PredBlock = PBI->getParent(); 3057 3058 // Determine if the two branches share a common destination. 3059 Instruction::BinaryOps Opc; 3060 bool InvertPredCond; 3061 std::tie(Opc, InvertPredCond) = 3062 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3063 3064 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3065 3066 IRBuilder<> Builder(PBI); 3067 // The builder is used to create instructions to eliminate the branch in BB. 3068 // If BB's terminator has !annotation metadata, add it to the new 3069 // instructions. 3070 Builder.CollectMetadataToCopy(BB->getTerminator(), 3071 {LLVMContext::MD_annotation}); 3072 3073 // If we need to invert the condition in the pred block to match, do so now. 3074 if (InvertPredCond) { 3075 Value *NewCond = PBI->getCondition(); 3076 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { 3077 CmpInst *CI = cast<CmpInst>(NewCond); 3078 CI->setPredicate(CI->getInversePredicate()); 3079 } else { 3080 NewCond = 3081 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); 3082 } 3083 3084 PBI->setCondition(NewCond); 3085 PBI->swapSuccessors(); 3086 } 3087 3088 BasicBlock *UniqueSucc = 3089 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3090 3091 // Before cloning instructions, notify the successor basic block that it 3092 // is about to have a new predecessor. This will update PHI nodes, 3093 // which will allow us to update live-out uses of bonus instructions. 3094 AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3095 3096 // Try to update branch weights. 3097 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3098 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3099 SuccTrueWeight, SuccFalseWeight)) { 3100 SmallVector<uint64_t, 8> NewWeights; 3101 3102 if (PBI->getSuccessor(0) == BB) { 3103 // PBI: br i1 %x, BB, FalseDest 3104 // BI: br i1 %y, UniqueSucc, FalseDest 3105 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3106 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3107 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3108 // TrueWeight for PBI * FalseWeight for BI. 3109 // We assume that total weights of a BranchInst can fit into 32 bits. 3110 // Therefore, we will not have overflow using 64-bit arithmetic. 3111 NewWeights.push_back(PredFalseWeight * 3112 (SuccFalseWeight + SuccTrueWeight) + 3113 PredTrueWeight * SuccFalseWeight); 3114 } else { 3115 // PBI: br i1 %x, TrueDest, BB 3116 // BI: br i1 %y, TrueDest, UniqueSucc 3117 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3118 // FalseWeight for PBI * TrueWeight for BI. 3119 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3120 PredFalseWeight * SuccTrueWeight); 3121 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3122 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3123 } 3124 3125 // Halve the weights if any of them cannot fit in an uint32_t 3126 FitWeights(NewWeights); 3127 3128 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 3129 setBranchWeights(PBI, MDWeights[0], MDWeights[1]); 3130 3131 // TODO: If BB is reachable from all paths through PredBlock, then we 3132 // could replace PBI's branch probabilities with BI's. 3133 } else 3134 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 3135 3136 // Now, update the CFG. 3137 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 3138 3139 if (DTU) 3140 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 3141 {DominatorTree::Delete, PredBlock, BB}}); 3142 3143 // If BI was a loop latch, it may have had associated loop metadata. 3144 // We need to copy it to the new latch, that is, PBI. 3145 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 3146 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 3147 3148 ValueToValueMapTy VMap; // maps original values to cloned values 3149 CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 3150 3151 // Now that the Cond was cloned into the predecessor basic block, 3152 // or/and the two conditions together. 3153 Value *BICond = VMap[BI->getCondition()]; 3154 PBI->setCondition( 3155 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 3156 3157 // Copy any debug value intrinsics into the end of PredBlock. 3158 for (Instruction &I : *BB) { 3159 if (isa<DbgInfoIntrinsic>(I)) { 3160 Instruction *NewI = I.clone(); 3161 RemapInstruction(NewI, VMap, 3162 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 3163 NewI->insertBefore(PBI); 3164 } 3165 } 3166 3167 ++NumFoldBranchToCommonDest; 3168 return true; 3169 } 3170 3171 /// If this basic block is simple enough, and if a predecessor branches to us 3172 /// and one of our successors, fold the block into the predecessor and use 3173 /// logical operations to pick the right destination. 3174 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 3175 MemorySSAUpdater *MSSAU, 3176 const TargetTransformInfo *TTI, 3177 unsigned BonusInstThreshold) { 3178 // If this block ends with an unconditional branch, 3179 // let SpeculativelyExecuteBB() deal with it. 3180 if (!BI->isConditional()) 3181 return false; 3182 3183 BasicBlock *BB = BI->getParent(); 3184 3185 bool Changed = false; 3186 3187 TargetTransformInfo::TargetCostKind CostKind = 3188 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 3189 : TargetTransformInfo::TCK_SizeAndLatency; 3190 3191 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 3192 3193 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || 3194 Cond->getParent() != BB || !Cond->hasOneUse()) 3195 return Changed; 3196 3197 // Cond is known to be a compare or binary operator. Check to make sure that 3198 // neither operand is a potentially-trapping constant expression. 3199 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) 3200 if (CE->canTrap()) 3201 return Changed; 3202 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) 3203 if (CE->canTrap()) 3204 return Changed; 3205 3206 // Finally, don't infinitely unroll conditional loops. 3207 if (is_contained(successors(BB), BB)) 3208 return Changed; 3209 3210 // With which predecessors will we want to deal with? 3211 SmallVector<BasicBlock *, 8> Preds; 3212 for (BasicBlock *PredBlock : predecessors(BB)) { 3213 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 3214 3215 // Check that we have two conditional branches. If there is a PHI node in 3216 // the common successor, verify that the same value flows in from both 3217 // blocks. 3218 if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI)) 3219 continue; 3220 3221 // Determine if the two branches share a common destination. 3222 Instruction::BinaryOps Opc; 3223 bool InvertPredCond; 3224 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 3225 std::tie(Opc, InvertPredCond) = *Recipe; 3226 else 3227 continue; 3228 3229 // Check the cost of inserting the necessary logic before performing the 3230 // transformation. 3231 if (TTI) { 3232 Type *Ty = BI->getCondition()->getType(); 3233 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 3234 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 3235 !isa<CmpInst>(PBI->getCondition()))) 3236 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 3237 3238 if (Cost > BranchFoldThreshold) 3239 continue; 3240 } 3241 3242 // Ok, we do want to deal with this predecessor. Record it. 3243 Preds.emplace_back(PredBlock); 3244 } 3245 3246 // If there aren't any predecessors into which we can fold, 3247 // don't bother checking the cost. 3248 if (Preds.empty()) 3249 return Changed; 3250 3251 // Only allow this transformation if computing the condition doesn't involve 3252 // too many instructions and these involved instructions can be executed 3253 // unconditionally. We denote all involved instructions except the condition 3254 // as "bonus instructions", and only allow this transformation when the 3255 // number of the bonus instructions we'll need to create when cloning into 3256 // each predecessor does not exceed a certain threshold. 3257 unsigned NumBonusInsts = 0; 3258 const unsigned PredCount = Preds.size(); 3259 for (Instruction &I : *BB) { 3260 // Don't check the branch condition comparison itself. 3261 if (&I == Cond) 3262 continue; 3263 // Ignore dbg intrinsics, and the terminator. 3264 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 3265 continue; 3266 // I must be safe to execute unconditionally. 3267 if (!isSafeToSpeculativelyExecute(&I)) 3268 return Changed; 3269 3270 // Account for the cost of duplicating this instruction into each 3271 // predecessor. 3272 NumBonusInsts += PredCount; 3273 // Early exits once we reach the limit. 3274 if (NumBonusInsts > BonusInstThreshold) 3275 return Changed; 3276 } 3277 3278 // Ok, we have the budget. Perform the transformation. 3279 for (BasicBlock *PredBlock : Preds) { 3280 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 3281 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 3282 } 3283 return Changed; 3284 } 3285 3286 // If there is only one store in BB1 and BB2, return it, otherwise return 3287 // nullptr. 3288 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 3289 StoreInst *S = nullptr; 3290 for (auto *BB : {BB1, BB2}) { 3291 if (!BB) 3292 continue; 3293 for (auto &I : *BB) 3294 if (auto *SI = dyn_cast<StoreInst>(&I)) { 3295 if (S) 3296 // Multiple stores seen. 3297 return nullptr; 3298 else 3299 S = SI; 3300 } 3301 } 3302 return S; 3303 } 3304 3305 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 3306 Value *AlternativeV = nullptr) { 3307 // PHI is going to be a PHI node that allows the value V that is defined in 3308 // BB to be referenced in BB's only successor. 3309 // 3310 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 3311 // doesn't matter to us what the other operand is (it'll never get used). We 3312 // could just create a new PHI with an undef incoming value, but that could 3313 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 3314 // other PHI. So here we directly look for some PHI in BB's successor with V 3315 // as an incoming operand. If we find one, we use it, else we create a new 3316 // one. 3317 // 3318 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 3319 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 3320 // where OtherBB is the single other predecessor of BB's only successor. 3321 PHINode *PHI = nullptr; 3322 BasicBlock *Succ = BB->getSingleSuccessor(); 3323 3324 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 3325 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 3326 PHI = cast<PHINode>(I); 3327 if (!AlternativeV) 3328 break; 3329 3330 assert(Succ->hasNPredecessors(2)); 3331 auto PredI = pred_begin(Succ); 3332 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 3333 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 3334 break; 3335 PHI = nullptr; 3336 } 3337 if (PHI) 3338 return PHI; 3339 3340 // If V is not an instruction defined in BB, just return it. 3341 if (!AlternativeV && 3342 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 3343 return V; 3344 3345 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); 3346 PHI->addIncoming(V, BB); 3347 for (BasicBlock *PredBB : predecessors(Succ)) 3348 if (PredBB != BB) 3349 PHI->addIncoming( 3350 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); 3351 return PHI; 3352 } 3353 3354 static bool mergeConditionalStoreToAddress( 3355 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 3356 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 3357 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 3358 // For every pointer, there must be exactly two stores, one coming from 3359 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 3360 // store (to any address) in PTB,PFB or QTB,QFB. 3361 // FIXME: We could relax this restriction with a bit more work and performance 3362 // testing. 3363 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 3364 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 3365 if (!PStore || !QStore) 3366 return false; 3367 3368 // Now check the stores are compatible. 3369 if (!QStore->isUnordered() || !PStore->isUnordered()) 3370 return false; 3371 3372 // Check that sinking the store won't cause program behavior changes. Sinking 3373 // the store out of the Q blocks won't change any behavior as we're sinking 3374 // from a block to its unconditional successor. But we're moving a store from 3375 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 3376 // So we need to check that there are no aliasing loads or stores in 3377 // QBI, QTB and QFB. We also need to check there are no conflicting memory 3378 // operations between PStore and the end of its parent block. 3379 // 3380 // The ideal way to do this is to query AliasAnalysis, but we don't 3381 // preserve AA currently so that is dangerous. Be super safe and just 3382 // check there are no other memory operations at all. 3383 for (auto &I : *QFB->getSinglePredecessor()) 3384 if (I.mayReadOrWriteMemory()) 3385 return false; 3386 for (auto &I : *QFB) 3387 if (&I != QStore && I.mayReadOrWriteMemory()) 3388 return false; 3389 if (QTB) 3390 for (auto &I : *QTB) 3391 if (&I != QStore && I.mayReadOrWriteMemory()) 3392 return false; 3393 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 3394 I != E; ++I) 3395 if (&*I != PStore && I->mayReadOrWriteMemory()) 3396 return false; 3397 3398 // If we're not in aggressive mode, we only optimize if we have some 3399 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 3400 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 3401 if (!BB) 3402 return true; 3403 // Heuristic: if the block can be if-converted/phi-folded and the 3404 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 3405 // thread this store. 3406 InstructionCost Cost = 0; 3407 InstructionCost Budget = 3408 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3409 for (auto &I : BB->instructionsWithoutDebug()) { 3410 // Consider terminator instruction to be free. 3411 if (I.isTerminator()) 3412 continue; 3413 // If this is one the stores that we want to speculate out of this BB, 3414 // then don't count it's cost, consider it to be free. 3415 if (auto *S = dyn_cast<StoreInst>(&I)) 3416 if (llvm::find(FreeStores, S)) 3417 continue; 3418 // Else, we have a white-list of instructions that we are ak speculating. 3419 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 3420 return false; // Not in white-list - not worthwhile folding. 3421 // And finally, if this is a non-free instruction that we are okay 3422 // speculating, ensure that we consider the speculation budget. 3423 Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 3424 if (Cost > Budget) 3425 return false; // Eagerly refuse to fold as soon as we're out of budget. 3426 } 3427 assert(Cost <= Budget && 3428 "When we run out of budget we will eagerly return from within the " 3429 "per-instruction loop."); 3430 return true; 3431 }; 3432 3433 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 3434 if (!MergeCondStoresAggressively && 3435 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 3436 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 3437 return false; 3438 3439 // If PostBB has more than two predecessors, we need to split it so we can 3440 // sink the store. 3441 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 3442 // We know that QFB's only successor is PostBB. And QFB has a single 3443 // predecessor. If QTB exists, then its only successor is also PostBB. 3444 // If QTB does not exist, then QFB's only predecessor has a conditional 3445 // branch to QFB and PostBB. 3446 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 3447 BasicBlock *NewBB = 3448 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 3449 if (!NewBB) 3450 return false; 3451 PostBB = NewBB; 3452 } 3453 3454 // OK, we're going to sink the stores to PostBB. The store has to be 3455 // conditional though, so first create the predicate. 3456 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 3457 ->getCondition(); 3458 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 3459 ->getCondition(); 3460 3461 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 3462 PStore->getParent()); 3463 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 3464 QStore->getParent(), PPHI); 3465 3466 IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); 3467 3468 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 3469 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 3470 3471 if (InvertPCond) 3472 PPred = QB.CreateNot(PPred); 3473 if (InvertQCond) 3474 QPred = QB.CreateNot(QPred); 3475 Value *CombinedPred = QB.CreateOr(PPred, QPred); 3476 3477 auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), 3478 /*Unreachable=*/false, 3479 /*BranchWeights=*/nullptr, DTU); 3480 QB.SetInsertPoint(T); 3481 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 3482 AAMDNodes AAMD; 3483 PStore->getAAMetadata(AAMD, /*Merge=*/false); 3484 PStore->getAAMetadata(AAMD, /*Merge=*/true); 3485 SI->setAAMetadata(AAMD); 3486 // Choose the minimum alignment. If we could prove both stores execute, we 3487 // could use biggest one. In this case, though, we only know that one of the 3488 // stores executes. And we don't know it's safe to take the alignment from a 3489 // store that doesn't execute. 3490 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 3491 3492 QStore->eraseFromParent(); 3493 PStore->eraseFromParent(); 3494 3495 return true; 3496 } 3497 3498 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 3499 DomTreeUpdater *DTU, const DataLayout &DL, 3500 const TargetTransformInfo &TTI) { 3501 // The intention here is to find diamonds or triangles (see below) where each 3502 // conditional block contains a store to the same address. Both of these 3503 // stores are conditional, so they can't be unconditionally sunk. But it may 3504 // be profitable to speculatively sink the stores into one merged store at the 3505 // end, and predicate the merged store on the union of the two conditions of 3506 // PBI and QBI. 3507 // 3508 // This can reduce the number of stores executed if both of the conditions are 3509 // true, and can allow the blocks to become small enough to be if-converted. 3510 // This optimization will also chain, so that ladders of test-and-set 3511 // sequences can be if-converted away. 3512 // 3513 // We only deal with simple diamonds or triangles: 3514 // 3515 // PBI or PBI or a combination of the two 3516 // / \ | \ 3517 // PTB PFB | PFB 3518 // \ / | / 3519 // QBI QBI 3520 // / \ | \ 3521 // QTB QFB | QFB 3522 // \ / | / 3523 // PostBB PostBB 3524 // 3525 // We model triangles as a type of diamond with a nullptr "true" block. 3526 // Triangles are canonicalized so that the fallthrough edge is represented by 3527 // a true condition, as in the diagram above. 3528 BasicBlock *PTB = PBI->getSuccessor(0); 3529 BasicBlock *PFB = PBI->getSuccessor(1); 3530 BasicBlock *QTB = QBI->getSuccessor(0); 3531 BasicBlock *QFB = QBI->getSuccessor(1); 3532 BasicBlock *PostBB = QFB->getSingleSuccessor(); 3533 3534 // Make sure we have a good guess for PostBB. If QTB's only successor is 3535 // QFB, then QFB is a better PostBB. 3536 if (QTB->getSingleSuccessor() == QFB) 3537 PostBB = QFB; 3538 3539 // If we couldn't find a good PostBB, stop. 3540 if (!PostBB) 3541 return false; 3542 3543 bool InvertPCond = false, InvertQCond = false; 3544 // Canonicalize fallthroughs to the true branches. 3545 if (PFB == QBI->getParent()) { 3546 std::swap(PFB, PTB); 3547 InvertPCond = true; 3548 } 3549 if (QFB == PostBB) { 3550 std::swap(QFB, QTB); 3551 InvertQCond = true; 3552 } 3553 3554 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 3555 // and QFB may not. Model fallthroughs as a nullptr block. 3556 if (PTB == QBI->getParent()) 3557 PTB = nullptr; 3558 if (QTB == PostBB) 3559 QTB = nullptr; 3560 3561 // Legality bailouts. We must have at least the non-fallthrough blocks and 3562 // the post-dominating block, and the non-fallthroughs must only have one 3563 // predecessor. 3564 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 3565 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 3566 }; 3567 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 3568 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 3569 return false; 3570 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 3571 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 3572 return false; 3573 if (!QBI->getParent()->hasNUses(2)) 3574 return false; 3575 3576 // OK, this is a sequence of two diamonds or triangles. 3577 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 3578 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 3579 for (auto *BB : {PTB, PFB}) { 3580 if (!BB) 3581 continue; 3582 for (auto &I : *BB) 3583 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3584 PStoreAddresses.insert(SI->getPointerOperand()); 3585 } 3586 for (auto *BB : {QTB, QFB}) { 3587 if (!BB) 3588 continue; 3589 for (auto &I : *BB) 3590 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 3591 QStoreAddresses.insert(SI->getPointerOperand()); 3592 } 3593 3594 set_intersect(PStoreAddresses, QStoreAddresses); 3595 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 3596 // clear what it contains. 3597 auto &CommonAddresses = PStoreAddresses; 3598 3599 bool Changed = false; 3600 for (auto *Address : CommonAddresses) 3601 Changed |= 3602 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 3603 InvertPCond, InvertQCond, DTU, DL, TTI); 3604 return Changed; 3605 } 3606 3607 /// If the previous block ended with a widenable branch, determine if reusing 3608 /// the target block is profitable and legal. This will have the effect of 3609 /// "widening" PBI, but doesn't require us to reason about hosting safety. 3610 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3611 DomTreeUpdater *DTU) { 3612 // TODO: This can be generalized in two important ways: 3613 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 3614 // values from the PBI edge. 3615 // 2) We can sink side effecting instructions into BI's fallthrough 3616 // successor provided they doesn't contribute to computation of 3617 // BI's condition. 3618 Value *CondWB, *WC; 3619 BasicBlock *IfTrueBB, *IfFalseBB; 3620 if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) || 3621 IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor()) 3622 return false; 3623 if (!IfFalseBB->phis().empty()) 3624 return false; // TODO 3625 // Use lambda to lazily compute expensive condition after cheap ones. 3626 auto NoSideEffects = [](BasicBlock &BB) { 3627 return !llvm::any_of(BB, [](const Instruction &I) { 3628 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 3629 }); 3630 }; 3631 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 3632 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 3633 NoSideEffects(*BI->getParent())) { 3634 auto *OldSuccessor = BI->getSuccessor(1); 3635 OldSuccessor->removePredecessor(BI->getParent()); 3636 BI->setSuccessor(1, IfFalseBB); 3637 if (DTU) 3638 DTU->applyUpdates( 3639 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3640 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3641 return true; 3642 } 3643 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 3644 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 3645 NoSideEffects(*BI->getParent())) { 3646 auto *OldSuccessor = BI->getSuccessor(0); 3647 OldSuccessor->removePredecessor(BI->getParent()); 3648 BI->setSuccessor(0, IfFalseBB); 3649 if (DTU) 3650 DTU->applyUpdates( 3651 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 3652 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 3653 return true; 3654 } 3655 return false; 3656 } 3657 3658 /// If we have a conditional branch as a predecessor of another block, 3659 /// this function tries to simplify it. We know 3660 /// that PBI and BI are both conditional branches, and BI is in one of the 3661 /// successor blocks of PBI - PBI branches to BI. 3662 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 3663 DomTreeUpdater *DTU, 3664 const DataLayout &DL, 3665 const TargetTransformInfo &TTI) { 3666 assert(PBI->isConditional() && BI->isConditional()); 3667 BasicBlock *BB = BI->getParent(); 3668 3669 // If this block ends with a branch instruction, and if there is a 3670 // predecessor that ends on a branch of the same condition, make 3671 // this conditional branch redundant. 3672 if (PBI->getCondition() == BI->getCondition() && 3673 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3674 // Okay, the outcome of this conditional branch is statically 3675 // knowable. If this block had a single pred, handle specially. 3676 if (BB->getSinglePredecessor()) { 3677 // Turn this into a branch on constant. 3678 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3679 BI->setCondition( 3680 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 3681 return true; // Nuke the branch on constant. 3682 } 3683 3684 // Otherwise, if there are multiple predecessors, insert a PHI that merges 3685 // in the constant and simplify the block result. Subsequent passes of 3686 // simplifycfg will thread the block. 3687 if (BlockIsSimpleEnoughToThreadThrough(BB)) { 3688 pred_iterator PB = pred_begin(BB), PE = pred_end(BB); 3689 PHINode *NewPN = PHINode::Create( 3690 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), 3691 BI->getCondition()->getName() + ".pr", &BB->front()); 3692 // Okay, we're going to insert the PHI node. Since PBI is not the only 3693 // predecessor, compute the PHI'd conditional value for all of the preds. 3694 // Any predecessor where the condition is not computable we keep symbolic. 3695 for (pred_iterator PI = PB; PI != PE; ++PI) { 3696 BasicBlock *P = *PI; 3697 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && 3698 PBI->isConditional() && PBI->getCondition() == BI->getCondition() && 3699 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 3700 bool CondIsTrue = PBI->getSuccessor(0) == BB; 3701 NewPN->addIncoming( 3702 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), 3703 P); 3704 } else { 3705 NewPN->addIncoming(BI->getCondition(), P); 3706 } 3707 } 3708 3709 BI->setCondition(NewPN); 3710 return true; 3711 } 3712 } 3713 3714 // If the previous block ended with a widenable branch, determine if reusing 3715 // the target block is profitable and legal. This will have the effect of 3716 // "widening" PBI, but doesn't require us to reason about hosting safety. 3717 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 3718 return true; 3719 3720 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) 3721 if (CE->canTrap()) 3722 return false; 3723 3724 // If both branches are conditional and both contain stores to the same 3725 // address, remove the stores from the conditionals and create a conditional 3726 // merged store at the end. 3727 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 3728 return true; 3729 3730 // If this is a conditional branch in an empty block, and if any 3731 // predecessors are a conditional branch to one of our destinations, 3732 // fold the conditions into logical ops and one cond br. 3733 3734 // Ignore dbg intrinsics. 3735 if (&*BB->instructionsWithoutDebug().begin() != BI) 3736 return false; 3737 3738 int PBIOp, BIOp; 3739 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3740 PBIOp = 0; 3741 BIOp = 0; 3742 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3743 PBIOp = 0; 3744 BIOp = 1; 3745 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3746 PBIOp = 1; 3747 BIOp = 0; 3748 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3749 PBIOp = 1; 3750 BIOp = 1; 3751 } else { 3752 return false; 3753 } 3754 3755 // Check to make sure that the other destination of this branch 3756 // isn't BB itself. If so, this is an infinite loop that will 3757 // keep getting unwound. 3758 if (PBI->getSuccessor(PBIOp) == BB) 3759 return false; 3760 3761 // Do not perform this transformation if it would require 3762 // insertion of a large number of select instructions. For targets 3763 // without predication/cmovs, this is a big pessimization. 3764 3765 // Also do not perform this transformation if any phi node in the common 3766 // destination block can trap when reached by BB or PBB (PR17073). In that 3767 // case, it would be unsafe to hoist the operation into a select instruction. 3768 3769 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 3770 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 3771 unsigned NumPhis = 0; 3772 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 3773 ++II, ++NumPhis) { 3774 if (NumPhis > 2) // Disable this xform. 3775 return false; 3776 3777 PHINode *PN = cast<PHINode>(II); 3778 Value *BIV = PN->getIncomingValueForBlock(BB); 3779 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) 3780 if (CE->canTrap()) 3781 return false; 3782 3783 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); 3784 Value *PBIV = PN->getIncomingValue(PBBIdx); 3785 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) 3786 if (CE->canTrap()) 3787 return false; 3788 } 3789 3790 // Finally, if everything is ok, fold the branches to logical ops. 3791 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 3792 3793 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 3794 << "AND: " << *BI->getParent()); 3795 3796 SmallVector<DominatorTree::UpdateType, 5> Updates; 3797 3798 // If OtherDest *is* BB, then BB is a basic block with a single conditional 3799 // branch in it, where one edge (OtherDest) goes back to itself but the other 3800 // exits. We don't *know* that the program avoids the infinite loop 3801 // (even though that seems likely). If we do this xform naively, we'll end up 3802 // recursively unpeeling the loop. Since we know that (after the xform is 3803 // done) that the block *is* infinite if reached, we just make it an obviously 3804 // infinite loop with no cond branch. 3805 if (OtherDest == BB) { 3806 // Insert it at the end of the function, because it's either code, 3807 // or it won't matter if it's hot. :) 3808 BasicBlock *InfLoopBlock = 3809 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 3810 BranchInst::Create(InfLoopBlock, InfLoopBlock); 3811 if (DTU) 3812 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 3813 OtherDest = InfLoopBlock; 3814 } 3815 3816 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3817 3818 // BI may have other predecessors. Because of this, we leave 3819 // it alone, but modify PBI. 3820 3821 // Make sure we get to CommonDest on True&True directions. 3822 Value *PBICond = PBI->getCondition(); 3823 IRBuilder<NoFolder> Builder(PBI); 3824 if (PBIOp) 3825 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 3826 3827 Value *BICond = BI->getCondition(); 3828 if (BIOp) 3829 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 3830 3831 // Merge the conditions. 3832 Value *Cond = 3833 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 3834 3835 // Modify PBI to branch on the new condition to the new dests. 3836 PBI->setCondition(Cond); 3837 PBI->setSuccessor(0, CommonDest); 3838 PBI->setSuccessor(1, OtherDest); 3839 3840 if (DTU) { 3841 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 3842 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 3843 3844 DTU->applyUpdates(Updates); 3845 } 3846 3847 // Update branch weight for PBI. 3848 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3849 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 3850 bool HasWeights = 3851 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3852 SuccTrueWeight, SuccFalseWeight); 3853 if (HasWeights) { 3854 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3855 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3856 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3857 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3858 // The weight to CommonDest should be PredCommon * SuccTotal + 3859 // PredOther * SuccCommon. 3860 // The weight to OtherDest should be PredOther * SuccOther. 3861 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 3862 PredOther * SuccCommon, 3863 PredOther * SuccOther}; 3864 // Halve the weights if any of them cannot fit in an uint32_t 3865 FitWeights(NewWeights); 3866 3867 setBranchWeights(PBI, NewWeights[0], NewWeights[1]); 3868 } 3869 3870 // OtherDest may have phi nodes. If so, add an entry from PBI's 3871 // block that are identical to the entries for BI's block. 3872 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); 3873 3874 // We know that the CommonDest already had an edge from PBI to 3875 // it. If it has PHIs though, the PHIs may have different 3876 // entries for BB and PBI's BB. If so, insert a select to make 3877 // them agree. 3878 for (PHINode &PN : CommonDest->phis()) { 3879 Value *BIV = PN.getIncomingValueForBlock(BB); 3880 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 3881 Value *PBIV = PN.getIncomingValue(PBBIdx); 3882 if (BIV != PBIV) { 3883 // Insert a select in PBI to pick the right value. 3884 SelectInst *NV = cast<SelectInst>( 3885 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 3886 PN.setIncomingValue(PBBIdx, NV); 3887 // Although the select has the same condition as PBI, the original branch 3888 // weights for PBI do not apply to the new select because the select's 3889 // 'logical' edges are incoming edges of the phi that is eliminated, not 3890 // the outgoing edges of PBI. 3891 if (HasWeights) { 3892 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 3893 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 3894 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 3895 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 3896 // The weight to PredCommonDest should be PredCommon * SuccTotal. 3897 // The weight to PredOtherDest should be PredOther * SuccCommon. 3898 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 3899 PredOther * SuccCommon}; 3900 3901 FitWeights(NewWeights); 3902 3903 setBranchWeights(NV, NewWeights[0], NewWeights[1]); 3904 } 3905 } 3906 } 3907 3908 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 3909 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 3910 3911 // This basic block is probably dead. We know it has at least 3912 // one fewer predecessor. 3913 return true; 3914 } 3915 3916 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 3917 // true or to FalseBB if Cond is false. 3918 // Takes care of updating the successors and removing the old terminator. 3919 // Also makes sure not to introduce new successors by assuming that edges to 3920 // non-successor TrueBBs and FalseBBs aren't reachable. 3921 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm, 3922 Value *Cond, BasicBlock *TrueBB, 3923 BasicBlock *FalseBB, 3924 uint32_t TrueWeight, 3925 uint32_t FalseWeight) { 3926 auto *BB = OldTerm->getParent(); 3927 // Remove any superfluous successor edges from the CFG. 3928 // First, figure out which successors to preserve. 3929 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 3930 // successor. 3931 BasicBlock *KeepEdge1 = TrueBB; 3932 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 3933 3934 SmallPtrSet<BasicBlock *, 2> RemovedSuccessors; 3935 3936 // Then remove the rest. 3937 for (BasicBlock *Succ : successors(OldTerm)) { 3938 // Make sure only to keep exactly one copy of each edge. 3939 if (Succ == KeepEdge1) 3940 KeepEdge1 = nullptr; 3941 else if (Succ == KeepEdge2) 3942 KeepEdge2 = nullptr; 3943 else { 3944 Succ->removePredecessor(BB, 3945 /*KeepOneInputPHIs=*/true); 3946 3947 if (Succ != TrueBB && Succ != FalseBB) 3948 RemovedSuccessors.insert(Succ); 3949 } 3950 } 3951 3952 IRBuilder<> Builder(OldTerm); 3953 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 3954 3955 // Insert an appropriate new terminator. 3956 if (!KeepEdge1 && !KeepEdge2) { 3957 if (TrueBB == FalseBB) { 3958 // We were only looking for one successor, and it was present. 3959 // Create an unconditional branch to it. 3960 Builder.CreateBr(TrueBB); 3961 } else { 3962 // We found both of the successors we were looking for. 3963 // Create a conditional branch sharing the condition of the select. 3964 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 3965 if (TrueWeight != FalseWeight) 3966 setBranchWeights(NewBI, TrueWeight, FalseWeight); 3967 } 3968 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 3969 // Neither of the selected blocks were successors, so this 3970 // terminator must be unreachable. 3971 new UnreachableInst(OldTerm->getContext(), OldTerm); 3972 } else { 3973 // One of the selected values was a successor, but the other wasn't. 3974 // Insert an unconditional branch to the one that was found; 3975 // the edge to the one that wasn't must be unreachable. 3976 if (!KeepEdge1) { 3977 // Only TrueBB was found. 3978 Builder.CreateBr(TrueBB); 3979 } else { 3980 // Only FalseBB was found. 3981 Builder.CreateBr(FalseBB); 3982 } 3983 } 3984 3985 EraseTerminatorAndDCECond(OldTerm); 3986 3987 if (DTU) { 3988 SmallVector<DominatorTree::UpdateType, 2> Updates; 3989 Updates.reserve(RemovedSuccessors.size()); 3990 for (auto *RemovedSuccessor : RemovedSuccessors) 3991 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 3992 DTU->applyUpdates(Updates); 3993 } 3994 3995 return true; 3996 } 3997 3998 // Replaces 3999 // (switch (select cond, X, Y)) on constant X, Y 4000 // with a branch - conditional if X and Y lead to distinct BBs, 4001 // unconditional otherwise. 4002 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI, 4003 SelectInst *Select) { 4004 // Check for constant integer values in the select. 4005 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4006 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4007 if (!TrueVal || !FalseVal) 4008 return false; 4009 4010 // Find the relevant condition and destinations. 4011 Value *Condition = Select->getCondition(); 4012 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4013 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4014 4015 // Get weight for TrueBB and FalseBB. 4016 uint32_t TrueWeight = 0, FalseWeight = 0; 4017 SmallVector<uint64_t, 8> Weights; 4018 bool HasWeights = HasBranchWeights(SI); 4019 if (HasWeights) { 4020 GetBranchWeights(SI, Weights); 4021 if (Weights.size() == 1 + SI->getNumCases()) { 4022 TrueWeight = 4023 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4024 FalseWeight = 4025 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4026 } 4027 } 4028 4029 // Perform the actual simplification. 4030 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4031 FalseWeight); 4032 } 4033 4034 // Replaces 4035 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4036 // blockaddress(@fn, BlockB))) 4037 // with 4038 // (br cond, BlockA, BlockB). 4039 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4040 SelectInst *SI) { 4041 // Check that both operands of the select are block addresses. 4042 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4043 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4044 if (!TBA || !FBA) 4045 return false; 4046 4047 // Extract the actual blocks. 4048 BasicBlock *TrueBB = TBA->getBasicBlock(); 4049 BasicBlock *FalseBB = FBA->getBasicBlock(); 4050 4051 // Perform the actual simplification. 4052 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4053 0); 4054 } 4055 4056 /// This is called when we find an icmp instruction 4057 /// (a seteq/setne with a constant) as the only instruction in a 4058 /// block that ends with an uncond branch. We are looking for a very specific 4059 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4060 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4061 /// default value goes to an uncond block with a seteq in it, we get something 4062 /// like: 4063 /// 4064 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4065 /// DEFAULT: 4066 /// %tmp = icmp eq i8 %A, 92 4067 /// br label %end 4068 /// end: 4069 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4070 /// 4071 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4072 /// the PHI, merging the third icmp into the switch. 4073 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4074 ICmpInst *ICI, IRBuilder<> &Builder) { 4075 BasicBlock *BB = ICI->getParent(); 4076 4077 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4078 // complex. 4079 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4080 return false; 4081 4082 Value *V = ICI->getOperand(0); 4083 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4084 4085 // The pattern we're looking for is where our only predecessor is a switch on 4086 // 'V' and this block is the default case for the switch. In this case we can 4087 // fold the compared value into the switch to simplify things. 4088 BasicBlock *Pred = BB->getSinglePredecessor(); 4089 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4090 return false; 4091 4092 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4093 if (SI->getCondition() != V) 4094 return false; 4095 4096 // If BB is reachable on a non-default case, then we simply know the value of 4097 // V in this block. Substitute it and constant fold the icmp instruction 4098 // away. 4099 if (SI->getDefaultDest() != BB) { 4100 ConstantInt *VVal = SI->findCaseDest(BB); 4101 assert(VVal && "Should have a unique destination value"); 4102 ICI->setOperand(0, VVal); 4103 4104 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { 4105 ICI->replaceAllUsesWith(V); 4106 ICI->eraseFromParent(); 4107 } 4108 // BB is now empty, so it is likely to simplify away. 4109 return requestResimplify(); 4110 } 4111 4112 // Ok, the block is reachable from the default dest. If the constant we're 4113 // comparing exists in one of the other edges, then we can constant fold ICI 4114 // and zap it. 4115 if (SI->findCaseValue(Cst) != SI->case_default()) { 4116 Value *V; 4117 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4118 V = ConstantInt::getFalse(BB->getContext()); 4119 else 4120 V = ConstantInt::getTrue(BB->getContext()); 4121 4122 ICI->replaceAllUsesWith(V); 4123 ICI->eraseFromParent(); 4124 // BB is now empty, so it is likely to simplify away. 4125 return requestResimplify(); 4126 } 4127 4128 // The use of the icmp has to be in the 'end' block, by the only PHI node in 4129 // the block. 4130 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 4131 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 4132 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 4133 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 4134 return false; 4135 4136 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 4137 // true in the PHI. 4138 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 4139 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 4140 4141 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4142 std::swap(DefaultCst, NewCst); 4143 4144 // Replace ICI (which is used by the PHI for the default value) with true or 4145 // false depending on if it is EQ or NE. 4146 ICI->replaceAllUsesWith(DefaultCst); 4147 ICI->eraseFromParent(); 4148 4149 SmallVector<DominatorTree::UpdateType, 2> Updates; 4150 4151 // Okay, the switch goes to this block on a default value. Add an edge from 4152 // the switch to the merge point on the compared value. 4153 BasicBlock *NewBB = 4154 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 4155 { 4156 SwitchInstProfUpdateWrapper SIW(*SI); 4157 auto W0 = SIW.getSuccessorWeight(0); 4158 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 4159 if (W0) { 4160 NewW = ((uint64_t(*W0) + 1) >> 1); 4161 SIW.setSuccessorWeight(0, *NewW); 4162 } 4163 SIW.addCase(Cst, NewBB, NewW); 4164 if (DTU) 4165 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 4166 } 4167 4168 // NewBB branches to the phi block, add the uncond branch and the phi entry. 4169 Builder.SetInsertPoint(NewBB); 4170 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 4171 Builder.CreateBr(SuccBlock); 4172 PHIUse->addIncoming(NewCst, NewBB); 4173 if (DTU) { 4174 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 4175 DTU->applyUpdates(Updates); 4176 } 4177 return true; 4178 } 4179 4180 /// The specified branch is a conditional branch. 4181 /// Check to see if it is branching on an or/and chain of icmp instructions, and 4182 /// fold it into a switch instruction if so. 4183 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI, 4184 IRBuilder<> &Builder, 4185 const DataLayout &DL) { 4186 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4187 if (!Cond) 4188 return false; 4189 4190 // Change br (X == 0 | X == 1), T, F into a switch instruction. 4191 // If this is a bunch of seteq's or'd together, or if it's a bunch of 4192 // 'setne's and'ed together, collect them. 4193 4194 // Try to gather values from a chain of and/or to be turned into a switch 4195 ConstantComparesGatherer ConstantCompare(Cond, DL); 4196 // Unpack the result 4197 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 4198 Value *CompVal = ConstantCompare.CompValue; 4199 unsigned UsedICmps = ConstantCompare.UsedICmps; 4200 Value *ExtraCase = ConstantCompare.Extra; 4201 4202 // If we didn't have a multiply compared value, fail. 4203 if (!CompVal) 4204 return false; 4205 4206 // Avoid turning single icmps into a switch. 4207 if (UsedICmps <= 1) 4208 return false; 4209 4210 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 4211 4212 // There might be duplicate constants in the list, which the switch 4213 // instruction can't handle, remove them now. 4214 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); 4215 Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); 4216 4217 // If Extra was used, we require at least two switch values to do the 4218 // transformation. A switch with one value is just a conditional branch. 4219 if (ExtraCase && Values.size() < 2) 4220 return false; 4221 4222 // TODO: Preserve branch weight metadata, similarly to how 4223 // FoldValueComparisonIntoPredecessors preserves it. 4224 4225 // Figure out which block is which destination. 4226 BasicBlock *DefaultBB = BI->getSuccessor(1); 4227 BasicBlock *EdgeBB = BI->getSuccessor(0); 4228 if (!TrueWhenEqual) 4229 std::swap(DefaultBB, EdgeBB); 4230 4231 BasicBlock *BB = BI->getParent(); 4232 4233 // MSAN does not like undefs as branch condition which can be introduced 4234 // with "explicit branch". 4235 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 4236 return false; 4237 4238 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 4239 << " cases into SWITCH. BB is:\n" 4240 << *BB); 4241 4242 SmallVector<DominatorTree::UpdateType, 2> Updates; 4243 4244 // If there are any extra values that couldn't be folded into the switch 4245 // then we evaluate them with an explicit branch first. Split the block 4246 // right before the condbr to handle it. 4247 if (ExtraCase) { 4248 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 4249 /*MSSAU=*/nullptr, "switch.early.test"); 4250 4251 // Remove the uncond branch added to the old block. 4252 Instruction *OldTI = BB->getTerminator(); 4253 Builder.SetInsertPoint(OldTI); 4254 4255 if (TrueWhenEqual) 4256 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 4257 else 4258 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 4259 4260 OldTI->eraseFromParent(); 4261 4262 if (DTU) 4263 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 4264 4265 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 4266 // for the edge we just added. 4267 AddPredecessorToBlock(EdgeBB, BB, NewBB); 4268 4269 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 4270 << "\nEXTRABB = " << *BB); 4271 BB = NewBB; 4272 } 4273 4274 Builder.SetInsertPoint(BI); 4275 // Convert pointer to int before we switch. 4276 if (CompVal->getType()->isPointerTy()) { 4277 CompVal = Builder.CreatePtrToInt( 4278 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 4279 } 4280 4281 // Create the new switch instruction now. 4282 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 4283 4284 // Add all of the 'cases' to the switch instruction. 4285 for (unsigned i = 0, e = Values.size(); i != e; ++i) 4286 New->addCase(Values[i], EdgeBB); 4287 4288 // We added edges from PI to the EdgeBB. As such, if there were any 4289 // PHI nodes in EdgeBB, they need entries to be added corresponding to 4290 // the number of edges added. 4291 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 4292 PHINode *PN = cast<PHINode>(BBI); 4293 Value *InVal = PN->getIncomingValueForBlock(BB); 4294 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 4295 PN->addIncoming(InVal, BB); 4296 } 4297 4298 // Erase the old branch instruction. 4299 EraseTerminatorAndDCECond(BI); 4300 if (DTU) 4301 DTU->applyUpdates(Updates); 4302 4303 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 4304 return true; 4305 } 4306 4307 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 4308 if (isa<PHINode>(RI->getValue())) 4309 return simplifyCommonResume(RI); 4310 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 4311 RI->getValue() == RI->getParent()->getFirstNonPHI()) 4312 // The resume must unwind the exception that caused control to branch here. 4313 return simplifySingleResume(RI); 4314 4315 return false; 4316 } 4317 4318 // Check if cleanup block is empty 4319 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 4320 for (Instruction &I : R) { 4321 auto *II = dyn_cast<IntrinsicInst>(&I); 4322 if (!II) 4323 return false; 4324 4325 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 4326 switch (IntrinsicID) { 4327 case Intrinsic::dbg_declare: 4328 case Intrinsic::dbg_value: 4329 case Intrinsic::dbg_label: 4330 case Intrinsic::lifetime_end: 4331 break; 4332 default: 4333 return false; 4334 } 4335 } 4336 return true; 4337 } 4338 4339 // Simplify resume that is shared by several landing pads (phi of landing pad). 4340 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 4341 BasicBlock *BB = RI->getParent(); 4342 4343 // Check that there are no other instructions except for debug and lifetime 4344 // intrinsics between the phi's and resume instruction. 4345 if (!isCleanupBlockEmpty( 4346 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 4347 return false; 4348 4349 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 4350 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 4351 4352 // Check incoming blocks to see if any of them are trivial. 4353 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 4354 Idx++) { 4355 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 4356 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 4357 4358 // If the block has other successors, we can not delete it because 4359 // it has other dependents. 4360 if (IncomingBB->getUniqueSuccessor() != BB) 4361 continue; 4362 4363 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 4364 // Not the landing pad that caused the control to branch here. 4365 if (IncomingValue != LandingPad) 4366 continue; 4367 4368 if (isCleanupBlockEmpty( 4369 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 4370 TrivialUnwindBlocks.insert(IncomingBB); 4371 } 4372 4373 // If no trivial unwind blocks, don't do any simplifications. 4374 if (TrivialUnwindBlocks.empty()) 4375 return false; 4376 4377 // Turn all invokes that unwind here into calls. 4378 for (auto *TrivialBB : TrivialUnwindBlocks) { 4379 // Blocks that will be simplified should be removed from the phi node. 4380 // Note there could be multiple edges to the resume block, and we need 4381 // to remove them all. 4382 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 4383 BB->removePredecessor(TrivialBB, true); 4384 4385 for (BasicBlock *Pred : 4386 llvm::make_early_inc_range(predecessors(TrivialBB))) { 4387 removeUnwindEdge(Pred, DTU); 4388 ++NumInvokes; 4389 } 4390 4391 // In each SimplifyCFG run, only the current processed block can be erased. 4392 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 4393 // of erasing TrivialBB, we only remove the branch to the common resume 4394 // block so that we can later erase the resume block since it has no 4395 // predecessors. 4396 TrivialBB->getTerminator()->eraseFromParent(); 4397 new UnreachableInst(RI->getContext(), TrivialBB); 4398 if (DTU) 4399 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 4400 } 4401 4402 // Delete the resume block if all its predecessors have been removed. 4403 if (pred_empty(BB)) 4404 DeleteDeadBlock(BB, DTU); 4405 4406 return !TrivialUnwindBlocks.empty(); 4407 } 4408 4409 // Simplify resume that is only used by a single (non-phi) landing pad. 4410 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 4411 BasicBlock *BB = RI->getParent(); 4412 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 4413 assert(RI->getValue() == LPInst && 4414 "Resume must unwind the exception that caused control to here"); 4415 4416 // Check that there are no other instructions except for debug intrinsics. 4417 if (!isCleanupBlockEmpty( 4418 make_range<Instruction *>(LPInst->getNextNode(), RI))) 4419 return false; 4420 4421 // Turn all invokes that unwind here into calls and delete the basic block. 4422 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 4423 removeUnwindEdge(Pred, DTU); 4424 ++NumInvokes; 4425 } 4426 4427 // The landingpad is now unreachable. Zap it. 4428 DeleteDeadBlock(BB, DTU); 4429 return true; 4430 } 4431 4432 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 4433 // If this is a trivial cleanup pad that executes no instructions, it can be 4434 // eliminated. If the cleanup pad continues to the caller, any predecessor 4435 // that is an EH pad will be updated to continue to the caller and any 4436 // predecessor that terminates with an invoke instruction will have its invoke 4437 // instruction converted to a call instruction. If the cleanup pad being 4438 // simplified does not continue to the caller, each predecessor will be 4439 // updated to continue to the unwind destination of the cleanup pad being 4440 // simplified. 4441 BasicBlock *BB = RI->getParent(); 4442 CleanupPadInst *CPInst = RI->getCleanupPad(); 4443 if (CPInst->getParent() != BB) 4444 // This isn't an empty cleanup. 4445 return false; 4446 4447 // We cannot kill the pad if it has multiple uses. This typically arises 4448 // from unreachable basic blocks. 4449 if (!CPInst->hasOneUse()) 4450 return false; 4451 4452 // Check that there are no other instructions except for benign intrinsics. 4453 if (!isCleanupBlockEmpty( 4454 make_range<Instruction *>(CPInst->getNextNode(), RI))) 4455 return false; 4456 4457 // If the cleanup return we are simplifying unwinds to the caller, this will 4458 // set UnwindDest to nullptr. 4459 BasicBlock *UnwindDest = RI->getUnwindDest(); 4460 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 4461 4462 // We're about to remove BB from the control flow. Before we do, sink any 4463 // PHINodes into the unwind destination. Doing this before changing the 4464 // control flow avoids some potentially slow checks, since we can currently 4465 // be certain that UnwindDest and BB have no common predecessors (since they 4466 // are both EH pads). 4467 if (UnwindDest) { 4468 // First, go through the PHI nodes in UnwindDest and update any nodes that 4469 // reference the block we are removing 4470 for (PHINode &DestPN : UnwindDest->phis()) { 4471 int Idx = DestPN.getBasicBlockIndex(BB); 4472 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 4473 assert(Idx != -1); 4474 // This PHI node has an incoming value that corresponds to a control 4475 // path through the cleanup pad we are removing. If the incoming 4476 // value is in the cleanup pad, it must be a PHINode (because we 4477 // verified above that the block is otherwise empty). Otherwise, the 4478 // value is either a constant or a value that dominates the cleanup 4479 // pad being removed. 4480 // 4481 // Because BB and UnwindDest are both EH pads, all of their 4482 // predecessors must unwind to these blocks, and since no instruction 4483 // can have multiple unwind destinations, there will be no overlap in 4484 // incoming blocks between SrcPN and DestPN. 4485 Value *SrcVal = DestPN.getIncomingValue(Idx); 4486 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 4487 4488 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 4489 for (auto *Pred : predecessors(BB)) { 4490 Value *Incoming = 4491 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 4492 DestPN.addIncoming(Incoming, Pred); 4493 } 4494 } 4495 4496 // Sink any remaining PHI nodes directly into UnwindDest. 4497 Instruction *InsertPt = DestEHPad; 4498 for (PHINode &PN : make_early_inc_range(BB->phis())) { 4499 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 4500 // If the PHI node has no uses or all of its uses are in this basic 4501 // block (meaning they are debug or lifetime intrinsics), just leave 4502 // it. It will be erased when we erase BB below. 4503 continue; 4504 4505 // Otherwise, sink this PHI node into UnwindDest. 4506 // Any predecessors to UnwindDest which are not already represented 4507 // must be back edges which inherit the value from the path through 4508 // BB. In this case, the PHI value must reference itself. 4509 for (auto *pred : predecessors(UnwindDest)) 4510 if (pred != BB) 4511 PN.addIncoming(&PN, pred); 4512 PN.moveBefore(InsertPt); 4513 // Also, add a dummy incoming value for the original BB itself, 4514 // so that the PHI is well-formed until we drop said predecessor. 4515 PN.addIncoming(UndefValue::get(PN.getType()), BB); 4516 } 4517 } 4518 4519 std::vector<DominatorTree::UpdateType> Updates; 4520 4521 // We use make_early_inc_range here because we will remove all predecessors. 4522 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 4523 if (UnwindDest == nullptr) { 4524 if (DTU) { 4525 DTU->applyUpdates(Updates); 4526 Updates.clear(); 4527 } 4528 removeUnwindEdge(PredBB, DTU); 4529 ++NumInvokes; 4530 } else { 4531 BB->removePredecessor(PredBB); 4532 Instruction *TI = PredBB->getTerminator(); 4533 TI->replaceUsesOfWith(BB, UnwindDest); 4534 if (DTU) { 4535 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 4536 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 4537 } 4538 } 4539 } 4540 4541 if (DTU) 4542 DTU->applyUpdates(Updates); 4543 4544 DeleteDeadBlock(BB, DTU); 4545 4546 return true; 4547 } 4548 4549 // Try to merge two cleanuppads together. 4550 static bool mergeCleanupPad(CleanupReturnInst *RI) { 4551 // Skip any cleanuprets which unwind to caller, there is nothing to merge 4552 // with. 4553 BasicBlock *UnwindDest = RI->getUnwindDest(); 4554 if (!UnwindDest) 4555 return false; 4556 4557 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 4558 // be safe to merge without code duplication. 4559 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 4560 return false; 4561 4562 // Verify that our cleanuppad's unwind destination is another cleanuppad. 4563 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 4564 if (!SuccessorCleanupPad) 4565 return false; 4566 4567 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 4568 // Replace any uses of the successor cleanupad with the predecessor pad 4569 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 4570 // funclet bundle operands. 4571 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 4572 // Remove the old cleanuppad. 4573 SuccessorCleanupPad->eraseFromParent(); 4574 // Now, we simply replace the cleanupret with a branch to the unwind 4575 // destination. 4576 BranchInst::Create(UnwindDest, RI->getParent()); 4577 RI->eraseFromParent(); 4578 4579 return true; 4580 } 4581 4582 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 4583 // It is possible to transiantly have an undef cleanuppad operand because we 4584 // have deleted some, but not all, dead blocks. 4585 // Eventually, this block will be deleted. 4586 if (isa<UndefValue>(RI->getOperand(0))) 4587 return false; 4588 4589 if (mergeCleanupPad(RI)) 4590 return true; 4591 4592 if (removeEmptyCleanup(RI, DTU)) 4593 return true; 4594 4595 return false; 4596 } 4597 4598 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { 4599 BasicBlock *BB = RI->getParent(); 4600 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) 4601 return false; 4602 4603 // Find predecessors that end with branches. 4604 SmallVector<BasicBlock *, 8> UncondBranchPreds; 4605 SmallVector<BranchInst *, 8> CondBranchPreds; 4606 for (BasicBlock *P : predecessors(BB)) { 4607 Instruction *PTI = P->getTerminator(); 4608 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { 4609 if (BI->isUnconditional()) 4610 UncondBranchPreds.push_back(P); 4611 else 4612 CondBranchPreds.push_back(BI); 4613 } 4614 } 4615 4616 // If we found some, do the transformation! 4617 if (!UncondBranchPreds.empty() && DupRet) { 4618 while (!UncondBranchPreds.empty()) { 4619 BasicBlock *Pred = UncondBranchPreds.pop_back_val(); 4620 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB 4621 << "INTO UNCOND BRANCH PRED: " << *Pred); 4622 (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU); 4623 } 4624 4625 // If we eliminated all predecessors of the block, delete the block now. 4626 if (pred_empty(BB)) 4627 DeleteDeadBlock(BB, DTU); 4628 4629 return true; 4630 } 4631 4632 // Check out all of the conditional branches going to this return 4633 // instruction. If any of them just select between returns, change the 4634 // branch itself into a select/return pair. 4635 while (!CondBranchPreds.empty()) { 4636 BranchInst *BI = CondBranchPreds.pop_back_val(); 4637 4638 // Check to see if the non-BB successor is also a return block. 4639 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && 4640 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && 4641 SimplifyCondBranchToTwoReturns(BI, Builder)) 4642 return true; 4643 } 4644 return false; 4645 } 4646 4647 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 4648 BasicBlock *BB = UI->getParent(); 4649 4650 bool Changed = false; 4651 4652 // If there are any instructions immediately before the unreachable that can 4653 // be removed, do so. 4654 while (UI->getIterator() != BB->begin()) { 4655 BasicBlock::iterator BBI = UI->getIterator(); 4656 --BBI; 4657 // Do not delete instructions that can have side effects which might cause 4658 // the unreachable to not be reachable; specifically, calls and volatile 4659 // operations may have this effect. 4660 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) 4661 break; 4662 4663 if (BBI->mayHaveSideEffects()) { 4664 if (auto *SI = dyn_cast<StoreInst>(BBI)) { 4665 if (SI->isVolatile()) 4666 break; 4667 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { 4668 if (LI->isVolatile()) 4669 break; 4670 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { 4671 if (RMWI->isVolatile()) 4672 break; 4673 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { 4674 if (CXI->isVolatile()) 4675 break; 4676 } else if (isa<CatchPadInst>(BBI)) { 4677 // A catchpad may invoke exception object constructors and such, which 4678 // in some languages can be arbitrary code, so be conservative by 4679 // default. 4680 // For CoreCLR, it just involves a type test, so can be removed. 4681 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != 4682 EHPersonality::CoreCLR) 4683 break; 4684 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && 4685 !isa<LandingPadInst>(BBI)) { 4686 break; 4687 } 4688 // Note that deleting LandingPad's here is in fact okay, although it 4689 // involves a bit of subtle reasoning. If this inst is a LandingPad, 4690 // all the predecessors of this block will be the unwind edges of Invokes, 4691 // and we can therefore guarantee this block will be erased. 4692 } 4693 4694 // Delete this instruction (any uses are guaranteed to be dead) 4695 if (!BBI->use_empty()) 4696 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 4697 BBI->eraseFromParent(); 4698 Changed = true; 4699 } 4700 4701 // If the unreachable instruction is the first in the block, take a gander 4702 // at all of the predecessors of this instruction, and simplify them. 4703 if (&BB->front() != UI) 4704 return Changed; 4705 4706 std::vector<DominatorTree::UpdateType> Updates; 4707 4708 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 4709 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 4710 auto *Predecessor = Preds[i]; 4711 Instruction *TI = Predecessor->getTerminator(); 4712 IRBuilder<> Builder(TI); 4713 if (auto *BI = dyn_cast<BranchInst>(TI)) { 4714 // We could either have a proper unconditional branch, 4715 // or a degenerate conditional branch with matching destinations. 4716 if (all_of(BI->successors(), 4717 [BB](auto *Successor) { return Successor == BB; })) { 4718 new UnreachableInst(TI->getContext(), TI); 4719 TI->eraseFromParent(); 4720 Changed = true; 4721 } else { 4722 assert(BI->isConditional() && "Can't get here with an uncond branch."); 4723 Value* Cond = BI->getCondition(); 4724 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4725 "The destinations are guaranteed to be different here."); 4726 if (BI->getSuccessor(0) == BB) { 4727 Builder.CreateAssumption(Builder.CreateNot(Cond)); 4728 Builder.CreateBr(BI->getSuccessor(1)); 4729 } else { 4730 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 4731 Builder.CreateAssumption(Cond); 4732 Builder.CreateBr(BI->getSuccessor(0)); 4733 } 4734 EraseTerminatorAndDCECond(BI); 4735 Changed = true; 4736 } 4737 if (DTU) 4738 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4739 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 4740 SwitchInstProfUpdateWrapper SU(*SI); 4741 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 4742 if (i->getCaseSuccessor() != BB) { 4743 ++i; 4744 continue; 4745 } 4746 BB->removePredecessor(SU->getParent()); 4747 i = SU.removeCase(i); 4748 e = SU->case_end(); 4749 Changed = true; 4750 } 4751 // Note that the default destination can't be removed! 4752 if (DTU && SI->getDefaultDest() != BB) 4753 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4754 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 4755 if (II->getUnwindDest() == BB) { 4756 if (DTU) { 4757 DTU->applyUpdates(Updates); 4758 Updates.clear(); 4759 } 4760 removeUnwindEdge(TI->getParent(), DTU); 4761 Changed = true; 4762 } 4763 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4764 if (CSI->getUnwindDest() == BB) { 4765 if (DTU) { 4766 DTU->applyUpdates(Updates); 4767 Updates.clear(); 4768 } 4769 removeUnwindEdge(TI->getParent(), DTU); 4770 Changed = true; 4771 continue; 4772 } 4773 4774 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 4775 E = CSI->handler_end(); 4776 I != E; ++I) { 4777 if (*I == BB) { 4778 CSI->removeHandler(I); 4779 --I; 4780 --E; 4781 Changed = true; 4782 } 4783 } 4784 if (DTU) 4785 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4786 if (CSI->getNumHandlers() == 0) { 4787 if (CSI->hasUnwindDest()) { 4788 // Redirect all predecessors of the block containing CatchSwitchInst 4789 // to instead branch to the CatchSwitchInst's unwind destination. 4790 if (DTU) { 4791 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 4792 Updates.push_back({DominatorTree::Insert, 4793 PredecessorOfPredecessor, 4794 CSI->getUnwindDest()}); 4795 Updates.push_back({DominatorTree::Delete, 4796 PredecessorOfPredecessor, Predecessor}); 4797 } 4798 } 4799 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 4800 } else { 4801 // Rewrite all preds to unwind to caller (or from invoke to call). 4802 if (DTU) { 4803 DTU->applyUpdates(Updates); 4804 Updates.clear(); 4805 } 4806 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 4807 for (BasicBlock *EHPred : EHPreds) 4808 removeUnwindEdge(EHPred, DTU); 4809 } 4810 // The catchswitch is no longer reachable. 4811 new UnreachableInst(CSI->getContext(), CSI); 4812 CSI->eraseFromParent(); 4813 Changed = true; 4814 } 4815 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4816 (void)CRI; 4817 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 4818 "Expected to always have an unwind to BB."); 4819 if (DTU) 4820 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 4821 new UnreachableInst(TI->getContext(), TI); 4822 TI->eraseFromParent(); 4823 Changed = true; 4824 } 4825 } 4826 4827 if (DTU) 4828 DTU->applyUpdates(Updates); 4829 4830 // If this block is now dead, remove it. 4831 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 4832 DeleteDeadBlock(BB, DTU); 4833 return true; 4834 } 4835 4836 return Changed; 4837 } 4838 4839 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 4840 assert(Cases.size() >= 1); 4841 4842 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); 4843 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 4844 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 4845 return false; 4846 } 4847 return true; 4848 } 4849 4850 static void createUnreachableSwitchDefault(SwitchInst *Switch, 4851 DomTreeUpdater *DTU) { 4852 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 4853 auto *BB = Switch->getParent(); 4854 BasicBlock *NewDefaultBlock = SplitBlockPredecessors( 4855 Switch->getDefaultDest(), Switch->getParent(), "", DTU); 4856 auto *OrigDefaultBlock = Switch->getDefaultDest(); 4857 Switch->setDefaultDest(&*NewDefaultBlock); 4858 if (DTU) 4859 DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock}, 4860 {DominatorTree::Delete, BB, OrigDefaultBlock}}); 4861 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU); 4862 SmallVector<DominatorTree::UpdateType, 2> Updates; 4863 if (DTU) 4864 for (auto *Successor : successors(NewDefaultBlock)) 4865 Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor}); 4866 auto *NewTerminator = NewDefaultBlock->getTerminator(); 4867 new UnreachableInst(Switch->getContext(), NewTerminator); 4868 EraseTerminatorAndDCECond(NewTerminator); 4869 if (DTU) 4870 DTU->applyUpdates(Updates); 4871 } 4872 4873 /// Turn a switch with two reachable destinations into an integer range 4874 /// comparison and branch. 4875 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI, 4876 IRBuilder<> &Builder) { 4877 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 4878 4879 bool HasDefault = 4880 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 4881 4882 auto *BB = SI->getParent(); 4883 4884 // Partition the cases into two sets with different destinations. 4885 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 4886 BasicBlock *DestB = nullptr; 4887 SmallVector<ConstantInt *, 16> CasesA; 4888 SmallVector<ConstantInt *, 16> CasesB; 4889 4890 for (auto Case : SI->cases()) { 4891 BasicBlock *Dest = Case.getCaseSuccessor(); 4892 if (!DestA) 4893 DestA = Dest; 4894 if (Dest == DestA) { 4895 CasesA.push_back(Case.getCaseValue()); 4896 continue; 4897 } 4898 if (!DestB) 4899 DestB = Dest; 4900 if (Dest == DestB) { 4901 CasesB.push_back(Case.getCaseValue()); 4902 continue; 4903 } 4904 return false; // More than two destinations. 4905 } 4906 4907 assert(DestA && DestB && 4908 "Single-destination switch should have been folded."); 4909 assert(DestA != DestB); 4910 assert(DestB != SI->getDefaultDest()); 4911 assert(!CasesB.empty() && "There must be non-default cases."); 4912 assert(!CasesA.empty() || HasDefault); 4913 4914 // Figure out if one of the sets of cases form a contiguous range. 4915 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 4916 BasicBlock *ContiguousDest = nullptr; 4917 BasicBlock *OtherDest = nullptr; 4918 if (!CasesA.empty() && CasesAreContiguous(CasesA)) { 4919 ContiguousCases = &CasesA; 4920 ContiguousDest = DestA; 4921 OtherDest = DestB; 4922 } else if (CasesAreContiguous(CasesB)) { 4923 ContiguousCases = &CasesB; 4924 ContiguousDest = DestB; 4925 OtherDest = DestA; 4926 } else 4927 return false; 4928 4929 // Start building the compare and branch. 4930 4931 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 4932 Constant *NumCases = 4933 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 4934 4935 Value *Sub = SI->getCondition(); 4936 if (!Offset->isNullValue()) 4937 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 4938 4939 Value *Cmp; 4940 // If NumCases overflowed, then all possible values jump to the successor. 4941 if (NumCases->isNullValue() && !ContiguousCases->empty()) 4942 Cmp = ConstantInt::getTrue(SI->getContext()); 4943 else 4944 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 4945 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 4946 4947 // Update weight for the newly-created conditional branch. 4948 if (HasBranchWeights(SI)) { 4949 SmallVector<uint64_t, 8> Weights; 4950 GetBranchWeights(SI, Weights); 4951 if (Weights.size() == 1 + SI->getNumCases()) { 4952 uint64_t TrueWeight = 0; 4953 uint64_t FalseWeight = 0; 4954 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 4955 if (SI->getSuccessor(I) == ContiguousDest) 4956 TrueWeight += Weights[I]; 4957 else 4958 FalseWeight += Weights[I]; 4959 } 4960 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 4961 TrueWeight /= 2; 4962 FalseWeight /= 2; 4963 } 4964 setBranchWeights(NewBI, TrueWeight, FalseWeight); 4965 } 4966 } 4967 4968 // Prune obsolete incoming values off the successors' PHI nodes. 4969 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 4970 unsigned PreviousEdges = ContiguousCases->size(); 4971 if (ContiguousDest == SI->getDefaultDest()) 4972 ++PreviousEdges; 4973 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4974 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4975 } 4976 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 4977 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 4978 if (OtherDest == SI->getDefaultDest()) 4979 ++PreviousEdges; 4980 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 4981 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 4982 } 4983 4984 // Clean up the default block - it may have phis or other instructions before 4985 // the unreachable terminator. 4986 if (!HasDefault) 4987 createUnreachableSwitchDefault(SI, DTU); 4988 4989 auto *UnreachableDefault = SI->getDefaultDest(); 4990 4991 // Drop the switch. 4992 SI->eraseFromParent(); 4993 4994 if (!HasDefault && DTU) 4995 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 4996 4997 return true; 4998 } 4999 5000 /// Compute masked bits for the condition of a switch 5001 /// and use it to remove dead cases. 5002 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5003 AssumptionCache *AC, 5004 const DataLayout &DL) { 5005 Value *Cond = SI->getCondition(); 5006 unsigned Bits = Cond->getType()->getIntegerBitWidth(); 5007 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5008 5009 // We can also eliminate cases by determining that their values are outside of 5010 // the limited range of the condition based on how many significant (non-sign) 5011 // bits are in the condition value. 5012 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; 5013 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; 5014 5015 // Gather dead cases. 5016 SmallVector<ConstantInt *, 8> DeadCases; 5017 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5018 for (auto &Case : SI->cases()) { 5019 auto *Successor = Case.getCaseSuccessor(); 5020 if (DTU) 5021 ++NumPerSuccessorCases[Successor]; 5022 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5023 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5024 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { 5025 DeadCases.push_back(Case.getCaseValue()); 5026 if (DTU) 5027 --NumPerSuccessorCases[Successor]; 5028 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5029 << " is dead.\n"); 5030 } 5031 } 5032 5033 // If we can prove that the cases must cover all possible values, the 5034 // default destination becomes dead and we can remove it. If we know some 5035 // of the bits in the value, we can use that to more precisely compute the 5036 // number of possible unique case values. 5037 bool HasDefault = 5038 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5039 const unsigned NumUnknownBits = 5040 Bits - (Known.Zero | Known.One).countPopulation(); 5041 assert(NumUnknownBits <= Bits); 5042 if (HasDefault && DeadCases.empty() && 5043 NumUnknownBits < 64 /* avoid overflow */ && 5044 SI->getNumCases() == (1ULL << NumUnknownBits)) { 5045 createUnreachableSwitchDefault(SI, DTU); 5046 return true; 5047 } 5048 5049 if (DeadCases.empty()) 5050 return false; 5051 5052 SwitchInstProfUpdateWrapper SIW(*SI); 5053 for (ConstantInt *DeadCase : DeadCases) { 5054 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5055 assert(CaseI != SI->case_default() && 5056 "Case was not found. Probably mistake in DeadCases forming."); 5057 // Prune unused values from PHI nodes. 5058 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5059 SIW.removeCase(CaseI); 5060 } 5061 5062 if (DTU) { 5063 std::vector<DominatorTree::UpdateType> Updates; 5064 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 5065 if (I.second == 0) 5066 Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first}); 5067 DTU->applyUpdates(Updates); 5068 } 5069 5070 return true; 5071 } 5072 5073 /// If BB would be eligible for simplification by 5074 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5075 /// by an unconditional branch), look at the phi node for BB in the successor 5076 /// block and see if the incoming value is equal to CaseValue. If so, return 5077 /// the phi node, and set PhiIndex to BB's index in the phi node. 5078 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, 5079 BasicBlock *BB, int *PhiIndex) { 5080 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5081 return nullptr; // BB must be empty to be a candidate for simplification. 5082 if (!BB->getSinglePredecessor()) 5083 return nullptr; // BB must be dominated by the switch. 5084 5085 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5086 if (!Branch || !Branch->isUnconditional()) 5087 return nullptr; // Terminator must be unconditional branch. 5088 5089 BasicBlock *Succ = Branch->getSuccessor(0); 5090 5091 for (PHINode &PHI : Succ->phis()) { 5092 int Idx = PHI.getBasicBlockIndex(BB); 5093 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5094 5095 Value *InValue = PHI.getIncomingValue(Idx); 5096 if (InValue != CaseValue) 5097 continue; 5098 5099 *PhiIndex = Idx; 5100 return &PHI; 5101 } 5102 5103 return nullptr; 5104 } 5105 5106 /// Try to forward the condition of a switch instruction to a phi node 5107 /// dominated by the switch, if that would mean that some of the destination 5108 /// blocks of the switch can be folded away. Return true if a change is made. 5109 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { 5110 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5111 5112 ForwardingNodesMap ForwardingNodes; 5113 BasicBlock *SwitchBlock = SI->getParent(); 5114 bool Changed = false; 5115 for (auto &Case : SI->cases()) { 5116 ConstantInt *CaseValue = Case.getCaseValue(); 5117 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5118 5119 // Replace phi operands in successor blocks that are using the constant case 5120 // value rather than the switch condition variable: 5121 // switchbb: 5122 // switch i32 %x, label %default [ 5123 // i32 17, label %succ 5124 // ... 5125 // succ: 5126 // %r = phi i32 ... [ 17, %switchbb ] ... 5127 // --> 5128 // %r = phi i32 ... [ %x, %switchbb ] ... 5129 5130 for (PHINode &Phi : CaseDest->phis()) { 5131 // This only works if there is exactly 1 incoming edge from the switch to 5132 // a phi. If there is >1, that means multiple cases of the switch map to 1 5133 // value in the phi, and that phi value is not the switch condition. Thus, 5134 // this transform would not make sense (the phi would be invalid because 5135 // a phi can't have different incoming values from the same block). 5136 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5137 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5138 count(Phi.blocks(), SwitchBlock) == 1) { 5139 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5140 Changed = true; 5141 } 5142 } 5143 5144 // Collect phi nodes that are indirectly using this switch's case constants. 5145 int PhiIdx; 5146 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5147 ForwardingNodes[Phi].push_back(PhiIdx); 5148 } 5149 5150 for (auto &ForwardingNode : ForwardingNodes) { 5151 PHINode *Phi = ForwardingNode.first; 5152 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 5153 if (Indexes.size() < 2) 5154 continue; 5155 5156 for (int Index : Indexes) 5157 Phi->setIncomingValue(Index, SI->getCondition()); 5158 Changed = true; 5159 } 5160 5161 return Changed; 5162 } 5163 5164 /// Return true if the backend will be able to handle 5165 /// initializing an array of constants like C. 5166 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 5167 if (C->isThreadDependent()) 5168 return false; 5169 if (C->isDLLImportDependent()) 5170 return false; 5171 5172 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 5173 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 5174 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 5175 return false; 5176 5177 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 5178 if (!CE->isGEPWithNoNotionalOverIndexing()) 5179 return false; 5180 if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) 5181 return false; 5182 } 5183 5184 if (!TTI.shouldBuildLookupTablesForConstant(C)) 5185 return false; 5186 5187 return true; 5188 } 5189 5190 /// If V is a Constant, return it. Otherwise, try to look up 5191 /// its constant value in ConstantPool, returning 0 if it's not there. 5192 static Constant * 5193 LookupConstant(Value *V, 5194 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5195 if (Constant *C = dyn_cast<Constant>(V)) 5196 return C; 5197 return ConstantPool.lookup(V); 5198 } 5199 5200 /// Try to fold instruction I into a constant. This works for 5201 /// simple instructions such as binary operations where both operands are 5202 /// constant or can be replaced by constants from the ConstantPool. Returns the 5203 /// resulting constant on success, 0 otherwise. 5204 static Constant * 5205 ConstantFold(Instruction *I, const DataLayout &DL, 5206 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 5207 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 5208 Constant *A = LookupConstant(Select->getCondition(), ConstantPool); 5209 if (!A) 5210 return nullptr; 5211 if (A->isAllOnesValue()) 5212 return LookupConstant(Select->getTrueValue(), ConstantPool); 5213 if (A->isNullValue()) 5214 return LookupConstant(Select->getFalseValue(), ConstantPool); 5215 return nullptr; 5216 } 5217 5218 SmallVector<Constant *, 4> COps; 5219 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 5220 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) 5221 COps.push_back(A); 5222 else 5223 return nullptr; 5224 } 5225 5226 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 5227 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], 5228 COps[1], DL); 5229 } 5230 5231 return ConstantFoldInstOperands(I, COps, DL); 5232 } 5233 5234 /// Try to determine the resulting constant values in phi nodes 5235 /// at the common destination basic block, *CommonDest, for one of the case 5236 /// destionations CaseDest corresponding to value CaseVal (0 for the default 5237 /// case), of a switch instruction SI. 5238 static bool 5239 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 5240 BasicBlock **CommonDest, 5241 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 5242 const DataLayout &DL, const TargetTransformInfo &TTI) { 5243 // The block from which we enter the common destination. 5244 BasicBlock *Pred = SI->getParent(); 5245 5246 // If CaseDest is empty except for some side-effect free instructions through 5247 // which we can constant-propagate the CaseVal, continue to its successor. 5248 SmallDenseMap<Value *, Constant *> ConstantPool; 5249 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 5250 for (Instruction &I :CaseDest->instructionsWithoutDebug()) { 5251 if (I.isTerminator()) { 5252 // If the terminator is a simple branch, continue to the next block. 5253 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) 5254 return false; 5255 Pred = CaseDest; 5256 CaseDest = I.getSuccessor(0); 5257 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { 5258 // Instruction is side-effect free and constant. 5259 5260 // If the instruction has uses outside this block or a phi node slot for 5261 // the block, it is not safe to bypass the instruction since it would then 5262 // no longer dominate all its uses. 5263 for (auto &Use : I.uses()) { 5264 User *User = Use.getUser(); 5265 if (Instruction *I = dyn_cast<Instruction>(User)) 5266 if (I->getParent() == CaseDest) 5267 continue; 5268 if (PHINode *Phi = dyn_cast<PHINode>(User)) 5269 if (Phi->getIncomingBlock(Use) == CaseDest) 5270 continue; 5271 return false; 5272 } 5273 5274 ConstantPool.insert(std::make_pair(&I, C)); 5275 } else { 5276 break; 5277 } 5278 } 5279 5280 // If we did not have a CommonDest before, use the current one. 5281 if (!*CommonDest) 5282 *CommonDest = CaseDest; 5283 // If the destination isn't the common one, abort. 5284 if (CaseDest != *CommonDest) 5285 return false; 5286 5287 // Get the values for this case from phi nodes in the destination block. 5288 for (PHINode &PHI : (*CommonDest)->phis()) { 5289 int Idx = PHI.getBasicBlockIndex(Pred); 5290 if (Idx == -1) 5291 continue; 5292 5293 Constant *ConstVal = 5294 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 5295 if (!ConstVal) 5296 return false; 5297 5298 // Be conservative about which kinds of constants we support. 5299 if (!ValidLookupTableConstant(ConstVal, TTI)) 5300 return false; 5301 5302 Res.push_back(std::make_pair(&PHI, ConstVal)); 5303 } 5304 5305 return Res.size() > 0; 5306 } 5307 5308 // Helper function used to add CaseVal to the list of cases that generate 5309 // Result. Returns the updated number of cases that generate this result. 5310 static uintptr_t MapCaseToResult(ConstantInt *CaseVal, 5311 SwitchCaseResultVectorTy &UniqueResults, 5312 Constant *Result) { 5313 for (auto &I : UniqueResults) { 5314 if (I.first == Result) { 5315 I.second.push_back(CaseVal); 5316 return I.second.size(); 5317 } 5318 } 5319 UniqueResults.push_back( 5320 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 5321 return 1; 5322 } 5323 5324 // Helper function that initializes a map containing 5325 // results for the PHI node of the common destination block for a switch 5326 // instruction. Returns false if multiple PHI nodes have been found or if 5327 // there is not a common destination block for the switch. 5328 static bool 5329 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, 5330 SwitchCaseResultVectorTy &UniqueResults, 5331 Constant *&DefaultResult, const DataLayout &DL, 5332 const TargetTransformInfo &TTI, 5333 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { 5334 for (auto &I : SI->cases()) { 5335 ConstantInt *CaseVal = I.getCaseValue(); 5336 5337 // Resulting value at phi nodes for this case value. 5338 SwitchCaseResultsTy Results; 5339 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 5340 DL, TTI)) 5341 return false; 5342 5343 // Only one value per case is permitted. 5344 if (Results.size() > 1) 5345 return false; 5346 5347 // Add the case->result mapping to UniqueResults. 5348 const uintptr_t NumCasesForResult = 5349 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 5350 5351 // Early out if there are too many cases for this result. 5352 if (NumCasesForResult > MaxCasesPerResult) 5353 return false; 5354 5355 // Early out if there are too many unique results. 5356 if (UniqueResults.size() > MaxUniqueResults) 5357 return false; 5358 5359 // Check the PHI consistency. 5360 if (!PHI) 5361 PHI = Results[0].first; 5362 else if (PHI != Results[0].first) 5363 return false; 5364 } 5365 // Find the default result value. 5366 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 5367 BasicBlock *DefaultDest = SI->getDefaultDest(); 5368 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 5369 DL, TTI); 5370 // If the default value is not found abort unless the default destination 5371 // is unreachable. 5372 DefaultResult = 5373 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 5374 if ((!DefaultResult && 5375 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 5376 return false; 5377 5378 return true; 5379 } 5380 5381 // Helper function that checks if it is possible to transform a switch with only 5382 // two cases (or two cases + default) that produces a result into a select. 5383 // Example: 5384 // switch (a) { 5385 // case 10: %0 = icmp eq i32 %a, 10 5386 // return 10; %1 = select i1 %0, i32 10, i32 4 5387 // case 20: ----> %2 = icmp eq i32 %a, 20 5388 // return 2; %3 = select i1 %2, i32 2, i32 %1 5389 // default: 5390 // return 4; 5391 // } 5392 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, 5393 Constant *DefaultResult, Value *Condition, 5394 IRBuilder<> &Builder) { 5395 // If we are selecting between only two cases transform into a simple 5396 // select or a two-way select if default is possible. 5397 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 5398 ResultVector[1].second.size() == 1) { 5399 ConstantInt *const FirstCase = ResultVector[0].second[0]; 5400 ConstantInt *const SecondCase = ResultVector[1].second[0]; 5401 5402 bool DefaultCanTrigger = DefaultResult; 5403 Value *SelectValue = ResultVector[1].first; 5404 if (DefaultCanTrigger) { 5405 Value *const ValueCompare = 5406 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 5407 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 5408 DefaultResult, "switch.select"); 5409 } 5410 Value *const ValueCompare = 5411 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 5412 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 5413 SelectValue, "switch.select"); 5414 } 5415 5416 // Handle the degenerate case where two cases have the same value. 5417 if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 && 5418 DefaultResult) { 5419 Value *Cmp1 = Builder.CreateICmpEQ( 5420 Condition, ResultVector[0].second[0], "switch.selectcmp.case1"); 5421 Value *Cmp2 = Builder.CreateICmpEQ( 5422 Condition, ResultVector[0].second[1], "switch.selectcmp.case2"); 5423 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 5424 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 5425 } 5426 5427 return nullptr; 5428 } 5429 5430 // Helper function to cleanup a switch instruction that has been converted into 5431 // a select, fixing up PHI nodes and basic blocks. 5432 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, 5433 Value *SelectValue, 5434 IRBuilder<> &Builder, 5435 DomTreeUpdater *DTU) { 5436 std::vector<DominatorTree::UpdateType> Updates; 5437 5438 BasicBlock *SelectBB = SI->getParent(); 5439 BasicBlock *DestBB = PHI->getParent(); 5440 5441 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 5442 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 5443 Builder.CreateBr(DestBB); 5444 5445 // Remove the switch. 5446 5447 while (PHI->getBasicBlockIndex(SelectBB) >= 0) 5448 PHI->removeIncomingValue(SelectBB); 5449 PHI->addIncoming(SelectValue, SelectBB); 5450 5451 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 5452 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 5453 BasicBlock *Succ = SI->getSuccessor(i); 5454 5455 if (Succ == DestBB) 5456 continue; 5457 Succ->removePredecessor(SelectBB); 5458 if (DTU && RemovedSuccessors.insert(Succ).second) 5459 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 5460 } 5461 SI->eraseFromParent(); 5462 if (DTU) 5463 DTU->applyUpdates(Updates); 5464 } 5465 5466 /// If the switch is only used to initialize one or more 5467 /// phi nodes in a common successor block with only two different 5468 /// constant values, replace the switch with select. 5469 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 5470 DomTreeUpdater *DTU, const DataLayout &DL, 5471 const TargetTransformInfo &TTI) { 5472 Value *const Cond = SI->getCondition(); 5473 PHINode *PHI = nullptr; 5474 BasicBlock *CommonDest = nullptr; 5475 Constant *DefaultResult; 5476 SwitchCaseResultVectorTy UniqueResults; 5477 // Collect all the cases that will deliver the same value from the switch. 5478 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 5479 DL, TTI, /*MaxUniqueResults*/2, 5480 /*MaxCasesPerResult*/2)) 5481 return false; 5482 assert(PHI != nullptr && "PHI for value select not found"); 5483 5484 Builder.SetInsertPoint(SI); 5485 Value *SelectValue = 5486 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); 5487 if (SelectValue) { 5488 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU); 5489 return true; 5490 } 5491 // The switch couldn't be converted into a select. 5492 return false; 5493 } 5494 5495 namespace { 5496 5497 /// This class represents a lookup table that can be used to replace a switch. 5498 class SwitchLookupTable { 5499 public: 5500 /// Create a lookup table to use as a switch replacement with the contents 5501 /// of Values, using DefaultValue to fill any holes in the table. 5502 SwitchLookupTable( 5503 Module &M, uint64_t TableSize, ConstantInt *Offset, 5504 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5505 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 5506 5507 /// Build instructions with Builder to retrieve the value at 5508 /// the position given by Index in the lookup table. 5509 Value *BuildLookup(Value *Index, IRBuilder<> &Builder); 5510 5511 /// Return true if a table with TableSize elements of 5512 /// type ElementType would fit in a target-legal register. 5513 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 5514 Type *ElementType); 5515 5516 private: 5517 // Depending on the contents of the table, it can be represented in 5518 // different ways. 5519 enum { 5520 // For tables where each element contains the same value, we just have to 5521 // store that single value and return it for each lookup. 5522 SingleValueKind, 5523 5524 // For tables where there is a linear relationship between table index 5525 // and values. We calculate the result with a simple multiplication 5526 // and addition instead of a table lookup. 5527 LinearMapKind, 5528 5529 // For small tables with integer elements, we can pack them into a bitmap 5530 // that fits into a target-legal register. Values are retrieved by 5531 // shift and mask operations. 5532 BitMapKind, 5533 5534 // The table is stored as an array of values. Values are retrieved by load 5535 // instructions from the table. 5536 ArrayKind 5537 } Kind; 5538 5539 // For SingleValueKind, this is the single value. 5540 Constant *SingleValue = nullptr; 5541 5542 // For BitMapKind, this is the bitmap. 5543 ConstantInt *BitMap = nullptr; 5544 IntegerType *BitMapElementTy = nullptr; 5545 5546 // For LinearMapKind, these are the constants used to derive the value. 5547 ConstantInt *LinearOffset = nullptr; 5548 ConstantInt *LinearMultiplier = nullptr; 5549 5550 // For ArrayKind, this is the array. 5551 GlobalVariable *Array = nullptr; 5552 }; 5553 5554 } // end anonymous namespace 5555 5556 SwitchLookupTable::SwitchLookupTable( 5557 Module &M, uint64_t TableSize, ConstantInt *Offset, 5558 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 5559 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 5560 assert(Values.size() && "Can't build lookup table without values!"); 5561 assert(TableSize >= Values.size() && "Can't fit values in table!"); 5562 5563 // If all values in the table are equal, this is that value. 5564 SingleValue = Values.begin()->second; 5565 5566 Type *ValueType = Values.begin()->second->getType(); 5567 5568 // Build up the table contents. 5569 SmallVector<Constant *, 64> TableContents(TableSize); 5570 for (size_t I = 0, E = Values.size(); I != E; ++I) { 5571 ConstantInt *CaseVal = Values[I].first; 5572 Constant *CaseRes = Values[I].second; 5573 assert(CaseRes->getType() == ValueType); 5574 5575 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 5576 TableContents[Idx] = CaseRes; 5577 5578 if (CaseRes != SingleValue) 5579 SingleValue = nullptr; 5580 } 5581 5582 // Fill in any holes in the table with the default result. 5583 if (Values.size() < TableSize) { 5584 assert(DefaultValue && 5585 "Need a default value to fill the lookup table holes."); 5586 assert(DefaultValue->getType() == ValueType); 5587 for (uint64_t I = 0; I < TableSize; ++I) { 5588 if (!TableContents[I]) 5589 TableContents[I] = DefaultValue; 5590 } 5591 5592 if (DefaultValue != SingleValue) 5593 SingleValue = nullptr; 5594 } 5595 5596 // If each element in the table contains the same value, we only need to store 5597 // that single value. 5598 if (SingleValue) { 5599 Kind = SingleValueKind; 5600 return; 5601 } 5602 5603 // Check if we can derive the value with a linear transformation from the 5604 // table index. 5605 if (isa<IntegerType>(ValueType)) { 5606 bool LinearMappingPossible = true; 5607 APInt PrevVal; 5608 APInt DistToPrev; 5609 assert(TableSize >= 2 && "Should be a SingleValue table."); 5610 // Check if there is the same distance between two consecutive values. 5611 for (uint64_t I = 0; I < TableSize; ++I) { 5612 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 5613 if (!ConstVal) { 5614 // This is an undef. We could deal with it, but undefs in lookup tables 5615 // are very seldom. It's probably not worth the additional complexity. 5616 LinearMappingPossible = false; 5617 break; 5618 } 5619 const APInt &Val = ConstVal->getValue(); 5620 if (I != 0) { 5621 APInt Dist = Val - PrevVal; 5622 if (I == 1) { 5623 DistToPrev = Dist; 5624 } else if (Dist != DistToPrev) { 5625 LinearMappingPossible = false; 5626 break; 5627 } 5628 } 5629 PrevVal = Val; 5630 } 5631 if (LinearMappingPossible) { 5632 LinearOffset = cast<ConstantInt>(TableContents[0]); 5633 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 5634 Kind = LinearMapKind; 5635 ++NumLinearMaps; 5636 return; 5637 } 5638 } 5639 5640 // If the type is integer and the table fits in a register, build a bitmap. 5641 if (WouldFitInRegister(DL, TableSize, ValueType)) { 5642 IntegerType *IT = cast<IntegerType>(ValueType); 5643 APInt TableInt(TableSize * IT->getBitWidth(), 0); 5644 for (uint64_t I = TableSize; I > 0; --I) { 5645 TableInt <<= IT->getBitWidth(); 5646 // Insert values into the bitmap. Undef values are set to zero. 5647 if (!isa<UndefValue>(TableContents[I - 1])) { 5648 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 5649 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 5650 } 5651 } 5652 BitMap = ConstantInt::get(M.getContext(), TableInt); 5653 BitMapElementTy = IT; 5654 Kind = BitMapKind; 5655 ++NumBitMaps; 5656 return; 5657 } 5658 5659 // Store the table in an array. 5660 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 5661 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 5662 5663 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 5664 GlobalVariable::PrivateLinkage, Initializer, 5665 "switch.table." + FuncName); 5666 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 5667 // Set the alignment to that of an array items. We will be only loading one 5668 // value out of it. 5669 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType))); 5670 Kind = ArrayKind; 5671 } 5672 5673 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { 5674 switch (Kind) { 5675 case SingleValueKind: 5676 return SingleValue; 5677 case LinearMapKind: { 5678 // Derive the result value from the input value. 5679 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 5680 false, "switch.idx.cast"); 5681 if (!LinearMultiplier->isOne()) 5682 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); 5683 if (!LinearOffset->isZero()) 5684 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); 5685 return Result; 5686 } 5687 case BitMapKind: { 5688 // Type of the bitmap (e.g. i59). 5689 IntegerType *MapTy = BitMap->getType(); 5690 5691 // Cast Index to the same type as the bitmap. 5692 // Note: The Index is <= the number of elements in the table, so 5693 // truncating it to the width of the bitmask is safe. 5694 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 5695 5696 // Multiply the shift amount by the element width. 5697 ShiftAmt = Builder.CreateMul( 5698 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 5699 "switch.shiftamt"); 5700 5701 // Shift down. 5702 Value *DownShifted = 5703 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 5704 // Mask off. 5705 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 5706 } 5707 case ArrayKind: { 5708 // Make sure the table index will not overflow when treated as signed. 5709 IntegerType *IT = cast<IntegerType>(Index->getType()); 5710 uint64_t TableSize = 5711 Array->getInitializer()->getType()->getArrayNumElements(); 5712 if (TableSize > (1ULL << (IT->getBitWidth() - 1))) 5713 Index = Builder.CreateZExt( 5714 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 5715 "switch.tableidx.zext"); 5716 5717 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 5718 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 5719 GEPIndices, "switch.gep"); 5720 return Builder.CreateLoad( 5721 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 5722 "switch.load"); 5723 } 5724 } 5725 llvm_unreachable("Unknown lookup table kind!"); 5726 } 5727 5728 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, 5729 uint64_t TableSize, 5730 Type *ElementType) { 5731 auto *IT = dyn_cast<IntegerType>(ElementType); 5732 if (!IT) 5733 return false; 5734 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 5735 // are <= 15, we could try to narrow the type. 5736 5737 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 5738 if (TableSize >= UINT_MAX / IT->getBitWidth()) 5739 return false; 5740 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 5741 } 5742 5743 /// Determine whether a lookup table should be built for this switch, based on 5744 /// the number of cases, size of the table, and the types of the results. 5745 static bool 5746 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 5747 const TargetTransformInfo &TTI, const DataLayout &DL, 5748 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 5749 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) 5750 return false; // TableSize overflowed, or mul below might overflow. 5751 5752 bool AllTablesFitInRegister = true; 5753 bool HasIllegalType = false; 5754 for (const auto &I : ResultTypes) { 5755 Type *Ty = I.second; 5756 5757 // Saturate this flag to true. 5758 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); 5759 5760 // Saturate this flag to false. 5761 AllTablesFitInRegister = 5762 AllTablesFitInRegister && 5763 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); 5764 5765 // If both flags saturate, we're done. NOTE: This *only* works with 5766 // saturating flags, and all flags have to saturate first due to the 5767 // non-deterministic behavior of iterating over a dense map. 5768 if (HasIllegalType && !AllTablesFitInRegister) 5769 break; 5770 } 5771 5772 // If each table would fit in a register, we should build it anyway. 5773 if (AllTablesFitInRegister) 5774 return true; 5775 5776 // Don't build a table that doesn't fit in-register if it has illegal types. 5777 if (HasIllegalType) 5778 return false; 5779 5780 // The table density should be at least 40%. This is the same criterion as for 5781 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. 5782 // FIXME: Find the best cut-off. 5783 return SI->getNumCases() * 10 >= TableSize * 4; 5784 } 5785 5786 /// Try to reuse the switch table index compare. Following pattern: 5787 /// \code 5788 /// if (idx < tablesize) 5789 /// r = table[idx]; // table does not contain default_value 5790 /// else 5791 /// r = default_value; 5792 /// if (r != default_value) 5793 /// ... 5794 /// \endcode 5795 /// Is optimized to: 5796 /// \code 5797 /// cond = idx < tablesize; 5798 /// if (cond) 5799 /// r = table[idx]; 5800 /// else 5801 /// r = default_value; 5802 /// if (cond) 5803 /// ... 5804 /// \endcode 5805 /// Jump threading will then eliminate the second if(cond). 5806 static void reuseTableCompare( 5807 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 5808 Constant *DefaultValue, 5809 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 5810 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 5811 if (!CmpInst) 5812 return; 5813 5814 // We require that the compare is in the same block as the phi so that jump 5815 // threading can do its work afterwards. 5816 if (CmpInst->getParent() != PhiBlock) 5817 return; 5818 5819 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 5820 if (!CmpOp1) 5821 return; 5822 5823 Value *RangeCmp = RangeCheckBranch->getCondition(); 5824 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 5825 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 5826 5827 // Check if the compare with the default value is constant true or false. 5828 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5829 DefaultValue, CmpOp1, true); 5830 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 5831 return; 5832 5833 // Check if the compare with the case values is distinct from the default 5834 // compare result. 5835 for (auto ValuePair : Values) { 5836 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), 5837 ValuePair.second, CmpOp1, true); 5838 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) 5839 return; 5840 assert((CaseConst == TrueConst || CaseConst == FalseConst) && 5841 "Expect true or false as compare result."); 5842 } 5843 5844 // Check if the branch instruction dominates the phi node. It's a simple 5845 // dominance check, but sufficient for our needs. 5846 // Although this check is invariant in the calling loops, it's better to do it 5847 // at this late stage. Practically we do it at most once for a switch. 5848 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 5849 for (BasicBlock *Pred : predecessors(PhiBlock)) { 5850 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 5851 return; 5852 } 5853 5854 if (DefaultConst == FalseConst) { 5855 // The compare yields the same result. We can replace it. 5856 CmpInst->replaceAllUsesWith(RangeCmp); 5857 ++NumTableCmpReuses; 5858 } else { 5859 // The compare yields the same result, just inverted. We can replace it. 5860 Value *InvertedTableCmp = BinaryOperator::CreateXor( 5861 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 5862 RangeCheckBranch); 5863 CmpInst->replaceAllUsesWith(InvertedTableCmp); 5864 ++NumTableCmpReuses; 5865 } 5866 } 5867 5868 /// If the switch is only used to initialize one or more phi nodes in a common 5869 /// successor block with different constant values, replace the switch with 5870 /// lookup tables. 5871 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 5872 DomTreeUpdater *DTU, const DataLayout &DL, 5873 const TargetTransformInfo &TTI) { 5874 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5875 5876 BasicBlock *BB = SI->getParent(); 5877 Function *Fn = BB->getParent(); 5878 // Only build lookup table when we have a target that supports it or the 5879 // attribute is not set. 5880 if (!TTI.shouldBuildLookupTables() || 5881 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 5882 return false; 5883 5884 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 5885 // split off a dense part and build a lookup table for that. 5886 5887 // FIXME: This creates arrays of GEPs to constant strings, which means each 5888 // GEP needs a runtime relocation in PIC code. We should just build one big 5889 // string and lookup indices into that. 5890 5891 // Ignore switches with less than three cases. Lookup tables will not make 5892 // them faster, so we don't analyze them. 5893 if (SI->getNumCases() < 3) 5894 return false; 5895 5896 // Figure out the corresponding result for each case value and phi node in the 5897 // common destination, as well as the min and max case values. 5898 assert(!SI->cases().empty()); 5899 SwitchInst::CaseIt CI = SI->case_begin(); 5900 ConstantInt *MinCaseVal = CI->getCaseValue(); 5901 ConstantInt *MaxCaseVal = CI->getCaseValue(); 5902 5903 BasicBlock *CommonDest = nullptr; 5904 5905 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 5906 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 5907 5908 SmallDenseMap<PHINode *, Constant *> DefaultResults; 5909 SmallDenseMap<PHINode *, Type *> ResultTypes; 5910 SmallVector<PHINode *, 4> PHIs; 5911 5912 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 5913 ConstantInt *CaseVal = CI->getCaseValue(); 5914 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 5915 MinCaseVal = CaseVal; 5916 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 5917 MaxCaseVal = CaseVal; 5918 5919 // Resulting value at phi nodes for this case value. 5920 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 5921 ResultsTy Results; 5922 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 5923 Results, DL, TTI)) 5924 return false; 5925 5926 // Append the result from this case to the list for each phi. 5927 for (const auto &I : Results) { 5928 PHINode *PHI = I.first; 5929 Constant *Value = I.second; 5930 if (!ResultLists.count(PHI)) 5931 PHIs.push_back(PHI); 5932 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 5933 } 5934 } 5935 5936 // Keep track of the result types. 5937 for (PHINode *PHI : PHIs) { 5938 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 5939 } 5940 5941 uint64_t NumResults = ResultLists[PHIs[0]].size(); 5942 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); 5943 uint64_t TableSize = RangeSpread.getLimitedValue() + 1; 5944 bool TableHasHoles = (NumResults < TableSize); 5945 5946 // If the table has holes, we need a constant result for the default case 5947 // or a bitmask that fits in a register. 5948 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 5949 bool HasDefaultResults = 5950 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 5951 DefaultResultsList, DL, TTI); 5952 5953 bool NeedMask = (TableHasHoles && !HasDefaultResults); 5954 if (NeedMask) { 5955 // As an extra penalty for the validity test we require more cases. 5956 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 5957 return false; 5958 if (!DL.fitsInLegalInteger(TableSize)) 5959 return false; 5960 } 5961 5962 for (const auto &I : DefaultResultsList) { 5963 PHINode *PHI = I.first; 5964 Constant *Result = I.second; 5965 DefaultResults[PHI] = Result; 5966 } 5967 5968 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 5969 return false; 5970 5971 std::vector<DominatorTree::UpdateType> Updates; 5972 5973 // Create the BB that does the lookups. 5974 Module &Mod = *CommonDest->getParent()->getParent(); 5975 BasicBlock *LookupBB = BasicBlock::Create( 5976 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 5977 5978 // Compute the table index value. 5979 Builder.SetInsertPoint(SI); 5980 Value *TableIndex; 5981 if (MinCaseVal->isNullValue()) 5982 TableIndex = SI->getCondition(); 5983 else 5984 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, 5985 "switch.tableidx"); 5986 5987 // Compute the maximum table size representable by the integer type we are 5988 // switching upon. 5989 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 5990 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 5991 assert(MaxTableSize >= TableSize && 5992 "It is impossible for a switch to have more entries than the max " 5993 "representable value of its input integer type's size."); 5994 5995 // If the default destination is unreachable, or if the lookup table covers 5996 // all values of the conditional variable, branch directly to the lookup table 5997 // BB. Otherwise, check that the condition is within the case range. 5998 const bool DefaultIsReachable = 5999 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 6000 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 6001 BranchInst *RangeCheckBranch = nullptr; 6002 6003 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6004 Builder.CreateBr(LookupBB); 6005 if (DTU) 6006 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6007 // Note: We call removeProdecessor later since we need to be able to get the 6008 // PHI value for the default case in case we're using a bit mask. 6009 } else { 6010 Value *Cmp = Builder.CreateICmpULT( 6011 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 6012 RangeCheckBranch = 6013 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 6014 if (DTU) 6015 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 6016 } 6017 6018 // Populate the BB that does the lookups. 6019 Builder.SetInsertPoint(LookupBB); 6020 6021 if (NeedMask) { 6022 // Before doing the lookup, we do the hole check. The LookupBB is therefore 6023 // re-purposed to do the hole check, and we create a new LookupBB. 6024 BasicBlock *MaskBB = LookupBB; 6025 MaskBB->setName("switch.hole_check"); 6026 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 6027 CommonDest->getParent(), CommonDest); 6028 6029 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 6030 // unnecessary illegal types. 6031 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 6032 APInt MaskInt(TableSizePowOf2, 0); 6033 APInt One(TableSizePowOf2, 1); 6034 // Build bitmask; fill in a 1 bit for every case. 6035 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 6036 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 6037 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) 6038 .getLimitedValue(); 6039 MaskInt |= One << Idx; 6040 } 6041 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 6042 6043 // Get the TableIndex'th bit of the bitmask. 6044 // If this bit is 0 (meaning hole) jump to the default destination, 6045 // else continue with table lookup. 6046 IntegerType *MapTy = TableMask->getType(); 6047 Value *MaskIndex = 6048 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 6049 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 6050 Value *LoBit = Builder.CreateTrunc( 6051 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 6052 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 6053 if (DTU) { 6054 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 6055 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 6056 } 6057 Builder.SetInsertPoint(LookupBB); 6058 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 6059 } 6060 6061 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 6062 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 6063 // do not delete PHINodes here. 6064 SI->getDefaultDest()->removePredecessor(BB, 6065 /*KeepOneInputPHIs=*/true); 6066 if (DTU) 6067 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 6068 } 6069 6070 bool ReturnedEarly = false; 6071 for (PHINode *PHI : PHIs) { 6072 const ResultListTy &ResultList = ResultLists[PHI]; 6073 6074 // If using a bitmask, use any value to fill the lookup table holes. 6075 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; 6076 StringRef FuncName = Fn->getName(); 6077 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, 6078 FuncName); 6079 6080 Value *Result = Table.BuildLookup(TableIndex, Builder); 6081 6082 // If the result is used to return immediately from the function, we want to 6083 // do that right here. 6084 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && 6085 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { 6086 Builder.CreateRet(Result); 6087 ReturnedEarly = true; 6088 break; 6089 } 6090 6091 // Do a small peephole optimization: re-use the switch table compare if 6092 // possible. 6093 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 6094 BasicBlock *PhiBlock = PHI->getParent(); 6095 // Search for compare instructions which use the phi. 6096 for (auto *User : PHI->users()) { 6097 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 6098 } 6099 } 6100 6101 PHI->addIncoming(Result, LookupBB); 6102 } 6103 6104 if (!ReturnedEarly) { 6105 Builder.CreateBr(CommonDest); 6106 if (DTU) 6107 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 6108 } 6109 6110 // Remove the switch. 6111 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 6112 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6113 BasicBlock *Succ = SI->getSuccessor(i); 6114 6115 if (Succ == SI->getDefaultDest()) 6116 continue; 6117 Succ->removePredecessor(BB); 6118 RemovedSuccessors.insert(Succ); 6119 } 6120 SI->eraseFromParent(); 6121 6122 if (DTU) { 6123 for (BasicBlock *RemovedSuccessor : RemovedSuccessors) 6124 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 6125 DTU->applyUpdates(Updates); 6126 } 6127 6128 ++NumLookupTables; 6129 if (NeedMask) 6130 ++NumLookupTablesHoles; 6131 return true; 6132 } 6133 6134 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6135 // See also SelectionDAGBuilder::isDense(), which this function was based on. 6136 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6137 uint64_t Range = Diff + 1; 6138 uint64_t NumCases = Values.size(); 6139 // 40% is the default density for building a jump table in optsize/minsize mode. 6140 uint64_t MinDensity = 40; 6141 6142 return NumCases * 100 >= Range * MinDensity; 6143 } 6144 6145 /// Try to transform a switch that has "holes" in it to a contiguous sequence 6146 /// of cases. 6147 /// 6148 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 6149 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 6150 /// 6151 /// This converts a sparse switch into a dense switch which allows better 6152 /// lowering and could also allow transforming into a lookup table. 6153 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 6154 const DataLayout &DL, 6155 const TargetTransformInfo &TTI) { 6156 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 6157 if (CondTy->getIntegerBitWidth() > 64 || 6158 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 6159 return false; 6160 // Only bother with this optimization if there are more than 3 switch cases; 6161 // SDAG will only bother creating jump tables for 4 or more cases. 6162 if (SI->getNumCases() < 4) 6163 return false; 6164 6165 // This transform is agnostic to the signedness of the input or case values. We 6166 // can treat the case values as signed or unsigned. We can optimize more common 6167 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 6168 // as signed. 6169 SmallVector<int64_t,4> Values; 6170 for (auto &C : SI->cases()) 6171 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 6172 llvm::sort(Values); 6173 6174 // If the switch is already dense, there's nothing useful to do here. 6175 if (isSwitchDense(Values)) 6176 return false; 6177 6178 // First, transform the values such that they start at zero and ascend. 6179 int64_t Base = Values[0]; 6180 for (auto &V : Values) 6181 V -= (uint64_t)(Base); 6182 6183 // Now we have signed numbers that have been shifted so that, given enough 6184 // precision, there are no negative values. Since the rest of the transform 6185 // is bitwise only, we switch now to an unsigned representation. 6186 6187 // This transform can be done speculatively because it is so cheap - it 6188 // results in a single rotate operation being inserted. 6189 // FIXME: It's possible that optimizing a switch on powers of two might also 6190 // be beneficial - flag values are often powers of two and we could use a CLZ 6191 // as the key function. 6192 6193 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 6194 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 6195 // less than 64. 6196 unsigned Shift = 64; 6197 for (auto &V : Values) 6198 Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); 6199 assert(Shift < 64); 6200 if (Shift > 0) 6201 for (auto &V : Values) 6202 V = (int64_t)((uint64_t)V >> Shift); 6203 6204 if (!isSwitchDense(Values)) 6205 // Transform didn't create a dense switch. 6206 return false; 6207 6208 // The obvious transform is to shift the switch condition right and emit a 6209 // check that the condition actually cleanly divided by GCD, i.e. 6210 // C & (1 << Shift - 1) == 0 6211 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 6212 // 6213 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 6214 // shift and puts the shifted-off bits in the uppermost bits. If any of these 6215 // are nonzero then the switch condition will be very large and will hit the 6216 // default case. 6217 6218 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 6219 Builder.SetInsertPoint(SI); 6220 auto *ShiftC = ConstantInt::get(Ty, Shift); 6221 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 6222 auto *LShr = Builder.CreateLShr(Sub, ShiftC); 6223 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); 6224 auto *Rot = Builder.CreateOr(LShr, Shl); 6225 SI->replaceUsesOfWith(SI->getCondition(), Rot); 6226 6227 for (auto Case : SI->cases()) { 6228 auto *Orig = Case.getCaseValue(); 6229 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 6230 Case.setValue( 6231 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); 6232 } 6233 return true; 6234 } 6235 6236 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 6237 BasicBlock *BB = SI->getParent(); 6238 6239 if (isValueEqualityComparison(SI)) { 6240 // If we only have one predecessor, and if it is a branch on this value, 6241 // see if that predecessor totally determines the outcome of this switch. 6242 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6243 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 6244 return requestResimplify(); 6245 6246 Value *Cond = SI->getCondition(); 6247 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 6248 if (SimplifySwitchOnSelect(SI, Select)) 6249 return requestResimplify(); 6250 6251 // If the block only contains the switch, see if we can fold the block 6252 // away into any preds. 6253 if (SI == &*BB->instructionsWithoutDebug().begin()) 6254 if (FoldValueComparisonIntoPredecessors(SI, Builder)) 6255 return requestResimplify(); 6256 } 6257 6258 // Try to transform the switch into an icmp and a branch. 6259 if (TurnSwitchRangeIntoICmp(SI, Builder)) 6260 return requestResimplify(); 6261 6262 // Remove unreachable cases. 6263 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 6264 return requestResimplify(); 6265 6266 if (switchToSelect(SI, Builder, DTU, DL, TTI)) 6267 return requestResimplify(); 6268 6269 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) 6270 return requestResimplify(); 6271 6272 // The conversion from switch to lookup tables results in difficult-to-analyze 6273 // code and makes pruning branches much harder. This is a problem if the 6274 // switch expression itself can still be restricted as a result of inlining or 6275 // CVP. Therefore, only apply this transformation during late stages of the 6276 // optimisation pipeline. 6277 if (Options.ConvertSwitchToLookupTable && 6278 SwitchToLookupTable(SI, Builder, DTU, DL, TTI)) 6279 return requestResimplify(); 6280 6281 if (ReduceSwitchRange(SI, Builder, DL, TTI)) 6282 return requestResimplify(); 6283 6284 return false; 6285 } 6286 6287 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 6288 BasicBlock *BB = IBI->getParent(); 6289 bool Changed = false; 6290 6291 // Eliminate redundant destinations. 6292 SmallPtrSet<Value *, 8> Succs; 6293 SmallPtrSet<BasicBlock *, 8> RemovedSuccs; 6294 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 6295 BasicBlock *Dest = IBI->getDestination(i); 6296 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 6297 if (!Dest->hasAddressTaken()) 6298 RemovedSuccs.insert(Dest); 6299 Dest->removePredecessor(BB); 6300 IBI->removeDestination(i); 6301 --i; 6302 --e; 6303 Changed = true; 6304 } 6305 } 6306 6307 if (DTU) { 6308 std::vector<DominatorTree::UpdateType> Updates; 6309 Updates.reserve(RemovedSuccs.size()); 6310 for (auto *RemovedSucc : RemovedSuccs) 6311 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 6312 DTU->applyUpdates(Updates); 6313 } 6314 6315 if (IBI->getNumDestinations() == 0) { 6316 // If the indirectbr has no successors, change it to unreachable. 6317 new UnreachableInst(IBI->getContext(), IBI); 6318 EraseTerminatorAndDCECond(IBI); 6319 return true; 6320 } 6321 6322 if (IBI->getNumDestinations() == 1) { 6323 // If the indirectbr has one successor, change it to a direct branch. 6324 BranchInst::Create(IBI->getDestination(0), IBI); 6325 EraseTerminatorAndDCECond(IBI); 6326 return true; 6327 } 6328 6329 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 6330 if (SimplifyIndirectBrOnSelect(IBI, SI)) 6331 return requestResimplify(); 6332 } 6333 return Changed; 6334 } 6335 6336 /// Given an block with only a single landing pad and a unconditional branch 6337 /// try to find another basic block which this one can be merged with. This 6338 /// handles cases where we have multiple invokes with unique landing pads, but 6339 /// a shared handler. 6340 /// 6341 /// We specifically choose to not worry about merging non-empty blocks 6342 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 6343 /// practice, the optimizer produces empty landing pad blocks quite frequently 6344 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 6345 /// sinking in this file) 6346 /// 6347 /// This is primarily a code size optimization. We need to avoid performing 6348 /// any transform which might inhibit optimization (such as our ability to 6349 /// specialize a particular handler via tail commoning). We do this by not 6350 /// merging any blocks which require us to introduce a phi. Since the same 6351 /// values are flowing through both blocks, we don't lose any ability to 6352 /// specialize. If anything, we make such specialization more likely. 6353 /// 6354 /// TODO - This transformation could remove entries from a phi in the target 6355 /// block when the inputs in the phi are the same for the two blocks being 6356 /// merged. In some cases, this could result in removal of the PHI entirely. 6357 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 6358 BasicBlock *BB, DomTreeUpdater *DTU) { 6359 auto Succ = BB->getUniqueSuccessor(); 6360 assert(Succ); 6361 // If there's a phi in the successor block, we'd likely have to introduce 6362 // a phi into the merged landing pad block. 6363 if (isa<PHINode>(*Succ->begin())) 6364 return false; 6365 6366 for (BasicBlock *OtherPred : predecessors(Succ)) { 6367 if (BB == OtherPred) 6368 continue; 6369 BasicBlock::iterator I = OtherPred->begin(); 6370 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 6371 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 6372 continue; 6373 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6374 ; 6375 BranchInst *BI2 = dyn_cast<BranchInst>(I); 6376 if (!BI2 || !BI2->isIdenticalTo(BI)) 6377 continue; 6378 6379 std::vector<DominatorTree::UpdateType> Updates; 6380 6381 // We've found an identical block. Update our predecessors to take that 6382 // path instead and make ourselves dead. 6383 SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 6384 for (BasicBlock *Pred : Preds) { 6385 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 6386 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 6387 "unexpected successor"); 6388 II->setUnwindDest(OtherPred); 6389 if (DTU) { 6390 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 6391 Updates.push_back({DominatorTree::Delete, Pred, BB}); 6392 } 6393 } 6394 6395 // The debug info in OtherPred doesn't cover the merged control flow that 6396 // used to go through BB. We need to delete it or update it. 6397 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { 6398 Instruction &Inst = *I; 6399 I++; 6400 if (isa<DbgInfoIntrinsic>(Inst)) 6401 Inst.eraseFromParent(); 6402 } 6403 6404 SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB)); 6405 for (BasicBlock *Succ : Succs) { 6406 Succ->removePredecessor(BB); 6407 if (DTU) 6408 Updates.push_back({DominatorTree::Delete, BB, Succ}); 6409 } 6410 6411 IRBuilder<> Builder(BI); 6412 Builder.CreateUnreachable(); 6413 BI->eraseFromParent(); 6414 if (DTU) 6415 DTU->applyUpdates(Updates); 6416 return true; 6417 } 6418 return false; 6419 } 6420 6421 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 6422 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 6423 : simplifyCondBranch(Branch, Builder); 6424 } 6425 6426 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 6427 IRBuilder<> &Builder) { 6428 BasicBlock *BB = BI->getParent(); 6429 BasicBlock *Succ = BI->getSuccessor(0); 6430 6431 // If the Terminator is the only non-phi instruction, simplify the block. 6432 // If LoopHeader is provided, check if the block or its successor is a loop 6433 // header. (This is for early invocations before loop simplify and 6434 // vectorization to keep canonical loop forms for nested loops. These blocks 6435 // can be eliminated when the pass is invoked later in the back-end.) 6436 // Note that if BB has only one predecessor then we do not introduce new 6437 // backedge, so we can eliminate BB. 6438 bool NeedCanonicalLoop = 6439 Options.NeedCanonicalLoop && 6440 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 6441 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 6442 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 6443 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 6444 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 6445 return true; 6446 6447 // If the only instruction in the block is a seteq/setne comparison against a 6448 // constant, try to simplify the block. 6449 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 6450 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 6451 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6452 ; 6453 if (I->isTerminator() && 6454 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 6455 return true; 6456 } 6457 6458 // See if we can merge an empty landing pad block with another which is 6459 // equivalent. 6460 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 6461 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 6462 ; 6463 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU)) 6464 return true; 6465 } 6466 6467 // If this basic block is ONLY a compare and a branch, and if a predecessor 6468 // branches to us and our successor, fold the comparison into the 6469 // predecessor and use logical operations to update the incoming value 6470 // for PHI nodes in common successor. 6471 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6472 Options.BonusInstThreshold)) 6473 return requestResimplify(); 6474 return false; 6475 } 6476 6477 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 6478 BasicBlock *PredPred = nullptr; 6479 for (auto *P : predecessors(BB)) { 6480 BasicBlock *PPred = P->getSinglePredecessor(); 6481 if (!PPred || (PredPred && PredPred != PPred)) 6482 return nullptr; 6483 PredPred = PPred; 6484 } 6485 return PredPred; 6486 } 6487 6488 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 6489 BasicBlock *BB = BI->getParent(); 6490 if (!Options.SimplifyCondBranch) 6491 return false; 6492 6493 // Conditional branch 6494 if (isValueEqualityComparison(BI)) { 6495 // If we only have one predecessor, and if it is a branch on this value, 6496 // see if that predecessor totally determines the outcome of this 6497 // switch. 6498 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 6499 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 6500 return requestResimplify(); 6501 6502 // This block must be empty, except for the setcond inst, if it exists. 6503 // Ignore dbg and pseudo intrinsics. 6504 auto I = BB->instructionsWithoutDebug(true).begin(); 6505 if (&*I == BI) { 6506 if (FoldValueComparisonIntoPredecessors(BI, Builder)) 6507 return requestResimplify(); 6508 } else if (&*I == cast<Instruction>(BI->getCondition())) { 6509 ++I; 6510 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) 6511 return requestResimplify(); 6512 } 6513 } 6514 6515 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 6516 if (SimplifyBranchOnICmpChain(BI, Builder, DL)) 6517 return true; 6518 6519 // If this basic block has dominating predecessor blocks and the dominating 6520 // blocks' conditions imply BI's condition, we know the direction of BI. 6521 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 6522 if (Imp) { 6523 // Turn this into a branch on constant. 6524 auto *OldCond = BI->getCondition(); 6525 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 6526 : ConstantInt::getFalse(BB->getContext()); 6527 BI->setCondition(TorF); 6528 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 6529 return requestResimplify(); 6530 } 6531 6532 // If this basic block is ONLY a compare and a branch, and if a predecessor 6533 // branches to us and one of our successors, fold the comparison into the 6534 // predecessor and use logical operations to pick the right destination. 6535 if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 6536 Options.BonusInstThreshold)) 6537 return requestResimplify(); 6538 6539 // We have a conditional branch to two blocks that are only reachable 6540 // from BI. We know that the condbr dominates the two blocks, so see if 6541 // there is any identical code in the "then" and "else" blocks. If so, we 6542 // can hoist it up to the branching block. 6543 if (BI->getSuccessor(0)->getSinglePredecessor()) { 6544 if (BI->getSuccessor(1)->getSinglePredecessor()) { 6545 if (HoistCommon && 6546 HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts)) 6547 return requestResimplify(); 6548 } else { 6549 // If Successor #1 has multiple preds, we may be able to conditionally 6550 // execute Successor #0 if it branches to Successor #1. 6551 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 6552 if (Succ0TI->getNumSuccessors() == 1 && 6553 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 6554 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) 6555 return requestResimplify(); 6556 } 6557 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 6558 // If Successor #0 has multiple preds, we may be able to conditionally 6559 // execute Successor #1 if it branches to Successor #0. 6560 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 6561 if (Succ1TI->getNumSuccessors() == 1 && 6562 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 6563 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) 6564 return requestResimplify(); 6565 } 6566 6567 // If this is a branch on a phi node in the current block, thread control 6568 // through this block if any PHI node entries are constants. 6569 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) 6570 if (PN->getParent() == BI->getParent()) 6571 if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC)) 6572 return requestResimplify(); 6573 6574 // Scan predecessor blocks for conditional branches. 6575 for (BasicBlock *Pred : predecessors(BB)) 6576 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 6577 if (PBI != BI && PBI->isConditional()) 6578 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 6579 return requestResimplify(); 6580 6581 // Look for diamond patterns. 6582 if (MergeCondStores) 6583 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 6584 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 6585 if (PBI != BI && PBI->isConditional()) 6586 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 6587 return requestResimplify(); 6588 6589 return false; 6590 } 6591 6592 /// Check if passing a value to an instruction will cause undefined behavior. 6593 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 6594 Constant *C = dyn_cast<Constant>(V); 6595 if (!C) 6596 return false; 6597 6598 if (I->use_empty()) 6599 return false; 6600 6601 if (C->isNullValue() || isa<UndefValue>(C)) { 6602 // Only look at the first use, avoid hurting compile time with long uselists 6603 User *Use = *I->user_begin(); 6604 6605 // Now make sure that there are no instructions in between that can alter 6606 // control flow (eg. calls) 6607 for (BasicBlock::iterator 6608 i = ++BasicBlock::iterator(I), 6609 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); 6610 i != UI; ++i) { 6611 if (i == I->getParent()->end()) 6612 return false; 6613 if (!isGuaranteedToTransferExecutionToSuccessor(&*i)) 6614 return false; 6615 } 6616 6617 // Look through GEPs. A load from a GEP derived from NULL is still undefined 6618 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 6619 if (GEP->getPointerOperand() == I) { 6620 if (!GEP->isInBounds() || !GEP->hasAllZeroIndices()) 6621 PtrValueMayBeModified = true; 6622 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 6623 } 6624 6625 // Look through bitcasts. 6626 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) 6627 return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified); 6628 6629 // Load from null is undefined. 6630 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 6631 if (!LI->isVolatile()) 6632 return !NullPointerIsDefined(LI->getFunction(), 6633 LI->getPointerAddressSpace()); 6634 6635 // Store to null is undefined. 6636 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 6637 if (!SI->isVolatile()) 6638 return (!NullPointerIsDefined(SI->getFunction(), 6639 SI->getPointerAddressSpace())) && 6640 SI->getPointerOperand() == I; 6641 6642 if (auto *CB = dyn_cast<CallBase>(Use)) { 6643 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 6644 return false; 6645 // A call to null is undefined. 6646 if (CB->getCalledOperand() == I) 6647 return true; 6648 6649 if (C->isNullValue()) { 6650 for (const llvm::Use &Arg : CB->args()) 6651 if (Arg == I) { 6652 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6653 if (CB->isPassingUndefUB(ArgIdx) && 6654 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 6655 // Passing null to a nonnnull+noundef argument is undefined. 6656 return !PtrValueMayBeModified; 6657 } 6658 } 6659 } else if (isa<UndefValue>(C)) { 6660 // Passing undef to a noundef argument is undefined. 6661 for (const llvm::Use &Arg : CB->args()) 6662 if (Arg == I) { 6663 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 6664 if (CB->isPassingUndefUB(ArgIdx)) { 6665 // Passing undef to a noundef argument is undefined. 6666 return true; 6667 } 6668 } 6669 } 6670 } 6671 } 6672 return false; 6673 } 6674 6675 /// If BB has an incoming value that will always trigger undefined behavior 6676 /// (eg. null pointer dereference), remove the branch leading here. 6677 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 6678 DomTreeUpdater *DTU) { 6679 for (PHINode &PHI : BB->phis()) 6680 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 6681 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 6682 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 6683 Instruction *T = Predecessor->getTerminator(); 6684 IRBuilder<> Builder(T); 6685 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 6686 BB->removePredecessor(Predecessor); 6687 // Turn uncoditional branches into unreachables and remove the dead 6688 // destination from conditional branches. 6689 if (BI->isUnconditional()) 6690 Builder.CreateUnreachable(); 6691 else 6692 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 6693 : BI->getSuccessor(0)); 6694 BI->eraseFromParent(); 6695 if (DTU) 6696 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 6697 return true; 6698 } 6699 // TODO: SwitchInst. 6700 } 6701 6702 return false; 6703 } 6704 6705 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) { 6706 bool Changed = false; 6707 6708 assert(BB && BB->getParent() && "Block not embedded in function!"); 6709 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 6710 6711 // Remove basic blocks that have no predecessors (except the entry block)... 6712 // or that just have themself as a predecessor. These are unreachable. 6713 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 6714 BB->getSinglePredecessor() == BB) { 6715 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 6716 DeleteDeadBlock(BB, DTU); 6717 return true; 6718 } 6719 6720 // Check to see if we can constant propagate this terminator instruction 6721 // away... 6722 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 6723 /*TLI=*/nullptr, DTU); 6724 6725 // Check for and eliminate duplicate PHI nodes in this block. 6726 Changed |= EliminateDuplicatePHINodes(BB); 6727 6728 // Check for and remove branches that will always cause undefined behavior. 6729 Changed |= removeUndefIntroducingPredecessor(BB, DTU); 6730 6731 // Merge basic blocks into their predecessor if there is only one distinct 6732 // pred, and if there is only one distinct successor of the predecessor, and 6733 // if there are no PHI nodes. 6734 if (MergeBlockIntoPredecessor(BB, DTU)) 6735 return true; 6736 6737 if (SinkCommon && Options.SinkCommonInsts) 6738 Changed |= SinkCommonCodeFromPredecessors(BB, DTU); 6739 6740 IRBuilder<> Builder(BB); 6741 6742 if (Options.FoldTwoEntryPHINode) { 6743 // If there is a trivial two-entry PHI node in this basic block, and we can 6744 // eliminate it, do so now. 6745 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 6746 if (PN->getNumIncomingValues() == 2) 6747 Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL); 6748 } 6749 6750 Instruction *Terminator = BB->getTerminator(); 6751 Builder.SetInsertPoint(Terminator); 6752 switch (Terminator->getOpcode()) { 6753 case Instruction::Br: 6754 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 6755 break; 6756 case Instruction::Ret: 6757 Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder); 6758 break; 6759 case Instruction::Resume: 6760 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 6761 break; 6762 case Instruction::CleanupRet: 6763 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 6764 break; 6765 case Instruction::Switch: 6766 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 6767 break; 6768 case Instruction::Unreachable: 6769 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 6770 break; 6771 case Instruction::IndirectBr: 6772 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 6773 break; 6774 } 6775 6776 return Changed; 6777 } 6778 6779 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 6780 bool Changed = simplifyOnceImpl(BB); 6781 6782 return Changed; 6783 } 6784 6785 bool SimplifyCFGOpt::run(BasicBlock *BB) { 6786 bool Changed = false; 6787 6788 // Repeated simplify BB as long as resimplification is requested. 6789 do { 6790 Resimplify = false; 6791 6792 // Perform one round of simplifcation. Resimplify flag will be set if 6793 // another iteration is requested. 6794 Changed |= simplifyOnce(BB); 6795 } while (Resimplify); 6796 6797 return Changed; 6798 } 6799 6800 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 6801 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 6802 ArrayRef<WeakVH> LoopHeaders) { 6803 return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders, 6804 Options) 6805 .run(BB); 6806 } 6807